Decision Rationale
Total Maximum Daily Loads for Selected Streams
in the Upper Kanawha River Watershed, West Virginia

I. Introduction

The Clean Water Act (CWA) requires a Total Maximum Daily Load (TMDL) to be developed for those waterbodies identified as impaired by a state where technology-based and other controls did not provide for attainment of water quality standards. A TMDL is a determination of the amount of a pollutant from point, nonpoint, and natural background sources, including a margin of safety (MOS), that may be discharged to a water quality-limited waterbody.

This document will set forth the Environmental Protection Agency’s (EPA’s) rationale for approving the TMDLs for metals (dissolved aluminum, total iron, and total manganese), pH, fecal coliform bacteria, and biological impairments on selected waterbodies in the Upper Kanawha River watershed. The TMDL was developed to address impairment of water quality as identified in West Virginia’s 1996, 1998, 2002, and 2004 Section 303(d) list of impaired waters. EPA’s rationale is based on the determination that the TMDLs meet the following eight regulatory conditions pursuant to 40 CFR §130.

1) The TMDLs are designed to implement applicable water quality standards.
2) The TMDLs include a total allowable load as well as individual waste load allocations (WLAs) and load allocations (LAs).
3) The TMDLs consider the impacts of background pollutant contributions.
4) The TMDLs consider critical environmental conditions.
5) The TMDLs consider seasonal environmental variations.
6) The TMDLs include a margin of safety.
7) There is reasonable assurance that the TMDLs can be met.
8) The TMDLs have been subject to public participation.

From this point forward, all references in this approval rationale are found in West Virginia’s TMDL Report *TMDLs for Selected Streams in the Upper Kanawha River Watershed, West Virginia*.

II. Summary

Table 3-3 presents the waterbodies and impairments for which TMDLs have been developed for the Upper Kanawha River watershed by the West Virginia Department of Environmental Protection (WVDEP). The 80 waterbodies were identified on West Virginia’s 2004 Section 303(d) list for some combination of metals (dissolved aluminum, total iron, and total manganese), pH, fecal coliform bacteria, and biological impairments. These TMDLs represent the 80 of the 96-listed segments in the Upper Kanawha River watershed. The
remaining 16 segments were not included because they were either newly listed waters, impacted by severe flooding, or the biological stressor identification did not singularly identify a causative pollutant. All waters and impairments excluded from TMDL development in this effort will remain on West Virginia’s Section 303(d) list and will have TMDLs developed in 2009 or 2014 in accordance with West Virginia’s Watershed Management Framework.

The TMDL is a written plan and analysis established to ensure that a waterbody will attain and maintain water quality standards. The TMDL is a scientifically-based strategy which considers current and foreseeable conditions, the best available data, and accounts for uncertainty with the inclusion of a MOS value. Conditions, available data, and the understanding of the natural processes can change more than anticipated by the MOS. The option is always available to refine the TMDLs for re-submittal to EPA for approval.

The subwatershed appendices provide additional details relative to their respective impaired waters and the applicable TMDLs (sum of wasteload allocations + sum of load allocations + margin of safety). Section 6 of each subwatershed appendix presents applicable TMDLs for aluminum, iron, manganese, fecal coliform bacteria, or sediment, as appropriate. Allocation spreadsheets also provide applicable TMDLs, wasteload allocations to individual point sources and load allocations to categories of nonpoint sources. West Virginia developed an interactive ArcExplorer geographic information system (GIS) project that shows the spatial relationships between source assessment data and subwatershed TMDL allocations for selected streams in the Upper Kanawha River watershed. The TMDLs are presented as average annual loads because they were developed to meet TMDL endpoints under a range of conditions observed throughout the year. The loads are in pounds per year or counts per year which may be divided by 365 days per year to express the TMDLs in pounds per day or counts per day.

III. Background

The Upper Kanawha River watershed is located in southwestern West Virginia (Figure 3-1) and extends over 521 square miles. Portions of the watershed lie within Kanawha, Fayette, and Raleigh counties, and major tributaries include Campbell’s Creek, Witcher Creek, Kelly’s Creek, Hughes Creek, Smithers Creek, Loop Creek, Armstrong Creek, Paint Creek, Cabin Creek, Slaughter Creek, Fields Creek, and Lens Creek. The Upper Kanawha River watershed is located in West Virginia’s southern coalfields and is dominated by forest land uses with some urban/residential and barren/mining land (Table 3-1).

West Virginia conducted extensive water quality monitoring from July 2001 through June 2002 in the Upper Kanawha River watershed. The results of this effort were used to confirm the listing of waterbodies not meeting applicable water quality criteria and to identify impaired waterbodies that were not previously listed. TMDLs were developed for the impaired waterbodies in 17 subwatersheds (Figure 3-2): Armstrong Creek, Boomer Branch, Cabin Creek, Campbells Creek, Carroll Creek, Fields Creek, Hicks Hollow, Jarrett Branch, Lens Creek, Loop Creek, Mile Branch, Morris Creek, Slaughter Creek, Smithers Creek, Staten Run, Watson
Branch, and Witcher Creek. Table 3-3 presents the 80 impaired waters for which TMDLs are developed. The TMDLs were developed for some combination of metals (dissolved aluminum, total iron, and total manganese), pH, fecal coliform bacteria, and biological impairment including 196 TMDLs (waterbody/pollutant combinations). The 17 subwatersheds were further divided into 282 subwatersheds for modeling purposes (Figure 7-1). The subwatershed delineation provided a basis for georeferencing pertinent source information and monitoring data, and for presenting TMDLs.

These TMDLs were developed by West Virginia and approved by EPA consistent with the requirements of the 1997 TMDL lawsuit consent decree and settlement agreement for the case OVEC Inc., et al., v. Browner, et al. The 1997 consent decree requires that West Virginia, or EPA if West Virginia fails to, develops TMDLs for 44 priority waters included on West Virginia's 1996 Section 303(d) list by September 30, 2002. Under the consent decree, TMDLs for acid mine drainage (AMD) impaired waters (including tributaries in the Upper Kanawha River watershed) were scheduled for completion by March 30, 2008. There is also an interim deadline of 350 mine drainage TMDLs by March 30, 2006 which has been met. The establishment of the Upper Kanawha River watershed TMDLs helps to meet the March 30, 2008 deadline for completion of all mine drainage TMDLs.

WVDEP recently assumed responsibility for the TMDL Program and utilized the Watershed Management Framework cycle approach for TMDL development. The framework divides the state into 32 major watersheds and operates on a five-year, five-step process. The watersheds are divided into five hydrologic groups (A - E). Each group is assessed once every five years and waters are placed on the 303(d) list of impaired waters, as necessary. The TMDL process begins in the first year of the cycle with pre-TMDL sampling and public meetings in the affected watersheds. The data is compiled and TMDL development begins in year two of the cycle. In the third year, TMDL development continues and the TMDL is drafted. The TMDL is finalized in the fourth year. In the fifth year of the cycle, TMDL implementation is initiated through the National Pollutant Discharge Elimination System (NPDES) permitting process and efforts toward limiting nonpoint source loading. Throughout the TMDL development process, there are numerous opportunities for public participation and input. The Upper Kanawha River watershed is in hydrologic group A and is one of the first TMDLs developed by WVDEP. West Virginia’s TMDL process is described in Section 2.1 of the TMDL report.

Computational Procedures

Sections 4 and 5 of the TMDL Report discusses metals, pH, and fecal coliform bacteria source assessment while Section 6 describes biological impairments and stressor identification methods. Sources for metals and pH in the Upper Kanawha River watershed are: point sources, including mining, non-mining, and construction stormwater permits; and unpermitted sources of mine drainage from abandoned mine lands (AMLs) and bond forfeiture sites; as well as sediment sources including forestry, oil and gas, roads, agriculture, and other land disturbance activities. Fecal coliform bacteria sources include point sources, including individual sources covered under
the NPDES program such as wastewater treatment plants, sanitary sewer overflows (SSOs), municipal separate storm sewers (MS4s), and general sewage permits; and unpermitted sources, including on-site treatment systems, stormwater runoff, agriculture, and natural background (wildlife). Stressor identification indicated that biological impairments were caused by metals toxicity, pH toxicity, sedimentation, organic enrichment, or ionic toxicity. The Technical Report has expanded details of the source assessment and biological stressor identification discussed in Sections 4, 5, and 6.

Biological integrity/impairment is based on a rating of the stream’s benthic macroinvertebrate community using the multimetric West Virginia Stream Condition Index (WVSCI). Biological impairments were addressed by developing TMDLs for specific stressors. West Virginia utilized a stressor identification process to determine the primary causes of biologically-impaired streams including metals toxicity, pH toxicity, sedimentation, organic enrichment, and ionic toxicity. Stressor identification was followed by stream-specific determinations of the pollutants for which TMDLs must be developed. Metals toxicity and pH toxicity biological stressors were identified in waters that also had violations of the iron, aluminum, or pH numeric aquatic life protection water quality criteria. Where the stressor identification process indicated sedimentation as a causative stressor, sediment TMDLs were developed. It is expected that implementation of those pollutant-specific TMDLs would address the biological impairment. Where organic enrichment was identified as a biological stressor, the waters also demonstrated violations of the numeric criteria for fecal coliform bacteria. It was determined that implementation of fecal coliform TMDLs would require the elimination of the majority of the existing fecal coliform sources and thereby reduce the organic and nutrient loading causing biological impairment. The TMDLs prescribe 100% fecal coliform reduction for all existing straight pipe, failing septic systems, and SSOs would substantially reduce organic and nutrient loadings. In certain waters, the stressor identification process determined ionic toxicity as the primary stressor. However, information available regarding the causative pollutants and their associated impairment thresholds was insufficient for TMDL development at this time. Therefore, WVDEP deferred TMDL development for those waters with ionic toxicity as a causative stressor and retained them on the Section 303(d) list.

Section 7 describes the modeling processes employed during TMDL development. A variety of modeling tools were used to develop the metals, pH and fecal coliform TMDLs, including the Mining Data System (MDAS), Dynamic Equilibrium In-Stream Chemical Reactions model (DESC-R), and the Fecal Coliform Loading Estimation Spreadsheet (FCLES). Sediment TMDLs were modeled using the Generalized Watershed Loading Functions (GWLF) and a stream routing model (Tetra Tech Stream Module). Further details are provided in the Technical Report.

MDAS was used to represent the source-response linkage in the Upper Kanawha River watershed TMDL study area for total aluminum, manganese, iron, and fecal coliform. MDAS is a comprehensive data management and modeling system that is capable of representing loads from nonpoint and point sources in the watershed and simulating in-stream processes. MDAS is
used to simulate watershed hydrology and pollution transport, as well as stream hydraulics and in-stream water quality. It is capable of simulating different flow regimes and pollutant loading variations. Metals are modeled in MDAS in total recoverable form. Therefore, it was necessary to link MDAS with DESC-R to appropriately address dissolved aluminum TMDLs in the Upper Kanawha watershed. TMDLs for pH impairments were developed using a surrogate approach in which it was assumed that reducing instream metals (iron and aluminum) concentrations to meet water quality criteria (or TMDL endpoints) would result in meeting the water quality standard for pH. This assumption was verified by applying the DESC-R model. FCLES is a Microsoft Excel spreadsheet tool used to quantify nonpoint source bacteria accumulation rates based on watershed-specific information. Inputs to FCLES may be generated manually or by using various functions of the watershed characterization system. Output from FCLES is used as input to MDAS. FCLES estimates the monthly accumulation rate of fecal coliform on four landuses (cropland, forest, built-up, and pastureland) and the direct input of fecal coliform to streams from grazing agricultural animals and failing septic systems. West Virginia’s numeric and water quality criteria and an explicit MOS were used to identify the TMDL endpoints.

Sediment TMDLs were developed under a reference watershed approach and the GWLF watershed-loading model integrated with the Tetra Tech Stream Module that examined stream bank erosion and deposition processes. GWLF is a continuous-simulation model that simulates runoff and sediment loadings contributed by each modeled subwatershed. Load reductions for sediment-impaired waters were based on the sediment loading present in the unimpaired reference watershed. This approach is based on selecting a non-impaired watershed that shares similar land use, ecoregion, and geomorphologic characteristics with the impaired watershed. Stream conditions in the reference watershed are assumed to represent the conditions needed for the impaired stream to attain its designated uses. Given these parameters and a non-impaired WVSCI score, the Beards Fork in the Loop Creek watershed was selected as the reference watershed. Sediment loading rates were determined for impaired and reference watersheds. Both point and nonpoint sources were considered in the analysis, and numeric endpoints were based on the calculated sediment loading from the reference watershed. Sediment load reductions necessary to meet these endpoints were then determined. TMDL allocation scenarios were developed based on an analysis of the degree to which contributing sources could be reasonable reduced.

EPA has determined that these TMDLs are consistent with statutory and regulatory requirements and EPA’s policy and guidance. EPA’s rationale for establishing these TMDLs is set forth according to the regulatory requirements listed below.

1. **The TMDLs are designed to implement the applicable water quality standards.**

The applicable numeric water quality criteria are shown in Table 2-1. The applicable designated uses for all the waters subject to this report are aquatic life protection, water contact recreation, and public water supply. Most of the waters are designated as warmwater fisheries. Loop Creek is the only stream in the Upper Kanawha River watershed considered a troutwater.
For the pollutants causing the impaired waters of this report, West Virginia numeric water quality criteria for warmwater fisheries and troutwaters vary only with respect to iron, and Loop Creek is not impaired pursuant to the troutwater iron criterion.

All West Virginia waters are subject to the narrative criteria in Section 3 of the Standards. That section, titled Conditions Not Allowed in State Waters, contains various provision relative to water quality. The narrative water quality criterion at 46 CSR 1 - 3.2.i prohibits the presence of wastes in state waters that cause or contribute to significant adverse impacts on the chemical, physical, hydrologic, and biological components of aquatic ecosystems. This provision is the basis for the “biological impairment” determinations. Biological impairment signifies a stressed aquatic community. WVDEP determines each stream’s biological integrity based on a rating of the stream’s benthic macroinvertebrate community using the multimetric WVSCI.

2. **The TMDLs include a total allowable load as well as individual waste load allocations and load allocations.**

A TMDL is the total amount of a pollutant that can be assimilated by the receiving water while still achieving water quality standards. TMDLs can be expressed in terms of mass per time or by other appropriate measures. TMDLs are comprised of the sum of individual WLAs for point sources, LAs for non-point sources, and natural background levels. In addition, the TMDL must include an MOS, either implicitly or explicitly, that accounts for the uncertainty in the relationship between pollutant loads and the quality of the receiving stream. Conceptually, this definition is denoted by the following equation:

\[
\text{TMDL} = \text{Summation of WLAs} + \text{Summation of LAs} + \text{MOS}
\]

For purposes of these TMDLs only, waste load allocations are given to NPDES-permitted discharge points and load allocations are given to discharges from activities that do not have an associated NPDES permit, such as mine forfeiture sites, AMLs (including tunnel discharges, seeps, and surface runoff), failing septic systems, and straight pipes. The decision to assign load allocations to these sources does not reflect any determination by WVDEP or EPA as to whether there are, in fact, unpermitted point source discharges. In addition, by establishing these TMDLs with mine drainage discharges, failing septic systems, and straight pipes treated as load allocations, WVDEP and EPA are not determining that these discharges are exempt from NPDES permitting requirements.

Section 6 of each subwatershed appendix presents applicable TMDLs for aluminum, iron, manganese, fecal coliform bacteria, or sediment, as appropriate. Allocation spreadsheets also provide applicable TMDLs, wasteload allocations to individual point sources and load allocations to categories of unpermitted sources. The Metals and pH Allocation Spreadsheet present the detailed metal TMDLs, LAs, WLAs, and pH results. The Fecal Coliform Bacteria Allocation Spreadsheet presents detailed fecal coliform TMDLs, LAs, WLAs, and MS4 WLAs. The Sediment Allocation Spreadsheet presents the detailed sediment TMDLs, LAs, WLAs for
non-mining permits, WLAs for mining permits, and MS4 WLAs. The TMDLs are presented as average annual loads because they were developed to meet TMDL endpoints under a range of conditions observed throughout the year.

Sources for metals and pH in the Upper Kanawha River watershed are: point sources, including mining, non-mining, and construction stormwater permits; and unpermitted sources, including mine drainage from AMLs and bond forfeiture sites, as well as sediment sources including forestry, oil and gas, roads, agriculture, and other land disturbance activities. There are a total of 143 mining-related NPDES permits with 938 associated outlets in the 17 subwatersheds. A complete list of the permits and outlets is provided in the appendices of the Technical Report. Figure 4-1 illustrates the locations of these sources. Four non-mining NPDES permitted outlets in the watershed have effluent limits for metals and pH. Based on the minimal flows of their discharges, these permitted non-mining sources are believed to be negligible. Under these TMDLs, these minor discharges are assumed to operate under their current permit limits and were given WLAs based on their current permit limits. WVDEP issued a general NPDES permit to regulate stormwater flowing into streams from discharges associated with construction activities. There are two construction stormwater permits in the watersheds addressed by this report. Because the total disturbed area associated with these permits is small (less than 15 acres), they were considered a negligible source of metals. The TMDL does not prescribe pollutant reduction from the existing construction stormwater sources. Load allocations for metals were assigned to AMLs, bond forfeiture sites, and sediment sources including forestry, oil and gas, roads, agriculture, and other land disturbance areas.

Fecal coliform bacteria sources are: point sources, including individual NPDES permits for wastewater treatment plants, SSOs, MS4s, and general sewage permits; and unpermitted sources, including on-site treatment systems, stormwater runoff, agriculture, and natural background (wildlife). Fecal coliform bacteria TMDLs will affect 14 permits including three publicly-owned treatment works (POTWs), six privately-owned sewage treatment plants ("package plants"), and five home aeration units (HAUs). There are no combined sewer outfalls (CSOs) in the fecal coliform-impaired watersheds addressed in this TMDL. The TMDLs allowed fecal coliform NPDES permits to remain at 200 counts/100 mL (monthly average) and 400 counts/100 mL (daily maximum). The City of Marmet in Lens Creek watershed is the only designated MS4 municipality within the 17 subwatersheds in the TMDL and was given a WLA for fecal coliform bacteria. There are two unpermitted SSOs in the Campbells Creek watershed. Load allocations were assigned to grasslands, failing septic systems and straight pipes, residential areas, and wildlife. Fecal coliform reductions will require elimination of illicit discharges, straight pipes, leaking septic systems, and SSOs which would substantially reduce organic and nutrient loadings.

Sediment TMDLs were developed in 11 streams to address biological impairments. WLAs were given to all permitted mining point sources within these 11 watersheds. A sediment WLA was also given to the City of Marmet MS4 to address source loading associated with stormwater runoff from the urban and residential land uses. Sediment sources include mining,
forestry, oil and gas, roads, agriculture, and other land disturbance activities. Within the
sediment-impaired watersheds, there are sources that have industrial stormwater and sewage
permits. WLAs for the industrial stormwater permits were based on the 100 mg/L total
suspended solids (TSS) benchmark value. WLAs for sewage treatment facilities were based on
the 30 mg/L monthly average TSS effluent limitations contained in their permits. Under this
TMDL, these permits are not required pollutant reductions and are authorized to continue
operation under existing permit conditions. Sediment load allocations were assigned to
grasslands, barren land areas, harvested forest, residential areas, roads, in-stream processes
including bank erosion and deposition, and other nonpoint sources.

The TMDL considers silviculture or timbering operations and land disturbances
associated with oil and gas wells as nonpoint sources. Some silviculture activities are considered
point sources (See C.F.R. 122.27). Land clearing activity that is not associated with an ongoing,
commercial silviculture operation may be construction activity that requires a stormwater permit
and may be a point source. The decision to assign load allocations to these sources and to
discharges from oil and gas wells does not reflect any determination by WVDEP or EPA as to
whether there are, in fact, unpermitted point source discharges. In addition, by establishing these
TMDLs with silviculture and oil and gas well discharges treated as load allocations, WVDEP and
EPA are not determining that these discharges are exempt from NPDES permitting requirements.

The TMDL development methodologies prescribe allocations that achieve water quality
criteria throughout the watershed. Various provisions attempt equity between categories of
sources and the targeting of pollutant reductions from the most problematic sources. Nonpoint
source reductions did not result in loading contributions less than the natural conditions, and
point source allocations were not more stringent than numeric water quality criteria.

3. The TMDLs consider the impacts of background pollutant contributions.

The TMDL considers the impact of background pollutant contributions by considering
loadings from background sources like wildlife. MDAS also considers background pollutant
contributions by modeling all land uses.

4. The TMDLs consider critical environmental conditions.

Critical conditions were considered while considering seasonal variations, by running the
daily simulation model for several years, from 1987 to 1992 for MDAS and from 1979 to 1984
for GWLF.

5. The TMDLs consider seasonal environmental variations.

See Requirement 4 above.
6. **The TMDLs include a margin of safety (MOS).**

The CWA and Federal regulations require TMDLs to include an MOS to take into account any lack of knowledge concerning the relationship between effluent limitations and water quality. EPA guidance suggest two approaches to satisfy the MOS requirement. First, it can be met implicitly by using conservative model assumptions to develop the allocations. Alternately, it can be met explicitly by allocating a portion of the allowable load to the MOS.

An explicit MOS of five percent was included by setting the modeling endpoints to 95 percent of the water quality standards, Section 7.31. West Virginia did not include a discussion regarding an implicit MOS but did use conservative model assumptions (such as assuming all point sources continually discharge at permit limits) to develop the allocations.

7. **There is reasonable assurance that the proposed TMDLs can be met.**

Section 10 addresses reasonable assurance. There are four primary programs in effect which provide reasonable assurance that the TMDLs will be implemented. Section 10.1 discusses permit reissuance by WVDEP’s Division of Water and Waste Management scheduled to being in July 2005 for non-mining facilities and in January 2006 for mining facilities. Section 10.2 discusses the Watershed Management Framework Process. Section 10.3 discusses ongoing public sewer projects in Cabin Creek, Loop Creek, Fields Creek, and Lens Creek. Section 10.4 discusses the duties of the Office of Abandoned Mine Lands and Reclamation while Section 10.5 discusses special reclamation projects. Adequate funding for reclaiming abandoned mine lands is an issue to be addressed.

Section 11 discusses monitoring activities including NPDES compliance, nonpoint source project monitoring, and TMDL effectiveness monitoring.

Section 8 discusses the future growth and water quality trading in the Upper Kanawha River watershed TMDL. For metals, pH and fecal coliform bacteria, a new facility could be permitted in the watershed, provided that effluent limitations are based upon the achievement of water quality standards end-of-pipe for the pollutants of concern in the TMDL. For metals and pH, remining (under an NPDES permit) could occur in AMLs without a specific allocation to the new permittee provided that the requirements of existing state remining regulations are met. Remining activities, if conducted pursuant to Section 301(p) of the CWA, will not worsen water quality criteria and, in some instances, may result in improved water quality in abandoned mining areas. For sediment, new mining or non-mining point sources may be permitted in the sediment-impaired watersheds with the implementation of applicable technology-based TSS requirements. Construction stormwater permits are allowed specific future growth including a minimum of 10 acres or 0.5 percent of the area in the West Virginia portions of the sediment-impaired watersheds that are reserved for future construction stormwater permits.
8. The TMDLs have been subject to public participation.

Section 9 describes the public participation which included four meetings to present information on fundamental TMDL concepts and to present West Virginia’s proposed TMDL allocation strategies, a 30-day public comment period, and a final public informational meeting. West Virginia received four comment letters from Independent Oil and Gas Association of West Virginia, EPA Region III, Morris Creek Watershed Association, and West Virginia Division of Forestry. A responsiveness summary is included as part of this TMDL in Section 9.3.

In Section 9.3, WVDEP responded to a comment regarding how dissolved aluminum TMDLs would be impacted by recent criteria revisions being considered by the Environmental Quality Board (EQB). The EQB is considering suspension and reevaluation of the chronic aquatic life protection aluminum criterion for warmwater fisheries. Such revision has yet to be proposed to, or evaluated by, EPA. West Virginia states in their responses to comments, that if EPA were to approve the revision, the dissolved aluminum TMDLs would be technically invalid and WVDEP would not act to implement them. WVDEP recognizes that the proposed revision is a suspension, and that the suspended criteria could again become effective. WVDEP would likely hold the dissolved aluminum TMDLs in abeyance pending the outcome of the standards process.

EPA does not agree with West Virginia’s statement that TMDLs developed based upon the currently applicable dissolved aluminum water quality standard would be technically invalid if EPA approves proposed criteria revisions being considered by EQB. It is EPA’s view that water quality standard changes do not automatically nullify existing TMDLs. We recognize that the change in the water quality standard may have an effect on the relationship between the allocations in the existing TMDLs and permit limits. Nevertheless, the TMDLs still may provide viable and relevant information, such as the identification of sources of aluminum discharge in the watershed, information on speciation or other characteristics of aluminum as it moves downstream.