Total Maximum Daily Loads for the West Fork River Watershed, West Virginia

TECHNICAL REPORT

June 2014

CONTENTS

Acronyms and Abbreviations iv			
1.0	Intro	duction	6
	1.1	Purpose	6
	1.2	Physical Considerations in Developing the TMDL Approach	6
2.0	Mini	ng Data Analysis System	7
	2.1	LSPC Water Quality Modeling Component	7 10 11
	2.2.	Mining Data Analysis System (MDAS) Model Configuration2.2.1Watershed Subdivision2.2.2Meteorological Data2.2.3Stream Representation2.2.4Hydrologic Representation2.2.5Pollutant Representation2.2.6Streambank Erosion Representation2.2.7Iron Sediment Correlation	11 12 13 13 13 13 14 15
3.0	MDA	S Fecal Coliform	17
	3.1	Fecal Coliform Nonpoint Sources3.1.1Wildlife3.1.2Agriculture3.1.3Residential/Urban Runoff3.1.4Failing Septic Systems	17 18 18 19 19
	3.2	 Fecal Coliform Point Sources 3.2.1 CSO Representation 3.2.2 Municipal Separate Storm Sewer Systems (MS4) 	21 21 22
4.0	MDA	S Iron and Sediment	22
	4.1	Landuse	22
		4.1.1 Additional Abandoned Mine Lands (AML)	23
		 4.1.2 Additional Sediment Source Landuse Categories 4.1.3 Additional Residential/Urban Pervious and Impervious Landuse Categories 	24 26
		4.1.4 Other Nonpoint sources	26
	4.2	Sediment and Metals Point Sources	27
		4.2.1 Permitted Mining Point Sources	27
		4.2.2 SINCKA Boliu Follenule Siles	28 29
		4.2.4 Other Individual and General NPDES Permits	29

5.0	MDAS for Dissolved Aluminum and pH		29	
	5.1	Land Components in MDAS5.1.1Acid Mine Drainage5.1.2Atmospheric Deposition	29 30 30	
	5.2.	Sources Loading Pathways in MDAS Modeling Framework	31	
	5.3	Stream Components in MDAS5.3.1 Water Column5.3.2 Aqueous Speciation Model in MDAS	32 33 34	
	5.4	Streambed and Suspended Sediment	35	
	5.5	Kinetics Representations in MDAS	36	
	5.6	MDAS Model Schematic	36	
6.0	MDA	AS Model Calibration		
	6.1	Hydrology Calibration	39	
	6.2	Sediment and Water Quality Calibration	42	
	6.3	Water Quality Calibration	43	
7.0	Biolo	ogical Stressor Identification	44	
	7.1	 Stressor Identification Overview 7.1.1 Technical Approach 7.1.2 Development of the Conceptual Model 7.1.3 Data Analysis 	44 45 45 45	
	7.2	Empirical Model Development to Identify Multiple Stressors	51	
8.0	Sedi	ment Reference Watershed Approach	52	
9.0	Refe	rences	54	

TABLES

Table 3-1. Fecal coliform bacteria model landuse grouping	17
Table 3-2. Average percentage of pervious and impervious land for NLCD 2006 residential/urban landuse types	18
Table 3-3. Septic failure rates in septic failure zones	20
Table 4-1. Additional modeled sediment/metals landuse categories	23
Table 4-2. Assigned perviousness and estimated width for each type of road	26
Table 4-3. Model nonpoint source representation of different permitted mines	27
Table 5-1. Chemical components and complexes included in previous and updated versions of MDAS.	34

Table 6-1. Comparison of simulated and observed flow from January 2002 to December	
2011 (USGS station ID number 03061000 West Fork River at Enterprise, WV)	41
Table 7-1. Stressor identification analysis thresholds	47
Table 7-2. Available data for the evaluation of candidate causes	50

FIGURES

Figure 2-1. Water Budget Schematic illustrating order in which the potential evapotranspiration is satisfied in the LSPC model.	10
Figure 2-2. Conceptual schematic of LSPC sediment erosion and transport model	10
Figure 2-3. Snow Simulation Schematic	13
Figure 2-4. Conceptual diagram of stream channel components of bank erosion model	14
Figure 2-5. Example of instream iron-sediment correlation	16
Figure 5-1. Land components of the LSPC-MDAS model	32
Figure 5-2. Stream components in MDAS	34
Figure 5-3. MDAS module schematic and linkages	38
Figure 6-1. Comparison of simulated and observed flow from 2002 to 2011 (USGS station ID number 03061000 West Fork River at Enterprise, WV	41
Figure 7-1. Stressor identification process	45
Figure 8-1. Location of the sediment reference stream, Plummer Run (MW-5-L-7)	53

APPENDICES

Appendix A	TMDL	Work Load List
------------	------	----------------

- Appendix B Bank Vegetative Cover Scores
- Appendix C TSS Metals Correlation
- Appendix D Modeled Landuse
- Appendix E Failing Septics
- Appendix F NPDES Permits
- Appendix G Forest Harvest and Burn Sites
- Appendix H Road Descriptions
- Appendix I Hydrology & Water Quality Model Calibration
- Appendix J Water Quality Data
- Appendix K Stressor Identification
- Appendix L Sediment Reference Approach

ACRONYMS AND ABBREVIATIONS

AMD	acid mine drainage
AML	abandoned mine land
BMP	best management practice
BOD	biochemical oxygen demand
CAIR	Clean Air Interstate Rule
CFR	Code of Federal Regulations
CSGP	Construction Stormwater General Permit
CSO	combined sewer overflow
CSR	Code of State Rules
DEM	Digital Elevation Model
DO	dissolved oxygen
DWWM	[WVDEP] Division of Water and Waste Management
EPT	Ephemeroptera, Plecoptera and Trichoptera
ERIS	Environmental Resources Information System
GIS	geographic information system
HSPF	Hydrologic Simulation Program - FORTRAN
LA	load allocation
LSPC	Loading Simulation Program – C++
MDAS	Mining Data Analysis System
MOS	margin of safety
MRPP	multiple responses of permutation procedures
MS4	municipal separate storm sewer system
MSTLAY	Moisture Storage and Transport in Soil Layers MDAS module
NADP	National Atmospheric Deposition Program
NHD	National Hydrography Dataset
NLCD	National Land Cover Dataset
NMDS	nonmetric multi-dimensional scaling
NOAA-NCDC	National Oceanic and Atmospheric Administration, National Climatic
	Data Center
NPDES	National Pollutant Discharge Elimination System
NRCS	Natural Resources Conservation Service
OOG	Office of Oil and Gas
OSR	WVDEP Office of Special Reclamation
POTW	publicly owned treatment works
RBP	rapid bioassessment protocol
SI	stressor identification
SMCRA	Surface Mining Control and Reclamation Act
STATSGO	State Soil Geographic database
TMDL	total maximum daily load
TSS	total suspended solids
USEPA	U.S. Environmental Protection Agency
USGS	U.S. Geological Survey
WA	weighted averaging

Watershed Assessment Branch
wasteload allocation
West Virginia Department of Environmental Protection
[WVDEP] Division of Mining and Reclamation
West Virginia Stream Condition Index
West Virginia University

1.0 INTRODUCTION

1.1 Purpose

The purpose of this document is to provide supplemental information regarding model selection, technical approaches, specific source representations and relevant supporting data to expand upon the TMDL report. The TMDL report provides a complete overview of the TMDL process, including stream impairment, pollutant sources, model calibration, baseline representations, allocation strategies, TMDLs, future growth provisions, reasonable assurance, implementation, and public comments.

Establishing the relationship between the instream water quality targets and source loads is a critical component of TMDL development. It allows for the evaluation of management options that will achieve the desired source load reductions. The link can be established through a range of techniques, from qualitative assumptions based on sound scientific principles to sophisticated computer modeling techniques. Ideally, the linkage is supported by monitoring data that allow the TMDL developer to associate certain waterbody responses with flow and loading conditions. This document presents the approaches taken to develop the linkage between sources and instream responses for TMDL development in West Virginia watersheds.

This document refers to supporting data organized into the following appendices:

- Appendix A TMDL Work Load List
- Appendix B Bank Vegetative Cover Scores
- Appendix C TSS Metals Correlation
- Appendix D Modeled Landuse
- Appendix E Failing Septics
- Appendix F NPDES Permits
- Appendix G Forest Harvest and Burn Sites
- Appendix H Road Descriptions
- Appendix I Hydrology & Water Quality Model Calibration
- Appendix J Water Quality Data
- Appendix K Stressor Identification
- Appendix L Sediment Reference Approach

1.2 Physical Considerations in Developing the TMDL Approach

The TMDL development approach must consider the dominant processes that affect pollutant loading and instream fate. The primary sources contributing to metals, sediment and fecal coliform impairments include an array of point and nonpoint sources. Loading processes for nonpoint sources or land-based activities are typically rainfall-driven and thus relate to surface runoff and subsurface discharge to a stream. Permitted discharges might or might not be induced by rainfall, but they are represented by a known flow and concentration described in the permit limits.

Key instream factors that could be considered during TMDL development include routing of flow, dilution, transport of total metals, sediment adsorption/desorption, and precipitation of metals. The primary physical driving process is the transport of total metals by diffusion and advection in the flow. A significant instream process affecting the transport of fecal coliform bacteria is fecal coliform die-off.

Scale of analysis and waterbody type must also be considered when selecting the overall modeling approach. The approach should be able to evaluate watersheds of various sizes. The listed waters range from small headwater streams to large tributaries. Selection of scale should be sensitive to locations of key features, such as abandoned mines and point source discharges. At the larger watershed scale, land areas are aggregated into subwatersheds for practical representation of the system, commensurate with the available data. Occasionally, there are site-specific and localized acute problems that might require more detailed segmentation or definition of detailed modeling grids.

On the basis of the considerations described above, analysis of the monitoring data, review of the literature, and past metals, sediment, and fecal coliform bacteria modeling experience, the Mining Data Analysis System (MDAS) was chosen to represent the source-response linkage for pH, iron, sediment, dissolved aluminum, chloride, and fecal coliform bacteria, when applicable in the streams included in this TMDL effort (See **Appendix A** for a complete list). The MDAS is a comprehensive data management and modeling system that is capable of representing loading from the nonpoint and point sources and simulating instream processes. The details of MDAS model can be found in **Section 2.0**.

2.0 MINING DATA ANALYSIS SYSTEM

The MDAS was developed specifically for TMDL application in West Virginia to facilitate large scale, data intensive watershed modeling applications. The MDAS is particularly applicable to support TMDL development for areas affected by acid mine drainage (AMD) and other point and nonpoint pollution sources. A key advantage of the MDAS' development framework is that unlike Hydrologic Simulation Program–FORTRAN (HSPF), upon which it is based, it has no inherent limitations in terms of modeling size or upper limit of model operations and can be customized to fit West Virginia's individual TMDL development needs. The dynamic watershed model component within MDAS is the Loading Simulation Program–C++ (LSPC) (Shen, et al., 2002). The model simulates nonpoint source flow and pollutant loading as well as instream flow and pollutant transport, and is capable of representing time-variable point source contributions.

2.1 LSPC Water Quality Modeling Component

The LSPC model is the MDAS component that is most critical to TMDL development because it provides the linkage between source contributions and instream response. LSPC offers a number of key advantages over other modeling platforms, including:

- LSPC is able to simulate
 - o A wide range of pollutants
 - Both rural and urban land uses

- o Both stream and lake processes
- o Both surface and subsurface impacts to flow and water quality
- The time-variable nature of the modeling enables a straightforward evaluation of the cause and effect relationship between source contributions and waterbody response, as well as direct comparison to relevant water quality criteria.
- The proposed modeling tools are free and publicly available. This is advantageous for distributing the model to interested stakeholders and amongst government agencies.
- LSPC provides storage of all modeling and point source permit data in a Microsoft Access database and text file formats to allow efficient manipulation of data.
- LSPC presents no inherent limitations regarding the size and number of watersheds and streams that can be modeled.
- LSPC provides post-processing and analytical tools designed specifically to support TMDL development and reporting requirements.
- A comprehensive modeling framework using the proposed LSPC approach facilitates development of TMDLs not only for this project, but also for potential future projects to address other impairments in the basin.

LSPC is a comprehensive watershed model used to simulate watershed hydrology and pollutant transport, as well as stream hydraulics and instream water quality. It is capable of simulating flow; the behavior of sediment, metals, nutrients, pesticides, and other conventional pollutants; temperature; and pH for pervious and impervious lands and for waterbodies. LSPC is essentially a recoded C++ version of selected HSPF modules. LSPC's algorithms are identical to HSPF's. The HSPF framework is developed in a modular fashion with many different components that can be assembled in different ways, depending on the objectives of the individual project. The model includes these major modules:

- PERLND for simulating watershed processes on pervious land areas
- IMPLND for simulating processes on impervious land areas
- SEDMNT for simulating production and removal of sediment
- RCHRES for simulating processes in streams and vertically mixed lakes
- SEDTRN for simulating transport, deposition, and scour of sediment in streams

All of these modules include many submodules that calculate the various hydrologic, sediment, and water quality processes in the watershed. Many options are available for both simplified and complex process formulations. Spatially, the watershed is divided into a series of subbasins or subwatersheds representing the drainage areas that contribute to each of the stream reaches. These subwatersheds are then further subdivided into segments representing different land uses. For the developed areas, the land use segments are further divided into pervious and impervious fractions. The stream network links the surface runoff and subsurface flow contributions from each of the land segments and subwatersheds, and routes them through the waterbodies using storage-routing techniques. The stream-routing component considers direct precipitation and evaporation from the water surfaces, as well as flow contributions from the watershed, tributaries, and upstream stream reaches. Flow withdrawals and diversions can also be accommodated.

The stream network is constructed to represent all the major tributary streams, as well as different portions of stream reaches where significant changes in water quality occur. Like the

watershed components, several options are available for simulating water quality in the receiving waters. The simpler options consider transport through the waterways and represent all transformations and removal processes using simple, first-order decay approaches. Decay may be used to represent the net loss due to processes like settling and adsorption.

2.1.1 The Hydrologic Cycle in LSPC.

The hydrologic (water budget) process in LSPC is a fairly comprehensive representation of the natural hydrological cycle. Rainfall or snowmelt is routed to constructed landscapes, vegetation, and/or soil. Varying soil types, which depend on model parameterization by land use, allow the water to infiltrate at different rates, while evaporation and plant matter exert a demand on available water. Water flows overland and through the soil matrix. The vertical land profile in the LSPC model environment is represented by three significant flowpaths: surface, interflow, and ground water outflow. The parameters associated with various stages of the LSPC water budget are shown schematically in **Figure 2-1**.

Key to Parameters

ET is the evapotranspiration. SLSUR is the overland flow slope. UR is the surface runoff length. LZETP is the lower zone ET parameter. UZSN is the upper nominal storage. IRC is the interflow recession. DEEPFR is the fraction to deep GW. BASETP is the baseflow ET parameter. CEPSC is the interception storage capacity. INFILT is the index to the infiltration capacity of the soil. NSUR is the Manning's n for the assumed overland flow plane. LZSN is the lower nominal moisture. INTFW is the interflow inflow. AGWETP is the active groundwater ET AGWRC is the base groundwater recession. **Figure 2-1.** Water Budget Schematic illustrating order in which the potential evapotranspiration is satisfied in the LSPC model.

2.1.2 Erosion and Sediment Transport

The sediment module in LSPC is composed of two models working in tandem: (1) a land-based erosion prediction model and (2) an in-stream sediment transport model. There are a number of physical processes that can be represented by parameters in the model. **Figure 2-2** presents a conceptual schematic of the sediment model in LSPC. From the land side, these include (1) splash erosion as a function of rainfall intensity, (2) net atmospheric deposition of sediment particles onto the land surface or the snowpack, which considers losses associated with wind mobilization, (3) sheet erosion or wash-off of the detached or deposited sediment as a function of runoff energy, and (4) direct scour from the soil matrix, such as gulley and/or rill erosion on the landscape. All of these processes are simulated by model land segment (i.e. land use type), providing some flexibility to represent known or likely differences in erosion potential as a function of differences in land use, topographic features, exposure, or vegetative cover. The model simulates one bulk quantity of sediment from the land surface, but this is divided into different particle size classes (i.e. sand, silt, and clay) before it is routed to the stream.

Figure 2-2. Conceptual schematic of LSPC sediment erosion and transport model.

The in-stream transport model simulates each particle class independently of others, which provides the flexibility to simulate preferential deposition of larger particles and/or perpetual suspension of smaller particles as hydrologic and hydraulic conditions permit. Each reach segment has a stationary sediment bed for each particle class that is modeled, meaning that the bed itself does not migrate from reach to reach. However, if conditions are such that sediment from the bed is resuspended into the water column, it becomes available to be transported to downstream segments where it may subsequently be deposited as conditions permit.

In most cases, the only site-specific data available for sediment model calibration are in-stream samples of total suspended sediment. Literature values for sediment yield (i.e. export coefficients) by land use are also sometimes used to validate the intermediate prediction of land-based sediment mass before it is routed for in-stream transport. This data limitation places a burden on the modeler to adequately parameterize and justify all the intermediate processes leading up to the ultimate point of comparison between modeled and observed in-stream total suspended solids.

2.1.3 Water Quality

The GQUAL module in LSPC is generalized enough to represent any pollutant from the land surface. In addition to surface accumulation and wash-off processes, different concentrations can be associated with interflow and baseflow hydrology. The fate and transport of GQUAL constituents can also be modeled using temperature-dependent first order decay or sediment-associated sorption/desorption of dissolved or particulate pollutant forms. This flexibility allows a wide range of general pollutants to be modeled, including bacteria, metals, nutrients and other toxics.

LSPC also offers the reach quality (RQUAL) module from HSPF, which addresses the fate, transport, and transformation of nutrient species in the water column. RQUAL includes routines for modeling ammonia volatilization, nitrification/denitrification, and adsorption/desorption of nutrients during transport. Depending on the requirements of the natural system under consideration, the model can also simulate interaction of nutrients with phytoplankton, impact to in-stream biochemical oxygen demand (BOD), and dissolved oxygen levels.

As will be discussed, the MDAS enhances LSPC by adding specialized chemical loadings and reactive transport capabilities to permit the modeling of complex and comprehensive chemical processes that are not available in the current LSPC or HSPF, including thermodynamics-based chemical reactions and additional integrated chemical kinetics.

2.2. Mining Data Analysis System (MDAS) Model Configuration

The MDAS was configured for all watersheds, and LSPC was used to simulate each of the watersheds as a series of hydrologically connected subwatersheds. Configuration of the model involved subdividing each large watershed into modeling units and performing continuous simulation of flow and water quality for these units using meteorological, landuse, point source loading, and stream data. The specific pollutants simulated were, total iron, dissolved aluminum, pH, chloride, sediment, and fecal coliform bacteria. This section describes the configuration process and key components of the model in greater detail.

2.2.1 Watershed Subdivision

To represent watershed loadings and the resulting concentrations of pollutants of concern, each watershed was divided into hydrologically connected subwatersheds. These subwatersheds represent hydrologic boundaries. The division was based on elevation data (7.5-minute Digital Elevation Model [DEM] from the U.S. Geological Survey [USGS]), stream connectivity (from USGS's National Hydrography Dataset [NHD] stream coverage), the impairment status of

tributaries, and the locations of monitoring stations. This delineation enabled the evaluation of water quality and flow at impaired water quality stations, and it allowed management and load reduction alternatives to be varied by subwatershed.

2.2.2 Meteorological Data

Meteorological data are a critical component of the watershed model. Appropriate representation of precipitation, wind speed, potential evapotranspiration, cloud cover, temperature, and dew point is required to develop a valid model. Meteorological data were obtained from a number of weather stations in an effort to develop the most representative dataset for each watershed.

In general, hourly precipitation data are recommended for nonpoint source modeling. Therefore, only weather stations with hourly recorded data were considered in developing a representative dataset. Long-term hourly precipitation data available from the National Oceanic and Atmospheric Administration National Climatic Data Center (NOAA-NCDC) weather stations were used. The remaining required meteorological data (wind speed, potential evapotranspiration, cloud cover, temperature, and dew point) were also available from NOAA-NCDC weather stations. The data were applied to each subwatershed according to proximity.

In certain environments, snowfall and snowmelt have a dominant impact on hydrology and associated water quality. LSPC uses the energy balance method to simulate snow behavior. In addition to precipitation inputs, the energy balance requires temperature, dew point temperature, wind speed, and solar radiation as meteorological drivers. The SNOW module uses the meteorological information to determine whether precipitation falls as rain or snow, how long the snowpack remains, and when snowpack melting occurs. Heat is transferred into or out of the snowpack through net radiation heat, convection of sensible heat from the air, latent heat transfer by moist air condensation on the snowpack, rain, and conduction from the ground beneath the snowpack. The snowpack essentially acts like a reservoir that has specific thermodynamic rules for how water is released. Melting occurs when the liquid portion of the snowpack exceeds the snowpack's holding capacity; melted snow is added to the hydrologic cycle (**Figure 2-3** is a schematic of the snow process in LSPC).

Figure 2-3. Snow Simulation Schematic

2.2.3 Stream Representation

Modeling subwatersheds and calibrating hydrologic and water quality model components require routing flow and pollutants through streams and then comparing the modeled flows and concentrations with available data. In the MDAS model, each subwatershed was represented by a single stream segment, which was identified using the USGS NHD stream coverage.

To route flow and pollutants, rating curves were developed for each stream using Manning's equation and representative stream data. Required stream data include slope, Manning's roughness coefficient, and stream dimensions, including mean depths and channel widths. Manning's roughness coefficient was assumed to be 0.02 (representative of natural streams) for all streams. Slopes were calculated based on DEM data and stream lengths measured from the NHD stream coverage. Stream dimensions were estimated using regression curves that related upstream drainage area to stream dimensions (Rosgen, 1996).

2.2.4 Hydrologic Representation

Hydrologic processes were represented in the MDAS using algorithms from two HSPF modules: PWATER (water budget simulation for pervious land segments) and IWATER (water budget simulation for impervious land segments) (Bicknell et al., 1996). Parameters associated with infiltration, groundwater flow, and overland flow were designated during model calibration.

2.2.5 Pollutant Representation

The loading contributions of pollutants from different nonpoint sources were represented in MDAS using the PQUAL (simulation of quality constituents for pervious land segments) and IQUAL (simulation of quality constituents for impervious land segments) modules of HSPF (Bicknell et al., 1996). Pollutant transport was represented in the streams using the GQUAL (simulation of behavior of a generalized quality constituent) module. Additionally, the enhanced

MDAS capability provides thermodynamic-based, time-variable chemical loadings and reactive transport model within the streams.

2.2.6 Streambank Erosion Representation

Streambank erosion was modeled as a unique sediment source independent of other uplandassociated erosion sources. The MDAS bank erosion model takes into account stream flow and bank stability. The relevant parameters in the bank erosion algorithms are the threshold flow at which bank erosion starts to occur, and a coefficient for scour of the bank matrix soil for the reach. The threshold flow at which bank erosion starts to occur was estimated as the flow that occurs at bankfull depth. This flow threshold was user specified for each reach. The bank scouring process is a power function dependent on high-flow events (those exceeding the flow threshold).

The bank erosion rate per unit area was defined as a function of bank flow volume above a specified threshold and the bank erodible area. The wetted perimeter and reach length represent ground area covered by water (**Figure 2-4**). The erodible wetted perimeter is equal to the difference between the actual wetted perimeter and wetted perimeter during threshold flow conditions. The bank erosion rate per unit area was multiplied by the erodible perimeter and the reach length to obtain the estimate of sediment mass eroded corresponding to the stream segment.

Figure 2-4. Conceptual diagram of stream channel components of bank erosion model

The coefficient for scour of the bank matrix soil (kber) was determined by calibration where modeled bank erosion sediment loads were compared with loads calculated from a streambank erosion monitoring pin study performed in the subject watershed by the WVDEP. The streambank erosion condition was assessed by installing erosion pins on representative streambank sections.

To conduct the pin erosion study, six to ten erosion pins were installed on each stream cross section, with at least three pins each on both left and right banks. Pin study stream cross sections were deployed across a representative sample of streams in the TMDL watershed. Lengths of erosion pin exposures and stream cross sectional geometry were measured to establish a baseline

condition, and then re-measured periodically until approximately one year later. The bank erosion pin data were processed in the following steps to calculate the annual sediment loading of streams.

- 1. Changes of exposure lengths (DP) between two consecutive measurements were calculated.
- 2. Cross section erodible lengths (DL) corresponding to each pin locations were calculated from the stream cross section geometry.
- 3. Changes of exposure lengths (DP) were multiplied with the corresponding cross section erodible lengths (DL) to get the eroded area at the pin location (DA = DL X DP).
- 4. Eroded area at each pin locations were summed to obtain the eroded area at left bank (LDB) and right bank (RDB) of the pin site.
- 5. Eroded area of replicate pin sites were averaged to calculate the eroded area at the stream section.
- 6. Eroded area of the stream section were multiplied by the stream length to calculate the eroded volume of the stream cross section.
- 7. Eroded volume of stream section were converted to eroded mass by multiplying the bulk density of stream bank soils.
- 8. Eroded mass of stream section at time intervals were summed to calculate the annual erosion of left bank and right bank.
- 9. For modeled stream reaches with multiple stream bank erosion sites, the annual stream bank erosion of the sites were averaged to calculate the annual sediment loading from stream bank erosion at the modeled stream reaches.

The erosion pin study described above provided quantitative and qualitative assessments that indicated vegetative coverage was the most important factor controlling bank stability. Overall bank stability was initially characterized by assessing and rating vegetative cover based on National Agriculture Imagery Program aerial photography. The vegetative cover was scored on a subwatershed basis on a scale from one to three, one being the best observed bank vegetative cover and three having the least coverage. The bank vegetative cover score was associated with streambank erosion model parameters to establish the initial conditions for model calibration. **Appendix B** provides the bank vegetative cover scores and example subwatersheds for each score.

Calibrating the bank erosion component of the watershed model was performed by adjusting initial kber values through an iterative process that compared stream size, slope, and riparian condition as assessed through aerial photography. Model performance was evaluated by comparing simulated bank erosion loading against the annual sediment loads calculated from the pin study.

2.2.7 Iron Sediment Correlation

Sediment-producing landuses and bank erosion are sources of iron because of the relatively high iron content of the soils in the watersheds. Statistical analyses using pre-TMDL monitoring data collected throughout the subject watersheds were performed to establish the correlation between iron loads and sediment loads.

The WAB stations with more than five effective observations and statistically significant Fe/TSS slopes were selected to evaluate spatial variability of iron sediment relationships. Effective observations were those with detectable iron associated with TSS concentrations of 2 mg/l or greater. Statistical significance was determined to be R2 values greater than 0.50. Linear regression analysis was performed on in-stream TSS and total iron data collected at individual WAB monitoring stations. In our representation 237 WAB monitoring stations were organized into three slope groups. An example of one station is shown in **Figure 2-5**. The iron sediment slopes calculated from linear regression analysis for each station were plotted and grouped into 2 to 4 slope groups per modeled HUC to calculate potency factors used in the MDAS modeling. Potency factors indicating the iron loads relative to the sediment produced from soil and stream bank erosion were calculated from the average Fe/TSS slope of each slope group. A slope group was assigned to each modeled subwatershed in the subject watersheds through spatial analysis using GIS. The qualifying stations and results of iron sediment relationship analysis are provided in **Appendix C** and the relationship category applied to all modeled subwatersheds is displayed graphically in the GIS project.

Figure 2-5. Example of instream iron-sediment correlation

3.0 MDAS FECAL COLIFORM

Watersheds with varied landuses, dry- and wet-period loads, and numerous potential sources of pollutants typically require a model to ascertain the effect of source loadings on instream water quality. This relationship must be understood to develop a TMDL that addresses a water quality standard, as well as an effective implementation plan. In this section, the modeling techniques that were applied to simulate fecal coliform bacteria fate and transport are discussed.

3.1 Fecal Coliform Nonpoint Sources

To explicitly model non-permitted (nonpoint) sources of fecal coliform bacteria, the existing NLCD 2006 landuse categories were consolidated to create model landuse groupings, as shown in **Table 3-1**. Modeled landuses contributing to bacteria loads include pasture, cropland, urban pervious lands, urban impervious lands, and forest (including barren land and wetlands). The modeled landuse coverage provided the basis for estimating and distributing fecal coliform bacteria loadings associated with conventional landuses. Subwatershed-specific details of the modeled landuses are shown in **Appendix D**.

Residential/urban lands contribute fecal coliform loads to the receiving streams through the wash-off of bacteria that build up in industrial areas, on paved roads, and in other residential/urban areas because of human activities. These contributions differ, based on the perviousness of the land. For example, the transport of the bacteria loads from impervious surfaces is faster and more efficient, whereas the accumulation of bacteria loads on pervious areas is expected to be higher (because pets spend more time on grass). Therefore, residential/urban lands were divided into two categories—residential/urban pervious and residential/urban impervious. Percent impervious estimates for the residential/urban land in each subwatershed. The percent pervious/impervious assumptions for residential/urban land categories are shown in **Table 3-2**.

Model Category	NLCD 2006 Category	
Barren	Barren Land (Rock/Sand/Clay)	
Cropland	Cultivated Crops	
Forest	Deciduous Forest	
	Evergreen Forest	
	Mixed Forest	
	Dwarf Scrub	
	Shrub/Scrub	
Pasture	Grassland/Herbaceous	
	Pasture/Hay	
Residential/Urban Impervious	Developed, Open Space	
(See Table 3-2)	Developed, Low Intensity	
	Developed, Medium Intensity	
	Developed, High Intensity	
Residential/Urban Pervious	Developed, Open Space	
(See Table 3-2)	Developed, Low Intensity	
	Developed, Medium Intensity	

Table 3-1. Fecal coliform bacteria model landuse grouping

Model Category	NLCD 2006 Category
	Developed, High Intensity
Water Open Water	
Wetlands	Palustrine Forested Wetland
	Palustrine Scrub/Shrub Wetland
	Emergent Herbaceous Wetland

Table 3-2. Average percentage of pervious and impervious land for NLCD 2006

 residential/urban landuse types

Landuse	Pervious (%)	Impervious (%)
Developed, Open Space	85	15
Developed, Low Intensity	65	35
Developed, Medium Intensity	35	65
Developed, High Intensity	10	90

3.1.1 Wildlife

Frequently, nonpoint sources are characterized by build-up and wash-off processes. On the land surface, fecal coliform bacteria accumulate over time and wash off during rain events. As the runoff transports the sediment over the land surface, more fecal coliform bacteria are collected and carried to the stream. While the concentrations of bacteria are increasing, some bacteria are also dying. The net loading into the stream is determined by the local watershed hydrology. Fecal coliform accumulation rates (in number per acre per day) can be calculated for each landuse based on all sources contributing fecal coliform bacteria to the land surface.

Landuses that experience bacteria accumulation due to wildlife include the following: wetlands, forest, grassland, shrubland, and barren. Accumulation rates for fecal coliform bacteria in forested areas were developed using reference numbers from past TMDLs, incorporating wildlife estimates obtained from West Virginia's Division of Natural Resources (WVDNR). In addition, WVDEP conducted storm sampling on a 100 percent forested subwatershed (Shrewsbury Hollow) within the Kanawha State Forest, Kanawha County, West Virginia to determine wildlife contributions of fecal coliform. These results were used during the model calibration process. On the basis of the low fecal accumulation rates for forested areas, the stormwater sampling results, and model simulations, wildlife is considered to be a natural "background" source of fecal coliform bacteria that does not alone cause violations of the state water quality criteria. For this reason, TMDL reductions are not prescribed for wildlife sources.

3.1.2 Agriculture

Pasture and cropland landuses accumulate bacteria when livestock are present, or when manure is applied as fertilizer. Modelers used storm sampling data, literature values, and previous fecal coliform TMDLs to develop initial fecal coliform bacteria loading rates for the model (Miertschin, 2006). However, these initial estimates did not apply uniformly to the entire watershed area being modeled. To accommodate this variation, the fecal coliform modeling parameters for bacterial build-up and accumulation limit were fine-tuned during model

calibration to produce model output that more closely matched available pre-TMDL stream monitoring data.

Agricultural runoff potential was assessed by WVDEP during source tracking efforts. Pastures were categorized into four general types of runoff potential: high, moderate, low or negligible. In general, pastures with steeper slopes and livestock with stream access or close proximity to the stream channel received a high runoff potential assessment. Pastures in areas with gentle slopes, without livestock stream access, with greater distance to a stream, or where streams contained well-established riparian buffers received a low or negligible runoff potential. Fecal coliform build-up and accumulation limit parameters in areas rated as high or moderate with respect to runoff potential were assigned higher values; pastures with low or negligible runoff potential were assigned values slightly above natural background conditions.

3.1.3 Residential/Urban Runoff

Sources of fecal coliform bacteria in residential/urban areas include wildlife and pets, particularly dogs. Much of the loading from urban areas is due to the greater amount of impervious area relative to other landuses, and the resulting increase in runoff. In estimating the potential loading of fecal coliform bacteria from residential/urban areas, accumulation rates are often used to represent the aggregate of available sources.

Residential/urban lands contribute nonpoint source fecal coliform bacteria loads to receiving streams through the wash-off of fecal coliform bacteria that build up on both pervious and impervious surfaces in industrial areas, on paved roads, and in residential areas (from failing septic systems, straight pipes contributing raw sewage, and wildlife). Residential/urban areas were consolidated into two landuse categories—residential/urban pervious and residential/urban impervious.

3.1.4 Failing Septic Systems

Failing septic systems represent non-permitted (nonpoint) sources that can contribute fecal coliform to receiving waterbodies through surface or subsurface flow. Although categorized as nonpoint sources (part of the load allocation in the TMDL equation), for modeling purposes it was most practical to model failing septic systems as continuous flow sources in the MDAS. To calculate source loads, values for both wastewater flow and fecal coliform concentration were needed. Literature values for failing septic system flows and fecal concentrations vary over several orders of magnitude. Therefore it was necessary to perform original analysis using West Virginia pre-TMDL monitoring and source tracking data.

To calculate failing septic wastewater flows, TMDL watersheds were divided into four septic failure zones during the source tracking process. Septic failure zones were delineated by geology, and defined by rates of septic system failure. Two types of failure were considered: complete failure and periodic failure. For the purposes of this analysis, complete failure was defined as 50 gallons per house per day of untreated sewage escaping a septic system as overland flow to receiving waters. Periodic failure was defined as 25 gallons per house per day of untreated sewage escaping a septic system as overland flow to receiving waters. Both types of failure were modeled as daily, year-round flows to simplify calculations. **Table 3-3** shows the

percentage of homes with septic systems in each of the four septic zones experiencing septic system failure.

	Zone				
Туре	Very Low	Low	Medium	High	
Percent Homes with Periodic Failure	3%	7%	13%	19%	
Percent Homes with Complete Failure	5%	10%	24%	28%	

GIS shapefiles identifying the location of public sewer systems were used to identify sewered areas in the watersheds. GIS shapefiles developed to track all addressable structures in West Virginia for 911 emergency purposes were used to determine the locations of structures with potentially failing septic systems in the fecal coliform TMDL watersheds. In the first step of the analysis, structures falling within known sewered areas were excluded from further consideration. Second, homes located more than 100 meters from a stream were excluded and not considered significant potential sources of fecal coliform because of the natural attenuation of fecal coliform concentrations that occurs because of bacterial die-off during overland travel (Walsh and Kunapo, 2009). Estimated septic system failure rates across the watershed range from three percent to 28 percent. The remaining structures were assigned to the TMDL modeled subwatersheds they fell within. These structures were further stratified by geographic zones of septic failure based on soil characteristics and geology. Frequently, subwatersheds had area straddling more than one failing septic zone. Using GIS techniques, each structure was identified both by subwatershed and failing septic zone.

Under WVDEP guidance, it was assumed that 54 percent of the non-sewered structures in each subwatershed were inhabited homes with septic systems. Septic failure rates were applied to the assumed homes with septic systems in each modeled subwatershed. Once those proportions of complete and seasonal failure were applied, failing septic wastewater flow was calculated by subwatershed using the periodic and seasonal flow rates of 50 gallons per house per day for complete failure, and 25 gallons per house per day for periodic failure. For modeling purposes, failing septic system flows from multiple houses were totaled and incorporated into the model as a single continuous flow source for each subwatershed.

Once failing septic flows had been modeled, an appropriate fecal coliform concentration was determined at the TMDL watershed scale. Based on past experience with other West Virginia TMDLs, a base concentration of 10,000 counts per 100 mL was used as a beginning concentration for failing septics. This concentration was further refined during model calibration at the subwatershed scale. A sensitivity analysis was performed by varying the modeled failing septic concentrations in multiple model runs, and then comparing model output to pre-TMDL monitoring data. The failing septic analyses are presented in **Appendix E**.

3.2 Fecal Coliform Point Sources

The most prevalent fecal coliform point sources are the permitted discharges from sewage treatment plants. All treatment plants are regulated by NPDES permits that require effluent disinfection and compliance with strict fecal coliform limitations (200 counts/100 milliliters [monthly geometric mean] and 400 counts/100 mL [maximum daily]). However, noncompliant discharges and collection system overflows can contribute loadings of fecal coliform bacteria to receiving streams. When present within the watersheds, the following types of fecal coliform permitted/point sources were represented in the model:

- Individual POTWs discharge treated effluent at one or more outlets
- Privately owned sewage treatment plants operating under individual NPDES permits discharges at one or more outlets
- Package plants operating under general permits
- Home aeration units operating under "HAU" general permits.

The various sewage treatment plant effluents were represented in the model by their permitted design flows and the monthly geometric mean fecal coliform effluent limitation of 200 counts/100 mL. See **Appendix F** for a complete listing of NPDES permits.

3.2.1 CSO Representation

Municipalities with combined sewer systems are common in West Virginia, and Combined Sewer Overflows (CSOs) are a significant source of fecal coliform during storm events. CSO discharge events can vary greatly depending on rainfall intensity, storm volume, soil saturation, topographic features, and the overall design of the sewer system. CSO water quality monitoring data is scarce, and historical data often do not reflect recent progress made in eliminating or reducing CSOs. Despite inherent CSO variability and technical constraints, it was necessary to incorporate CSO outlets into the fecal coliform TMDL model to account for those outlets in the WLA portion of the TMDL equation.

Unlike other kinds of sewage treatment permits, CSOs do not have typical permit limits for flow and concentration. CSOs are regulated under a Long Term Control Plan that calls for reduction or elimination of CSO discharges in the future. Observed data for flow and fecal coliform concentration for each CSO outlet during discharge events is generally not available. However, because CSO flows are weather-dependent, it was possible to use the hydrologically calibrated watershed model to estimate approximately when and at what rate of flow the CSOs would discharge.

To begin the CSO modeling process, drainage area for each CSO outlet was derived from known sewered areas, as well as other source tracking data. Surface runoff for modeled subwatersheds drained by combined sewer systems was proportionally assigned to CSO outlets using an area-weighted approach. For modeling purposes, a standard concentration of 100,000 counts/100 mL was assigned to all outlets. Source tracking information and best professional judgment provided a rough idea of how many times per year the CSOs would discharge, and roughly what volume of rain would cause CSOs to discharge. A CSO "trigger" for each outlet was assumed, such that whenever observed precipitation exceeded the trigger, the CSO was assumed to flow. At all other times, even during light rain below the trigger threshold, the CSO was assumed to be not

discharging because the combined sewer system was assumed to be delivering its entire load to the POTW. Using this method, an intermittent point source CSO time series was constructed for all CSO outlets discharging to TMDL watersheds. The average annual load from each CSO outlet was calculated from this time series and used to develop the fecal coliform TMDL WLA. The WLAs tab of the TMDL fecal coliform allocations spreadsheet displays a list of CSOs modeled under this effort.

3.2.2 Municipal Separate Storm Sewer Systems (MS4)

Runoff from residential and urbanized areas during storm events can be a significant fecal coliform source. USEPA's stormwater permitting regulations require public entities to obtain NPDES permit coverage for stormwater discharges from municipal separate storm sewer systems (MS4s) in specified urbanized areas. As such, MS4 stormwater discharges are considered point sources and are prescribed WLAs.

MS4 source representation was based upon precipitation and runoff from landuses determined from the modified NLCD 2006 landuse data, the jurisdictional boundary of the cities, and the transportation-related drainage areas for which DOH has MS4 responsibility. In certain areas, urban/residential stormwater runoff may drain to both CSO and MS4 systems. WVDEP consulted with local governments and obtained information to determine drainage areas to the respective systems and best represent MS4 pollutant loadings.

4.0 MDAS IRON AND SEDIMENT

Watersheds with varied landuses, dry- and wet-period loads, and numerous potential sources of pollutants typically require a model to ascertain the effect of source loadings on instream water quality. This relationship must be understood in order to develop a TMDL that addresses a water quality standard, as well as an effective implementation plan. This section discusses the existing point and nonpoint sources of sediment and metals in TMDL watersheds and the process used to represent these sources in the MDAS model.

4.1 Landuse

To explicitly model nonpoint sources in the sediment and metals impaired watersheds, the existing NLCD 2006 landuse categories were consolidated to create the modeled landuse using the method described for fecal coliform in **Section 3-1** above. Additional landuse categories were created from various sources to produce a more detailed landuse set that represented specific land-based sources of metals and sediment. **Table 4-1** displays the additional landuse categories and the datasets from which they were created. The processes by which the landuses were created are described in the following sections. Watershed-specific modeled landuse tables for each watershed are presented in **Appendix D**.

Model Category	Source
Burned Forest	Burned area details provided by Division of Forestry
Harvested Forest	Logging sites and areas provided by Division of Forestry
Skid Roads	Skid road areas provided by Division of Forestry
Roads_Paved	2009 TIGER/Line GIS and WV_Roads shapefiles
Roads_Unpaved	2009 TIGER/Line GIS shapefile and digitized from aerial photographs and
	topos
Oil and Gas	OOG shapefile provided by Office of Oil and Gas
Marcellus Shale Wells	Permit information provided by Office of Oil and Gas
Surface Mining	HPU shapefile and information gathered from SMCRA Article 3 permits by WVDEP personnel
Revoked	Bond Forfeiture information provided by WVDEP
AML	AML polygon shapefile provided by WVDEP
Highwall	AML highwall shapefile provided by WVDEP
Construction Stormwater	Construction Stormwater permits provided by WVDEP
Industrial Stormwater	Industrial Stormwater permits provided by WVDEP
Future Growth	A certain percentage of each subwatershed's area was set aside for future growth

Table 4-1. Additional modeled sediment/metals landuse categories

4.1.1 Additional Abandoned Mine Lands (AML)

The two abandoned mine lands (AML) landuse categories added to the landuse coverage were abandoned mine lands and highwalls. The AML landuses represent those areas that have been historically disturbed by mining activities and have not been reclaimed. The GIS coverages of AML and highwall sites provided by WVDEP were used to modify the NLCD 2006 landuse coverage because specific data regarding these sources was not available from the NLCD 2006 landuse coverage.

To appropriately account for runoff and loading characteristics related to AML sites, the NLCD 2006 landuse coverage was modified on a subwatershed basis. The AML GIS coverages were intersected with the subwatersheds, and the areas of abandoned mines and highwall were calculated. This area was then assigned to the respective AML landuse category and subtracted from the barren land landuse of NLCD 2006. If the barren land area for the particular subwatershed did not account for the entire area of AML, then the remaining area was subtracted from forest. This assured that the total area of the subwatershed remained the same.

For example, assume that data from WVDEP indicated no active mining, 80 acres of abandoned mines and 40 acres of highwalls in a particular subwatershed, while available NLCD 2006 data indicated 900 acres of forested land and 100 acres of barren land in the same watershed. The NLCD 2006 data would be modified such that the 100 acres of barren land would become 120 acres of AML landuse distributed according to the WVDEP data (i.e., 80 acres of abandoned mines and 40 acres of highwalls). Because the size of the new AML landuse coverage exceeds the original barren land area by 20 acres, the forested landuse coverage would be reduced by 20 acres such that the total size of the watershed would remain constant. In no case was the total size of any subwatershed modified as a result of including more accurate data regarding AML landuses.

4.1.2 Additional Sediment Source Landuse Categories

Additional landuse categories were required to represent differences in the sediment loading and transport characteristics from various landuse activities. Separate landuse categories were designated for forest harvest areas (recent timber removal), oil and gas operations, paved roads, and unpaved roads.

Forestry

The West Virginia Bureau of Commerce's Division of Forestry provided information on registered logging operations in the watersheds. This information included the location, the area of land harvested, and the subset of land disturbed by haul roads and landings over the past three years. Registered forest harvest sites are presented in **Appendix G**.

West Virginia recognizes the water quality issues posed by sediment from logging sites. In 1992 the West Virginia Legislature passed the Logging Sediment Control Act. This act requires that best management practices (BMPs) be used to reduce sediment loads to nearby waterbodies. Without properly installed BMPs, logging and the land disturbance associated with the creation and use of haul roads to serve logging sites can increase sediment loading to streams. According to the Division of Forestry, illicit logging operations account for approximately an additional 2.5 percent of the total registered harvested forest area throughout West Virginia. The illicit logging acreage was calculated for each watershed and the resulting area was subtracted from forest and added to the barren landuse category. These illicit operations do not have properly installed BMPs and can contribute significant sediment loading to streams.

Forest harvest areas were calculated by subwatershed, assigned to the corresponding landuse category (harvested forest or skid roads), and then subtracted from the mature forest landuse category of NLCD 2006. The harvested forest landuse category represents the total timber harvested in each subwatershed.

Agriculture

Agricultural land can be a significant source of sediment. Agricultural runoff can contribute excess sediment loads when farming practices allow soils to be washed into the stream. The erosion potential of cropland and overgrazed pasture is particularly high because of the lack of year round vegetative cover. Livestock traffic, especially along streambanks, disturbs the riparian buffer and reduces vegetative cover, causing an increase in erosion from these areas. Agricultural landuse, even on a small scale like isolated pastures and croplands, may be associated with sediment stress to biologically impaired streams. **Appendix D** presents total areas for cropland and pasture in the streams.

Oil and Gas

WVDEP's Office of Oil and Gas (OOG) provided information regarding the location and status of oil and gas operation sites in the subject watersheds. Each active conventional oil and gas operation was assumed to have a well site and access road area totaling approximately 64,000 square feet. This assumption was supported by results from a random well survey conducted by

WVDEP OOG in the Elk River watershed during summer 2001 that showed similar average well site and access road areas. The cumulative area for oil and gas operations in each subwatershed was subtracted from the barren and mature forest categories as described for AML in **Section 4.1.1**.

Recent drilling of new gas wells targeting the Marcellus Shale geologic formation has increased in the watershed with the development of new hydraulic fracturing techniques. Because of the different drilling techniques, the overall amount of land disturbance can be significantly higher for Marcellus wells than for conventional wells. Horizontal Marcellus drilling sites typically require a flat "pad" area of several acres to hold equipment, access roads capable of supporting heavy vehicle traffic, and temporary ponds for storing water used during the drilling process. Horizontal Marcellus drilling sites were identified and represented in the model according to the acres of disturbance indicated by the drilling permit. Because Marcellus drilling sites are frequently hardened with gravel in high-traffic areas and quickly re-seeded with grass to control erosion, the permitted acres were divided into graveled and re-vegetated grass components for modeling. For sites greater than ten acres, 75 percent of the site was assumed to be grass, and 25 percent gravel. For sites less than ten acres, a 50 percent split between grass and gravel was assumed. Sites were assigned grass and gravel differently because field visits and aerial photography confirmed that drilling sites with large permitted acreages tended to have significantly less intensive operations with more grass areas than did smaller permitted sites that generally had a higher proportion of hardened gravel areas. Vertical Marcellus wells have disturbances similar to conventional oil and gas wells without a large pad. Vertical Marcellus well disturbed areas were represented based on the acres of disturbance indicated by the drilling permit. Otherwise, they were modeled using methods described above for conventional wells.

Roads

Runoff from paved and unpaved roadways can contribute significant sediment loads to nearby streams. Heightened stormwater runoff from paved roads (impervious surface) can increase erosion potential. Unpaved roads can contribute significant sediment loads through precipitation-driven runoff, as they are a source of and easy pathway for sediment transport. Roads that traverse stream paths elevate the potential for direct deposition of sediment. Road construction and repair can further increase sediment loads if BMPs are not properly employed.

Information on roads was obtained from various sources, including the 2009 TIGER/Line GIS shapefiles from the US Census Bureau, the WV Roads GIS coverage prepared by West Virginia University (WVU), and manually delineated roads from the 2003 aerial photography.

Initial data on paved and unpaved roads in the watershed was obtained from the Census 2009 TIGER/Line Files. These GIS files provide the location and length of roads for the entire country. Each road is also assigned a code based on its attributes. The codes start with an A and are followed by a number. The codes are shown in **Table 4-2** and described in further detail in **Appendix H**. The lengths of roads by subwatershed were calculated by intersecting the TIGER/Line shapefile with the subwatershed delineation. Following this, an estimated width was assigned to each category of road to obtain an area. Based on the description for the appropriate category, the roads were designated as paved, unpaved, or, in the case of A4, 60 percent paved and 40 percent unpaved.

Code	Description	Percent Pervious	Estimated Width (ft)
A1	Primary Highway With Limited Access	0	35
A2	Primary Road Without Limited Access	0	35
A3	Secondary and Connecting Road	0	26
A4	Local, Neighborhood, and Rural Road	40	16
A5	Vehicular Trail	100	12
A6	Road with Special Characteristics	0	12
A7	Road as Other Thoroughfare	0	12

Table 4-2. Assigned perviousness and estimated width for each type of road

Source: Census 2009 TIGER/Line technical documentation.

The *WV Roads* GIS coverage prepared by WVU, topographic maps, and aerial photos were used to identify additional unpaved roads not included in the TIGER/Line Files. Unpaved road areas were subtracted from barren and mature forest lands. Paved road areas were subtracted from the residential/urban impervious landuse category and then from forest lands, if necessary.

4.1.3 Additional Residential/Urban Pervious and Impervious Landuse Categories

Impervious residential/urban lands contribute metals loads from nonpoint sources to the receiving streams through the wash-off of metals that build up in industrial areas and in other residential/urban areas because of human activities. Percent impervious estimates for residential/urban landuse categories were used to calculate the total area of impervious residential/urban land in each subwatershed. Pervious and impervious residential/urban land areas were estimated using the same percent pervious/impervious assumptions used to determine residential/urban land categories in the fecal coliform modeled landuse, as shown in **Table 3-2** in the previous section.

4.1.4 Other Nonpoint sources

In addition to land based sources, metals and sediment contributions from groundwater and streambank erosion were also considered in the modeling process.

Groundwater Sources

Contributions of relevant parameters from groundwater sources were also considered in metals/sediment TMDL development. In the case of naturally occurring parameters, such as aluminum and iron, it is important to consider and incorporate groundwater contributions for a more accurate representation of actual conditions. The MDAS model calculates the components of the water budget and simulates the delivery of water to the stream in three ways: overland runoff, interflow, and groundwater flow. The water that is infiltrated or percolated and does not go to lower zone storage becomes inflow to the groundwater storage. The outflow from the groundwater storage is based on simple algorithms that relate to the cross-sectional area and to the energy gradient of the flow. This process is modeled individually for every landuse in every subwatershed, and the resulting groundwater outflow essentially relates to the individual characteristics of the land and its corresponding area.

Streambank Erosion

Streambank erosion is another sediment source throughout the watershed and modeled as a unique sediment source independent of other upland-associated erosion sources. Information regarding the stability of streambanks was provided by WVDEP streambank erosion pin study, described in **Section 2.2.6**. The sediment loading from bank erosion is considered a nonpoint source and LAs are assigned, except in MS4 areas where the loads are categorized with the wasteload allocations.

4.2 Sediment and Metals Point Sources

Point sources of sediment and metals include permitted loadings from traditional NPDES permits and the precipitation-induced loadings associated with mining and stormwater NPDES permits. Point sources were represented in the model differently, based on the type and behavior of the source.

4.2.1 Permitted Mining Point Sources

WVDEP's Division of Mining and Reclamation (WVDMR) provided a spatial coverage of the mining-related NPDES permit outlets. The discharge characteristics, related permit limits, and discharge data for these NPDES outlets were acquired from West Virginia's Environmental Resources Information System (*ERIS*) database system. The spatial coverage was used to determine the location of the permit outlets. However, additional information was needed to determine the areas of the mining activities.

WVDEP Division of Water and Waste Management (DWWM) personnel used the information contained in the Surface Mining Control and Reclamation Act (SMCRA) Article 3 and NPDES permits to further characterize the mining point sources. Information gathered included type of discharge, pump capacities, and drainage areas (including total and disturbed areas), by outlet. Using this information, the permitted mining point sources (open NPDES outlets) were grouped into landuse categories based on the type and status of mining activity and effluent discharge characteristics. Phase II and Completely Released permitted facilities were not modeled because reclamation of these mines is completed or nearly complete and they are assumed to have little potential for water quality impact (WVDEP, 2000a). **Table 4-3** shows the landuses representing current active mines that were modeled. Details for both non-mining and mining point sources are provided in **Appendix F**.

Type and Status of Active Mine	Landuse Representation
Surface mines	M_S
Deep mines (gravity fed discharge)	M_DG
Deep mines (pumped discharge)	M_DP
Co-mingled surface and deep mines (deep portion gravity fed)	M_CSDG
Co-mingled surface and deep mines (deep portion pumped)	M_CSDP

Table 4-3. Model nonpoint source representation of different permitted mines

Type and Status of Active Mine	Landuse Representation
Quarry	Quarry

Note: $M_S =$ surface mine; $M_DG =$ deep mine gravity fed; $M_DP =$ deep mine pumped discharge; $M_CSDG =$ co-mingled discharge from surface and deep mine (gravity fed discharge from deep mine portion); $M_CSDP =$ co-mingled discharge from surface and deep mine (pumped discharge from deep mine portion).

Surface mines, and co-mingled surface mines were treated as land-based precipitation-induced sources. The deep mine portions of co-mingled mines were characterized as continuous flow point sources. Deep mines were also characterized as continuous flow point sources.

To account for the additional surface mine areas, which were not categorized in the NLCD 2006 landuse coverage, the areas of each permitted surface mine (determined by aggregating the total drainage areas for each outlet) were subtracted from the existing NLCD 2006 barren and mature forest landuse areas as described for AML areas in **Section 4.1.1** and were assigned to the mining landuse categories.

Co-mingled discharges contain effluent discharges from both surface and deep mining activities. Co-mingled discharges where the deep mine portion is gravity fed (M_CSDG) were represented as described above by aggregating the total drainage areas from the surface and deep mines. For co-mingled discharges where the deep mine portion is pumped (M_CSDP), the pumped discharge was represented as a continuous flow point source (at maximum pump capacity) and areas associated with the surface mine were represented as described above. Any other pumped deep mine discharges were represented as continuous flow point sources at their maximum pumping capacities.

Point sources were represented differently during model calibration than they were during allocations. To match model results to historical water quality data for calibration, it was necessary to represent the existing point sources using available historical data. During allocations, permitted sources were represented at their allowable permit limits.

4.2.2 SMCRA Bond Forfeiture Sites

Information and data associated with bond forfeiture sites were made available by the Office of Special Reclamation (OSR) in WVDEP's Division of Land Restoration. The OSR classified the status of land disturbance and the water quality of the bond forfeiture sites into various categories. These status categories were used to characterize the bond forfeiture sites in the watersheds. Typically, the sites are then incorporated into the bond-forfeitures modeled landuse as described for AML above.

Facilities that were subject to SMCRA during active operations are required to post a performance bond to ensure the completion of reclamation requirements. When a bond is forfeited, WVDEP assumes the responsibility for the reclamation requirements. The Office of Special Reclamation in WVDEP's Division of Land Restoration provided bond forfeiture site locations and information regarding the status of land reclamation and water treatment activities. In past TMDLs, bond forfeiture sites were classified as nonpoint sources. A recent judicial decision (West Virginia Highlands Conservancy, Inc., and West Virginia Rivers Coalition, Inc. v. Randy Huffman, Secretary, West Virginia Department of Environmental Protection. [1:07CV87]. 2009) requires WVDEP to obtain an NPDES permit for discharges from forfeited

sites. As such, this TMDL project classifies bond forfeiture sites as point sources and provides WLAs.

4.2.3 Construction Stormwater General Permit

WVDEP issues a Construction Stormwater General NPDES Permit (Permit WV0115924, referred throughout this document as CSGP) to regulate stormwater discharges associated with construction activities. Registration under the permit is required for construction activities with a land disturbance greater than one acre. Construction activities that disturb less than one acre are not subject to construction stormwater permitting and are uncontrolled sources of sediment. Both the land disturbance and the permitting process associated with construction activities are transient; that is, the water quality impacts are minimal after construction is completed and the sites are stabilized. Individual registrations under the CSGP are usually limited to less than one year. These permits require that the site have properly installed BMPs, such as silt fences, sediment traps, seeding and mulching, and riprap, to prevent or reduce erosion and sediment runoff. Construction sites registered under the CSGP in the watershed that were represented in the model can be reviewed in **Appendix F**.

4.2.4 Other Individual and General NPDES Permits

Individual and General NPDES Permits for sewage treatment facilities, industrial process wastewater, and stormwater associated with industrial activity generally contain technology-based TSS and metals effluent limitations. Facilities that are compliant with such limitations are not considered to be significant sediment or metals sources. All such facilities are recognized in the modeling process and are assigned WLAs that allow for continued discharge under existing permit conditions.

5.0 MDAS FOR DISSOLVED ALUMINUM AND pH

To appropriately address dissolved aluminum and pH TMDLs for TMDL watersheds, it was necessary to include additional MDAS modules capable of representing instream chemical reactions of several water quality components. The following descriptions were intended to give details of MDAS model functionalities and the model configurations.

5.1 Land Components in MDAS

The time variable chemical loadings from land sources were simulated through surface and subsurface hydrologic modeling components in MDAS. The initial values for chemical concentrations and pH were derived from the instream observed data, and from additional modeling results from MINTEQA2/PHREEQC/NETPATH. These initial values were adjusted through MDAS calibration processes. The modeled chemical/mineral loadings from the land surface were further evaluated through edge-of-stream calculations to determine pH prior to instream discharges.

5.1.1 Acid Mine Drainage

Among modeled landuses, AMD is by far the dominant source of instream metals and the acidity loadings. The estimated initial values based on the observed and the simulated data were modified for AMD through model calibration methods. The chemical loadings from different loading pathways (surface, interflow and groundwater) from the source were modified to calibrate timing and fluctuation of AMD source loads.

AMD is drainage that flows from open or deep mines and coal refuse piles. It tends to be highly acidic and to contain high dissolved metals concentrations. The formation of AMD is a function of geology, hydrology, and mining technologies used at the site. When water is exposed to pyrite in coal, refuse, or the overburden of mining operations, complex reactions occur that result in water with high acidity and dissolved metal content. These metals remain dissolved until the pH of the water increases to the level at which the metals precipitate out.

With respect to AMD, pH is not a good indicator of the acidity in a waterbody and can be a misleading characteristic. Water with near-neutral pH (~ 7) but containing elevated concentrations of dissolved ferrous (Fe2+) ions can become acidic after oxidation and precipitation of the iron (PADEP, 2000). Therefore, a more practical approach to meeting the water quality criteria for pH is to use the concentration of metal ions as a surrogate for pH. It was assumed that reducing instream concentrations of dissolved metals (iron and aluminum) to meet water quality criteria (or TMDL endpoints) would result in meeting the water quality standard for pH. This assumption was verified by applying the MDAS. By executing the model under TMDL conditions (conditions in which TMDL endpoints for metals were met), the equilibrium pH could be predicted.

5.1.2 Atmospheric Deposition

In addition to loadings associated with land-based anthropogenic sources and natural background sources, atmospheric deposition was also considered as a source of acidity. The acidity is primarily formed from nitrogen dioxides and sulfur dioxide, which enter the atmosphere through exhaust and smoke from burning fossil fuels such as gas, oil, and coal. Wet atmospheric deposition was explicitly modeled to represent the input of ionic species through precipitation using averaged monthly data available from Canaan Valley Institute (NADP: National atmospheric deposition program) in Tucker County. Dry deposition of major chemical components pertinent to MDAS modeling was implicitly included as a part of surface runoff loadings.

Additional metals and acidity loadings from acid mine drainage seeps sampled by WVDEP were configured to directly discharge to the nearest modeled stream reach. The seep's metal/acidity and heat loadings were based on the TMDL source tracking data collected at the discharge location of the identified seeps.

All of the loadings from various sources were simulated dynamically and linked to the stream reactive transport component of MDAS model.

5.2. Sources Loading Pathways in MDAS Modeling Framework

Three potential chemical loading sources can be simulated at the modeled land surface in MDAS: atmospheric deposition, potential anthropogenic input, and existing chemical species (background) on the land associated with either natural or anthropogenic origins. While the wet/dry atmospheric deposition onto the stream reach can be explicitly modeled as direct deposits, the wet deposition on the land is assumed to be included implicitly in the loads generated at the surface.

Acid rain is produced when atmospheric moisture reacts with gases to form sulfuric acid, nitric acid, and carbonic acid. These gases are primarily formed from nitrogen dioxides and sulfur dioxide, which enter the atmosphere through exhaust and smoke from burning fossil fuels such as gas, oil, and coal. Two-thirds of sulfur dioxides and one-fourth of nitrogen oxides present in the atmosphere are attributed to fossil fuel burning electric power generating plants (USEPA, 2005a). Acid rain crosses watershed boundaries and may originate in the Ohio River valley or the midwest.

The majority of the acid deposition occurs in the eastern United States. In March 2005, the USEPA issued the Clean Air Interstate Rule (CAIR), which places caps on emissions for sulfur dioxide and nitrogen dioxides for the eastern United States. It is expected that CAIR will reduce sulfur dioxide emissions by over 70 percent and nitrogen oxides emissions by over 60 percent from the 2003 emission levels (USEPA, 2005b). Since the pollution is highly mobile in the atmosphere, reductions based on CAIR in West Virginia, Ohio, and Pennsylvania will likely improve the quality of precipitation in the watershed. For the modeling, the wet atmospheric deposition was included to represent the input of ionic species through rain, fog, and snow.

The wet loads at the land surface are a mixture of the existing shallow depth pore solution and the wet deposition. The characterization of the mixed chemistry during the wet event can be modeled using MINTEQA2, MINEQL and/or PHREEQC by considering minerals at the shallow surface depth and weekly/monthly wet atmospheric deposition data from the national atmospheric deposition program. The values can also be based on observed values or some literature values. Through the user-assigned constant or the time variable mixed solution, the modeling is intended to simulate the dissolved portion of the surface chemical solution.

Both anthropogenic and naturally-existing chemicals can be observed at the land surface. The mass of these chemicals can be time-variant depending on the source of the chemicals, the chemical evolution paths, source minerals, and past runoff patterns. The time variable build-up/wash-off functionality of the model can be applied to simulate the chemical condition of these sources. This approach is intended to represent the chemical constituents accumulated in a non-linear manner throughout the dry period. Subsequently, the land surface mass would be subjected to partial wash-off during the wet event. The method could be appropriate to simulate the chemical evolution of mine waste surfaces (e.g., simplified treatments of pyrite oxidation, salt accumulation on waste surfaces) and as a simulation of dry atmospheric deposition on the land. If the build-up/wash-off function is not appropriate for the chemicals or the land use being evaluated, sediment-attached chemicals can be simulated through adsorption onto clay and/or metal oxides through the edge-of-stream calculation. The wash-off could also be simulated using

a potency factor to estimate the chemical mass associated with the sediment detached from the surface by the runoff.

As percolation/evapotranspiration occurs during and after the rainfall event, the moisture conditions of the subsurface zone are constantly updated. Due to the transient nature of the subsurface hydrology, the associated chemical loadings from these zones should also display time-variant characteristics. MDAS allows the user to input either constant or monthly chemical concentrations (including pH), or the charge/mass balance calculation method if the user-selected dataset indicates that all major cations and anions are accounted for and the solution attains electroneutrality. All of the chemical loadings from different flow domains (surface and subsurface) will contribute to the water quality conditions in the stream reach and be subjected to further chemical reactions within the reach. The land components for MDAS are shown in **Figure 5-1**.

Figure 5-1. Land components of the LSPC-MDAS model

5.3 Stream Components in MDAS

The stream components in MDAS include the dominant processes regulating the interactions and transport of major ions, metals, adsorbing materials, and mineral phases. Reactions between the water column and the streambed are represented along with the reactions governing the distribution of dissolved and particulate chemicals.

5.3.1 Water Column

The chemical loadings from the land are transported to the adjacent stream reach via the hydrologic functionalities in LSPC. The in-stream hydraulic transport is simulated in LSPC based on the complete-mix, unidirectional flow concept and kinematic wave flow routing method. MDAS's geochemical reactions within the channel are based on thermodynamics and chemical kinetics. The foundation of MINTEQA2/MINEQL is an equilibrium calculation for the major reactions that define the chemical composition of the stream reach during a given time step. Most speciation reactions are fast relative to the time step and the equilibrium assumption is reasonable. However, for certain reactions, such as the oxidation of ferrous iron to ferric iron or the adsorption of metals on iron oxyhydroxides, reactions may be limited by the kinetics, and not necessarily reach equilibrium. The major limitation of the equilibrium approach is mitigated by incorporating simultaneous equilibrium and kinetic (non-equilibrium) calculations within the same computational time step, leading to more precise spatial and temporal representations of non-equilibrium solution conditions for certain processes. To simulate and attain realistic stream chemical conditions, the model includes a variety of chemical reactions to support various stream conditions affected by anthropogenic or natural sources:

- Chemical speciation, including trace metals
- Acid/base chemical reactions and pH simulations
- CO₂ gas degassing/ingassing kinetics in rivers and lakes
- Redox kinetics including potential photoreduction/microbial oxidation
- Kinetic mineral precipitation/dissolution
- Adsorption/desorption based on diffuse double layer (DDL) modeling
- Cation adsorption/desorption on clay surfaces represented by cation exchange capacity
- Aging/burial of active/inactive sediment layers related to sediment deposition from the water column and scour from the stream bed

The precipitation/dissolution and the adsorption/desorption reactions both occur in the water column and streambed sediments. The heat loading into the stream from land and point sources is also considered and can be simulated. The resulting stream temperature is used for all temperature-dependent chemical reactions occurring within the stream. The stream components represented in MDAS are shown in **Figure 5-2**.

Figure 5-2. Stream components in MDAS

5.3.2 Aqueous Speciation Model in MDAS

The solution to the model equations for the reactions specified in MDAS is based on the MINTEQA2/MINEQL models with the thermodynamic database based on the MINTEQA2, Version 4.0 database. The concepts and thermodynamic data for the diffuse double layer (DDL) model for hydrous ferric oxide are based on a study conducted by Dzombak and Morel (1990). Research conducted by Tonkina, et al. (2003) and Karamalidis and Dzombak (2010) for adsorption on hydrous manganese oxide and gibbsite was reviewed and the results were incorporated into the MDAS DDL model data. **Table 5-1** shows all significant chemical species, other than the free ions, currently included in MDAS database for a chemical system based on major ions, aluminum, iron, and manganese, and adsorption/desorption to oxides and clays. A comparison is made between the previous version and the updated version of MDAS for chemical components, complexes, species, and solids.

Table 5-1. Chemical components and complexes included in previous and updated versions of MDAS.

Components	Aqueous Species		Adsorb	ed Species	Solids
H^{+}	H^{+}	Fe(OH) ₂ ⁺	:FehO ⁻	KX	Iron
Ca ⁺²	Na ⁺	Fe(OH) ₃ (aq)	$:FehOH_2^+$	CaX ₂	Aluminum

Components	Aqueou	1s Species	Adsorb	ed Species	Solids
CO3 ⁻²	K^+	Fe(OH) ₄	:FehOHCa ⁺²	MgX_2	Manganese
Fe ⁺³	Ca ⁺²	$\operatorname{Fe}_2(\operatorname{OH})_2^{+4}$:FehOHSO4-2	AlX ₃	Calcite
Fe ⁺²	Mg^{+2}	${\rm Fe}_{3}({\rm OH})_{4}^{+5}$:FehSO4	FeX ₂	Gypsum
Mn ⁺²	Al ⁺³	$\mathrm{FeSO_4}^+$:FehOMn ⁺	MnX ₂	Jurbanite
Mn ⁺³	Fe ⁺²	$Fe(SO_4)_2$:FehO(FeII) ⁺	-	-
$A1^{+3}$	Fe ⁺³	FeCl ⁺²	:FehCO3	-	-
SO_4^{-2}	Mn ⁺²	KCl (aq)	:FehCO ₃ H	-	-
H ₂ O	Mn ⁺³	KOH (aq)	:FeO ⁻	-	-
Na^+	SO_4^{-2}	KSO4	:FeOH2 ⁺	-	-
\mathbf{K}^+	Cl⁻	$MgCl^+$:FeOCa ⁺	-	-
Mg^{+2}	CO3 ⁻²	$MgOH^+$:FeOMg ⁺	-	-
Cl	AlOH ⁺²	MgSO ₄ (aq)	:FeOHSO4-2	-	-
FeOH(s)	Al(OH) ₂ ⁺	MgCO ₃ (aq)	:FeSO4	-	-
FehOH (s)	Al(OH) ₃ (aq)	MgHCO ₃ ⁺	:FeOMn ⁺	-	-
AlOH (s)	Al(OH) ₄	$MnOH^+$:FeO(FeII) ⁺	-	-
MnOH (s)	$Al_2(OH)_2^{+4}$	$Mn(OH)_4^{-2}$:FeO(FeII)OH	-	-
MnhOH (s)	$Al_3(OH)_4^{+5}$	$Mn_2(OH)_3^+$:FeCO ₃ ⁻	-	-
X-	$Al_2(OH_2)_2CO_3^+$	Mn ₂ OH ⁺³	:FeCO ₃ H	-	-
-	AlCl ⁺²	MnSO ₄ (aq)	:AlO ⁻	-	-
-	$AlSO_4^+$	$MnCl^+$:AlOH ₂ ⁺	-	-
-	$Al(SO_4)_2$	MnCl ₂ (aq)	:AlOCa ⁺	-	-
-	$CaOH^+$	MnCl ₃	:AlOHSO4-2	-	-
-	CaSO ₄ (aq)	MnCO ₃ (aq)	:AlSO4	-	-
-	$CaCl^+$	MnHCO ₃ ⁺	:AlOFe ⁺	-	-
-	CaCO ₃ (aq)	NaCl (aq)	:AlOMn ⁺	-	-
-	CaHCO ₃ ⁺	NaOH (aq)	:MnO	-	-
-	$FeOH^+$	NaSO ₄	:MnOCa ⁺	-	-
-	Fe(OH) ₂ (aq)	NaCO ₃	:MnOMg ⁺	-	-
-	Fe(OH) ₃	NaHCO ₃ (aq)	:MnOMgOH	-	-
-	FeSO ₄ (aq)	HSO ₄	:MnOMn ⁺	-	-
-	FeCl ⁺	$H_2CO_3^*$ (aq)	:MnOMnOH	-	-
-	FeHCO ₃ ⁺	HCO ₃	:MnhO ⁻	-	-
-	FeOH ⁺²	OH	NaX	-	-

West Fork River Watershed TMDLs: Technical Report

Notes: 'h' indicates a high affinity site for chemical adsorption. Species with the same combination of components but no 'h' have a low affinity site. In reality, species with and without the 'h' are physically identical, but the designation is applied within the model to explain observed adsorption behavior.

'X' indicates a clay adsorption site.

':' indicates an adsorption surface provided by metals (Fe: hydrous ferric oxide, Al: gibbsite, Mn: hydrous manganese oxide).

5.4 Streambed and Suspended Sediment

The streambed was configured to contain two virtual model layers in MDAS. The first layer in the model was represented as an active sediment layer that participates in all chemical reactions.

The second modeled layer was represented as a non-active sediment layer but contributes to total sediment and mineral mass. The active layer was thought to be either freshly precipitated minerals or shallow sediment layer that reacts with chemicals/minerals in the overlaying water within the modeled computational time step. The non-active layer was assumed to be aged and has lost chemical reactivity. Both layers were subjected to sediment aging and/or burial. The model sediments were represented by sand (as non-cohesive sediment), and silt and clay size minerals (as cohesive sediment). Clay size minerals included clay, calcite, gypsum, jurbanite, and others, that could potentially be present in acidic/post-remedial-solution discharges from mine sources or other sources. All metal oxides provided surface areas for cations and anions to adsorb and desorb based on the DDL model and clay can also adsorb and desorb cations.

Deposition to and scour from the streambed sediments were simulated on both the active and the non-active layer in the stream channel, with full simulated transport with adsorbed chemicals. The exchange between the water column and the streambed of clay, metal oxides, and other minerals was determined in the model based on the shear stress at the sediment surface layer and the hydrogeometry conditions of each reach.

5.5 Kinetics Representations in MDAS

While the equilibrium approach is suitable for many of the reactions in the model, additional non-equilibrium processes and reactions are represented by kinetic formulations in order to provide a greater accuracy in the stream environment. Kinetics are applied to the following:

- Degassing/ingassing of CO₂
- Lake reaeration
- Calcite dissolution and precipitation
- Metal oxides, gypsum and jurbanite dissolution and precipitation
- Metals oxidation/reduction
- Aging/burial of active sediment layer

5.6 MDAS Model Schematic

The model schematic (**Figure 5-3**) illustrates the MDAS model functionality, in other words, how MDAS subroutines and chemical constituents interact with each other. The numbers in the figure correspond with the numbered steps below.

 The user-defined land input will be processed through the edge-of-stream calculation. The method of the calculations will be either fixed pH or charge/mass balance calculations, depending on the user selection. Additionally, variable surface runoff loadings can be added through build-up or wash-off of sediment-associated chemicals. The assigned dissolved total concentrations will be distributed into Dissolved Chemical *C-comp(W)* and Particulate Chemical *C-comp(w-ads)*. The user-assigned *minerals (w)* will provide an adsorption surface in the calculation to estimate the *C-comp(ads-w)* value. No kinetics calculation will be performed at this level.

- 2) Dissolved/adsorbed chemicals and minerals will go through advection transport via LSPC function, depending on flow conditions and the physical characteristics of the minerals.
- 3) Some of the minerals will stay in the same reach for the next time step depending on the flow conditions.
- 4) After minerals are subjected to the advection transport, LSPC applies the BEDEXCHANGE subroutine) and redistributes them as suspended *minerals* (*W*) and sedimentary *minerals* (*S*) in the river bed.
- 5) Subroutine ADVQAL in LSPC will inherit the minerals' advection and bed-exchange information derived through ADVECT and BEDEXCHANGE and apply the results to generate suspended adsorbed *C-comp(w-ads)* and sedimentary adsorbed *C-comp(S-ads)*. As a result, some portion of *C-comp(w-ads)* will be transported to the downstream reach, and there will be exchange between *C-comp(w-ads)* and *C-comp(s-ads)* based on the minerals' behavior.
- 6) Next, the stream components within *C-comp* (*W*); *minerals* (*W*) and (*S*); and *C-comp* (*w-ads*) and (*S-ads*) will become inputs to the speciation model (chemical kinetics and equilibrium calculation). The model evaluates chemical components in the water column, on the suspended sediments, and on the streambed exposed to overlaying water. Active sediment layer and non-active sediment layer are controlled by both MDAS and LSPC models.
- 7) The speciation model performs the re-distribution of the chemical components, and the stream composition is updated. Some of the minerals can be either precipitated or dissolved depending on the solution condition.
- 8) The results will stay in the reach segment and will be subject to renewed transport and reactions once new loadings from point sources, landuse activities, and atmospheric sources are added to them for the next time step.

Figure 5-3. MDAS module schematic and linkages

6.0 MDAS MODEL CALIBRATION

After the various models were configured, calibration was performed at multiple locations in each watershed. Calibration refers to the adjustment or fine-tuning of modeling parameters to reproduce observations. Model calibration focused on three main areas: hydrology, sediment and water quality. Upon completion of the calibration at selected locations, the calibrated dataset containing parameter values for modeled sources and pollutants was complete. This dataset was applied to areas for which calibration data were not available.

6.1 Hydrology Calibration

This section describes the modeling and calibration of the snow and hydrology components of the watershed model. Simulation of hydrologic processes is an integral part of the development of an effective watershed model. The goal of the calibration was to obtain physically realistic model prediction by selecting parameter values that reflect the unique characteristics of the watershed. Spatial and temporal aspects were evaluated through the calibration process.

Hydrologic calibration was performed after configuring the model. For the MDAS, calibration is an iterative procedure of parameter evaluation and refinement as a result of comparing simulated and observed values of interest. It is required for parameters that cannot be deterministically and uniquely evaluated from topographic, climatic, physical, and chemical characteristics of the watershed and compounds of interest. Hydrology calibration was based on several years of simulation to evaluate parameters under a variety of climatic conditions. The calibration procedure resulted in parameter values that produce the best overall agreement between simulated and observed stream flow values throughout the calibration period. Calibration included a time series comparison of daily, monthly, seasonal, and annual values, and individual storm events. Composite comparisons (e.g., average monthly stream flow values over the period of record) were also made. All of these comparisons must be evaluated for a proper calibration of hydrologic parameters.

The MDAS hydrology algorithm follows a strict conservation of mass, with various compartments available to represent different aspects of the hydrologic cycle. Sources of water are direct rainfall or snowmelt. Potential sinks from a land segment are total evapotranspiration, flow to deep groundwater aquifers, and outflow to a reach. From the reach perspective, sources include land outflow (runoff and baseflow), direct discharges, precipitation, or flow routed from upstream reaches. Sinks include surface evaporation, mechanical withdrawals, or reach outflow.

6.1.1 Snow

The method used to simulate snow behavior was the energy balance approach. The MDAS SNOW module uses the meteorological forcing information to determine whether precipitation falls as rain or snow, how long the snowpack remains, and when snowpack melting occurs. Heat is transferred into or out of the snowpack through net radiation heat, convection of sensible heat from the air, latent heat transfer by moist air condensation on the snowpack, from rain, and through conduction from the ground beneath the snowpack. Melting occurs when the liquid

portion of the snowpack exceeds its holding capacity; melted snow is added to the hydrologic cycle.

6.1.2 Surface Hydrology

As mentioned earlier, the MDAS hydrology algorithms follow a strict conservation of mass. The source of water to the land is either direct precipitation or snowmelt. Some of this water is intercepted by vegetation or by other means. The interception is represented in the model by a "bucket" that must be filled before any excess water is allowed to reach the land surface. The size, in terms of inches per unit of area, of this "bucket" can be varied monthly to represent the level of each compartment (both above and below the land surface).

Water that is not intercepted is placed in surface detention storage. If the land segment is impervious, no subsurface processes are modeled, and the only pathway to the stream reach is through surface runoff. If the land segment is pervious, the water in the surface detention storage can infiltrate, be categorized as potential direct runoff, or be divided between the two depending on a function of the soil moisture and infiltration rate. The water that is categorized as potential direct runoff is partitioned into surface storage/runoff, interflow, or kept in the upper zone storage. Surface runoff that flows out of the land segment depends on the land slope and roughness, and the distance it has to travel to a stream. Interflow outflow recedes based on a user-defined parameter.

Water that does not become runoff, interflow, or lost to evaporation from the upper zone storage will infiltrate. This water will become part of the lower zone storage, active groundwater storage or be lost to the deep/inactive groundwater. The lower zone storage acts like a "container" of the subsurface. This "container" needs to be full in order for water to reach the groundwater storage. Groundwater is stored and released based on the specified groundwater recession, which can be made to vary non-linearly.

The model attempts to meet the evapotranspiration demand by evaporation of water from baseflow (groundwater seepage into the stream channel), interception storage, upper zone storage, active groundwater, and lower zone storage. How much of the evapotranspiration demand is allowed to be met from the lower zone storage is determined by a monthly variable parameter. Finally, water can exit the system in three ways: evapotranspiration, deep/inactive groundwater, or entering the stream channel. The water that enters the stream channel can come from direct overland runoff, interflow outflow, and groundwater outflow.

Some of the hydrologic parameters can be estimated from measured properties of the watersheds while others must be estimated by calibration. Model parameters adjusted during calibration are associated with evapotranspiration, infiltration, upper and lower zone storages, recession rates of baseflow and interflow, and losses to the deep groundwater system. During hydrology calibration, land segment hydrology parameters were adjusted to achieve agreement between daily average simulated and observed USGS stream flow at selected locations throughout the basin.

As a starting point, many of the hydrology calibration parameters originated from the USGS Scientific Investigations Report 2005-5099 (Atkins et al., 2005). During calibration, agreement

between observed and simulated stream flow data was evaluated on an annual, seasonal, and daily basis using quantitative as well as qualitative measures. Specifically, annual water balance, groundwater volumes and recession rates, surface runoff and interflow volumes and timing were evaluated. Calibration of the hydrologic model was accomplished by first adjusting model parameters until the simulated and observed annual and seasonal water budgets matched. Then, the intensity and arrival time of individual events was calibrated. This iterative process was repeated until the simulated results closely represented the system and reproduced observed flow patterns and magnitudes. The model calibration was performed using the guidance of error statistics criteria specified in HSPEXP (Lumb et al., 1994). Output comparisons included: mean runoff volume for simulation period, monthly runoff volumes, daily flow time series, and flow frequency curves, among others. The flow-frequency curves and temporal analyses are presented in **Appendix I**.

The hydrology calibration statistics for the flow gage on the West Fork River are shown in **Table 6-1**. A graphical representation of hydrology calibration results is presented in **Figure 6-1**. Refer to **Appendix I** for additional calibration results.

		-
Simulated versus Observed Flow	Percent Error	Recommended Criterion ^a
Error in total volume:	0.97	10
Error in 50% lowest flows:	3.32	10
Error in 10% highest flows:	-2.53	15
Seasonal volume error - summer:	9.14	30
Seasonal volume error - fall:	4.07	30
Seasonal volume error - winter:	2.70	30
Seasonal volume error - spring:	-6.20	30
Error in storm volumes:	0.24	20
Error in summer storm volumes:	1.38	50

Table 6-1. Comparison of simulated and observed flow from January 2002 to December 2011 (USGS station ID number 03061000 West Fork River at Enterprise, WV)

• ^a Recommended criterion: HSPExp.

Figure 6-1. Comparison of simulated and observed flow from 2002 to 2011 (USGS station ID number 03061000 West Fork River at Enterprise, WV

6.2 Sediment and Water Quality Calibration

A significant amount of time-varying monitoring data was necessary to calibrate the sediment and water quality portions of the model. Available monitoring data in the watershed were identified and assessed for application to calibration (**Appendix J**). Only monitoring stations with data that represented a range of hydrologic conditions, source types, and pollutants were selected. The WAB database provided very good spatial and temporal coverage of water quality data and was used extensively during calibration.

In addition, a detailed stormwater monitoring evaluation was performed by WVDEP on two small watersheds (Coalburg Branch and Shrewsbury Hollow), each draining only one landuse source. These were a surface mine and a forested area, respectively. Analysis of the data gathered provided the necessary information to inform the model parameterization and calibration for these two very significant landuse categories. The MDAS was set up to simulate the two small watersheds sampled during storm events. These two separate models were composed of one subwatershed, one stream reach, and one landuse each. The models were calibrated on an hourly time step, and the resulting parameters were used as initial values in the watershed models. Permitted discharges that were issued permits after the calibration period were not considered during the calibration process. **Appendix I** presents the results for the calibration of these sampling events.

The MDAS water quality is a function of the hydrology. Sediment production is directly related to the intensity of surface runoff. Sediment yield varies by landuse and the characteristics of the land segment. Sediment is delivered to the streams through surface runoff erosion, direct point sources, and instream bank erosion. Once sediment reaches the stream channel, it can be transported, deposited and scoured, depending on the sediment size and flow energy.

MDAS model parameters were adjusted to obtain a calibrated model for sediment load. The erosion on pervious landuses was simulated as the result of soil detachment driven by rainfall precipitation and sediment transport with overland flow. The coefficient in the soil detachment equation (KRER) was estimated from the RUSLE erodibility values of specific soil types in the STATSGO soil database. The primary sediment parameter adjusted by landuses was the sediment washoff coefficient (KSER). Other relevant parameters for the land based sediment calibration such as daily reduction in detached sediment (AFFIX) and fraction land surface protected from rainfall (COVER) were estimated for each modeled landuse. Initial parameter values for the sediment parameters were based on available landuse specific storm sampling monitoring data and landuse specific unit area loading values from literature. Values were refined during the calibration process by comparing the simulated sediment concentration with the water quality data in the WAB database. Land based sediment calibration consisted of adjusting the KSER for each landuse according to their sediment producing capacities. Background landuses were assigned sediment loading similar to the forested areas of Shrewsbury Hollow. Most sediment producing landuses were assigned sediment loading similar to the ones derived from the surface mine sites of Coalburg Branch. Oil and gas, harvested forest, and burned forest landuses were assigned sediment parameters assuming a split of 1/2 barren and 1/2 forested.

6.3 Water Quality Calibration

Iron loads are delivered to the tributaries with surface runoff, subsurface flows, and direct point sources. Sediment-producing landuses and bank erosion are also sources of total iron, since iron contents are relatively high in the soils in those watersheds. The MDAS provides mechanisms for representing all of these various pathways of pollutant delivery.

A detailed water quality analysis was performed using statistically based load estimates with observed flow and instream monitoring data. The confidence in the calibration process increases with the quantity and quality of the monitoring data. The WAB database provides very good spatial and temporal coverage of water quality data. Statistical analyses using pre-TMDL monitoring data collected throughout the subject watersheds were performed to establish the correlation between iron loads and sediment loads and to evaluate spatial variability. The results were then applied to the sediment-producing landuses during the water quality calibration phase of the MDAS. The results of the correlation analysis are shown in **Appendix C.**

In addition, non-sediment-related iron land-based sources were modeled using average concentrations for the surface, interflow and groundwater portions of the water budget. For these situations, discharges were represented in the model by adjusting parameters affecting pollutant concentrations in the PQUAL (simulation of quality constituents for pervious land segments) and IQUAL (simulation of quality constituents for impervious land segments) modules of the MDAS.

For the permitted mining land-based sources, parameters developed from the Coalburg Branch model set-up were initially used. Concentrations from these mines were adjusted to make them consistent with typical discharge characteristics from similar mining activities or to match site-specific instream monitoring data. For AML areas, parameters to simulate iron and aluminum loads were developed by calibrating subwatersheds where the only significant source of metals were the AML lands.

To validate the sediment/metals model, daily average instream concentrations from the model were compared directly with observed data at several locations throughout the watershed. The goal was to confirm that low flow, mean flow, and storm peaks at water quality monitoring stations draining mixed landuse areas were being represented. The representative stations were selected based on location (distributed throughout the TMDL watersheds) and loading source type. Results of the water quality calibration and validation are presented in **Appendix I**.

For fecal coliform model water quality calibration, fecal coliform build-up and limit parameters specific to modeled landuses were adjusted to calibrate the model. Modeled fecal coliform concentrations from failing septic systems were adjusted to best represent fecal loading in impaired streams. Results from fecal coliform water quality calibration are also presented in **Appendix I**.

7.0 BIOLOGICAL STRESSOR IDENTIFICATION

The Stressor Identification (SI) process analyzes the existing quantitative and qualitative water quality data available for the watersheds to identify the cause of the impairment, so that pollutants can be controlled. All of the data are compiled, reviewed, and synthesized into summary tables. A collaborative effort is then conducted to review the data to determine the most likely stressors to the macroinvertebrate community in biologically impacted streams. The SI process is discussed in further detail in the sections that follow and final determinations are listed in **Appendix B**.

7.1 Stressor Identification Overview

Biological assessments are useful in detecting impairment, but they do not necessarily identify the cause (or causes) of impairment. USEPA developed *Stressor Identification: Technical Guidance Document* to assist water resource managers in identifying stressors or combinations of stressors that cause biological impact (Cormier et al., 2000). Elements of the SI process were used to evaluate and identify the primary stressors of the benthic community in the biologically impacted streams.

SI is a formal and rigorous method that identifies stressors and provides a structure for organizing the scientific evidence supporting the conclusions. The general SI process entails critically reviewing available information, forming possible stressor scenarios, analyzing those scenarios, and reaching conclusions about which stressor or stressors are impacting biota. The process is iterative, usually beginning with a retrospective analysis of available data. The accuracy of the identification depends on the quality of data and other information used in the SI process. In some cases, additional data collection might be necessary to accurately identify the stressor(s). The conclusions determine those pollutants for which TMDLs are required for each of the biologically impacted streams. As a result, the TMDL process establishes a link between the benthic community assessment and pollutant stressors.

Figure 7-1 provides an overview of the SI process, which consists of three main steps. The first step is to develop a list of candidate causes, or stressors, which will be evaluated. This is accomplished by carefully describing the effect that is prompting the analysis and gathering available information on the situation and potential causes. Evidence might come from the case at hand, other similar situations, or knowledge of biological processes or mechanisms. The output of this initial step is a list of candidate causes.

The second step, analyzing evidence, involves analyzing the information related to each of the potential causes. All information known about the waterbody is potentially useful in this step. The third step, evaluation of data, consists of analyzing the information in an organized approach to characterize the candidate causes. All available data are used to eliminate, to diagnose, and to compare the strength of evidence in order to identify the significant stressors.

Figure 7-1. Stressor identification process

7.1.1 Technical Approach

Biological communities respond to any number of environmental stressors, including physical impacts and changes in water and sediment chemistry. The primary sources of data used in SI were water quality, biomonitoring, habitat, and other information contained in the WVDEP Watershed Assessment Branch (WAB) database; TMDL and source tracking data; WVDEP mining activities data; National Land Cover Dataset (NLCD 2006) landuse information; National Resource Conservation Service State Soil Geographic Database (NRCS STATSGO; NRCS, 1994) soils data; National Pollutant Discharge Elimination System (NPDES) point source data; literature sources; and past TMDL studies.

WVDEP collects and interprets water quality and biological information within the state's 32 watersheds on a five-year rotation. Within the context of the WAB, streams in the Group E TMDL watersheds were sampled in 2010 and 2011. WVDEP staff also conducted site visits to all impaired streams more recently to identify pollutant sources in these watersheds not previously known and to collect additional data needed for SI and TMDL model setup. The water quality and biological data analyses presented in this document are based on all of the data collected by WVDEP in the impaired watersheds to date.

7.1.2 Development of the Conceptual Model

The first step in the SI process was to develop the list of candidate causes, or stressors. Potential causes were evaluated based on an assessment of watershed characteristics and the likely causes and sources of biological impairment. The relationship between candidate causes of impairment and potential biological effects, were based on discussions with WVDEP staff, initial data analyses, knowledge of these watersheds, and experience in defining impairment causes in similar watersheds. Sources, impairment causes, and the resulting effects on the biological community depend on the stream or watershed in question. In some cases, biological impairment can be linked to a single stressor; in other situations, multiple stressors might be responsible for the impact.

7.1.3 Data Analysis

The second step in the SI process was to evaluate the information related to each of the candidate causes. Water quality parameters, habitat data, source tracking data, and other quantitative and qualitative data were grouped under each respective candidate cause for analysis. In some cases, a variety of information was used to evaluate a particular candidate cause (e.g., sedimentation). The evidence presented was used to determine support or non-support of the listed candidate cause. At the conclusion of this process, one or more stressors (pollutants) were identified.

Water quality data, habitat information, and other non-biological data were evaluated using established water quality standards and threshold values that had been developed on the basis of a statistical analysis of stressor-response patterns using reference stream data. Stressor-response relationships were evaluated using statewide data. These data were then partitioned by ecoregion to determine whether regional patterns varied from the results of the statewide analysis. West Virginia's water quality criteria for metals were also evaluated using this statistical framework to determine whether these criteria were protective of aquatic life uses.

SI involved comparing all of the data collected for each stream and upstream tributaries with the threshold levels specified in **Table 7-1**. Two sets of threshold values: elimination and strength of evidence were designated for most parameters. Elimination threshold values represent "not to exceed" levels for water quality and habitat variables. Stream data were first compared with the elimination thresholds to determine whether additional analyses were necessary to evaluate a particular candidate cause (stressor). Each potential stressor was further evaluated using a strength-of-evidence approach if the elimination threshold was exceeded, related parameters or other information showed conflicting results, or there were limited data available.

Biological data were also used to determine water quality and habitat-related stressor thresholds. Abundance of indicator taxa, typically ephemeroptera (mayflies), plecoptera (stoneflies), and trichoptera (caddisflies) [EPT] organisms, were plotted against potentially influential variables to macroinvertebrate communities. This water quality and physiochemical data, collected concurrently, was used to interpolate relationships, or thresholds, to the benthic assemblage. Five linear, best-fit lines were applied to each plot, corresponding to the strength categories of potential stressors. In certain instances, other biological information was examined for relationships with stressors. For example, dipterans (true flies) were used to elucidate benthic relationships in waters heavily enriched by nutrients. Many pollutants have a direct and negative impact on macroinvertebrate presence/abundance; however, some stressors act by more complex means on the biota. Subsidy of abundance in specific invertebrate populations is typical of certain stressors; consequently, both the population's abundance and corresponding information regarding the potential stressor were closely considered. Finally, threshold values for some potential stressors were determined via abundance scatter plots versus more qualitative information. Evaluations of pre-TMDL monitoring information on algal density are one such example.

		Elimination	Strength of Evidence	
Candidate	Parameter at	at these thresholds)	(Evidence for each Candidate Cause as stressor)	
Cause		Elimination Threshold	Candidate Stressor Thresholds	
1. Metals toxicity	Al (dissolved)	<0.09 mg/L	>0.442 mg/LDefinite Stressor0.307 - 0.4419Likely stressor0.227 - 0.3069Possible stressor0.182 - 0.2269Weak stressor0.0.091 - 0.1819Equivocal or No Trend	
	Fe (total)		Fe toxicity to benthic invertebrates is not well established.	
	Mn (total)		Mn toxicity to benthic invertebrates is not well established.	
2. Acidity	рН	>6.3	 <4.29 Definite Stressor 4.99-4.3 Likely stressor 5.29-5.0 Possible stressor 5.99-5.3 Weak stressor 6.20.6 Demission of Trand 	
3. High pH	рН	< 8.39	 >9.1 Definite Stressor 8.9-9.09 Likely stressor 8.8-8.89 Possible stressor 8.7-8.79 Weak stressor 8.4-8.69 Equivocal or No Trend 	
4. Ionic strength	Conductivity	< 326.9 umhos	Consider as independent stressor in non-acidic, non-AMDstreams, when conductivity values met threshold ranges andsulfates or chloride violate conditions listed as follows.>1533Definite Stressor1075-1532.9Likely stressor767-1074.9Possible stressor517-766.9Weak stressor327-516.9Equivocal or No Trend	
	Sulfates	< 56.9 mg/l	>400Definite Stressor250-400Likely stressor175-250Possible stressor120-175Weak stressor57-119.9Equivocal or No Trend	
	Chloride	< 60 mg/l	>230.0Definite Stressor160.1-229.9Likely stressor125.1-160Possible stressor80.1-125.0Weak stressor60.1-80.0Equivocal or No Trend	
5.	TSS	Max < 10 mg/l	Not included as a stressor parameter at this time	
Sedimentation	% Fines (sand + silt + clay)	<10%	>40Definite Stressor30-40Likely stressor20-30Possible stressor10-20Weak stressor<10	
	RBP: Embeddedness RBP: Sediment Deposition	16.0 - 20.0 (optimal)	Evaluate based on RBP qualitative categories:0-2.9 (poor)Definite Stressor3.0-5.9 (poor)Likely stressor6.0-8.9 (marginal)Possible stressor9.0-10.9 (marginal)Weak stressor11.0-15.9 (sub-optimal)Equivocal or No Trend	

 Table 7-1. Stressor identification analysis thresholds

West Fork River Watershed TMDLs: Technical Report

		Elimination	Strongth of Evidence	
		(Rule out stressors	(Evidence for each Candidate Cause as stressor)	
Candidate	Parameter	at these thresholds)	(Evidence for each Candidate Cause as stressor)	
Cause	1 arameter	Elimination	Candidate Stressor Thresholds	
		Threshold		
	RBP: Total	≥110.1	Max <120 and n>2, or	
	(adjusted to		Median <120.	
	post-1998		<65 Definite Stressor	
	RBP)		65.1-75 Likely stressor	
			75.1-85 Possible stressor	
			85.1-100 Weak stressor	
	G 1	00.100.00	100.1-110 Equivocal or No Trend	
	Sediment	90-100 SQ points =	<49.9 SQ points = severely limiting	
	Profile Index	not limiting	50-59.9 SQ points = limiting	
			70.70.9 SQ points = needibly limiting	
			70-79.9 SQ points – possibly initiality $80-89.9$ SQ points – not likely limiting	
	Sedimentation		Professional judgment applied to combination of TSS % Fines and	
	evaluation:		RBP embeddedness, sediment deposition, and total scores:	
	e varaansin		supplemented with information from sources listed below this table	
			(field notes and source tracking observations).	
Other habitat	RBP: Cover	16.0 - 20.0 (optimal)	No stressor-response detectable. Evaluate based on RBP	
	RBP: Riparian		qualitative categories:	
	Vegetation		0-2.9 (poor) Definite Stressor	
			3.0-5.9 (poor) Likely stressor	
			6.0-8.9 (marginal) Possible stressor	
			9.0-10.9 (marginal) Weak stressor	
			11.0-15.9 (sub-optimal) Equivocal or No Trend	
6. Metals	Metal	No observations noted	Qualitative supplemental evidence (field notes and observations).	
flocculation (habitat	flocculation			
	Embeddedness	16.0 - 20.0 (optimal)	Evaluate based on RBP qualitative categories:	
alteration)	due to metals		0-2.9 (poor) Definite Stressor	
	flocculation		3.0-5.9 (poor) Likely stressor	
			6.0-8.9 (marginal) Possible stressor	
			9.0-10.9 (marginal) Weak stressor	
7 Organic	DO	>7.0 mg/I	11.0-15.9 (sub-optimal) Equivocal of No field	
enrichment	DO	27.0 mg/L	4 39-3 2 Likely stressor	
chilemient			5 39-4 4 Possible stressor	
			6.29-5.4 Weak stressor	
			6.99-6.3 Equivocal or No Trend	
	Periphyton,	0.0-0.99	Qualitative ranking evaluations of indicator parameters (at left).	
	Filamentous		supplemented by field notes and observations.	
	Algae		3.5-4.0 Definite Stressor	
			3.0-3.49 Likely stressor	
			2.5-2.99 Possible stressor	
			2.0-2.49 Weak stressor	
			1.0-1.99 Equivocal or No Trend	
	Fecal coliform	<150 counts/100 mL	>2300.1 Definite Stressor	
			1900.1-2300 Likely stressor	
			1400.1-1900 Possible stressor	
			400.1-1400 weak stressor	
8 Tomporatura	Tomporatura	<25.60 C	$\frac{130.1-400}{Max} \ge 20.6 C Max through November: or$	
(direct)	remperature	<23.09 C	Max >22.8 C December through April	
(uncer)			>30.6 Definite Stressor	
			28.9-30.59 Likely stressor	
			27.7-28.89 Possible stressor	
			26.7-27.69 Weak stressor	
			25.7-26.69 Equivocal or No Trend	

West Fork River Watershed TMDLs: Technical Report

		Elimination	Strength of Evidence
Candidate	D ((Rule out stressors	(Evidence for each Candidate Cause as stressor)
Cause	Parameter	at these thresholds)	
		Elimination	Candidate Stressor Inresnoids
9. Reduced	DO	$\geq 7.0 \text{ mg/l}$	<3.19 Definite Stressor
DO/ high		-	4.39-3.2 Likely stressor
BOD/ nutrient			5.39-4.4 Possible stressor
enrichment			6.29-5.4 Weak stressor
			6.99-6.3 Equivocal or No Trend
	NO ₃		Little data available; apply professional judgment to available
			nutrient data; supplement with indirect evidence from algae and/or
			fecal observations.
		<0.6820	265 Definite Stressor
	$NO_2 NO_3$	<0.0829	2.05 Definite Stressor
			2.085-2.049 Likely stressor
			1.55-2.0829 Possible stressor
			0.983-1.549 Weak stressor
	Total Nitrogan	<2.1160 mg/I	5.0 Definite Stressor
	Total Millogen	<2.1109 lllg/L	A 022 4 0 Litraly stressor
			4.053-4.9 Likely stressor
			2.722.2.2660 Week stressor
			2.755-5.5009 Weak stressor
	TD (1	.0.1210 /1	2.117-2.7329 Equivocal of No Trend
	1 otal	<0.1319 mg/1	>0.51 Definite Stressor
	Phosphorus		0.37-0.509 Likely stressor
			0.283-0.369 Possible stressor
			0.193-0.2829 Weak stressor
10 41 /	D 1 1	0.0.0.00	0.132-0.1929 Equivocal or No Trend
10. Algae/	Filementous	0.0-0.99	Little data available; based on field indicator notes such as
Food Supply	Alara		noderate or high quantative argae and periphyton
Shift	Algae		observations.
			3.3-4.0 Definite Stressor
			2.5.2.00 Descible stressor
			2.3-2.99 Possible stressor
			2.0-2.49 Weak stressor
11 Ammonio	NU	<0.00	1.0-1.99 Equivocal of No Trend
11. Ammonia	NH ₃	<0.99	Little data available; apply professional judgment to available
			ammonia data, indirect evidence from algae and/or pH
			observations, and/or point source monitoring data.
			>1.05 Definite Stressor
			1.3J-1.049 Likely stressor
			1.2-1.349 Possible stressor
			1.1-1.19 Weak stressor
12 Chamin 1	X7		1.0-1.09 Equivocal or No Trend
12. Chemical	v arious		Quantative supplemental information (field notes and other
spills	cnemical		sources listed below this table).
	parameters	l	

Notes:

1. Elimination: Screening step to rule out particular stressors, based on unambiguous criteria.

2. Strength of evidence: Data that provide evidence for identification of each particular candidate cause as a biological stressor. To be supplemented with evidence from additional information sources listed below the table.

3. (d) = dissolved; (+) = total; RBP = Rapid Bioassessment Protocol. ^a Supplemental evidence to evaluate each candidate stressor:

Biological stressor-response gradients (Tetra Tech, Inc., analyses developed through statewide data set correlation analysis of metric responses in site classes and in subwatersheds)

Source tracking reports

Database summary Text/Note/Comment fields

Point source monitoring data (e.g., anhydrous ammonia, BOD, nutrients)

Benthic sampling taxa review

A summary of the data available for use in evaluating each candidate cause is presented in **Table 7-2**. All available data related to each candidate cause (including field notes from pre-TMDL monitoring and source tracking) were organized and compiled into summary tables to determine the primary stressor(s). In some cases, several stressors were identified in the analysis. Refer to **Appendix K** for analysis results for specific streams and data supporting the SI process determinations.

Candidate Cause	Summary of Available Evidence and Results
1. Metals toxicity	Available evidence: water quality sampling data, source tracking reports and
2. Acidity	field observation notes, invertebrate community data. Results variable by
3. High pH	stream; summaries to be presented by stream; evaluations based on strength
4. Ionic strength	of evidence.
5. Sedimentation and habitat	
6. Metals flocculation	
7. Organic enrichment	
8. Temperature	No violations of standards in most streams: eliminate as cause (exceptions to
9. Oxygen deficit	be presented).
10. Algae/food supply shift	Little data available; professional judgment applied to indirect evidence; not
11. Ammonia toxicity	identified as stressors in most streams.
12. Chemical spills	

Table 7-2. Available da	a for the evaluation	of candidate causes
-------------------------	----------------------	---------------------

Based on the SI process, TMDL streams were found to be impacted by various candidate causes. Refer to **Appendix A** for a listing of stream with specific impairments related to water quality criteria. Streams with sedimentation impairments, in most cases, are also impaired pursuant to the total iron criterion for aquatic life protection and WVDEP determined that implementation of the iron TMDLs would require sediment reductions sufficient to resolve the biological impacts. Additional information regarding the iron surrogate approach is provided in **Section 8.0**. Also, the analytical results and statistical information regarding the correlation of iron and TSS are displayed in **Appendix C**.

The SI process identified metals toxicity as biological stressors in waters that also demonstrated violations of the pH and dissolved aluminum water quality criteria for protection of aquatic life. WVDEP determined that implementation of those pollutant-specific TMDLs would address the biological impacts due to metals toxicity.

Where organic enrichment was identified as the biological stressor, the waters also demonstrated violations of the numeric criteria for fecal coliform bacteria. Detailed evaluation of field notes indicated that the predominant source of fecal coliform bacteria in the watershed was inadequately treated sewage or agricultural runoff. Key taxa groups known to thrive in organic sediments, such as those from untreated sewage, were also identified at biomonitoring sites on these streams. Furthermore, pasture areas were considered sources of organic enrichment. This assumption was verified by using site-specific source tracking information. Based on the information presented above, WVDEP determined that implementation of fecal coliform TMDLs requiring reductions to pasture lands and the elimination of sources that discharge untreated sewage would reduce the organic and nutrient loading causing the biological impacts. Therefore,

fecal coliform TMDLs serve as a surrogate where organic enrichment was identified as a stressor.

7.2 Empirical Model Development to Identify Multiple Stressors

Diagnosing the causes of impairment is essential to the development of environmental regulations and the ability of water resource managers to restore aquatic ecosystems. Ideally, based on the biological information found in a stream and the relationships between organisms and environmental variables, aquatic ecologists can predict environmental variables, as well as diagnose stressors that impair water quality (Cairns & Pratt, 1993). Diagnostic tools can be developed using two approaches: bottom-up, which is based on individual taxa responses, and top-down, which evaluates a biological community's response to specific stressors.

To help identify nonpoint sources of pollution and diagnose environmental stressors, two diagnostic tools were developed when DEP began developing TMDLs and performing biological stressor identification. The West Virginia biological and chemical data available at that time were evaluated with respect to macroinvertebrate community response to conductivity/sulfate, habitat/sediment, acidic/nonacidic metals, and organic/nutrient enrichment environmental stressors.

A bottom-up diagnostic tool used weighted averaging (WA) regression models to develop indicators of environmental stressors based on the taxonomic response to each stressor. WA regression is a statistical procedure used to estimate the optimal environmental conditions of occurrence for an individual taxon (ter Braak & Barendregt, 1986; ter Braak & Looman, 1986). Tolerance values and breadth of disturbance (indicator values) were determined for individual taxa groups based on available literature and professional judgment. WA models were then calibrated and used to predict the environmental variables for each site based on the indicator values and abundance of taxa at each site. The predictive power of WA inference models was measured by calculating coefficients of determination (\mathbb{R}^2) between invertebrate taxa-inferred and observed values for environmental variables of interest. Eight WA models were developed and tested using four groups of candidate stressors based on generic macroinvertebrate abundance. The strongest predictive models were for acidic metals (dissolved Al) ($R^2=0.76$) and conductivity ($R^2=0.54$). Benthic macroinvertebrates also responded to environmental variables: habitat, sediment, sulfate, and fecal coliform with good predictive power (R² ranged from 0.38-0.41). Macroinvertebrate taxa had weaker responses and predictive power to total phosphorus $(R^2=0.25)$ and non-acidic Al models $(R^2=0.29)$.

A top-down diagnostic tool was based on the hypothesis that exposure to various stressors leads to specific changes in macroinvertebrate assemblages and taxonomic composition. A "dirty reference" approach was used to define groups of sites affected by a single stressor. Four "dirty" reference groups were identified and consisted of sites that are primarily affected by one of the following single stressor categories: dissolved metals (Al and Fe); excessive sedimentation; high nutrients and organic enrichment; or increased ionic strength (using sulfate concentration as a surrogate). In addition, a "clean" reference group of sites with low levels of stress was identified. Nonmetric multi-dimensional scaling (NMDS) and multiple responses of permutation procedures (MRPP) were used to examine the separation of the "dirty" reference groups from each other and from the "clean" reference group. The results indicated that the centroids of the "dirty" reference

groups were significantly different from the "clean" reference group (p=0.000). Of the "dirty" reference groups, the dissolved metals group was significantly different from the other three "dirty" reference groups (p=0.000). The other three "dirty" reference groups, though overlapping in ordination space to some extent, were also different from each other (p<0.05). Overall, each of the five "dirty reference" models was significantly different from one another (p=0.000), indicating that differences among stressors may have led to different macroinvertebrate assemblages. Thus, independent biological samples known to be impaired by a single stressor were used to test the effectiveness of these diagnostic models. The Bray-Curtis similarity index was used to measure the similarity of test sites to each of the reference groups, and multiple stressors were then ranked according to the measured similarity to each reference group. The relative similarity and the variation explained by each model were taken into account in the final ranking of the predicted stressors for each impaired site. The majority of the test results indicated that the model results agreed with the stressor conclusions based on the physical and chemical data collected at each site. Most of the "clean" test samples (80%) were correctly identified as unimpaired, with 10% considered as unclassified. None of the "dirty" test samples were classified as "clean" samples. In addition, all of the metal test samples were either correctly classified as metals impaired (87.5%) or were not classified. The majority of the sulfate test samples (75%) were correctly identified as sulfate impaired. The "dirty" reference models also identified most of the fecal test samples (78%) as fecal impaired, although 22% of the fecal test samples were misclassified as sediment-impaired. Some of the sediment test samples (37.5%) were also misclassified.

Over the past decade of their application, DEP has found that the biologically-based diagnostic tools could not be used independently to identify environmental stressors in multiple stressor environments. The tools remain available as components of the strength-of-evidence analysis of stressors and are most often used to confirm decisions resulting from other lines of evidence.

8.0 SEDIMENT REFERENCE WATERSHED APPROACH

SI results indicated a need to reduce the contribution of excess sediment to many biologically impaired streams. Excessive sedimentation was determined to be a primary cause of biological impairment in these streams through habitat degradation, substrate embeddedness, and other direct and indirect impacts on the stream biota. A reference watershed approach was used during the SI process to quantify an acceptable level of sediment loading for each impaired stream on a watershed-specific basis. This approach was based on selecting an unimpaired watershed that shares similar landuse, ecoregion, and geomorphological characteristics with the impaired watershed. Stream conditions in the reference watershed are assumed to be representative of the conditions needed for the impaired stream to attain its designated uses. Given these parameters and an unimpaired biological score, the reference stream for the West Fork River Watershed is Plummer Run (MW-5-L-7). The location of the reference stream is shown in **Figure 8-1**.

Sediment loading rates were determined for impaired and reference watersheds through modeling studies. Both point and nonpoint sources were considered in the analysis of sediment sources and in watershed modeling. Numeric endpoints were based on the calculated reference watershed loading. Sediment load reductions necessary to meet these endpoints were then determined. TMDL allocation scenarios were developed based on an analysis of the degree to which contributing sources could be reasonably reduced.

Sediment models were developed using the MDAS. A variety of GIS tools, local watershed data, and site visit observations were used to develop the input data needed for modeling and TMDL development. Data were collected for impaired and reference streams in each watershed.

Figure 8-1. Location of the sediment reference stream, Plummer Run (MW-5-L-7)

Upon finalization of modeling, it was determined that all of the sediment-impaired streams exhibited impairments pursuant to total iron water quality criteria, and that the sediment reductions that are necessary to ensure compliance with iron criteria exceed those necessary to resolve biological impairments. As such, the iron TMDLs presented for the subject waters are appropriate surrogates for necessary sediment TMDLs. For affected streams, **Appendix L** contrasts the sediment reductions necessary to attain iron criteria with those needed to resolve biological impairment under the reference watershed approach.

9.0 **REFERENCES**

- Atkins, John T. Jr., Jeffery B. Wiley, Katherine S. Paybins. 2005. Calibration Parameters Used to Simulate Streamflow from Application of the Hydrologic Simulation Program-FORTRAN Model (HSPF) to Mountainous Basins Containing Coal Mines in West Virginia. Scientific Investigations Report 2005-5099. U.S. Department of the Interior, U.S. Geological Survey.
- Bicknell, B.R., J.C. Imhoff, J. Kittle, A.S. Donigian, and R.C. Johansen. 1996. Hydrological Simulation Program/FORTRAN, User's Manual for Release H. U.S. Environmental Protection Agency, Environmental Research Laboratory, Athens, GA.Bicknell, B.R., J.C. Imhoff, J. Kittle, A.S. Donigian, and R.C. Johansen. 1996. *Hydrological Simulation Program – FORTRAN: User's Manual for Release 11*. U.S. Environmental Protection Agency, Environmental Research Laboratory, Athens, GA.
- Bicknell, B.R., J.C. Imhoff, J.L. Kittle, Jr., T.H. Jobes, A.S. Donigian, Jr. 2004. HSPF Version 12 User's Manual. Aqua Terra Consultants in Cooperation with the U.S. Geological Survey for the U.S. Environmental Protection Agency, National Exposure Research Laboratory, Office of Research and Development. Athens, GA.
- Cairns, J., Jr., and J.R. Pratt. 1993. A history of biological monitoring using benthic macroinvertebrates. In *Freshwater biomonitoring and benthic macroinvertebrates*, ed D.M. Rosenberg and V.H. Resh, pp. 10–27. Chapman and Hall, New York.
- Cormier, S., G. Sutter, and S.B. Norton. 2000. *Stressor Identification: Technical Guidance Document*. EPA-822B-00-25. U.S. Environmental Protection Agency, Office of Water and Office of Research and Development, Washington, DC.

Dozombak, D.A. and F.M.M. Morel. 1990. Surface Complexation Modeling: Hydrous Ferric Oxide. John Wiley & Sons

- Karamalidis, A.K. and D.A. Dozombak . 2010. *Surface complexation modeling: gibbsite*. John Wiley & Sons.
- Lumb, Alan M.; Richard B. McCammon, and John L. Kittle, Jr. 1994. User's Manual for an Expert System (HSPEXP) for Calibration of the Hydrological Simulation Program – FORTRAN. Water Resources Investigations Report 94-4168, U.S. Geological Survey. Reston, VA.
- Miertschin, James, 2006, Project Area 2 River Basin Groups D and E Bacteria Impairments TMDL, Texas Commission on Environmental Quality, James Miertschin & Associates, Inc.
- NLCD (National Land Cover Database). 2006. Multi-Resolution Land Characteristics (MRLC) Consortium. Electronic source: <u>www.mrlc.gov</u>, accessed January 26, 2009.

- NRCS (Natural Resources Conservation Service). 1994. *State Soil Geographic (STATSGO) Data Base*. U.S. Department of Agriculture, Natural Resources Conservation Service, Fort Worth, TX.
- Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.
- Shen, Jian, M. Lahlou, L. Shoemaker, A. Parker, J. Ouyang, H.Yang, and Jon Ludwig. 2002. Mining Data Analysis System (MDAS). In *Water Environment Federation Watershed* 2002 Proceedings.
- ter Braak, C. J. F. & Barendregt, L. G. 1986. Weighted averaging of species indicator values: its efficiency in environmental calibration. *Mathematical Biosciences* 78:57–72.
- ter Braak, C. J. F. & Looman, C. W. N. 1986. Weighted averaging, logistic regression and the Gaussian response model. *Vegetation* 65:3–1.
- Tonkina, J.W., L.S. Balistrieri and J.W. Murray. 2003. *Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model*. Applied Geochemistry 19: 29–53
- USEPA (U.S. Environmental Protection Agency). 2005a. *EPA's Clean Air Market Programs Acid Rain*. U.S. Environmental Protection Agency, Washington, DC. <<u>http://www.epa.gov/airmarkets/acidrain</u>>. (Accessed August 2011).
- USEPA (U.S. Environmental Protection Agency). 2005b. *EPA: Clean Air Interstate Rule*. U.S. Environmental Protection Agency, Washington, DC. <>. (Accessed in August 2011.)
- Walsh, C.J., and J. Kunapo. 2009. The importance of upland flow paths in determining urban effects on stream ecosystems. *Journal of the North American Benthological Society*, 28(4):977-990.
- WVDEP (West Virginia Department of Environmental Protection). 2000a. Personal communication with Ken Politan, WVDEP Office of Mining and Reclamation. October 2000.
- WVDEP. 2000b. Personal communication with Dave Vande Linde, WVDEP Office of Mining and Reclamation. October 2000.