

 West Virginia Wetland Rapid

Assessment Method (WVWRAM)

Appendices 5.5 – 5.7:

ArcGIS Procedures and Python 2.7

Version 1.5 April 3, 2024

 Water Quality Standards and Assessment Section

Division of Water and Wastewater Management

WV Department of Environmental Protection

117

Contents
5.5 ArcGIS Methods for Creating Input Layers.. 126

5.5.1 AlgalLakes ... 126

5.5.2 AlgalStreams .. 126

5.5.3 AMLAMD: Acid Mine Lands and Acid Mine Drainage ... 127

5.5.4 BRankHUC .. 127

5.5.5 BRankInput: Site Biodiversity Rank Input Layer .. 128

5.5.6 DisturbedLand: Disturbed Land Cover Layer .. 134

5.5.7 DNR_Fishing ... 137

5.5.8 eBirdHotspots ... 137

5.5.9 FirstSecondOrderFlowlines .. 138

5.5.10 FloodplainARAFEMA: Composite Floodplain Layer ... 139

5.5.11 Floodway: FEMA Floodway .. 145

5.5.12 Hpu: Hydrologic Protection Units.. 145

5.5.13 HUCWetlandSizeUniq: Wetland Size/Uniqueness by 12-digit HUC Layer 145

5.5.14 ILF_banks: In-Lieu Fee Mitigation Sites and Mitigation Banks Layer 154

5.5.15 IEIUMa2010v32: Index of Ecological Integrity U Mass Layer 155

5.5.16 ImpairedStreams ... 157

5.5.17 InfrastructureWetlands: Wetlands with Public Use Infrastructure Layer 158

5.5.18 Karst Composite Layer ... 160

5.5.19 NHD_WVStreams .. 161

5.5.20 NHDFlowline ... 161

5.5.21 NPDES ... 162

5.5.22 NPL_point and NPL_Bndry: National Priority List .. 163

5.5.23 NSPA: Wetland is in a Natural Streams Preservation Act Watershed Layer 163

5.5.24 NWIExports.gdb: NWI Exports Layer ... 165

5.5.25 PalustrinePlots .. 168

5.5.26 PasturesNotHayfields: Grazed NLCD Grasslands ... 169

5.5.27 Peatlands_20160228 ... 169

5.5.28 PropertyBoundaries_WVDNR_20171011 ... 170

118

5.5.29 Public_surface_water_intakes .. 170

5.5.30 PublicLandBoundaries ... 171

5.5.31 Railway ... 171

5.5.32 RestoredWetlands ... 171

5.5.33 RunoffLand: Lands that Produce Runoff Layer ... 173

5.5.34 SDE_NHD_waterbodies_24k_rivers & 50_mi_drainage .. 176

5.5.35 Septic: Septic System Failure Risk Layer .. 177

5.5.36 SepticFailureRiskStatsgo: Septic Failure Risk from NRCS Statsgo Layer 181

5.5.37 SeweredAreas: Sewered Areas Layer .. 182

5.5.38 Slope ... 183

5.5.39 Ssurgo_wv .. 184

5.5.40 Ssurgo exports: Calcareous Soils and Karst Layer .. 184

5.5.41 SwimmingAreas: Swimming Areas Layer ... 185

5.5.42 TimberHarvest: Recent Timber Harvests Statewide Layer 187

5.5.43 TMDL: Wetland is in a Watershed with a TMDL Plan Layer 194

5.5.44 TotalLossRP100: Losses from 100-yr flood .. 195

5.5.45 Trails ... 196

5.5.46 Trout_Streams .. 196

5.5.47 Urbanized_areas ... 197

5.5.48 Watershed Plan: Watershed Plan Layer ... 197

5.5.49 Watersheds_12digit .. 198

5.5.50 Wellpads ... 199

5.5.51 WetlandBirds: Wetland Breeding Bird Occupancy Layer 199

5.5.52 Wb-rivers: Wide rivers ... 203

5.5.53 WV_Protected_Lands .. 204

5.5.54 WV_Transportation .. 204

5.6 ArcGIS Methods for Calculating Metrics ... 205

5.6.1 AllResults: Results of All GIS Metrics .. 205

5.6.2 AquaAbund: Aquatic Area Abundance .. 208

5.6.3 Brank: Site Biodiversity Rank of Wetland ... 213

119

5.6.4 BRankHUC: Watershed Biodiversity Rank ... 224

5.6.5 BufferContig: Contiguous 300m Buffer for Wildlife .. 228

5.6.6 BufferLand: Buffer and Landscape Integrity ... 232

5.6.7 BufferPerim: Wetland Perimeter with Natural Buffer ... 234

5.6.8 Chem Time: Time and space for Chemical Reactions to Occur 239

5.6.9 Clay: Clay near Surface .. 241

5.6.10 Clay Organic: Clay and Organic Soils ... 244

5.6.11 Connect FL: Connectivity to Historic Floodplain .. 246

5.6.12 ConsFocus: WVDNR Conservation Focus Areas with Wetland Focus 248

5.6.13 Creating Wetland Units from NWI Polygons .. 251

5.6.14 CSFunction: Carbon Sequestration .. 252

5.6.15 Depressions: Surface Depressions ... 254

5.6.16 Discharges: Discharges to wetland within 100 m of boundary 256

5.6.17 DrainageArea: Drainage Area of Wetland ... 260

5.6.17 Disturb50m: Land use disturbance within 50 meters of wetland boundary 262

5.6.18 DisturbWshd: Land use disturbance within contributing watershed 266

5.6.19 EconRisk: Economically Valuable Flood Risk Area Downstream of Wetland 268

5.6.20 FAFunction: Flood Attenuation ... 272

5.6.21 FAOpportun: Flood Attenuation Opportunity .. 274

5.6.22 FAPotential: Flood Attenuation Potential .. 276

5.6.23 FASociety: Flood Attenuation Value to Society .. 278

5.6.24 Fisheries: Wetland discharges to economically important fisheries 280

5.6.25 FloodArea: Proportion of wetland area in floodplain, including the intermediate

variable FloodRatio, and Floodplain (Y/N) .. 283

5.6.26 FloodIn: Floodwaters Delivered to Wetland .. 286

5.6.27 Floodway: Wetland is in a FEMA Floodway... 288

5.6.28 Function: Total Wetland Function ... 290

5.6.29 Headwater: Headwater Location .. 292

5.6.30 HFuncNoBR: Habitat and Ecological Integrity Function without Site Biodiversity

Rank .. 294

120

5.6.31 HFunction: Habitat and Ecological Integrity Function .. 296

5.6.32 HInvest: Societal Investment in Habitat and Ecological Integrity 299

5.6.33 Histosol: Deep Organic Soils ... 305

5.6.34 HOpportunity: Habitat and Ecological Integrity Landscape Opportunity 310

5.6.35 HPotential: Habitat and Ecological Integrity Potential .. 312

5.6.36 HSociety: Value to Society of Habitat and Ecological Integrity 314

5.6.37 HUC12WQ: Water quality issues in HUC12 watershed ... 316

5.6.38 HUse: Public Use of Habitat and Ecological Integrity .. 319

5.6.39 HydIntact: Intactness of hydrologic regime ... 321

5.6.40 HydroH: Hydrologic regime for habitat ... 323

5.6.41 HydSW: Available Surface Water ... 325

5.6.42 ImpairedIn: Impaired waters impacting wetland ... 327

5.6.43 ImpairedOut: Wetland Discharges to Impaired Waters ... 331

5.6.44 IrrEdge: Irregularity of the Upland/Wetland Edge .. 334

5.6.45 Karst: limestone/dolomite bedrock or calcareous soil ... 338

5.6.46 LandEco: Landscape-level Ecological Connectivity ... 340

5.6.47 LandHydro: Landscape-level Hydrologic Connectivity .. 343

5.6.48 LandInteg: Landscape Integrity Index ... 345

5.6.49 LandPos: Landscape Position ... 357

5.6.50 LowSlope: Low Slope .. 363

5.6.51 MarlPEM: Emergent Wetland on Marl Deposits ... 365

5.6.52 Microtopo: Microtopographic Complexity .. 368

5.6.53 Organic: Organic Matter near Surface ... 370

5.6.54 OwnerAccess: Land Ownership and Accessibility .. 374

5.6.55 PublicUse: Public Use and Research ... 379

5.6.57 RoadRail: Road and Railroads ... 386

5.6.58 Runoff: Runoff and Storage Potential .. 388

5.6.59 Runoff50m: Lands producing runoff within 50 meters of wetland boundary 391

5.6.60 RunoffWshd: Runoff within contributing watershed ... 393

5.6.61 SeasonPond: Seasonal Ponding .. 395

121

5.6.62 Slope: Median Percent Slope ... 398

5.6.63 SlopeWshd: Mean Percent Slope of the Contributing Watershed 402

5.6.64 SoilH: Hydrologic regime for soil .. 405

5.6.65 SoilIntact: Lack of Soil Disturbance or Compaction ... 407

5.6.66 SoilOrgCalc: Special soil types, i.e., organic or calcareous soil 408

5.6.67 SoilRunoff: Soil Runoff and Infiltration Potential ... 410

5.6.68 StreamEdge: Complexity of wetland/stream interface ... 412

5.6.69 StrucPatch: Structural Patch Richness ... 416

5.6.70 SWoutflow, SWOutflow2: Surface Water Outflows ... 419

5.6.71 TMDL: Wetland is in a watershed with a TMDL plan .. 421

5.6.73 VegAll: All Vegetation Types .. 422

5.6.74 VegByLP: Vegetation fringing open water .. 424

5.6.75 VegFA: Vegetation .. 431

5.6.76 VegFQ: Vegetation Floristic Quality ... 434

5.6.77 VegH: Vegetation Structure and Quality ... 440

5.6.78 VegHorInt: Horizontal Interspersion ... 442

5.6.79 VegPerUng, VegPerUng4, VegPerUng1: Persistent ungrazed vegetation 444

5.6.80 VegVerStr: Vegetation Vertical Structure ... 450

5.6.81 VegWoody: Woody Vegetation ... 454

5.6.82 VegWQ: Vegetation ... 459

5.6.83 WaterSupply: Wetland discharges to water supply intake area 461

5.6.84 Wetland Units: Assigning Site Codes to updated statewide Wetland Units 466

5.6.85 WetldBird: Wetland Breeding Bird Areas ... 468

5.6.86 WFlowPath: Water Flow Path.. 472

5.6.87 WQFunction: Water Quality .. 481

5.6.88 WQOpportun: Water Quality Opportunity .. 483

5.6.89 WQPlan : Watershed or Water Quality Plan Exists ... 485

5.6.90 WQPotential: Water Quality Potential ... 488

5.6.91 WQSociety: Water Quality Value to Society ... 491

5.6.92 WQUse: Water quality used by public ... 494

122

5.6.93 WshdPos: Watershed Position, headwaters, major river floodplains, and karst 497

5.6.94 WshdUniq: Watershed Wetland Size and Uniqueness .. 500

5.7 Python 2.7 Code .. 503

5.7.1 Flood Attenuation Function ... 503

5.7.2 Flood Attenuation Opportunity .. 506

5.7.3 Flood Attenuation Opportunity Aspects .. 508

5.7.4 ConnectFL: Flood Attenuation Opportunity .. 511

5.7.5 FloodIn: Flood Attenuation Opportunity ... 513

5.7.6 FloodArea: Flood Attenuation Opportunity ... 517

5.7.7 Runoff50: Flood Attenuation Opportunity ... 520

5.7.8 RunoffWshd: Flood Attenuation Opportunity ... 523

5.7.9 SlopeWshd: Flood Attenuation Opportunity .. 526

5.7.10 StreamEdge: Flood Attenuation Opportunity .. 533

5.7.11 Flood Attenuation Potential ... 538

5.7.12 Flood Attenuation Potential Aspects .. 540

5.7.13 Runoff: Flood Attenuation Potential .. 544

5.7.14 VegFA: Flood Attenuation Potential .. 548

5.7.15 VegAll: Flood Attenuation Potential .. 554

5.7.16 VegPerUng: Flood Attenuation Potential .. 557

5.7.17 VegWoody: Flood Attenuation Potential ... 562

5.7.18 Flood Attenuation Society .. 567

5.7.19 Flood Attenuation Society Aspects .. 568

5.7.20 EconRisk: Flood Attenuation Society .. 570

5.7.21 Floodway: Flood Attenuation Society .. 573

5.7.22 Globalvars .. 575

5.7.23 Habitat and Ecological Integrity .. 587

5.7.24 BRank: Habitat and Ecological Integrity Function .. 593

5.7.25 HFuncNoBR: Habitat and Ecological Integrity Function .. 603

5.7.26 HFunction: Habitat and Ecological Integrity Function .. 605

5.7.27 HOpportun: Habitat and Ecological Integrity .. 609

123

5.7.28 HOpportun: Habitat and Ecological Integrity Aspects .. 611

5.7.29 BufferLand: Habitat and Ecological Integrity Opportunity 613

5.7.30 LandEco: Habitat and Ecological Integrity Opportunity ... 616

5.7.31 LandHydro: Habitat and Ecological Integrity Opportunity 620

5.7.32 AquaAbund: Habitat and Ecological Integrity Opportunity 622

5.7.33 BRankHUC: Habitat and Ecological Integrity Opportunity 629

5.7.34 BufferContig: Habitat and Ecological Integrity Opportunity 633

5.7.35 BufferPerim: Habitat and Ecological Integrity Opportunity 639

5.7.36 ConsFocus: Habitat and Ecological Integrity Opportunity 645

5.7.37 Karst: Habitat and Ecological Integrity Opportunity ... 648

5.7.38 LandInteg: Habitat and Ecological Integrity Opportunity 652

5.7.39 WetldBird: Habitat and Ecological Integrity Opportunity 667

5.7.40 WshdPos: Habitat and Ecological Integrity Opportunity ... 672

5.7.41 WshdUniq: Habitat and Ecological Integrity Opportunity 677

5.7.42 Habitat and Ecological Integrity Potential ... 680

5.7.43 HPotential: Habitat and Ecological Integrity Potential Aspects 682

5.7.44 HydroH: Habitat and Ecological Integrity Potential .. 685

5.7.45 SoilH: Habitat and Ecological Integrity Potential .. 687

5.7.46 VegH: Habitat and Ecological Integrity Potential .. 690

5.7.47 Histosol: Habitat and Ecological Integrity Potential .. 693

5.7.48 HydIntact: Habitat and Ecological Integrity Potential ... 698

5.7.49 HydSW: Habitat and Ecological Integrity Potential .. 701

5.7.50 Karst: Habitat and Ecological Integrity Potential .. 704

5.7.51 MarlPEM: Habitat and Ecological Integrity Potential ... 708

5.7.52 SoilIntact: Habitat and Ecological Integrity Potential .. 713

5.7.53 SoilOrgCalc: Habitat and Ecological Integrity Potential ... 715

5.7.54 StrucPatch: Habitat and Ecological Integrity Potential .. 717

5.7.55 VegFQ: Habitat and Ecological Integrity Potential ... 721

5.7.56 VegHorInt: Habitat and Ecological Integrity Potential .. 729

5.7.57 VegVerStr: Habitat and Ecological Integrity Potential .. 731

124

5.7.58 Habitat and Ecological Integrity Society ... 734

5.7.59 Habitat and Ecological Integrity Society Aspects .. 735

5.7.60 Hinvest: Habitat and Ecological Integrity Society ... 737

5.7.61 HUse: Habitat and Ecological Integrity Society .. 742

5.7.62 OwnerAccess: Habitat and Ecological Integrity Society ... 744

5.7.63 PublicUse: Habitat and Ecological Integrity Society ... 749

5.7.64 Actions: Utilities .. 754

5.7.65 ActiveRiverArea: Utilities .. 757

5.7.66 AllResults: Utilities .. 761

5.7.67 CalcFunction: Utilities ... 770

5.7.68 CreateBasicGeom: Utilities .. 776

5.7.69 CreateWetlandUnits: Utilities .. 779

5.7.70 DrainageArea: Utilities .. 782

5.7.71 FloodArea: Utilities .. 786

5.7.72 Floodplain: Utilities .. 791

5.7.73 InitRequest: Utilities .. 794

5.7.74 Water Quality ... 799

5.7.75 Water Quality Function .. 803

5.7.76 Water Quality Opportunity ... 808

5.7.77 Water Quality Opportunity Aspects ... 810

5.7.78 Discharges: Water Quality Opportunity ... 818

5.7.79 Distrub50: Water Quality Opportunity .. 823

5.7.80 DistubWshd: Water Quality Opportunity .. 828

5.7.81 ImpairedIn: Water Quality Opportunity ... 832

5.7.82 RoadRail: Water Quality Opportunity ... 838

5.7.83 Water Quality Potential .. 840

5.7.84 Water Quality Potential Aspects .. 843

5.7.85 ChemTime: Water Quality Potential .. 850

5.7.86 ClayOrganic: Water Quality Potential ... 856

5.7.87 Depressions: Water Quality Potential .. 862

125

5.7.89 Headwater: Water Quality Potential .. 868

5.7.90 SWoutflow: Water Quality Potential ... 871

5.7.91 VegWQ: Water Quality Potential .. 875

5.7.92 Clay: Water Quality Potential .. 881

5.7.93 IrrEdge: Water Quality Potential .. 884

5.7.94 LandPos: Water Quality Potential .. 890

5.7.95 Lowslope: Water Quality Potential .. 896

5.7.96 Microtopo: Water Quality Potential ... 899

5.7.97 Organic: Water Quality Potential ... 903

5.7.98 SeasonPond: Water Quality Potential .. 907

5.7.99 Slope: Water Quality Potential ... 912

5.7.100 VegByLP: Water Quality Potential .. 915

5.7.101 VegPerUng: Water Quality Potential ... 926

5.7.102 VegWoody: Water Quality Potential ... 934

5.7.103 WFlowPath: Water Quality Potential ... 942

5.7.104 Water Quality Society .. 953

5.7.105 Water Quality Society Aspects .. 955

5.7.106 Huc12WQ: Water Quality Society ... 961

5.7.107 ImpairedOut: Water Quality Society .. 965

5.7.108 WQPlan: Water Quality Society .. 969

5.7.109 WQuse: Water Quality Society .. 972

5.7.110 Fisheries: Water Quality Society .. 977

5.7.111 WaterSupply: Water Quality Society ... 980

5.7.112 Wetland Functional Assessment Tool Launch Script .. 990

126

5.5 ArcGIS Methods for Creating Input Layers

The following sections described the source data and methods to create the GIS input layers used

in the West Virginia Wetland Rapid Assessment Method. Layers should be updated based on the

schedule in section 5.4 of the WVWRAM Reference Manual. The typical steps to update a layer

are:

• read the description in this section for layer-specific information,

• locate/acquire the source data and place it in the SourceAsReceived folder,

• clean up, filter, or compile the source data as needed,

• create the updated layer,

• give the new layer the name that is used in the GlobalVars file, or if that is not

possible/practical then update the GlobalVars file to show the new name,

• in the SourceFunctionalAssessment folder, append the version date to the old layer and

replace it with the new layer,

• package the new layer for WV GISTC, either as a zipped shapefile or in a geodatabase,

• send the packaged layer to WV GISTC, along with any changes to GlobalVars and any

changes to metrics.

5.5.1 AlgalLakes

Version date: November 2018

Previous version(s): March 2016

Location: M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb

Purpose: Input to HUC12WQ (Water Quality Function and Value to Society), ImpairedIn &

ImpairedOut (Water Quality Function)

Description: Algae-impacted Public Fishing Lakes. Public fishing lakes that are chronically

impaired or impacted by algal blooms. This is a geometry-only layer.

Source Data: This layer is a subset of the WVDNR Public Fishing Lakes, as identified by

Brandon Keplinger, James Summers and John Wirts in March 2016. Updated by Jack Hopkins in

November 2018. In 2018, there were 29 records in this dataset.

5.5.2 AlgalStreams

Version date: March 2016

Location: M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb

Purpose: Input to HUC12WQ (Water Quality Function and Value to Society), ImpairedIn &

ImpairedOut (Water Quality Function)

127

Description: This layer spatially depicts streams that are chronically impaired or impacted (i.e.,

affected by algae but not seriously enough for inclusion on the impaired list) by algal blooms in

West Virginia.

Source Data: These data are a small subset of the National Hydrography Dataset, including

streams that are considered chronically impaired or impacted, based on best professional

judgement of field evaluators James Summers and Jamie Peterson at WVDEP. The dataset was

created by Elizabeth Byers on February 9, 2016 in preparation for use in statewide wetland

functional assessment. The NHD data source used was WVDEP M:/basemap/NHDH_WV.

5.5.3 AMLAMD: Acid Mine Lands and Acid Mine Drainage

Version date: 14 March 2023

Purpose: Water Quality Function: Input to Discharges / Water quality / WQ Opportunity

Location: WETLAND\SourceFunctionalAssessment\AMLAMD

Description: This layer is a compilation of acid mine seep locations as field-verified by

WVDEP’s Watershed Assessment Branch (James Summers from 2013-2023). James Summers

provided multiple shapefiles that were copied into a single shapefile, with attributes then stripped

to save computing space. This is a presence/absence input to WVWRAM.

5.5.4 BRankHUC

Version date: 2/26/2024

Previous version(s): 10/6/2017

Input to: BRankHUC metric

Input from BRankHUC needed: polygon geometry (wall-to-wall) and BRank attribute

Location:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\BRank\BRankHUC

Source: In 2024, this layer was prepared by Meryl Friedrich at WVDNR in cooperation with

Elizabeth Byers. In the future, WVDNR’s GIS office will prepare the layer for use in the

WVWRAM GIS Tool. The next scheduled update will be in 2034 when the next State Wildlife

Action Plan is written; however, it is worth checking around 2029 just in case there are interim

updates. This layer can be updated by WVDNR using the BRank R code written by Meryl

Friedrich whenever BRankInput is updated. BRankHUC uses all of the species, not just the

wetland species, to rank watersheds in terms of their overall biodiversity.

Description: HUC12 watersheds attributed with BRanks. Both the geometry and the attribute

“BRank” are used to calculate the metric BRankHUC. All species, not just wetland species, are

used to calculate the Branks of the HUC12 watersheds.

128

5.5.5 BRankInput: Site Biodiversity Rank Input Layer

Version date: 2/29/2024

In 2024, this layer was prepared by Meryl Friedrich, GIS analyst at WVDNR, in cooperation

with Elizabeth Byers. In the future, updates should be requested from WVDNR’s GIS team. The

next scheduled update will be in 2034 when the next State Wildlife Action Plan is written;

however, it is worth checking around 2029 just in case there are interim updates. When

requesting this layer from WVDNR, specify that it should only contain wetland species, i.e.

species that are either dependent on wetlands or that use wetlands for any part of their life cycle,

such that wetland conservation would significantly benefit the species. The method below has

been coded into R by WVDNR.

Previous version(s): 5 November 2017

Strategy: 3/16/2017 EAB

GIS method: 11/5/2017 Elizabeth Byers

Python code: N/A

Location: WETLAND\SourceFunctionalAssessment\HabitatData.gdb\BRankInput

Purpose: Habitat Function: Input to Site Biodiversity Rank Adjustment (Brank)

Description:

This layer is derived from sensitive WVDNR data on rare, threatened, or endangered species,

high quality natural communities, and species in greatest need of conservation statewide. The

layer includes spatial occurrence data attributed with unique taxa identifiers, Conservation Status

Rank at the state (SRank) and global (GRank) level, and Occurrence Quality Ranks (OQRank).

The strategy to create this layer is to:

• Combine the SGCN data with the Biotics EO’s, being sure to retain the Elcode, TaxonName, Grank,
Srank, OQrank, and TaxGroup.

• QC the Elcode and Ranks for correct updated values.

• Round the ranks using the rounding rules for Site Biodiversity Rank.

• Delete records that have large spatial uncertainty, that are historic (last observation date before
1980), that are extirpated, and records with any other problems in their data quality.

• Add fields for Disjunct occurrences and for species/community differentiation.

• Export and add random ID tied to Elcode. Delete all fields with taxonomic information except
whether a record is a species or a community occurrence.

Source Data:

Note that the first three datasets below are sensitive and maintained by WVDNR. Processing of

these data must be done by authorized WVDNR staff or their designees. Data may not be shared

without explicit permission from WVDNR.

129

• Elements Occurrence Data
o SGCN_EOS2016
o EO_SHAPE_Statewide_2017_10_10

• Element Ranking Data
o Communities: PlotData_20171004.mdb (Table: WV Associations 2014)
o Plants: TrackedPlantsHandout_10Mar2017.doc
o Animals: WVNHP_RTE_Animals with ranks_2016Nov.pdf (public data from WVDNR website)

Method:

STEP 1: COMPILE DATA

Fields of Interest

SGCN fields EO_SHAPE fields

Elcode ELCODE

TaxonName SNAME

Srank S_RANK

Grank G_RANK

OQrank BASIC_EO_R

TaxGroup NAME_CAT_1

 LAST_OBS_D (last observation date)

 EST_REP_AC (estimated representational accuracy)

 “EO rank comment” (not sure what this is called in Biotics)

plus spatial fields Shape, OBJECTID, Shape_Length, Shape_Area

Export SGCN_EOS2016 and EO_SHAPE_Statewide_2017_10_10 to create working copies

SGCN and EO_SHAPE

In SGCN, delete the old Biotics records prior to importing the new ones

"Dataset" = 'EO_SHAPE_2017_01_04'

Add fields to SGCN in preparation for import

LAST_OBS_D (text, length = 50)

EST_REP_AC (text, length= 30)

In EO_SHAPE, add the fields of interest with the SGCN names shown above and field

calculate to populate them.

Elcode (text, 254) = ELCODE

TaxonName (text, 254) = SNAME

Srank (text, 254) = S_RANK

Grank (text, 254) = G_RANK

OQrank (text, 254) = BASIC_EO_R (when field calculating, populate this with letter codes, not

strings)

TaxGroup (text, 254) = NAME_CAT_1

130

Load data from EO_SHAPE into SGCN

STEP 2: ADD RANKS AND QC DATA

Table Cleanup

• Populate empty fields as needed
o blank OQrank = C
o add missing Elcodes

• I made one change: Biotics record “Undefined Wetlands” (6) at Willis Ridge were renamed to
“Summit Sinkhole” and given Elcode = CEWVSumSin and Ranks = S1 G5.

• Update all ranks against updated RTE lists from DNR. There are three RTE lists: animals, plants,
communities.

Notes on interpreting ranks for the purpose of assigning biodiversity significance

ratings to sites:

• Elements with range ranks spanning two levels (e.g., G2G3) should be treated as if

they had the higher (e.g., G2) rank;

• Elements with range ranks spanning three levels (e.g., G3G5) should be treated as the

middle rank (e.g., G4);

• Elements with ranks such as G3? should be treated as if there were no question marks;

• Elements with a GU or G? rank should be treated as if they were G4;

• Elements with “Q”s attached to their global ranks (i.e., questionable taxa) should be

treated at the next lower G rank (e.g., treat a G3Q as if it was a G4); however, this is

open to the discretion of the senior Natural Heritage scientist and is dependent upon

the rationale for the “Q” qualifier. For example, if there is taxonomic uncertainty as to

whether a G5T1Q subspecies should be elevated to species status, the Q “penalty”

should not be applied.

• Subspecies (elements with T-ranks): The rationale behind this process is accounting

for the relative size of a subspecies’ distribution to its overall species distribution.

• If the T-rank is 3 or 4 units away from its G-rank (e.g., G5T1, G5T2, G4T1), treat

the functional Grank as one unit lower than the T-rank (e.g., G5T1 = G2; G5T2 =

G3).

• If the T-rank is <3 units away from its G-rank (e.g., G4T3, G5T3), treat the

functional G-rank as the T-rank (e.g., G4T2 = G2, G5T4 = G4).

• Element Occurrences with range ranks (e.g., AB) should be treated as if they were

ranked at the lower of the two levels (e.g., B);

• Element Occurrences that are not yet ranked should be treated as if they were C-

ranked.

131

o Combine the three lists into one Excel table, load to ArcGIS and Join on Elcode; export.
▪ If the ranking lists do not have the Elcode, you can join on TaxonName to add most

of the Elcodes to the ranking table, then populate the non-matches in the ranking
table by hand. The final ranking table can be joined to the SGCN layer.

• Round the SRanks and GRanks using the rounding rules, i.e., final SRanks are S1, S2, S3, S4, S5

• Round the OQranks using the rounding rules, i.e., A, B, C, D

• Some SGCN are not currently tracked by WVNHP. Assign these S4 & S5 species a rank of S3 for
purposes of analysis. Do not change their GRank. Select "Elcode" NOT LIKE 'CE%' AND("Srank" = 'S4'
OR "Srank" = 'S5')

• Check for hidden characters in Elcodes, which will disrupt calculations. There are lots in the snail
records – invisible until you try to work with the data. Create a new field Elcode10 (text, 10
characters allowed) and Field Calculate = [Elcode]. The fields with hidden characters will be
truncated and marked with an asterisk. Note that some of the longer non-standard Elcode fields will
be starred also – these should be changed to 10-character Elcodes.

• Check for unique relationships: Every Elcode should have exactly one TaxonName, and the inverse
should also be true. Also, every Elcode should have only one SRank. There are lots of problems in
the birds (common names mixed in – I did not fix all of these) and snails (mishmash of new and old
Elcodes and SRanks). Here’s a quick way to find the problems (do this for Elcode | TaxonName,
TaxonName| Elcode, and Elcode | SRank):

First compute a field that concatenates Elcode and TaxonName. A delimiter, "|", is
optionally added.

Elcode TaxonName Concatenate

PGPIN01020 Abies balsamea PGPIN01020|Abies balsamea

R-Click the Concatenation field and Select “Summarize”, retaining the first occurrence of
Elcode:

Concatenate Elcode Count

PGPIN01020|Abies balsamea PGPIN01020 15

On this new table, R-click Elcode and select “Summarize”. In the table that is generated,
sort the “Count” field in descending order. All of the Elcodes should have a count of “1”. If
any have a count higher than “1”, then there are two taxon names for that Elcode.

Elcode Count

PGPIN01020 1

Based on method at: https://gis.stackexchange.com/questions/71452/how-to-count-occurrences-of-one-field-
grouped-by-values-of-another

Save this cleaned file, then export to another file for deleting records.

STEP 3: DELETE OLD OR UNCERTAIN RECORDS

132

Multipart to Singlepart: explode multipart features so that you don’t mistakenly delete a

small accurate source feature that is linked to a large low-res source feature.

Delete historic records and records with approximate locations

• Delete historic, failed to find, extirpated, or “unrankable” occurrences: "OQrank" IN ('F', 'F?', 'H',
'H?', 'X', 'X?', 'U')

• Delete records with LAST_OBS_D before 1980

• Delete records with last observation date prior to a known year that have low, very low or null
representational accuracy: ("LAST_OBS_D" LIKE '%pre%' OR "LAST_OBS_D" LIKE '%PRE%' OR
"LAST_OBS_D" LIKE '%Pre%') AND "EST_REP_AC" NOT IN ('Very High', 'High', 'Medium') (78 records)

• Delete records that have large spatial uncertainty, i.e., circular features with a radius of more than a
kilometer, or non-circular features with a similar area (> 3,150,000 m2)

o Select "Shape_Area" > 40000000 and delete these 54 highly uncertain locational records.
o Select "Shape_Area" > 3150000 (780 records). Delete these unless they are a wetland

species that overlies a single wetland or a nearly contiguous wetland complex (I did not see
any obvious ones).

STEP 4: ADD FIELDS NEEDED TO CALCULATE SITE BIODIVERSITY RANK

Add fields needed to calculate Site Biodiversity Rank

• SpecComm (text, length = 2): S = species, C = natural community

• Flag (text, length = 20). Ideally this field will come from the “EO rank comment” in Biotics. I
consulted with WVNHP to populate it. It is currently not complete but good enough to use, with
many of the plant and community disjuncts identified. In the process, we identified a few other
elements with Granks in need of revision: flatrock riverscour = G1, summit sinkhole = G3, Meadow
River oak-ash swamp = G1.

o OnlyRange: only known occurrence of an element rangewide
o BestState: best available occurrence in state (for G1, G2, S1 elements)
o Best5Range: among 5 best occurrences rangewide (for G3 elements)
o Best5Ecoregion: among 5 best community occurrences in an ecoregion (for G4-G5

communities)
o Disjunct: disjunct occurrence
o OnlyState (or EOCount = 1): only known occurrence in state

• EO_Count (short integer): count of Elcode10 (summarize field and join output table on Elcode10)

• Wetland (short integer): to calculate B-ranks for wetland sites, add this modifier.
o 0 = Exclude from analysis: element would not occur in a wetland, i.e., taxon would not

include wetlands in any part of its habitat, foraging area, or life cycle; vegetation community
would not be a wetland nor typically contain wetland inclusions below minimum mapping
size.

o 1 = Include in analysis: element could occur in a wetland.
o Note that screening has been done for plants, communities, fish, snails, cave invertebrates,

and mussels as of 11/03/2017. Other invertebrates and vertebrates have not yet been
screened. Wide ranging species including mammals and birds probably do not need to be
screened.

STEP 5: ENCRYPT SENSITIVE FIELDS

133

Encrypt the data so that no taxa are identifiable

Export all records to another file, e.g., SGCN_trimmed_randomID

Generate random number ID

Summarize Elcode10 to determine the number of unique Elcodes. Export this table to Excel and

generate unique random numbers: =RANDBETWEEN (1,9999). Fill about 4000 rows with

random numbers, then filter for unique values. Paste the values next to the Elcodes. Re-load the

table back to ArcGIS and Join on Elcode10.

Attribute table has the following fields, which will be used to create Site Biodiversity

Ranks:

RandID: Randomly assigned unique element identification number

Srank: State Conservation Status Rank (S1-S5)

Grank: Global Conservation Status Rank (G1-G5)

OQrank: Occurrence Quality Rank (A-D)

SpecComm: S = species, C = natural community

Flag: Disjunct = disjunct, BestRange = among 5 best occurrences rangewide, OnlyRange = only

known occurrence rangewide

EO_Count: count of the number of times each Elcode10 occurs in the dataset.

The rest of the fields can be deleted, creating an encrypted version of the data.

Export the resulting feature class and name it “BRankInputAll”.

Select only the wetland elements (Wetland = 1) and re-export data with filename

“BRankInput”.

134

5.5.6 DisturbedLand: Disturbed Land Cover Layer

Version date: 4 March 2024

Pervious version(s): 8 March 2017

Strategy: completed 4/6/2016 EAB

GIS method: 4/8/2016 EAB; verified 4/18/2016 EAB; revised 3/8/2017 to remove Godzilla

polygons; revised 2/15/2024 EAB for layer update; revised 3/4/2024 SJM to remove Godzilla

polygons

Python coding: not needed

Final verification: 4/18/2016 EAB; 3/8/2017 EAB; 3/4/2024

Update schedule: every 5 years

Purpose:

Water Quality Function / Opportunity aspect / LandUse50m & LandUseWshd factors

Description:

Rationale: Farming, grazing, golf courses, residential areas, commercial land uses, urban areas,

and developed areas in general, are major sources of pollutants (Sheldon et al. 2005). Tilled

fields are a source of nutrients, pesticides, and sediment. Pastures are a source of nutrients and

pathogenic bacteria, and clearcut areas are a source of sediment (Sheldon et al. 2005).

Summary of strategy: Vectorize NLCD and export disturbed land cover classes. Union with

recent timber harvests, urbanized areas, and grazed pastures. For this layer, NLCD disturbed

land cover classes are defined as

• 21 Developed, open space

• 22 Developed, low intensity

• 23 Developed, medium intensity

• 24 Developed, high intensity

• 31 Barren land, non-natural

• 81 Pasture/hay

• 82 Cultivated crops

Source Data:

• M:\basemap\landcover_grids\ Raster: landcover_2021_NLCD.img

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: PasturesNotHayfields (updated 2023)
o Feature Class: TimberHarvest (updated 2024)

• M:\LayerFiles\arcsde_backup.gdb
o Feature Dataset: tiger2010 Feature Class: urbanized_areas (no updates available

in 2024)

Output:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb

135

o Feature Class: DisturbedLand

Method:

Vectorize NLCD pixels

Conversion tools / From Raster / Raster to Polygon

Field: Value

Input: landcover_2021_NLCD.img

Output Feature Class: NLCDpolys

Note that I had to turn off Geoprocessing/Background processing for this to work. It takes some

time to run. Results contained 7102272 records in 2024)

Select disturbed land cover types from NLCD.

Select by attributes.

Method: Create a new selection.

SELECT * FROM NLCDpolys WHERE: "grid_code" IN (21, 22, 23, 24, 31, 81, 82)

(4000689 out of 7102272 selected in 2024; 2072074 out of 3540450 selected in 2017)

Export disturbed land cover types.

R-click NLCDpolys / Data / Export Data

Export: Selected features

Output feature class: DisturbedNLCD_export

(4000689 records)

Clip the layer to the state boundary

ArcToolbox / Analysis Tools / Extract / Clip

Input feature: DisturbedNLCD_export

Output: DisturbedNLCD_clip

(Note that this took 14 minutes of processing time in 2024)

(1547795 records)

Dissolve layer to reduce file size and avoid Godzilla polygons.

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: DisturbedNLCD_clip

Do not create multipart features

Output: DisturbedNLCD

(316229 records)

Union disturbed land use selections.

136

Note that with ArcEditor license, Union can only accept two layers at a time. The unions take

some time to process. Dissolve each intermediate layer prior to Union-ing.

ArcToolbox/Analysis Tools/Overlay/Union

Input Features: urbanized_areas, PasturesNotHayfields, TimberHarvest, DisturbedNLCD

Output Feature Class: DisturbedLand in WaterQualityDatasets.gdb

Join Attributes: ONLY_FID

Check box “Gaps Allowed” (default)

Output: DisturbedLand_union

Dissolve DisturbedLand to reduce file size and processing time.

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: DisturbedLand_union

Do not create multipart features

Output: DisturbedLand_dissolve

(274560 records)

Clip the layer to the state boundary

ArcToolbox / Analysis Tools / Extract / Clip

Input feature: DisturbedLand_dissolve

Output: DisturbedLand_clip

(274500 records)

Check the layer for Godzilla polygons with more than 100,000 vertices

Add Field VertexCount, as a Long Integer

Field Calculate VertexCount: !shape!.pointcount

Be sure to select the Python code (not VB Script) at the top of the Field Calculator popup

Cut or Dice Godzilla polygons to decrease number of vertices (there were about 6 in 2024)

Check geometry to be sure there aren’t any errors

(274531 records)

137

5.5.7 DNR_Fishing

Version: October 2017

Input to: Water Quality Function / Fisheries, HUC12WQ, ImpairedIn, ImpairedOut, and Habitat

Function / Public Use

Location on DEP server: WETLAND\SourceAsReceived\DNR_Fishing\

• HighQualityStreamFisheriesWVDNR20150820.shp (geometry only)

• TrStStreams.shp (attributes used in Fisheries metric calculations)

• PublicFishingLakesWVDNR20150820.shp (attributes used in HUC12WQ and ImpairedIn)

• PublicFishingAccessSites_2017_10.shp (geometry only)

Description: WVDNR layers (request from WVDNR GIS team) showing high quality stream

fisheries, trout streams, public fishing lakes, and public fishing access points.

5.5.8 eBirdHotspots

Version date: 3/5/2024

Previous version(s): 10/11/2017

Input to: Public Use Metric (point geometry only, no attributes needed)

Location on DEP server:

WETLAND\SourceFunctionalAssessment\HabitatData.gdb\eBirdHotspots

Description: Birding hotspots as identified by eBird, filtered to include only those hotspots that

have a significant number of species recorded. In 2024, we set the threshold at 35 species or

more based on the best professional judgement of Sara Miller with Kylie Joins and Elizabeth

Byers. In 2024, we also noted that all of the hotspots identified in the 2009 Birding Guide to

West Virginia, by Greg Eddy are included in the ebird hotspots, so we don’t need to add these

separately.

Source: After creating/logging in to an eBird account, eBird hotspots for West Virginia were

downloaded in 2024 as a csv file by:

Clicking on the Science tab on the eBird homepage (https://ebird.org/home), proceeding on to

the eBird Data and Tools link, and clicking on Download Raw Data Here. Once there, select the

API and Request Access (https://ebird.org/data/request). Submitting the request will

automatically generate a key (Example: cpbsopfrbmjg). Add the key to the end of the following

URL to get the HotSpots data download: https://api.ebird.org/v2/ref/hotspot/US-

WV?fmt=csv&key=[INSERTKEYHERE]. Following this link paired with the key will

automatically download the data.

https://ebird.org/home
https://ebird.org/data/request
https://api.ebird.org/v2/ref/hotspot/US-WV?fmt=csv&key=cpbsopfrbmjg
https://api.ebird.org/v2/ref/hotspot/US-WV?fmt=csv&key=cpbsopfrbmjg

138

The 2024 link may be used to access the data in the future

(https://api.ebird.org/v2/ref/hotspot/US-WV?fmt=csv&key=cpbsopfrbmjg). A download using

this link can be compared to the 2024 data to ensure that the data has been updated.

The csv file should be filtered so that only those “hotspots” with a significant number of species

(35 in 2024) are included. Then the csv file needs to be converted to a shapefile. Export to

SourceFunctionalAssessment\HabitatData.gdb and create a zipped shapefile to send to WV

GISTC.

Notes from 2017. Birding Hotspot (Brooks Bird Club, WVDNR, Audubon, and citizen birding

organization hotspot lists for WV). Initial list combines eBird download of birding hotspots and

main wetland sites from Eddy 2009. eBird hotspots were downloaded from:

https://confluence.cornell.edu/display/CLOISAPI/eBird-1.1-HotSpotsByRegion

These hotspots were supplemented by wetlands that intersect main birding wetlands areas from

Eddy 2009:

National Wildlife Refuges: Canaan Valley, Ohio River Islands

Wildlife Management Areas: Fairfax Pond / Rehe, Meadow River, Pleasant Creek

State Parks: Canaan Valley, Blackwater Falls, Cathedral

Exemplary Wetlands: Altona, Cranberry Glades, Dolly Sods: Alder Run, Bear Rocks,

Spruce Knob Lake, Winfield, McClintic, Greenbottom, Cranesville

Other: Stauffer’s Marsh

5.5.9 FirstSecondOrderFlowlines

Version: 2017

Location on DEP server:

WETLAND\SourceFunctionalAssessment\WaterQualityDatasets.gdb\FirstSecondOrderFlowline

s

Input to: LandPos

Description: This layer was created by Nathan Gunn on Mike Shank’s team based on the NHD

Flowlines in 2017. It shows the first and second order streams. In the future, we will likely need

help from TAGIS to update this layer. We do not have Nathan’s code.

https://api.ebird.org/v2/ref/hotspot/US-WV?fmt=csv&key=cpbsopfrbmjg
https://confluence.cornell.edu/display/CLOISAPI/eBird-1.1-HotSpotsByRegion

139

5.5.10 FloodplainARAFEMA: Composite Floodplain Layer

Version date: 2/23/2024

Previous version(s): 3/8/2017

Strategy: Completed 4/13/2016 EAB

GIS method: 4/20/2016 EAB; updated 2/23/2024 EAB

Python code: not needed but layer needs to be created. Started 6/13/2016 MCA; Completed

11/28/2016 JCC

Final review by EAB: 11/28/2016; godzillas fixed and reviewed again 3/8/2017 EAB

Input to Flood Attenuation / Opportunity / Floodplain Ratio

Description: This layer is a composite of the FEMA 100-year floodplain, FEMA 500-year

floodplain, FEMA high risk advisory zone, and the TNC Active River Area base zone data. The

TNC data identifies potential floodplain areas higher up in the watershed.

Strategy: Compile the FEMA 100-yr, 500-yr, and high risk advisory layers into a single layer.

Convert the ARA raster to a polygon feature class, then extract the base zone polygons and union

the base zones with the FEMA layers.

Source Data:

Get the latest FEMA flood layers from WV GISTC. Kurt Donaldson provided them in 2024.

They are on the M drive in SourceAsReceived/Floodplain.

Get the latest ARA layer from the Conservation Gateway (TNC)at:

https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/e

dc/reportsdata/freshwater/floodplains/Pages/default.aspx

In January 2024, the latest layer is:

Appalachian Landscape Conservation Cooperative ARA map (10 meter pixels). This is a 547

Meg file that requires the 7zip program to extract.

http://easterndivision.s3.amazonaws.com/Freshwater/App_LCC__10m_ARA_simplified.7z

The ARA layer was finalized in 2014 after we had used a draft version for WVWRAM, so we

needed to update it 2024. It may not be updated again, so this version of the ARA may become a

static input. The downloaded data is at:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\ActiveRiverArea\Ap

p_LCC_10m_ARA_simplified_downloaded2024

https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/edc/reportsdata/freshwater/floodplains/Pages/default.aspx
https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/edc/reportsdata/freshwater/floodplains/Pages/default.aspx
http://easterndivision.s3.amazonaws.com/Freshwater/App_LCC__10m_ARA_simplified.7z

140

Method:

Combine the three FEMA polygon layers

One by one, dissolve each of the three FEMA layers (100-yr floodplain, 500-yr floodplain, and

high risk advisory)

Union two of the layers, then dissolve the result.

Union the dissolved result with the third layer, then dissolve the result.

Output file can be named FEMAdissolve.

Convert ARA raster to polygon (skip if there are no updates to ARA)

Conversion Tools / From Raster / Raster to Polygon

Input file: ara10m_simp

Do not create multi-part polygons

Set maximum number of vertices to 50000

Select “Simplify polygons” if available.

Output file: ARApolys

Note that this takes a long time to run and needs a lot of memory. In 2024, it failed on EAB’s

desktop due to insufficient memory after running for 82 minutes. Options are to close down other

unneeded applications to free up system memory. You can also increase the virtual memory

allocation of your system. Another option is to split the input dataset into smaller sections and

merge the results. Also try using a larger cell size.

Extract base zone polygons from ARA (skip if there are no updates to ARA)

Request from TAGIS to change Raster Layer (TIFF) to Polygons

We asked Mike Shank in 2024, and his engineer (Jackie Crawford) made the change for us.

Save this layer in SourceAsReceived and make a copy in WorkingFiles.

Clip the polygon layer to the state boundary

Analysis Tools / Extract / Clip

Input file: ARABasePolys

Clip by: state or county boundaries

Output file: ARABasePolClip

ARABasePolClip Attribute Table

Select Data by Attribute

Value 2 OR Value 3

Export Selection

Output file: ARABasePolClip_selection

Data Management Tools / Generalization / Dissolve

Input file: ARABasePolClip_selection

Uncheck “create multi-part polygons”

Output file: ARABaseZone2024 (this file is stored in

SourceFunctionalAssessment\FloodplainData.gdb for future use if needed)

141

Combine the FEMA and ARA layers

Analysis Tools / Overlay / Union

Input features: ARA_BaseZone2024

FEMADissolve

Output feature class: ARAFEMAUnion

Join Attributes: ONLY_FID

Check box “Gaps allowed” (default)

Data Management Tools / Generalization / Dissolve

Input file: ARAFEMAUnion

Uncheck “create multi-part polygons”

Output file: ARAFEMADissolve

Check for Godzilla polygons and fix if present

Open attributes of ARAFEMADissolve

Add field: VertexCt, long integer

Field Calculate VertexCt = !shape!.pointcount (be sure python is selected, not VB)

Sort descending on VertexCt to find the polygons with the most vertices.

If there are any polygons with more than 100000 vertices, split or cut them.

This is an iterative process. After cutting a few polygons, select just the largest polygons and run

“Field Calculate” again, until all of the Godzilla polygons are gone.

Open attributes of ARAFEMADissolve
Add field: VertexCt, long integer
Field Calculate VertexCt = !shape!.pointcount (be sure python is selected, not VB)
Sort descending on VertexCt to find the polygons with the most vertices.
If there are any polygons with more than 100,000 vertices, cut or Dice them.

This is an iterative process. Select the first record with >100,000 vertices. Under Geoprocessing,

search for Dice. The input will be ARAFEMADissolve, and the output name should include the

FID for that selection (ARAFEMA_dice_FID34366). Set the Vertex Limit to 50,000. Run: time

may vary depending on the size of the polygon being diced from several minutes to less than a

minute. Repeat until all Godzillas have been diced and each one is in a new layer.

Using the FIDs as reference, go back to the ARAFEMA_Dissolve layer. Make a copy and delete

the records that were diced. Now, Union the diced records with this layer. Under Attributes to

Join, select only feature IDs.

Export file

Clear all selections

R-click the Unioned layer and export data

Output file: FloodplainARAFEMA

142

Export feature class to SourceFunctionalAssessment \ FloodplainData.gdb (you may need to first

rename the existing FloodplainARAFEMA file with its version date)

Export shapefile and zip it for transfer to WVGISTC, where the WVWRAM GIS Tool is hosted.

Update the WVWRAM Reference Manual, table 5.4.

Create composite ARA / FEMA floodplain layer

ArcToolbox / Data Management Tools / Projections and Transformations / Raster / Project

Raster

Input Raster: ara_wv_514

Output raster: ara_wv_514_WGS1984_AS

Output coordinate system: WGS_1984_Mercator_Auxilary_Sphere (Same as

wvFldZone_20130410_wgs84wmA

ArcToolbox / Conversion Tools / From Raster / Raster to Polygon

Input raster: ara_wv_514_WGS1984_AS (base zone pixels only)

Output polygon features: ARA_BaseStreamDissolve

Feature Class: ARA_BaseStreamDissolve) *

Note: The same projection is need for this to work.

ArcToolbox / Analysis Tools / Overlay / Union

Input features: ARA_BaseStreamDissolve

wvFldZone_20130410_wgs84wmA

Output feature class: FloodplainARAFEMA1 (in Floodplain/FloodplainData.gdb)

Join Attributes: ONLY_FID

Check box “Gaps allowed” (default)

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: FloodplainARAFEMA1

Output feature: FloodplainARAFEMA

This procedure creates “Godzilla” polygons with excessive numbers of vertices. Calculate the

number of vertices:

143

The result shows that the 7 polygons have over 1 million vertices each.

We want to reduce the number of vertices, and it is okay to greatly increase the number of

polygons. Use the Advanced Editing menu. Select the first polygon and Explode Multipart

Feature. Repeat for all the polygons with excessive numbers of vertices. A reasonable target is

no more than 200,000 vertices, or to run on machines with less computing power, aim for 50,000

max.

There are now 38,273 polygons.

Re-calculate the Vertex Count and sort descending to see how large the remaining polygons are.

There are still 8 godzilla polygons.

Select the largest polygon and display it. In this case, much of the polygon is outside the state

boundary.

Clip to the state boundary.

Re-calculate the Vertex Count. Clipping to the state boundary reduced the number of vertices

and polygons, but we still have 13 polygons that are large.

144

Explode Multi-part Features again for polygons with more than 100,000 vertices.

Re-calculate the Vertex Count. 9 polygons still have counts > 200,000.

Select the largest polygon and zoom to it. Find good places to cut it (subwatersheds along major

rivers require only a single cut) and cut it into smaller chunks. Repeat for all the other large

polygons.

Re-calculate the Vertex Count to verify that no “Godzillas” are left.

145

5.5.11 Floodway: FEMA Floodway

Version date: 21 February 2024

Previous versions: 2016

Purpose: Input to Flood Attenuation / Value to Society

Update Schedule: every 5 years

Source data:

• SourceFunctionalAssessment \ FloodplainData.gdb \

FEMA_NFHL_Floodway_20231207_wmA84.gdb

This layer is from the WV GISTC, which maintains the dataset for FEMA floodplains and

hazards. We stripped the attributes to reduce file size, since this layer only needs the geometry

for WVWRAM metrics.

5.5.12 Hpu: Hydrologic Protection Units

Version date: 2/26/2024

Previous version(s): 2017

Input needed from hpu: point geometry plus attributes STATUS_FLA and INSPECTA_1

Input to: Discharges metric

Location: M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb

Description: Hydrological Protection Units represent mining impacts, This is a database

maintained and regularly updated by DEP outside WQSAS. The WVWRAM GIS Tool selects

those records that have outlets with open status, i.e., where attributes are "STATUS_FLA" = 'O'

AND "INSPECTA_1" = 'OUTLT'

Source data: M:\mr\hpu.shp

Strategy: Copy hpu.shp to a working folder. Select records where "STATUS_FLA" = 'O' AND

"INSPECTA_1" = 'OUTLT'. Export to a new shapefile. You can delete the extraneous fields so

that the filesize stays small. Check against the last version of hpu to be sure it looks reasonable.

Then rename the old version of hpu to hpu_2017 or whatever the previous version date was.

Export the new version to a feature class: WaterQualityDatasets.gdb/hpu. Export again to a

shapefile and zip for transfer to WVGISTC. Update the WVWRAM Reference Manual table 5.4

and the WVWRAM Reference Manual Appendix hpu description in section 5.5.x.

5.5.13 HUCWetlandSizeUniq: Wetland Size/Uniqueness by 12-digit HUC Layer

Version date: 5 October 2017

146

Strategy: 3/16/2017 EAB

GIS method: 10/5/2017 EAB

Python code: not needed

Final review by EAB: 10/5/2017

Purpose:

Input to Habitat / Landscape Opportunity (LandEco: Landscape Ecological Connectivity)

Update schedule:

This layer should be re-created when there are significant updates to the National Wetlands

Inventory for West Virginia.

GIS Method (no field method):

Make heat map of 12-digit HUC watershed layer with the following fields, highlighting HUCs in

the top 5% of the state.

Type diversity: number of unique NWI codes in the watershed (e.g., PEMA, PEMC,

PEMCx) including types that have no vegetation component (e.g., PUBH,

R3US2). Do not include spoil wetlands (%s%)

Density: number of vegetated NWI polygons; many of these polygons may be contiguous

with each other, forming a single wetland.

Proportional Area: proportion of the watershed's total area occupied by vegetated

wetlands as mapped by NWI.

Area of largest vegetated Wetland Unit in the HUC12.

Source Data:

• M:\LayerFiles\arcsde_backup.gdb
o Feature Dataset: basemap_physical_non_replica

▪ Feature Class: watersheds_12digit
o Feature Dataset: basemap_cultural_non_replica

▪ Feature Class: SDE_wvbound

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb
o Feature Dataset: CONUS_WVWetlandsProj

▪ Feature Class: EnhWVWetland

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandResults_EAB.gdb
o Feature Class: WU_VegAll

Method:

STEP 1: Prepare the HUC watershed layer

Clip 12-digit HUC to state boundary

ArcToolbox / Analysis / Extract / Clip

Input features: watersheds_12digit

Clip features: SDE_wvbound

Output Feature Class:

147

o M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Hydrology.gdb
o Feature Class: HUC_12digit1

Reduce number of attributes to decrease processing time

Note that HUC_12 is a unique identifier for the watershed but NU_12_NAME is not unique

ArcToolbox / Data Management / Fields / Delete Field

Input Table: HUC_12digit1

Drop field: Select all except HUC_12 and HU_12_NAME

STEP 2: Determine the largest vegetated wetland in each 12-digit HUC (MaxVegArea)

Spatial Join HUC watershed with vegetation-attributed Wetland Units

ArcToolbox / Analysis / Overlay / Spatial Join

Target Features: HUC_12digit1

Join Features: WU_VegAll

Output feature class: Hydrology.gdb / HUC_12digit2

Join operation: JOIN_ONE_TO_ONE

Check “Keep all target features”

Field Map of Join Features: retain the following

 HUC_12

 HUC_12_NAME

 SHAPE_Length

 SHAPE_Area

 VegArea (R-click, select MERGE RULE / Maximum)

Match option: INTERSECT

Add field to store the largest vegetated wetland area and set NULL intersections to zero

Open attribute table of HUC_12digit2

Add field “MaxVegArea” and Field Calculate MaxVegArea = VegArea

SELECT * FROM HUC_12digit2 WHERE: MaxVegArea IS NULL

Field Calculate MaxVegArea = 0

Find the wetlands that intersect more than one 12-digit HUC.

148

Instructions below from https://gis.stackexchange.com/questions/183472/identify-duplicate-

attributes

Instructions provided demonstrate how to use the Field Calculator to identify duplicate field
values. Single occurrences and the first occurrence of multiple values are flagged with 0.
Duplicates are flagged with 1.

Create a new field. Set the type as short or long integer and accept the other defaults.
Right-click the newly created field and select Field Calculator. Select the Python parser.
Ensure that the 'Show Codeblock' option is checked. Paste the following code into the Pre-
Logic Script Code box:

uniqueList = []

def isDuplicate(inValue):

 if inValue in uniqueList:

 return 1

 else:

 uniqueList.append(inValue)

 return 0

Type 'isDuplicate(!Field!)' in the lower expression box and replace the word 'Field' with
the name of the field that contains the duplicated values. Click OK. All duplicate records are
designated with a value of 1 and non-duplicate records are designated with a value of 0 in
the new field.

149

Fourteen wetlands cross HUC boundaries. Examine these manually to put the correct

area in each watershed. Some are just touching a boundary and don’t need replacement.

Below are the manual revisions to MaxVegArea:

 Buffalo Creek-Ohio River (050901011007): 0

Horseshoe Run: 102938

 Brush Run-Greenbrier River: 65827

 Bull Run-Cheat River: 7903

 Devilhole Creek-North Fork Hughes River: 6180

 Middle Grave Creek: 328183

Grave Creek: 140738

Lee Creek: 9387 (largest vegetated wetland has been converted to golf course pond)

Little Creek-Monongahela River: 3553

Little Otter Creek-Elk River: 1462

Mill Creek-Meadow River: 442947

Little Clear Creek: 578758

150

Guyan Creek: 54196

Rich Creek-Gauley River: 46555

Laurel Creek-Gauley River: 13356

Scary Creek-Kanawha River: 122268

Buffalo Creek-Kanawha River: 253100

Shields Run-North Branch Potomac River: 196589

STEP 3: Number of unique NWI codes in the watershed (DiversNWI)

Intersect Enhanced NWI and HUC watershed

ArcToolbox / Analysis / Overlay / Intersect

Input Features: EnhWVWetland

 HUC_12digit1

Output feature class: NWIExports.gdb / NWI_HUC12digit_join

Join attributes: ALL

Output type: INPUT

Delete the spoil wetlands

R-click NWI_HUC12_join and select Edit Features / Start Editing

Open attribute table of NWI_HUC12_join

SELECT * FROM NWI_HUC12_join WHERE: "ATTRIBUTE" LIKE '%s%'

Delete selected features

Editor / Save Edits

Editor / Stop Editing

Add field and concatenate NWI attribute with HUC_12

Open attribute table of NWI_HUC12_join

Add field Concatenate (text, length = 50)

Field Calculate Concatenate = [HUC_12] & " | " & [ATTRIBUTE]

Summarize by HUC watershed

Open attribute table of NWI_HUC12_join

R-click the header for the field “Concatenate” and select “Summarize”

Select a field to summarize: Concatenate

Choose one or more summary statistics to be included in the output table: HUC_12 (first)

Specify output table: NWI_HUC12_summary1

Summarize again for the count of unique attributes by HUC watershed

Open attribute table of NWI_HUC12_summary1

R-click the header for the field “First_HUC_12” and select “Summarize”

Select a field to summarize: First_HUC_12

151

Choose one or more summary statistics to be included in the output table: Concatenate (first)

Specify output table: NWI_HUC12_summary2

Join results back to HUC watershed

R-click HUC_12digit2 and select Joins and Relates / Joins

Join attributes from a table

Choose the field: HUC_12

Choose the table: NWI_HUC12_summary2

Choose the field in the table: First_HUC12

Join options: Keep all records

Export joined layer

R-click HUC_12digit2 and select Export Data / All features

Output feature class: Hydrology.gdb / HUC_12digit3

Add field to store number of unique NWI codes in the watershed (DiversNWI)

Open attribute table of HUC_12digit3

Add field DiverseNWI (short integer) and Field Calculate DiversNWI = [Cnt_First_HUC_12]

Set null intersections to zero

Open attribute table of HUC_12digit3

SELECT * FROM HUC_12digit3 WHERE: "DiverseNWI" IS NULL

Field Calculate DiverseNWI = 0

STEP 4: Number of vegetated NWI polygons in the watershed (DensVegNWI)

Select the forest, shrubland, emergent, moss, and aquatic bed vegetation.

(Note that the VegAll layer created in WU_VegByLP and used in WU_VegAll includes only

the Palustrine polygons. The layer below includes an additional 3 vegetated lake polygons and

7 vegetated riverine polygons)

Clear all selections

SELECT * FROM EnhWVWetland WHERE:

"ATTRIBUTE" LIKE 'PEM%' OR "ATTRIBUTE" LIKE 'PFO%' OR "ATTRIBUTE" LIKE

'PSS%' OR "ATTRIBUTE" LIKE 'PAB%' OR "ATTRIBUTE" LIKE 'PML%' OR

"ATTRIBUTE" LIKE 'L%AB%' OR"ATTRIBUTE" LIKE 'L%EM%' OR "ATTRIBUTE" LIKE

'R%AB%' OR"ATTRIBUTE" LIKE 'R%EM%'

Create layer of all vegetation from selection

R-click EnhWVWetland / Data / Export Data

Export: Selected features

152

Output feature class: \NWIExports.gdb \ NWI_VegPalLacRiv

Determine the number of vegetated NWI polygons in each HUC

ArcToolbox / Analysis / Overlay / Spatial Join

Target Features: HUC_12digit3

Join Features: NWI_VegPalLacRiv

Output feature class: Hydrology.gdb / HUC_12digit4

Join operation: JOIN_ONE_TO_ONE

Check “Keep all target features”

Field Map of Join Features: retain the following

 HUC_12

 HUC_12_NAME

 SHAPE_Length

 SHAPE_Area

 MaxVegArea

 DiversNWI

 Attribute (R-click, select MERGE RULE / Count)

Match option: INTERSECT

Add field to store the number of vegetated NWI polygons and set NULL intersections to

zero

Open attribute table of HUC_12digit4

Add field “DensVegNWI” (short integer) and Field Calculate DensVegNWI = [ATTRIBUTE]

SELECT * FROM HUC_12digit4 WHERE: DensVegNWI IS NULL

Field Calculate DensVegNWI = 0

Check the zero values of MaxVegArea and compare to zeros for DensVegNWI. If they are not

the same (three were different on 10/5/2017) then check the HUCs manually and correct them.

STEP 5: Proportion of the watershed's total area occupied by vegetated wetlands

(RatioVeg)

Spatial join vegetated NWI wetlands to HUC

ArcToolbox / Analysis / Overlay / Spatial Join

Target Features: HUC_12digit4

Join Features: WU_VegPalLacRiv

Output feature class: Hydrology.gdb / HUC_12digit

Join operation: JOIN_ONE_TO_ONE

Check “Keep all target features”

Field Map of Join Features: retain the following

 HUC_12

 HUC_12_NAME

 SHAPE_Length

153

 SHAPE_Area

 MaxVegArea

 DiversNWI

 DensVegNWI

 SHAPE_Area_1 (R-click, select MERGE RULE / Sum)

Match option: INTERSECT

Add field to store the proportion of vegetated wetlands and set NULL intersections to

zero

Open attribute table of HUC_12digit

Add field “RatioVeg” (float) and Field Calculate RatioVeg = [SHAPE_Area_1] /

[SHAPE_Area]

SELECT * FROM HUC_12digit WHERE: RatioVeg IS NULL

Field Calculate RatioVeg = 0

154

5.5.14 ILF_banks: In-Lieu Fee Mitigation Sites and Mitigation Banks Layer

Version date: 24 January 2018

Strategy: 10/19/2017 EAB

GIS method: 10/19/2017 EAB

Python code: not needed

Final review by EAB: 10/19/2017

Purpose:

Input to Habitat / Value to Society / HInvest

Update schedule:

This layer should be updated at least every 5 years, or more often if time permits.

Description:

Rationale: Wetlands that have been restored, enhanced or created represent investments of time

and money, and are of high value to society. In-lieu fee sites and mitigation banks are the most

common type of project in West Virginia, although voluntary restoration also occurs.

Method:

• Check web for updates to RIBITS: https://ribits.usace.army.mil/.

• Check with WVDEP DWWM/WIB for updates to in-lieu fee sites, mitigation banks, or other
mitigation sites. WVDNR Coordination Unit may also have information.

• Note that this is a point file; as polygons become available, sites should be moved to the
“RestoredWetland” layer.

• Note that most project wetlands have not been mapped in the National Wetlands Inventory as
of 2017.

Merge points from all sources and write to ILF_banks point file.

Output:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb

Feature Class: ILF_banks

https://ribits.usace.army.mil/

155

5.5.15 IEIUMa2010v32: Index of Ecological Integrity U Mass Layer

Version date: 28 November 2018

Strategy: 11/15/2018 EAB

GIS method: 11/28/2018 JSH

Python coding: not needed

Final review by EAB: 11/28/2018

Purpose:

Index of Ecological Integrity is an input to the Landscape Integrity metric (LandInteg).

Update schedule for layer:

Layer should be updated (re-created from UMass source data) when U Mass releases major

updates. The next update is expected in 2019. We should receive notification from UMass

when it is released.

Description:

U Mass developed this layer as part of their Conservation and Prioritization System (CAPS) for

the northeastern states. The layer shows scores for an Index of Ecological Integrity (high scores

= higher integrity), normalized for the state of West Virginia. Version 3.2 (2010). 30m pixels.

Scott Jackson (sjackson@umass.edu,11/19/2018) writes: The DSL data sources are from around

2010. Some are a little older; some are newer. The landcover is based on 2011 NLCD and

TNC's Ecological Systems Map. I believe that there will be an updated version coming out once

the new NLCD data are released.

Elizabeth Byers (WVDEP) asks: Pipelines and powerlines are mapped as “shrubland &

grassland” and are ranked higher than the adjacent wetlands or forests that they fragment. I

wonder if this is an unintended artifact of your analysis?

Scott Jackson replies: We have no way to score ecological integrity in absolute terms (e.g. x units

of integrity). So, we created a relative scoring system that compares shrub swamps to shrub

swamps, salt marshes to salt marshes. Powerlines and pipelines are generally categorized as

shrublands. Because much of the northeast lacks shrublands of any size, powerline/pipeline

shrublands often score pretty high. It is not meant to suggest that a powerline shrubland has

more integrity than an adjacent forested wetland, it means that the powerline shrubland is better

than many other shrublands in that state (assuming that you used the IEI that was scaled to state

boundaries).

Source Data:

Project webpage: http://www.umasscaps.org/

Data download page: http://www.umasscaps.org/data_maps/dsl.html#WV

Source file: DSL_IEI_state_2010_v3.2_WV.tif

http://www.umasscaps.org/Data
http://www.umasscaps.org/data_maps/dsl.html#WV

156

Method:

Download data and process as described below, from Jack Hopkins’ notes on file processing

(November 2018):

Converting pixel values from (0.1 - 1) to (1 - 100)

Use the Spatial Analyst tool “Raster Calculator”

Double click input layer from the available layers and variables box

Multiple the layer by 100 using the expression *100 example expression..

("IEIUMa2010v32" * 100)

Click Ok to save as a new output raster file

Creating fixed integer values instead of floating values

Use the Spatial Analyst tool “Int”

Load the previously created raster as the input raster

Click Ok to save as a new output raster file

Creating an attribute table

Use the Data Management tool “Build Raster Attribute Table”

Load the previously created raster as the input raster

Click Ok to create an attribute table with an object Id field, pixel value field, and count field

Assigning the No Data pixels a value of zero

Use the Spatial Analyst tool Reclassify

Load the previously created rater as the input raster

In the reclassification table window type in the desired new values

Click Ok to save as a new output raster file

Clipping the Image to the WV state boundary

Make sure that both the input raster and the WV State Boundary layer are in the table of contents

Open the Attribute table for the WV State Boundary and select the attribute so that it is

highlighted

Open the Image Analysis function located in the Windows tab at the top toolbar in Arc Map

You’ll see a list of all available layers in the top most box

Make sure to add a check mark next to the raster layer (if this isn’t already) as well as click on

the name of the layer causing it to highlight itself

157

Click the now available “Clip tool” in the processing window

This creates a new raster that has not been saved but should now have been clipped to the wv

state boundary. This new clip should also be located in the table of contents

Right click this new layer, hover over the word data, and then click export data

You might have to create the attribute table again for the new raster layer

Use the Data Management tool “Build Raster Attribute Table”

Load the previously created raster as the input raster

Click Ok to create an attribute table with an object Id field, pixel value field, and count field

Output Data:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\HabitatDa

ta.gdb\IEIUMa2010v32

5.5.16 ImpairedStreams

Version date: 2016

Input to: HUC12WQ, ImpairedIn, ImpairedOut (line geometry only, no attributes used)

Location:

M:\wr\WTRSHD_BRANCH\303D_TMDL_IMPAIRED\WV2016_ImpairedStreams_24KNHD.

shp

2024 Notes from KSS: Leave as is until updates are finalized. A newer version is in draft form

but not yet ready for use. Every impairment is a separate file. Brittany is working on it. When a

new 303d list is shared it will use new codes in a new shape file.

158

5.5.17 InfrastructureWetlands: Wetlands with Public Use Infrastructure Layer

Version date: 12 October 2017

Strategy: 3/16/2017 EAB

GIS method: 10/12/2017 EAB

Python code: not needed

Final review by EAB: 10/12/2017

Purpose:

Input to Habitat / Value to Society / PublicUse

Update schedule:

This layer should be updated at least every 5 years, or whenever staff become aware of new

boardwalks or educational/research programs at wetlands.

Description:

Rationale: Wetlands with boardwalks, nature trails, on-going educational programs, or sustained

scientific research programs are of high value to society.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb
o Feature Dataset: CONUS_WVWetlandsProj

▪ Feature Class: EnhWVWetland

Method:

Create named wetland polygons where there are known boardwalks, nature trails, educations

programs, or sustained scientific research programs. Educational and research programs should

continue for more than 2 years. Priority is given to adding wetland polygons that are not already

included in a named wetland database (e.g. ExemplaryWetlands).

Often wetland polygons can be copied or traced from the National Wetlands Inventory (NWI).

However, if they are not mapped in the NWI or another source, they must be heads-up digitized.

The boundaries can be approximate, e.g. +- 100m, and do not need to be attributed to NWI

codes. In wetland functional assessment, this layer will be intersected with Wetland Units, and

therefore the boundaries do not need to be exact.

Data Fields:

Name [text 50 characters]

Give the wetland a name based on, in this order: (1) name on USGS topographic map, (2) name

on signage at the wetland or local maps including the wetland, (3) name used informally by users

of the wetland, or (4) name based on nearest stream or other natural landmark.

159

Boardwalk [short integer]
0 No boardwalk present
1 Boardwalk present

NatureTrail [short integer]
0 Wetland not accessible via maintained trail
1 Wetland is accessible via maintained trail

PublicOutreach [text 50 characters]

Briefly describe the educational or outreach activity that takes place at the wetland

ResearchSite [text 50 characters]

Briefly describe the sustained scientific research that takes place at the wetland

MapSource [text 50 characters]

Briefly describe the data source used to create the wetland polygon, e.g., “copied from NWI” or

“heads-up digitized”.

Comment [text 50 characters]

Add brief comments, such as name of educational organization or date of boardwalk construction

160

5.5.18 Karst Composite Layer

Version date: 18 September 2017

Strategy: completed 9/16/2017 EAB

GIS method: 9/18/2017 EAB; verified 9/18/2017 EAB

Python coding: not needed

Final verification by EAB: 9/18/2017 EAB

Note: this layer should be re-created as significant updates are made to the SSURGO soils

database, perhaps every 10 years.

Purpose:

Habitat and Ecological Integrity Function / Potential aspect / Karst factor

Description:

Rationale: A rich and distinctive flora and fauna are characteristic of calcareous wetlands.

Summary of strategy: Union of Karst Geology, Karst Soils and Calcareous Soils.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: KarstGeology

▪ Note: this feature class is an export from the state geologic map: In
“geology_250k/Map Units”, SELECT * FROM ALL_polygons WHERE: "TYPE" IN
('dolostone', 'limestone') (250 out of 5175 selected).

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SsurgoExports.gdb
o Feature Class: KarstSoils

▪ Note: this feature class is an export of statewide karst soils from SSURGO 2016:

• SSURGO table: component_all

• "geomdesc" LIKE '%karst%'

• 241 out of 9533 selected

• Related tables – back to ssurgo_wv
o Feature Class: CalcareousSoils

▪ Note: this feature class is an export of statewide calcareous soil map units (Fairplay,
Lappans, Massanetta) from SSURGO 2016, based on consultation with Jared Beard,
NRCS state soil scientist.

Output:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: KarstComposite

Method:

Union KarstGeology, KarstSoils, and CalcareousSoils

ArcToolbox/Analysis Tools/Overlay/Union

Input Features: KarstSoils, CalcareousSoils

161

Output Feature Class:
 M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb\KarstComposite1
Join Attributes: ONLY_FID

Check box “Gaps Allowed” (default)

ArcToolbox/Analysis Tools/Overlay/Union

Input Features: KarstGeology, KarstComposite1

Output Feature Class:
 M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb\KarstComposite
Join Attributes: ONLY_FID

Check box “Gaps Allowed” (default)

Note: if the second Union doesn’t work because of difficulty opening the “KarstComposite1”

feature class, then export the feature class to a shapefile and re-do the Union.

5.5.19 NHD_WVStreams

Version date: 6/8/2021

Latest update: 2/22/2024

Previous version(s): 2017

Checked: 2/2024; 4/3/2024 for latest update

This layer is not used in the WVWRAM GIS Tool; however, it is used to assign stream codes to

wetlands by DEP staff. Updates do not need to be sent to WV GISTC.

Location:

M:\wr\WTRSHD_BRANCH_INTERNAL\NHD_AUID_2021\NHD_WVStreams_20210608.sh

p

Description: TAGIS and in-house DEP staff used NHDFlowline and old stream files to match

our codes to the StreamRiver lines then sent the file on to Chris D to work on further. After Chris

got the file from TAGIS, she created the final AUIDs that we use as the stream code for

assessment and those are in this file. Codes/descriptions/names/Trout data are continually

updated by Megan and Whitman and this is the most recent file with everything together. Right

Click on the layer in the Table of Contents, go to Data, View Item Description to see the

metadata.

5.5.20 NHDFlowline

Version date: 2/24/2024

Previous version(s): 4/5/2019

Input to: AquaAbund (geometry only), StreamEdge (geometry only), WFlowPath (geometry plus

FCode attribute)

162

Note that this layer is also the input to another layer:

WETLAND\SourceFunctionalAssessment\WaterQualityDatasets.gdb\FirstSecondOrderFlowline

s

Location: M:\basemap\NHD_H_West_VirginiaTransfer2022.gdb\NHDFlowline

Description: This is the most recent line work for WV streams, received from WVGES in 2022.

5.5.21 NPDES

Version data: 2/28/2024

Previous version(s): 2017, 2/23/2022

Input to:

• Septic layer (owrnpdes_, geometry and attribute perm_type),

• Discharges metric (owrnpdes_outlets and owrnpdes_, geometry and attribute perm_type)

Source data:

• M:\wr\owrnpdes_outlets.shp

• M:\wr\owrnpdes_.shp

Description: These geodatabases of NPDES permits are regularly updated by DEP staff.

Strategy: Copy the two shapefiles to a working folder. Check against the last versions of the

layers to be sure they look reasonable. You can clip the layer to the state boundary to keep the

file size smaller. You can delete the extraneous attributes (everything except standard geometry

fields and perm_type) to keep the file size smaller.

Optionally, you can also reduce file size by pre-selecting the records that are used by the

WVWRAM GIS Tool, as follows:

SELECT * FROM owrnpdes_ WHERE: "perm_type" = '401 Certification' OR "perm_type" =

'Industrial' OR "perm_type" = 'Sewage' OR "perm_type" = 'UIC Sewage' OR "perm_type" =

'UIC Stormwater Industrial' OR "perm_type" = 'Septic Tank'

SELECT * FROM owrnpdes_outlets WHERE: "perm_type" = 'Industrial' OR "perm_type" =

'Sewage' OR "perm_type" = 'UIC Sewage' OR "perm_type" = 'UIC Stormwater Industrial'

On 2/28/2024, after doing this processing, the final numbers of records were:
• owrnpdes_outlets.shp: 15,659 records

• owrnpdes_.shp: 52,509 records

Then rename the old versions in WaterQualityDatasets.gdb and export the new versions to this

geodatabase. Export again to shapefiles and zip for transfer to WVGISTC. Update the

163

WVWRAM Reference Manual table 5.4 and the WVWRAM Reference Manual Appendix

NPDES description in section 5.5.x.

5.5.22 NPL_point and NPL_Bndry: National Priority List

Version: 2017

Input to: Discharges

Location on DEP Server:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb

o Feature Class: NPL_point_20160406 (data provided by Peter Costello, DEP)

o Feature Class: NPL_Bndry_20160406 (data provided by Peter Costello, DEP)

Source: Data provided by Peter Costello, DEP in 2017. Only the geometry (points or polygons)

is needed. The attributes are not needed.

5.5.23 NSPA: Wetland is in a Natural Streams Preservation Act Watershed Layer

Version date: 16 March 2016

Strategy: 2/14/2016

GIS method: completed 3/16/2016

Python code: not needed – this is the procedure to create a spatial dataset

Final review by EAB: 3/16/2016

Purpose:

Water Quality Function

This procedure creates a layer showing the watersheds drained by the streams in the Natural

Streams Preservation Act.

Update Schedule for Layer:

None, except in the unlikely event that the legislation is updated

Description:

NSPA. Wetland is in the contributing watershed of a stream reach protected by the Natural

Streams Preservation Act (2 points). These include (a) Greenbrier River from its confluence

with Knapps Creek to its confluence with the New River, (b) Anthony Creek from its headwaters

to its confluence with the Greenbrier River, (c) Cranberry River from its headwaters to its

confluence with the Gauley River, (d) Birch River from the Cora Brown bridge in Nicholas

county to the confluence of the river with the Elk River, and (e) New River from its confluence

with the Gauley River to its confluence with the Greenbrier River.

http://www.legis.state.wv.us/WVcode/Code.cfm?chap=22&art=13

http://www.legis.state.wv.us/WVcode/Code.cfm?chap=22&art=13

164

• GIS layer showing stream reaches in NSPA is at:
M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\DNRWetlandData.gd
b, Feature Class: ntrlStrmPresrvationActStrms. This version of the NSPA reaches, from the DNR
server, is better-registered and more complete than the version on the DEP server
(M:\wr\WTRSHD_BRANCH_INTERNAL\STREAM FILES\Natural Stream
Preservation\nat_strms_preservation.shp)

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\DNRWetlandData.gd
b

o Feature Class: ntrlStrmPresrvationActStrms.

• M:\basemap\watersheds_10digit.shp

Method:

Create layer showing watersheds drained by NSPA streams

Open 10-digit watershed layer and NSPA layers. Select 10-digit watersheds drained by NSPA

streams and export to a new feature class “WaterQualityDatasets.gdb /

NatStrProAct_HUC10.shp”.

Final data layer is stored in:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Watershed.gdb
o Feature Class: NatStrPreACt_HUC10

165

5.5.24 NWIExports.gdb: NWI Exports Layer

Version date: 4 March 2024

Strategy: 2/15/2018 EAB

GIS method: completed 2/15/2018 EAB, small update 3/4/2024 SJM/KJJ

Python code: not needed – this is the procedure to create a spatial dataset

Final review by EAB: 2/18/2018; Final review by SJM: 4/2/2024

Purpose:

Input to HydSW, IrrEdge, StreamEdge, VegByLP, WFlowPath metrics

Update Schedule for Layers:

Every 5 years, or whenever the National Wetlands Inventory is significantly updated for the

state. Note that the NWI Data Verification Tools must be run on the statewide dataset, and any

errors fixed, prior to creating exports.

Description:

The National Wetlands Inventory contains mapped polygons of rivers, lakes, and ponds, in

additional to vegetated wetlands. These aquatic resources are of importance in understanding the

function of adjacent or nearby wetlands. Exports used in functional assessment include:

NWIOpenWater, Rivers, Lakes, and RiversLakes.

Source Data:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb

Feature Dataset: CONUS_WVWetlandsProj

Feature Class: EnhWVWetland

Output Data:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\NWIExpo

rts.gdb

Feature Class: NWIOpenWater

Feature Class: Rivers

Feature Class: Lakes

Feature Class: RiversLakes

Method:

Select NWI Open Water polygons. These are attributed as lakes, rivers, and open

water palustrine (aquatic bed, unconsolidated bottom, unconsolidated shore) AND have

a

hydrologic regime that is (permanently flooded, semipermanently flooded,

intermittently exposed)

166

AND are not spoil.

Clear all selections.

Select * FROM EnhWVWetland WHERE: ("ATTRIBUTE" LIKE 'L%' OR"ATTRIBUTE"

LIKE 'R%' OR "ATTRIBUTE" LIKE 'PAB%' OR "ATTRIBUTE" LIKE 'PUB%' OR

"ATTRIBUTE" LIKE 'PUS%') AND ("ATTRIBUTE" LIKE '%H%' OR "ATTRIBUTE" LIKE

'%G%' OR "ATTRIBUTE" LIKE '%F%') AND "ATTRIBUTE" NOT LIKE '%s%'

Create open water layer from selection

R-click EnhWVWetland / Data / Export Data

Export: Selected features

Output feature class: M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\NWIExports.gdb

Feature Class: NWIOpenWater

Dissolve the NWIOpenWater feature class and check for Godzillas.

Dissolve: under “Dissolve Fields,” select ATTRIBUTE in order to maintain this field in

the attribute table after the Dissolve

 Check for Godzillas per the directions under FloodplainARAFEMA

 Note: in the last step for checking for Godzillas, make sure to keep all attributes in

this case. This will mean cleaning up the Attribute table so that all ATTRIBUTE codes

are in one column.

Select NWI rivers and create Rivers layer

Clear all selections

SELECT * FROM EnhWVWetland WHERE: "ATTRIBUTE" LIKE 'R%'

R-click EnhWVWetland and select Data / Export Data

Export: Selected features

Output feature class: Rivers

Select NWI lakes and create Lakes layer

Clear all selections

SELECT * FROM EnhWVWetland WHERE: "ATTRIBUTE" LIKE 'L%'

R-click EnhWVWetland and select Data / Export Data

Export: Selected features

Output feature class: Lakes

Select the NWI rivers and lakes and create RiversLakes layer

Clear all selections.

167

Select * FROM EnhWVWetland WHERE: "ATTRIBUTE" LIKE 'R%' OR "ATTRIBUTE"

LIKE 'L%'

R-click EnhWVWetland and select Data / Export Data

Export: Selected features

Output feature class: RiversLakes

168

5.5.25 PalustrinePlots

Version date: 3/1/2024

Previous version date(s): March 2015, 2/23/2022

Input needed from PalustrinePlots: point geometry plus attributes Soil_Textu, Depth_of_o

Input to: Clay (no longer used), Histosol, Organic

Location: WETLAND\WetlandsGeodatasets.gdb\PalustrinePlots

(note that the 2022 version did not get copied over to WetlandsGeodatasets – it is located in

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WVWRAM_Updates_for_WVGISTC\

WetlandsGeodatasetsTransfer2022.gdb)

Update note: Palustrine plot data were collected in a major effort by DNR between 1994 and

2012. Since that time there have been only a handful of new palustrine plots. Updating this

source is a low priority and can be done every 10 years or even less often, unless there is a new

plot sampling effort by DNR.

Description: Palustrine plot data collected by DNR Natural Heritage Program ecologists. These

vegetation plots include soils data that are used by the WVWRAM GIS Tool, including

information on Soil_Textu (Soil Texture), and Depth_of_o (Depth of organic soil (cm)). It is

important to ensure that any new data from DNR includes fields with exactly the same names

(re-name fields as needed).

Source: Request Plots table from PlotData MS-Access database (ecology vegetation plots) from

DNR Natural Heritage Program. In 2024, the database manager is Brian Streets. You may need

to sign a data use agreement if DEP does not already have one, explaining how we will use the

data. If DNR prefers, they can filter the data themselves before sending it, so that no sensitive

data is inadvertently shared.

Strategy: Open the PlotData database and create a query on the Plots table with Plot Code,

Dominant Vegetation, Cowardin System LIKE “*pal*”, GPS accuracy < 1001, Soil Texture,

Depth of organic (cm), Corrected Lat, Corrected Long, Corrected UTM X, and Corrected UTM

Y (1786 records in 2024). Copy and paste to an Excel file. Delete the Plot Codes that begin with

ROBI (old) and MARS (blind duplicates). Confirm that GPS accuracy is < 1001 and all

Cowardin System values include the word “palustrine”.

Rename the Soil Texture field to Soil_Textu. Rename Depth of organic soil (cm) to Depth_of_o.

Then modify Depth_of_o by checking the Soil Texture. If Soil Texture is either peat or muck

and Depth of organic (cm) is null, then add an estimated value of 10 to Depth_of_o. If Soil

Texture = peat and the Dominant Vegetation ends in “peatland”, then add an estimated value to

20 to Depth_of_o. Then search on null values for Depth_of_o and if the Dominant Vegetation is

peatland or poor fen, add a value of 20. If the Dominant Vegetation is not peatland or poor fen,

but Sphagnum is listed, add a value of 10 for Depth_of_o. For the rest of the blank values in

Depth_of_o, fill in with zero.

169

If you wish, you can clean up the data by selecting only those records that meet the criteria:

"Soil_Textu" LIKE '%clay%' OR "Soil_Textu" LIKE '%peat%' OR "Soil_Textu" LIKE

'%muck%' OR "Depth_of_o" > 1

Next, clean up the lat/long. Check to be sure all records have coordinates. If the lat/long is

missing, check the corrected UTM or the field lat/long. If the lat/long are not in numeric format,

then multiply them by 1 into a new field.

(887 records in 2024)

Import the Excel file to ArcGIS. Check it against the last version of PalustrinePlots.

Then rename the old version of PalustrinePlots2022 or whatever the previous version date was.

Export the new version to a feature class: WetlandsGeodatasets.gdb\PalustrinePlots. Export

again to a shapefile and zip for transfer to WVGISTC. Update the WVWRAM Reference

Manual table 5.4 and the WVWRAM Reference Manual Appendix PalustrinePlots description in

section 5.5.x.

5.5.26 PasturesNotHayfields: Grazed NLCD Grasslands

Version date: 14 March 2023

Python code: N/A

Purpose: Flood Attenuation Function: Presistent Ungrazed Vegetation, and Water Quality

Function / Opportunity aspect / LandUse50m & LandUseWshd factors

Location: WaterQualityDatasets.gdb

Description: This layer is a compilation of pastures grazed by livestock as field-verified by

WVDEP’s Watershed Assessment Branch (James Summers from 2013-2023). James Summers

provided multiple shapefiles that were copied into a single shapefile, with attributes then stripped

to save computing space. This is a presence/absence input to WVWRAM.

5.5.27 Peatlands_20160228

Version date: 2/28/2016

Input to: FloodArea, Histosol, Organic, Runoff, SoilOrgCalc, SoilRunoff

Location on DEP server: WETLAND\SourceFunctionalAssessment\WaterQualityDatasets.gdb

Description: Wetlands with an estimated peat depth of 15 cm or more, based on field data (plots,

EAB field observations) or air photo signature. This map is relatively static, but new peatlands

can be added if observed.

170

5.5.28 PropertyBoundaries_WVDNR_20171011

Version date: 2/23/2022 (no updates since 2017)

Previous version(s): 10/11/2017

Input to: Habitat / Value to Society / Huse / Public Use

Location on DEP server:

WETLAND\SourceAsReceived\201710_WVDNR_property_boundary.gdb\PropertyBoundaries

_WVDNR_20171011 (115 polygons in 2022)

Description: Boundaries of DNR managed areas, including Wildlife Management Areas and

State Forests.

Source: Data provided in 2017 by Jess Perkins at WVDNR.

Method: Attributes must be retained in this layer. Attributes are used to help calculate the Public

Use metric. The attributes that are used are "hWaterfowl" = 1 OR "hGrouse" = 1 OR

"hWoodcock" = 1 OR "tBeaver" = 1 OR "tMink" = 1 OR "tMuskrat" = 1 OR "hDeer" = 1 OR

"hBear" = 1 OR "hRabbit" = 1 OR "tBobcat" = 1 OR "tCoyote" = 1 OR "tRedFox" = 1 OR

"tRaccoon" = 1 OR "tOpossum" = 1.

5.5.29 Public_surface_water_intakes

Version date: 2017

Input to: WaterSupply metric

Description: Public surface water intakes and source water protection area data layers. Note that

some of these data are also served publicly at http://tagis.dep.wv.gov/WVWaterPlan/

Source:

• M:\environmental\CONFIDENTIAL-public_surface_water_intakes\CONFIDENTIAL-
source_water_assessment_and_protection.gdb

o Feature Class: ZPC_statewide_5hrabove (ZPC_5_hr_travel, geometry only)
o Feature Class: ZCC_statewide (Zone of Critical Concern, geometry only)
o Feature Class: Source_Water_Protection_Areas (Conjunctive Delineation, Wellhead

Protection Areas, geometry plus attributes: P_TYPE, PAC_SRC)

• M:\environmental\CONFIDENTIAL-public_surface_water_intakes\pswi_distance_analysis_9m.gdb
o Feature Class: pswi_watersheds_with_out_of_state_drainage (Surface Intake Drainage

Area, geometry only)

Strategy: These layers are maintained outside of WQSAS. The layers can be temporarily copied

to the Working folder for processing, but should be deleted after processing so that the only

copies are the master copies on M:\environmental and the processed zipped shapefile that is sent

to WV GISTC. Retain only the filename, geometry, and for Source_Water_Protection_Areas,

the necessary attributes, as below:

http://tagis.dep.wv.gov/WVWaterPlan/

171

SELECT * FROM Source_Water_Protection_Areas WHERE: "P_TYPE" IN (NULL,

'Secondary Protection Area', 'Protection Area', 'rotection Area', 'Wellhead Critical Area') AND

"FAC_SRC" IN ('GU', 'SW')

5.5.30 PublicLandBoundaries

Version date: 2/23/2022 (no updates since 2017)

Previous version(s): 10/11/2017

Input to: Habitat / Value to Society / Huse / Public Use

Location on DEP server: WETLAND\SourceAsReceived\Boundaries2017\

Description: Boundaries of various types of public lands.

Source: Data provided in 2017 by Jess Perkins at WVDNR.

5.5.31 Railway

Version date: 2017

Updates: checked 2/3/2022 and no updates were available

Input to: BufferPerim, RoadRail metrics

Type of input needed from SDE_railway_tiger: geometry only, no attributes needed

Source: M:\LayerFiles\arcsde_backup.gdb\basemap_cultural_non_replica\SDE_railway_tiger

Note that the

“M:\LayerFiles\arcsde_backup.gdb\basemap_cultural_non_replica\SDE_railway_tiger” layer is

more accurately and completely mapped than the

“M:\basemap\tiger_2013\WV_Transportation_UTM.gdb\Rail” layer.

5.5.32 RestoredWetlands

Version date: 12 October 2017

Strategy: 3/16/2017 EAB

GIS method: 10/12/2017 EAB

Python code: not needed

Final review by EAB: 10/12/2017

Purpose:

Input to Habitat / Value to Society / HInvest

172

Description: Restored, enhanced, or created Wetlands, including In-Lieu Fee and Mitigation

Banks with polygon data (point data is stored in ILF_banks layer)

Rationale: Wetlands that have been restored, enhanced or created represent investments of time

and money, and are of high value to society.

Source Data:

• Project documents and/or air photos

Method:

Create named wetland polygons where there are known investments in restoration, enhancement,

or wetland creation. Priority is given to adding wetland polygons that are not already included in

the RIBITS database maintained by USACE (ILF & banks) or the WV_ProtectedLands database

(Wetland Reserve Program) maintained by the Freshwater Institute.

Most additions will need to be heads-up digitized from project documents or from recent air

photos. Many project boundaries will be well-defined through wetland delineation. If exact

boundaries are not easily available, then the boundaries can be approximate, e.g. +- 100m, and

do not need to be attributed to NWI codes. During wetland functional assessment, this layer will

be intersected with Wetland Units, and therefore the boundaries do not need to be exact.

Data Fields:

WetlandName [text 50 characters]

Give the wetland a name based on the name in the project documents.

RestoreType [text 50 characters]

Describe the type of activity: restoration, enhancement, creation

RegType [text 20 characters]

Describe the category of regulatory action, if any: ILF, mitigation bank

RestoreDate [text 20 characters]

The date that restoration, enhancement, or creation was completed.

Organization [text 50 characters]

Name of group or organization doing the restoration, enhancement, or creation work.

MapSource [text 50 characters]

Briefly describe the data source used to create the wetland polygon, e.g., “copied from NWI” or

“heads-up digitized”.

Comment [text 50 characters]

Add brief comments, such as name of educational organization or date of boardwalk construction

173

5.5.33 RunoffLand: Lands that Produce Runoff Layer

Version date: 4 March 2024

Previous version(s): 28 February 2017

Strategy: completed 4/21/2016 EAB

GIS method: 4/21/2016 EAB; completed 11/28/2016 JCC; revised 2/28/2017 MCA to reduce the

size of Godzilla polygons, which were causing calculations to hang; revised 2/16/2024

EAB to show number of records at each step in 2024 layer creation. 3/4/2024 SJM to

remove Godzilla polygons.

Python coding: coding not needed, but need to create layer

Final verification by EAB: 11/28/2016; revisions verified 2/28/2017

Update schedule: every five years

Flood Attentuation Function / Opportunity aspect / Runoff50m & RunoffWshd factors

Description:

Rationale: Impervious surfaces, urban areas, agricultural areas, mining, industrial and

commercial land uses, and recently logged areas contribute to increased runoff. Soils with low

infiltration and high runoff characteristics also contribute to runoff.

Summary of strategy: Vectorize NLCD2011 and export land cover classes that produce runoff

(impervious surfaces plus cultivated crops). Union with recent timber harvests and SSURGO

soils that have high runoff/low infiltration characteristics.

NLCD Values selected

21 Developed, Open Space

22 Developed, Low Intensity

23 Developed, Medium Intensity

24 Developed, High Intensity

31 Barren Land

82 Cultivated Crops

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: TimberHarvest
o Feature Class: NLCDpolys (this was created for the DisturbedLand layer)

• M:\basemap\ssurgo\ssurgo.gdb
o Feature Class: ssurgo_wv

Output:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: RunoffLand

174

Method:

Select runoff-producing land cover types from NLCD.

Select by attributes.

Method: Create a new selection.

SELECT * FROM NLCDpolys WHERE: "grid_code" IN (21, 22, 23, 24, 31, 82)

(3282380 records selected out of 7102272 in 2024)

Export runoff-producing land cover types.

R-click NLCDpolys / Data / Export Data

Export: Selected features

Output feature class: RunoffNLCD

(3282380 records)

Clip the layer to the state boundary

ArcToolbox / Analysis Tools / Extract / Clip

Input feature: RunoffNLCD

Output: RunoffNLCD_clip

(Note that this took 11 minutes of processing time in 2024)

(1258409 records)

Dissolve to reduce file size and processing time.

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: RunoffNLCD_clip

Output feature class: RunoffNLCD_diss

Do not check box “Create multipart features”

(402178 records)

##Note: disable background processing if these steps take too long to run.

Union land use selections.

For the union to work, the Z and M values must be removed from the TimberHarvest feature

class. Union can’t be performed when one feature class has these values and the other

(RunoffNLCD_diss) does not.

ArcToolbox/Conversion Tools/To Geodatabase/Feature Class to Geodatabase

Input features: TimberHarvest

Output Geodatabase: RunoffLand.gdb

Environments… (Button): Disable the Z and M values

ArcToolbox/Analysis Tools/Overlay/Union

Input Features: TimberHarvest, RunoffNLCD_diss

Output Feature Class: RunoffNLCDTimb_union

175

Join Attributes: ONLY_FID

Check box “Gaps Allowed” (default)

(428912 records)

Dissolve to reduce file size and processing time.

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: RunoffNLCDTimb_union

Output feature class: RunoffNLCDTimb_diss

Uncheck box “Create multipart features”

(368389 records)

Select SSURGO soils with high runoff/low infiltration characteristics.

Select by attributes.

Method: Create a new selection.

SELECT * FROM ssurgo_wv WHERE: "hydgrpdcd" = 'D'

(73960 out of 413438 selected)

Export SSURGO soils with high runoff/low infiltration characteristics.

R-click ssurgo_wv / Data / Export Data

Export: Selected features

Output feature class: RunoffSoil

(73960 records)

Dissolve to reduce file size and processing time.

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: RunoffSoil

Output feature class: RunoffSoil_diss

Uncheck box “Create multipart features”

(23097 records)

Union land use and soil selections.

ArcToolbox/Analysis Tools/Overlay/Union

Input Features: RunoffSoil_diss, RunoffNLCDTimb_diss

Output Feature Class: RunoffLandUnion

Join Attributes: ONLY_FID

Check box “Gaps Allowed” (default)

(442995 records)

Dissolve to reduce file size and processing time.

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: RunoffLandUnion

176

Output feature class: RunoffLand in WaterQualityDatasets.gdb

Uncheck box “Create multipart features” (default)

(313768 records)

Simplify Godzilla polygons with large numbers of vertices, by one of two methods

use the Dice tool on each overly-complex polygon and union all diced layers together,

then add the unioned layer to the original with the diced polygons deleted. (See Section

5.5.10 FloodplainARAFEMA Godzilla section for more instructions.)

or add field to count vertices as in DisturbedLand method

(5 Godzilla polygons with more than 100,000 vertices in 2024)

5.5.34 SDE_NHD_waterbodies_24k_rivers & 50_mi_drainage

Version date: 2016

Updates: Checked in 2024 with Megan Maggard. No updates available.

Input to: WFlowPath (SDE_NHD_waterbodies_24k_rivers, geometry only, no attributes) and

WshdPos (SDE_NHD_reach_24k_gt_50_mi_drainage, geometry and attributes GNIS_Name

and DA_sq_mi)

Location: M:\LayerFiles\arcsde_backup.gdb \ basemap_physical_non_replica \

• SDE_NHD_waterbodies_24k_rivers

• SDE_NHD_reach_24k_gt_50_mi_drainage

Description: SDE_NHD_waterbodies_24k_rivers is a polygon layer containing the larger rivers

and streams. SDE_NHD_reach_24k_gt_50_mi_drainage contains the reaches that have a

drainage area greater than 50 square miles.

177

5.5.35 Septic: Septic System Failure Risk Layer

Version date: 21 February 2024

Previous version(s): 17 March 2016

Strategy: completed 3/11/2016 EAB

GIS method: completed 3/11/2016 EAB; verified 3/11/2016 EAB

Python coding: started & completed 3/17/2016 MCA

Final review by EAB: 3/17/2016; in 2024 EAB updated most of these instructions for ArcGIS

Pro rather than ArcMap.

Purpose:

Water Quality Function, Opportunity aspect, input to Discharges (discharges to the wetland

within 100 meter buffer)

This procedure creates a data layer named Septic. No points at this level, maximum of 1 point

can be assigned in Discharges variable

Update schedule:

Layer should be updated (re-created from source data) approximately every 5 years, or with

major updates to SAMB or Tiger sources.

Description:

Rationale: Septic systems can pollute groundwater because nitrogen is not removed

underground. Plumes of nitrogen from septic systems can be traced at least 250ft in the

groundwater (Aravena and others 1993). Use an aerial photograph of the unit to determine if

there are any residences within 250ft of the unit. Septic systems are still in common use in many

areas outside of city boundaries. If you are outside city limits in areas with lots of 1/2 acre or

larger you can assume the houses are on septic systems unless another type of water supply

system is indicated on the water supply GIS layer.

Summary of strategy: Calculate as known septic systems (NPDES permit) or presence of

structures. Exclude sewered areas, urbanized areas, and areas with low or very low risk of septic

failure.

Source Data:

• M:\wr\owrnpdes_.shp (updated 2024)

• M:\basemap\building_footprints (updated 2024)

• M:\basemap\WVSAMB\structures_SAMB_points_UTM83.shp
o Geometry Type: Point

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\WaterQualityDataset
s.gdb

o Feature Class: SeweredAreas (updated 2024)
o Feature Class: SepticFailureRiskStatsgo

• M:\LayerFiles\arcsde_backup.gdb
o Feature Dataset: tiger2010 Feature Class: urbanized_areas

178

Method:

PART 1: Select structures that intersect sewered areas or urbanized areas.

Select by Location

Selection type: new selection

Input feature: building_footprints

Selecting feature: SeweredAreas

Relationship: intersect

Select by Location

Selection type: add to the currently selected features in

Input feature: building_footprints

Selecting feature: urbanized_areas

Relationship: intersect

Reverse selection.

Open attribute table of building_footprints and click “Switch Selection”

Select only those structures that intersect moderate and high risk septic failure areas.

Open attribute table of SepticFailureRiskStatsgo

Select by attributes

SELECT * FROM SepticFailureRiskStatsgo WHERE: "SepticZone" = 'high' OR "SepticZone" =

'moderate'

New selection

Select by Location

Selection type: select from the current selection

Input feature: building_footprints

Selecting feature: SepticFailureRiskStatsgo

Relationship: intersect

Export selected polygons.

R-click building_footprints and Data/Export Data/Export selected features

Output feature class: SepticStructures

PART 2: Select septic permits from owrnpdes_ and export to point feature class.

Select by attributes from owrnpdes_

SELECT * FROM owrnpdes_ WHERE "perm_type" = 'Septic Tank'

R-click owrnpdes_ and Data/Export Data/Export selected features

Output feature class: SepticTanks

179

Select septic permits that intersect sewered areas or urbanized areas.

Select by Location

Selection type: select features from

Input feature: SepticTanks

Selecting feature: SeweredAreas

Relationship: intersect the source layer feature

Select by Location

Selection type: add to the currently selected features in

Input feature: SepticTanks

Selecting feature: urbanized_areas

Relationship: intersect the source layer feature

Reverse selection.

Open attribute table of SepticTanks and click “Switch Selection”

Select only those permits that intersect moderate and high risk septic failure areas.

Open attribute table of SepticFailureRiskStatsgo

Select by attributes

SELECT * FROM SepticFailureRiskStatsgo WHERE: "SepticZone" = 'high' OR "SepticZone" =

'moderate'

Select by Location

Selection type: select from the currently selected features in

Input feature: SepticTanks

Selecting feature: SepticFailureRiskStatsgo

Relationship: intersect the source layer feature

Export points.

R-click building_footprints and Data/Export Data/Export selected features

Output file: SepticTankRisk

PART 3: Convert SepticStructures polygons to points. Append SepticTankRisk to

SepticStructures to include both septic tanks and structures.

Data Management / Features / Feature to Point

(note that if you are working with a shapefile, it will need to be converted to a feature class)

In ArcCatalog, R-click SepticStructures and Load/Load Data

Input data: SepticTankRisk

Add

180

Check radio button “I do not want to load all features into a subtype” (default)

No need to link any target fields with matching source fields

Check radio button “Load all of the source data”

Output file should be named Septic

Save to WaterQualityDatasets.gdb. Place updated zipped shapefile in folder to send to WV

GISTC. Update table 5.4 in WVWRAM Reference Manual.

181

5.5.36 SepticFailureRiskStatsgo: Septic Failure Risk from NRCS Statsgo Layer

Version date: 24 January 2018 (checked in 2024, no updates)

Strategy & GIS method: 3/16/2016 EAB

Python coding: not needed

Final review by EAB: 3/17/2016

Purpose:

Water Quality Function, Opportunity aspect, Discharges, input to Septic System Failure Risk

(Septic) Layer.

Update schedule:

Layer should be updated (re-created from NRCS source data) approximately every 5 years, or

with major updates to NRCS data portal.

Description:

Rationale: Soils with high septic failure risk are more likely to produce groundwater pollution.

NRCS has mapped soils with high septic failure risk in its Statsgo dataset. When I checked back

in 2018, Statsgo appears to have been replaced with the Web Soil Survey. I found the Septic

data in:

Soil Data Explorer / Suitabilities and Limitations Ratings / Sanitary Facilities / Septic Tank

Absorption Fields. It may be worth looking at other NRCS products like the gridded SSURGO,

which may be better or more easily downloaded data. Also, check with Steve Stutler or

whomever is managing TMDL mapping for WVDEP / WAB, as they may have more knowledge

of the best update source.

Source Data:

Download from NRCS.

Method:

Download data and save to location below.

Output Data:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\WaterQua

lityDatasets.gdb\SepticFailureRiskStatsgo

182

5.5.37 SeweredAreas: Sewered Areas Layer

Version date: 20 February 2024

Previous version(s): 2 February 2018

Strategy & GIS method: 3/16/2016 Steve Stutler, WVDEP / WAB

Python coding: not needed

Final review by EAB: 3/17/2016

Purpose:

Water Quality Function, Opportunity aspect, Discharges, input to Septic System Failure Risk

(Septic) Layer.

Update schedule:

Layer should be updated (re-created from source data) approximately every 5 years, or with

major updates to TMDLs and associated sewered areas mapping.

Rationale: Sewered areas are unlikely to receive groundwater pollution from septic systems.

Source Data and Method:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\WaterQua

lityDatasets.gdb\SeweredAreas2018 (Steve Stutlar’s layer, 1043 polygons)

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\Sewered Areas\

WVIJDCutility_SewerServedArea071123.shp (627 polygons)

Sewered areas have been mapped within TMDL watersheds. This coverage was maintained by

Steve Stutler, WVDEP / Watershed Assessment Branch / TMDL / Listing & Reporting until his

retirement. Steve Stutlar’s layer still contains areas that are sewered but do not show up on the

current layer maintained by WVUDC Utility GIS. Therefore, these two layers should be merged.

Steve’s process was to check the NPDES permits and outlets and create a shapefile of records

that are likely to have sewage in them, e.g., package plants, publicly owned treatment works, and

collection systems. He then figures out the areas covered by those sewered outlets, often by

going to the facility and having someone familiar with the system draw a sketch map on an air

photo or other map. Steve then converts this field map to GIS polygons. In 2018, there were

1043 polygons in the layer.

Strategy: Dissolve both input files and then union them. Dissolve the final sewered areas and

save to WaterQualityDatasets.gdb.

Dissolve layers to reduce file size and avoid Godzilla polygons.

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: SeweredAreas2018

Do not create multipart features

183

Output: SeweredAreas2018Dissolve

(581 polygons)

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: WVIJDCutility_SewerServedArea071123.shp

Do not create multipart features

Output: WVIJDCSewer2023Dissolve

(282 polygons)

Union sewered areas.

Note that with ArcEditor license, Union can only accept two layers at a time. The unions take

some time to process. Dissolve each intermediate layer prior to Union-ing.

ArcToolbox/Analysis Tools/Overlay/Union

Input Features: SeweredAreas2018Dissolve, WVIJDCSewer2023Dissolve

Join Attributes: ONLY_FID

Check box “Gaps Allowed” (default)

Output: SeweredAreasUnion

(1147 polygons)

In 2024, we then added the small updated watershed files of sewered areas that were

created for TMDL. This involved lots more Unions. These files were located in

M:\wr\WTRSHD_BRANCH\TMDL FINAL GIS DATA

Dissolve layer to reduce file size and avoid Godzilla polygons.

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: SeweredAreasUnion

Do not create multipart features

Output: SeweredAreasUnionDissolve

(470 polygons)

Check for godzillas (not really needed for this layer)

In attribute table of SeweredAreasUnionDissolve, add field: VertexCount (long integer)

R-click, Field Calculate, Python code selected, VertexCount = !shape!.pointcount

Sort descending to see if there are any polygons with more than 100,000 vertices

If there are, break them into smaller polygons with the edit/cut tool.

When finished, you can delete the VertexCount field.

Export SeweredAreasUnionDissolve to:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\WaterQua

lityDatasets.gdb\SeweredAreas

5.5.38 Slope

Version date: 2/24/2024

184

Previous version(s): 2017

Input to Slope and SlopeWshd metrics (raster values)

Location: M:\elevation\statewide_slope_pct.tif (updated version)

Previous version was located, and is still available, at:

M:\dems\ned_slope_aspect.gdb\NED_3meter_meters_augmented_slope_pct_int

We spoke with Mike Shank about the updated version, and he pointed us to the new file location.

This large file (90GB) was uploaded to Google Drive and transferred to Yibing. The tif format

was accepted.

5.5.39 Ssurgo_wv

Version date: 2017

Updates: checked 2/23/2022 and no updates available on DEP server; updates must be

downloaded from NRCS which is somewhat complicated. Since soil mapping changes less often

than many other metrics, this layer is a lower priority for updating.

Input to RunoffLand layer (geometry plus attribute "hydgrpdcd") and SoilRunoff metric

(geometry plus attribute “hydgrpdcd”)

Location: M:\basemap\ssurgo\SSURGO.gdb\ssurgo_wv

5.5.40 Ssurgo exports: Calcareous Soils and Karst Layer

Version date: 27 February 2017

Strategy: completed 3/1/2017 EAB

GIS method: 3/1/2017 EAB

Python coding: not needed

Final verification by EAB: 3/1/2017

Purpose:

Habitat Function / Intrinsic Potential / Soils

Description:

Rationale: Calcareous soils and karst areas support unique, rich, and often rare biodiversity.

They are particularly vulnerable to hydrologic damage and to invasive species encroachments.

Summary of strategy: Select calcareous soil series or soils with “karst” in the geomorphic

description, respecitively.

185

Source Data:

M:\basemap\ssurgo\ssurgo.gdb

Feature Class: ssurgo_wv

Output:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SsurgoExports.gdb

Feature Class: CalcareousSoils

Feature Class: Karst

Method:

Calcareous Soils

SSURGO query based on advice from Jared Beard, State Soil Scientist:

SSURGO table: ssurgo_wv

Select "muname" IN ('Fairplay (marl) silt loam', 'Lappans (marl) loam', 'Lappans (marl) silt

loam', 'Massanetta loam', 'Massanetta silt loam')

108 out of 413438 selected

This selects soil polygons in Jefferson and Berkeley Counties, with a few additional polygons in

Pendleton and Hardy Counties.

My original thought was to query the chorizon table for “claysizedcarb_r” > 0, but this returns

only the polygons in Jefferson County.

Soils with geomorphic description of “karst”

SSURGO table: component_all

"geomdesc" LIKE '%karst%'

241 out of 9533 selected

Related tables – back to ssurgo_wv

 5575 out of 413438 selected

Note:

This includes some but not all of the limestone areas of the state, stopping at certain county

boundaries. So I think the geology layer is better for getting at karst soils statewide. However,

the SSURGO data is much finer-scale and gets smaller patches nicely, which are sometimes

missed by the geology layer. So, use both geology and soils layers to delineate karst areas.

5.5.41 SwimmingAreas: Swimming Areas Layer

Version date: 22 January 2018

186

Strategy: 2/14/2016

GIS method: completed 3/17/2016

Python code: not needed – this is the procedure to create a spatial dataset

Final review by EAB: 3/17/2016

Purpose:

Water Quality Function / Value to Society / WQ Use

This procedure creates a layer showing known public swimming areas in the state.

Update Schedule:

Every 5 years.

Description:

Water quality is of particular importance in public swimming areas. Wetlands upstream of

public swimming areas contribute to better water quality by filtering out pollutants, nutrients,

and sediment.

Source Data:

Internet sources, especially:

http://www.swimmingholes.org/wv.html (last updated 2.2016)

and interviews with state staff about known swimming areas

Output Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: SwimmingAreas2016

Method:

As new swimming areas are identified or closed, update layer as appropriate.

http://www.swimmingholes.org/wv.html

187

5.5.42 TimberHarvest: Recent Timber Harvests Statewide Layer

Version date: 14 February 2024

Earlier version(s): 20 October 2017

Strategy: completed 3/14/2016 EAB

GIS method: completed 3/14/2016 EAB

Updates: 10/20/2017 EAB, 2/14/2024 EAB

Python coding: not needed

Purpose:

Water Quality Function, Opportunity aspect

This method outputs a “TimberHarvest” feature class for use in compiling the DisturbedLand

and RunoffLand layers. It is an intermediate layer that does not need to be transferred to WV

GISTC, where the WVWRAM GIST Tool is hosted.

Description:

Compilation of recent logging permits from WVDOF (Steve Harouff) and timber sales from

WVDNR (Jeremy Rowan). Request data for active sites in the last five years.

Summary of strategy: If the data have not already been filtered by DNR and DOF, then delete

records that are older than the last five years. Dissolve each polygon layer (no multipart

polygons) to reduce file size. Buffer points to create 80-acre polygons (average size of cut),

which corresponds to a buffer distance of 321 meters. Union the layers two at a time, with Join

Attributes: ONLY_FID and check box “Gaps Allowed”. Dissolve polygons layers in between

each union to keep file size minimal and to avoid creating Godzilla polygons with enormous

numbers of vertices.

Update schedule:

Every five years

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\Timber Harvest
o LSCA_Harvest_Landings_2019_02022024
o LSCA_Harvest_Polys_2019_02022024
o WVWMATimberSales_2019_2024

Input Variables:

None

Method:

The grayed-out steps below from 2017 were not necessary in 2024 because the input data were

pre-filtered by DNR and DOF.

Select recent sales (2010 to present) from WVDNR data.

188

Select by attributes

Layer: TimberSalesFeb2016WVDNR

Method: Create a new selection

SELECT * FROM TimberSalesFeb2016WVDNR WHERE: "YearContra" > 2010 AND

"FEATURE" NOT IN ('Leave Area', 'No Cut area') AND "TYPE" NOT IN ('Leave', 'No Sale',

'Removed')

Export selection to new feature class

R-click TimberSalesFeb2016WVDNR / Data / Export Data / Export selected features

Output feature class: TimberHarvest_DNR

Select active permits from WVDOF polygon data, which dates back to 2012.

Note that starting in 2018, these data must be filtered for the last 5 years.

Select by attributes

Layer: LSCA_Harvest_Polys_031017.shp

Method: Create a new selection

SELECT * FROM LSCA_Harvest_Polys_031017.shp WHERE: "Active_Sta" = 'Active'

Export selection to new feature class

R-click LSCA_Harvest_Polys_031017.shp / Data / Export Data / Export selected features

Output feature class:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\WaterQualityDataset
s.gdb

o Feature Class: TimberHarvest_DOF_031017

Select recent permits (2010 to present) from WVDOF point data.

Select by attributes

Layer: LSCA_HARVEST_NOTIFS_021716.shp

Method: Create a new selection

SELECT * FROM LSCA_HARVEST_NOTIFS_021716.shp WHERE: "START" > date '2010-

01-01'

Export selection to new feature class

R-click LSCA_HARVEST_POLYS_021716.shp / Data / Export Data / Export selected features

Output feature class: TimberHarvest_DOFpt

Buffer points by 321 meters to create 80 acre polygons

Analysis Tools / Proximity / Buffer

Input Features: LSCA_Harvest_Landings_2019_02022024

189

Output Feature Class: LSCA_Harvest_Landings_buffer

Distance (Linear Unit): 321 meters

Dissolve Type: NONE

Dissolve each input polygon layer to reduce file size and avoid creating Godzilla

polygons

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: LSCA_Harvest_Landings_buffer

Do not allow multi-part features

Output: LSCA_Harvest_Landings_buf_dissolve

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: LSCA_Harvest_Polys_2019_02022024

Do not allow multi-part features

Output: LSCA_Harvest_Polys_dissolve

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: WVWMATimberSales_2019_2024

Do not allow multi-part features

Output: WVWMATimberSales_dissolve

Union the three timber layers, two at a time, into a single polygon feature class. Dissolve

between unions.

Analysis Tools / Overlay / Union

Input Features: LSCA_Harvest_Landings_buf_dissolve

 LSCA_Harvest_Polys_dissolve

 Output Feature Class: TimberHarvest_DOF_union

Join Attributes: ONLY_FID

Check box “Gaps Allowed”

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: TimberHarvest_DOF_union

Do not allow multi-part features

Output: TimberHarvest_DOF_uni_dissolve

Analysis Tools / Overlay / Union

Input Features: TimberHarvest_DOF_uni_dissolve

 WVWMATimberSales_dissolve

 Output Feature Class: TimberHarvest_union

Join Attributes: ONLY_FID

Check box “Gaps Allowed”

Dissolve TimberHarvest

190

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: TimberHarvest_union

Do not allow multi-part features

Output: TimberHarvest

This final step is probably not necessary – it was probably caused in 2017 by neglecting to

dissolve each polygon layer prior to union-ing.

Check the layer for Godzilla polygons with more than 100,000 vertices

(Calculate field for VertexCount: !shape!.pointcount)

Cut Godzilla polygons to decrease number of vertices

Explode large multipart polygons as you see them

Check geometry to be sure there aren’t any errors

Simplify Godzilla polygons with large numbers of vertices, in other words,

use Simplify Polygons tool on each overly-complex polygon

Check the layer again for Godzilla polygons with more than 100,000 vertices

Add long integer field “VertexCount” to TimberHarvest

ArcToobox/Fields/Calculate field

 for VertexCount: !shape!.pointcount)

191

Cut Godzilla polygons to decrease number of vertices

Explode large multipart polygons as you see them

Check geometry to be sure there aren’t any errors

This procedure creates “Godzilla” polygons with excessive numbers of vertices. Calculate the

number of vertices:

192

The result shows that the 7 polygons have over 1 million vertices each.

We want to reduce the number of vertices, and it is okay to greatly increase the number of

polygons. Use the Advanced Editing menu. Select the first polygon and Explode Multipart

Feature. Repeat for all the polygons with excessive numbers of vertices. A reasonable target is

no more than 200,000 vertices, or to run on machines with less computing power, aim for 50,000

max.

There are now have 38,273 polygons.

Re-calculate the Vertex Count and sort descending to see how large the remaining polygons are.

There are still 8 godzilla polygons.

Select the largest polygon and display it. In this case, much of the polygon is outside the state

boundary.

Clip to the state boundary.

Re-calculate the Vertex Count. Clipping to the state boundary reduced the number of vertices

and polygons, but we still have 13 polygons that are large.

193

Explode Multi-part Features again for polygons with more than 100,000 vertices.

Re-calculate the Vertex Count. 9 polygons still have counts > 200,000.

Select the largest polygon and zoom to it. Find good places to cut it (subwatersheds along major

rivers require only a single cut) and cut it into smaller chunks. Repeat for all the other large

polygons.

Re-calculate the Vertex Count to verify that no godzillas are left.

194

5.5.43 TMDL: Wetland is in a Watershed with a TMDL Plan Layer

NOTE: This layer was discontinued in 2022 when the statewide TMDLs were completed and the

existence of a TMDL plan no longer served to distinguish between wetlands.

Version date: 16 March 2016

Strategy: 3/16/2016 EAB

GIS method: drafted 3/16/2016 EAB

Python code: not needed

Final review by EAB: 3/16/2016

Purpose:

Water Quality Function, Value to Society aspect, WQPlan factor

This procedure creates a layer showing the watersheds with a TMDL plan.

Description:

TMDL (Total Maximum Daily Load). A TMDL exists for the drainage in which the wetland is

found (2 points). A Total Maximum Daily Load (TMDL) plan is a plan of action used to clean

up streams that are not meeting water quality standards. The TMDL program is part of the

Watershed Branch of the WVDEP. TMDLs have been completed for 32 watersheds in West

Virginia, listed at: http://www.dep.wv.gov/wwe/watershed/tmdl/Pages/default.aspx

Update schedule:

Update every 5 years or with major releases of new TMDL plans.

Source Data:

• M:\wr\WTRSHD_BRANCH\TMDL FINAL GIS DATA\TMDL Subsheds (SWS) alphabetical order.lyr

Method:

Create layer showing watersheds with a TMDL plan

Open TMDL Subsheds layers. Export the first watershed to a new feature class “TMDL” and

load data from all subsequent watersheds into this polygon feature class.

Output Data:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: TMDL

http://www.dep.wv.gov/wwe/watershed/tmdl/Pages/default.aspx

195

5.5.44 TotalLossRP100: Losses from 100-yr flood

Version date: 9 November 2016

Location on DEP server:

WETLAND\SourceFunctionalAssessment\FloodplainData.gdb\TotalLossRP100

Strategy: 4/21/2016 EAB

GIS method: 4/21/2016 EAB

Python coding: not needed (unless it makes it easier to compile the layer)

 Complete 11/9/2016 MCA (I used python to make this process quicker and easier)

Final verification by EAB: 11/9/2016

Input to: Flood Attenuation / Value to Society / EconRisk

Description:

Rationale: Estimated total loss from 100-yr flood. Wetlands upstream of economically valuable

flood-prone infrastructure (structures, roads, developed lands, cropland) can reduce the costs and

negative impacts of flood damages on society.

Summary of strategy: Merge the county “Hazus” shapefiles into a statewide layer.

Source Data:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Floodplain\wvHazusOutputs_wvdhsem_

012011_gcs83_gdb\wvHazusOutputs_wvdhsem_012011_gcs83.gdb

Feature Dataset: Analysis_Data

 Feature Class: (all counties)

Output Layer:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Floodplain\FloodplainData.gdb

Feature Class: TotalLossRP100

Method:

Create new feature class to store statewide total loss data.

R-click Analysis Data / Barbour and select Data / Export Data

Output feature class:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Floodplain\FloodplainData.gdb

Feature Class: TotalLossRP100

Delete unnecessary fields to keep file size manageable

196

Delete all fields EXCEPT

ObjectID, Shape, TotalLossRP100, Shape_Length, Shape_Area

Load counties into statewide feature class

In ArcCatalog, R-click TotalLossRP100 and select Load / Load Data

This brings up the Simple Data Loader. Select Next.

Input data: Browse to Berkeley in Hazus / Analysis_Data. Open.

List of source data to load (click “Add” button below and Berkeley will appear in the white box.

Next.

Choose an existing geodatabase (automatically populated with FloodplainData.gdb)

Select the target feature class (automatically populated with TotalLossRP100)

Check radio button “I do not want to load all features into a subtype” (default)

Next.

For each target field, select the source field that should be loaded into it (TotalLossRP100 should

be pre-selected).

Next.

Check radio button “Load all of the source data” (default).

Next.

Finish.

Repeat “load counties” step for the rest of the counties in the state.

5.5.45 Trails

Version date: 9/27/2017

Input to: BufferPerim, PublicUse

Location on DEP server: WETLAND\SourceAsReceived\trails_Sep_27_2017_webmercator.shp

Source: Trails layers are available from the WV GISTC Data Clearinghouse (Monongahela

National Forest Datasets and Recreational Trails of West Virginia). Union the available sources

into a single layer.

5.5.46 Trout_Streams

Version date: 2/29/2024

Previous version(s): 2017, 2/23/2022 (formerly located at

M:\wr\WTRSHD_BRANCH\TROUT\Trout_Streams.shp which is obsolete)

197

Input to: Fisheries metric (geometry only, no attributes needed)

Location: HabitatData.gdb\Trout_Streams.

Source data:

M:\wr\WTRSHD_BRANCH_INTERNAL\NHD_AUID_2021\NHD_WVStreams_20210608.sh

p

Strategy: Kylie’s instructions from 2/2/2024: Select streams with trout designations from

NHD_WVStreams_20210608 by selecting non-null entries in trout fields. MLM regularly

updates NHD_WVStreams_20210608 with new trout designations.

Pull NHD_WVStreams_20210608.shp into the project

Select trout streams with the Select By Attributes tool

Where TROUT_E_P is not equal to (Blank field)

OR TROUT_RCH is not equal to (Blank field)

(on 2/29/2024, this selected 9,427 records)

Right click on the NHD_WVStreams20210608 in the Contents pane and select Data ->

Export Features

All attributes except basic geometry (FID, Shape, Shape_Length) can be removed from

the file, since only the geometry is used. Leaving TROUT_RCH column for reference.

Export to HabitatData.gdb as Trout_Streams and create feature class/shapefile to transfer

to WVGISTC.

5.5.47 Urbanized_areas

Version date: 2010

Updates: checked 2/24/2024 and no updates available.

Input to: DisturbedLand and Septic layers. No need to send this layer to WV GISTC. It is an

intermediate layer used to create other layers.

Location: M:\LayerFiles\arcsde_backup.gdb\tiger2010\urbanized_areas

5.5.48 Watershed Plan: Watershed Plan Layer

Version date: 3/1/2024

Previous version(s): 24 January 2018

Input to: Water Quality Function / Value to Society / WQPlan metric (geometry only, no

attributes needed)

198

Description:

Wetland is within a state nonpoint source watershed management plan area or local water quality

planning area. These plans use TMDL and other data sources as inputs. Local and watershed

planning efforts are important in maintaining existing water quality.

Source Data:

Nonpoint source watershed plans are linked from DEP’s website:

https://dep.wv.gov/WWE/Programs/nonptsource/WBP/Pages/WBP.aspx

and displayed on an EPA map service:

https://epa.maps.arcgis.com/apps/webappviewer/index.html?id=7ed40b035aa54c618e72874cbe0

408f9

In 2024, we did not have any information on local watershed plans, so they are not yet included.

DEP/WIB staff may know of local watershed plans. In 2024 there were 23 records, and local

watershed plans will be sought in the future.

Output Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb (WatershedPlan)

Method:

Identify/assemble nonpoint source watershed plans and local watershed plans. Digitize

boundaries of plan as needed. In 2024, this involved bringing the HUC12 watersheds into a GIS

project along with the old WatershedPlan layer and a basemap. This was visually compared to

the new nonpoint source management plan map on the EPA website. The added or subtracted

watersheds were copied from the HUC12 layer to make a layer for additions and one for

subtractions. The additions were unioned with the old WatershedPlan layer and the subtractions

were deleted. Where the HUC12 boundary did not match, the boundary was hand-drawn with the

mouse. The layer was clipped to the state boundary and dissolved. Finally, the crude boundaries

with lots of tiny gaps were replaced by cutting out the sections with gaps, then filling them back

in using autocomplete polygon and merge polygons. Extra attribute fields were deleted since this

layer only uses geometry.

5.5.49 Watersheds_12digit

Version date: 2015

Input to: EconRisk and HUC12WQ metrics (geometry only)

Location: M:\basemap\watersheds_12digit

Checking that location in Feb 2024, the layer is still there, and there are two versions, an old

(2006) version and a new 2023 version with its most recent load date 2015. No need to update

since this should be the same as the current version.

https://dep.wv.gov/WWE/Programs/nonptsource/WBP/Pages/WBP.aspx
https://epa.maps.arcgis.com/apps/webappviewer/index.html?id=7ed40b035aa54c618e72874cbe0408f9
https://epa.maps.arcgis.com/apps/webappviewer/index.html?id=7ed40b035aa54c618e72874cbe0408f9

199

5.5.50 Wellpads

Version date: 4 March 2024

Location: WellPads in WaterQualityDatasets.gdb

GlobalVars code: srcWellPads =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\WaterQ

ualityDatasets.gdb\WellPads"

Purpose: Input to Discharges metric

Source & Description: Data provided in 2016 by Laura Adkins, DEP; provided via Charles

(Taylor) Brewer in 2024. We want the well pads permitted within the last 5 years

(PERMIT_ISSUE_DATE after 1/1/2019). Points and/or polygons are fine (these were point data

in 2016 and 2024). Wetlands will be considered stressed if they are within 100 m of a recently

constructed wellpad. In 2016, there were 471 points in this dataset, and 131 points in 2024. This

is a geometry-only layer, i.e., the attributes are not used by WVWRAM (but note that the data

need to be screened to include only permits from the last 5 years).

Method:

Data provided will likely be in an excel spreadsheet, perhaps in .xlsx format

From the catalog, drag “Sheet1$” into the contents pane.

Right click on Sheet1$ and select Display XY Data. Select UTM_E for the X Field and UMT_N

for the Y Field. Change the coordinate system to Current Map, which will be

NAD_1983_UTM_Zone_17N.

Click OK and this will generate the layer.

Delete all attributes except for FID, Shape, FacilityNa, and entrydate to streamline the file.

Export to WaterQualityDatasets.gdb as WellPads.

5.5.51 WetlandBirds: Wetland Breeding Bird Occupancy Layer

Version date: 20 February 2017

Location:

WETLAND\SourceFunctionalAssessment\HabitatData.gdb\WetlandBirds_WetBirdColumnOnly

Input to Habitat / Landscape Opportunity (LandEco: Landscape Ecological Connectivity) /

WetldBird

Strategy: 2/20/2017 EAB

GIS method: 2/20/2017 EAB

Final review by EAB: 2/20/2017

200

Wetland Birds: WV Birds that benefit from wetland protection

Layer created from WV Breeding Bird Atlas data on 2/17/2017 by Elizabeth Byers, Senior

Wetland Scientist at WVDEP, in consultation with Rich Bailey, Ornithologist at WVDNR.

Update schedule:

This layer does not need to updated until the next reiteration of the state Breeding Bird Atlas,

which is on an approximately 20-year cycle, i.e. circa 2038.

Description:

Rationale: Landscapes with high occupancy and density of wetland-dependent breeding birds

provide high biodiversity opportunity (maintenance and dispersal of native species richness, rare

species, and natural communities).

Distributions of the following species were rolled up into a “wetland bird heat map” for WV.

Full weight is given to wetland-dependent birds, and half-weight to non-wetland-dependent

species that benefit from wetland protection as part of their habitat requirements. Species with

no data were not included. GIS method is described below.

*Block Occupancy Model

+Raw Block Data Only

Wetland-dependent

• +ABDU Anas rubripes American Black Duck

• *ALFL Empidonax alnorum Alder Flycatcher

• +AMBI Botaurus lentiginosus American Bittern

• *AMWO Scolopax minor American Woodcock

• COMO Gallinula chloropus Common Moorhen (not detected during atlas)

• *COYE Geothlypis trichas Common Yellowthroat (not SGCN but declining)

• *GBHE Ardea herodias Great Blue Heron

• *GRHE Butorides virescens Green Heron

• +HOME Lophodytes cucullatus Hooded Merganser

• KIRA Rallus elegans King Rail (considered extirpated)

• +LEBI Ixobrychus exilis Least Bittern

• MAWR Cistothorus palustris Marsh Wren (not detected during atlas)

• *NOWA Seiurus noveboracensis Northern Waterthrush

• +OSFL Contopus cooperi Olive-sided Flycatcher

• +PROW Protonotaria citrea Prothonotary Warbler

• RUBL Euphagus carolinus Rusty Blackbird (not a breeding bird in WV)

• SEWR Cistothorus platensis Sedge Wren

• +SORA Porzana carolina Sora

• *SWWA Limnothlypis swainsonii Swainson’s Warbler

• +VIRA Rallus limicola Virginia Rail

• *WIFL Empidonax traillii Willow Flycatcher (not SGCN but declining)

201

• +WISN Gallinago delicata Wilson's Snipe

• YBFL Empidonax flaviventris Yellow-bellied Flycatcher (not detected during atlas)

• *YEWA Setophaga petechia Yellow Warbler (not SGCN but declining)

Not wetland-dependent, but benefit from wetland protection as part of their habitat requirements

• *BAEA Haliaeetus leucocephalus Bald Eagle

• *BANS Bank Swallow Riparia riparia

• *BBCU Black-billed Cuckoo

• *BTBW Black-throated Blue Warbler

• *BWWA Blue-winged Warbler

• *CAWA Cardellina canadensis Canada Warbler

• +CCSP Spizella pallida Clay-colored Sparrow

• *CLSW Cliff Swallow

• *COME Mergus merganser Common Merganser

• *EAME Sturnella magna Eastern Meadowlark

• *EWPW Antrostomus vociferus Eastern Whip-poor-will

• *GWWA Golden-winged Warbler

• +LEOW Asio otus Long-eared Owl

• *LOWA Seiurus motacilla Louisiana Waterthrush

• +NAWA Vermivora ruficapilla Nashville Warbler

• +NOGO Accipiter gentilis Northern Goshawk

• +NOHA Circus cyaneus Northern Harrier

• +NSWO Aegolius acadicus Northern Saw-whet Owl

• +OSPR Pandion haliaetus Osprey

• +PBGR Podilymbus podiceps Pied-billed Grebe

• *RHWO Red-headed Woodpecker

• SEOW Asio flammeus Short-Eared Owl (winter/migration only)

• +SPSA Actitis macularius Spotted Sandpiper

• +UPSA Bartramia longicauda Upland Sandpiper

• *YBSA Sphyrapicus varius Yellow-bellied Sapsucker

Source Data:

Raw data from the WVDNR Breeding bird atlas, including block occupancy maps and

distirbution maps by species
• \Breeding Bird Atlas\WVBBA2 Occupancy Maps.gdb

o Feature Class: BlockOccupancy

• \Breeding Bird Atlas\Distribution_Maps.gdb
o Feature Class: Blocks_2653_BBA2_PriorityNonpriority

Ouput Data:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\HabitatDa

ta.gdb

Feature Class: WetlandBirds_WetBirdColumnOnly

202

Method:

Block Occupancy Models:

Scores are presented as occupancy probabilities from 0 to 1

Create new fields (float) for:

• WetDepSum: sum of occupancy scores for wetland dependent birds

• NDepSum: sum of occupancy scores for non-wetland dependent birds

• WetOccAvg: sum of the averaged scores, with full weight to WetDepSum and half-weight to
NDepSum

WetDepSum = [ALFL]+ [AMWO]+ [COYE]+ [GBHE]+ [GRHE]+ [NOWA]+ [SWWA]+

[WIFL]+ [YEWA]

Count = 9

Weight = 1

NDepSum = [BAEA]+ [BANS]+ [BBCU]+ [BTBW]+ [BWWA]+ [CAWA]+ [CLSW]+

[COME]+ [EAME]+ [EWPW]+ [GWWA]+ [LOWA]+ [RHWO]+ [YBSA]

Count = 14

Weight = 0.5

WetOccAvg = WetDepSum/9 + NDepSum/(14*0.5)

Calculating the sum rather than the average of the weighted scores allows the heavier-weighted

wetland-dependent birds to retain more of their value, with the non-wetland dependent birds

added as an increment. This may not be the most elegant solution but it does appear to preserve

the overall patterns of distribution pretty well.

Raw Block Data:

Scores are codes (see below) that must be converted to occupancy scores.

Codes:
0 Block note surveyed
1 Not reported
2 Also detected (other datasets)
3 Observed
4 Possible
5 Probable
6 Confirmed

11 Not reported in priority block
12 Also detected (other datasets)
13 Observed in priority block
14 Possible in priority block
15 Probable in priority block
16 Confirmed in priority block

Create new field for each species and populate with approximate occupancy scores based on

original codes.

Select values 2,3,12,13 and populate new species field with 1

e.g., Select "ABDU_2" IN (2,3,12,13) and field calculate “ABDU” = 1

Select value 4,14. New species field= 2

Select value 5,15. new species field = 3

Select value 6,16. New species field = 4

203

Create fields to store the summations and average values:

• Wetland: average of occupancy scores for wetland dependent birds

• WetPartial: weighted (0.5) average of occupancy scores for non-wetland dependent birds

• WetSum: sum of the two averages

Sum values in “Wetland”, then divide by (4 x 9 spp) so that confirmed occupants have a score of

“1”, and others less.

“Wetland” = ([ABDU] + [AMBI] + [HOME] + [LEBI] + [OSFL] + [PROW] + [SORA] +

[VIRA] + [WISN])/(4*9)

For non-wetland-dependent birds, do the same calculations, but the final summation will be

divided by (8 x 10 spp) for half the weight of the wetland birds.

"WetPartial"= ([CCSP]+ [LEOW]+ [NAWA]+ [NOGO]+ [NOHA]+ [NSWO]+ [OSPR]+

[PBGR]+ [SPSA]+ [UPSA])/(8*10)

These scores are then added together.

“WetSum” = [Wetland] + [WetPartial]

Calculating the sum rather than the average of the weighted scores allows the heavier-weighted

wetland-dependent birds to retain more of their value, with the non-wetland dependent birds

added as an increment. This may not be the most elegant solution but it does appear to preserve

the overall patterns of distribution pretty well.

Combine the two source layers

Join the two source layers based on the Block_ID. Add the Raw Block “WetSum” to the

Occupancy Model “WetOccAvg” for a total block occupancy.

Adding rather than averaging gives about twice as much weight to the block-only species (since

there are fewer species) in the few blocks where they occur. It also minimizes downgrading the

blocks that were not surveyed, since the occupancy models retain their weight in those blocks,

i.e. they are not averaged with zero. This is not a perfect solution but it does a decent job of

retaining the overall pattern of wetland bird occupancy, without much complexity in the

calculation.

“WetBird” = [WetOccAvg] + [WetSum]

Set thresholds for display

Very High Occupancy: atlas block in upper 10% of values (WetBird > 0.493)

High Occupancy: atlas block in upper 10-50% of values (WetBird > 0.408)

Moderate Occupancy: atlas block in upper 50-75% of values (WetBird > 0.354)

Low Occupancy: atlas block in lower 50% of values (WetBird =< 0.354)

5.5.52 Wb-rivers: Wide rivers

Version date: 2019

Input to: LandPos metric (geometry only)

Location: M:\basemap\national_hydrology_dataset\wb-rivers.shp

204

Checking that location in Feb 2024, the layer is still there and it is dated 2008. No updates

apparently available.

Description: This layer is used in LandPos to assign Lotic River Landscape Position to wetlands

in an active floodplain within 200m of a wide river.

5.5.53 WV_Protected_Lands

Version date: 2015

Input to: HInvest, OwnerAccess (both geometry and attributes are needed)

Location:

WETLAND\SourceAsReceived\WV_Protected_Lands_2015_PUBLIC\WV_Protected_Lands_2

015_PUBLIC.shp

Source: Michael Schwartz of Freshwater Institute used to update this layer. When EAB checked

in 2024, the 2015 version was still the latest version. Michael Schwartz is now retired and no

longer updating the layer. Jess Perkins’ GIS team at DNR may possibly take on these updates,

and she would be the person to check with.

5.5.54 WV_Transportation

Version date: 2013

Updates: Checked on 2/26/2024 and no updates were available at that time.

Input to: BufferPerim, RoadRail

Type of input needed from WV_Transportation is the geometry only (no attributes) of five

feature classes. The RoadRail metric uses the feature class All_Roads (geometry only). The

BufferPerim metric uses the geometry only (no attributes) of Interstates, Local_Roads,

Other_Roads_And_Trails, and Primary_Roads.

Location: M:\basemap\tiger_2013\WV_Transportation_UTM.gdb

205

5.6 ArcGIS Methods for Calculating Metrics

The following sections described the source data and methods to calculate the GIS metrics used

in the West Virginia Wetland Rapid Assessment Method.

5.6.1 AllResults: Results of All GIS Metrics

Version date: 2 April 2018

Purpose:

Store results for each run of the wetland functional assessment tool, including identifiers and

metrics.

Description:

Rationale: Storing the results in a single feature class allows for easy archival, sharing, report

generation, and analysis. GIS results are exported to a table for import into the WVWRAM MS-

Access database.

Strategy: Copy the values for the metrics below into a single feature class. This can be done by a

Spatial Join, a Join on WUKey, or in ArcCatalog through Load Data.

Source Data:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFuncti

on_[date_time].gdb\

Output:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\Runs\Wetland

Function_[date_time].gdb
o Feature Class: WU_AllResults

Method:

STEP 1: Create feature class to store the results

Note that WUKey is included and will be an important linking field

Open WetlandFunction_[date_time].gdb\WU_[date] and Data / Export Data (all features)

Output feature class: WU_AllResults1

STEP 2: Add the identifier fields (link to original input polygons)

Copy the values for the fields below to the AllResults feature class. This can be done using a

Spatial Join, ## Join on WUKey, or in ArcCatalog through Load Data.

206

SiteCode (if available in original file)

WetlandName (required)

SurveyDate (required)

STEP 3: Add scoring fields

Link to WU_Function and add metrics, with the four roll-up scores listed first

Copy the values for the fields below to the AllResults feature class. This can be done using a

Spatial Join, ## Join on WUKey, or in ArcCatalog through Load Data.

Function

RegFunction

Condition

DNRLandAcq

BRank

FAFunction

FAOpportun

FAPotential

FASociety

HCondition

HFuncNoBR

HFunction

HOpportun

HPotential

HSociety

WQFunction

WQOpportun

WQPotential

WQSociety

STEP 4: Add metrics

Link to feature classes in WetlandFunction_[date_time].gdb\ WU_[fieldname]

Copy the values for the metrics below into a single feature class. This can be done using a

Spatial Join, ## Join on WUKey, or in ArcCatalog through Load Data.

AquaAbund

BRankHUC

BufferContig

BufferLand

BufferPerim

ChemTime

Clay

ClayOrganic

ConnectFL (in Connect)

ConsFocus

Depressions

Discharges

Dist50mFQ (in VegFQ)

Disturb50m

DisturbWshd

EconRisk

Fisheries

FloodArea

FloodIn

Floodplain

Floodway

Headwater

HInvest

Histosol

HUC12WQ

HUse

HydIntact (in HydroH)

HydroH

HydSW (in HydroH)

ImpairedIn

ImpairedOut

IrrEdge

Karst

LandEco

LandHydro

LandInteg

207

LandPos

LandResil

LowSlope

MarlPEM

Microtopo

Organic

OwnerAccess

PublicUse

RoadRail

Runoff

Runoff50m

RunoffWshd

SeaPondRat (in

SeasonPond)

SeasonPond

Slope

SlopeWshd

SoilH

SoilIntact (in Disturb50m)

SoilOrgCalc

StreamEdge

StrucPatch

SWOutflow

SWOutflow2

VegAll

VegByLP

VegFA

VegFQ

VegH

VegHorInt (in Microtopo)

VegPerUng

VegPerUng1

VegPerUng4

VegVerStr

VegWoody

VegWoody4

VegWoodyFor

VegWQ

WaterSupply

WetldBird

WFlowPath

WQPlan

WQUse

WshdPos

WshdUniq

END OF PROCEDURE

208

5.6.2 AquaAbund: Aquatic Area Abundance

Version date: 3 October 2017

Strategy: 3/16/2017 EAB

GIS method: 10/3/2017 EAB; results verified 10/3/2017 EAB

Python code:

Final review by EAB:

Purpose:

Input to Habitat / Landscape Opportunity (LandHydro: Landscape Hydrologic Connectivity)

Description:

Maximum 2 points

Rationale: “Definition: The aquatic area abundance of an Assessment Area is assessed in terms

of its spatial association with other areas of aquatic resources, such as other wetlands, lakes,

streams, etc. It is assumed that wetlands close to each other have a greater potential to interact

ecologically and hydrologically, and that such interactions are generally beneficial.”

“Rationale: …The functional capacity of a wetland is determined not only by its

intrinsic properties, but by its relationship to other habitats across the landscape. Several

researchers have concluded that landscape-scale variables are often better predictors of stream

and wetland integrity than localized variables (Roth et al. 1996; Scott et al. 2002). Wetlands that

are close together without hydrological or ecological barriers between them are better able to

provide refuge and alternative habitat patches for metapopulations of wildlife, to support

transient or migratory wildlife species, and to function as sources of colonists for primary or

secondary succession of newly created or restored wetlands. In general, good landscape

connectivity exists only where neighboring wetlands or other habitats do not have intervening

obstructions that could inhibit the movements of wildlife.” (CWMW 2013)

GIS Method (no field method):

Calculate % cover of wetlands, ponds, lakes, and rivers in a 1 km buffer. Use the Enhanced

National Wetlands Inventory as the source data for wetlands, ponds, lakes, and rivers. Note that

the Enhanced NWI includes pond features copied over from the NHD. The Enhanced NWI

includes wide (polygonal) rivers but it does not include line features for small streams. This

part of the metric is size-neutral.

Calculate total length stream reaches in a 1 km buffer. Note that this calculation gives an

advantage to large wetlands, which have more area in the 1 km buffer. This advantage is

realistic because large wetlands also serve as aquatic resource areas to themselves.

Merge and set appropriate thresholds based on distribution of values. Assign points as follows:

2 points: at least 5% cover of NWI aquatic resources OR at least 8 km of NHD stream

reaches within 1 kilometer buffer

1 point: 1-5% cover of NWI aquatic resources OR 6-8 km of NHD stream reaches

within 1 kilometer buffer

209

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o FeatureClass: Buffer1km

▪ Field: Buf1kArea
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb
o Feature Dataset: CONUS_WVWetlandsProj

▪ Feature Class: EnhWVWetland

• M:\basemap\NHD_H_West_VirginiaTransfer2022.gdb
▪ Feature Class: NHDFlowline

Method:

STEP 1 Calculate percent of 1 km buffer that contains aquatic features from NWI

Note that this method is very similar to STEP 2 of BufferPerim

Create feature class to store intermediate results

R-click WU_20150514 and select Data / Export / All Features

Output feature class: WetlandFunction.gdb / WU_AquaAbund1

Intersect the 1 km buffers and the Enhanced National Wetlands Inventory.

ArcToolbox / Analysis Tools / Overlay / Intersect

Input features: Buffer1km

 EnhWVWetland

Output feature class: Buffer1kAqua

Join attributes: ALL

Output type: INPUT

Dissolve aquatic portion of wetland buffer by WUKey

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: Buffer1kAqua

Output Feature Class: Buffer1kAqua_diss

Dissolve Fields: WUKey

Statistics Fields: Buf1kArea (Statistic Type = First)

Check box “Create multipart features” (default)

Add field and calculate ratio of aquatic area to total buffer area.

Open attribute table of Buffer1kAqua_diss

Add field “Aqua1kRat” (float)

Field calculate Aqua1kRat = [Shape_Area] / [FIRST_Buf1kArea]

210

Join ratio of aquatic buffer to Wetland Units

ArcToolbox / Data Management Tools / Joins / Add Join

Input table: WU_AquaAbund1

Input Join Field: WUKey

Join Table: Buffer1kAqua_diss

Output Join Field: WUKey

Export joined data

R-click WU_AquaAbund1 and select Data / Export Data

Output feature class: WU_AquaAbund2

Remove Join

R-click WU_ AquaAbund1 and select Joins and Relates / Remove All Joins

Set value of Aqua1kRat to zero for null intersections

Open attribute table of WU_ AquaAbund2

SELECT * FROM WU_ AquaAbund2 WHERE: "Aqua1kRat" IS NULL

Field Calculate Aqua1kRat = 0

STEP 2 Calculate total length of NHD streams in 1 km buffer

Intersect the 1 km buffers and the NHD stream reaches

Note that this is a very large intersection and takes about 30 minutes

ArcToolbox / Analysis Tools / Overlay / Intersect

Input features: Buffer1km

 NHDFlowline

Output feature class: Buffer1kStrm

Join attributes: ALL

Output type: INPUT

Add field to store Stream Reach Length

Open attribute table of Buffer1kStrm

Add field StrmLength (float)

Field Calculate StrmLength = [Shape_Length]

Delete unnecessary fields in this large table to reduce processing time in the Dissolve

below

Note that this takes a long time

211

ArcToolbox > Data Management Tools > Fields > Delete Field

Input table: Buffer1kStrm

Drop Field: Check the boxes for all fields EXCEPT WUKey and StrmLength

Dissolve stream reach lengths in the wetland buffer by WUKey

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: Buffer1kStrm

Output Feature Class: Buffer1kStrm_diss

Dissolve Fields: WUKey

Statistics Fields: StrmLength (Statistic Type = Sum)

Check box “Create multipart features” (default)

Join sum of stream lengths to Wetland Units

ArcToolbox / Data Management Tools / Joins / Add Join

Input table: WU_AquaAbund2

Input Join Field: WUKey (first occurrence in list of attributes – the 2nd occurrence has nulls)

Join Table: Buffer1kStrm_diss

Output Join Field: WUKey

Export joined data

R-click WU_AquaAbund2 and select Data / Export Data / All Features

Output feature class: WU_AquaAbund

Remove Join

R-click WU_ AquaAbund2 and select Joins and Relates / Remove All Joins

Set value of FINALCODE to zero for null intersections

Open attribute table of WU_ AquaAbund

SELECT * FROM WU_ AquaAbund2 WHERE: "SUM_StrmLength" IS NULL

Field Calculate SUM_StrmLength = 0

STEP 3: Assign points

Add field AquaAbund, set initial value to zero

Open the attribute table to WU_AquaAbund

Add field “AquaAbund” (short integer) to attribute table

Field Calculate “AquaAbund” = 0

Assign points

212

StrmLength one SD below mean = 0, within 1 SD of mean = 1, >1 SD above mean = 2

points

SELECT * FROM WU_AquaAbund WHERE: "Aqua1kRat" > 0.01 OR "SUM_StrmLength" >

6000

Field Calculate AquaAbund = 1

SELECT * FROM WU_AquaAbund WHERE: "Aqua1kRat" > 0.05 OR "SUM_StrmLength" >

8000

Field Calculate AquaAbund = 2

213

5.6.3 Brank: Site Biodiversity Rank of Wetland

Version date: 8 November 2017

Strategy: 3/16/2017 EAB

GIS method: 10/19/2017 EAB; results verified 10/20/2017 EAB; revisions to GIS method on

11/5/2017 highlighted in yellow; results re-verified 11/5/2017

Python code: 10/30/2017, revised and packaged for stand-alone use 11/7/2017 YH

Final review by EAB: 11/7/2017

Notes on using the stand-alone packaged arcpy script to calculate Site Biodiversity Rank for all

sites (not limited to wetlands)

1. Two layers are required:

a. Input polygons to be assessed (e.g. “ManagedLands”)
i. Add field (long integer) name “WUKey” and populate it with a unique ID.

b. Source data file of ranked element occurrences named “BRankInput”.
i. See the instructions for BRankInput to create that file. “BRankInput” can be

screened to include only wetland species or other subsets of the full biodiversity
database; however, the source data used in the python tool must be named
“BRankInput”.

2. Open the script BRank_packaged \ BRank.pyt \ Site Biodiversity Rank
3. Specify the location of the input polygon layer.
4. Specify the location of “BRankInput”.
5. Specify the target geodatabase for output.
6. Run the tool.
7. The output file will be named “WU_BRank”. Re-name it something meaningful like

“BRank_ManagedLands_20171108”. The code will not automatically overwrite the output file, so
you must rename it or delete it before running the code again.

Purpose: Adjustment to Habitat Function

Rationale: Wetland supports rare, threatened, or endangered species or high quality natural

communities. Certain wetlands are recognized as being exemplary in the state for their

outstanding habitat value. Note that if a rare species or natural wetland community is

documented at the site, or is found during rapid field assessment, then the wetland should be

assigned a B-rank. Surveying for rare species and natural wetland communities is not a

required part of the rapid assessment protocol; however, if a B-rank has already been

documented by the state, then it will be included in the GIS assessment.

GIS Strategy:

The presence, quality, and concentration of rare species and natural vegetation communities is

the basis for Site Biodiversity Ranks. B-rank methodology is implemented by WVDNR’s

Natural Heritage Program. Scoring for B-ranked wetlands is as follows:

B1 Outstanding Global Biodiversity Significance

B2 High Global Biodiversity Significance

214

B3 Global Biodiversity Significance

B4 Outstanding State Biodiversity Significance

B5 State Biodiversity Significance

B6 Local Biodiversity Significance

Screen out elements that would not occur in a wetland, i.e., would not include wetlands in any

part of their habitat, foraging areas, or life cycle. This has already been done when creating the

BRankInput file.

Site Biodiversity Ranks (B1-B6) are assigned at the highest rank for which any one of the

criteria of that rank are met.

B1 – Outstanding global biodiversity significance

• Only known occurrence of an element rangewide, or

• A-ranked occurrence of a G1 element (or at least C-ranked if best available in state), or

• Concentration of A or B-ranked occurrences of G1 or G2 elements (4 or more)

B2 – High global biodiversity significance

• B or C-ranked occurrence of a G1 element, or

• A or B-ranked occurrence of a G2 element, or

• One of the most outstanding (e.g., among 5 best) occurrences rangewide (at least A or B-

ranked) of a G3 element, or

• Concentration of C-ranked G2 and A- or B-ranked G3 element occurrences (4 or more)

B3 – Global biodiversity significance

• D-ranked occurrence of a G1 element (if best available in state), or

• C-ranked occurrence of a G2 element, or

• A or B- ranked occurrence of a G3 element, or

• A or B- ranked occurrence of a disjunct S1 element, or

• One of the most outstanding (e.g., among 5 best) occurrences of a G4 or G5 community (at

least A or B-ranked) in an ecoregion. Of these, the 1 or 2 best in an ecoregion could be elevated

to B2 status based on consultation with the Natural Heritage ecologist; or

• Concentration (4+) of C-ranked G3 and A- or B-ranked S1 element occurrences.

B4 – Outstanding state biodiversity significance

• D-ranked occurrence of a G2 element (if best available in state), or

• C-ranked occurrence of a G3 element, or

• A or B-ranked occurrence of S1 element (or at least C-ranked if best available in state), or

• A-ranked occurrence of an S2 element, or

• At least C-ranked occurrence of a disjunct G4 or G5 element, or

• A or B-ranked occurrence of a G4 or G5 community, or

• Concentration (4+) of C-ranked S1, B- or C-ranked S2, and A-ranked S3 element occurrences

and C-ranked G4 or G5 communities.

B5 – State biodiversity significance

• D-ranked occurrence of G3 element (if best available in state), or

215

• C-ranked occurrence of S1 element, or

• B or C-ranked occurrence of S2 element, or

• A-ranked occurrence of an S3 element, or

• C-ranked occurrence of a G4 or G5 community, or

• Concentration (4+) of B- or C-ranked S3 element occurrences.

B6 – Local biodiversity significance

• B or C-ranked occurrence of S3 element

Chart summarizing B-Rank criteria

Notes on geographic extent of site and element occurrence (not incorporated – simple

intersections are used)

• If the site includes >50% of the area of the element occurrence, or if the element occurrence is

a point contained within the site, then the site is awarded full credit for that element.

• If the site includes <50% of the area of the element occurrence, then it is ranked at one level

lower, e.g. if the full element occurrence would confer a site rank of B3, then the partial

occurrence qualifies the site for a rank of B4. This decision can be manually overridden by a

Natural Heritage biologist, if there is evidence that the site supports the element at population

numbers and quality of habitat meriting the higher rank.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\HabitatData.gd
o Feature class: BRankInput

216

Method:

STEP 1: Create feature class and add fields to store BRank values; screen input

R-click WU_20150514 and select Data / Export Data / All Features

Output feature class: WetlandFunction: WU_BRank

Add fields to store partial B-Rank based on single elements, concentrations, and final

BRank

Open attribute table of WU_BRank

Add field BSing (text, length = 10)

Add field BConc (text, length = 10)

Add field BRank (text, length = 10)

STEP 2: Assign Site Biodiversity Ranks based on single element occurrences

Rank B6 selection

Open attribute table of BRankInput

SELECT * FROM BRankInput WHERE:

"Srank" = 'S3' AND "OQrank" IN ('B', 'C')

Select by Location

Selection method: Select features from

Target layer: WU_BRank

Source layer: BRankInput

Use selected features

Spatial selection method for target layer feature(s): intersect the source layer feature

R-click BSing and Field Calculate BSing = "B6"

Rank B5 selection

Open attribute table of BRankInput

SELECT * FROM BRankInput WHERE:

("Grank" = 'G3' AND "OQrank" = 'D' AND ("EO_Count" = 1 OR "Flag" = 'BestState')) OR
("Srank" = 'S1' AND "OQrank" = 'C') OR

("Srank" = 'S2' AND "OQrank" IN ('B','C')) OR

("Srank" = 'S3' AND "OQrank" = 'A') OR

("SpecComm" = 'C' AND "Grank" IN ('G4', 'G5') AND "OQrank" = 'C')

Select by Location

Selection method: Select features from

Target layer: WU_BRank

217

Source layer: BRankInput

Use selected features

Spatial selection method for target layer feature(s): intersect the source layer feature

R-click BSing and Field Calculate BSing = "B5"

Rank B4 selection

Open attribute table of BRankInput

SELECT * FROM BRankInput WHERE:

("Grank" = 'G2' AND "OQrank" = 'D' AND ("EO_Count" = 1 OR "Flag" = 'BestState'))
OR
("Grank" = 'G3' AND "OQrank" = 'C') OR

("Srank" = 'S1' AND "OQrank" IN ('A', 'B')) OR

("Srank" = 'S1' AND "OQrank" = 'C' AND ("EO_Count" = 1 OR "Flag" = 'BestState'))
OR

("Srank" = 'S2' AND "OQrank" = 'A') OR

("Grank" IN ('G4', 'G5') AND "OQrank" IN ('A', 'B', 'C') AND "Flag" = 'Disjunct') OR

("SpecComm" = 'C' AND "Grank" IN ('G4', 'G5') AND "OQrank" IN ('A', 'B'))

Select by Location

Selection method: Select features from

Target layer: WU_BRank

Source layer: BRankInput

Use selected features

Spatial selection method for target layer feature(s): intersect the source layer feature

R-click BSing and Field Calculate BSing = "B4"

Rank B3 selection

Open attribute table of BRankInput

SELECT * FROM BRankInput WHERE:

("Grank" = 'G1' AND "OQrank" = 'D' AND ("EO_Count" = 1 OR "Flag" = 'BestState'))
OR

("Grank" = 'G2' AND "OQrank" = 'C') OR

("Grank" = 'G3' AND "OQrank" IN ('A', 'B')) OR

("Srank" = 'S1' AND "OQrank" IN ('A', 'B') AND "Flag" = 'Disjunct') OR

(("SpecComm" = 'C' AND "Grank" IN ('G4', 'G5')) AND "OQrank" IN ('A', 'B') AND

"Flag" = 'Best5Ecoregion')

Select by Location

Selection method: Select features from

Target layer: WU_BRank

Source layer: BRankInput

Use selected features: (2783 features selected)

218

Spatial selection method for target layer feature(s): intersect the source layer feature

(178 out of 43124 selected)

R-click BSing and Field Calculate BSing = "B3"

Rank B2 selection

Open attribute table of BRankInput

SELECT * FROM BRankInput WHERE:

("Grank" = 'G1' AND "OQrank" IN ('B', 'C')) OR

("Grank" = 'G2' AND "OQrank" IN ('A','B')) OR

("Grank" = 'G3' AND "OQrank" IN ('A', 'B') AND "Flag" = 'Best5Range')

Select by Location

Selection method: Select features from

Target layer: WU_BRank

Source layer: BRankInput

Use selected features

Spatial selection method for target layer feature(s): intersect the source layer feature

R-click BSing and Field Calculate BSing = "B2"

Rank B1 selection

Open attribute table of BRankInput

SELECT * FROM BRankInput WHERE:

("Flag" = 'OnlyRange') OR

("Grank" = 'G1' AND "OQrank" = 'A') OR

("Grank" = 'G1' AND "OQrank" IN ('B', 'C') AND ("EO_Count" = 1 OR "Flag" =
'BestState'))

Select by Location

Selection method: Select features from

Target layer: WU_BRank

Source layer: BRankInput

Use selected features

Spatial selection method for target layer feature(s): intersect the source layer feature

R-click BSing and Field Calculate BSing = "B1"

Clear all selections

STEP 3: Join Wetland Units with BRankInput

ArcToolbox / Spatial Join

Target features: WU_20150514

219

Join features: BRankInput

Output feature class: WU_BRank_join

Join Operation: JOIN_ONE_TO_MANY

Keep all target features

Field Map of Join Features: retain basically all (Shape_Length1 and Shape_Area1 are not

needed)

Match option: Intersect

STEP 4: Find the highest occurrence quality rank for each element in each Wetland

Unit

Set null values of RandID to zero to allow summarize function to work

SELECT * FROM WU_BRank_join WHERE: "RandID" IS NULL

R-click RandID and Field Calculate RandID = 0

Add field to hold integer transformation of OQRank

Add new field: OQrankInt (short integer)

SELECT * FROM WU_BRank_join WHERE: "OQrank" IS NULL

Field Calculate OQrankInt = 0

SELECT * FROM WU_BRank_join WHERE: "OQrank" = 'D'

Field Calculate OQrankInt = 1

SELECT * FROM WU_BRank_join WHERE: "OQrank" = 'C'

Field Calculate OQrankInt = 2

SELECT * FROM WU_BRank_join WHERE: "OQrank" = 'B'

Field Calculate OQrankInt = 3

SELECT * FROM WU_BRank_join WHERE: "OQrank" = 'A'

Field Calculate OQrankInt = 4

Clear all selections

Find the highest OQrank for each WUKey |RandID pair

Open attribute table WU_BRank_join

Add new field: Concat (text, length = 20)

Field Calculate Concat = [WUKey]&" | "& [RandID]

R-click the Concat field and Select “Summarize”

Select a field to summarize: Concat

Choose one or more summary statistics to be included in the output table:

WUKey: Minimum

RandID: Minimum

220

Srank: First

Grank: First

SpecComm: First

OQrankInt: Maximum

Specify output table: WU_BRank_summ

STEP 5: Assign Site Biodiversity Rank based on concentrations of elements

Rank B5 selection (Rank B6 does not have a criterion for concentrations)

Select B- or C-ranked occurrences of S3 elements

Open table WU_BRank_summ

SELECT * FROM WU_BRank_summ WHERE:

"First_Srank" = 'S3' AND "Max_OQrankInt" IN (2,3)

Open table WU_BRank_summ

R-click “Minimum_WUKey” and select Summarize

Select a field to summarize: Min_WUKey

Choose one or more summary statistics to be included in the output table: none

Specify output table: WU_BRank_summB5

Join table back to WU_BRank

R-click WU_BRank and select Joins and Relates / Joins

What do you want to join to this layer: Join attributes from a table

Choose the field in this layer that the join will be based on: WUKey

Choose the table to join to this layer: WU_BRank_summB5

Choose the field in the table to base the join on: Min_WUKey

Keep all records

Select records with 4 or more elements and assign value to BConc

Open attribute table of WU_BRank with Join displayed

SELECT * FROM WU_BRank_WU_BRank_summB5 WHERE:

WU_BRank_summB5.Cnt_Min_WUKey > 3

Field calculate BConc = “B5”

Remove Join

R-click WU_BRank and select Joins and Relates / Remove Joins / Remove All Joins

Rank B4 selection

Select C-ranked S1, B- or C-ranked S2, and A-ranked S3 element occurrences and

C-ranked G4 or G5 communities

221

Open table WU_BRank_summ

SELECT * FROM WU_BRank_summ WHERE:

("First_Srank" = 'S1' AND "Max_OQrankInt" = 2) OR

("First_Srank" = 'S2' AND "Max_OQrankInt" IN (2,3)) OR

("First_Srank" = 'S3' AND "Max_OQrankInt" = 4) OR

("First_SpecComm" = 'C' AND "First_Grank" IN ('G4', 'G5') AND "Max_OQrankInt" =

2)

Open table WU_BRank_summ

R-click “Minimum_WUKey” and select Summarize

Select a field to summarize: Min_WUKey

Choose one or more summary statistics to be included in the output table: none

Specify output table: WU_BRank_summB4

Summarize on the selected records only

Join table back to WU_BRank

R-click WU_BRank and select Joins and Relates / Joins

What do you want to join to this layer: Join attributes from a table

Choose the field in this layer that the join will be based on: WUKey

Choose the table to join to this layer: WU_BRank_summB4

Choose the field in the table to base the join on: Min_WUKey

Keep all records

Select records with 4 or more elements and assign value to BConc

Open attribute table of WU_BRank with Join displayed

SELECT * FROM WU_BRank_WU_BRank_summB4 WHERE:

WU_BRank_summB4.Cnt_Min_WUKey > 3

Field calculate BConc = "B4"

Remove Join

R-click WU_BRank and select Joins and Relates / Remove Joins / Remove All Joins

Rank B3 selection

Select C-ranked occurrences of G3 elements and A- or B-ranked occurrences of S1

elements

Open table WU_BRank_summ

SELECT * FROM WU_BRank_summ WHERE:

("First_Grank" = 'G3' AND "Max_OQrankInt" = 2) OR

("First_Srank" = 'S1' AND "Max_OQrankInt" IN (3,4))

222

Open table WU_BRank_summ

R-click “Minimum_WUKey” and select Summarize

Select a field to summarize: Min_WUKey

Choose one or more summary statistics to be included in the output table: none

Specify output table: WU_BRank_summB3

Summarize on the selected records only

Join table back to WU_BRank

R-click WU_BRank and select Joins and Relates / Joins

What do you want to join to this layer: Join attributes from a table

Choose the field in this layer that the join will be based on: WUKey

Choose the table to join to this layer: WU_BRank_summB3

Choose the field in the table to base the join on: Min_WUKey

Keep all records

Select records with 4 or more elements and assign value to BConc

Open attribute table of WU_BRank with Join displayed

SELECT * FROM WU_BRank_WU_BRank_summB3 WHERE:

WU_BRank_summB3.Cnt_Min_WUKey > 3

Field calculate BConc = "B3"

Remove Join

R-click WU_BRank and select Joins and Relates / Remove Joins / Remove All Joins

Rank B2 selection

Select C-ranked occurrences of G2 elements and A- or B-ranked occurrences of G3

elements

Open table WU_BRank_summ

SELECT * FROM WU_BRank_summ WHERE:

("First_Grank" = 'G2' AND "Max_OQrankInt" = 2) OR

("First_Grank" = 'G3' AND "Max_OQrankInt" IN (3,4))

Open table WU_BRank_summ

R-click “Minimum_WUKey” and select Summarize

Select a field to summarize: Min_WUKey

Choose one or more summary statistics to be included in the output table: none

Specify output table: WU_BRank_summB2

Summarize on the selected records only

Join table back to WU_BRank

223

R-click WU_BRank and select Joins and Relates / Joins

What do you want to join to this layer: Join attributes from a table

Choose the field in this layer that the join will be based on: WUKey

Choose the table to join to this layer: WU_BRank_summB2

Choose the field in the table to base the join on: Min_WUKey

Keep all records

Select records with 4 or more elements and assign value to BConc

Open attribute table of WU_BRank with Join displayed

SELECT * FROM WU_BRank_WU_BRank_summB2 WHERE:

WU_BRank_summB2.Cnt_Min_WUKey > 3

Field calculate BConc = "B2"

Remove Join

R-click WU_BRank and select Joins and Relates / Remove Joins / Remove All Joins

Rank B1 selection

Select B-ranked occurrences of G1 elements and A- or B-ranked occurrences of G2

elements

Open table WU_BRank_summ

SELECT * FROM WU_BRank_summ WHERE:

("First_Grank" = 'G1' AND "Max_OQrankInt" = 3) OR

("First_Grank" = 'G2' AND "Max_OQrankInt" IN (3,4))

Open table WU_BRank_summ

R-click “Minimum_WUKey” and select Summarize

Select a field to summarize: Min_WUKey

Choose one or more summary statistics to be included in the output table: none

Specify output table: WU_BRank_summB1

Summarize on the selected records only

Join table back to WU_BRank

R-click WU_BRank and select Joins and Relates / Joins

What do you want to join to this layer: Join attributes from a table

Choose the field in this layer that the join will be based on: WUKey

Choose the table to join to this layer: WU_BRank_summB1

Choose the field in the table to base the join on: Min_WUKey

Keep all records

Select records with 4 or more elements and assign value to BConc

Open attribute table of WU_BRank with Join displayed

224

SELECT * FROM WU_BRank_WU_BRank_summB1 WHERE:

WU_BRank_summB1.Cnt_Min_WUKey > 3

Field calculate BConc = "B1"

Remove Join

R-click WU_BRank and select Joins and Relates / Remove Joins / Remove All Joins

STEP 6: Calculate final Site Biodiversity Rank

Open attribute table of WU_BRank

SELECT * FROM WU_BRank WHERE: "BSing" = 'B6'

R-click BRank and Field Calculate BRank = 'B6'

Open attribute table of WU_BRank

SELECT * FROM WU_BRank WHERE: "BSing" = 'B5' OR "BConc" = 'B5'

R-click BRank and Field Calculate BRank = 'B5'

Open attribute table of WU_BRank

SELECT * FROM WU_BRank WHERE: "BSing" = 'B4' OR "BConc" = 'B4'

R-click BRank and Field Calculate BRank = 'B4'

Open attribute table of WU_BRank

SELECT * FROM WU_BRank WHERE: "BSing" = 'B3' OR "BConc" = 'B3'

R-click BRank and Field Calculate BRank = 'B3'

Open attribute table of WU_BRank

SELECT * FROM WU_BRank WHERE: "BSing" = 'B2' OR "BConc" = 'B2'

R-click BRank and Field Calculate BRank = 'B2'

Open attribute table of WU_BRank

SELECT * FROM WU_BRank WHERE: "BSing" = 'B1' OR "BConc" = 'B1'

R-click BRank and Field Calculate BRank = 'B1'

Populate the “Null” BRank records with “none”

Open attribute table of WU_BRank

SELECT * FROM WU_BRank WHERE: "BRank" IS NULL

R-click BRank and Field Calculate BRank = "none"

Clear all selections

5.6.4 BRankHUC: Watershed Biodiversity Rank

Version date: 2/26/2024

225

In 2024, this layer was prepared by Meryl Friedrich at WVDNR in cooperation with Elizabeth

Byers. In the future, WVDNR’s GIS office will prepare the layer for use in the WVWRAM GIS

Tool. The next scheduled update will be in 2034 when the next State Wildlife Action Plan is

written; however, it is worth checking around 2029 just in case there are interim updates. This

layer can be easily updated by WVDNR whenever BRankInput is updated. BRankHUC uses all

of the species, not just the wetland species, to rank watersheds in terms of their overall

biodiversity.

Previous version(s): 6 October 2017

Strategy: 3/16/2017 EAB

GIS method: 10/6/2017 EAB; results verified 10/6/2017 EAB

Python code: 10/10/2017 YH

Final review by EAB: 10/10/2017

Purpose:

Input to Habitat / Landscape Opportunity (LandEco: Landscape Ecological Connectivity)

Description:

Maximum 4 points

Rationale: Landscape provides high biodiversity opportunity (maintenance and dispersal of

native species richness, rare species, and natural communities)

GIS Method (no field method):

Select wetlands that intersect ranked HUC12 watersheds.

4 points: wetland intersects a B1-ranked 12-digit watershed (watershed provides habitat

for good populations of critically globally imperiled species or natural

communities (___out of 764 watersheds)

3 points: wetland intersects a B2-ranked 12-digit watershed (watershed provides habitat

for good populations of globally imperiled species or natural communities)

(___<172 out of 764 watersheds)

2 points: wetland intersects a B3-ranked 12-digit watershed (watershed provides habitat

for good populations of globally vulnerable or disjunct state critically imperiled

species or natural habitats) (376 out of 764 watersheds)

1 point: wetland intersects a B4- or B5-ranked 12-digit watershed (watershed provides

habitat for good populations of state imperiled species or natural habitats) (376

out of 764 watersheds)

0 points: none of the above criteria are met

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb

o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\BRankHUC.shp

226

Method:

Create feature class to store results for BRankHUC and set initial value to zero

R-click WU_20150514 and select Data / Export / All Features

Output feature class: WetlandFunction.gdb / WU_BRankHUC

Open attribute table of WU_BRankHUC

Add field “BRankHUC” (short integer)

Field calculate BRankHUC = 0

Select B4- or B5 ranked watersheds

SELECT * FROM BRankHUC

 WHERE: "Brank" = 'B4' OR "Brank" = 'B5'

Select Wetland Units that intersect B3- or B4-ranked watershed

Select by Location

Selection method: select features from

Target layer(s): WU_BRankHUC

Source layer: BRankHUC

Check “Use selected features”

Spatial selection method for target layer feature(s): intersect the source layer feature

Assign 1 point

Open attribute table of WU_BRankHUC

Field Calculate BRankHUC = 1

Select B3- or B4-ranked watersheds

SELECT * FROM BRankHUC

 WHERE: "Brank" = 'B3'

Select Wetland Units that intersect B3- or B4-ranked watershed

Select by Location

Selection method: select features from

Target layer(s): WU_BRankHUC

Source layer: BRankHUC

Check “Use selected features”

Spatial selection method for target layer feature(s): intersect the source layer feature

227

Assign 2 points

Open attribute table of WU_BRankHUC

Field Calculate BRankHUC = 2

Select B2-ranked watersheds

SELECT * FROM BRankHUC

 WHERE: "Brank" = 'B2'

Select Wetland Units that intersect B2-ranked watershed

Select by Location

Selection method: select features from

Target layer(s): WU_BRankHUC

Source layer: BRankHUC

Check “Use selected features”

Spatial selection method for target layer feature(s): intersect the source layer feature

Assign 3 points

Open attribute table of WU_BRankHUC

Field Calculate BRankHUC = 3

Select B1-ranked watersheds

SELECT * FROM BRankHUC

 WHERE: "Brank" = 'B1'

Select Wetland Units that intersect B1-ranked watershed

Select by Location

Selection method: select features from

Target layer(s): WU_BRankHUC

Source layer: BRankHUC

Check “Use selected features”

Spatial selection method for target layer feature(s): intersect the source layer feature

Assign 4 points and clear selections

Open attribute table of WU_BRankHUC

Field Calculate BRankHUC = 4

Clear all selections

228

5.6.5 BufferContig: Contiguous 300m Buffer for Wildlife

Version date: 29 Septmeber 2017

Strategy: 3/16/2017 EAB

GIS method: 9/29/2017 EAB; results verified 9/29/2017 EAB

Python code: 10/3/2017 YH

Final review by EAB: 10/3/2017

Purpose:

Input to Habitat / Opportunity / BufferLand (Buffer and Landscape Integrity)

Description:

Maximum 2 points

Rationale: “A wider buffer has a greater capacity to serve as habitat for wetland edge-dependent

species, to reduce the inputs of non-point source contaminants, to control erosion, and to

generally protect the wetland from human activities.

The condition of a buffer is assessed according to the extent and quality of its vegetation cover,

the overall condition of its substrate, and the amount of human visitation.

The condition or composition of the buffer, in addition to its width and extent around a wetland,

determines the overall capacity of the buffer to perform its critical functions.” CWMW 2013

Strategy: Note that the integrity of the 300m wetland buffer must be verified in the field, since

GIS data may be out-of-date. This GIS metric is overwritten by field assessment.

Calculate percent of contiguous 300m buffer not overlapping DisturbLand. Erase the

DisturbedLand from the 300m buffer, then select the remaining buffer polygons that are

contiguous (approximated as “share a line segment with”) with their corresponding Wetland

Unit.

Assign points as follows:
• 2 points: >90% of buffer is undisturbed AND is contiguous with Wetland Unit

• 1 point: 60-90% of buffer is undisturbed AND is contiguous with Wetland Unit

• 0 points: neither of the above criteria are met

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)
o Feature Class: WU_20150514
o Feature Class: Buffer300m

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: DisturbedLand

229

Note that the procedure in this box should be performed when Wetland Units are first

created

Therefore, please do not include this procedure in the code for this metric

Create 300m buffer around Wetland Unit

ArcToolbox / Proximity / Buffer

Input features WU_20150514

Output feature class: WetlandUnits.gdb\Buffer300m

Distance [value or field]: Linear Unit: 300 Meters

Side Type: OUTSIDE_ONLY

Dissolve Type: NONE

Add field to store buffer area

Open attribute table of Buffer300m

In attribute table of Buffer300m, add field “Buf300Area” (float)

Field calculate Buf300Area = Shape_Area

Method:

Erase the portions of the 300m buffer that overlap DisturbedLand

ArcToolbox / Analysis Tools / Overlay / Erase

Input features: Buffer300m

Erase features: DisturbedLand

Output feature class: Buffer300mUndist

The Erase tool produces multipart polygons. Change these to singlepart polygons.

ArcToolbox / Data Management / Multipart to Singlepart

Input: Buffer300mUndist

Output: Buffer300mUndist_sing

Add field to Buffer300mUndist_sing to store area of contiguous singlepart polygons

Open attribute field of Buffer300mUndist_sing

Add field “ContigSingArea” (float)

Select undisturbed buffer polygons that share a line segment with Wetland Units.

This is a proxy for being contiguous to a Wetland Unit. When buffers of nearby wetland

buffers

do not overlap, it works perfectly. In the case of overlapping buffers, it is very unlikely that

an

overlapping buffer polygon from a nearby wetland would have the exact geometry to share a

line

segment with any Wetland Unit. Spot checks of the statewide output confirm this.

230

Select by location

Selection method: select features from

Target layers(s): Buffer300mUndist_sing

Source layer: WU_20150514

Spatial selection method for target layer feature(s): share a line segment with the source layer

feature

Calculate area of contiguous singlepart polygons

Open attribute field of Buffer300mUndist_sing

Field Calculate “ContigSingArea” = [Shape_Area]

Clear selections

SELECT * FROM Buffer300mUndist_sing WHERE: "ContigSingArea" IS NULL

Field Calculate “ContigSingArea” = 0

Dissolve undisturbed portion of wetland buffer by WUKey

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: Buffer300mUndist_sing

Output Feature Class: Buffer300mUndist_diss

Dissolve Fields: WUKey

Statistics Fields: Buf300Area (Statistic Type = First)

 ContigSingArea (Statistic Type = Sum)

Check box “Create multipart features” (default)

Add field and calculate ratio of contiguous undisturbed area to total buffer area.

Open attribute table of Buffer300mUndist_diss

Add field “ContigUndRat” (float)

Field calculate ContigUndRat = [SUM_ContigSingArea] / [FIRST_Buf300Area]

Create feature class to store intermediate results for BufferContig

R-click “WU_20150514” and Export Data

Export: All features

Output feature class: WetlandFunction.gdb\WU_BufferContig1

Join ratio of contiguous undisturbed buffer to Wetland Units

ArcToolbox / Data Management Tools / Joins / Add Join

Input table: WU_BufferContig1

Input Join Field: WUKey

Join Table: Buffer300mUndist_diss

Output Join Field: WUKey

231

Export joined data

R-click WU_BufferContig1 and select Data / Export Data

Output feature class: WU_BufferContig

Remove Join

R-click WU_BufferContig1 and select Joins and Relates / Remove All Joins

Set value of ContigUndRat to zero for null intersections

Open attribute table of WU_BufferContig

SELECT * FROM WU_BufferContig WHERE: "ContigUndRat" IS NULL

Field Calculate ContigUndRat = 0

Add field BufferContig, set initial value to zero

Open the attribute table to WU_BufferContig

Add field “BufferContig” (short integer) to attribute table

Field Calculate “BufferContig” = 0

Assign points

SELECT * FROM WU_BufferContig WHERE: "ContigUndRat" > 0.6

Field Calculate BufferContig = 1

SELECT * FROM WU_BufferContig WHERE: "ContigUndRat" > 0.9

Field Calculate BufferContig = 2

232

5.6.6 BufferLand: Buffer and Landscape Integrity

Version date: 2 October 2017

Strategy: Completed 3/16/2017 EAB

GIS method: 10/2/2017 EAB; results verified 10/2/2017 EAB

Python coding: 10/3/2017 YH

Final review by EAB: 10/3/2017

Purpose:

Input to Habitat & Ecological Integrity / Landscape Opportunity

Max 7 points

Rationale: see rationale for each of the three component metrics.

Strategy: Sum the points for BufferPerim, BufferContig, and LandInteg.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFunction.gdb
o Feature Class: WU_BufferPerim

▪ Field: BufferPerim
o Feature Class: WU_BufferContig

▪ Field: BufferContig
o Feature Class: WU_LandInteg

▪ Field: LandInteg

Method:

Spatial join to merge BufferPerim and BufferContig into one attribute table

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_BufferPerim

Join Feature: WU_BufferContig

Output Feature Class: WU_BufferLand1

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 WUKey

Shape_Length

 Shape_Area

 BufferPerim

 BufferContig

Match option: CONTAINS

Spatial join to merge LandInteg

ArcToolbox / Analysis Tools / Overlay / Spatial Join

233

Target Feature: WU_BufferLand1

Join Feature: WU_LandInteg

Output Feature Class: WU_BufferLand

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 WUKey

Shape_Length

 Shape_Area

 BufferPerim

 BufferContig

 LandInteg

Match option: CONTAINS

Add BufferLand field to Wetland Units and set initial point value to zero.

Open attribute table of WU_BufferLand

Add field “BufferLand” (short integer)

R-click BufferLand and Field Calculate BufferLand = 0

Sum the points for BufferPerim, BufferContig, LandInteg

R-click BufferLand and Field Calculate “BufferLand” = [BufferPerim] + [BufferContig] +

[LandInteg]

234

5.6.7 BufferPerim: Wetland Perimeter with Natural Buffer

Version date: 24 January 2018

Strategy: 3/16/2017 EAB

GIS method: 9/28/2017 EAB; results verified 9/29/2017 EAB. 1/24/2018 EAB: Method updated

to include mapped trails. Note that selection numbers are outdated as a result of this addition.

Python code: 10/3/2017 YH

Final review by EAB: 10/3/2017

Purpose:

Input to Habitat / Opportunity / BufferLand (Buffer and Landscape Integrity)

Description:

Maximum 2 points

Rationale: An intact perimeter, even with a narrow natural buffer, offers protection to the

wetland habitat. The ability of buffers to protect a wetland increases with buffer extent along the

wetland perimeter. For some kinds of stress, such as predation by feral pets or disruption of

plant communities by cattle, small breaks in buffers may cause significant degradation of a

wetland. However, for many stressors including trails and small unpaved roadways, small

breaks in buffers probably do not significantly disrupt the buffer functions (CWMW 2013).

Strategy: Note that the integrity of the wetland perimeter is best observed in the field. This GIS

metric is overwritten by field assessment.

Calculate the percent of the Wetland Unit perimeter (10m buffer around Wetland Unit) that

intersects DisturbedLand. Identify the Wetland Units that are within 10 meters of linear

disturbances (road, rail). Tiger line files have route type (RTTYP) codes as follows:

C = County (=DEP primary, local, other)

I = Interstate (=DEP interstate)

M = Common Name (=DEP interstate, primary, local, other)

O = Other (=DEP primary, local, other)

S = State recognized (=DEP primary, local, other)

U = U.S. (=DEP interstate, primary, local, other)

The DEP basemap has more accurate road attributes than the raw Tiger line files. Also the DEP

railways layer appears to be more accurately and completely mapped than the tiger_2013 rail

layer. We do not have good GIS coverage of pipelines or transmission lines. Assign points as

follows:
• 2 points: 10m buffer does not intersect DisturbedLand AND Wetland Unit is not within 10

meters of trails, roads or railways.

• Wetland Unit is within 10 meters of trail, Local Road, Other Road or Trail, but is not within 10
meters of railways or larger roads OR 10m buffer intersects trace-25% of DisturbedLand

• 0 points: Wetland Unit is within 10 meters of Interstate Highway, Primary Road, or Railway OR
10m buffer intersects >25% of DisturbedLand

Source Data:

235

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\trails_Sep_27_2017_webmerc
ator.shp

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\basemap\tiger_2013\WV_Transportation_UTM.gdb
o Feature Class: Interstates
o Feature Class: Primary_Roads
o Feature Class: Local_Roads
o Feature Class: Other Roads & Trails

• M:\LayerFiles\arcsde_backup.gdb
o Feature Dataset: basemap_cultural_non_replica
o Feature Class: SDE_railway_tiger

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: DisturbedLand

Create 10m buffer around Wetland Unit

Note that this procedure should be performed when Wetland Units are first created

Therefore, please do not include this procedure in the code for this metric

ArcToolbox / Proximity / Buffer

Input features WU_20150514

Output feature class: WetlandUnits.gdb\Buffer10m

Distance [value or field]: Linear Unit: 10 Meters

Side Type: OUTSIDE_ONLY

Dissolve Type: NONE

Add field to store buffer area

Open attribute table of Buffer10m

In attribute table of Buffer10m, add field “Buf10Area” (float)

Field calculate Buf10Area = Shape_Area

Method:

STEP 1 Roads and Railways

Create feature class to store intermediate results for BufferPerim

R-click “WU_20150514” and Export Data

Export: All features

Output feature class: WetlandFunction.gdb\WU_BufferPerim1

Add field to store road and rail type

Open attribute table of WU_BufferPerim1

236

Add field RoadRailType (text, 10 characters)

Select Wetland Units that intersect or are within 10 meters of mapped trails

Select by Location

Selection method: Select features from: WU_BufferPerim1

Source layer: trails_Sep_27_2017_webmercator.shp

Spatial selection method for target layer feature(s): Intersect the source layer feature

Apply a search distance: 10 meters

(____ Wetland Units selected)

R-click RoadRailType and Field Calculate RoadRailType: "Trail"

Select Wetland Units that intersect or are within 10 meters of other roads & trails

Select by Location

Selection method: Select features from: WU_BufferPerim1

Source layer: other roads & trails

Spatial selection method for target layer feature(s): Intersect the source layer feature

Apply a search distance: 10 meters

R-click RoadRailType and Field Calculate RoadRailType: "Other"

Select Wetland Units that intersect or are within 10 meters of local roads

Select by Location

Selection method: Select features from: WU_BufferPerim1

Source layer: local roads

Spatial selection method for target layer feature(s): Intersect the source layer feature

Apply a search distance: 10 meters

R-click RoadRailType and Field Calculate RoadRailType: "Local"

Select Wetland Units that intersect or are within 10 meters of railways

Select by Location

Selection method: Select features from: WU_BufferPerim1

Source layer: railways

Spatial selection method for target layer feature(s): Intersect the source layer feature

Apply a search distance: 10 meters

R-click RoadRailType and Field Calculate RoadRailType: "Rail"

Select Wetland Units that intersect or are within 10 meters of primary roads

Select by Location

237

Selection method: Select features from: WU_BufferPerim1

Source layer: primary roads

Spatial selection method for target layer feature(s): Intersect the source layer feature

Apply a search distance: 10 meters

R-click RoadRailType and Field Calculate RoadRailType: "Primary"

Select Wetland Units that intersect or are within 10 meters of interstate highways

Select by Location

Selection method: Select features from: WU_BufferPerim1

Source layer: interstates

Spatial selection method for target layer feature(s): Intersect the source layer feature

Apply a search distance: 10 meters

R-click RoadRailType and Field Calculate RoadRailType: "Interstate"

STEP 2 DisturbedLand

Note that much of this step is the same as the method for Disturb50m

Intersect the 10m buffers and the disturbed land uses.

ArcToolbox / Analysis Tools / Overlay / Intersect

Input features: Buffer10m

 DisturbedLand

Output feature class: Buffer10mDist

Join attributes: ALL

Output type: INPUT

Dissolve disturbed portion of wetland buffer by WUKey

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: Buffer10mDist

Output Feature Class: Buffer10mDist_diss

Dissolve Fields: WUKey

Statistics Fields: Buf10Area (Statistic Type = First)

Check box “Create multipart features” (default)

Add field and calculate ratio of disturbed area to total buffer area.

Open attribute table of Buffer10mDist_diss

Add field “Dist10mRat” (float)

Field calculate Dist10mRat = [Shape_Area] / [FIRST_Buf10Area]

Join ratio of disturbed buffer to Wetland Units

238

ArcToolbox / Data Management Tools / Joins / Add Join

Input table: WU_BufferPerim1

Input Join Field: WUKey

Join Table: Buffer10mDist_diss

Output Join Field: WUKey

Export joined data

R-click WU_BufferPerim1 and select Data / Export Data

Output feature class: WU_BufferPerim

Remove Join

R-click WU_BufferPerim1 and select Joins and Relates / Remove All Joins

Set value of Dist10mRat to zero for null intersections

Open attribute table of WU_BufferPerim

SELECT * FROM WU_BufferPerim WHERE: "Dist10mRat" IS NULL

Field Calculate Dist10mRat = 0

STEP 3

Assign points

Add field BufferPerim, set initial value to zero

Open the attribute table to WU_BufferPerim

Add field “BufferPerim” (short integer) to attribute table

Field Calculate “BufferPerim” = 0

Assign points

SELECT * FROM WU_BufferPerim WHERE: "Dist10mRat" = 0 AND "RoadRailType" IS

NULL

Field Calculate BufferPerim = 2

SELECT * FROM WU_BufferPerim WHERE: "Dist10mRat" > 0 OR "RoadRailType" IN

('Trail', 'Local', 'Other')

Field Calculate BufferPerim = 1

SELECT * FROM WU_BufferPerim WHERE: "Dist10mRat" > 0.25 OR "RoadRailType" IN

('Rail', 'Primary', 'Interstate')

Field Calculate BufferPerim = 0

239

5.6.8 Chem Time: Time and space for Chemical Reactions to Occur

 i.e., Seasonal Ponding, Slope, and Wetland Upland Interface

Version date: 14 March 2016

Strategy: completed 2/27/2016 EAB

GIS method: completed & verified 3/14/2016 EAB

Python code: started & completed 3/21/2016 MCA

Final review by EAB: 3/21/2016

Purpose:

Input to Water Quality

Maximum 3 points; groundwater wetlands only

Description:

Rationale: The area of the wetland that is seasonally ponded is an important characteristic in

understanding how well it will remove nutrients, specifically nitrogen. The highest levels of

nitrogen transformation occur in areas of the wetland that undergo a cyclic change between oxic

(oxygen present) and anoxic (oxygen absent) conditions. The oxic regime (oxygen present) is

needed so certain types of bacteria will change nitrogen that is in the form of ammonium ion

(NH4+) to nitrate, and the anoxic regime is needed for denitrification (changing nitrate to

nitrogen gas) (Mitsch and Gosselink 1993). The area that is seasonally ponded is used as an

indicator of the area in the wetland that undergoes this seasonal cycling. The soils are

oxygenated when dry but become anoxic during the time they are flooded.

Water velocity increases with increasing slope. This decreases the retention time of surface

water in the wetland and the potential for retaining sediments and associated toxic pollutants.

The potential for sediment deposition and retention of toxics by burial decreases as the slope

increases (Adamus et al. 1991).

Summary of strategy: Select wetlands that are not in a floodplain and have seasonal ponding.

Then, filter the points so that wetlands with slope >5% do not receive any points, and wetlands

with slopes 2-5% get a maximum of 2 points.

Finally, wetlands can gain 1 additional point (regardless of slope) if they have a highly irregular

upland/wetland boundary.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb

o Feature Class: EnhWVWetland

Input Variables:

• Floodplain (location in floodplain)

• SeasonPond (seasonal ponding)

240

• Slope (median percent slope)

• IrrEdge (irregular upland/wetland boundary edge)

Method:

Create feature class to store ChemTime factor

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_ChemTime

Spatial join to add input variables to attribute table

Spatial join (contains) to add the following to the WU_ChemTime: Floodplain, SeasonPond,

Slope, IrrEdge

Add field ChemTime to Wetland Units attribute table and set initial value to

SeasonPond.

Add field ChemTime (ShortInteger) to WU_ChemTime attribute table.

R-click ChemTime and Field Calculate “ChemTime” = [SeasonPond]

Filter Seasonal Ponding (SeasonPond) points based on Slope and Floodplain

SELECT * FROM WU_ChemTime WHERE: "SLOPE" > 5 OR "Floodplain" = 'Y'

R-click ChemTime and Field Calculate “ChemTime” = 0

SELECT * FROM WU_ChemTime WHERE: "SLOPE" > 2 AND "SLOPE" < 6 AND

"ChemTime" > 2

R-click ChemTime and Field Calculate “ChemTime” = 2

Add point for irregular edge (IrrEdge)

SELECT * FROM WU_ChemTime WHERE: "IrrEdge" = 1 AND "Floodplain" = 'N' AND

"ChemTime" < 3

R-click ChemTime and Field Calculate “ChemTime” = [ChemTime] + 1

241

5.6.9 Clay: Clay near Surface

Version date: 4 October 2016

Strategy: completed 2/27/2016 EAB

GIS method: completed & verified 3/3/2016 EAB

Python code: Started 3/2/2016 MCA, Completed 3/3/2016 MCA

Final verification of result by EAB: 3/3/2016; 10/4/2016 EAB revised SsurgoClay layer to

include clay < 8 cm instead of < 6 cm (better reading of Hruby 2012). This does not affect

Python coding.

Purpose:

Input to Water Quality / Clay and Organic Soils Factor

Y/N

Description:

Clay near surface. Select Wetland Units that intersect with clay in the top 8 cm of the soil

profile in Palustrine Plot or SSURGO datasets.

Note that SSURGO mapping is very uneven, with some counties heavily mapped in A-horizon

clay (Wetzel, Tyler, Pleasants, Ritchie, Putnam, Cabell) and others with little or no A-horizon

clay mapped (Hardy, Grant, Tucker, Preston, Webster, Roane, Calhoun, Lewis, Doddridge,

Nicholas, and much of southwestern WV).

Definitions:

SSURGO soils data from NRCS has multiple non-spatial tables, which have one-to-many

relationships with the ssurgo_wv table. We will access the component horizon table

(chorizon_all) to extract the clay content, horizon, and top depth of the horizon.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb

o Feature Class: PalustrinePlots

• M:\basemap\ssurgo\ssurgo.gdb

o Feature Class: ssurgo_wv

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SsurgoExports.gdb

o Feature Class: SsurgoClay

242

NOTE: ArcGIS related tables cannot be programmed in Python, so before this procedure

is run, the input data layer must be created in ArcGIS, as shown below. Note that this

layer should be re-exported as SSURGO is updated by NRCS.

Open the related one-to-many SSURGO chorizon_all table.

Open attribute table for ssurgo_wv

Click “Related Tables” (second icon from left).

Click “component to surgo: component_all” to open the component_all table. Note that a tab

will appear at the bottom of the attribute table showing the tables that are open.

Click “Related Tables” (second icon from left).

Click “component to chorizon: chorizon_all” to open the chorizon_all table.

Select soils with clay > 27% in the top 8 cm of the soil profile.

With the tab at the bottom of the attribute labelled “chorizon_all” highlighted:

SELECT * FROM chorizon_all WHERE: "claytotal_r" > 27 AND "hzdept_r" < 8 (516 out of

28520 selected)

Relate this selection to the spatial data in the ssurgo_wv tab.

Click “Related Tables” again to get back to component_all and then back to ssurgo_wv (65525

out of 413438 selected). Note that the last step takes some time while all of the related tables

open up.

Export data to new feature class

R-click ssurgo_wv / Data / Export Data

Export Selected Features

Output feature class: SsurgoExports\SsurgoClay

Input Variables:

None

Method:

Add field Clay to Wetland Units attribute table and set initial value to “no clay”.

Add field Clay (Text, Length 2) to Wetland Units attribute table.

R-click Clay and Field Calculate “Clay” = ‘N’

PART 1: PALUSTRINE PLOTS

Select Palustrine plots with clay near surface.

243

SELECT * FROM PalustrinePlots WHERE: "Soil_Textu" LIKE '%clay%' AND "Depth_of_o"

IN (' ', '0', '1', '2', '3', '4') (230 out of 1702 selected)

Select Wetland Units that intersect palustrine plots selection.

Selected by location

Selection method: select features from

Target layer: WU_20150514

Source layer: PalustrinePlots

Check “Use selected features”

Spatial selection method: intersect the source feature layer

Update the value for “Clay” based on Palustrine plots.

Open Wetland Units attribute table.

R-click “Clay” and Field Calculate “Clay” = “Y”

Clear all selections.

Part 2: SSURGO

Select Wetland Units that intersect with the SSURGO selection.

Select by Location

Selection method: select features from

Target layer(s): WU_21050514

Source layer: SsurgoClay

Spatial selection method: intersect the source layer feature

Update the value for “Clay” based on SSURGO.

Open Wetland Units attribute table

R-click “Clay” and Field Calculate “Clay” = “Y”

244

5.6.10 Clay Organic: Clay and Organic Soils

Version date: 14 March 2016

Strategy: completed 2/27/2016 EAB

GIS method: completed 3/10/2016 EAB; verified 3/14/3016 EAB

Python code: started & completed 4/5/2016 MCA

Final review by EAB: 4/5/2016

Purpose:

Input to Water Quality

Maximum 3 points; groundwater wetlands only

Description:

Must be outside the area of permanent ponding.

Rationale: Clay soils and organic soils are good indicators that a wetland can remove a wide

range of pollutants from surface water. The uptake of dissolved phosphorus and toxic

compounds through adsorption to soil particles is highest when soils are high in clay or organic

content (Mitsch and Gosselink 1993). Denitrification is also high in soils with high organic

content (Fisher and Acreman 2004). We only consider the type of soil near the surface because

this is where the soil actually has contact with the surface waters carrying the pollutants. This is

where most of the chemical and biological reactions occur. We only consider the organic or clay

soil horizon in areas that are not permanently ponded.

Summary of strategy: Select wetland units that have clay or organic soils AND are not in a

floodplain. Assign points according to the area of seasonal ponding, as follows:

• SeaPondRatio = 70-100% cover: 3 points

• SeaPondRatio = 40-70% cover: 2 points

• SeaPondRatio = 10-40% cover: 1 point

• SeaPondRatio < 10% cover: 0 point

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• Clay (clay soil near surface)

• Organic (organic matter near surface)

• SeaPondRatio (ratio of seasonally ponded area to total Wetland Unit area)

• Floodplain (location in floodplain)

Method:

Create feature class to store ClayOrganic factor

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_ClayOrganic

245

Add ClayOrganic field to Wetland Units and set initial point value to zero.

Open attribute table of WU_ClayOrganic

Add field “ClayOrganic” (short integer)

R-click ClayOrganic and Field Calculate ClayOrganic = 0

Spatial join to add input variables to attribute table

Spatial join (contains) to add the following to the WU_ClayOrganic: Floodplain, Clay, Organic,

SeaPondRatio

Assign points to Wetland Units not in floodplain with clay or organic soils and seasonal

ponding

SELECT * FROM WU_ClayOrganic WHERE: "Floodplain" = 'N' AND ("Clay" = 'Y' OR

"Organic" = 'Y') AND "SeaPondRatio" > 0.1

Field Calculate ClayOrganic = 1

SELECT * FROM WU_ClayOrganic WHERE: "Floodplain" = 'N' AND ("Clay" = 'Y' OR

"Organic" = 'Y') AND "SeaPondRatio" > 0.5

Field Calculate ClayOrganic = 2

SELECT * FROM WU_ClayOrganic WHERE: "Floodplain" = 'N' AND ("Clay" = 'Y' OR

"Organic" = 'Y') AND "SeaPondRatio" > 0.9

Field Calculate ClayOrganic = 3

246

5.6.11 Connect FL: Connectivity to Historic Floodplain

Version date: 20 November 2016

Strategy: Completed 11/16/2016 EAB

GIS method: completed 11/20/2016 EAB, verified 12/19/2016 EAB

Python coding: Completed 12/22/2016 MCA

Final review by EAB: 12/30/2016

Purpose:

Input to Flood Attenuation / Opportunity

Max 2 points.

Rationale: Wetlands are more likely to receive flood waters if they are well-connected to their

historic floodplain (Acreman and Holden 2013).

Summary of strategy: Sum the points for FloodArea and StreamEdge. Reduce to a maximum of

2 points.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• FloodArea (2 points)

• StreamEdge (2 points)

Method:

Spatial joins to add input variables to Wetland Units attribute table

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_20150514

Join Feature: WU_FloodArea

Output Feature Class: WU_Connect1

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 FloodArea

Match option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_Connect1

Join Feature: WU_StreamEdge

Output Feature Class: WU_Connect

247

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 FloodArea

 StreamEdge

Match option: CONTAINS

Add ConnectFL field and set initial point value to zero.

Open attribute table of WU_Connect

Add field “ConnectFL” (short integer)

R-click ConnectFL and Field Calculate ConnectFL = 0

Sum the points for FloodArea and StreamEdge.

Open attribute table of WU_Connect

R-click ConnectFL and Field Calculate “ConnectFL” = [FloodArea] + [StreamEdge]

Reduce the total points to a maximum of 2.

Open attribute table of WU_Connect

SELECT * FROM WU_Connect WHERE: "ConnectFL" > 2

Field Calculate (selection only) “ConnectFL” = 2

248

5.6.12 ConsFocus: WVDNR Conservation Focus Areas with Wetland Focus

Version date: 11 December 2018

Strategy: 3/16/2017 EAB

GIS method: 10/4/2017 EAB; results verified 10/4/2017 EAB; Updated to include amphibian

and reptile focus area information from DNR on 12/10/2018 EAB; 12/11/2018 method verified

by JSH

Python code: 10/9/2017 YH

Final review by EAB: 10/9/2017

Purpose:

Input to Habitat / Landscape Opportunity (LandEco: Landscape Ecological Connectivity)

Description:

Maximum 2 points

Rationale: WVDNR has identified Conservation Focus Areas (CFAs) as part of the State

Wildlife Action Plan. Several of the CFAs have a specific wetland focus. In addition, Partners

in Reptile and Amphibian Conservation (PARCA) is working with WVDNR, USFS, USFWS,

Dr. Tom Pauley of Marshall U., and others to develop focus areas, some of which have a

specific wetland focus. CFAs that include a wetland focus are:

1. Cacapon River and Patterson Creek (wetland odonates, Short Mtn wetland); note that this

shares a boundary with much of the PARCA “Eastern Panhandle” focus area for amphibians

and reptiles, including wetland species.

2. Central Reservoirs (wetland birds and odonates),

3. High Alleghenies (High Allegheny Wetlands, all taxa groups, largest and most intact

wetland complex in WV),

4. Little Kanawha and Middle Island Creek (wetland odonates),

5. Lower Elk River (wetland odonates),

6. Meadow River Wetlands (oak-ash swamps in 2nd largest wetland complex in WV, birds,

crayfish, plants),

7. Ohio River Corridor (wetland birds, amphibians, plants, Greenbottom Swamp, Ohio River

Islands); note that the southern half of this area shares boundaries with the PARCA “Moth

Man” focus area for amphibians and reptiles, including wetland species.

8. Shenandoah Valley (marl wetlands, Virginia Rail, spotted turtle); note that this include the

PARCA “Altona” focus area for amphibians and reptiles, including wetland species.

9. Sleepy Creek and Back Creek (wetland turtles, amphibians, plants); note that this shares a

boundary with the eastern portion of the PARCA “Eastern Panhandle” focus area for

amphibians and reptiles, including wetland species.

PARCAs with at least a partial wetland focus:

1. Snot Otter: includes riverine wetlands

2. Gorges: includes riverine wetlands

3. General Davis: includes riverine wetlands

249

4. Cranberry: includes riverine wetlands

5. Eastern Panhandle: mostly focused on the 3 major wood turtle streams (Cacapon, Sleepy

Creek, and Back Creek) and associated palustrine wetlands and tributaries to those

waterways

6. Altona: incorporates the bulk of TNC property and easements along Mill Creek, west of

Charles Town, so includes the stream and associated palustrine wetlands.

7. Moth Man: incorporates many of the wetlands, mainly palustrine, serving as habitat for

amphibians, including rare species such as small-mouthed salamander, streamside

salamander, Jefferson salamander, and Blanchard’s cricket frog (if still extant in the state).

PARCAs that do not have a wetland focus are Panther, Wayne, Cow Knob, and Pauley’s

Plethodon. Pauley’s Plethodon includes a large wetland acreage with significant overall

biodiversity, but the wetland-affiliated amphibians and reptiles in that PARCA don’t happen to

be priority species. Pauley’s Plethodon has priority species Cheat Mountain salamander, green

salamander, and timber rattlesnake.

GIS Method (no field method):

Select wetlands that intersect CFAs and/or PARCAs. Assign points as follows:

 2 points: Wetland Unit intersects CFA/PARCA with specific wetland focus

 1 point: Wetland Unit intersects any CFA except the “General CFA” or any PARCA

 0 points: None of the above criteria are met

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\HabitatData.gdb
o Feature Class: ConsFocusArea

Method:

Create feature class to store results for ConsFocus and set initial value to zero

R-click WU_20150514 and select Data / Export / All Features

Output feature class: WetlandFunction.gdb / WU_ConsFocus

Open attribute table of WU_ConsFocus

Add field “ConsFocus” (short integer)

Field calculate ConsFocus = 0

Select Wetland Units that intersect the selected CFAs

Select by Location

Selection method: select features from

Target layer(s): WU_ConsFocus

Source layer: ConsFocusArea

250

Spatial selection method for target layer feature(s): intersect the source layer feature

Assign 1 point

Open attribute table of WU_ConsFocus

Field Calculate ConsFocus = 1

Select CFAs with wetland focus

SELECT * FROM ConsFocusArea WHERE: WetlFocus = 'yes'

Select Wetland Units that intersect CFAs with wetland focus

Select by Location

Selection method: select features from

Target layer(s): WU_ConsFocus

Source layer: ConsFocusArea

Check “Use selected features”

Spatial selection method for target layer feature(s): intersect the source layer feature

Assign 2 points

Open attribute table of WU_ConsFocus

Field Calculate ConsFocus = 2

251

5.6.13 Creating Wetland Units from NWI Polygons

Version date: 26 January 2022

Purpose:

Wetland Units are contiguous, hydrologically connected wetland polygons. They are the basic

units used for functional assessment in West Virginia.

Methods:

1. Run the NWI data verification tests on the input polygons and correct any errors.

a. Create a new feature class that contains all palustrine wetlands, vegetated riverine

wetlands, and vegetated lacustrine wetlands. Select by attributes where: "ATTRIBUTE" LIKE
'P%' OR "ATTRIBUTE" LIKE 'R2AB%' OR "ATTRIBUTE" LIKE 'R3AB%' OR "ATTRIBUTE" LIKE
'R2US5%' OR "ATTRIBUTE" LIKE 'R3US5%' OR "ATTRIBUTE" LIKE 'R2EM%' OR "ATTRIBUTE"
LIKE 'R3EM%' OR "ATTRIBUTE" LIKE 'R4SB7%' OR "ATTRIBUTE" LIKE 'L2AB%' OR
"ATTRIBUTE" LIKE 'L2US5%' OR "ATTRIBUTE" LIKE 'L2EM%'

b. Create a new feature class with the selected data called WUWorkingDS.

2. Dissolve NWI polygons. ArcGIS Geoprocessing menu/Dissolve. Remember to uncheck “Create

multipart features (optional)”. We do not want any multipart features.
3. Add unique ID field (Long Integer: WUKey) for Wetland Units
4. Run “Check Geometry” on the final output to check for errors.
5. Create the basic geometries used for assessment of Wetland Units

a. WUpoint
b. Buffer10m
c. Buffer50m
d. Buffer300m
e. Buffer1km
f. DrainageArea

Buffer creation method

Create 300m buffer around Wetland Unit

ArcToolbox / Proximity / Buffer

Input features WU_20150514

Output feature class: WetlandUnits.gdb\Buffer300m

Distance [value or field]: Linear Unit: 300 Meters

Side Type: OUTSIDE_ONLY

Dissolve Type: NONE

Add field to store buffer area

Open attribute table of Buffer300m

In attribute table of Buffer300m, add field “Buf300Area” (float)

Field calculate Buf300Area = Shape_Area

252

5.6.14 CSFunction: Carbon Sequestration

Version date: 3 February 2017

Strategy: completed 4/13/2016 EAB

GIS method: completed 4/13/2016 EAB; verified 4/15/2016 EAB

Python code: Please wait to do this roll-up of the function. Since there are just 4 points in this

function, we will combine it with Habitat/Ecological Integrity.

Final review by EAB:

Purpose:

Carbon Sequestration

4 points maximum – all wetlands

Description:

Rationale: The intrinsic potential of a wetland to sequester carbon depends on the amount and

stability of above-ground biomass (vegetation) and below-ground carbon (organic soils). The

carbon sequestration function includes only the potential aspect, since the opportunity and value

to society aspects are the same for all wetlands.

Summary of strategy: For each Wetland Unit, sum the points for all factors within the

“Potential” aspect. If the total exceeds 4 points, reduce to 4.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• Histosol (3 points – all types)

• VegCS (3 points – all types)

Method:

Spatial join to add input variables to Wetland Units attribute table

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_Histosol

Join Feature: WU_VegCS

Output Feature Class: WU_CSFunction

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 Histosol

 VegCS

253

Match option: CONTAINS

Add CSFunction field to Wetland Units and set initial point value to zero.

Open attribute table of WU_CSFunction

Add field “CSFunction” (short integer)

R-click CSFunction and Field Calculate CSFunction = 0

Sum the factor points

R-click CSFunction and Field Calculate CSFunction = [Histosol] + [VegCS]

Reduce any excess point scores to the maximum allowed.

Clear all selections.

SELECT * FROM WU_CSFunction WHERE: "CSFunction" > 4

(235 out of 43214 selected)

Field Calculate (selection only) “CSFunction” = 4

254

5.6.15 Depressions: Surface Depressions

Version date: 22 March 2016

Strategy: Completed 2/27/2016 EAB

GIS method: Drafted 2/27/2016 EAB, verified 3/14/2016 EAB

Python code: Started 3/21/2016, completed 3/22/2016 MCA

Final review by EAB: 3/22/2016

Purpose:

Input to Water Quality

Max 5 points, floodplain wetlands only.

Description:

Rationale: Surface depressions in a wetland that receives overland flow can trap sediments

during a flood event. Depressions in riverine wetlands will tend to accumulate sediment and the

pollutants associated with sediment (phosphorus and some toxics) because they reduce water

velocities (Fennessey and others 1994) when the river floods. Wetlands where a larger part of

the total area has depressions are relatively better at removing pollutants associated with

sediments than those that have no such depressions. We cannot calculate surface depressions

directly with the DEMs we have, so we estimate it from interspersion of Cowardin polygons,

low slope, and irregularity of the upland/wetland edge. This is a proxy for complex

microtopography. During field assessment, surface depressions will be estimated directly.

Summary of strategy: Select floodplain wetlands only. Sum the points for Microtopo (2 max),

LowSlope (2 max), and IrrEdge (1 max).

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• Floodplain (Floodplain Location)

• Microtopo (Microtopographic Complexity)

• LowSlope (Low Slope)

• IrrEdge (Irregular Edge of the Upland/Wetland Boundary)

Method:

Create feature class to store Depressions factor

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_Depressions

Spatial join to add input variables to attribute table

255

Spatial join (contains) to add the following to the WU_Depressions: Floodplain, Microtopo,

LowSlope, IrrEdge

Add Depressions field to Wetland Units and set initial point value to zero.

Open attribute table of WU_Depressions

Add field “Depressions” (short integer)

R-click Depressions and Field Calculate Depressions = 0

Sum points for surface depressions (Depressions) in floodplain Wetland Units.

Clear all selections.

SELECT * FROM WU_Depressions WHERE: "Floodplain" = 'Y'

Field Calculate “Depressions” = [Microtopo] + [LowSlope] + [IrrEdge]

256

5.6.16 Discharges: Discharges to wetland within 100 m of boundary

Version date: 21 February 2024

Previous version(s): 6 April 2016

Strategy: completed 3/11/2016 EAB

GIS method: completed 4/6/2016 EAB; verified 4/6/2016 EAB

Python coding: completed 6/9/2016 MCA

Final review by EAB: 10/3/2016; in 2024, EAB re-arranged the Source Data to show Septic as a

source layer rather than as a variable.

Purpose:

Water Quality Function

Max 2 points

Description:

Rationale: Wetlands can receive polluted waters even if they have well-vegetated and large

buffers. For example, a pipe can discharge directly into a wetland, or a stream that drains areas

where pollutants are released far from the unit can pass through the wetland. Also, silt fences

often do not prevent all the sediment from reaching the wetland during construction. Other

sources of pollutants may be septic tanks, NPDES discharges, Hydrological Protection Units

(mining impacts), Acid Mine Lands, Acid Mine Drainage sites, and other sources that we are

not currently able to include such as pesticide spraying on golf courses, particulates in exhausts

from airplanes or motor vehicles, pesticides used in mosquito or gypsy moth control, and

atmospheric deposition of mercury or other contaminants.

Summary of strategy: Assign 1 point to Wetland Units within 100 meters a septic risk or low-

certainty NPDES permit location (excluding deep injection sites). Assign 2 points to Wetland

Units within 100 meters of NPDES outlets (excluding deep injection sites), Well pads permitted

within the last 5 years, Hydrologic Protection Units, Acid Mine Lands, Acid Mine Drainage

sites, Superfund sites, and National Priority List sites.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\wr\owrnpdes_.shp (updated 2024)

• M:\wr\owrnpdes_outlets.shp

• M:\mr\hpu.shp (updated 2024, filtered for attributes, 21416 records)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: AMLAMDFeb2016 (data provided by James Summers, DEP)
o Feature Class: WellPads_20160325 (data provided by Laura Adkins, DEP)
o Feature Class: NPL_point_20160406 (data provided by Peter Costello, DEP)
o Feature Class: NPL_Bndry_20160406 (data provided by Peter Costello, DEP)
o Feature Class: Septic (updated 2024)

Method:

257

Create feature class to store Discharges variable

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_Discharges

Add Discharges field to Wetland Units and set initial point value to zero.

Open attribute table of WU_Discharges

Add field “Discharges” (short integer)

R-click Discharges and Field Calculate Discharges = 0

PART 1: Select the owrnpdes_ records that are not deep injection points and not septic

tanks.

Select by Attributes from owrnpdes_

Method: Create a new selection

SELECT * FROM owrnpdes_ WHERE: "perm_type" = '401 Certification' OR "perm_type" =

'Industrial' OR "perm_type" = 'Sewage' OR "perm_type" = 'UIC Sewage' OR "perm_type" =

'UIC Stormwater Industrial'

Select Wetland Units within 100 m of Septic or selected NPDES records and assign 1

point.

Select by location

Selection method: select features from

Target Layer: WU_Discharges

Source layer: Septic

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 100 meters

Select by location

Selection method: add to the currently selected features in

Target Layer: WU_Discharges

Source layer: owrnpdes_

Check box “Use selected features”

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 100 meters

In WU_Discharges, R-click Discharges and Field Calculate Discharges = 1

PART 2: Select relevant records from owrnpdes_outlets that are not deep injection.

Select by Attributes from owrnpdes_outlets

Method: Create a new selection

258

SELECT * FROM owrnpdes_outlets WHERE: "perm_type" = 'Industrial' OR "perm_type" =

'Sewage' OR "perm_type" = 'UIC Sewage' OR "perm_type" = 'UIC Stormwater Industrial'

Select relevant records (outlets with open status) from Hydrologic Protection Units.

Select by Attributes from hpu

Method: Create a new selection

SELECT * FROM hpu WHERE: "STATUS_FLA" = 'O' AND "INSPECTA_1" = 'OUTLT'

Select Wetland Units within 100 m of potential discharges and assign 2 points.

Select by location

Selection method: select features from

Target layer: WU_Discharges

Source layer: owrnpdes_outlets

Check box “Use selected features”

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 100 meters

Select by location

Selection method: add to the currently selected features in

Target layer: WU_Discharges

Source layer: hpu

Check box “Use selected features”

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 100 meters

Select by location

Selection method: add to the currently selected features in

Target layer: WU_Discharges

Source layer: AMLAMDFeb2016

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 100 meters

Select by location

Selection method: add to the currently selected features in

Target layer: WU_Discharges

Source layer: WellPads_20160325

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 100 meters

Select by location

Selection method: add to the currently selected features in

Target layer: WU_Discharges

Source layer: WV_NPL_point

Spatial selection method: are within a distance of the source layer feature

259

Apply a search distance: 100 meters

Select by location

Selection method: add to the currently selected features in

Target layer: WU_Discharges

Source layer: WV_NPL_Bndry

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 100 meters

In WU_Discharges, R-click Discharges and Field Calculate Discharges = 2

260

5.6.17 DrainageArea: Drainage Area of Wetland

Version date: 25 January 2018

Strategy: 1/25/2018 EAB with advice from Mike Shank

GIS method: 1/25/2018 EAB

Python code: Yibing Han, WV GIS Tech Center

Final review by EAB: 2/15/2018

Purpose:

This layer is a basic spatial input to multiple wetland function metrics within Water Quality,

Flood Attenuation, and Habitat/Ecological Integrity.

Description:

Drainage Area or Contributing Watershed of a Wetland Unit, with 27-meter resolution.

This method creates a feature class containing the polygonal boundary of the watershed that

contributes flow to a Wetland Unit, and the area of that watershed. This layer contains a linking

field (WUKey) to relate it to the Wetland Unit layer (WU_20150514 in WetlandUnits.gdb).

The DrainageArea layer was first developed and run statewide at 27-meter resolution by Mike

Shank in 2016. Finer resolutions may be possible in the future but are extremely time-

consuming (several weeks or more of server time).

For each new set of Wetland Unit polygons, the drainage area must be calculated.

DrainageArea forms one of the basic input geometries for wetland functional assessment.

Source Data:

Flow direction model

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Watershed.gdb

Raster: hydrogrid_16U_flowdir_27m

Wetland Units

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb

Feature Class: WU_20150514

##Note that this method takes a very long time to run on large datasets.

Strategy:

1. Create DrainageArea feature class to hold watershed polygon output in WetlandUnits.gdb
2. Begin LOOP: Note that Wetland Units must be processed one at a time because of overlapping

watershed boundaries. For each Wetland Unit polygon:
a. Copy Wetland Unit polygon to a temporary feature class

i. Select by attributes where WUKey = 1
ii. Export polygon to feature class “temp”

iii. Go through all steps below

261

iv. Next time through loop select WUKey = 2, and so on until all Wetland Units have
been processed

b. Convert temporary feature class to a temporary grid
i. Use the same cell size as the flow direction grid: 27m

ii. Use the WUKey of the Wetland Unit polygon as the grid value, which will carry over
to the output feature class. This allows you to associate the wetland polygon with
its drainage area.

iii. Snap the Wetland Unit grid to the flow direction grid.
c. Run watershed command using temporary grid as input, and the processing extent set to

the flow direction grid. Note that you can calculate drainage for areas. Points are often
tougher to match up exactly to the stream channels on imperfect elevation models.

d. Convert watershed grid to a polygon
e. Append polygon to DrainageArea feature class

3. Return to beginning of LOOP until all Wetland Units have been processed
4. Add field to DrainageArea feature class to store WUKey

Method:

Create feature class to hold watershed polygon output in WetlandUnits.gdb

Create polygon feature class in WetlandUnits.gdb: DrainageArea

Add field: grid_code (long integer)

BEGIN LOOP; start with WUKey = 1 and repeat until all Wetland Units are processed

Copy Wetland Unit polygon to a temporary feature class

In WetlandUnits.gdb, open attribute table of feature class WU_20150514

Select by attributes where WUKey = 1 (then 2,3,4,…n)

Export selected features to feature class “temp”

Convert temporary feature class to a temporary grid

Conversion Tools / To Raster / Polygon to Raster

Input features: temp

Value Field: WUKey

Output Raster Dataset: tempras

Cell assignment type: CELL_CENTER

Priority Field: NONE

Cellsize: 27

Environment Settings / Processing Extent

Extent: Default

Snap raster: hydrogrid_16U_flowdir_27m

In order to capture very thin or small Wetland Units, use Feature to Raster instead of
Polygon to Raster; or Set WUKey field also as Priority field in Polygon to Raster.

262

Run watershed command using temporary grid as input.

Spatial Analyst Tools / Hydrology / Watershed

Input flow direction raster: hydrogrid_16U_flowdir_27m

Input raster or feature pour point data: tempras

Pour point field: VALUE

Output raster: temprasout

Environment Settings / Processing extent

Extent: Same as layer hydrogrid_16U_flowdir_27m

Snap raster: blank

Convert watershed grid to a polygon

Conversion Tools / From Raster / Raster to Polygon

Input raster: temprasout

Field: WUKey

Output polygon features: temppolyout

Do not check “simplify polygons”

Append polygon to DrainageArea feature class

DrainageArea / Load data / Input data = temppolyout

RETURN TO BEGINNING OF LOOP

END LOOP when all Wetland Units are processed

All Wetland Units have now been added to DrainageArea feature class

Add field to DrainageArea feature class to store WUKey

Add field WUKey (long integer)

Field calculate WUKey = grid_code

DrainageArea is ready to be used for analysis

End of procedure

5.6.17 Disturb50m: Land use disturbance within 50 meters of wetland boundary

Version date: 26 October 2016

Strategy: completed 3/12/2016 EAB

GIS method: 10/26/2016 EAB; verified 10/26/2016

Python coding: Started 6/16/2016 & completed 1/25/2017 MCA. Note: This code needs to run

on a server that has adequate memory and processing power.

Final review by EAB: 1/25/2017

263

Purpose:

Water Quality Function / Opportunity aspect

Max 3 points

Description:

Rationale: Farming, grazing, golf courses, residential areas, commercial land uses, urban areas,

and developed areas in general, are major sources of pollutants (Sheldon et al. 2005). Tilled

fields are a source of nutrients, pesticides, and sediment. Pastures are a source of nutrients and

pathogenic bacteria, and clearcut areas are a source of sediment (Sheldon et al. 2005). A well-

vegetated buffer of 50 meters will only remove 60-80% of some pollutants from surface runoff

into a wetland. Thus, pollutants from such land uses will probably reach the wetland unit if they

are within 50 meters of the wetland.

Summary of strategy: Calculate the ratio of disturbed area to total area within 50 meters of the

Wetland Unit. Disturbed land uses include agricultural, pasture, golf course, residential,

commercial, urban, or area that have been timbered within the last 5 years. Create 50 meter

buffer around Wetland Unit. Merge the disturbed land use selections and assign points as

follows:
• 1/10 to ¼ of buffer is covered by disturbed land uses → 1 point

• ¼ to ½ of buffer is covered by disturbed land uses → 2 points

• > ½ of buffer is covered by disturbed land uses → 3 points

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: DisturbedLand

Input Variables:

None

Method:

Add WUKey field to Wetland Units

In attribute table of WU_20150514, add field “WUKey” (long integer)

Field calculate WUKey = OBJECTID

Buffer Wetland Units by 50 meters.

Analysis Tools / Proximity / Buffer

Input Features: WU_20150514

264

Output Feature Class: Buffer50m

Distance (Linear unit): 50 meters

Side Type: OUTSIDE_ONLY

Dissolve Type: NONE

Add field to store buffer area

In attribute table of Buffer50m, add field “BufferArea” (float)

Field calculate BufferArea = Shape_Area

Intersect the 50m buffers and the disturbed land uses.

ArcToolbox / Analysis Tools / Overlay / Intersect

Input features: Buffer50m

 DisturbedLand

Output feature class: Buffer50mDist

Join attributes: ALL

Output type: INPUT

Dissolve disturbed lands by wetland buffer

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: Buffer50mDist

Output Feature Class: Buffer50mDist_diss

Dissolve Fields: WUKey

Statistics Fields: BufferArea (Statistic Type = First)

Check box “Create multipart features” (default)

Add field and calculate ratio of disturbed area to total drainage area.

Open attribute table of Buffer50mDist_diss

Add field “Dist50mRat” (float)

Field calculate Dist50mRat = [Shape_Area] / [FIRST_BufferArea]

Join ratio of disturbed land to Wetland Units

ArcToolbox / Data Management Tools / Joins / Add Join

Input table: WU_20150514

Input Join Field: WUKey

Join Table: Buffer50mDist_diss

Output Join Field: WUKey

Export joined data

R-click WU_20150514 and select Data / Export Data

Output feature class: WU_Disturb50m

265

Add field to Wetland Units and set initial point value to zero.

Open attribute table of WU_Disturb50m

Add field “Disturb50m” (short integer)

R-click Disturb50m and Field Calculate Disturb50m = 0

Assign points.

SELECT * FROM WU_Disturb50m WHERE: "Dist50mRat" > 0.1

R-click Disturb50m and Field Calculate Disturb50m = 1

SELECT * FROM WU_Disturb50m WHERE: "Dist50mRat" > 0.25

R-click Disturb50m and Field Calculate Disturb50m = 2

SELECT * FROM WU_Disturb50m WHERE: "Dist50mRat" > 0.5

R-click Disturb50m and Field Calculate Disturb50m = 3

266

5.6.18 DisturbWshd: Land use disturbance within contributing watershed

Version date: 25 October 2016

Strategy: completed 3/12/2016 EAB

GIS method: 4/20/2016 EAB; verified 10/25/2016

Python coding: Started 5/27/2016 MCA & Completed 11/22/2016

Final review by EAB: 11/28/2016

Purpose:

Water Quality Function / Opportunity aspect

Max 1 point

Description:

Rationale: Farming, grazing, golf courses, residential areas, commercial land uses, urban areas,

and developed areas in general, are major sources of pollutants (Sheldon et al. 2005). Tilled

fields are a source of nutrients, pesticides, and sediment. Pastures are a source of nutrients and

pathogenic bacteria, and clearcut areas are a source of sediment (Sheldon et al. 2005). The

presence of these sources in the contributing watershed of a wetland is a good indicator that

pollutants may be reaching the wetland.

Summary of strategy: Calculate the ratio of disturbed area to total area within the drainage areas

of each Wetland Unit. Disturbed land uses include agricultural, pasture, golf course, residential,

commercial, urban, or area that have been timbered within the last 5 years. Merge the disturbed

land use selections and assign 1 point if more than 10% of the contributing watershed is

disturbed.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514
o Feature Class: DrainageArea27m

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: DisturbedLand

Input Variables:

None

Method:

Intersect the drainage areas and the disturbed land uses.

ArcToolbox / Analysis Tools / Overlay / Intersect

Input features: DrainageArea27m

 DisturbedLand

Output feature class: DrainAreaDist

267

Join attributes: ALL

Output type: INPUT

Dissolve disturbed lands by drainage area

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: DrainAreaDist

Output Feature Class: DrainAreaDist_diss

Dissolve Fields: WUKey

Statistics Fields: CntrWshd (Statistic Type = First)

Check box “Create multipart features” (default)

Add field to DrainAreaDist_diss and calculate ratio of disturbed area to total drainage

area.

Open attribute table of DrainAreaDist_diss

Add field “DistWshdRat” (float)

Field calculate DistWshdRat = [SHAPE_Area] / [FIRST_CntrWshd]

Join ratio of disturbed land to Wetland Units

ArcToolbox / Data Management Tools / Joins / Add Join

Input table: WU_20150514

Input Join Field: WUKey

Join Table: DrainAreaDist_diss

Output Join Field: WUKey

Export joined data

R-click WU_20150514 and select Data / Export Data

Output feature class: WU_DisturbWshd

Add field to Wetland Units and set initial point value to zero.

Open attribute table of WU_DisturbWshd

Add field “DisturbWshd” (short integer)

R-click DisturbWshd and Field Calculate DisturbWshd = 0

Assign points.

SELECT * FROM WU_DisturbWshd WHERE: DistWshdRat > 0.1

R-click DisturbWshd and Field Calculate DisturbWshd = 1

268

5.6.19 EconRisk: Economically Valuable Flood Risk Area Downstream of Wetland

Version date: 9 November 2016

Strategy: 4/21/2016 EAB

GIS method: 4/22/2016 EAB: verified for Barbour and Berkeley counties, need

TotalLossRP100 layer to set quintile thresholds. Layer created by MCA 11/9/16. Quintile

thresholds set and method revised by EAB 11/9/16. Method verified EAB 11/9/16.

Python coding: Started 11/9/2016 MCA & Completed 11/10/2016 MCA

Final verification by EAB:

Purpose:

Flood Attenuation / Value to Society

Max 4 points (all wetland types)

Description:

Rationale: Wetlands upstream of economically valuable flood-prone infrastructure (structures,

roads, developed lands, cropland) can reduce the costs and negative impacts of flood damages

on society (WI GIS-RAM).

Strategy: Wetland Unit is located in or near a census block with significant predicted total losses

during a 100-year flood (Hazus census block data). In West Virginia, wetlands tend to be in

headwaters, while infrastructure is generally in the bottomlands. Therefore we will approximate

“wetland upgradient of risk area” by using three levels of increasing distance: (a) co-location

within a census block with predicted losses, (b) 1 km distance from a census block with

predicted losses, and (c) co-location within a HUC12 watershed that contains predicted losses.

This will approximately capture wetlands that are upgradient of census blocks with predicted

flood losses. Assign points as follows:
• 4 points: WU intersects TotalLossRP100 > 1204 (top quintile or $1,204,000-$246,103,000)

• 3 points: WU intersects TotalLossRP100 = 200 – 1204 OR is within 1 km of top quintile

• 2 points: WU intersects TotalLossRP100 = 42 - 200 OR is within 1 km of fourth quintile

• 1 point: WU intersects TotalLossRP100 > 0 – 42 OR WU is in a HUC12 watershed with
TotalLossRP100 > 0

• 0 point: WU is in a HUC12 watershed with TotalLossRP100 = 0 (bottom quintile)

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Floodplain\FloodplainData.gdb
o Feature Class: TotalLossRP100

• M:\basemap\watersheds_12digit.shp

Method:

Create new feature class to store EconRisk data.

R-click WU_20150514 and select Data / Export Data

269

Output feature class: WU_EconRisk

Open attribute table and add field EconRisk (short integer)

Field calculate EconRisk = 0

Select Census blocks and assign points to Wetland Units.

Assign 1 point to wetlands within HUC12 with loss areas > 0.

Select by attributes from TotalLossRP100

Method: Create a new selection

SELECT * FROM TotalLossRP100 WHERE: "TotalLossRP100" > 0

Select by location

Select Method: select features from

Target layer: watersheds_12digit

Source layer: TotalLossRP100

Check box “Use selected features”

Spatial selection method: intersect the source layer feature

Select by location

Select Method: select features from

Target layer: WU_EconRisk

Source layer: watersheds_12digit

Check box “Use selected features”

Spatial selection method: intersect the source layer feature

R-click WU_EconRisk and open attribute table

In WU_EconRisk, Field Calculate EconRisk = 1

Assign 2 points to wetlands in middle quintile or within 1 km of second highest quintile.

Select by attributes from TotalLossRP100

Method: Create a new selection

SELECT * FROM TotalLossRP100 WHERE: "TotalLossRP100" > 42

Select by location

Select Method: select features from

Target layer: WU_EconRisk

Source layer: TotalLossRP100

Check box “Use selected features”

Spatial selection method: intersect the source layer feature

R-click WU_EconRisk and open attribute table

In WU_EconRisk, Field Calculate EconRisk = 2

Select by attributes from TotalLossRP100

270

Method: Create a new selection

SELECT * FROM TotalLossRP100 WHERE: "TotalLossRP100" > 200

Select by location

Select Method: select features from

Target layer: WU_EconRisk

Source layer: TotalLossRP100

Check box “Use selected features”

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 1000 meters

R-click WU_EconRisk and open attribute table

In WU_EconRisk, Field Calculate EconRisk = 2

Assign 3 points to wetlands in second highest quintile or within 1 km of highest quintile.

Select by attributes from TotalLossRP100

Method: Create a new selection

SELECT * FROM TotalLossRP100 WHERE: "TotalLossRP100" > 200

Select by location

Select Method: select features from

Target layer: WU_EconRisk

Source layer: TotalLossRP100

Check box “Use selected features”

Spatial selection method: intersect the source layer feature

R-click WU_EconRisk and open attribute table

In WU_EconRisk, Field Calculate EconRisk = 3

Select by attributes from TotalLossRP100

Method: Create a new selection

SELECT * FROM TotalLossRP100 WHERE: "TotalLossRP100" > 1204

Select by location

Select Method: select features from

Target layer: WU_EconRisk

Source layer: TotalLossRP100

Check box “Use selected features”

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 1000 meters

R-click WU_EconRisk and open attribute table

In WU_EconRisk, Field Calculate EconRisk = 3

Assign 4 points to wetlands in highest quintile.

271

Select by attributes from TotalLossRP100

Method: Create a new selection

SELECT * FROM TotalLossRP100 WHERE: "TotalLossRP100" > 1204

Select by location

Select Method: select features from

Target layer: WU_EconRisk

Source layer: TotalLossRP100

Check box “Use selected features”

Spatial selection method: intersect the source layer feature

R-click WU_EconRisk and open attribute table

In WU_EconRisk, Field Calculate EconRisk = 4

272

5.6.20 FAFunction: Flood Attenuation

Version date: 7 March 2017

Strategy: completed 4/21/2016 EAB

GIS method: completed 4/22/2016 EAB; verified 3/7/2017 EAB

Python code: 3/13/2017 MCA

Final review by EAB: 6/20/2017 EAB

Purpose:

Flood Attenuation Function

Maximum 24 points (floodplain wetlands); 20 points (groundwater wetlands)

Description:

Rationale: The flood attenuation function is a measure of the effectiveness of a wetland in

storing water or delaying the downgradient movement of water, thus potentially influencing the

height, timing, duration, and frequency of flooding in downstream areas. Many wetlands are

capable of slowing the downslope movement of water, regardless of whether they have

significant storage capacity. Water that is slowed, or stored, in a wetland becomes potentially

available for recharging baseflow of streams or aquifers, and supporting local food webs.

Strategy: For each Wetland Unit, sum the points for the three aspects (wetland potential to

provide function, landscape offers opportunity to carry out function, and value to society)

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

Input Variables:

• FAPotential (16 points max for floodplain wetlands; 14 points max for groundwater wetlands)

• FAOpportun (4 points max for floodplain wetlands; 2 points max for groundwater wetlands)

• FASociety (4 points max for all wetland types)

Method:

Create feature class to store FAFunction

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_FAFunction

Spatial join to bring in aspect values

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_FAPotential

Join Feature: WU_Opportun

273

Output feature class: WU_FAFunction1

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 FAPotential

 FAOpportun

Match Option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_FAFunction1

Join Feature: WU_FASociety

Output feature class: WU_FAFunction

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 FAPotential

 FAOpportun

 FASociety

Match Option: CONTAINS

Add FAFunction field to Wetland Units and set initial point value to zero.

Open attribute table of WU_FAFunction

Add field “FAFunction” (short integer)

R-click FAFunction and Field Calculate FAFunction = 0

Sum the points for each aspect of Water Quality Function for Wetland Units

R-click FAFunction and Field Calculate FAFunction = [FAPotential] + [FAOpportun] +

[FASociety]

274

5.6.21 FAOpportun: Flood Attenuation Opportunity

Version date: 7 March 2017

Strategy: completed 4/22/2016 EAB

GIS method: completed 11/20/2016 EAB; revised 12/19/2016 EAB; verified 3/17/2017

Python code:

Final check by EAB:

Purpose:

Flood Attenuation Function

Maximum 4 points (floodplain wetlands); Maximum 2 points (groundwater wetlands)

Description:

Rationale: Wetlands that are well-connected to their historic floodplains, are surrounded by

runoff-producing areas, or have catchments with steep slopes, all tend to receive flood waters

and have high opportunity to attenuate floods.

Strategy: For each Wetland Unit, sum the points for all factors within the “Opportunity” aspect.

Restrict groundwater wetlands to a maximum of two points.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

Input Variables:

• FloodIn (2 points max) (all wetlands) from WU_FloodIn

• ConnectFL (2 points max) (all wetlands) from WU_Connect

• Floodplain from WU_Connect (or from WU_Floodplain)

Method:

Bring together factor values and output feature class to store FAOpportun.

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_20150514

Join Feature: WU_FloodIn

Output feature class: WU_FAOpportun1

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 FloodIn

Match Option: CONTAINS

275

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_FAOpportun1

Join Feature: WU_Connect

Output feature class: WU_FAOpportun2

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 FloodIn

 ConnectFL

 Floodplain

Match Option: CONTAINS

Add FAOpportun field to Wetland Units and set initial point value to zero.

Open attribute table of WU_FAOpportun

Add field “FAOpportun” (short integer)

R-click FAOpportun and Field Calculate FAOpportun = 0

Sum the factor points.

R-click FAOpportun and Field Calculate FAOpportun = [FloodIn] + [ConnectFL]

Reduce points for groundwater wetlands to a maximum of 2.

Open attribute table of WU_FAOpportun

SELECT * FROM WU_FAOpportun WHERE: "FAOpportun" > 2 AND "Floodplain" = 'N'

(1369 out of 43124 selected)

Field Calculate (selection only) “FAOpportun” = 2

276

5.6.22 FAPotential: Flood Attenuation Potential

Version date: 1 September 2017

Strategy: completed 3/24/2016 EAB

GIS method: completed 3/24/2016 EAB; verified 12/20/2016 EAB; re-verified with revised

Runoff values 1/9/2017 EAB

Python code: 12/22/2016 MCA; 1/10/2017 MCA (Re-ran Code)

Final review by EAB: 1/11/2017

Purpose:

Flood Attenuation Function

17 points maximum FL

14 points maximum GW

Description:

Rationale: The intrinsic potential of a wetland to attenuate floods depends on a number of

factors, including its location in the watershed, slope, the structure and density of vegetation,

soil infiltration capacity, microtopography, and the type of surface water outlet.

Summary of strategy: For each Wetland Unit, sum the points for all factors within the

“Potential” aspect. Note that different point values for floodplain vs. groundwater wetlands are

assigned at the factor level.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• Headwater (1 point – all types)

• LowSlope (2 points – all types)

• VegFA (9 points FL, 5 points GW)

• Runoff (5 points FL, 4 points GW)

• SWOutflow2 (2 points GW)

Method:

Create feature class to store FAPotential

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_FAPotential

Spatial join to bring in factor values

Spatial join (contains) to add the following to the WU_FAPotential table: Headwater,

LowSlope, VegFA, Runoff, SWOutflow2

277

Add FAPotential field to Wetland Units and set initial point value to zero.

Open attribute table of WU_FAPotential

Add field “FAPotential” (short integer)

R-click FAPotential and Field Calculate FAPotential = 0

Sum the factor points

R-click FAPotential and Field Calculate FAPotential = [Headwater] + [LowSlope] + [VegFA]

+[Runoff] + [SWOutflow2]

278

5.6.23 FASociety: Flood Attenuation Value to Society

Version date: 10 November 2016

Strategy: completed 4/22/2016 EAB

GIS method: completed 4/22/2016 EAB; verified 11/10/2016 EAB

Python code: Started & completed 11/10/2016 MCA

Final check by EAB: 11/10/2016

Purpose:

Flood Attenuation Function

Maximum 4 points (all wetlands)

Description:

Rationale: Wetlands in regulatory floodways or upstream of economically valuable flood-prone

areas can reduce the costs and negative impacts of flood damages to society.

Strategy: For each Wetland Unit, sum the points for all factors within the “Society” aspect.

Reduce values that exceed the maximum allowable points for this aspect of flood attenuation

function. Note that floodplain and groundwater wetlands are treated the same for this aspect.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

Input Variables:

• Floodway (4 points max)

• EconRisk (4 points max)

Method:

Create feature class to store FASociety

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_FASociety1

Spatial joins to bring in factor values

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_FASociety1

Join Feature: WU_Floodway

Output feature class: WU_FASociety2

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 Shape-Length

279

 Shape_Area

 Floodway

Match Option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_FASociety2

Join Feature: WU_EconRisk

Output feature class: WU_FASociety

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 Shape-Length

 Shape_Area

 Floodway

 EconRisk

Match Option: CONTAINS

Add FASociety field to Wetland Units and set initial point value to zero.

Open attribute table of WU_FASociety

Add field “FASociety” (short integer)

R-click FASociety and Field Calculate FASociety = 0

Sum the factor points

R-click FASociety and Field Calculate FASociety = [Floodway] + [EconRisk]

Reduce values that exceed the maximum allowable points

Select by attributes

Layer: WU_Society

Method: Create a new selection

SELECT * FROM WU_FASociety WHERE: "FASociety" > 4

(1184 out of 43124 selected)

R-click FASociety and Field Calculate FASociety = 4

280

5.6.24 Fisheries: Wetland discharges to economically important fisheries

Version date: 17 July 2016

Strategy: 2/14/2016 EAB

GIS method: 3/16/2016 EAB

Python coding: started and completed 3/16/2016

Final review by EAB:

Purpose:

Water Quality Function

Max 2 points

Description:

Rationale: Wetlands filter sediments and contaminants, and buffer pH. Wetlands in the

contributing basin of an economically important fishery are of high economic and social value.

Summary of strategy: Approximated as Wetland Unit located within 1 km of an economically

important fishery.
o Fishery. Wetland is in the contributing watershed of a high quality fishery, warmwater fishery

stream, stocked trout stream, or a stream with year-round trout populations (1 point). Note that
warmwater fisheries are generally included in the “high quality fishery” layer (they can also
perhaps be approximated by all polygonal streams below 2000 feet elevation, according to Mike
Shingleton (WVDNR), pers. comm. March 2015, but we will assume they are covered by the high
quality fisheries data).

o Special Fishery. Wetland is in the contributing watershed of a catch-and-release area,
children/Class Q fishing area, or fly-fishing-only stream (2 points).

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)
o M:\wr\WTRSHD_BRANCH\TROUT\Trout_Streams.shp

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\DNR_Fishing_20Aug2015\HighQualityStreamFishe
riesWVDNR20150820.shp

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\DNR_Fishing_20Aug2015\TrStStreams.shp

Input Variables:

None

Method:

Create feature class to store Fisheries variable

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_Fisheries

281

Add field to Wetland Units and set initial point value to zero.

Open attribute table of WU_Fisheries

Add field “Fisheries” (short integer)

R-click Fisheries and Field Calculate Fisheries = 0

Select Wetland Units within 1 km of perennial trout streams.

Select by location

Selection method: select features from

Target layer: WU_Fisheries

Source layer: Trout_Streams.shp

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 1000 meters

Select Wetland Units within 1 km of high quality stream fisheries.

Select by location

Selection method: add to the currently selected features in

Target layer: WU_Fisheries

Source layer: HighQualityStreamFisheriesWVDNR20150820.shp

Spatial selection method: are within a distance of the source feature

Apply a search distance: 1000 meters

Select Wetland Units within 1 km of stocked trout streams.

Select by location

Selection method: add to the currently selected features in

Target layer: WU_Fisheries

Source layer: TrStStreams.shp

Spatial selection method: are within a distance of the source feature

Apply a search distance: 1000 meters

Assign 1 point to Wetland Units that discharge to economic fisheries.

R-click “Fisheries” in WU_Fisheries and Field Calculate Fisheries = 1

Select special fisheries

Select by Attributes

Layer: TrStStreams

Method: Create a new selection

SELECT * FROM TrStStreams WHERE: "StockCode" NOT LIKE 'NS'

Select by Attributes

Layer: TrStStreams

282

Method: Add to current selection

SELECT * FROM TrStStreams WHERE: "RegType" = 'Catch-and-Release' OR "RegType" =

'Children and Class Q' OR "RegType" = 'Fly-fishing-Only'

Select Wetland Units within 1 km of special fisheries.

Select by location

Selection method: select features from

Target layer: WU_Fisheries

Source layer: TrStStreams

Check box “Use selected features”

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 1000 meters

Assign 2 points to Wetland Units within 1 km of special fisheries.

R-click “Fisheries” in WU_Fisheries and Field Calculate Fisheries = 2

283

5.6.25 FloodArea: Proportion of wetland area in floodplain, including the

intermediate variable FloodRatio, and Floodplain (Y/N)

Version date: 8 March 2017

Strategy: Completed 4/13/2016 EAB

GIS method: Drafted 4/20/2016 EAB; Verified 12/5/2016; Revised 3/8/2017 EAB to include

Floodplain

Python code: 12/21/2016 MCA; need revision

Final review by EAB: 12/22/2016; need re-check

Purpose:

Floodplain (Y/N): Input to numerous Water Quality and Flood Attenuation metrics

FloodArea: Input to Flood Attenuation / Opportunity

Max 2 points (all wetlands, but only Floodplain wetlands will score high enough to get

points)

Description:

Floodplain (Y/N)

Rationale: Wetlands that receive overland flood flows sometimes have differing functions from

those that are primarily groundwater-fed. “Floodplain” and “Groundwater” wetlands are

therefore assessed using different variables in some cases. For example, surface depressions are

important in holding floodwaters in a wetland, and woody vegetation physically slows flood

flows and associated debris. Groundwater wetlands, with slower-moving subsurface flows,

have water quality functions that are more dependent on the presence of organic soils, clay

soils, or the irregularity of the upland-wetland edge.

Summary of strategy: Wetland Units with 10% or greater of their area in the FEMA floodplain

or Active River Area Base Zone are considered floodplain wetlands unless they have known

peat deposits, in which case they are put in the groundwater wetland group. This technique

probably over-estimates the actual number of floodplain wetlands, but it is the best method we

currently have.

Proportion of wetland area in floodplain (FloodArea). Max 2 points.

Rationale: Floodplain wetlands store and slow water movement during floods and storms. The

amount of flood attenuation in a wetland is related to the amount of overbank flooding it

receives, which in turn is related to its position in the floodplain. Wetlands that are entirely

within the floodplain have more opportunity to attenuate floods than wetlands that are only

partially in a floodplain.

Strategy: Calculate ratio of Wetland Unit area that lies in the floodplain (either FEMA or ARA).

Peatlands are set to zero since they are primarily groundwater, not floodplain, wetlands.

Ratio > 0.5 = 2 points

Ratio 0.1-0.5 = 1 point

Ratio < 0.1 = 0 points.

Note that only Floodplain wetlands will receive these points, since by definition they have a

ratio > 0.1.

284

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Floodplain\FloodplainData.gdb
o Feature Class: FloodplainARAFEMA

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb
o Feature Class: Peatlands_20160228

Method:

Intersect floodplain and Wetland Units

ArcToolbox / Analysis Tools / Overlay / Intersect

Input features: FloodplainARAFEMA

 WU_20150514

Output feature class: WU_FloodArea1

Join attributes: ONLY_FID

Output type: INPUT

Add field to store floodplain area.

Open attribute table of WU_FloodArea1

Add field “FloodAreaAF” (float)

R-click “FloodAreaAF” and Calculate Geometry.

Property: Area

Coordinate System: Use coordinate system of the data source

Units: Square Meters [sq m]

Spatial Join floodplain selection to Wetland Units and sum floodplain area.

Analysis Tools / Overlay / Spatial Join

Target Features: WU_20150514

Join Features: WU_FloodArea1

Output Feature Class: WU_FloodArea

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 Shape_Length

 Shape_Area

 WUKey

FloodAreaAF (R-click and select “Merge Rule”, “Sum”)

Match Option: INTERSECT

Add fields to store Flood Area Ratio and Flood Area points.

285

Open attribute table of WU_FloodArea

Add field FloodRatio (float) to WU_FloodArea attribute table.

Add field FloodArea (short integer) to WU_FloodArea attribute table.

Field calculate FloodArea = 0

Calculate the ratio of floodplain area to total Wetland Units area.

Field calculate FloodRatio = [FloodAreaAF] / [Shape_Area]

Assign points

SELECT * FROM WU_FloodArea WHERE: FloodRatio > 0.1

Field Calculate FloodArea = 1

SELECT * FROM WU_FloodArea WHERE: FloodRatio > 0.5

Field Calculate FloodArea = 2

Select Wetland Units that contain peat deposits

Clear selection.

Select by Location

Selection Method: Select features from

Target Layer: WU_FloodArea

Source Layer: Peatlands_20160228

Spatial selection method: Intersect the source feature

(277 out of 43124 selected)

Set FloodArea to zero for Wetland Units that contain peat deposits.

R-click FloodArea and Field Calculate “FloodArea” = 0

Add the following to compute “Floodplain” (Y/N)

Add field Floodplain to Wetland Units attribute table and set initial value to “N”.

Add field Floodplain (Text, 2 characters) to WU_Floodplain attribute table.

R-click Floodplain and Field Calculate “Floodplain” = “N”

Select Wetland Units that have at least 10% of their area in a FEMA floodplain or

Active River Area base zone.

SELECT * FROM WU_FloodArea WHERE: FloodArea > 0

Set Floodplain = “Yes” for selected Wetland Units.

R-click Floodplain and Field Calculate “Floodplain” = “Y”

286

5.6.26 FloodIn: Floodwaters Delivered to Wetland

Version date: 7 March 2017

Strategy: Completed 11/20/2016 EAB

GIS method: completed 11/20/2016 EAB, verified 3/7/2017

Python coding: 3/7/2017 MCA

Final review by EAB: 3/7/2017 EAB

Purpose:

Input to Flood Attenuation / Potential

Max 2 points (all wetlands).

Rationale: Wetlands are more likely to receive flood waters if there are steep slopes in their

contributing watershed, and if the land surrounding the wetland has high runoff potential.

Summary of strategy: Sum the points for SlopeWshd, Runoff50m, and RunoffWshd. Assign

points as follows:

0 points: sum is (0,1,2).

1 point: sum is (3,4).

2 points: sum is (5,6).

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• SlopeWshd (2 points)

• Runoff50m (2 points)

• RunoffWshd (2 points)

Method:

Spatial joins to add input variables to Wetland Units attribute table

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_20150514

Join Feature: WU_SlopeWshd

Output Feature Class: WU_FloodIn1

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 WUKey

Shape_Length

 Shape_Area

 SlopeWshd

Match option: CONTAINS

287

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_FloodIn1

Join Feature: WU_Runoff50m

Output Feature Class: WU_FloodIn2

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 WUKey

Shape_Length

 Shape_Area

 SlopeWshd

 Runoff50m

Match option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_FloodIn2

Join Feature: WU_RunoffWshd

Output Feature Class: WU_FloodIn

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 WUKey

Shape_Length

 Shape_Area

 SlopeWshd

 Runoff50m

 RunoffWshd

Match option: CONTAINS

Add FloodIn field to Wetland Units and set initial point value to zero.

Open attribute table of WU_FloodIn

Add field “FloodIn” (short integer)

R-click FloodIn and Field Calculate FloodIn = 0

Calculate sum of SlopeWshd, Runoff50m, RunoffWshd and assign points to FloodIn.

Open attribute table of WU_FloodIn

Select * from WU_FloodIn where: ("RunoffWshd"+ "SlopeWshd"+ "Runoff50m") > 2

R-click FloodIn and Field Calculate “FloodIn” = 1

Select * from WU_FloodIn where: ("RunoffWshd"+ "SlopeWshd"+ "Runoff50m") > 4

R-click FloodIn and Field Calculate “FloodIn” = 2

288

5.6.27 Floodway: Wetland is in a FEMA Floodway

Version date: 21 April 2016

Strategy: 3/28/2016 EAB

GIS method: completed 4/21/2016 EAB; verified 4/21/EAB

Python code: started & completed 5/27/2016 MCA

Final review by EAB: 10/3/2016

Purpose:

Flood Attenuation Function / Value to Society

Maximum 4 points

Description:

Rationale: Regulatory floodways have been identified by FEMA as high priorities for flood

control, with strict limits on development. Wetlands occurring in a regulatory floodway have a

high value to society. FEMA: A "Regulatory Floodway" means the channel of a river or other

watercourse and the adjacent land areas that must be reserved in order to discharge the base

flood without cumulatively increasing the water surface elevation more than a designated

height. Communities must regulate development in these floodways to ensure that there are no

increases in upstream flood elevations.

Strategy: Wetland intersects a mapped FEMA Regulatory Floodway. 4 points.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Floodplain\wvFloodHazardFeatures_WVGISTC_20
130410\wvFloodHazardFeatures20130207.gdb

o Feature Class: WV_Floodway_20130205_wgs84wmA

Method:

Create feature class to store Floodway points and set initial value

R-click WU_20150514 and select Data / Export Data

Output feature class: WU_Floodway

Add field to attribute table of WU_Floodway: Floodway (short integer)

Field calculate Floodway = 0

Select Wetland Units that intersect a Floodway

Select by Location

Selection method: select features from

Target layer: WU_Floodway

Source layer: WV_Floodway_20130205_wgs84wmA

289

Spatial selection method: intersect the source feature

 ## Assign points

In WU_Floodway, Field calculate Floodway = 4

290

5.6.28 Function: Total Wetland Function

Version date: 5 November 2017

Strategy: completed 3/16/2017 EAB

GIS method: 10/20/2017 EAB; results verified 10/20/2017 EAB; re-verified with revised

BRank 11/5/17

Python code: 10/30/2017 YH

Final review by EAB: 11/5/2017

Purpose:

Maximum 200 points

Description:

Rationale:

Strategy: Sum the scores for WQFunction, FAFunction, and HFunction

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFunction.gdb
o Feature Class: WU_WQFunction
o Feature Class: WU_FAFunction
o Feature Class: WU_HFunction

Method:

Spatial Join to merge metrics and create feature class to store Function

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_WQFunction

Join Feature: WU_FAFunction

Output feature class: WetlandFunction.gdb \ WU_Function1

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 WQFunction

 FAFunction

Match Option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_Function1

Join Feature: WU_HFunction

Output feature class: WetlandFunction.gdb \ WU_Function

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

291

 WUKey

Shape-Length

 Shape_Area

 WQFunction

 FAFunction

 HFunction

Match Option: CONTAINS

Add Function and assign values

Open attribute table of WU_Function

Add field “Function” (short integer)

R-click Function and Field Calculate Function = [WQFunction]+ [FAFunction]+ [HFunction]

292

5.6.29 Headwater: Headwater Location

Version date: 18 April 2016

Strategy: Completed 2/27/2016 EAB

GIS method: Completed 4/12/2016 EAB, verified 4/18/2016 EAB

Python coding: Started & Completed 6/15/2016 MCA

EAB 10/3/2016: re-run after WFlowPath and LandPos are updated; MCA 10/18/16

completed

Final review by EAB: 10/25/2016

Purpose:

Input to Water Quality (Potential) and Flood Attenuation (Potential) functions

Max 1 point.

Description:

Rationale: Headwater wetlands provide water quality and hydrologic stability benefits to waters

downstream. Wetlands found in the headwaters of streams often do not store surface water to

any great depth. They can, however, be important in reducing peak flows because they slow

down and “desynchronize” the initial peak flows from a storm (Brassard and others 2000).

Their importance in hydrologic functions is often under-rated. In the words of Michael Davis,

Deputy Assistant of the Army, to the U.S. Senate: “The most recent data and scientific literature

indicate that isolated and headwater wetlands often play an ecological role that is as important

as other types of wetlands in protecting water quality, reducing flood flows, and providing

habitat for many species of fish and wildlife” (Davis 1997).

Summary of strategy: Assign one point if the Wetland Unit has a Tiner Landscape Position

(LandPos) with a headwater modifier.

Definitions:

Tiner (2011) defines lotic headwater wetlands as “wetlands along first- and second-order

perennial streams in hilly terrain including all intermittent streams above these perennial

streams”. He defines terrene headwater wetlands as “wetland is the source of a river or stream

but this watercourse does not extend through the wetland”. These are coded in our database as

“LandPos” = ‘LSh’ (lotic stream headwater wetlands and “LandPos” = ‘TEh’ (terrene

headwater wetlands).

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• LandPos (Landscape Position)

Method:

Spatial join to add input variable to attribute table

293

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_20150514

Join Feature: WU_LandPos

Output feature class: WU_Headwater

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 Shape_Length

 Shape_Area

 LandPos

Match Option: CONTAINS

Add Headwater field to Wetland Units and set initial point value to zero.

Open attribute table of WU_Headwater

Add field “Headwater” (short integer)

R-click Headwater and Field Calculate Headwater = 0

Assign 1 point to Wetland Units with Landscape Position headwater modifier.

Clear all selections.

SELECT * FROM WU_Headwater WHERE: "LandPos" LIKE '%h'

Field Calculate (selection only) “Headwater” = 1

294

5.6.30 HFuncNoBR: Habitat and Ecological Integrity Function without Site

Biodiversity Rank

Version date: 19 October 2017

Strategy: completed 3/16/2017 EAB

GIS method: 10/16/2017 EAB; results verified 10/16/2017 EAB

Python code: 10/19/2017 YH

Final review by EAB: 10/19/2017

Purpose:

Input to Habitat and Ecological Integrity Function

Maximum 50 points

Description:

Rationale:

Strategy: For each Wetland Unit, sum the points for the three aspects (wetland potential to

provide function, landscape offers opportunity to carry out function, and value to society).

• HPotential (30 points max)

• HOpportun (13 points max)

• HSociety (7 points max)

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFunction.gdb
o Feature Class: WU_HPotential
o Feature Class: WU_HOpportun
o Feature Class: WU_HSociety

Method:

Spatial Join to merge metrics and create feature class to store HFuncNoBR

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_HPotential

Join Feature: WU_HOpportun

Output feature class: WetlandFunction.gdb \ WU_HFuncNoBR1

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 HPotential

 HOpportun

Match Option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial join

295

Target Feature: WU_HFuncNoBR1

Join Feature: WU_HSociety

Output feature class: WetlandFunction.gdb \ WU_HFuncNoBR

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 HPotential

 HOpportun

 HSociety

Match Option: CONTAINS

Add HFuncNoBR field to Wetland Units and set initial point value to zero.

Open attribute table of WU_HFuncNoBR

Add field “HFuncNoBRn” (short integer)

R-click HFuncNoBR and Field Calculate HFuncNoBR = 0

Sum the points

R-click HFuncNoBR and Field Calculate HFuncNoBR = [HPotential] + [HOpportun] +

[HSociety]

296

5.6.31 HFunction: Habitat and Ecological Integrity Function

Version date: 5 November 2017

Strategy: completed 3/16/2017 EAB

GIS method: 10/26/2017 EAB; results verified 10/26/2017 EAB; re-verified with new BRank

11/5/2017

Python code: 10/26/2017 YH

Final review by EAB: 10/30/2017 EAB

Purpose:

Maximum 150 points

Description:

Rationale:

Strategy: Incorporate the Site Biodiversity Rank (BRank) and HFuncNoBR into HFunction as

follows:

B1 Outstanding Global Biodiversity Significance: automatically assigned maximum

points for habitat function x 3 (HFunction = 150 points)

B2 High Global Biodiversity Significance: automatically assigned maximum points

for habitat function x 2 (HFunction = 100 points)

B3 Global Biodiversity Significance: automatically assigned maximum points for

habitat function x 1.5 (HFunction = 75 points)

B4 Outstanding State Biodiversity Significance: automatically assigned maximum

points for habitat function (HFunction = 50 points)

B5 State Biodiversity Significance: automatically assigned maximum points for

“intrinsic potential” part of habitat function (HPotential = 30 points)

B6 Local Biodiversity Significance: automatically awarded an additional 5 points

toward the maximum of 30 for the “intrinsic potential” part of habitat function

(HPotential)

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFunction.gdb
o Feature Class: WU_BRank
o Feature Class: WU_HFuncNoBR

Method:

Spatial Join to merge metrics and create feature class to store HFunction

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_BRank

Join Feature: WU_HFuncNoBR

Output feature class: WetlandFunction.gdb \ WU_HFunction

Join Operation: JOIN_ONE_TO_ONE

Keep all target features

297

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 HPotential

HOpportun

 HSociety

 HFuncNoBR

 BRank

Match Option: CONTAINS

Add fields to store intermediate value for B6 sites and results and set initial values

Open attribute table of WU_HFunction

Add field “HPotB6” (short integer)

Field calculate HPotB6 = 0

Add field “HFunction” (short integer)

Field Calculate HFunction = [HFuncNoBR]

Select B6 wetlands

Open attribute table of WU_HFunction

SELECT * FROM WU_HFunction WHERE: "BRank" = 'B6'

Add 5 points to HPotential for B6 wetlands, up to a maximum of 30 points

Open attribute table of WU_HFunction

Field calculate HPotB6 = [HPotential] + 5

SELECT * FROM WU_HFunction WHERE: "HPotB6" > 30

Field calculate HPotB6 = 30

Select B6 wetlands and calculate HFunction

Open attribute table of WU_HFunction

SELECT * FROM WU_HFunction WHERE: "BRank" = 'B6'

Field Calculate HFunction = [HPotB6] + [HOpportun]+ [HSociety]

Select B5 wetlands and calculate HFunction

Open attribute table of WU_HFunction

SELECT * FROM WU_HFunction WHERE: "BRank" = 'B5'

Field Calculate HFunction = [HOpportun]+ [HSociety] + 30

298

Select B4 wetlands and calculate HFunction

Open attribute table of WU_HFunction

SELECT * FROM WU_HFunction WHERE: "BRank" = 'B4'

Field Calculate HFunction = 50

Select B3 wetlands and calculate HFunction

Open attribute table of WU_HFunction

SELECT * FROM WU_HFunction WHERE: "BRank" = 'B3'

Field Calculate HFunction = 75

Select B2 wetlands and calculate HFunction

Open attribute table of WU_HFunction

SELECT * FROM WU_HFunction WHERE: "BRank" = 'B2'

Field Calculate HFunction = 100

Select B1 wetlands and calculate HFunction

Open attribute table of WU_HFunction

SELECT * FROM WU_HFunction WHERE: "BRank" = 'B1'

Field Calculate HFunction = 150

299

5.6.32 HInvest: Societal Investment in Habitat and Ecological Integrity

Version date: 20 October 2017

Strategy: 3/16/2017 EAB

GIS method: 10/16/2017 EAB; results verified 10/19/2017 EAB

Python code: 10/19/2017 YH

Final review by EAB: 10/19/2017 EAB

Purpose:

Input to Habitat / Value to Society

Description:

Maximum 3 points

Rationale: Society values wetland habitats by investing in them through management and

conservation actions.

GIS and Field Method: Note that field data can overwrite the GIS determination of this metric.

Assign points according to the criteria met:

3 points: high investment. Award 3 points if any of the following criteria are met.
• Mitigation investment: wetland is all or part of a mitigation site used explicitly to offset

impacts elsewhere.

• Conservation investment: wetland is part of or contiguous to lands which public or private
organizational funds were spent to preserve, create, restore, or enhance habitat and not
used explicitly to offset impacts elsewhere.

o Conservation easement managed for biodiversity, i.e., Gap Status Code = 1 (TNC,
some land trust holdings) Check with DNR (or Michael Schwartz of Freshwater
Institute) every two years to see if there are updates to:
WV_Protected_Lands_2015_PUBLIC

o USDA
▪ FSA Conservation Reserve Program (CRP)
▪ NRCS Wetland Reserve Program
▪ NRCS Emergency Watershed Protection easement
▪ USFS Forest Legacy easement
▪ USFS Special Botanical Area

▪ USFS Wilderness Area

o USFWS National Wildlife Refuge

o USNPS National Park, Monument, or Scenic River

o WVDNR State Natural Area

2 points: moderate investment in a general area including the wetland, with some focus on

habitat and ecological integrity along with other functions. Assign 2 points if any of the

following contain the Wetland Unit.
• USFS National Forest outside wilderness or special botanical areas

300

1 point: low investment: wetlands that are on public land where the primary focus is on

functions (e.g., recreation, military operations) other than ecological conservation or

restoration, but where wetlands are unlikely to be destroyed or severely adversely impacted.
▪ US Department of Defense lands
▪ WVDNR State Parks
▪ WVDNR Wildlife Management Areas (open access, Gap status 2)
▪ WVDOF State Forests (GAP status: managed for multiple uses, subject to extractive, e.g.

mining or logging, or OHV use)
▪ City and County Parks (all are open access, GAP status code = “no known mandate”)
▪ Natural Streams Preservation Act (NSPA). Wetland is in the contributing watershed of a

stream reach protected by the Natural Streams Preservation Act. These include (a)
Greenbrier River from its confluence with Knapps Creek to its confluence with the New
River, (b) Anthony Creek from its headwaters to its confluence with the Greenbrier River,
(c) Cranberry River from its headwaters to its confluence with the Gauley River, (d) Birch
River from the Cora Brown bridge in Nicholas county to the confluence of the river with the
Elk River, and (e) New River from its confluence with the Gauley River to its confluence with
the Greenbrier River.

0 points: no known investment

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived
o \Boundaries2017\countyCityParkBoundaries_20107731_utm83.gdb

▪ Feature Class: countyCityParkBoundaries_20170731_utm83
o \Boundaries2017\nationalForestOwnership_USFWS_20170803_utm83.gdb

▪ Feature Class: nationalForestOwnership_USFWS_20170803_utm83

• Field: Forest Service
o \Boundaries2017\nationalParkBoundaries_nationalParkService_20170802.gdb

▪ Feature Class: nationalParkBoundaries_nationalParkService_20170802
o \Boundaries2017\nationalWildifeRefuge_USFWS_20170803_utm83.gdb

▪ Feature Class: nationalWildifeRefuge_USFWS_20170803
o \Boundaries2017\wvdnrManagedLands_wvdnr_20170731_utm83.gdb

▪ Feature Class: wvdnrManagedLands_wvdnr_20170731_utm83
o \Boundaries2017\wvStateForestBoundaries_wvdof_20171003_utm83.gdb

▪ Feature Class: wvStateForestBoundaries_wvdof_20171003_utm83
o \Boundaries2017\stateParkBoundaries_WVDNR_20170927_utm83

▪ Feature Class: stateParkBoundaries_WVDNR_20170927_utm83
o \USFS\botanical_areas_MNF.shp

▪ Note: do not distribute this layer outside WVDEP - it is sensitive data!
o \WV_Protected_Lands_v2013c_Public\WV_Protected_Lands_2015_PUBLIC.shp

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Watershed.gdb
o Feature Class: NatStrPreAct_HUC10

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb
▪ Feature Class: ILF_banks
▪ Feature Class: RestoredWetlands

301

Method:

Create feature class to store results for HInvest and set initial value to zero

R-click WU_20150514 and select Export Data / All features

Output feature class: WetlandFunction.gdb / WU_HInvest

Open attribute table of WU_HInvest

Add field “HInvest” (short integer)

Field calculate HInvest = 0

Low investment

Select wetlands that intersect state or local public lands

Select by Location

Select features from: WU_HInvest

Source layer: stateParkBoundaries_WVDNR_20170927_utm83

Spatial selection method for target layer feature(s): intersect the source feature

Select by Location

Add to the currently selected features in: WU_HInvest

Source layer: wvdnrManagedLands_wvdnr_20170731_utm83

Spatial selection method for target layer feature(s): intersect the source feature

Select by Location

Add to the currently selected features in: WU_HInvest

Source layer: wvStateForestBoundaries_wvdof_20171003_utm83

Spatial selection method for target layer feature(s): intersect the source feature

Select by Location

Add to the currently selected features in: WU_HInvest

Source layer: countyCityParkBoundaries_20170731_utm83

Spatial selection method for target layer feature(s): intersect the source feature

Add wetlands that intersect Natural Streams Preservation Act watersheds to selection

Select by Location

Add to the currently selected features in: WU_HInvest

Source layer: NatStrPreAct_HUC10

Spatial selection method for target layer feature(s): intersect the source feature

Add wetlands that intersect Department of Defense Lands to selection

Open attribute table of WV_Protected_Lands_2015_PUBLIC

SELECT * FROM WV_Protected_Lands_2015_PUBLIC WHERE: "OwnName" = 'Department

of Defense (DOD)'

302

Select by Location

Add to the currently selected features in: WU_HInvest

Source layer: WV_Protected_Lands_2015_PUBLIC

Use Selected Features

Spatial selection method for target layer feature(s): intersect the source feature

Assign point and clear selections

Open attribute table of WU_HInvest

R-click HInvest and Field Calculate HInvest = 1

Clear all selections

Moderate investment

Select lands owned by USFS

Open attribute table of nationalForestOwnership_USFWS_20170803_utm83

SELECT * FROM nationalForestOwnership_USFWS_20170803_utm83 WHERE:

"Ownership" = 'Forest Service'

Select wetlands that intersect selected areas

Select by Location

Select features from: WU_HInvest

Source layer: nationalForestOwnership_USFWS_20170803_utm83

Use Selected Features (1 Feature selected)

Spatial selection method for target layer feature(s): intersect the source feature

Assign points and clear selections

Open attribute table of WU_HInvest

R-click HInvest and Field Calculate HInvest = 2

Clear all selections

High investment

Select Private Conservation Lands with Gap Status = 1 and USFS Wilderness Areas

Open attribute table of WV_Protected_Lands_2015_PUBLIC

SELECT * FROM WV_Protected_Lands_2015_PUBLIC WHERE: ("Mang_Name" IN

('EWPP-FPE', 'WRP', 'CLRLT', 'Potomac Conservancy', 'The Nature Conservancy (TNC)',

'WVLT', 'Forest Legacy') OR "GAP_Sts" = '1' OR "PdesTp" = 'Wilderness Area') AND

("PdesTp" <> 'Wild and Scenic River' AND "PdesTp" <> 'National Wildlife Refuge')

Select wetlands that intersect selected areas

303

Select by Location

Select features from: WU_HInvest

Source layer: WV_Protected_Lands_2015_PUBLIC

Use Selected Features

Spatial selection method for target layer feature(s): intersect the source feature

Add to Selection wetlands that intersect National Wildlife Refuges or National Parks

Select by Location

Add to the currently selected features in: WU_HInvest

Source layer: nationalWildifeRefuge_USFWS_20170803

Spatial selection method for target layer feature(s): intersect the source feature

Select by Location

Add to the currently selected features in: WU_HInvest

Source layer: nationalParkBoundaries_nationalParkService_20170802

Spatial selection method for target layer feature(s): intersect the source feature

Add to Selection wetlands that intersect special botanical areas

Select by Location

Add to the currently selected features in: WU_HInvest

Source layer: botanical_areas_MNF.shp

Spatial selection method for target layer feature(s): intersect the source feature

Add to Selection wetlands that intersect Mitigation Banks and In-Lieu Fee sites

Select by Location

Add to the currently selected features in: WU_HInvest

Source layer: ILF_banks

Spatial selection method for target layer feature(s): are within a distance of the source layer

feature

Apply a search distance: 100 meters

Add to Selection wetlands that intersect other restored, enhanced or created wetland

sites

Select by Location

Add to the currently selected features in: WU_HInvest

Source layer: RestoredWetlands

Spatial selection method for target layer feature(s): intersect the source feature

Add to Selection wetlands in WVDNR State Natural Areas

304

SELECT * FROM stateParkBoundaries_WVDNR_20170927_utm83 WHERE: "Unit_Nm" IN

('Canaan Valley Resort State Park', 'Cathedral State Park', 'Beartown State Park')

(3 out of 36 selected)

Hungry Beech State Natural Area is already selected in “Private Conservation Lands”

above.

There are currently (2017) no mapped wetlands in Hungry Beech.

In case we ever need to generate State Natural Areas as a layer.

SELECT * FROM WV_Protected_Lands_2015_PUBLIC WHERE: "P_Des_Nm" = 'Hungry

Beech'

Select wetlands that intersect selected areas

Select by Location

Add to the currently selected features in: WU_HInvest

Source layer: stateParkBoundaries_WVDNR_20170927_utm83

Use Selected Features

Spatial selection method for target layer feature(s): intersect the source feature

Assign points and clear selections

Open attribute table of WU_HInvest

R-click HInvest and Field Calculate HInvest = 3

305

5.6.33 Histosol: Deep Organic Soils

Version date: 14 February 2017

Strategy: completed 4/13/2016 EAB

GIS method: completed 4/14/2016 EAB; verified 4/14/2016 EAB

Python code: Started & Completed 2/7/2017 MCA

Final review by EAB: 2/7/2017

Purpose:

Input to Habitat and Ecological Integrity / Intrinsic Potential

Description:

Rationale: Deep organic soils provide important habitat to specialist plants and animals,

including bog and fen species. Wetlands with deep organic soils store large amounts of carbon.

It is important to keep carbon locked in the soil where it will not contribute to anthropogenic

climate change.

Strategy:

(Adapted from “Organic” variable – some code can be shared).

Strategy: Determine presence of histosols and/or histic epipedons. Note that this criterion can

be measured much more accurately during rapid field assessment. For GIS assessment, we will

note only the presence, not the cover, of histosols and histic epipedons.

3 points: Histosols occur in Wetland Unit (NWI polygons with “g” modifier OR

SSURGO/Palustrine plots organic depth OR peatlands layer).

2 points: Histic epipedons occur in Wetland Unit (SSURGO/palustrine plots organic

depth).

0 points: Histosols and histic epipedons are not present.

Select Wetland Units that intersect with any of the following: Peatlands, NWI polygons with

organic modifier, Palustrine Plots with muck or peat soils, or SSURGO chorizon with organic

soils in the upper 5 cm.

SSURGO soils data from NRCS has multiple non-spatial tables, which have one-to-many

relationships with the ssurgo_wv table. We will access the component horizon table

(chorizon_all) to extract the organic content, horizon, and top depth of the horizon.

Note that SSURGO mapping is very uneven, with some counties heavily mapped with organic

soils and others with few or no organic soils mapped.

Definitions:

For the purposes of this assessment, histosols and histic epipedons are defined as follows,

simplified from NRCS 2014 Keys to Soil Taxonomy.

Histosol: Peat, mucky peat, or muck soil with at least 12-18% organic matter by weight

and >= 40 cm deep within the upper 80 cm of soil profile.

Histic epipedon: Peat, mucky peat, or muck soil with at least 12-18% organic matter by

weight and >= 20 cm thick (but < 40 cm thick) as a surface horizon. Aquic conditions or

artificial drainage is required.

306

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb
o Feature Class: EnhWVWetland

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb
o Feature Class: Peatlands_20160228 (update if more recent file is available)
o Feature Class: PalustrinePlots

• M:\basemap\ssurgo\ssurgo.gdb
o Feature Class: ssurgo_wv

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SsurgoExports.gdb (see box below)
o Feature Class: Histosol (created 4/14/2016)
o Feature Class: HisticEpipedon (created 4/14/2016)

NOTE: ArcGIS related tables cannot be programmed in Python, so before this procedure

is run, the input data layers “Histosol” and “HisticEpipedon” must be created in ArcGIS,

as shown below. Note that these layers should be re-exported annually or as SSURGO is

updated by NRCS. These 2 layers (Histosol, HisticEpipedon) were created by EAB on

4/14/2016.

Open the related one-to-many SSURGO chorizon_all table.

Open attribute table for ssurgo_wv

Click “Related Tables” (second icon from left).

Click “component to surgo: component_all” to open the component_all table. Note that a tab

will appear at the bottom of the attribute table showing the tables that are open.

Click “Related Tables” (second icon from left).

Click “component to chorizon: chorizon_all” to open the chorizon_all table.

Select histisols: organic material > 15% by weight with a thickness of at least 40 cm in

the upper 80 centimeters of the soil profile.

With the tab at the bottom of the attribute labelled “chorizon_all” highlighted:

Select by attributes

SELECT * FROM chorizon_all WHERE: ("hzname" LIKE 'O%' OR "om_r" > 15) AND

"hzdept_r" < 40 AND "hzthk_r" > 39

Relate this selection to the spatial data in the ssurgo_wv tab.

Click “Related Tables” again to get back to component_all and then back to ssurgo_wv

Note that the last step takes some time while all of the related tables open up.

Export data to new feature class

R-click ssurgo_wv / Data / Export Data

307

Export Selected Features

Output feature class: SSurgoExports.gdb\Histosol

Select histic epipedons: organic material > 15% by weight with a thickness of at least 20

cm in the upper 80 centimeters of the soil profile.

Clear selections.

With the tab at the bottom of the attribute labelled “chorizon_all” highlighted:

Select by Attributes.

SELECT * FROM chorizon_all WHERE: ("hzname" LIKE 'O%' OR "om_r" > 15) AND

"hzdept_r" < 40 AND "hzthk_r" > 19 AND "hzthk_r" < 40

Relate this selection to the spatial data in the ssurgo_wv tab.

Click “Related Tables” again to get back to component_all and then back to ssurgo_wv

Note that the last step takes some time while all of the related tables open up.

Export data to new feature class

R-click ssurgo_wv / Data / Export Data

Export Selected Features

Output feature class: SSurgoExports.gdb\HisticEpipedon

Method:

Add field for Histosol to Wetland Units attribute table and set initial value to zero.

R-click WU_20150514 and select Data / Export Data

Output feature class: WU_Histosol

Add field Histosol (Short Integer) to WU_Histosol.

R-click Histosol and Field Calculate “Histosol” = 0

PART 1: Histic Epipedon

Select Palustrine plots that have peat or muck soils (conservative assumption that these

are histic epipedons) or organic soils 20-39 cm thick.

SELECT * FROM PalustrinePlots WHERE: "Soil_Textu" LIKE '%peat%' OR "Soil_Textu"

LIKE '%muck%' OR ("Depth_of_o" >19 AND "Depth_of_o" < 40)

Select Wetland Units that intersect palustrine plots with histic epipedons.

Select by Location

Selection method: select features from

Target layer: WU_Histosol

Source layer: PalustrinePlots

Check “Use selected features”

308

Spatial selection method: intersect the source layer feature

Update value for “Histosol” based on palustrine plots.

Open WU_Histosol attribute table

R-click “Histosol” and Field Calculate “Histosol” = 2

Clear all selections.

Select Wetland Units that intersect with the SSURGO histic epipedon selection.

Select by Location

Selection method: select features from

Target layer(s): WU_Histosol

Source layer: HisticEpipedon

Spatial selection method: intersect the source layer feature

Update value for “Histosol” based on ssurgo data.

Open WU_Histosol attribute table.

R-click “Histosol” and Field Calculate “Histosol” = 2

PART 2: Histosol

Select Palustrine plots that have organic soils at least 40 cm thick.

SELECT * FROM PalustrinePlots WHERE: "Depth_of_o" > 39

Select Wetland Units that intersect palustrine plots with histosols.

Select by Location

Selection method: select features from

Target layer: WU_Histosol

Source layer: PalustrinePlots

Check “Use selected features”

Spatial selection method: intersect the source layer feature

Update value for “Histosol” based on palustrine plots.

Open WU_Histosol attribute table.

R-click “Histosol” and Field Calculate “Histosol” = 3

Clear all selections.

Select Wetland Units that intersect with the SSURGO histosol selection.

Select by Location

309

Selection method: select features from

Target layer(s): WU_Histosol

Source layer: Histosol

Spatial selection method: intersect the source layer feature

Update value for “Histosol” based on ssurgo data.

Open WU_Histosol attribute table.

R-click “Histosol” and Field Calculate “Histosol” = 3

PART 3: PEATLANDS

Select Wetland Units that are peatlands.

Select by Location

Selection method: select features from

Target layer: WU_Histosol

Source layer: Peatlands_20160228 (or most recent version of Peatlands)

Spatial selection method: intersect the source layer feature

Update value for “Histosol” based on peatlands.

Open WU_Histosol attribute table (277 out of 43124 selected).

R-click “Histosol” and Field Calculate “Histosol” = 3

Clear all selections.

PART 4: NWI ORGANIC MODIFIER

Select polygons that have an organic modifier in the National Wetland Inventory.

SELECT * FROM EnhWVWetland WHERE: "ATTRIBUTE" LIKE '%g'

Select Wetland Units that intersect organic NWI polygons.

Select by Location

Selection method: select features from

Target layer: WU_HIstosol

Source layer: EnhWVWetland

Check “Use selected features”

Spatial selection method: intersect the source layer feature

Update value for “Histosol” based on NWI.

Open WU_Histosol attribute table.

R-click “Histosol” and Field Calculate “Histosol” = “3”

Clear all selections.

310

5.6.34 HOpportunity: Habitat and Ecological Integrity Landscape Opportunity

Version date: 6 October 2017

Strategy: completed 3/16/2017 EAB

GIS method: 10/6/2017 EAB; results verified 10/6/2017 EAB

Python code: 10/10/2017 YH

Final review by EAB: 10/10/2017

Purpose:

Habitat Function

Maximum 13 points (all wetlands)

Description:

Rationale: The landscape around a wetland, including its perimeter, buffer, and the connectivity

of the hydrologic and ecologic setting, are important influences on habitat value and ecological

integrity of the wetland.

Summary of strategy: For each Wetland Unit, sum the points for all factors within the

“Opportunity” aspect.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunction.gdb
o Feature Class: WU_BufferLand

▪ Field: BufferLand
o Feature Class: WU_LandHydro

▪ Field: LandHydro
o Feature Class: WU_LandEco

▪ Field: LandEco

Method:

Spatial joins to bring together factor values

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_BufferLand

Join Feature: WU_LandHydro

Output feature class: WU_HOpportun1

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 BufferLand

 LandHydro

Match Option: CONTAINS

311

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_HOpportun1

Join Feature: WU_LandEco

Output feature class: WU_HOpportun

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 BufferLand

 LandHydro

 LandEco

Match Option: CONTAINS

Add HOpportun field and set initial point value to zero.

Open attribute table of WU_HOpportun

Add field “HOpportun” (short integer)

R-click HOpportun and Field Calculate HOpportun = 0

Sum the factor points

R-click HOpportun and Field Calculate HOpportun = [BufferLand]+ [LandHydro]+ [LandEco]

312

5.6.35 HPotential: Habitat and Ecological Integrity Potential

Version date: 28 September 2017

Strategy: completed 3/16/2017 EAB

GIS method: 9/28/2017 EAB; results verified 9/28/2017 EAB

Python code: 9/28/2017 YH

Final review by EAB: 10/2/2017

Purpose:

Habitat Function

Maximum 30 points (all wetlands)

Description:

Rationale: Wetlands have an intrinsic potential to prove habitat for species, and wetlands

benefit from high ecological integrity. This intrinsic capability is related to their vegetation,

hydrology, soils, and physical structure.

Summary of strategy: For each Wetland Unit, sum the points for all factors within the

“Potential” aspect.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunction.gdb
o Feature Class: WU_VegH

▪ Field: VegH
o Feature Class: WU_HydroH

▪ Field: HydroH
o Feature Class: WU_SoilH

▪ Field: SoilH

Method:

Spatial joins to bring together factor values

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_VegH

Join Feature: WU_HydroH

Output feature class: WU_HPotential1

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 VegH

 HydroH

Match Option: CONTAINS

313

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_HPotential1

Join Feature: WU_SoilH

Output feature class: WU_HPotential

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 VegH

 HydroH

 SoilH

Match Option: CONTAINS

Add HPotential field and set initial point value to zero.

Open attribute table of WU_HPotential

Add field “HPotential” (short integer)

R-click HPotential and Field Calculate HPotential = 0

Sum the factor points

R-click HPotential and Field Calculate HPotential = [VegH]+ [HydroH]+ [SoilH]

314

5.6.36 HSociety: Value to Society of Habitat and Ecological Integrity

Version date: 19 October 2017

Strategy: completed 3/16/2017 EAB

GIS method: 10/13/2017 EAB; results verified 10/19/2017 EAB; re-verified 11/6/2017 with

new public lands layers for HInvest

Python code: 10/19/2017 YH

Final review by EAB: 10/19/2017

Purpose:

Habitat Function

Maximum 7 points (all wetland types)

Description:

Rationale: Societal investments in habitat and ecological integrity, along with public use and

accessibility infrastructure, reflect the value to society of specific wetlands.

Strategy: Sum the points for HInvest and HUse.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunction.gdb
o Feature Class: WU_HInvest

▪ Field: HInvest
o Feature Class: WU_HUse

▪ Field: HUse

Method:

Spatial join to bring together metric values

Note that this could also be done with a “Join” on the field “WUKey”

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_HInvest

Join Feature: WU_HUse

Output feature class: WU_HSociety

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 HInvest

 HUse

Match Option: CONTAINS

315

Add HSociety field and set initial point value to zero.

Open attribute table of WU_HSociety

Add field “HSociety” (short integer)

R-click HSociety and Field Calculate HSociety = 0

Sum the factor points

R-click HSociety and Field Calculate HSociety = [HInvest]+ [HUse]

316

5.6.37 HUC12WQ: Water quality issues in HUC12 watershed

Version date: 8 April 2019

Strategy: completed 3/16/2016 EAB

GIS method: completed and verified 3/17/2016 EAB

Python coding: started & completed 3/18/2016; EAB 4/8/2019 I’m not sure if the EPAOverlist

layer was used for this metric. If yes, then please replace the ImpairedStreams and

EPAOverlist shapefiles with the single updated ImpairedStreams, which combines both

datasets.

Final review by EAB: 3/18/2016

Purpose:

Water Quality Function, Value to Society

Max 1 point

Description:

Rationale: Wetland Unit is in a basin or sub-basin where water quality is an issue in some

aquatic resource (303d list, eutrophic lakes, problems with nuisance and toxic algae, karst).

Wetlands can mitigate the impacts of pollution even if they do not discharge directly to a

polluted body of water. Wetlands can remove nitrogen from groundwater as well as surface

water. They can also trap airborne pollutants. Thus wetlands can provide an ecosystem service

and value to our society in any basin and sub-basin that has pollution problems. The removal of

pollutants by wetlands is judged to be more valuable in basins where other aquatic resources are

already polluted or have problems with eutrophication. Any further degradation of these

resources by destroying the wetland could result in irreparable damage to the ecosystem. Karst

systems lack natural filtering capacity and are vulnerable to pollution wherever they occur in the

state; therefore wetlands occurring in karst areas get this point whether or not degradation has

been documented.

Summary of strategy: Select HUC12 (12-digit) watersheds that contain an impaired stream

reach, algal lake, algal stream, lake with power boat use, or karst. Assign 1 point to Wetland

Units that intersect with these watersheds.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\basemap\watersheds_12digit.shp

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\DNR_Fishing_20Aug2015\PublicFishingLakesWVD
NR20150820.shp

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: AlgalStreams
o Feature Class: AlgalLakes

• M:\wr\WTRSHD_BRANCH\303D_TMDL_IMPAIRED\WV2016_ImpairedStreams_24KNHD.shp

• M:\basemap\geology_shapefiles\type\geology-TYPE-limestone.shp

• M:\basemap\geology_shapefiles\type\geology-TYPE-dolostone.shp

317

Input Variables:

None

Method:

Create feature class to store HUC12WQ variables

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_HUC12WQ

Add field to Wetland Units and set initial point value to zero.

Open attribute table of WU_HUC12WQ

Add field “HUC12WQ” (short integer)

R-click HUC12WQ and Field Calculate HUC12WQ = 0

Select lakes with power boat use

Select * FROM PublicFishingLakesWVDNR20150820 WHERE: "BoatType" NOT LIKE

'No%'

(86 out of 127 selected)

Select HUC12s that contain lakes with power boat use.

Select by location

Selection method: select features from

Target layer: watersheds_12digit.shp

Source layer: PublicFishingLakesWVDNR20150820.shp

Check box “Use selected features” (86 features selected)

Spatial selection method: Intersect the source layer feature

(102 out of 1205 selected)

Select HUC12s that contain algal lakes.

Select by location

Selection method: add to the currently selected features in

Target layer: watersheds_12digit.shp

Source layer: AlgalLakes

Spatial selection method: intersect the source layer feature

(107 out of 1205 selected)

Select HUC12s that contain algal streams.

Select by location

Selection method: add to the currently selected features in

Target layer: watersheds_12digit.shp

318

Source layer: AlgalStreams

Spatial selection method: intersect the source layer feature

(138 out of 1205 selected)

Select HUC12s that contain impaired stream reaches.

Select by location

Selection method: add to the currently selected features in

Target layer: watersheds_12digit.shp

Source layer: WV2016_ImpairedStreams_24KNHD.shp

Spatial selection method: intersect the source layer feature

Select HUC12s that contain karst.

Select by location

Selection method: add to the currently selected features in

Target layer: watersheds_12digit.shp

Source layer: geology-TYPE-limestone.shp

Spatial selection method: intersect the source layer feature

Select by location

Selection method: add to the currently selected features in

Target layer: watersheds_12digit.shp

Source layer: geology-TYPE-dolostone.shp

Spatial selection method: intersect

Select Wetland Units in HUC12s with water quality issues.

Select by location

Selection method: select features from

Target layer: WU_HUC12WQ

Source layer: watersheds_12digit.shp

Check box “Use selected features”

Spatial selection method: intersect the source feature

Assign 1 point to Wetland Units in HUC12s with water quality issues.

R-click “HUC12WQ” in WU_HUC12WQ and Field Calculate HUC12WQ = 1

319

5.6.38 HUse: Public Use of Habitat and Ecological Integrity

Version date: 19 October 2017

Strategy: completed 3/16/2017 EAB

GIS method: 10/13/2017 EAB; results verified 10/19/2017 EAB

Python code: 10/18/2017 YH

Final review by EAB: 10/19/2017

Purpose:

Habitat Function / Value to Society

Maximum 4 points (all wetland types)

Description:

Rationale: Access, infrastructure, and habitat quality all impact public use of wetlands.

Strategy: Sum the points for OwnerAccess and PublicUse.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunction.gdb
o Feature Class: WU_OwnerAccess

▪ Field: OwnerAccess
o Feature Class: WU_PublicUse

▪ Field: PublicUse

Method:

Spatial join to bring together metric values

Note that this could also be done with a “Join” on the field “WUKey”

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_OwnerAccess

Join Feature: WU_PublicUse

Output feature class: WU_HUse

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 OwnerAccess

 PublicUse

Match Option: CONTAINS

Add HUse field and set initial point value to zero.

320

Open attribute table of WU_HUse

Add field “HUse” (short integer)

R-click HUse and Field Calculate HUse = 0

Sum the factor points

R-click HUse and Field Calculate HUse = [OwnerAccess]+ [PublicUse]

321

5.6.39 HydIntact: Intactness of hydrologic regime

Version date: 24 September 2017

Strategy: Completed 3/16/2017 EAB

GIS method: 9/24/2017 EAB; results verified 9/24/2017 EAB

Python coding: 9/25/2017 YH

Final review by EAB: 9/26/2017

Purpose:

Input to Habitat & Ecological Integrity / Potential

Max 6 points

Description:

Rationale: Natural hydrologic processes vary greatly among different types of wetlands.

Peatlands rely on precipitation and very slow groundwater movement to create deep organic

soils and unique plant communities. Seepage swamps rely primarily on groundwater

movement. Floodplain wetlands receive water from overland flooding in addition to

groundwater and precipitation. Rather than specifying a particular hydrologic regime, this

metric is rated based on the dominance of natural hydrologic processes and deviations from

natural conditions. Hydroperiod is the characteristic frequency and duration of inundation or

saturation of a wetland during a typical year. In most wetlands, plant recruitment and

maintenance are dependent on hydroperiod. The interactions of hydroperiod and topography are

major determinants of the distribution and abundance of native wetland plants and animals

(Mitsch and Gosselink 2000, National Research Council 2001, CWMW 2013).

Strategy: Note that this metric is best assessed in the field. The field value will overwrite the

GIS value. For GIS assessment, award points for low score for disturbances and discharges to

the wetland (inverse of WQOpportun-5 pts- based on Discharges, ImpairedIn, RoadRail,

Disturb50m, DisturbWshd); add an additional point for wetlands with higher scores (2,3) for

Landscape Integrity.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\WQOpportun.gdb
o Feature Class: WU_WQOpportun

▪ Field: WQOpportun

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\LandInteg.gdb
o Feature Class: WU_LandInteg

▪ Field: LandInteg

Method:

Note that the Spatial Join could be replaced by a Join on WUKey if that is easier.

Spatial join to merge WQOpportun and LandInteg into one attribute table

322

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_WQOpportun

Join Feature: WU_LandInteg

Output Feature Class: WU_HydroH

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 WUKey

Shape_Length

 Shape_Area

 WQOpportun

 LandInteg

Match option: CONTAINS

Add HydIntact field to Wetland Units and set initial point value to zero.

Open attribute table of WU_HydroH

Add field “HydIntact” (short integer)

R-click HydIntact and Field Calculate HydIntact = 0

Assign points to HydIntact

Open attribute table of WU_HydroH

SELECT * FROM WU_HydroH WHERE: ("WQOpportun" = 5 AND "LandInteg" IN (2,3))

OR ("WQOpportun" = 4 AND "LandInteg" IN (0,1))

Field Calculate HydIntact = 1

SELECT * FROM WU_HydroH WHERE: ("WQOpportun" = 4 AND "LandInteg" IN (2,3))

OR ("WQOpportun" = 3 AND "LandInteg" IN (0,1))

Field Calculate HydIntact = 2

SELECT * FROM WU_HydroH WHERE: ("WQOpportun" = 3 AND "LandInteg" IN (2,3))

OR ("WQOpportun" = 2 AND "LandInteg" IN (0,1))

Field Calculate HydIntact = 3

SELECT * FROM WU_HydroH WHERE: ("WQOpportun" = 2 AND "LandInteg" IN (2,3))

OR ("WQOpportun" = 1 AND "LandInteg" IN (0,1))

Field Calculate HydIntact = 4

SELECT * FROM WU_HydroH WHERE: ("WQOpportun" = 1 AND "LandInteg" IN (2,3))

OR ("WQOpportun" = 0 AND "LandInteg" IN (0,1))

Field Calculate HydIntact = 5

SELECT * FROM WU_HydroH WHERE: "WQOpportun" = 0 AND "LandInteg" IN (2,3)

Field Calculate HydIntact = 6

323

5.6.40 HydroH: Hydrologic regime for habitat

Version date: 27 September 2017

Strategy: Completed 3/16/2017 EAB

GIS method: 9/27/2017 EAB; results verified 9/27/2017 EAB

Python coding: 9/27/2017 YH

Final review by EAB: 9/28/2017

Purpose:

Input to Habitat & Ecological Integrity / Potential

Max 9 points

Description:

Rationale: Hydrology is the most important direct determinant of wetland functions (Mitsch and

Gosselink 2007); however, it is not easy to accurately assess hydroperiod remotely or during a

single field visit (Stein et al 2009, Mack 2001). Wetland hydrology varies greatly under natural

conditions, from rainfed bogs to groundwater wetlands to wetlands fed by overbank flooding.

All of these natural hydrologic regimes create conditions under which wetland plants and

animals can thrive and wetlands can perform their intrinsic ecological, hydrological, and

societal functions and services (CWMW 2013). Disturbances to hydrology are one of the main

sources of degradation to wetlands (Mack 2001).

Strategy: Sum the points for the metrics HydIntact, ConnectFL, and HydSW.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunction[date & time].gdb
o Feature Class: WU_HydroH

▪ Field: HydIntact
▪ Field: HydSW

o Feature Class: WU_ConnectFL
▪ Field: ConnectFL

Method:

Note that the step below could be done with a Spatial Join instead of a Join if that is easier

to code.

Add Join to merge fields into one attribute table

ArcToolbox / Data Management Tools / Joins / Add Join

Layer Name or Table View: WU_HydroH

Input Join Field: WUKey

Join Table: WU_ConnectFL

Output Join Field: WUKey

324

Check “Keep All Target Features”

Add field to store ConnectFL

Open attribute table of WU_HydroH (Join is still active)

Add fields “ConnectFL1” (short integer)

Field Calculate ConnectFL1 = [WU_ConnectFL.ConnectFL]

Remove Join

R-click “WU_HydroH” and select Joins and Relates / Remove All Joins

Add field to store HydroH and set initial value to zero

Open attribute table of WU_HydroH (Join is gone)

Add Field “HydroH” (short integer)

R-click HydroH and Field Calculate HydroH = 0

Assign points to HydroH

Open attribute table of WU_HydroH

Field Calculate HydroH = [HydIntact] + [HydSW] + [ConnectFL1]

325

5.6.41 HydSW: Available Surface Water

Version date: 24 Septmeber 2017

Strategy: completed 3/16/2017 EAB

GIS method: 9/24/2017 EAB; results verified 9/24/2017 EAB

Python code: 9/25/2017 YH

Final review by EAB: 9/26/2017

Purpose:

Input to Habitat & Ecological Integrity / Intrinsic Potential / Hydrology

Max 1 point.

Description:

Rationale: Seasonally or permanently available open water typically supports submerged

macrophytes and provides important foraging and breeding habitat for birds, bats, and

amphibians. The structural complexity provided by aquatic bed species increases habitat niches

for a number of invertebrate and vertebrate species (Hruby 2012, Berglund and McEldowney

2008).

Summary of strategy: Select wetland polygons from the NWI that are attributed as palustrine

aquatic bed, unconsolidated bottom, or unconsolidated shore AND are permanently flooded or

intermittently exposed AND are not spoil. Also select Wetland Units that are contiguous to a

non-impaired lake or stream. Assign points as follows:
o 1 point for PUB or PAB present OR NWI modifier [G,H] (Intermittently exposed/Permanently

flooded) OR intersects/contiguous with non-impaired lake or stream (do not include impaired
stream reaches or algal lakes/streams). Do not include polygons with the special modifier for spoil.

o 0 points: none of the above

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\WU_HydroH (this is created in
HydIntact method)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb (EnhWVWetland)

Method:

Select the wetland polygons that are attributed as open water, including lakes, rivers,

and open water palustrine (aquatic bed, unconsolidated bottom, unconsolidated shore)

AND have a hydrologic regime that is (permanently flooded, semipermanently flooded,

intermittently exposed) AND are not spoil.

Clear all selections.

Select * FROM EnhWVWetland WHERE: ("ATTRIBUTE" LIKE 'L%' OR"ATTRIBUTE"

LIKE 'R%' OR "ATTRIBUTE" LIKE 'PAB%' OR "ATTRIBUTE" LIKE 'PUB%' OR

"ATTRIBUTE" LIKE 'PUS%') AND ("ATTRIBUTE" LIKE '%H%' OR "ATTRIBUTE" LIKE

'%G%' OR "ATTRIBUTE" LIKE '%F%') AND "ATTRIBUTE" NOT LIKE '%s%'

326

Create open water layer from selection

R-click EnhWVWetland / Data / Export Data

Export: Selected features

Output feature class: M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\NWIExports.gdb

Feature Class: NWIOpenWater

Add field to store HydSW and set initial value to zero

In WU_HydroH, add field: HydSW (short integer)

R-click HydSW and Field Calculate HydSW = 0

Select the Wetland Units that intersect or touch NWIOpenWater

Select By Location

Selection Method: select features from

Target Layer: WU_HydroH

Source layer: NWIOpenWater

Spatial selection method for target layer feature(s): intersect the source layer feature

Assign points to HydSW

Open attribute table of WU_HydroH

R-click HydSW, Field Calculate HydSW = 1

Clear all selections

327

5.6.42 ImpairedIn: Impaired waters impacting wetland

Version date: 8 April 2019

Strategy: completed 3/12/2016 EAB

GIS method: 4/18/2016 EAB; verified 4/18/2016 EAB; 2017 update included 2/22/2017 EAB

Python coding: started 6/9/2016 MCA, completed 6/10/2016 MCA; EAB 2/15/2017 see update

to impaired streams layer below – please change code to use these 2 new layers. EAB

4/8/2019 please replace the ImpairedStreams and EPAOverlist shapefiles with the single

updated ImpairedStreams, which combines both datasets.

Final review by EAB: 10/3/2016; need to review after 2017 update is completed

Purpose:

Water Quality Function, Opportunity Aspect

Max 2 points

Description:

Impaired waters, algal blooms, or powerboat use impacting wetland (2 points max).

Rationale: Impaired waters are adjacent to wetland or are in the contributing watershed of a

floodplain wetland. Impaired waters include the following:
• Power boat use. The presence of power boats in adjacent reservoirs or water bodies will increase

the pollutants entering a fringe wetland. Toxic chemicals, oils, cleaners, and paint scrapings from
boat maintenance can make their way into the water (Asplund 2000). In addition, older two stroke
engines still found on many recreational boats and jet skis were purposely designed to discharge
the exhaust that contains unburned gasoline and oil into the water. The landscape potential to
improve water quality for a wetland unit along a shore is higher if the water body itself is directly
receiving pollutants from power boats.

• Algal blooms and blooms or larger plants such as milfoil in open water are an indication of
excessive nutrients (Schindler and Fee 1974, Smith et al. 1999). The increased levels of nutrients in
the water body increase the amount of nutrients that the wetland plants absorb (Venterink and
others 2002) and thus also increase the level of function within the wetland unit.

• Impaired streams.

Summary of Strategy: Select floodplain Wetland Units whose contributing watershed contains

impaired waters, algal blooms, or powerboat use (1 point). Select all (floodplain and

groundwater) Wetland Units within 5 meters’ distance of impaired waters, algal blooms, or

powerboat use (2 points).

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\DNR_Fishing_20Aug2015\PublicFishingLakesWVD
NR20150820.shp

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: AlgalStreams
o Feature Class: AlgalLakes

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb

328

o Feature Class: DrainageArea27m

• M:\wr\WTRSHD_BRANCH\303D_TMDL_IMPAIRED\WV2016_ImpairedStreams_24KNHD.shp

Input Variables:

• Floodplain

Method:

Create feature class to store ImpairedIn variables

R-click WU_Floodplain and select Data/Export Data

Output feature class: WU_ImpairedIn

Add field to Wetland Units and set initial point value to zero.

Open attribute table of WU_ImpairedIn

Add field “ImpairedIn” (short integer)

R-click ImpairedIn and Field Calculate ImpairedIn = 0

Add field to DrainageArea27m and set initial value to “No”

Open attribute table of DrainageArea27m

Add field “ImpairSrc” (text, 2 characters)

R-click ImpairSrc and Field Calculate ImpairSrc = “N”

Select lakes with power boat use

Select * FROM PublicFishingLakesWVDNR20150820 WHERE: "BoatType" NOT LIKE

'No%'

Select Drainage Areas with power boat use.

Select by Location

Selection method: select features from

Target layers: DrainageArea27m

Source layer: PublicFishingLakesWVDNR20150820

Check box “Use Selected Features”

Spatial selection method: intersect the source layer feature

Select (add) Drainage Areas with algal lakes.

Select by Location

Selection method: add to the currently selected features in

Target layers: DrainageArea27m

Source layer: AlgalLakes

329

Spatial selection method: intersect the source layer feature

Select (add) Drainage Areas with algal streams.

Select by Location

Selection method: add to the currently selected features in

Target layers: DrainageArea27m

Source layer: AlgalStreams

Spatial selection method: intersect the source layer feature

Select (add) Drainage Areas with impaired streams.

Select by Location

Selection method: add to the currently selected features in

Target layers: DrainageArea27m

Source layer: WV2016_ImpairedStreams_24KNHD

Spatial selection method: intersect the source layer feature

Set ImpairSrc to yes for Drainage Areas with an impaired water source.

In DrainageArea27m feature class, Field calculate ImpairSrc = “Y”

Clear selections.

Join Drainage Area attribute to Wetland Units.

ArcToolbox / Data Management Tools / Joins / Join Field

Input table: WU_ImpairedIn

Input Join Field: OBJECTID_1

Join Table: DrainageArea27m

Output Join Field: WUKey

Join Fields: WUKey, ImpairSrc

Assign 1 point to floodplain Wetland Units with impaired waters in their Drainage

Area.

SELECT * FROM WU_ImpairedIn WHERE: "Floodplain" = 'Y' AND "ImpairSrc" = 'Y'

R-click “ImpairedIn” in WU_ImpairedIn and Field Calculate ImpairedIn = 1

Clear selections.

Select lakes with power boat use

Select * FROM PublicFishingLakesWVDNR20150820 WHERE: "BoatType" NOT LIKE

'No%'

Select Wetland Units adjacent to lakes with power boat use

330

Select by location

Selection method: select features from

Target layers: WU_ImpairedIn

Source layer: PublicFishingLakesWVDNR20150820

Check box “Use selected features”

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 5 meters

Select Wetland Units adjacent to algal lakes

Select by location

Selection method: add to the currently selected features in

Target layers: WU_ImpairedIn

Source layer: AlgalLakes

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 5 meters

Select Wetland Units adjacent to algal streams

Select by location

Selection method: add to the currently selected features in

Target layers: WU_ImpairedIn

Source layer: AlgalStreams

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 5 meters

Select Wetland Units adjacent to impaired streams

Select by location

Selection method: add to the currently selected features in

Target layers: WU_ImpairedIn

Source layer: WV2016_ImpairedStreams_24KNHD

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 5 meters

Assign 2 points to Wetland Units adjacent to impaired waters.

R-click “ImpairedIn” in WU_ImpairedIn and Field Calculate ImpairedIn = 2

331

5.6.43 ImpairedOut: Wetland Discharges to Impaired Waters

Version date: 8 April 2019

Strategy: completed 3/12/2016 EAB

GIS method: completed and verified 3/17/2016 EAB

Python coding: started 3/16/2016 MCA, completed 3/18/2016 MCA; EAB 2/15/2017 please

replace old “impaired streams” layer with 2 new ones, as highlighted below

 Changes finished 3/13/2017 MCA; EAB 4/8/2019 please replace the ImpairedStreams

and EPAOverlist shapefiles with the single updated ImpairedStreams, which combines

both datasets.

Final check by EAB: 3/18/2016

Purpose:

Water Quality Function

Max 1 point

Description:

Rationale: Wetland discharges to (<1 km above) a stream, river, or lake that is on the 303d list,

or a water body that is impacted by chronic algal blooms or power boat use. The term, "303(d)

list," is short for the list of impaired waters (stream segments, lakes) that the Clean Water Act

requires all states to submit to the Environmental Protection Agency (EPA) every two years.

Wetlands that discharge directly to these polluted waters are judged to be more valuable than

those that discharge to unpolluted bodies of water because their role at cleaning up the pollution

is critical for reducing further degradation of water quality. The WVDEP list is at:

http://www.dep.wv.gov/WWE/watershed/IR/Pages/303d_305b.aspx

Karst systems lack natural filtering capacity and are vulnerable to pollution wherever they occur

in the state; therefore wetlands discharging to karst areas get this point whether or not

degradation has been documented.

Summary of strategy: Select Wetland Units within 1 km of an impaired reach, algal lake, algal

stream, or lake with power boat use AND Wetland Units that occur on karst. This is a coarse

approximation (since it does not follow flowlines) that selects slightly over half of the state’s

wetlands.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\DNR_Fishing_20Aug2015\PublicFishingLakesWVD
NR20150820.shp

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: AlgalStreams
o Feature Class: AlgalLakes

• M:\wr\WTRSHD_BRANCH\303D_TMDL_IMPAIRED\WV2016_ImpairedStreams_24KNHD.shp

• M:\basemap\geology_shapefiles\type\geology-TYPE-limestone.shp

• M:\basemap\geology_shapefiles\type\geology-TYPE-dolostone.shp

http://www.dep.wv.gov/WWE/watershed/IR/Pages/303d_305b.aspx

332

Input Variables:

None

Method:

Create feature class to store ImpairedOut variables

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_ImpairedOut

Add field to Wetland Units and set initial point value to zero.

Open attribute table of WU_ImpairedOut

Add field “ImpairedOut” (short integer)

R-click ImpairedOut and Field Calculate ImpairedOut = 0

Select lakes with power boat use

Select * FROM PublicFishingLakesWVDNR20150820 WHERE: "BoatType" NOT LIKE

'No%'

Select Wetland Units < 1 km from lakes with power boat use.

Select by location

Selection method: select features from

Target layer: WU_ImpairedOut

Source layer: PublicFishingLakesWVDNR20150820.shp

Check box “Use selected features”

Spatial selection method: are within a distance of the source feature

Apply a search distance: 1000 meters

Select Wetland Units < 1 km from algal lakes.

Select by location

Selection method: add to the currently selected features in

Target layer: WU_ImpairedOut

Source layer: AlgalLakes

Spatial selection method: are within a distance of the source feature

Apply a search distance: 1000 meters

Select Wetland Units < 1 km from algal streams.

Select by location

Selection method: add to the currently selected features in

Target layer: WU_ImpairedOut

Source layer: AlgalStreams

333

Spatial selection method: are within a distance of the source feature

Apply a search distance: 1000 meters

Select Wetland Units < 1 km from impaired stream reaches.

Select by location

Selection method: add to the currently selected features in

Target layer: WU_ImpairedOut

Source layer: WV2016_ImpairedStreams_24KNHD

Spatial selection method: are within a distance of the source feature

Apply a search distance: 1000 meters

Select Wetland Units on karst.

Select by location

Selection method: add to the currently selected features in

Target layer: WU_ImpairedOut

Source layer: geology-TYPE-limestone.shp

Spatial selection method: intersect the source layer feature

(27668 out of 43124 selected)

Select by location

Selection method: add to the currently selected features in

Target layer: WU_ImpairedOut

Source layer: geology-TYPE-dolostone.shp

Spatial selection method: intersect

(27683 out of 43124 selected)

Assign 1 point to Wetland Units that discharge to impaired waters.

R-click “ImpairedOut” in WU_ImpairedOut and Field Calculate ImpairedOut = 1

334

5.6.44 IrrEdge: Irregularity of the Upland/Wetland Edge

Version date: 8 March 2016

Strategy: Completed 2/17/2016 EAB

GIS method: Completed 3/8/2016 EAB JCC, Verified 3/8/2016 EAB

Python code: Completed 3/14/2016 MCA

Final result verified by EAB: 3/14/2016

Purpose:

Input to Water Quality/Surface Depressions

Max 1 point.

Nitrite removal is aided by upland/wetland contact (Adamus et al. 2010).

Note that GIS determination of surface depressions and the detailed perimeter (edge) of the

wetland is not currently within our analysis reach. We are instead using the proxy of mapped

perimeter/sqrt(area) to estimate this value. The perimeter will be much more accurately

measured during rapid field assessment.

Summary of strategy: Calculate the perimeter of wetland unit that is NOT adjacent to open

water divided by the square root of the area of wetland unit. Add 1 point if > 6.

Definitions:

N/A

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb (EnhWVWetland)

Input Variables:

• Shape_Length (perimeter of Wetland Unit in meters)

• Shape_Area (Area of Wetland Unit in m2)

Method:

Add field to the Wetland Units feature class.

Add numeric field to WU_20150514 attribute table: IrrEdgeRat (irregular edge ratio, float)

Calculate initial value of IrrEdgeRat for all Wetland Units.

R-click IrrEdgeRat and Field Calculate = [Shape_Length] / ([Shape_Area] ^ 0.5)

Select the rivers and lakes from the National Wetlands Inventory.

Clear all selections.

Select * FROM EnhWVWetland WHERE: "ATTRIBUTE" LIKE 'R%' OR "ATTRIBUTE"

LIKE 'L%'

335

Export the rivers and lakes.

R-click EnhWVWetland

Data / Export Data

Export: Selected features

Output feature class: RiversLakes

Select the Wetland Units that border a river or lake.

Select by Location

Selection method: select features from

Target layer: WU20150514

Source layer: RiversLakes

Spatial selection method: intersect the source layer feature

Export the intersecting Wetland Units

R-click WU_20150514

Data / Export Data

Export: Selected features

Output feature class: WURiversLakes

Convert Wetland polygons to lines

Data Management Tools / Features / Polygon to Line

Input Features: WU_RiversLakes

Output Feature Class: Intersecting_lines

Do not check box “Identify and store polygon…”

Erase the wet perimeter lines

Analysis Tools / Overlay / Erase

Input features: Intersecting_lines

Erase features: RiversLakes

Output feature class: DryEdges

336

Add field and calculate dry perimeter in DryEdges

In DryEdges, add field “DryPerim” (float)

Right click DryPerim attribute field and Field Calculate

“DryPerim” = [Shape_Length]

Reset to NULL records from DryEdges with length < 26. These are mapping or

computational errors.

Clear all selections.

SELECT * FROM DryEdges WHERE: “DryPerim” < 26

R-click DryPerim and Field Calculate “DryPerim” = NULL

Join Wetland Units to DryEdges

Clear all selections.

Analysis Tools / Overlay / Spatial Join

Target Features: WU_20150514

Join Features: DryEdges

Output Feature Class: WU_IrrEdge

Join operation: Join_one_to_one

Check box “Keep all target features”

Field map of join features: (retain the following)

 Shape_Length

 Shape_Area

 IrrEdgeRat

 DryPerim

Match Option: Intersect

337

Select the Wetland Units fronting rivers and lakes

SELECT * FROM WU_IrrEdge WHERE: “DryPerim” > 0

Update the value of IrrEdgeRat for the selected records.

Open attribute table of WU_IrrEdge

R-click IrrEdgeRat and Field Calculate: [DryPerim] / ([Shape_Area] ^ 0.5)

Clear all Selections.

Add IrrEdge point field and set initial value to zero.

In WU_IrrEdge, add field IrrEdge (short integer)

Field Calculate IrrEdge = 0

Assign 1 point if IrrEdgeRat > 6.

SELECT * FROM WU_IrrEdge WHERE: IrrEdgeRat > 6

Field Calculate IrrEdge = 1

338

5.6.45 Karst: limestone/dolomite bedrock or calcareous soil

Version date: 18 September 2017

Strategy: Completed 3/16/2017 EAB

GIS method: 9/15/2017 EAB; results verified 9/18/2017 EAB

Python code:

Final review by EAB:

Purpose:

Input to Habitat / Potential / Vegetation / Floristic Quality

Max 3 points

Description:

Rationale: A rich and distinctive flora and fauna are characteristic of calcareous wetlands.

Summary of strategy: Karst area (limestone/dolomite bedrock geology or SSURGO

karst/calcareous soils) > 0.67 of total wetland area = 3 points; karst 0.33-0.67 = 2 points; > 0.1 =

1 point

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: KarstComposite

Method:

Intersect karst and Wetland Units

ArcToolbox / Analysis Tools / Overlay / Intersect

Input features: KarstComposite

 WU_20150514

Output feature class: WU_Karst1

Join attributes: ONLY_FID

Output type: INPUT

Add field to store karst area.

Open attribute table of WU_Karst1

Add field “KarstArea” (float)

R-click “Karst” and Field Calculate: KarstArea = [Shape_Area]

Spatial Join karst selection to Wetland Units and sum karst area.

Analysis Tools / Overlay / Spatial Join

339

Target Features: WU_20150514

Join Features: WU_Karst1

Output Feature Class: WU_Karst

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 Shape_Length

 Shape_Area

 WUKey

KarstArea (R-click and select “Merge Rule”, “Sum”)

Match Option: CONTAINS

Note: if the Spatial Join doesn’t work because of difficulties opening the “WU_Karst1” feature

class, then export “WU_Karst1” to a shapefile and re-run the Spatial Join.

Add fields to store KarstRatio and Karst.

Open attribute table of WU_Karst

Add field KarstRatio (float) to WU_Karst attribute table.

Add field Karst (short integer) to WU_Karst attribute table.

Field calculate Karst = 0

Calculate the ratio of karst area to total Wetland Unit area.

Field calculate KarstRatio = [KarstArea] / [Shape_Area]

Assign points

SELECT * FROM WU_Karst WHERE: KarstRatio > 0.1

Field Calculate Karst = 1

SELECT * FROM WU_Karst WHERE: KarstRatio > 0.33

Field Calculate Karst = 2

SELECT * FROM WU_Karst WHERE: KarstRatio > 0.67

Field Calculate Karst = 3

340

5.6.46 LandEco: Landscape-level Ecological Connectivity

Version date: 6 October 2017

Strategy: 3/16/2017 EAB

GIS method: 10/6/2017 EAB; results verified 10/6/2017 EAB

Python code: 10/10/2017 YH

Final review by EAB: 10/10/2017

Purpose:

Input to Habitat / Landscape Opportunity

Description:

Maximum 3 points

Rationale: Landscape-level ecological connectivity provides high opportunities for maintenance

and dispersal of native species, rare species, and natural communities.

GIS Method (no field method):

Sum the values of the metrics below.

BRankHUC (4 max)

WshdUniq (2 max)

ConsFocus (2 max)

WetldBird (3 max)

Assign points as follows:

3 points: Sum of metrics = 8-11

2 points: Sum of metrics = 5-7

1 point: Sum of metrics = 2-4

0 points: Sum of metrics = 0-1

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFunction.gdb
o Feature Class: WU_BRankHUC

▪ Field: BRankHuc
o Feature Class: WU_WshdUniq

▪ Field: WshdUniq
o Feature Class: WU_ConsFocus

▪ Field: ConsFocus
o Feature Class: WU_WetlandBird

▪ Field: WetldBird

Method:

Spatial Join to merge attributes into one table

Note that this could also be done with a Join on WUKey if that is easier

341

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_BRankHUC

Join Feature: WU_WshdUniq

Output Feature Class: WU_LandEco1

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

WUKey

Shape_Length

Shape_Area

BRankHUC

WshdUniq

Match option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_LandEco1

Join Feature: WU_ConsFocus

Output Feature Class: WU_LandEco2

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

WUKey

Shape_Length

Shape_Area

BRankHUC

WshdUniq

ConsFocus

Match option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_LandEco2

Join Feature: WU_WetlandBird

Output Feature Class: WU_LandEco

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

WUKey

Shape_Length

Shape_Area

BRankHUC

WshdUniq

ConsFocus

WetldBird

Match option: CONTAINS

Create feature class to store results for LandEco and set initial value to zero

342

Open attribute table of WU_LandEco

Add field “LandEco” (short integer)

Field calculate LandEco = 0

Sum the metrics and assign points:

Open attribute table of WU_LandEco

SELECT * FROM WU_LandEco WHERE: ("ConsFocus" + "WetldBird" + "BRankHUC" +

"WshdUniq") > 1

Field Calculate LandEco = 1

SELECT * FROM WU_LandEco WHERE: ("ConsFocus" + "WetldBird" + "BRankHUC" +

"WshdUniq") > 4

Field Calculate LandEco = 2

SELECT * FROM WU_LandEco WHERE: ("ConsFocus" + "WetldBird" + "BRankHUC" +

"WshdUniq") > 7

Field Calculate LandEco = 3

Clear all selections

343

5.6.47 LandHydro: Landscape-level Hydrologic Connectivity

Version date: 3 October 2017

Strategy: Completed 3/16/2017 EAB

GIS method: 10/3/2017 EAB; results verified 10/3/2017 EAB

Python coding:

Final review by EAB:

Purpose:

Input to Habitat & Ecological Integrity / Landscape Opportunity

Max 3 points

Rationale: Landscape-level hydrologic conductivity is a key component of ecological integrity.

See WshdPos and AquaAbund metrics for additional information on rationale.

Strategy: Sum the points for WshdPos and AquaAbund.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFunction.gdb
o Feature Class: WU_WshdPos

▪ Field: WshdPos
o Feature Class: WU_AquaAbund

▪ Field: AquaAbund

Method:

Note that the Spatial Joins could be replaced by Joins on WUKey if that is easier.

Spatial join to merge WshdPos and AquaAbund into one attribute table

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_WshdPos

Join Feature: WU_AquaAbund

Output Feature Class: WU_LandHydro

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 WUKey

Shape_Length

 Shape_Area

 WshdPos

 AquaAbund

Match option: CONTAINS

Add LandHydro field to Wetland Units and set initial point value to zero.

Open attribute table of WU_LandHydro

Add field “LandHydro” (short integer)

344

R-click LandHydro and Field Calculate LandHydro = 0

Sum the points for WshdPos and AquaAbund

R-click LandHydro and Field Calculate “LandHydro” = [WshdPos] + [AquaAbund]

345

5.6.48 LandInteg: Landscape Integrity Index

Version date: 3 December 2018

Strategy: 3/16/2017 EAB

GIS method: 9/19/2017 EAB; revised 9/22/2017 EAB; revised to include IEI (UMass) data

11/27/2018 EAB

Python code: 9/25/2017 YH

Final review by EAB: 9/26/2017

Purpose:

Input to Habitat / Potential (VegFQ, HydIntact) and Habitat/Opportunity (Buffer and Landscape

Integrity)

Description:

Maximum 3 points

Rationale: Landscape Integrity is a good measure of overall habitat value, including a positive

correlation with Floristic Quality.

Strategy:

Sum the following four weighted measures of landscape integrity. Then calculate a weighted

average for a maximum of 3 points.

LandIntegDNR: DNR 2008 Landscape Integrity model: mean value for wetland.

LandIntegDNR is calculated as the mean value of pixels within a Wetland Unit. For Wetland

Units that are smaller or narrower than a single pixel (30m x 30m), LandInteg is calculated from

the (contained) centroid of the polygon. Point thresholds were set by E. Byers after comparing a

large number of known landscapes to point distributions.

3 points: >= 800

2 points: 700-800

1 point: 600-700

0 points: < 600

0

500000

1000000

1500000

2000000

1

3
3

6
5

9
7

1
2

9

1
6

1

1
9

3

2
2

5

2
5

7

2
8

9

3
2

1

3
5

3

3
8

5

4
1

7

4
4

9

4
8

1

5
1

3

5
4

5

5
7

7

6
0

9

6
4

1

P
ix

el
 C

o
u

n
t

Landscape Integirty Score

DNR Landscape Integrity 2008

346

IEI: Index of Ecological Integrity from the Conservation and Prioritization System (UMass

2010 with some 2018 updates). This layer is very similar to the LandIntegDNR layer. It has

finer resolution and does a better job of capturing roads and other detailed features. However,

its treatment of pipelines and powerlines as higher-integrity areas than surrounding wetlands is

problematic.

IEI is calculated as the mean value of pixels within a Wetland Unit. For Wetland Units that are

smaller or narrower than a single pixel (30m x 30m), IEI is calculated from the (contained)

centroid of the polygon. Pixels with “NoData” are all in highly developed areas and we

therefore set these pixels equal to 0. Point thresholds were set to approximately mimic the

proportions of land in each category of the LandIntegDNR layer, with slightly more land in the

lower categories since this layer has finer resolution and picks up fragmentation better (except

for the pipelines).

3 points: 70

2 points: 45 – 70

1 point: 15 – 45

0 points: < 15

LandResil: TNC 2016 Resilient and Connected Landscapes model: most common value for

wetland. Note that this layer has a small percentage of null pixel values.

LandResil is calculated as the most common value of pixels within a Wetland Unit. For

Wetland Units that are smaller or narrower than a single pixel (30m x 30m), LandResil is

calculated from the (contained) centroid of the polygon.

3 points: wetland intersects resilient land with confirmed diversity: Value IN (11,12,112)

2 points: wetland intersects resilient land with connectivity: Value IN

(2,4,11,12,13,14,33,112)

1 point: wetland intersects resilient land: Value IN (2,3,4,11,12,13,14,33,112)

0 points: wetland does not meet above criteria

Definition of Value codes:

0 Vulnerable

2 Climate Corridor (resilient)

3 Resilient only (unsecured)

4 Climate Corridor (vulnerable)

0

500000

1000000

1500000

1 11 21 31 41 51 61 71 81 91

P
ix

el
 C

o
u

n
t

IEI Score not including NoData (NoData= 0)

UMass Index of Ecological Integrity 2010

347

11 Climate Corridor with confirmed diversity

12 Resilient Area with confirmed diversity

13 Climate Corridor

14 Climate Flow Zone

33 Resilient only (secured)

112 Climate Flow Zone with confirmed diversity

ForestPatch: Forest tract proximity and extent based on TNC 2014 forest patches mapping.

Note that this layer has a few small gaps, e.g. no forest patches mapped north of Cranberry

Glades.

3 points: wetland intersects forest patch ≥ 1000 ha (2470 acres) in size

2 points: wetland intersects forest patch ≥ 100 ha (247 acres) in size (i.e., is contiguous

with a forest patch ≥ 100 ha in size OR wetland itself contains ≥ 100 ha of

forest)

1 point: wetland intersects a forest patch ≥ 20 ha (50 acres) in size OR wetland is

within 30 m of a forest patch ≥ 100 ha in size

0 points: wetland does not meet above criteria

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)
o Feature Class: WU_20150514
o Feature Class: WUpoint

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\landscapeIntegrityIndex_WVDNR_2008_utm83_i
mg\

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\ContributedRawData\Resilient_and_Connected_L
andscapes\Resilient_and_Connected_Data.gdb

o Raster: Resilient_and_Connected
▪ Field: Value

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\ContributedRawData\forest_patches_over50acres
_WVplus10mi.shp

o Field: Acreage

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\HabitatData.gdb

o Raster: IEIUMa2010v32

Method:

STEP 1

Calculate the intermediate metric LandIntegDNR

Summarize the DNR Landscape Integrity raster values for each Wetland Unit

Spatial Analyst Tools/Zonal/Zonal Statistics as Table

Input feature zone data: WU_20150514

Zone field: WUKey

Input Value raster: landscapeIntegrityIndex_WVDNR_2008_utm83.img

Output table: LandInteg_zonal

Check Ignore No Data

348

Statistics Type: MEAN

Note the null returns are for polygons that are too small to contain an entire pixel. For these

polygons, we need to calculate the centroid of the (very small) wetland, and use the centroid to

obtain the Landscape Integrity Index value.

Convert Wetland Unit polygons to points

Note that this step should be moved to “Creating Wetland Units from NWI Polygons”

Data Management Tools / Features / Feature to Point

Input Features: WU_20150514

Output Feature Class:

 M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb\WUpoint

Check “Inside”

Extract the DNR Landscape Integrity raster values for each Wetland Unit centroid

Spatial Analyst Tools / Extraction / Extract Values to Points

Input point features: WUpoint

Input raster: landscapeIntegrityIndex_WVDNR_2008_utm83.img

Output point features: WUpoint_LandInteg

Delete the “Count” field from the LandInteg_zonal table since “Count” is a restricted

word

and may interfere with the join in the next step

R-click table “LandInteg_zonal” to open the table.

R-click the “Count” field and delete field.

Join Wetland Units to the LandInteg_zonal table

Right-click WU_20151514 in TOC

Click Joins and Related

Click “Join…”

This will display the “Join Data pop-up window”

Select “Join attributes from a table”

“Choose the field…” = WUKey

“Choose the table to join…” = LandInteg_zonal

“Choose the field in the table…” = WUKey

Check “Keep all records”

Export the joined data to a Feature Class

Conversion Tools/To Geodatabase/Feature Class to FeatureClass

Input Features: WU_20150514

349

Output Feature Class: WU_LandInteg1

Remove Join from Wetland Units

R-click WU_20150514 / Joins and Relates / Remove Joins / Remove all joins

Join WU_LandInteg1 to WUpoint_LandInteg

Right-click WU_LandInteg1 in TOC

Click Joins and Related

Click “Join…”

This will display the “Join Data pop-up window”

Select “Join attributes from a table”

“Choose the field…” = WUKey (choose the first listing of WUKey)

“Choose the table to join…” = WUpoint_LandInteg

“Choose the field in the table…” = WUKey

Check “Keep all records”

Export joined data to feature class

Conversion Tools/To Geodatabase/Feature Class to FeatureClass

Input Features: WU_LandInteg1

Output Feature Class: WU_LandIntegDNR

Replace NULL values of MEAN with centroid values of Landscape Integrity

Open attribute table of WU_LandIntegDNR

Select by attributes

SELECT * FROM WU_LandIntegDNR WHERE: "MEAN" IS NULL

R-click MEAN and Field Calculate MEAN = [RASTERVALU]

Clear Selection

Add field LandIntegDNR, set initial value to zero

Open the attribute table to WU_LandInteg

Add field “LandIntegDNR” (short integer) to attribute table

Field Calculate “LandIntegDNR” = 0

Assign points

SELECT * FROM WU_LandInteg WHERE: MEAN > 600

Field Calculate LandIntegDNR = 1

SELECT * FROM WU_LandInteg WHERE: MEAN > 700

Field Calculate LandIntegDNR = 2

350

SELECT * FROM WU_LandInteg WHERE: MEAN > 800

Field Calculate LandIntegDNR = 3

STEP 2

Note that method in nearly identical to STEP 1 except for field names and final points

Changes from STEP 1 are noted in green highlight.

Calculate the intermediate metric IEI

Summarize the IEI raster values for each Wetland Unit

Spatial Analyst Tools/Zonal/Zonal Statistics as Table

Input feature zone data: WU_20150514

Zone field: WUKey

Input Value raster: IEIUMa2010v32

Output table: IEI_zonal

Check Ignore No Data

Statistics Type: MEAN

The null returns are for polygons that are too small to contain an entire pixel. For these

polygons, we need to calculate the centroid of the (very small) wetland, and use the centroid to

obtain the IEI value.

Extract the IEI raster values for each Wetland Unit centroid

Spatial Analyst Tools / Extraction / Extract Values to Points

Input point features: WUpoint

Input raster: IEIUMa2010v32

Output point features: WUpoint_IEI

Delete the “Count” field from the IEI_zonal table since “Count” is a restricted word

and may interfere with the join in the next step

R-click table “IEI_zonal” to open the table.

R-click the “Count” field and delete field.

Join Wetland Units to the IEI_zonal table

Right-click WU_20151514 in TOC

Click Joins and Related

Click “Join…”

This will display the “Join Data pop-up window”

Select “Join attributes from a table”

“Choose the field…” = WUKey

“Choose the table to join…” = IEI_zonal

“Choose the field in the table…” = WUKey

351

Check “Keep all records”

Export the joined data to a Feature Class

Conversion Tools/To Geodatabase/Feature Class to Feature Class

Input Features: WU_20150514

Output Feature Class: WU_IEI1

Remove Join from Wetland Units

R-click WU_20150514 / Joins and Relates / Remove Joins / Remove all joins

Join WU_IEI1 to WUpoint_IEI

Right-click WU_IEI1 in TOC

Click Joins and Related

Click “Join…”

This will display the “Join Data pop-up window”

Select “Join attributes from a table”

“Choose the field…” = WUKey (choose the first listing of WUKey)

“Choose the table to join…” = WUpoint_IEI

“Choose the field in the table…” = WUKey

Check “Keep all records”

Export joined data to feature class

Conversion Tools/To Geodatabase/Feature Class to FeatureClass

Input Features: WU_IEI1

Output Feature Class: WU_IEI

Replace NULL values of MEAN with centroid values of IEI

Open attribute table of WU_IEI

Select by attributes

SELECT * FROM WU_IEI WHERE: "MEAN" IS NULL

R-click MEAN and Field Calculate MEAN = [RASTERVALU]

Clear Selection

Add field IEI, set initial value to zero

Open the attribute table to WU_IEI

Add field “IEI” (short integer) to attribute table

Field Calculate “IEI” = 0

Assign points

352

SELECT * FROM WU_IEI WHERE: MEAN > 15

Field Calculate IEI = 1

SELECT * FROM WU_IEI WHERE: MEAN > 45

Field Calculate IEI = 2

SELECT * FROM WU_IEI WHERE: MEAN > 70

Field Calculate IEI = 3

STEP 3

Note that method in nearly identical to STEP 1 except for field names, MAJORITY,

and final points

Calculate the intermediate metric LandResil

Summarize the Resilient_and_Connected raster values for each Wetland Unit

Spatial Analyst Tools/Zonal/Zonal Statistics as Table

Input feature zone data: WU_20150514

Zone field: WUKey

Input Value raster: Resilient_and_Connected

Output table: LandResil_zonal

Check Ignore No Data

Statistics Type: MAJORITY

Extract the Resilient_and_Connected raster values for each Wetland Unit centroid

Spatial Analyst Tools / Extraction / Extract Values to Points

Input point features: WUpoint

Input raster: Resilient_and_Connected

Output point features: WUpoint_LandResil

Note the null returns are for polygons that are too small to contain an entire pixel. For these

polygons, we need to calculate the centroid of the (very small) wetland, and use the centroid to

obtain the Resilient_and_Connected value.

Delete the “Count” field from the LandResil_zonal table since “Count” is a restricted

word

and may interfere with the join in the next step

R-click table “LandResil_zonal” to open the table.

R-click the “Count” field and delete field.

Join Wetland Units to the LandResil_zonal table

353

Right-click WU_20151514 in TOC

Click Joins and Related

Click “Join…”

This will display the “Join Data” pop-up window

Select “Join attributes from a table”

“Choose the field…” = WUKey

“Choose the table to join…” = LandResil_zonal

“Choose the field in the table…” = WUKey

Check “Keep all records”

Export the joined data to a Feature Class

Conversion Tools/To Geodatabase/Feature Class to FeatureClass

Input Features: WU_20150514

Output Feature Class: WU_LandResil1

Remove Join from Wetland Units

R-click WU_20150514 / Joins and Relates / Remove Joins / Remove all joins

Join WU_LandResil1 to WUpoint_LandResil

Right-click WU_LandResil1 in TOC

Click Joins and Related

Click “Join…”

This will display the “Join Data” pop-up window

Select “Join attributes from a table”

“Choose the field…” = WUKey (choose the first listing of WUKey)

“Choose the table to join…” = WUpoint_LandResil

“Choose the field in the table…” = WUKey

Check “Keep all records”

Export joined data to feature class

Conversion Tools/To Geodatabase/Feature Class to FeatureClass

Input Features: WU_LandResil1

Output Feature Class: WU_LandResil

Replace NULL values of MAJORITY with centroid values of Resilient_and_Connected

Open attribute table of WU_LandResil

Select by attributes

SELECT * FROM WU_LandResil WHERE: "MAJORITY" IS NULL

R-click MAJORITY and Field Calculate MAJORITY = [RASTERVALU]

354

Clear Selection

Add field LandResil, set initial value to zero

Open the attribute table to WU_LandResil

Add field “LandResil” (short integer) to attribute table

Field Calculate “LandResil” = 0

Assign points

SELECT * FROM WU_LandResil WHERE: MAJORITY IN (2,3,4,11,12,13,14,33,112)

Field Calculate LandResil = 1

SELECT * FROM WU_LandResil WHERE: MAJORITY IN (2,4,11,12,13,14,33,112)

Field Calculate LandResil = 2

SELECT * FROM WU_LandResil WHERE: MAJORITY IN (11,12,112)

Field Calculate LandResil = 3

STEP 4

Calculate the intermediate metric ForestPatch

Spatial Join Wetland Units and Forest Patches, selecting for the largest forest patch

that is intersected by the Wetland Unit

ArcToolbox/ Spatial Join

Target Features: WU_LandResil

Join Features: forest_patches_over50acres_WVplus10mi.shp

Output Feature Class: WU_ForestPatch

Join Operation: JOIN_ONE_TO_ONE

Check “Keep all target features”

Field Map of Join Features:

 WUKey

 Shape_Length

 Shape_Area

 LandResil

 Acreage (R-click, Merge Rule = Maximum)

Match Option: Intersect

Add field ForestPatch, set initial value to zero

Open the attribute table to WU_ForestPatch

Add field “ForestPatch” (short integer) to attribute table

Field Calculate “ForestPatch” = 0

Assign points

355

SELECT * FROM WU_ForestPatch WHERE: "ACREAGE" >= 50

Field Calculate ForestPatch = 1

SELECT * FROM WU_ForestPatch WHERE: "ACREAGE" >= 247

Field Calculate ForestPatch = 2

SELECT * FROM WU_ForestPatch WHERE: "ACREAGE" >= 2470

Field Calculate ForestPatch = 3

STEP 5

Spatial Join LandIntegDNR metric to the other three metrics

Note that this can also be done with a “Join” on WUKey.

ArcToolbox/ Spatial Join

Target Features: Output Feature Class: WU_LandInteg1

Join Operation: JOIN_ONE_TO_ONE

Check “Keep all target features”

Field Map of Join Features:

 WUKey

 Shape_Length

 Shape_Area

 LandResil

 ForestPatch

 LandIntegDNR

Match Option: Contains

ArcToolbox/ Spatial Join

Target Features: WU_LandInteg1

Join Features: WU_IEI

Output Feature Class: WU_LandInteg

Join Operation: JOIN_ONE_TO_ONE

Check “Keep all target features”

Field Map of Join Features:

 WUKey

 Shape_Length

 Shape_Area

 LandResil

 ForestPatch

 LandIntegDNR

 IEI

Match Option: Contains

Add field LandInteg, set initial value to zero

Open the attribute table to WU_LandInteg

356

Add field “LandInteg” (short integer) to attribute table

Field Calculate “LandInteg” = 0

Assign points

SELECT * FROM WU_LandInteg WHERE: ("LandIntegDNR" + "IEI" + "LandResil" +

"ForestPatch") / 4 >= 0.5

Field Calculate LandInteg = 1

SELECT * FROM WU_LandInteg WHERE: ("LandIntegDNR" + "IEI" + "LandResil" +

"ForestPatch") / 4 >= 1.5

Field Calculate LandInteg = 2

SELECT * FROM WU_LandInteg WHERE: ("LandIntegDNR" + "IEI" + "LandResil" +

"ForestPatch") / 4 >= 2.5

Field Calculate LandInteg = 3

357

5.6.49 LandPos: Landscape Position

Version date: 11 October 2016

Strategy: completed 2/17/2016 EAB

GIS method: drafted 4/12/2016 EAB; verified 4/18/2016 EAB

Python code: Started 6/14/2016 MCA & Completed 6/15/2016 MCA w/Problems

EAB 10/3/2016: need to re-run this after WFlowPath is updated. Right now the Python

code generates too few headwater stream (7667 instead of 9336 LSh) and not enough

Terrene (zero instead of 315 TE) wetlands.

EAB 10/11/2016: see bottom of file for method to calculate “PropWshd”.

MCA 10/11/2016 this has been fixed and some changes have had to be made as

indicated below.

Final review by EAB: 10/25/2016

Purpose:

Basic functional variable, used in several functional equations

Input to Water Quality/Headwater Location

Strategy:

1. Assign Lotic Stream Landscape Position to wetlands in an active floodplain but not within 200m of a
wide river. Add headwater modifier to wetlands that intersect first- or second-order streams, are
outflow wetlands, or have only intermittent flow. Note: I experimented with adding wetlands that
have a small (<40 acres) contributing watershed (Paybins 2003), or make up a large proportion
(>5%) of their contributing watershed, but these were generally identified by the earlier criteria, and
additions tended to be along streams with very small contributing watersheds perpendicular to the
stream – not headwater wetlands.

2. Assign Lotic River Landscape Position to wetlands in an active floodplain within 200m of a wide
river.

3. Assign Lentic Landscape Position to wetlands within 25 meters of a lake.
4. Assign Terrene Landscape Position to all remaining unassigned wetlands. Add headwater modifier

to wetlands that intersect first- or second-order streams, are outflow wetlands, have only
intermittent flow, have a small (<40 acres) contributing watershed (Paybins 2003), or make up a
large proportion (>5%) of their contributing watershed.

Definitions:

Tiner wetland classification is based on Tiner (2011) which describes and classifies wetlands by
landscape position, landform, water flow path, and waterbody type (LLWW).

Tiner’s landscape position characterizes wetlands based on their location within or outside the

active floodplain of a waterbody (stream, river, lake). The basic landscape position types in

West Virginia wetlands are:

Code Landscape

Position

Description

358

LR Lotic River Wetland Unit is located in a river (including in-river ponds and

shallow lakes), within its banks, or on its active floodplain and is

periodically flooded by the river. River is defined as a broad channel

mapped as a polygon or 2-lined

watercourse on a 1:24,000 U.S. Geological Survey topographic map.

LS Lotic

Stream

Wetland Unit is located in a stream (including in-stream ponds and

shallow lakes), within its banks, or on its active floodplain and is

periodically flooded by the stream. Stream is defined as a linear or

single-line watercourse on a 1:24,000 U.S. Geological Survey

topographic map.

LSh Lotic

Stream -

headwater

Wetland Unit is located in a stream (including in-stream ponds and

shallow lakes), within its banks, or on its active floodplain and is

periodically flooded by the stream. Stream is defined as a linear or

single-line watercourse on a 1:24,000 U.S. Geological Survey

topographic map.

Modifier: Headwater (wetlands along first- and second-order perennial

streams in hilly terrain including all intermittent streams above these

perennial streams).

LSc Lotic

Stream -

channelized

Not yet used in WV, but may be part of future development.

Wetland Unit is located in a stream (including in-stream ponds and

shallow lakes), within its banks, or on its active floodplain and is

periodically flooded by the stream. Stream is defined as a linear or

single-line watercourse on a 1:24,000 U.S. Geological Survey

topographic map.

Modifier: Channelized (excavated stream course).

LE Lentic Wetland Unit is located in or along a lake or reservoir (permanent

waterbody where standing water is typically much deeper than 6.6 feet

at low water but including large shallow lakes >20 acres), including

streamside wetlands in a lake basin (the depression containing the

lake). Wetlands contiguous to the lake but at higher elevations and not

in the lake basin should NOT be classified as lentic; these wetlands

should be treated as terrene outflow types in most cases. This is

especially common where lakes are artificially created by diking

and/or excavation.

TE Terrene Wetland Unit is completely surrounded by upland (non-hydric soils or

filled lands that are now upland development). Terrene wetlands may

occur: (1) on a slope or flat, or in a depression (including ponds)

359

lacking a stream but may be contiguous to a river or stream, (2) on a

historic (inactive) floodplain, (3) in a landscape position crossed by a

stream (e.g., an entrenched stream), but where the stream does not

periodically inundate the wetland, (4) in a headwater, outflow only,

position as the source of a stream.

TEh Terrene -

headwater

Wetland Unit is completely surrounded by upland (non-hydric soils or

filled lands that are now upland development). Terrene wetlands

(headwater) may occur in a headwater, outflow only, position as the

source of a stream.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514
o Feature Class: DrainageArea27m

• M:\basemap\national_hydrology_dataset\wb-rivers.shp

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb (EnhWVWetland)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: FirstSecondOrderFlowlines

Input Variables:

• Wetland in Floodplain (Floodplain)

• Water Flow Path (WFlowPath)

• Contributing Watershed Area (CntrWshd) in DrainageArea27m

Method:

Joins to add variables to new Landscape Position feature class.

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_Floodplain

Join Feature: WU_WFlowPath

Output feature class: WU_LandPos1

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 Shape_Length

 Shape_Area

 Floodplain

 WFlowPath

Match Option: CONTAINS

ArcToolbox / Data Management Tools / Joins / Join Field

Input table: WU_LandPos1

360

Input join field: OBJECTID

Join table: DrainageArea27m

Output Join Field: WUKey

Join Fields: WUKey, CntrWshd

Export join to feature class

R-click WU_LandPos1 and select Data / Export Data

Output feature class: WU_LandPos

Add text field to the Wetland Units feature class.

Add text field (length=5) to WU_LandPos attribute table: LandPos.

Assign Lotic Stream Landscape Position.

Clear all selections.

Select by attributes from WU_LandPos

SELECT * FROM WU_LandPos WHERE "Floodplain" = 'Y'

Field Calculate selected records LandPos = “LS”

Clear all selections

Assign Lotic River Landscape Position.

Add temporary text field to WU_LandPos attribute table: River (text, 2 characters)

Select by location

Selection method: select features from

Target layer: WU_LandPos

Source layer: wb-rivers

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 200 meters

Field Calculate selected records River = "Y"

Select by attributes

SELECT * FROM WU_LandPos WHERE: "LandPos" = 'LS' AND "River" = 'Y'

Field Calculate selected records LandPos = “LR”.

Clear all selections

Assign headwater modifier to Lotic Stream Landscape Position for wetlands

intersecting first and second order streams, outflow wetlands, and wetlands with

intermittent flow. Include isolated wetlands for now since almost all of these are actually

361

outflow wetlands, but the streams flowing from them are too small to show up on the

NHD.

Add temporary text field to WU_LandPos attribute table: FSOStream (text, 2 characters)

Select by location

Selection method: select features from

Target layer: WU_LandPos

Source layer: FirstSecondOrderFlowlines

Spatial selection method: intersect the source layer feature

Field Calculate selected records FSOStream = "Y"

Select by attributes

SELECT * FROM WU_LandPos WHERE: "LandPos" = 'LS' AND ("FSOStream" = 'Y' OR

"WFlowPath" LIKE '%O%' OR "WFlowPath" LIKE '%I%')

The above select only works when using select by attribute from the Selection menu in ArcMap.

Using the above select in Python and with the toolbox Select Attribute by yields a different

selection. To fix this, the select below must be used.

SELECT * FROM WU_LandPos WHERE: LandPos = 'LS' AND ((POSITION('O' IN

WFlowPath) > 0) OR (POSITION('I' IN WFlowPath) > 0) OR (FSOStream = 'Y'))

Field Calculate selected records LandPos = "LSh"

Assign Lentic Landscape Position.

Clear all selections

Select by attributes in EnhWVWetland

Method: Create a new selection

SELECT * FROM EnhWVWetland WHERE: "WETLAND_TYPE" = 'Lake'

Select by location

Selection method: select features from

Target layer: WU_LandPos

Source layer is EnhWVWetland

Check box “use selected features”

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 25 meters

Field Calculate selected records: LANDPOS = "LE"

Assign Terrene Landscape Position

Clear selections

362

SELECT * FROM WU_LandPos WHERE: "LandPos" IS NULL

Field Calculate selected records LandPos = “TE”

Assign headwater modifier to Terrene Landscape Position for wetlands that intersect

first and second order streams, are outflow wetlands, or have intermittent flow. Include

isolated wetlands for now since almost all of these are actually headwater wetlands – the

streams are just too small to show up on the National Hydrography Dataset.

Select by attributes

SELECT * FROM WU_LandPos WHERE: "LandPos" = 'TE' AND ("FSOStream" = 'Y' OR

"WFlowPath" LIKE '%O%' OR "WFlowPath" LIKE '%I%')

Use the following select for the same reason as indicated above:

SELECT * FROM WU_LandPos WHERE: LandPos = 'TE' AND ((POSITION('O' IN

WFlowPath) > 0) OR (POSITION('I' IN WFlowPath) > 0) OR (FSOStream = 'Y'))

Field Calculate selected records LandPos = "TEh"

Assign headwater modifier to Terrene Landscape Position for wetlands with small

contributing watershed.

Select by attributes.

SELECT * FROM WU_LandPos WHERE: "LandPos" = 'TE' AND "CntrWshd" < 161874

Field Calculate selected records LandPos = "TEh"

Assign headwater modifier to Terrene Landscape Position for wetlands that occupy a

large percentage of their contributing watershed

Add field to WU_LandPos: “PropWshd” (double)

Field calculate PropWshd = ShapeArea / CntrWshd

Select by attributes.

SELECT * FROM WU_LandPos WHERE: "LandPos" = 'TE' AND "PropWshd" > 0.05

Field Calculate selected records LandPos = "TEh"

363

5.6.50 LowSlope: Low Slope

Version date: 16 Novmeber 2016

Strategy: 2/27/2016 EAB

GIS method: completed 2/27/2016 EAB;

Python code: started & finished 3/3/2016 MCA;

Final review by EAB: 3/3/2016;

Purpose:

Water Quality Function / Potential / Surface Depressions Factor (Max 2 points)

Flood Attenuation Function / Potential

Description:

Rationale: Flat-lying wetlands are more effective at storing and slowing the velocity of flood

waters and trapping sediments than sloping wetlands.

Strategy for LowSlope: For Wetland Units in Floodplains, LowSlope (maximum 2 points) is

calculated as the median percent slope (SLOPE)

• Slope < 2% (2 points)
• Slope = 2-5% (1 point)
• Slope > 5% (0 points)

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

Median percent slope (SLOPE)

Method:

Create feature class to store LowSlope

R-click WU_SLOPE and select Data/Export Data

Output feature class: WU_LowSlope

Add LowSlope fields to store points and set initial point value to zero.

Add field “LowSlope” (short integer) to attribute table of WU_LowSlope.

Field Calculate “LowSlope” = 0

Select Wetland Units and assign points to LowSlope.

SELECT * FROM WU_LowSlope WHERE: "SLOPE" < 2

R-click “LowSlope” field, and Field Calculate “LowSlope” = 2

364

SELECT * FROM WU_LowSlope WHERE: "SLOPE" > 1 AND "SLOPE" < 6

R-click “LowSlope” field, and Field Calculate “LowSlope” = 1

365

5.6.51 MarlPEM: Emergent Wetland on Marl Deposits

Version date: 18 Septmeber 2017

Strategy: Completed 3/16/2017 EAB

GIS method: 9/15/2017 EAB; results verified 9/18/2017 EAB

Python code:

Final review by EAB:

Purpose:

Input to Habitat / Potential / Vegetation / Floristic Quality

Max 3 points

Description:

Rationale: Emergent wetlands on marl substrates provide habitat for a large number of rare

species and comprise a globally rare and imperilled habitat.

Summary of strategy: Overlay emergent wetland (PEM) on marl soils and calculate area and

ratio of area to total wetland area.

3 points: PEM on marl > 1 ha in extent

2 points: PEM on marl comprises > 50% of wetland

1 point: PEM on marl > 200 m2 in extent

0 points: none of the above criteria are met

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SsurgoExports.gdb
o Feature Class: MarlSoils

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb
o Feature Dataset: CONUS_WVWetlandsProj
o Feature Class: EnhWVWetland

▪ Field: Attribute

Method:

Select emergent wetlands and export feature class

SELECT * FROM EnhWVWetland WHERE: "ATTRIBUTE" LIKE 'PEM%'

R-click EnhWVWetland and export selected records as “VegPEM” feature class.

Intersect MarlSoils and emergent wetlands (PEM)

ArcToolbox / Analysis Tools / Overlay / Intersect

Input features: MarlSoils

 VegPEM

366

Output feature class: WU_MarlPEM1

Join attributes: ONLY_FID

Output type: INPUT

Add field to store emergent wetland/marl area.

Open attribute table of WU_MarlPEM1

Add field “MarlPEMAre” (float)

R-click “MarlPEMAre” and Field Calculate: MarlPEMAre = [Shape_Area]

Spatial Join MarlPEM to Wetland Units and sum MarlPEM area.

Analysis Tools / Overlay / Spatial Join

Target Features: WU_20150514

Join Features: WU_MarlPEM1

Output Feature Class: WU_MarlPEM

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 Shape_Length

 Shape_Area

 WUKey

MarlPEMAre (R-click and select “Merge Rule”, “Sum”)

Match Option: CONTAINS

Note: if the Spatial Join fails because of difficulty opening the “WU_MarlPEM1” feature class,

then export the feature class to a shapefile and re-run the Spatial Join.

Add fields to store MarlPEMRat and MarlPEM, and set initial value of MarlPEM = 0.

Open attribute table of WU_MarlPEM

Add field MarlPEMRat (float) to WU_MarlPEM attribute table.

Add field MarlPEM (short integer) to WU_MarlPEM attribute table.

Field calculate MarlPEM = 0

Calculate the ratio of MarlPEM area to total Wetland Unit area.

Field calculate MarlPEMRat = [MarlPEMAre] / [Shape_Area]

Assign points

SELECT * FROM WU_MarlPEM WHERE: MarlPEMAre > 200

Field Calculate MarlPEM = 1

SELECT * FROM WU_MarlPEM WHERE: MarlPEMRat > 0.5

Field Calculate MarlPEM = 2

367

SELECT * FROM WU_MarlPEM WHERE: MarlPEMAre > 10000

Field Calculate MarlPEM = 3

368

5.6.52 Microtopo: Microtopographic Complexity

Version date: 7 March 2016

Strategy: Completed 3/1/2016 EAB

GIS method: Completed 3/2/2016 EAB & JCC, Verified 3/7/2016 EAB

Python code: Started 3/3/2016 MCA

Final review by EAB:

Purpose:

Input to Water Quality/Surface Depressions

Max 2 points. Floodplain wetlands only.

Description:

Strategy: Perimeter of summed NWI palustrine polygon perimeters divided by the square root

of the Wetland Unit area.

Note that GIS determination of surface depressions and actual microtopography is not currently

within our analysis reach. We are instead using the proxy of interspersion of Cowardin types

(along with low slope and irregularity of the upland edge, which are calculated elsewhere) to

estimate these values. The values will be much more accurately measured during rapid field

assessment.

Definitions:

The National Wetlands Inventory is comprised of polygons attributed with the wetland

classification system developed by Cowardin et al (1979) and updated by the National Wetlands

Inventory (2016). The source data “EnhWVWetland” is a slightly enhanced version of the

National Wetlands Inventory with updates for a small percentage of the polygons in West

Virginia.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb (EnhWVWetland)

Input Variables:

• Shape_Length (EnhWVWetland), Shape_Area (Wetland Units): these should already be in the
attribute tables

Method:

Create a new layer from the palustrine polygons in the National Wetlands Inventory.

SELECT * FROM EnhWVWetland WHERE: "WETLAND_TYPE" IN ('PEM', 'PFOPSS',

'Pond') (57945 out of 59959 selected)

R-click EnhWVWetland / Data / Export Data

369

Export Selected features

Output feature class: NWIpalustrine

Sum the perimeters of the palustrine polygons that make up each Wetland Unit.

Analysis Tools / Overlay / Spatial Join

Target Features: WU_20150514

Join Features: NWIpalustrine

Output Feature Class: WU_Microtopo

Join Operation: JOIN_ONE_TO_ONE

Check box: “Keep all target features”

Field Map of Join Features:

 R-click SHAPE_Length_1 and select “Merge Rule”, “Sum”

 Retain the following features (the rest can be deleted):

 Shape_Area

 Shape_Length

 SHAPE_Area_1

SHAPE_Length_1

Match Option: INTERSECT

Add fields to WU_Microtopo.

Add numeric fields to WU_Microtopo attribute table: MicroRatio (float), Microtopo (short

integer)

Divide the summed perimeters of palustrine polygons by the square root of the Wetland

Unit area.

Field Calculate MicroRatio = [SHAPE_Length_1] / ([Shape_Area] ^ 0.5)

Assign points to Wetland Units.

Field Calculate Microtopo = 0

SELECT * FROM WU_Microtopo WHERE: "MicroRatio" > 8

Field Calculate Microtopo = 1

SELECT * FROM WU_Microtopo WHERE: "MicroRatio" > 15

Field Calculate Microtopo = 2

370

5.6.53 Organic: Organic Matter near Surface

Version date: 4 October 2016

Strategy: completed 2/29/2016 EAB

GIS method: completed & verified 3/3/2016 EAB

Python code: 4/5/2016 MCA

Final review by EAB: 4/5/2016; 10/4/16 EAB revised SsurgoOrganic layer to depth < 8 cm

instead of < 6 cm (closer reading of Hruby 2012) – this does not affect the Python

coding, nor does it change the number of Wetland Units with Organic = “Y”.

Purpose:

Input to Water Quality / Clay and Organic Soils Factor

Description:

Organic Soil near surface (Y/N).

Summary of strategy:

Select Wetland Units that intersect with any of the following: Peatlands, NWI polygons with

organic modifier, Palustrine Plots with muck or peat soils, or SSURGO chorizon with organic

soils in the upper 5 cm.

Note that SSURGO mapping is very uneven, with some counties heavily mapped with organic

soils and others with little or no organic soils mapped.

Definitions:

SSURGO soils data from NRCS has multiple non-spatial tables, which have one-to-many

relationships with the ssurgo_wv table. We will access the component horizon table

(chorizon_all) to extract the organic content, horizon, and top depth of the horizon.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb
o Feature Class: EnhWVWetland

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb
o Feature Class: Peatlands_20160228 (update if more recent file is available)
o Feature Class: PalustrinePlots

• M:\basemap\ssurgo\ssurgo.gdb
o Feature Class: ssurgo_wv

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SsurgoExports.gdb
o Feature Class: SsurgoOrganic

371

NOTE: ArcGIS related tables cannot be programmed in Python, so before this procedure

is run, the input data layer must be created in ArcGIS, as shown below. Note that this

layer should be re-exported as SSURGO is updated by NRCS.

Open the related one-to-many SSURGO chorizon_all table.

Open attribute table for ssurgo_wv

Click “Related Tables” (second icon from left).

Click “component to surgo: component_all” to open the component_all table. Note that a tab

will appear at the bottom of the attribute table showing the tables that are open.

Click “Related Tables” (second icon from left).

Click “component to chorizon: chorizon_all” to open the chorizon_all table.

Select soils with organic matter in the upper 8 centimeters of the soil profile with a

thickness of at least 2 cm.

With the tab at the bottom of the attribute labelled “chorizon_all” highlighted:

SELECT * FROM chorizon_all WHERE: ("hzname" LIKE 'O%' OR "om_r" > 30) AND

"hzdept_r" < 8 AND "hzthk_r" > 1

(1488 out of 28520 selected)

Relate this selection to the spatial data in the ssurgo_wv tab.

Click “Related Tables” again to get back to component_all and then back to ssurgo_wv (146911

out of 413438 selected). Note that the last step takes some time while all of the related tables

open up.

Export data to new feature class

R-click ssurgo_wv / Data / Export Data

Export Selected Features

Output feature class: SSurgoExports.gdb\SsurgoOrganic

Input Variables:

None

Method:

Add field Organic to Wetland Units attribute table and set initial value to “no organic”.

Add field Organic (Text, Length 2) to Wetland Units attribute table.

R-click Organic and Field Calculate “Organic” = ‘N’

372

PART 1: PEATLANDS

Select Wetland Units that are peatlands.

Select by Location

Selection method: select features from

Target layer: WU_20150514

Source layer: Peatlands_20160228 (or most recent version of Peatlands)

Spatial selection method: intersect the source layer feature

Update value for “Organic” based on peatlands.

Open Wetland Units attribute table (277 out of 43124 selected).

R-click “Organic” and Field Calculate “Organic” = “Y”

Clear all selections.

PART 2: NWI ORGANIC MODIFIER

Select polygons that have an organic modifier in the National Wetland Inventory.

SELECT * FROM EnhWVWetland WHERE: "ATTRIBUTE" LIKE '%g' (143 out of 59959

selected)

Select Wetland Units that intersect organic NWI polygons.

Select by Location

Selection method: select features from

Target layer: WU_20150514

Source layer: EnhWVWetland

Check “Use selected features” (143 features selected)

Spatial selection method: intersect the source layer feature

Update value for “Organic” based on NWI.

Open Wetland Units attribute table (68 out of 43124 selected).

R-click “Organic” and Field Calculate “Organic” = “Y”

Clear all selections.

PART 3: PALUSTRINE PLOTS

Select Palustrine plots that have peat or muck soils.

SELECT * FROM PalustrinePlots WHERE: "Soil_Textu" LIKE '%peat%' OR "Soil_Textu"

LIKE '%muck%' OR "Depth_of_o" NOT IN (' ', '0', '1')

Select Wetland Units that intersect palustrine plots with organic soils.

Select by Location

Selection method: select features from

Target layer: WU_20150514

Source layer: PalustrinePlots

373

Check “Use selected features”

Spatial selection method: intersect the source layer feature

Update value for “Organic” based on palustrine plots.

Open Wetland Units attribute table.

R-click “Organic” and Field Calculate “Organic” = “Y”

Clear all selections.

PART 4: SSURGO SELECTION

Select Wetland Units that intersect with the SSURGO selection.

Select by Location

Selection method: select features from

Target layer(s): WU_21050514

Source layer: SsurgoOrganic

Spatial selection method: intersect the source layer feature

Update value for “Organic” based on ssurgo.

Open Wetland Units attribute table.

R-click “Organic” and Field Calculate “Organic” = “Y”

374

5.6.54 OwnerAccess: Land Ownership and Accessibility

Version date: 16 October 2017

Strategy: 3/16/2017 EAB

GIS method: 10/16/2017 EAB; Results verified 10/16/2017 EAB

Python code: 10/18/2017 YH

Final review by EAB: 10/19/2017

Purpose:

Input to Habitat / Value to Society / HUse

Description:

Maximum 2 points

Rationale: Accessible wetlands and wetlands on public land are more likely to be used and/or

appreciated by the public.

GIS Method: public lands layers, plus a few additions from known private preserves with public

assess.

2 points: public land (except for U.S. Navy and Air National Guard), or private land

with permanent unrestricted public access to the edge of the wetland (e.g., WV

Botanical Garden, TNC Cranesville Swamp Preserve, Brush Creek, Brooklyn

Heights, Eidolon, Greenland Gap, Hungry Beech, Murphy Preserve, Pike Knob,

Slaty Mountain, Yankauer Preserve, TNC Mt. Porte Crayon, Stauffer's Marsh,

Williamstown, Camp Dawson Wetland Boardwalk, Core Arboretum)

1 point: private land with seasonal, partial, or case-by-case public access (e.g.,

Harewood Marsh, Ice Mountain, Upper Shavers, Tygart Valley Mitigation Bank,

Wetlands of Winfield, New River Birding & Nature Center, Ward Hollow, John

Gottshcal Boardwalk in Boy Scout Camp, Page Jackson Elementary School

Wetland)

0 points: private land without public access

Source Data:

Note on Source Data: new public land boundaries are available for 2017 (except for Department

of Defense), but have not yet been aggregated into a public lands layers. Once they are

aggregated, they can replace the separate files below.

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived
o \Boundaries2017\countyCityParkBoundaries_20107731_utm83.gdb

▪ Feature Class: countyCityParkBoundaries_20170731_utm83
o \Boundaries2017\nationalForestOwnership_USFWS_20170803_utm83.gdb

▪ Feature Class: nationalForestOwnership_USFWS_20170803_utm83

• Field: Forest Service

375

o \Boundaries2017\nationalParkBoundaries_nationalParkService_20170802.gdb
▪ Feature Class: nationalParkBoundaries_nationalParkService_20170802

o \Boundaries2017\nationalWildifeRefuge_USFWS_20170803_utm83.gdb
▪ \Boundaries2017nationalWildifeRefuge_USFWS_20170803

o \Boundaries2017\wvdnrManagedLands_wvdnr_20170731_utm83.gdb
▪ Feature Class: wvdnrManagedLands_wvdnr_20170731_utm83

o \Boundaries2017\wvStateForestBoundaries_wvdof_20171003_utm83.gdb
▪ Feature Class: wvStateForestBoundaries_wvdof_20171003_utm83

o \Boundaries2017\ stateParkBoundaries_WVDNR_20170927_utm83
▪ Feature Class: stateParkBoundaries_WVDNR_20170927_utm83

o \WV_Protected_Lands_2015_PUBLIC\WV_Protected_Lands_2015_PUBLIC.shp

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb
o Feature Class: RIBITS_banks_ILF_20171007
o Feature Class: InfrastructureWetlands

Method:

STEP 1: Create feature class and add field to store results; set initial value to zero

R-click WU_20150514 and select Export Data / All features

Output feature class: WetlandFunction.gdb / WU_OwnerAccess

Open attribute table of WU_OwnerAccess

Add field “OwnerAccess” (short integer)

Field calculate OwnerAccess = 0

STEP 2: Private lands with seasonal, partial, or case-by-case public access

Select wetlands that intersect partial-access Protected Lands

Open attribute table of WV_Protected_Lands_2015_PUBLIC.shp

SELECT * FROM WV_Protected_Lands_2015_PUBLIC WHERE: "P_Des_Nm" IN

('Harewood (Washington)', 'Ice Mountain (Riverbirch Inc.)', 'Upper Shavers Fork')

Select by Location

Select features from: WU_OwnerAccess

Source layer: WV_Protected_Lands_2015_PUBLIC

Use Selected Features

Spatial selection method for target layer feature(s): intersect the source feature

Add wetlands that intersect InfrastructureWetlands, all of which have at least partial

access

Select by Location

Add to the currently selected features in: WU_OwnerAccess

Source layer: InfrastructureWetlands

Spatial selection method for target layer feature(s): intersect the source feature

376

Assign point and clear selections

Open attribute table of WU_OwnerAccess

R-click OwnerAccess and Field Calculate OwnerAccess = 1

Clear all selections

STEP 3: Public Ownership

Select wetlands that intersect state or local public lands

This step is very similar to that used in the metric HInvest

Select by Location

Select features from: WU_OwnerAccess

Source layer: stateParkBoundaries_WVDNR_20170927_utm83

Spatial selection method for target layer feature(s): intersect the source feature

Select by Location

Add to the currently selected features in: WU_OwnerAccess

Source layer: wvdnrManagedLands_wvdnr_20170731_utm83

Spatial selection method for target layer feature(s): intersect the source feature

Select by Location

Add to the currently selected features in: WU_OwnerAccess

Source layer: wvStateForestBoundaries_wvdof_20171003_utm83

Spatial selection method for target layer feature(s): intersect the source feature

Select by Location

Add to the currently selected features in: WU_OwnerAccess

Source layer: countyCityParkBoundaries_20170731_utm83

Spatial selection method for target layer feature(s): intersect the source feature

Add National Parks and Wildlife Refuges to selection

Select by Location

Add to the currently selected features in: WU_OwnerAccess

Source layer: nationalParkBoundaries_nationalParkService_20170802

Spatial selection method for target layer feature(s): intersect the source feature

Select by Location

Add to the currently selected features in: WU_OwnerAccess

Source layer: nationalWildifeRefuge_USFWS_20170803

Spatial selection method for target layer feature(s): intersect the source feature

Add U.S. Army Corps of Engineers lands to selection

377

Open attribute table of WV_Protected_Lands_2015_PUBLIC

SELECT * FROM WV_Protected_Lands_2015_PUBLIC WHERE: "Mang_Name" = 'US

Army Corps of Engineers'

Select by Location

Select features from: WU_OwnerAccess

Source layer: WV_Protected_Lands_2015_PUBLIC

Use Selected Features

Spatial selection method for target layer feature(s): intersect the source feature

Add National Forests to selection

Open attribute table of nationalForestOwnership_USFWS_20170803_utm83

SELECT * FROM nationalForestOwnership_USFWS_20170803_utm83 WHERE:

"Ownership" = 'Forest Service'

Select by Location

Select features from: WU_OwnerAccess

Source layer: nationalForestOwnership_USFWS_20170803_utm83

Use Selected Features

Spatial selection method for target layer feature(s): intersect the source feature

Assign points and clear selections

Open attribute table of WU_OwnerAccess

R-click OwnerAccess and Field Calculate OwnerAccess = 2

Clear all selections

STEP 4: Select private lands with permanent public access

Note that TNC Charlotte Ryde Preserve is contained within Cheat Canyon WMA

Note that Mt Porte Crayon Preserve is called “Canaan/Dolly Sods (Moshein)

Note that WV Botanical Garden is included in the county park layer

Open attribute table of WV_Protected_Lands_2015_PUBLIC

SELECT * FROM WV_Protected_Lands_2015_PUBLIC WHERE: "P_Des_Nm" IN ('Brush

Creek (McPherson/Robertson)', 'Bear Rocks Lake Wildlife Management Area', 'Brooklyn

Heights (Hills)', 'Cranesville Swamp Preserve', 'Eidolon Nature Preserve', 'Greenland Gap

(Amendment)(Greenland Lodge Inc)', 'Hungry Beech', 'Murphy Preserve', 'Pike Knob', 'Pike

Knob (Smith)', 'Slaty Mountain (Westvaco)', 'Yankauer Nature Preserve', 'Canaan Valley/Dolly

Sods (Moshein)', 'Core Arboretum') OR "Comments" = 'Stauffer''s Marsh (PVAS)'

Select wetlands that intersect selected areas

Select by Location

Select features from: WU_OwnerAccess

378

Source layer: WV_Protected_Lands_2015_PUBLIC

Use Selected Features

Spatial selection method for target layer feature(s): intersect the source feature

Select open-access wetlands from the InfrastructureWetlands feature class

Open attribute table of InfrasturctureWetlands

SELECT * FROM InfrasturctureWetlands WHERE: "Access" = 'public'

Select wetlands that intersect selected areas

Select by Location

Add to the currently selected features in: WU_OwnerAccess

Source layer: InfrasturctureWetlands

Use Selected Features

Spatial selection method for target layer feature(s): intersect the source feature

Assign points and clear selections

Open attribute table of WU_OwnerAccess

R-click OwnerAccess and Field Calculate OwnerAccess = 2

Clear all selections

379

5.6.55 PublicUse: Public Use and Research

Version date: 19 October 2017

Strategy: 3/16/2017 EAB

GIS method: 10/16/2017 EAB; Results verified 10/19/2017 EAB

Python code: 10/18/2017 YH

Final review by EAB: 10/19/2017

Purpose:

Input to Habitat / Value to Society / HUse

Description:

Maximum 2 points

Rationale: Wetlands that are used and/or appreciated by the public, or are of importance to long-

term scientific research, have a high value to society.

Strategy

This metric is adjusted based on the field assessment. Assign points as follows:

2 points: high public use, or built infrastructure offers potential for high public use; assign

points if any of the following criteria are met. Areas included are National Wildlife Refuges

and selected other public and private lands. Even though parts of NWRs are closed to the

public, they still offer outstanding opportunities to experience wetlands. Individual wetlands

with infrastructure, public use, or sustained scientific use are also included.
o Infrastructure

▪ Maintained parking area: paved and/or big enough for a schoolbus
▪ Boardwalk
▪ Informational kiosk (e.g., Williamstown wetland, WV Botanical Garden)
▪ Maintained road within 30 m of wetland with views of wetland (field only)
▪ Maintained trail within 10 m of wetland
▪ Boat access to wetland
▪ Known wetlands with infrastructure, organized by source data include:

▪ Wildlife Refuges: Canaan Valley & Ohio River Islands
▪ State Parks: Canaan Valley, Blackwater Falls
▪ WMAs: Greenbottom, Little Canaan, McClintic, Short Mountain, Valley Bend

Wetlands
▪ County Parks: Meadowood, WV Botanical Garden, McDonough Wildlife Refuge,

Johnson T. Janes Nature Preserve and Conservation Park
▪ Exemplary wetlands: Alder Run Bog, Cranberry Glades, Cranesville Swamp,

Harewood Marsh, Winfield
▪ Infrastructure: New River Birding and Nature Center, Wiiliamstown, Tea Creek

Interpretive Trail, Stauffer’s Marsh
▪ Unknown data source: John Gottschal Boardwalk and Causeway at the Summit

Bechtel Reserve, Camp Dawson wetland boardwalk, Page Jackson Trail,
Gardens, and Wetlands

o Sustained scientific use

380

▪ Long-term research sites: known sites include CVNWR Research Natural Area and
Monongahela National Forest special botanical areas

▪ Plants, animals, or water in the wetland have been monitored for >2 years,
unrelated to any regulatory requirements, and data are available to the public.

o Birding Hotspot (Brooks Bird Club, WVDNR, Audubon, and citizen birding organization
hotspot lists for WV). Initial list combines eBird download of birding hotspots and main
wetland sites from Eddy 2009.

▪ Download ebird hotspots from:
https://confluence.cornell.edu/display/CLOISAPI/eBird-1.1-HotSpotsByRegion
and select wetlands within 100 meters of these hotspots

▪ Select wetlands that intersect main birding wetlands areas from Eddy 2009:

• National Wildlife Refuges: Canaan Valley, Ohio River Islands

• Wildlife Management Areas: Fairfax Pond / Rehe, Meadow River,
Pleasant Creek

• State Parks: Canaan Valley, Blackwater Falls, Cathedral

• Exemplary Wetlands: Altona, Cranberry Glades, Dolly Sods: Alder Run,
Bear Rocks, Spruce Knob Lake, Winfield, McClintic, Greenbottom,
Cranesville

• Within 10m of trail: Stauffer’s Marsh

Combined list of high public use wetlands by source data:

• Any Wetland Unit that is within 10 m of a mapped trail or a public fishing access point

• National Wildlife Refuges
o Canaan Valley
o Ohio River Islands

• National Forest
o Monongahela NF botanical areas

• State Parks
o Canaan Valley
o Blackwater Falls
o Cathedral

• County Parks
o Meadowood
o WV Botanical Garden
o McDonough Wildlife Refuge
o Johnson T. Janes Nature Preserve and Conservation Park

• Wildlife Management Areas
o Fairfax Pond / Rehe
o Meadow River
o Pleasant Creek
o Greenbottom
o Little Canaan
o McClintic
o Short Mountain
o Valley Bend Wetlands

• Exemplary Wetlands (no need to include wetlands already selected in the categories above)
o Altona

https://confluence.cornell.edu/display/CLOISAPI/eBird-1.1-HotSpotsByRegion

381

o Cranesville Swamp
o Dolly Sods: Alder Run, Bear Rocks
o Harewood Marsh
o Spruce Knob Lake
o Winfield

• Infrastructure wetlands
o New River Birding and Nature Center
o Wiiliamstown
o Tea Creek Interpretive Trail
o Ward Hollow
o Camp Dawson wetland boardwalk
o John Gottschal Boardwalk and Causeway at the Summit Bechtel Reserve
o Page Jackson Elementary School Trail, Gardens, and Wetlands

• Any Wetland Unit that is within 100 m of an eBird birding hotspot

1 point: Assign point if any of the following criteria are met.

Hunting or trapping area identified by WVDNR as having species that occur in wetlands. This

includes WMAs and State Forests with populations of waterfowl, grouse, woodcock, beaver,

mink, muskrat, deer, or bear. Also include wetland edge species (Keith Krantz, WVDNR, pers

comm 20171010): rabbit, bobcat, coyote, red fox, raccoon, opossum. Keith Krantz writes:

“Depending on your location, marsh/swamp/cottontail rabbits are routinely found along the

edges of the drier PEM wetlands, anywhere standing cattails and frozen/dry ground can be

found. My trapping friends routinely catch bobcats/coyotes/red fox in the winter in these same

wetland settings, likely hunting the aforementioned rabbits and rodents. Raccoons and

opossums are typically found around water as well foraging for whatever they can find.”

0 points: None of the above criteria are met.

Source Data:

Note on Source Data: new public land boundaries are available for 2017 (except for Department

of Defense), but have not yet been aggregated into a public lands layers. Once they are

aggregated, they can replace the separate files below. The Birding Hotspots can be expanded to

include birding destinations identified in “Birding Guide to West Virginia”, complied by Greg

Eddy 2009, Brooks Bird Club.

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived
o \Boundaries2017\countyCityParkBoundaries_20107731_utm83.gdb

▪ Feature Class: countyCityParkBoundaries_20170731_utm83
o \Boundaries2017\nationalWildifeRefuge_USFWS_20170803_utm83.gdb

▪ Feature Class: nationalWildifeRefuge_USFWS_20170803
o \Boundaries2017\wvdnrManagedLands_wvdnr_20170731_utm83.gdb

▪ Feature Class: wvdnrManagedLands_wvdnr_20170731_utm83
o \Boundaries2017\stateParkBoundaries_WVDNR_20170927_utm83

▪ Feature Class: stateParkBoundaries_WVDNR_20170927_utm83

382

o \DNR_Fishing\PublicFishingAccessSites_2017_10.shp
o \USFS\botanical_areas_MNF.shp (do not share this layer – sensitive data)
o \201710_WVDNR_property_boundary.gdb

▪ Feature Class: PropertyBoundaries_WVDNR_20171011
o trails_Sep_27_2017_webmercator.shp

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\HabitatData.gdb
o Feature Class: eBirdHotspots

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb
o Feature Class: InfrastructureWetlands
o Feature Class: ExemplaryOrBrankedWetlands31Mar2015

Method:

STEP 1: Create feature class and add field to store results; set initial value to zero

R-click WU_20150514 and select Export Data / All features

Output feature class: WetlandFunction.gdb / WU_PublicUse

Open attribute table of WU_PublicUse

Add field “PublicUse” (short integer)

Field calculate PublicUse = 0

STEP 2: Moderate public use

Select WMAs and State Forests identified as hunting/trapping areas for wetland species

Open attribute table of PropertyBoundaries_WVDNR_20171011

SELECT * FROM PropertyBoundaries_WVDNR_20171011 WHERE: "hWaterfowl" = 1 OR

"hGrouse" = 1 OR "hWoodcock" = 1 OR "tBeaver" = 1 OR "tMink" = 1 OR "tMuskrat" = 1

OR "hDeer" = 1 OR "hBear" = 1 OR "hRabbit" = 1 OR "tBobcat" = 1 OR "tCoyote" = 1 OR

"tRedFox" = 1 OR "tRaccoon" = 1 OR "tOpossum" = 1

Select by Location

Select features from: WU_PublicUse

Source layer: PropertyBoundaries_WVDNR_20171011

Use Selected Features

Spatial selection method for target layer feature(s): intersect the source feature

Assign point and clear selections

Open attribute table of WU_PublicUse

R-click PublicUse and Field Calculate PublicUse = 1

Clear all selections

STEP 3: High public use

Select wetlands within 10 m of a mapped trail or a public fishing access point

383

Select by Location

Select features from: WU_PublicUse

Source layer: trails_Sep_27_2017_webmercator

Spatial selection method for target layer feature(s): are within a distance of the source layer

feature

Apply a search distance: 10 meters

Select by Location

Add to the currently selected features in: WU_PublicUse

Source layer: PublicFishingAccessSites_2017_10

Spatial selection method for target layer feature(s): are within a distance of the source layer

feature

Apply a search distance: 10 meters

Add to Selection wetlands in National Wildlife Refuges

Select by Location

Add to the currently selected features in: WU_PublicUse

Source layer: nationalWildlifeRefuge_USFWS_20170803_utm83

Spatial selection method for target layer feature(s): intersect the source feature

Do not apply a search distance

Add to Selection wetlands in special botanical areas supporting long-term research

Select by Location

Add to the currently selected features in: WU_PublicUse

Source layer: botanical_areas_MNF.shp

Spatial selection method for target layer feature(s): intersect the source feature

Add to Selection wetlands in certain state parks

Open attribute table of stateParkBoundaries_WVDNR_20170927_utm83

SELECT * FROM stateParkBoundaries_WVDNR_20170927_utm83 WHERE: "Unit_Nm" IN

('Blackwater Falls State Park', 'Canaan Valley Resort State Park', 'Cathedral State Park')

Select by Location

Add to the currently selected features in: WU_PublicUse

Source layer: stateParkBoundaries_WVDNR_20170927_utm83

Use Selected Features

Spatial selection method for target layer feature(s): intersect the source feature

Add to Selection wetlands in certain local parks

Open attribute table of countyCityParkBoundaries_20170731_utm83

384

SELECT * FROM countyCityParkBoundaries_20170731_utm83 WHERE: "Unit_Nm" IN

('WV Botanic Garden', 'Meadowood Park', 'McDonough Wildlife Refuge ', 'Johnson T. Janes

Nature Preserve and Conservation Park')

Select by Location

Add to the currently selected features in: WU_PublicUse

Source layer: countyCityParkBoundaries_20170731_utm83

Use Selected Features

Spatial selection method for target layer feature(s): intersect the source feature

Add to Selection wetlands in certain WMAs

Open attribute table of wvdnrManagedLands_wvdnr_20170731_utm83

SELECT * FROM wvdnrManagedLands_wvdnr_20170731_utm83 WHERE: "Unit_Nm" IN

('Fairfax Pond / Rehe Wildlife Management Area', 'Green Bottom Wildlife Management Area',

'Little Canaan Wildlife Management Area', 'McClintic Wildlife Management Area', 'Meadow

River Wildlife Management Area', 'Pleasant Creek Wildlife Management Area', 'Short

Mountain Wildlife Management Area', 'Valley Bend Wetlands Wildlife Management Area')

Select by Location

Add to the currently selected features in: WU_PublicUse

Source layer: wvdnrManagedLands_wvdnr_20170731_utm83

Use Selected Features

Spatial selection method for target layer feature(s): intersect the source feature

Add to Selection certain Exemplary Wetlands not already selected

Open attribute table of ExemplaryOrBrankedWetlands31Mar2015

SELECT * FROM ExemplaryOrBrankedWetlands31Mar2015 WHERE: "Name" IN ('Alder

Run Bog', 'Altona-Piedmont Marsh', 'Bear Rocks Bog', 'Cranesville Swamp', 'Harewood Marsh',

'Spruce Knob Lake inlet', 'Spruce Knob Lake outlet', 'Winfield Swamp')

Select by Location

Add to the currently selected features in: WU_PublicUse

Source layer: ExemplaryOrBrankedWetlands31Mar2015

Use Selected Features

Spatial selection method for target layer feature(s): intersect the source feature

Add to Selection wetlands from the InfrastructureWetlands feature class

Select by Location

Add to the currently selected features in: WU_PublicUse

Source layer: InfrastructureWetlands

Spatial selection method for target layer feature(s): intersect the source feature

Add to Selection wetlands within 100 meters of an eBird birding hotspot

385

Select by Location

Add to the currently selected features in: WU_PublicUse

Source layer: eBirdHotspots_20171011

Spatial selection method for target layer feature(s): are within a distance of the source layer

feature

Apply a search distance: 100 meters

Assign points and clear selections

Open attribute table of WU_PublicUse

R-click PublicUse and Field Calculate PublicUse = 2

Clear all selections

386

5.6.57 RoadRail: Road and Railroads

Version date: 24 January 2018

Strategy: completed 3/12/2016 EAB

GIS method: completed 3/12/2016; verified 3/12/2016; 1/24/2018 EAB Updated to replace

railways layer with better source data.

Python coding: started & completed 3/15/2016 MCA; updated 1/24/2018 YH

Final review by EAB: 3/15/2016

Purpose:

Water Quality Function, Opportunity aspect

Max 2 points

Description:

Rationale: Road and rail crossings can increase sediment and contaminant loads (especially salt

and petrochemicals) to a wetland (McElfish et al. 2008).

Summary of strategy: Assign 1 point to Wetland Units within 50 meters of a road or railroad

track.

Assign 2 points to Wetland Units within 5 meters of a road or railroad track. Note that the

“M:\LayerFiles\arcsde_backup.gdb\basemap_cultural_non_replica\SDE_railway_tiger” layer is

more accurately and completely mapped than the

“M:\basemap\tiger_2013\WV_Transportation_UTM.gdb\Rail” layer.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\basemap\tiger_2013\WV_Transportation_UTM.gdb
o Feature Class: All_Roads

• M:\LayerFiles\arcsde_backup.gdb\basemap_cultural_non_replica\SDE_railway_tiger

Input Variables:

None

Method:

Create feature class to store RoadRail variable

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_RoadRail

Add RoadRail field to Wetland Units and set initial point value to zero.

Open attribute table of WU_RoadRail

Add field “RoadRail” (short integer)

387

R-click RoadRail and Field Calculate RoadRail = 0

Select the Wetland Units within 50 meters of a road or railroad track and assign 1

point.

Select by location

Selection method: select features from

Target Layer: WU_RoadRail

Source layer: All_Roads

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 50 meters

Select by location

Selection method: add to the currently selected features in

Target Layer: WU_RoadRail

Source layer: SDE_railway_tiger

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 50 meters

In WU_RoadRail, R-click RoadRail and Field Calculate RoadRail = 1

Select the Wetland Units within 5 meters of a road or railroad track and assign 2

points.

Select by location

Selection method: select features from

Target Layer: WU_RoadRail

Source layer: All_Roads

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 5 meters

Select by location

Selection method: add to the currently selected features in

Target Layer: WU_RoadRail

Source layer: SDE_railway_tiger

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 5 meters

In WU_RoadRail, R-click RoadRail and Field Calculate RoadRail = 2

388

5.6.58 Runoff: Runoff and Storage Potential

Version date: 9 January 2017

Strategy: Completed 3/24/2016 EAB

GIS method: completed 3/25/2016 EAB; verified 4/15/2016 EAB; updated & re-verified

12/20/2016 EAB; re-verified with new SoilRunoff values (peatlands = 0) EAB 1/9/2017

Python coding: Completed 12/20/2016 MCA; 1/11/2017 Re-ran MCA

Final review by EAB: 1/11/2017

Purpose:

Input to Flood Attenuation / Potential

Max 5 points (floodplain), 4 points (groundwater).

Rationale: Slowing and storing runoff is an essential aspect of flood attenuation by wetlands.

Soils with low runoff/high infiltration characteristics, seasonal ponding, complex surface

topography, complex upland edge or a close hydrologic connection with a stream contribute to

the ability of a wetland to perform this function.

Summary of strategy: Combine points for SoilRunoff, SeasonPond, and Microtopo. If total

exceeds 5 points for floodplain wetlands, reduce to 5. If total exceeds 4 points for groundwater

wetlands, reduce to 4.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• SoilRunoff (2 points)

• SeasonPond (3 points)

• Microtopo (2 points)
• Floodplain

Method:

Spatial joins to add input variables to Wetland Units attribute table

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_20150514

Join Feature: WU_SoilRunoff

Output Feature Class: WU_Runoff1

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 SoilRunoff

Match option: CONTAINS

389

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_Runoff1

Join Feature: WU_SeasonPond

Output Feature Class: WU_Runoff2

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 SoilRunoff

 SeasonPond

Match option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_Runoff2

Join Feature: WU_Microtopo

Output Feature Class: WU_Runoff3

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 SoilRunoff

 SeasonPond

 Microtopo

Match option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_Runoff3

Join Feature: WU_Floodplain

Output Feature Class: WU_Runoff

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 SoilRunoff

 SeasonPond

 Microtopo

 Floodplain

Match option: CONTAINS

Add Runoff field to Wetland Units and set initial point value to zero.

Open attribute table of WU_Runoff

Add field “Runoff” (short integer)

390

R-click Runoff and Field Calculate Runoff = 0

Sum the points for SoilRunoff, SeasonPond, Microtopo.

Open attribute table of WU_Runoff

R-click Runoff and Field Calculate “Runoff” = [SoilRunoff] + [SeasonPond] + [Microtopo]

Reduce the total points to 5 (floodplain) or 4 (groundwater).

Open attribute table of WU_Runoff

SELECT * FROM WU_Runoff WHERE: "Runoff" > 5

Field Calculate (selection only) “Runoff” = 5

Clear Selection

SELECT * FROM WU_Runoff WHERE: "Runoff" > 4 AND "Floodplain" = 'N'

Field Calculate (selection only) “Runoff” = 4

391

5.6.59 Runoff50m: Lands producing runoff within 50 meters of wetland boundary

Version date: 28 Feb 2017

Strategy: completed 4/21/2016 EAB

GIS method: 4/21/2016 EAB

Python coding: 2/14/2017 MCA Note that this procedure is based on the Disturb50m variable,

and much of the code can be shared. Revision with RunoffLand Godzilla polygons

simplified 2/28/2017.

Final review by EAB: 2/28/2017

Purpose: :

Flood Attenuation Function / Opportunity aspect

Max 2 points

Description:

Rationale: Impervious surfaces, urban areas, agricultural areas, mining, industrial and

commercial land uses, and recent timber harvests contribute to increased runoff. Soil types with

high runoff/low infiltration characteristics also produce runoff. The land use and soil type

immediately adjacent to a wetland have a strong influence on the surface runoff that the wetland

receives.

Strategy: Overlay 50m wetland buffer with land uses and soil types that are likely to contribute

to increased runoff. Assign points as follows: >33% of area within 50 meters in such land uses

= 2 points; > 10% = 1 point; <=10% = 0 points.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514
o Feature Class: Buffer50m (this was created for Disturb50m variable)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: RunoffLand

Input Variables:

None

Method:

Intersect the 50m buffers and the runoff lands.

ArcToolbox / Analysis Tools / Overlay / Intersect

Input features: Buffer50m

 RunoffLand

Output feature class: Buffer50mRun

Join attributes: ALL

Output type: INPUT

392

Dissolve runoff lands by wetland buffer

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: Buffer50mRun

Output Feature Class: Buffer50mRun_diss

Dissolve Fields: WUKey

Statistics Fields: BufferArea (Statistic Type = First)

Check box “Create multipart features” (default)

Add field and calculate ratio of runoff area to total drainage area.

Open attribute table of Buffer50mRun_diss

Add field “Run50mRat” (float)

Field calculate Run50mRat = [Shape_Area] / [FIRST_BufferArea]

Join ratio of runoff land to Wetland Units

ArcToolbox / Data Management Tools / Joins / Add Join

Input table: WU_20150514

Input Join Field: WUKey

Join Table: Buffer50mRun_diss

Output Join Field: WUKey

Export joined data

R-click WU_20150514 and select Data / Export Data

Output feature class: WU_Runoff50m

Add field to Wetland Units and set initial point value to zero.

Open attribute table of WU_Runoff50m

Add field “Runoff50m” (short integer)

R-click Runoff50m and Field Calculate Runoff50m = 0

Assign points.

SELECT * FROM WU_Runoff50m WHERE: "Run50mRat" > 0.1

R-click Runoff50m and Field Calculate Runoff50m = 1

SELECT * FROM WU_Runoff50m WHERE: "Run50mRat" > 0.33

R-click Runoff50m and Field Calculate Runoff50m = 2

393

5.6.60 RunoffWshd: Runoff within contributing watershed

Version date: 7 March 2017

Strategy: completed 4/21/2016 EAB

GIS method: 4/21/2016 EAB

Python coding: 3/7/2017 MCA

Final review by EAB: 3/7/2017

Note that this procedure is based on the DisturbWshd variable, and much of the code can

probably be shared.

Purpose:

Flood Attenuation Function / Opportunity aspect

Max 2 points

Description:

Rationale: Impervious surfaces, urban areas, agricultural areas, mining, industrial and

commercial land uses contribute to increased runoff in a catchment (Wisconsin GIS-RAM

metric). Recent logging, and high runoff/low infiltration soil types also contribute to runoff.

The presence of these areas in the contributing watershed of a wetland is a good indicator that

surface runoff may be reaching the wetland, especially during storm events.

Summary of strategy: Calculate the ratio of runoff-producing area to total area within the

contributing watershed of each Wetland Unit. Assign points as follows: 25% of contributing

watershed area in runoff lands = 2 points; 10-25% = 1 point; <10% = 0 points.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514
o Feature Class: DrainageArea27m

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: RunoffLand

Method:

Intersect the drainage areas and the runoff areas.

ArcToolbox / Analysis Tools / Overlay / Intersect

Input features: DrainageArea27m

 RunoffLand

Output feature class: DrainAreaRun

Join attributes: ALL

Output type: INPUT

Dissolve runoff areas by drainage area

394

ArcToolbox / Data Management Tools / Generalization / Dissolve

Input feature: DrainAreaRun

Output Feature Class: DrainAreaRun_diss

Dissolve Fields: WUKey

Statistics Fields: CntrWshd (Statistic Type = First)

Check box “Create multipart features” (default)

Add field to DrainAreaRun_diss and calculate ratio of runoff area to total drainage

area.

Open attribute table of DrainAreaRun_diss

Add field “RunWshdRat” (float)

Field calculate RunWshdRat = [SHAPE_Area] / [FIRST_CntrWshd]

Join ratio of runoff area to Wetland Units

ArcToolbox / Data Management Tools / Joins / Add Join

Input table: WU_20150514

Input Join Field: WUKey

Join Table: DrainAreaRun_diss

Output Join Field: WUKey

Export joined data

R-click WU_20150514 and select Data / Export Data

Output feature class: WU_RunoffWshd

Add field to Wetland Units and set initial point value to zero.

Open attribute table of WU_RunoffWshd

Add field “RunoffWshd” (short integer)

R-click RunoffWshd and Field Calculate RunoffWshd = 0

Assign points.

SELECT * FROM WU_RunoffWshd WHERE: RunWshdRat > 0.1

R-click RunoffWshd and Field Calculate RunoffWshd = 1

SELECT * FROM WU_RunoffWshd WHERE: RunWshdRat > 0.25

R-click RunoffWshd and Field Calculate RunoffWshd = 2

395

5.6.61 SeasonPond: Seasonal Ponding

Version date: 10 March 2016

Strategy: completed 2/27/2016 EAB

GIS method: completed 3/4/2016 & verified 3/10/2016 EAB

Python code: started and completed on 3/15/2016 MCA

Final review by EAB: 3/15/2016

Purpose:

Input to Water Quality/Potential aspect/ChemTime Factor

Max 3 points. Groundwater wetlands only.

Description:

Rationale: The area of the wetland that is seasonally ponded is an important characteristic in

understanding how well it will remove nutrients, specifically nitrogen. The highest levels of

nitrogen transformation occur in areas of the wetland that undergo a cyclic change between oxic

(oxygen present) and anoxic (oxygen absent) conditions. The oxic regime (oxygen present) is

needed so certain types of bacteria will change nitrogen that is in the form of ammonium ion

(NH4+) to nitrate, and the anoxic regime is needed for denitrification (changing nitrate to

nitrogen gas) (Mitsch and Gosselink 1993). The area that is seasonally ponded is used as an

indicator of the area in the wetland that undergoes this seasonal cycling. The soils are

oxygenated when dry but become anoxic during the time they are flooded.

Summary of strategy: EnhWVWetland. Select wetland polygons from the NWI that are NOT

permanently flooded. Calculate the ratio of the non-permanently flooded area to the total area

of the Wetland Unit. Assign points as follows:
• SeaPondRatio = 70-100% cover: 3 points

• SeaPondRatio = 40-70% cover: 2 points

• SeaPondRatio = 10-40% cover: 1 point

• SeaPondRatio < 10% cover: 0 point

Definitions:

Cowardin Water Regime modifier H = permanently flooded

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb (EnhWVWetland)

Input Variables:

None

Method:

Select all wetland polygons that are not permanently flooded

396

Clear all selections.

Select * FROM EnhWVWetland WHERE: "ATTRIBUTE" NOT LIKE '%H%' AND

"ATTRIBUTE" LIKE 'P%'

Create layer of non-permanently flooded wetlands from selection

R-click EnhWVWetland / Data / Export Data

Export: Selected features

Output feature class: “SeasonPond”

Join non-permanently flooded wetlands to Wetland Units and sum the non-

permanently flooded area

Analysis Tools / Overlay / Spatial Join

Target features: WU_20150514

Join features: SeasonPond

Output feature class: WU_SeasonPond

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep All Target Featues”

Field Map of Join Features

R-click Shape_Area_1 and select “Merge Rule” / “Sum”

Match Option: INTERSECT

Add field to store ratio of non-permanently-flooded area to total area

In WU_SeasonPond, add field: SeaPondRatio (float)

Calculate ratio of non-permanently flooded area to Wetland Unit area.

In WU_SeasonPond, R-click attribute SeaPondRatio

Field Calculate SeaPondRatio = [SHAPE_Area_1] / [Shape_Area]

Add field to store points for non-permanently flooded area and set initial value to zero.

In WU_SeasonPond, add field: SeasonPond (short integer)

Field calculate SeasonPond = 0

Assign points to Wetland Units for seasonal ponding

SELECT * FROM WU_SeasonPond WHERE: "SeaPondRatio" > 0.1

R-click SeasonPond, Field Calculate SeasonPond = 1

SELECT * FROM WU_SeasonPond WHERE: "SeaPondRatio" > 0.4

R-click SeasonPond, Field Calculate SeasonPond = 2

397

SELECT * FROM WU_SeasonPond WHERE: "SeaPondRatio" > 0.7

R-click SeasonPond, Field Calculate SeasonPond = 3

398

5.6.62 Slope: Median Percent Slope

Version date: 2/21/2024

Strategy: completed 2/17/2016 EAB

GIS method: completed 2/26/2016 JCC (reviewed by EAB)

Python code: Started 3/2/2016 MCA, Finished 3/3/2016 but the code takes a long time to run

Python results verified by MCA and EAB: 7/6/2017

Purpose:

Input to multiple variables and functions

Description:

SLOPE is calculated as the median value of percent slope pixels within a Wetland Unit.

Definitions:

None

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• Database: M:\dems\ned_slope_aspect.gdb
Raster: NED_3meter_meters_augmented_slope_pct_intNote that the zonal statistics tool will run

faster if an intermediate raster layer of slope median for each Wetland Unit is calculated first. However, it
takes significant time to calculate the intermediate raster layer, so it is preferable to run the zonal statistics
directly from the NED raster above. The intermediate raster layer corresponding to WU_20150514 is at:
M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Slope_raster\ Raster: median_slope Please note that
this “median_slope” raster ONLY works with WU_20150514; it must be re-generated for any other set of
Wetland Unit polygons.

• M:\elevation\statewide_slope_pct.tif (new slope file in 2024)

Input Variables:

None

Method:

1. Spatial Analyst Tools/Zonal/Zonal Statistics as Table Tool
a. Input feature zone data = WU20150514
b. Zone field = ObjectID
c. Input Value raster = NED_3meter_meters_augmented_slope_pct_int

M:\elevation\statewide_slope_pct.tif
d. Output table: <select location>
e. Check Ignore No Data
f. Statistics Type: Median

399

2. Join Wetland Units so the Zonal Statistic Table Output

a. Right-click WU20151514 Shapefile in TOC
i.

b. Click Joins and Related
c. Click “Join…”

d.
3. This will display the “Join Data pop-up window”

a. Select “Join attributes from a table”
b. “Choose the field…” = OBJECTID_1
c. “Choose the table to join…” = zonal_table1
d. “Choose the field in the table…” = OBJECTID_1
e. Check “Keep all records”

400

f.

4. Export the joined data to a Feature Class (Conversion Tools/To Geodatabase/Feature Class to FeatureClass)

a. Go to the “Feature Class to FeatureClass” Tool
b. Input Features: WU_20150514
c. Output Location: Desired Geodatabase
d. Output Feature Class: WU_SLOPE
e. Click “OK”

f.

401

5. Rename MEDIAN field to SLOPE

a. Open the attribute table to WU_SLOPE
b. Add field “SLOPE” (short integer) to attribute table
c. Field Calculate “SLOPE” = MEDIAN
d. Delete the MEDIAN field

402

5.6.63 SlopeWshd: Mean Percent Slope of the Contributing Watershed

Version date: 21 February 2024 (slope source file updated)

Previous version(s): 22 December 2016

Strategy: completed 4/21/2016 EAB

GIS method: completed 4/21/2016 EAB & JCC; 10/6/16 EAB I think we need to do step 1 in

Python rather than ArcGIS because of need for iteration

Python code: Completed 2/8/2017 MCA

Final review by EAB: 2/8/2017

Note that this procedure is based on the SLOPE variable, and some of the code can probably be

shared.

Purpose:

Input to Flood Attenuation Function / Opportunity aspect

Description:

Rationale: Steep slopes contribute to rapid runoff and increases in flood flows during storm

events. Wetlands below these slopes will have more opportunity to intercept and slow flood

flows (Wisconsin GIS-RAM metric).

Strategy: Calculate mean percent slope of contributing watershed. Slopes > 15% = 2 points;

slopes 5-15% = 1 point; slopes < 5% = 0 points.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514
o Feature Class: DrainageArea27m

• M:\dems\ned_slope_aspect.gdb
Raster: NED_3meter_meters_augmented_slope_pct

• M:\elevation\statewide_slope_pct.tif (new source file 2024)

Method:

6. Spatial Analyst Tools/Zonal/Zonal Statistics as Table Tool
a. Input feature zone data = DrainageArea27m
b. Zone field = WUKey
c. Input Value raster = NED_3meter_meters_augmented_slope_pct

M:\elevation\statewide_slope_pct.tif
d. Output table: slope_wshd
e. Check box “Ignore NoData in calculations”
f. Statistics Type: Mean

Step 1 issue: DrainageArea27m has overlapping polygons, and the resulting output

“slope_wshd” table only has values for one-third of the total drainage areas. Can we re-

403

design this step to iterate the zonal analysis for each polygon, in order to get around the

problem of overlapping polygons? Here is the text from ArcGIS help:
If the zone feature input has overlapping polygons, the zonal analysis will not be
performed for each individual polygon. Since the feature input is converted to a
raster, each location can only have one value.
An alternative method is to process the zonal statistics iteratively for each of the

polygon zones and collate the results.
Resolution: done, but it is time-consuming to run the entire state. It will not be a problem for
smaller datasets.

7. Join DrainageArea27m to the Zonal Statistic Table Output

a. Right-click DrainageArea27m
b. Click Joins and Relates
c. Click “Join…”

8. This will display the “Join Data” pop-up window

a. Select “Join attributes from a table”
b. “Choose the field…” = WUKey
c. “Choose the table to join…” = slope_wshd
d. “Choose the field in the table…” = WUKey
e. Check “Keep all records”

9. Export the joined data to a Feature Class (Conversion Tools/To Geodatabase/Feature Class to FeatureClass)

a. Go to the “Feature Class to FeatureClass” Tool
b. Input Features: DrainageArea27m
c. Output Location: Desired Geodatabase
d. Output Feature Class: SlopeWshd1
e. Click “OK”

10. Rename MEAN field

a. Open the attribute table to SlopeWshd1
b. Add field “MnSlopeWshd” (short integer) to attribute table
c. Field Calculate “MnSlopeWshd” = MEAN

Join the slope values to Wetland Units.

ArcToolbox / Data Management Tools / Joins / Join Field

Input table: WU_20150514

Input Join Field: OBJECTID_1

Join Table: SlopeWshd1

Output Join Field: WUKey

Join Fields: WUKey, MnSlopeWshd

Export joined data

R-click WU_20150514 and select Data / Export Data

404

Output feature class: WU_SlopeWshd

Add field to Wetland Units and set initial point value to zero.

Open attribute table of WU_SlopeWshd

Add field “SlopeWshd” (short integer)

R-click SlopeWshd and Field Calculate SlopeWshd = 0

Assign points.

SELECT * FROM WU_SlopeWshd WHERE: MnSlopeWshd > 5

R-click SlopeWshd and Field Calculate SlopeWshd = 1

SELECT * FROM WU_SlopeWshd WHERE: MnSlopeWshd > 15

R-click SlopeWshd and Field Calculate SlopeWshd = 2

405

5.6.64 SoilH: Hydrologic regime for soil

Version date: 27 September 2017

Strategy: Completed 3/16/2017 EAB

GIS method: 9/27/2017 EAB; results verified 9/27/2017 EAB

Python coding: 9/28/2017 YH

Final review by EAB: 10/2/2017

Description:

Input to Habitat & Ecological Integrity / Potential

Max 6 points

Rationale: Undisturbed soils, organic or calcareous soils, and structural patches all contribute

important physical habitat characteristics to wetlands.

Strategy: Sum the points for the metrics SoilIntact, SoilOrgCalc, and StrucPatch.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFunction.gdb
o Feature Class: WU_Disturb50m

▪ Field: SoilIntact
o Feature Class: WU_SoilOrgCalc

▪ Field: SoilOrgCalc
o Feature Class: WU_StrucPatch

▪ Field: StrucPatch

Method:

Note that the step below could be done with a Join on WUKey instead of a Spatial Join if

that is easier to code.

Spatial Joins to merge fields into one attribute table

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Features: WU_Disturb50m

Join Features: WU_SoilOrgCalc

Output Feature Class: WetlandFunction.gdb\WU_SoilH1

Join Operation: JOIN_ONE_TO_ONE

Check “Keep All Target Features”

Field Map of Join Features:

 WUKey

 Shape_Length

 Shape_Area

 SoilIntact

 SoilOrgCalc

Match Option: CONTAINS

406

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Features: WU_SoilH1

Join Features: WU_StrucPatch

Output Feature Class: WetlandFunction.gdb\WU_SoilH

Join Operation: JOIN_ONE_TO_ONE

Check “Keep All Target Features”

Field Map of Join Features:

 WUKey

 Shape_Length

 Shape_Area

 SoilIntact

 SoilOrgCalc

 StrucPatch

Match Option: CONTAINS

Add field to store SoilH and set initial value to zero

Open attribute table of WU_SoilH

Add field “SoilH” (short integer)

Field Calculate SoilH = 0

Assign points to SoilH

Open attribute table of WU_SoilH

Field Calculate SoilH = [SoilIntact] + [SoilOrgCalc] + [StrucPatch]

407

5.6.65 SoilIntact: Lack of Soil Disturbance or Compaction

Version date: 27 September 2017

Strategy: Completed 3/16/2017 EAB

GIS method: 9/27/2017 EAB; results verified 9/27/2017 EAB

Python coding: 9/28/2017 YH

Final review by EAB: 10/2/2017

Description:

Input to Habitat & Ecological Integrity / Potential / SoilH

Max 2 points

Rationale: Soil disturbance or compaction reduces the habitat value and ecological integrity of a

wetland. This metric is best observed in the field.

Strategy: Estimate using the proxy of land use disturbance in 50-meter buffer (NLCD developed

areas, urbanized areas, recent timber harvest, and grazed pastures). Assign points as follows:
• 2 points: No disturbed land uses within 50m buffer

• 1 point: Trace to 50% of 50m buffer is covered by disturbed land uses

• 0 points: > 50% of 50m buffer is covered by disturbed land uses

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFunction.gdb
o Feature Class: WU_Disturb50m

▪ Field: Dist50mRat

Method:

Add SoilIntact field and set initial point value to zero.

Open attribute table of WU_Disturb50m

Add field “SoilIntact” (short integer)

R-click SoilIntact and Field Calculate SoilIntact = 0

Assign points to SoilIntact

Open attribute table of WU_Disturb50m

SELECT * FROM WU_Disturb50m WHERE: Dist50mRat IS NULL

Field Calculate SoilIntact = 2

SELECT * FROM WU_Disturb50m WHERE: Dist50mRat > 0

Field Calculate SoilIntact = 1

SELECT * FROM WU_Disturb50m WHERE: Dist50mRat > 0.5

Field Calculate SoilIntact = 0

408

5.6.66 SoilOrgCalc: Special soil types, i.e., organic or calcareous soil

Version date: 24 September 2017

Strategy: Completed 3/16/2017 EAB

GIS method: 9/27/2017 EAB; results verified 9/27/2017 EAB

Python coding: 9/28/2017 YH

Final review by EAB: 10/2/2017 EAB

Purpose:

Input to Habitat & Ecological Integrity / Potential / SoilH

Max 1 point

Description:

Rationale: Soils developed on limestone, dolomite, or marl deposits contain elevated levels of

calcium or magnesium. A rich and uniquely adapted flora and fauna are characteristic of

calcareous wetlands. Peatlands, characterized by deep organic soils, also provide habitat for

uniquely adapted flora and fauna.

Strategy: Assign one point if the criteria are met for either organic soil or for calcareous soil
• Histosol variable (SSURGO organic content or known peatland) OR

• Karst metric: SSURGO calcareous soil, SSURGO karst or limestone/dolomite bedrock geology

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFunction.gdb
o Feature Class: WU_Histosol

▪ Field: Histosol

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFunction.gdb
o Feature Class: WU_Karst

▪ Field: Karst

Method:

Note that the Spatial Join could be replaced by a Join on WUKey if that is easier.

Spatial join to merge Histosol and Karst into one attribute table

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_Histosol

Join Feature: WU_Karst

Output Feature Class: WetlandFunctionResults\WetlandFunction.gdb\WU_SoilOrgCalc

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

409

Field Map of Join Features: retain the following:

 WUKey

Shape_Length

 Shape_Area

 Histosol

 Karst

Match option: CONTAINS

Add SoilOrgCalc field and set initial point value to zero.

Open attribute table of WU_SoilOrgCalc

Add field “SoilOrgCalc” (short integer)

R-click SoilOrgCalc and Field Calculate SoilOrgCalc = 0

Assign points to SoilOrgCalc

Open attribute table of WU_SoilOrgCalc

SELECT * FROM WU_SoilOrgCalc WHERE: ("Histosol" + "Karst") > 0

Field Calculate SoilOrgCalc = 1

410

5.6.67 SoilRunoff: Soil Runoff and Infiltration Potential

Version date: 7 January 2017

Strategy: Completed 3/24/2016 EAB

GIS method: Completed 3/24/2016 EAB; revised 1/7/2017 EAB (peatlands changed from 2 to 0

points)

Python code: 5/24/2016 Nate Gunn; Revision 1/10/2017 MCA

Final review by EAB: 1/11/2017

Purpose:

Input to Flood Attenuation / Potential

Max 2 points.

Description:

Rationale: Wetlands with soil that have characteristics of low runoff and high infiltration are better able
to slow and absorb flood flows. Soils are characterized by NRCS according to hydrologic group based
on runoff and infiltration characteristics. The high water table in peatlands places them in the high
runoff group.
Strategy: Assign 0 points to Wetland Units with soils that have high runoff characteristics. Assign 1
point to Wetland Units with soils that have moderate runoff/infiltration. Assign 2 points to Wetland
Units with soils that have low runoff/high infiltration characteristics.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\basemap\ssurgo\ssurgo.gdb
o Feature Class: ssurgo_wv

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb
o Feature Class: Peatlands_20160228

Method:

Create feature class to store SoilRunoff

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_SoilRunoff

Add SoilRunoff field to Wetland Units and set initial point value to zero.

Open attribute table of WU_SoilRunoff

Add field “SoilRunoff” (short integer)

R-click SoilRunoff and Field Calculate SoilRunoff = 0

Select SSURGO soils that have moderate runoff/infiltration

Select by Attributes

411

Method: Create a new selection

SELECT * FROM ssurgo_wv WHERE: "hydgrpdcd" IN ('C', 'C/D')

Select Wetland Units that contain soils with moderate runoff/infiltration

Select by Location

Selection method: select features from

Target layer: WU_SoilRunoff

Source layer: ssurgo_wv

Check box “Use selected features”

Spatial selection method: intersect the source layer feature

Assign points to SoilRunoff.

In WU_SoilRunoff, Field Calculate (selection only) SoilRunoff = 1

Select SSURGO soils that have low runoff/high infiltration

Select by Attributes

Method: Create a new selection

SELECT * FROM ssurgo_wv WHERE: "hydgrpdcd" IN ('A', 'A/D', 'B', 'B/D')

Select Wetland Units that contain soils with low runoff/high infiltration

Select by Location

Selection method: select features from

Target layer: WU_SoilRunoff

Source layer: ssurgo_wv

Check box “Use selected features”

Spatial selection method: intersect the source layer feature

Update points in SoilRunoff.

In WU_SoilRunoff, Field Calculate (selection only) SoilRunoff = 2

Select Wetland Units with peatlands

Select by Location

Selection method: select features from

Target layer: WU_SoilRunoff

Source layer: Peatlands_20160228

Spatial selection method: intersect the source layer feature

Update points in SoilRunoff.

In WU_SoilRunoff, Field Calculate (selection only) SoilRunoff = 0

412

5.6.68 StreamEdge: Complexity of wetland/stream interface

Version date: 16 November 2016

Strategy: completed 4/14/2016 EAB

GIS method: drafted 4/14/2016 EAB, verified 4/15/2016 EAB; re-verified 11/16/16 EAB;

replace EnhWVWetland with NWIExports.gdb\Rivers 2/15/2018 EAB

Python coding: Started 8/30/2016 MCA, Completed 12/16/2016 MCA

Final review by EAB: 12/19/2016

Purpose:

Used in Flood Attenuation Function / Potential aspect / Runoff

Max 2 points

Description:

Rationale: Wetlands that are strongly connected to streams have a high capacity to receive

overbank flow and intercept floodwaters (Wisconsin GIS-RAM metric). Note that we cannot

determine whether a stream is disconnected/entrenched from GIS. This will be measured

during rapid field assessment. The GIS metric is limited to the length/complexity of shared

stream/wetland boundaries. Ditches and drains should NOT be included in this metric.

Strategy: Sum of shared Wetland Unit/river (polygonal stream) boundary lengths and length of

NHD stream segments within wetland, divided by the square root of the Wetland Unit area.

Assign 2 points to Wetland Units with a ratio > 3.4, 1 point if the ratio is 1-3.4, and zero points

if the ratio < 1. Note that these thresholds were set by examining the histogram of values, with

the highest class (2 points) representing the upper tail of the distribution, i.e., more than one

standard deviation above the median. The middle class (1 point) represents the middle of the

peak to where the upper tail begins, and also has the real-world significance of being more

sinuous than a straight line through a theoretical square wetland.

Source data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
Feature Class: WU_20150514

• M:\basemap\NHDH_WV.gdb, Feature Dataset: Hydrography, Feature Class: NHDFlowline

Note that NHD data is incorrectly attributed (no ephemeral or intermittent streams) in

Preston County and parts of Monongalia, Barbour, Morgan, Kanawha, Putnam, Wirt,

Marshall, Tucker, and small parts of about 10 additional counties. Not much we can do

about this for now.

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\NWIExports.gdb
o Feature Class: Rivers

Method:

PART 1: RIVER LENGTH

Select Wetland Units that share a boundary with a river and export them.

413

Clear all selections

Select by Location

Target: WU_20150514

Source: NWIExports.gdb\Rivers

Spatial selection: intersect the source layer feature.

R-click WU_20150514 and select Data / Export Data

Export: Selected features

Output feature class: WUbyRiver

Convert Wetland polygons to lines

Data Management Tools / Features / Polygon to Line

Input Features: WUbyRiver

Output Feature Class: WURiverLines

Do not check box “Identify and store polygon…”

##Retain only the wet perimeter lines

Analysis Tools / Overlay / Intersect

Input features: WURiverLines

NWIExports.gdb\Rivers

Output feature class: RiverEdges

Join Attributes: ONLY_FID

Output Type: Input

Add field and calculate wet perimeter in RiverEdges

In RiverEdges, add field “RiverPerim” (float)

Field Calculate “RiverPerim” = [Shape_Length]

Spatial Join Wetland Units to RiverEdges

Clear all selections.

Analysis Tools / Overlay / Spatial Join

Target Features: WU_20150514

Join Features: RiverEdges

Output Feature Class: WU_StreamEdge1

Join operation: Join_one_to_one

Check box “Keep all target features”

Field map of join features: (retain the following)

 Shape_Length

 Shape_Area

 RiverPerim (R-click, Merge Rule = SUM)

414

Match Option: Intersect

PART 2: STREAM LENGTH

Intersect stream lengths with Wetland Units

Analysis Tools / Overlay / Intersect

Input features: WU_StreamEdge1

NHDFlowline

Output feature class: WUStream

Join Attributes: ONLY_FID

Output Type: Input

Add field to WUStream to store stream length

Add field StreamL (float) to WUStream attribute table

Calculate Geometry / Property: Length; Units: meters

Sum the stream lengths within each WU.

Analysis Tools / Overlay / Spatial Join

Target Features: WU_StreamEdge1

Join Features: WUStream

Output Feature Class: WU_StreamEdge

Join operation: Join_one_to_one

Check box “Keep all target features”

Field map of join features: (retain the following)

 Shape_Length

 Shape_Area

 RiverPerim

 StreamL (R-click, Merge Rule = SUM)

Match Option: Intersect

PART 3: Calculate ratio and assign points.

Open attribute table of WU_StreamEdge

Select by Attributes

SELECT * FROM WU_StreamEdge WHERE: "RiverPerim" IS NULL

Field calculate RiverPerim = 0

SELECT * FROM WU_StreamEdge WHERE: "StreamL" IS NULL

Field calculate StreamL = 0

Clear selections

Add fields to attribute table: StreamEdge (short integer), StreamRatio (float)

Field calculate StreamEdge = 0, StreamRatio = 0

415

Field calculate StreamRatio = ([RiverPerim] + [StreamL]) / ([Shape_Area] ^ 0.5)

SELECT * FROM WU_StreamEdge WHERE: "StreamRatio" > 1

Field calculate StreamEdge = 1

SELECT * FROM WU_StreamEdge WHERE: "StreamRatio" > 3.4

Field calculate StreamEdge = 2

416

5.6.69 StrucPatch: Structural Patch Richness

Version date: 27 September 2017

Strategy: Completed 3/16/2017 EAB

GIS method: 9/27/2017 EAB; results verified 9/27/2017 EAB

Python coding: 9/28/2017 YH (YH: results are off by 3 out of 43124 Wetland Units – this was

traced back to StreamEdge3. EAB: this should resolve itself when the earlier metrics are re-run)

Final review by EAB: 9/28/2017 EAB

Purpose:

Input to Habitat & Ecological Integrity / Potential / SoilH

Max 3 points

Description:

Rationale: Structural patches offer key habitat elements to species, increasing biodiversity,

complexity, and ecological integrity of a wetland. This metric is best assessed in the field.

Strategy: In GIS, this metric is estimated using the proxies of interspersion of NWI polygons,

complexity of the upland-wetland interface, stream channel complexity within the wetland, and

the amount of woody vegetation in the wetland. Sum VegHorInt (interspersion of NWI codes,

0-3), VegVerStr (0-3), and StreamRatio (0-3 points in quantiles 0, 1.4, 2.4, >2.4). Sum all

points and divide by the number of factors.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFunction.gdb
o Feature Class: WU_Microtopo

▪ Field: VegHorInt
o Feature Class: WU_VegVerStr

▪ Field: VegVerStr
o Feature Class: WU_StreamEdge

▪ Field: StreamEdge

Method:

Note that the Spatial Join could be replaced by a Join on WUKey if that is easier.

Spatial joins to merge input metrics (VegHorInt, VegVerStr, StreamEdge) into one

attribute table

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_Microtopo

Join Feature: WU_VerVerStr

Output Feature Class: WetlandFunctionResults\WetlandFunction.gdb\WU_StrucPatch1

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

417

Field Map of Join Features: retain the following:

 WUKey

Shape_Length

 Shape_Area

 VegHorInt

 VegVerStr

Match option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_StrucPatch1

Join Feature: WU_StreamEdge

Output Feature Class: WetlandFunctionResults\WetlandFunction.gdb\WU_StrucPatch

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 WUKey

Shape_Length

 Shape_Area

 VegHorInt

 VegVerStr

 StreamEdge

Match option: CONTAINS

Add StreamEdge3 field and set initial point value to zero.

Open attribute table of WU_StrucPatch

Add field “StreamEdge3” (short integer)

R-click StreamEdge3 and Field Calculate StreamEdge3 = 0

Assign points to StreamEdge3

Open attribute table of WU_StrucPatch

SELECT * FROM WU_StrucPatch WHERE: "StreamRatio" > 0

Field Calculate StreamEdge3 = 1

Open attribute table of WU_StrucPatch

SELECT * FROM WU_StrucPatch WHERE: "StreamRatio" > 1.4

Field Calculate StreamEdge3 = 2

Open attribute table of WU_StrucPatch

SELECT * FROM WU_StrucPatch WHERE: "StreamRatio" > 2.4

Field Calculate StreamEdge3 = 3

Add StrucPatch field and set initial point value to zero.

Open attribute table of WU_StrucPatch

418

Add field “StrucPatch” (short integer)

R-click StrucPatch and Field Calculate StrucPatch = 0

Assign points to StrucPatch

Open attribute table of WU_StrucPatch

SELECT * FROM WU_StrucPatch WHERE: ("VegHorInt" + "VegVerStr" + "StreamEdge3")

> 1

Field Calculate StrucPatch = 1

Assign points to StrucPatch

Open attribute table of WU_StrucPatch

SELECT * FROM WU_StrucPatch WHERE: ("VegHorInt" + "VegVerStr" + "StreamEdge3")

> 3

Field Calculate StrucPatch = 2

Assign points to StrucPatch

Open attribute table of WU_StrucPatch

SELECT * FROM WU_StrucPatch WHERE: ("VegHorInt" + "VegVerStr" + "StreamEdge3")

> 5

Field Calculate StrucPatch = 3

419

5.6.70 SWoutflow, SWOutflow2: Surface Water Outflows

Version date: 25 October 2016

Strategy: Completed 2/17/2016 EAB

GIS method: Completed 2/17/2016 EAB, Revised & Verified 3/24/2016 EAB

Python code: Started & completed 6/14/2016 MCA * see notes to talk to EAB

EAB 10/3/2016: need to re-run after WFlowPath is updated. Revised 10/27/16 MCA;

completed 12/19/2016.

Final review by EAB: 12/19/2016

Purpose:

SWOutflow: Input to Water Quality.

Max 4 points. Groundwater wetlands only.

SWOutflow2: Input to Flood Attenuation.

Max 2 points. Groundwater wetlands only.

Description:

Rationale for SWOutflow (water quality): Pollutants that are in the form of particulates (e.g.,

sediment, or phosphorus that is bound to sediment) will be retained in a wetland with no outlet.

Wetlands with no outlet are scored the highest for this indicator. An outlet that flows only

seasonally is usually better at trapping particulates than one that is flowing all the time.

Rationale for SWOutflow2 (flood attenuation): Surface water is retained in a wetland with no

outlet. Wetlands with an outlet that is highly constricted, or flows only seasonally, are more likely to

retain water than those with permanently flowing outlets.

Strategy for SWOutflow (water quality): No surface water outlet = 4 points; Intermittent or

highly constricted permanent outlet = 3 points; permanently flowing surface outlet = 1 point.

Strategy for SWOutflow2 (flood attenuation): Assign points based on Tiner Water Flow Path

(WFlowPath) as follows: No surface water outlet = 2 points; Intermittent or highly constricted

permanent outlet = 1 point; permanently flowing surface outlet = 0 point.

Note 1: Highly constricted outlets can be determined during rapid field assessment, but we are

not able to identify them remotely at this point.

Note 2: SWoutflow2 differs from SWoutflow in that the total points are 2 instead of 4.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• Water Flow Path (WFlowPath)

• Floodplain

Method:

Spatial join to add input variables WFlowPath and Floodplain to attribute table

420

and create feature class to store Surface Water Outflow factor

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Features: WU_Floodplain

Join Features: WU_WFlowPath

Output Feature Class: WU_SWOutflow

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep All Target Features”

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 WFlowPath

 Floodplain

Match Option: CONTAINS

Add SWOutflow fields to Wetland Units and set initial point value to zero.

Open attribute table of WU_SWOutflow

Add fields “SWOutflow” (short integer) and “SWOutflow2” (short integer)

R-click SWOutflow and Field Calculate SWOutflow = 0

R-click SWOutflow2 and Field Calculate SWOutflow2 = 0

Assign points for to SWoutflow.

Clear all selections.

SELECT * FROM WU_SWOutflow WHERE: "Floodplain" = 'N'

Field Calculate SWoutflow = 1

Clear all selections.

SELECT * FROM WU_SWOutflow WHERE: "Floodplain" = 'N' AND "WFlowPath" IN ('OI',

'TI', 'BI', 'IB')

Field Calculate (selection only) SWoutflow = 3

Field Calculate (selection only) SWoutflow2 = 1

Clear all selections.

SELECT * FROM WU_SWOutflow WHERE: "Floodplain" = 'N' AND "WFlowPath" IN ('IS')

Field Calculate (selection only) SWoutflow = 4

Field Calculate (selection only) SWoutflow2 = 2

421

5.6.71 TMDL: Wetland is in a watershed with a TMDL plan

NOTE: This layer was discontinued in 2022 when the statewide TMDLs were completed and the

existence of a TMDL plan no longer served to distinguish between wetlands.

Version date: 16 March 2016

Strategy: 3/16/2016

GIS method: drafted 3/16/2016

Python code: not needed – this is the procedure to create a spatial dataset and only needs to be

updated every year or two.

Final review by EAB: 3/16/2016

Purpose:

Water Quality Function, Value to Society aspect

Maximum 2 points (assigned in WQPlan factor)

This procedure creates a layer showing the watersheds with a TMDL plan.

Description:

TMDL (Total Maximum Daily Load). A TMDL exists for the drainage in which the wetland is

found (2 points). A Total Maximum Daily Load (TMDL) plan is a plan of action used to clean

up streams that are not meeting water quality standards. The TMDL program is part of the

Watershed Branch of the WVDEP. TMDLs have been completed for 32 watersheds in West

Virginia, listed at: http://www.dep.wv.gov/wwe/watershed/tmdl/Pages/default.aspx

Source Data:

• M:\wr\WTRSHD_BRANCH\TMDL FINAL GIS DATA\TMDL Subsheds (SWS) alphabetical order.lyr

Method:

Create layer showing watersheds with a TMDL plan

Open TMDL Subsheds layers. Export the first watershed to a new feature class “TMDL” and

load data from all subsequent watersheds into this polygon feature class.

Final data layer is stored in:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: TMDL

Annual updates

Updates should be done annually, comparing “TMDL” to the newest delineations and adding

any additional watersheds to the compiled feature class.

http://www.dep.wv.gov/wwe/watershed/tmdl/Pages/default.aspx

422

5.6.73 VegAll: All Vegetation Types

Version date: 24 March 2016

Strategy: 3/24/2016 EAB

GIS method: completed & verified 3/24/2016 EAB; modified to expand selected polygons to

include vegetated lacustrine littoral and vegetated riverine 2/3/2022 EAB

Python code: started 5/12/2016 MCA, completed 5/13/2016

Final review by EAB: 10/4/2016

Purpose:

Input to Flood Attenuation / Potential / Vegetation Factor

Max 1 point.

Description:

Rationale: All vegetation, even grazed pastures and aquatic bed vegetation, plays at least a

minor role in slowing flood flows.

Summary of strategy: Assign 1 point to Wetland Units with at least 50% areal cover by

vegetation of any type.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb

(EnhWVWetland)

Method:

Select the forest, shrubland, emergent, moss, and aquatic bed vegetation.

Clear all selections

SELECT * FROM EnhWVWetland WHERE:

"ATTRIBUTE" LIKE 'PEM%' OR "ATTRIBUTE" LIKE 'PFO%' OR "ATTRIBUTE" LIKE

'PSS%' OR "ATTRIBUTE" LIKE 'PAB%' OR "ATTRIBUTE" LIKE 'PML%' OR

"ATTRIBUTE" LIKE 'L2AB%' OR "ATTRIBUTE" LIKE 'L2US5%' OR "ATTRIBUTE"

LIKE 'L2EM%' OR "ATTRIBUTE" LIKE 'R2AB%' OR "ATTRIBUTE" LIKE 'R3AB%' OR

"ATTRIBUTE" LIKE 'R2US5%' OR "ATTRIBUTE" LIKE 'R3US5%' OR "ATTRIBUTE"

LIKE 'R2EM%' OR "ATTRIBUTE" LIKE 'R3EM%' OR "ATTRIBUTE" LIKE 'R4SB7%'

Create layer of all vegetation from selection

R-click EnhWVWetland / Data / Export Data

Export: Selected features

Output feature class: “VegAll”

Add field to store vegetation area

423

Open attribute table of VegAll

Add field VegArea (float)

R-click VegArea and Field Calculator: VegArea = [SHAPE_Area]

Join vegetation to wetland units and sum the vegetation area

Analysis Tools / Overlay / Spatial Join

Target Features: WU_20150514

Join Features: VegAll

Output Feature Class: WU_VegAll

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain Shape_Length, Shape_Area, VegArea

 R-click VegArea and select “Merge Rule”, “Sum”

Match Option: INTERSECT

Add field to store ratio of vegetated area to total area

In WU_VegAll, add field: VegRatio (float)

Calculate ratio of vegetation to Wetland Unit area.

In WU_VegAll, R-click attribute VegRatio

Field Calculate VegRatio = [VegArea] / [Shape_Area]

Add new attribute field to store points for VegAll and set initial value to zero.

In WU_VegAll, add field: VegAll (short integer)

Field calculate VegAll = 0

Assign points to Wetland Units for vegetation

SELECT * FROM WU_VegAll WHERE: "VegRatio" > 0.5

R-click VegAll, Field Calculate VegAll = 1

424

5.6.74 VegByLP: Vegetation fringing open water

Version date: 14 March 2018

Strategy: completed EAB 18 Feb 2016

GIS method: completed 3/2/2016 EAB & JCC; verified 3/2/2016 EAB; revised to (a) replace

EnhWVWetland with NWIExports/RiverLakes, (b) replace procedure to select Lakes

with NWI export of Lakes, and (c) replace selection criteria for VegAll to include

vegetated lacustrine and riverine wetlands 2/15/2018 EAB. Revised to replace Lakes

with RiversLakes and to add perennial streams 3/6/2018 EAB.

Python coding: Started 3/22/2016 MCA & completed 3/23/2016 MCA

Final review by EAB: 3/24/2016

Purpose:

Used in Water Quality Function / WQPotential / VegWQ

Max 1 point

Description:

Rationale: Vegetation fringing the banks of open water, including lakes, reservoirs, ponds or

streams, provides vertical structure to filter out pollutants or absorb them, enhancing sediment

retention and stabilization, phosphorus retention, and nitrate removal (Adamus et al. 2010,

Hruby 2012). Wetlands in which the average width of shoreline vegetation is large are more

likely to retain sediment and toxic compounds than where shoreline vegetation is narrow

(Adamus et al. 1991). Aquatic bed species that die back every year play a role in improving

water quality. These plants take up nutrients in the spring and summer that would otherwise be

available to stimulate algal blooms in the water body (Reynolds and Davies 2001). In addition,

aquatic bed species change the chemistry of the lake/pond bottom to facilitate the binding of

phosphorus (Moore et al. 1994). Vegetated shorelines provide physical protection from erosion,

including shoreline anchoring and the dissipation of erosive forces (Adamus and others. 1991).

Fringing wetlands that have extensive, persistent (especially woody) plants provide protection

from overland flows or waves associated with large storms (Adamus and others 1991). GIS

estimation of this metric is replaced during the field assessment.

Summary of strategy: Assign 1 point to vegetated Wetland Units that

• intersect a river, lake, or reservoir

• contain pond(s)

• contain a through-flowing perennial stream

Source data:

o M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

o [NewInputPolygons]
o M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\NWIExports.gdb

o Feature Class: RiversLakes
o WFlowPath

425

Method:

Add fields to Wetland Units feature class.

Add fields: VegByLP (short integer), PondRatio (float),

Set initial value of VegByLP to zero.

Field calculate VegByLP = 0

PART 1: CREATE VEGETATION LAYER.

Select the forest, shrubland, emergent, moss, and aquatic bed vegetation.

Clear all selections

SELECT * FROM [NewInputPolygons] WHERE:

"ATTRIBUTE" LIKE '%EM%' OR "ATTRIBUTE" LIKE '%AB%' OR "ATTRIBUTE" LIKE

'PFO%' OR "ATTRIBUTE" LIKE 'PSS%' OR "ATTRIBUTE" LIKE 'PML%'

Create layer from selection.

Export data to feature class: VegAll

PART 2: CREATE RIVER AND LAKE SELECTIONS.

Select Wetland Units that intersect rivers or lakes.

Clear all selections

Select by Location

Target: Wetland Units

Source: NWIExports.gdb\RiversLakes

Spatial selection: intersect the source layer feature.

Create layer from selection.

Export data to feature class: WUbyLake

Select WUbyLake that are vegetated

Select by Location

Target: WUbyLake

Source: VegAll

Spatial selection: contain the source layer feature

Create layer from selection.

Export data to feature class: WUbyLakeVegAll

Assign 1 point to VegByLP for the records in WUbyLakeVegAll.

Field calculate VegByLP = 1

PART 3: CREATE POND SELECTIONS.

Select ponds.

Clear all selections

426

SELECT * FROM [NewInputPolygons] WHERE:

"ATTRIBUTE" LIKE 'PA%' OR "ATTRIBUTE" LIKE 'PU%'

Create layer from selection.

Export data to feature class: Ponds

Select Wetland Units that contain ponds

Clear all selections

Select by Location

Target: Wetland Units

Source: Ponds

Spatial selection: contain the source layer feature

Create layer from selection.

Export data to feature class: WUwithPond

Select WUwithPond that are vegetated

Select by Location

Target: WUwithPond

Source: VegAll

Spatial selection: contain the source layer feature

Create layer from selection.

Export data to feature class: WUwithPondVegAll

Add Area fields and calculate geometry in WUwithPondVegAll

In Ponds, add field: PondArea (Float)

R-click PondArea, Field Calculator, PondArea = [Shape_Area]

In WUwithPondVegAll = WUarea (Float)

R-click WUArea, Field Calculator, WUArea = [Shape_Area]

Spatial join vegetated WU with ponds

Analysis Tools / Overlay / Spatial Join Tool
a. Target: WUwithPondVegAll
b. Join Features: Ponds
c. Output: WUwithPondVegAll_join
d. Join: One-to-one
e. Field Map: retain fields:

i. Shape_Length
ii. Shape_Area

iii. VegByLP (short integer)
iv. WUarea (float)
v. PondArea (float)

vi. PondRatio (float)
f. Match Option: Contains

427

Calculate ratio of pond area (Ponds) to vegetated Wetland Unit

(WUwithPondVegAll_join)

Right click PondRatio in attribute field of WUwithPondVegAll_join

Field Calculate PondRatio = [PondArea] / [WUarea]

428

Assign 1 point to VegByLP if pond area is <100% of Wetland Unit area.

Clear all selections

SELECT * FROM WUwithPondVegAll_join WHERE: "PondRatio" < 1

Field calculate VegByLP = 1

PART 4: COMBINE RESULTS

Join lake results to Wetland Units

Analysis Tools / Overlay / Spatial Join

Target Features: WU_20150514

Join Features: WUbyLakeVegAll

Output Feature Class: WU_VegByLake

Join operation: JOIN_ONE_TO_ONE

Checkbox “Keep all target features”

Match Option: INTERSECT

Select lake results and write to Wetland Units

SELECT * FROM WU_VegByLake WHERE: "VegByLP_1" = 1 (93 out of 43214 selected)

R-click VegByLP and Field Calculate VegByLP = 1

Clear all selections.

Join pond results to Wetland Units

Analysis Tools / Overlay / Spatial Join

Target Features: WU_VegByLake

Join Features: WUwithPondVegAll_join

Output Feature Class: WU_VegByLP1

Join operation: JOIN_ONE_TO_ONE

Checkbox “Keep all target features”

Match Option: INTERSECT

429

Select pond results and write to Wetland Units

SELECT * FROM WU_VegByLP1 WHERE: "VegByLP_12" = 1

R-click VegByLP1 and Field Calculate VegByLP = 1

Clear all selections.

Delete unnecessary fields from WU_VegByLP1

Delete VegByLP_1 and VegByLP_12 from the WU_VegByLP1 feature class. This data has

been consolidated into the VegByLP field and is no longer needed.

PART 5: Add vegetated wetlands that contain a through-flowing perennial stream.

Spatial Join WU_VegByLP1 to WU_WFlowPath

ArcToolBox / Analysis Tools / Spatial Join

Target features: WU_VegByLP1

Join features: WU_WFlowPath

Output feature class: WU_VegByLP

Join operation: JOIN_ONE_TO_ONE

Check “Keep all target features”

430

Field map of join features:

 VegByLP

 PondRatio

 Shape_Length

 Shape_Area

 WFlowPath

 WUKey

Match Option: CONTAINS

Select vegetated wetlands

Select by Location

Selection method: select features from

Target layer: WU_VegByLP

Source layer: VegAll

Spatial selection method: intersect the source layer feature

Selected vegetated wetlands the contain a through-flowing perennial stream

Open attribute table of WU_VegByLP

Select by Attributes

Method: Select from current selection

SELECT * FROM WU_VegByLP WHERE: WFlowPath = 'TP'

Assign points to VegByLP

Open attribute table of WU_VegByLP

R-click VegByLP and Field Calculate VegByLP = 1

431

5.6.75 VegFA: Vegetation

Version date: 16 November 2016

Strategy: Completed 3/24/2016 EAB

GIS method: Completed & verified 3/25/2016 EAB

Python coding: started 6/10/2016; completed 12/16/2016

Final review by EAB: 12/19/2016

Purpose:

Input to Flood Attenuation / Potential

Max 9 points for floodplain Wetland Units; 5 points for groundwater Wetland Units.

Description:

Rationale: Plants enhance flood attenuation by physically impeding flows, creating

microtopographic depressions to store water, and by actively taking up water through their root

systems.

Plants that persist throughout the year and provide a complex vertical structure to slow overland

flows (live or dead trees, shrubs, and persistent herbs) enhance flood attenuation. However,

their effectiveness is reduced if the plants are grazed or mowed to less than 6 inches in height,

since their low stature offers little resistance to flood flows. Aquatic bed plants play a smaller

role in slowing floods. Forest vegetation provides high interception and evapotranspiration

during rainfall events. In floodplains, forest vegetation is particularly effective at slowing flows

and providing temporary storage due to the structural complexity of tree trunks and branches,

coarse woody debris and microtopographically complex root structures.

Summary of strategy: Sum the points for VegAll (1 point), VegPerUng (4 points max),

VegWoody (4 points max) for each Wetland Unit. If the total for groundwater wetlands is

greater than the maximum allowed points (5), reduce to the allowed amount. There is no point

reduction for floodplain wetlands.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• VegAll (All Vegetation Types)

• VegPerUng4 (Persistent Ungrazed Vegetation)

• VegWoody4 (Woody Vegetation)

• Floodplain

Method:

Spatial joins to add input variables to Wetland Units attribute table

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_20150514

Join Feature: WU_Floodplain

432

Output Feature Class: WU_VegFA1

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 Floodplain

Match option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_VegFA1

Join Feature: WU_VegAll

Output Feature Class: WU_VegFA2

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 Floodplain

 VegAll

Match option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_VegFA2

Join Feature: WU_VegPerUng

Output Feature Class: WU_VegFA3

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 Floodplain

VegAll

 VerPerUng4

Match option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_VegFA3

Join Feature: WU_VegWoody

Output Feature Class: WU_VegFA

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 Floodplain

433

VegAll

 VerPerUng4

 VegWoody4

Match option: CONTAINS

Add VegFA field to Wetland Units and set initial point value to zero.

Open attribute table of WU_VegFA

Add field “VegFA” (short integer)

R-click VegFA and Field Calculate VegFA = 0

Sum the points for VegAll, VegPerUng4, VegWoody4.

R-click VegFA and Field Calculate “VegFA” = [VegAll] + [VegPerUng4] + [VegWoody4]

Reduce any excess point scores for groundwater wetlands to the maximum allowed.

Clear all selections.

SELECT * FROM WU_VegFA WHERE: "VegFA" > 5 AND “Floodplain” = ‘N’

Field Calculate (selection only) “VegFA” = 5

434

5.6.76 VegFQ: Vegetation Floristic Quality

Version date: 26 September 2017

Strategy: completed 3/16/2017 EAB

GIS method: completed 9/20/2017 EAB; verified 9/24/2017 EAB

Python code: 9/25/2017 YH

Final review by EAB: 9/26/2017

Purpose:

Input to Habitat and Ecological Integrity / Intrinsic Potential

Max 9 points.

Description:

Rationale: Floristic quality assessment (FQA) evaluates the ecological condition and integrity

of natural habitats based on the plant species that grow in them. Each species is characterized

by a Coefficient of Conservatism (CoC) based on its tolerance of disturbance and its fidelity to

intact natural habitats (Swink and Wilhelm 1994, Wilhelm and Masters 1999). CoC values

have been assigned to all species in the West Virginia flora (Rentch and Anderson 2006,

WVDNR 2015). The assemblages of plant species present in a wetland reflects the potential

number of niches available for invertebrates, birds, and mammals (Bourdaghs 2014, Hruby et al.

2000, Knops et al. 1999). Plant biodiversity affects fundamental ecosystem processes such as

nutrient dynamics, autotrophic production, susceptibility to invasive species and fungal disease,

richness and structure of insect communities, and the overall integrity and functioning of

ecosystems (Knops et al. 1999, Fennessy et al. 1998). Excessive nutrients, particularly total P

and NO3-NO2-N, have been significantly correlated with lower floristic quality (Fennessy et al.

1998).

Strategy:

Proxies must be used for GIS estimation of floristic quality; this attribute is overwritten by field

assessment data. Assign points as follows for each criterion below; sum is capped at 9 points:
• Persistent ungrazed vegetation (VerPerUng1, >50% veg, 9695 wetlands) = 1 point

• Forested wetlands (VegWoodyFor in VegWoody; 3 points (1487 wetlands); 2 points (960 wetlands);
1 point (498 wetlands); 0 points (40179 wetlands)

• PEM on marl. 3 points: PEM on marl > 1 ha in extent (30 wetlands); 2 points: PEM on marl
comprises > 50% of wetland (20 wetlands); 1 point: PEM on marl > 200 m2 in extent (19 wetlands)

• Deep organic soils (Histosol) present in wetland. Histosol = 3 points (291 wetlands), histic epipedon
= 2 points (310 wetlands)

• Karst area (limestone/dolomite bedrock geology or SSURGO karst) > 0.67 of total wetland area = 3
points; karst 0.33-0.67 = 2 points; > 0.1 = 1 point

• Buffer disturbance is known to be correlated with floristic quality (Fennessy et al 1998).
Disturb50m normally would go in “landscape opportunity”, but since this is a way to discern
floristic quality through GIS, it is also used here. Evaluate weighting by comparing final composite
scores for Floristic Quality. Tentatively, no buffer disturbance = 3 points, Dist50mRat < 10% buffer
disturbance = 2 points, < 25% buffer disturbance = 1 point.

435

• Landscape integrity index. This belongs in the “landscape opportunity” aspect, but it is also a way
to discern floristic quality through GIS, and is used here. Evaluate weighting by comparing final
composite scores for Floristic Quality. LandInteg > 800 = 3 points, 700-800 = 2 points, 600-700 = 1
point

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\VegPerUng.gdb
o Feature Class: WU_VegPerUng

▪ Field: VegPerUng1

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\VegWoody.gdb
o Feature Class: WU_VegWoody

▪ Field: VegWoodyFor

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\MarlPEM.gdb
o Feature Class: WU_MarlPEM

▪ Field: MarlPEM

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\Histosol.gdb
o Feature Class: WU_Histosol

▪ Field: Histosol

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\Karst.gdb
o Feature Class: WU_Karst

▪ Field: Karst

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\Disturb50m.gdb
o Feature Class: WU_Disturb50m

▪ Field: Dist50mRat

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\LandInteg.gdb
o Feature Class: WU_LandInteg

▪ Field: LandInteg

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\VegAll.gdb
o Feature Class: WU_VegAll

▪ Field: VegArea

Method:

Note: the Spatial Joins below could also be done as Joins on the WUKey field if that is easier.

Spatial join to merge VegPerUng1 and VegWoodyFor metrics

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_VegPerUng

Join Feature: WU_VegWoody

Output feature class: WU_VegFQ1

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

436

 Shape_Area

 VegPerUng1

 VegWoodyFor

Match Option: CONTAINS

Spatial join to merge MarlPEM metric

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_VegFQ1

Join Feature: WU_MarlPEM

Output feature class: WU_VegFQ2

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 VegPerUng1

 VegWoodyFor

 MarlPEM

Match Option: CONTAINS

Spatial join to merge Histosol metric

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_VegFQ2

Join Feature: WU_Histosol

Output feature class: WU_VegFQ3

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 VegPerUng1

 VegWoodyFor

 MarlPEM

 Histosol

Match Option: CONTAINS

Spatial join to merge Karst metric

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_VegFQ3

Join Feature: WU_Karst

Output feature class: WU_VegFQ4

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

437

 WUKey

Shape-Length

 Shape_Area

 VegPerUng1

 VegWoodyFor

 MarlPEM

 Histosol

 Karst

Match Option: CONTAINS

Spatial join to merge Dist50mRat

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_VegFQ4

Join Feature: WU_Disturb50m

Output feature class: WU_VegFQ5

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 VegPerUng1

 VegWoodyFor

 MarlPEM

 Histosol

 Karst

 Dist50mRat

Match Option: CONTAINS

Spatial join to merge LandInteg metric

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_VegFQ5

Join Feature: WU_LandInteg

Output feature class: WU_VegFQ6

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 VegPerUng1

 VegWoodyFor

 MarlPEM

 Histosol

 Karst

 Dist50mRat

438

 LandInteg

Match Option: CONTAINS

Spatial join to merge VegArea

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_VegFQ6

Join Feature: WU_VegAll

Output feature class: WU_VegFQ

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 VegPerUng1

 VegWoodyFor

 MarlPEM

 Histosol

 Karst

 Dist50mRat

 LandInteg

 VegArea

Match Option: CONTAINS

Add fields to store Dist50mFQ and VegFQ and set initial values to zero

Open attribute table of WU_VegFQ

Add fields Dist50mFQ (short integer) and VegFQ (short integer)

Field Calculate Dist50mFQ = 0

Field Calculate VegFQ = 0

Assign points to Dist50mFQ

SELECT * FROM WU_VegFQ WHERE Dist50mRat < 0.25

Field Calculate Dist50mFQ = 1

SELECT * FROM WU_VegFQ WHERE Dist50mRat < 0.1

(11343 out of 43124 selected)

Field Calculate Dist50mFQ = 2

SELECT * FROM WU_VegFQ WHERE Dist50mRat = 0

Field Calculate Dist50mFQ = 3

Sum all points for VegFQ

Open attribute table of WU_VegFQ

439

Field Calculate VegFQ = [VegPerUng1] + [VegWoodyFor] + [MarlPEM] + [Histosol] + [Karst]

+ [Dist50mFQ] + [LandInteg]

Reduce VegFQ values to cap of 9 points total

Open attribute table of WU_VegFQ

SELECT * FROM WU_VegFQ WHERE VegFQ > 9

Field Calculate VegFQ = 9

Reduce VegFQ values to zero for unvegetated wetlands

Open attribute table of WU_VegFQ

SELECT * FROM WU_VegFQ WHERE VegArea IS NULL

Field Calculate VegFQ = 0

440

5.6.77 VegH: Vegetation Structure and Quality

Version date: 24 September 2017

Strategy: Completed 3/16/2017 EAB

GIS method: 9/24/2017 EAB completed and results verified

Python coding: 9/25/2017 YH

Final review by EAB: 9/26/2017

Purpose:

Input to Habitat & Ecological Integrity / Potential

Max 15 points

Rationale: Vegetation is an outstanding proxy for overall biodiversity and habitat quality.

Strategy: Sum the points for all vegetation metrics.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\VegVerStr.gdb
o Feature Class: WU_VegVerStr

▪ Field: VegVerStr

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\Microtopo.gdb
o Feature Class: WU_Microtopo

▪ Field: VegHorInt

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\VegFQ.gdb
o Feature Class: WU_VegFQ

▪ Field: VegFQ

Method:

Note that the Spatial Joins could be replaced by Joins on WUKey if that is easier.

Spatial join to merge VegVerStr and VegHorInt into one attribute table

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_VegVerStr

Join Feature: WU_Microtopo

Output Feature Class: WU_VegH1

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 WUKey

Shape_Length

 Shape_Area

 VegVerStr

 VegHorInt

Match option: CONTAINS

Spatial join to merge VegFQ

441

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_VegH1

Join Feature: WU_VegFQ

Output Feature Class: WU_VegH

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

 WUKey

Shape_Length

 Shape_Area

 VegVerStr

 VegHorInt

 VegFQ

Match option: CONTAINS

Add VegH field to Wetland Units and set initial point value to zero.

Open attribute table of WU_VegH

Add field “VegH” (short integer)

R-click VegH and Field Calculate VegH = 0

Sum the points for VegVerStr, VegHorInt, VegFQ

R-click VegH and Field Calculate “VegH” = [VegVerStr] + [VegHorInt] + [VegFQ]

442

5.6.78 VegHorInt: Horizontal Interspersion

Version date: 15 September 2017

Strategy: Completed 3/16/2017 EAB

GIS method: Completed 9/15/2017 EAB ; Verified 9/15/2017 EAB

Python code:

Final review by EAB:

Purpose:

Input to Habitat / Potential / Vegetation

Max 3 points.

Description:

Rationale: Interspersion of different habitat types provides multiple niches for species and is

important in supporting biodiversity. Interspersion tends to be greater in larger wetlands, and

serves as a partial proxy for wetland size (Adamus et al. 2010a, CWMW 2013, Hruby 2012,

Mack 2001).

Strategy: Divide the perimeter of summed NWI (all) polygon perimeters by the square root of

the Wetland Unit area. Then, compare this ratio to the number of NWI polygons in the wetland

(part of method is the same as Flood Attenuation/Microtopo but with different point spread and

addition of count of NWI polygons).
• 3 points: ratio > 10 AND at least 5 NWI polygons present

• 2 points: ratio > 6 AND at least 3 NWI polygons present

• 1 point: ratio > 4 AND at least 2 NWI polygons present

• 0 points: ratio <= 4 OR only 1 NWI polygon present

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\Microtopo.gdb
o Feature Class: WU_Microtopo

Method:

Add new attribute field to store points for VegHorInt and set initial value to zero.

In WU_Microtopo, add field: VegHorInt (short integer)

Field calculate VegHorInt = 0

Assign points to Wetland Units for VegHorInt

SELECT * FROM WU_Microtopo WHERE: "MicroRatio" > 4 AND "Join_Count" > 1

R-click VegHorInt, Field Calculate VegHorInt = 1

SELECT * FROM WU_Microtopo WHERE: "MicroRatio" > 6 AND "Join_Count" > 2

R-click VegHorInt, Field Calculate VegHorInt = 2

443

SELECT * FROM WU_Microtopo WHERE: "MicroRatio" > 10 AND "Join_Count" > 4

R-click VegHorInt, Field Calculate VegHorInt = 3

444

5.6.79 VegPerUng, VegPerUng4, VegPerUng1: Persistent ungrazed vegetation

Version date: 14 February 2017

Strategy: completed EAB 14 Feb 2016

GIS method: completed EAB/CMA 2/27/2016, revised to include VegPerUng4 and

VerPerUng1 on 4/13/2016 EAB; verified 4/14/2016 EAB

Python coding: VegPerUng Python coding completed 3/1/2016 MCA; VegPerUng4 Python

coding completed 5/24/2016 MCA; VegPerUng1 Python coding completed 5/24/2016

MCA

QAPP updated: 2/27/2016 (PasturesNotHayfields source metadata added)

Final review by EAB: 3/2/2016, revision approved 10/4/2016

Purpose:

VegPerUng: Used in Water Quality Function / Potential / Vegetation. Max 5 points.

VegPerUng4: Used in Flood Attenuation Function / Potential / Vegetation. Max 4 points.

VegPerUng1: Used in Habitat and Ecological Integrity Function / Potential / Vegetation. Max 1

point.

Description:

VegPerUng rationale (water quality): Persistent, ungrazed vegetation improves water quality by

acting as a filter to trap sediment, nutrients, and pollutants.

VegPerUng strategy (water quality): Sum the persistent ungrazed vegetation based on the

Cowardin attribute in the Enhanced National Wetlands Inventory. Erase the mapped grazed

pastures from this layer. Calculate the percentage of persistent ungrazed vegetation for each

Wetland Unit, and assign points as follows:
• 5 points: VegPerUng is >2/3 of Wetland Unit area

• 3 points: VerPerUng is 1/3 to 2/3 of Wetland Unit area

• 1 point: VegPerUng is 1/10 to 1/3 of Wetland Unit area

• 0 points: VegPerUng is <1/10 of Wetland Unit area

Note that this variable could be improved by a better estimation of grazed areas. These are

currently available for only a few parts of the state. James Summers has provided a few

mapped watersheds, used in this variable. He has also provided estimates of the percentage of

NLCD grassland that is probably pasture statewide. This latter data has not yet been

incorporated into the VegPerUng variable, but could be used in the future.

VegPerUng4 rationale (flood attenuation): Persistent, ungrazed vegetation enhances flood

attenuation by physically impeding flows, creating microtopographic depressions to store water,

and by actively taking up water through root systems.

VerPerUng4 strategy (flood attenuation): Sum the persistent ungrazed vegetation based on the

Cowardin attribute in the Enhanced National Wetlands Inventory. Erase the mapped grazed

pastures from this layer. Calculate the percentage of persistent ungrazed vegetation for each

Wetland Unit, and assign points as follows:

• 4 points: VegPerUng is >2/3 of Wetland Unit area

• 3 points: VerPerUng is 1/2 to 2/3 of Wetland Unit area

• 2 points: VegPerUng is 1/3 to 1/2 of Wetland Unit area

445

• 1 point: VegPerUng is 1/10 to 1/3 of Wetland Unit area

• 0 points: VegPerUng is <1/10 of Wetland Unit area

VegPerUng1 rationale (habitat and ecological integrity): Persistent, ungrazed vegetation uses

carbon from the atmosphere and stores carbon in above- and below-ground biomass. This

biomass provides important habitat and energy to organisms.

VegPerUng1 strategy (habitat and ecological integrity): Sum the persistent ungrazed vegetation

based on the Cowardin attribute in the Enhanced National Wetlands Inventory. Erase the

mapped grazed pastures from this layer. Calculate the percentage of persistent ungrazed

vegetation for each Wetland Unit, and assign points as follows:

• 1 point: VegPerUng is 1/2 or more of Wetland Unit area

• 0 points: VegPerUng is <1/2 of Wetland Unit area

Source data:

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb

Feature Dataset: CONUS_WVWetlandsProj

Feature Class: EnhWVWetland

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb

Feature Class: PasturesNotHayfields

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb

Feature Class: WU_20150514

Method:

Select the forests, shrublands, and persistent emergent vegetation.

SELECT * FROM EnhWVWetland WHERE:

"ATTRIBUTE" NOT LIKE 'PEM2%' AND ("ATTRIBUTE" LIKE 'PEM%' OR

"ATTRIBUTE" LIKE 'PFO%' OR "ATTRIBUTE" LIKE 'PSS%')

Create layer from selection. Export data to geodatabase.

This intermediate data can be called VegPFOPSSPEM

Erase the known grazed pastures from the intermediate vegetation layer.

ArcToolBox / Analysis / Overlay / Erase

Input: VegPFOPSSPEM

Erase: PasturesNotHayfields

Output: VegPerUng

446

Calculate the percentage of each Wetland Unit that is persistent ungrazed vegetation

(VegPerUng)

Attribute each Wetland Unit with the percentage of VerPerUng.

• Add new field (OrigArea) to the Wetland Unit attribute table.
o This will retain the original area to be used to calculate the percent after the

intersection has occurred.

• Right click on the (OrigArea) field and FieldCalculate where OrigArea = [Shape_Area]

• Intersect the Wetland Units data with VegPerUng
o The output feature class is “WUVegPerUngIntersect”

• Add new field (PctIntersect) to the WUVegPerUngIntersect attribute table.

• Right click on the (PctIntersect) field and FieldCalculate where PctIntersect =
!SHAPE_Area!/!OrigArea!*100

o Please note, the code above is python so please check the python radio button before
executing the FieldCalculate function.

• Execute the Summary Statistics function

447

o
o This function creates a table (WUVegPerUngIntersect_SUM_STAT) that contains the

sums of the percentages for each Wetland Unit making it easier to join back to the
Wetland Units data, copy the data over, and then assign points based on the
percentages.

• Add new field (VegPerUngPct) to attribute table to store the percentage of persistent ungrazed
vegetation for each Wetland Unit.

• Set the Null values to zero in VegPerUngPct.

• Add new field (VegPerUng) to attribute table to store the score in relation to the percentage of
persistent ungrazed vegetation for each Wetland Unit.

• Set the Null values to zero in VegPerUng.

• Join Wetland Units to the WUVegPerUngIntersect_SUM_STAT table.

• Right click on the (VegPerUngPct) field and FieldCalculate where VegPerUngPct =
!WUVegPerUngIntersect_SUM_STAT.SUM_PctIntersect!

o Please note, the code above is python so please check the python radio button before
executing the FieldCalculate function.

• Remove the join to WUVegPerUngIntersect_SUM_STAT on the Wetland Units data.

• As a result of copying the percentages to the Wetland Units data, null values might be carried
over. To fix this follow these steps:

o Right click on the (VegPerUngPct) field and select Field Calculator
o Make sure the python radio button is checked.
o Check “Show Codeblock”
o The following goes into the Codeblock textarea

▪
o VegPerUngPct = replaceNull(!VegPerUngPct!).
o Now click ok

448

o

Assign points to Wetland Units for VegPerUng.

SELECT * FROM WU_20150514 WHERE: "VegPerUngPct" > 66.7

(R-click “VegPerUng” and Field Calculate “VegPerUng” = 5

Clear selections.

SELECT * FROM WU_20150514 WHERE: "VegPerUngPct" < 66.701 AND "VegPerUngPct"

> 33.3

R-click “VegPerUng” and Field Calculate “VegPerUng” = 3

Clear selections.

SELECT * FROM WU_20150514 WHERE: "VegPerUngPct" < 33.301 AND "VegPerUngPct"

> 10

R-click “VegPerUng” and Field Calculate “VegPerUng” = 1

Clear selections.

SELECT * FROM WU_20150514 WHERE: "VegPerUngPct" < 10.001

R-click “VegPerUng” and Field Calculate “VegPerUng” = 0

Clear selections.

Export Wetland Units to WU_VegPerUng if this has not already been done.

Add VegPerUng4 and VerPerUng1 to attribute table and set initial points to zero.

449

Open attribute table of WU_VegPerUng and add field VegPerUng4 and VerPerUng1 (short

integers)

R-click VegPerUng4 and Field Calculate VegPerUng4 = 0

R-click VegPerUng1 and Field Calculate VegPerUng1 = 0

Assign points to Wetland Units for VegPerUng4 and VegPerUng1

SELECT * FROM WU_VegPerUng WHERE: "VegPerUngPct" > 10

R-click “VegPerUng4” and Field Calculate “VegPerUng4” = 1

SELECT * FROM WU_VegPerUng WHERE: "VegPerUngPct" > 33.

 R-click “VegPerUng4” and Field Calculate “VegPerUng4” = 2

SELECT * FROM WU_VegPerUng WHERE: "VegPerUngPct" > 50

R-click “VegPerUng4” and Field Calculate “VegPerUng4” = 3

R-click “VegPerUng1” and Field Calculate “VegPerUng1” = 1

SELECT * FROM WU_VegPerUng WHERE: "VegPerUngPct" > 66.7

R-click “VegPerUng4” and Field Calculate “VegPerUng4” = 4

450

5.6.80 VegVerStr: Vegetation Vertical Structure

Version date: 18 September 2017

Strategy: completed 3/16/2017 EAB

GIS method: completed 9/14/2017 EAB; verified 9/14/2017 EAB

Python code:

Final review by EAB:

Purpose:

Input to Habitat / Potential / Vegetation Factor. Max 3 points.

Description:

Rationale for VegVerStr: Plant communities with complex vertical structure offer enhanced

habitat niches for a variety of plants and animals.

Strategy for VegVerStr: Assign points based on the ratio of forest and vegetated classes to total

area; minimum polygon size 0.1 acre (only count those codes whose aggregated area >= 0.05

ha).
• 3 points: PFO > 50% of wetland AND PFO >=0.05 ha

• 2 points: (PFO >5% of wetland AND PFO >=0.05 ha) AND vegetated classes
(PFO+PSS+PEM+PAB+PML) > 50% of wetland

• 1 point: vegetated classes (PFO+PSS+PEM+PAB+PML) > 5% of wetland AND vegetated classes
>=0.05 ha

• 0 point: none of the above criteria are met

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\VegWoody.gdb
o Feature Class: WU_VegWoody

▪ Fields: PFOarea, PFOratio

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\Tasks\Complete\VegAll.gdb
o Feature Class: WU_VegAll

▪ Fields: VegArea, VegRatio

Method:

Retrieve the fields PFOarea (forest area in m2) and PFOratio (ratio of forest area to

total wetland

area) from the WU_VegWoody feature class.

Retrieve the fields VegArea (vegetated area in m2) and VegRatio (ratio of vegetated

area to total

wetland area) from the WU_VegAll feature class.

Store the fields in a new feature class: WU_VegVerStr.

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_VegWoody

Join Feature: WU_VegAll

451

Output feature class: WU_VegVerStr

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 WUKey

Shape-Length

 Shape_Area

 PFOarea

 PFOratio

 VegArea

 VegRatio

Match Option: CONTAINS

Add new attribute field to store points for VegVerStr and set initial value to zero.

In WU_VegVerStr, add field: VegVerStr (short integer)

Field calculate VegVerStr = 0

Assign points to Wetland Units for VegVerStr

SELECT * FROM WU_VegVerStr WHERE: "VegRatio" > 0.05 AND "VegArea" > 500

R-click VegVerStr, Field Calculate VegVerStr = 1

SELECT * FROM WU_VegVerStr WHERE: "PFOratio" > 0.05 AND "PFOarea" > 500 AND

"VegRatio" > 0.5

R-click VegVerStr, Field Calculate VegVerStr = 2

SELECT * FROM WU_VegVerStr WHERE: "PFOratio" > 0.5 AND "PFOarea" > 500

R-click VegVerStr, Field Calculate VegVerStr = 3

Background notes: (not for coding)

Steps skipped by accessing already-computed values:

Select the forest vegetation

(Note that the PFOratio and PFOarea were created in WU_VegWoody and could be

accessed from there, thus skipping multiple steps)

Clear Selection

SELECT * FROM ENHWVWetland WHERE: "ATTRIBUTE" LIKE 'PFO%'

Create layer of forest vegetation from selection.

R-click EnhWVWetland / Data / Export Data

Export: Selected features

452

Output feature class: “VegPFO”

Clear Selection

Add field to store forest area

Open attribute table of VegPFO

Add field PFOarea (float)

R-click PFOarea and Field Calculator: PFOarea = [SHAPE_Area]

Select the forest, shrubland, emergent, moss, and aquatic bed vegetation.

(Note that VegArea and VegRatio were created in WU_VegAll and could be accessed from

there, thus skipping multiple steps)

Clear all selections

SELECT * FROM EnhWVWetland WHERE:

"ATTRIBUTE" LIKE 'PFO%' OR "ATTRIBUTE" LIKE 'PSS%' OR "ATTRIBUTE" LIKE

'PEM%' OR "ATTRIBUTE" LIKE 'PAB%' OR "ATTRIBUTE" LIKE 'PML%'

Create layer of all vegetation from selection

R-click EnhWVWetland / Data / Export Data

Export: Selected features

Output feature class: “VegAll”

Add field to store vegetation area

Open attribute table of VegAll

Add field VegArea (float)

R-click VegArea and Field Calculator: VegArea = [SHAPE_Area]

Join forests to wetland units and sum the forest area

Analysis Tools / Overlay / Spatial Join

Target Features: WU_20150514

Join Features: VegPFO

Output Feature Class: WUPFOjoin

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features

 R-click PFOarea and select “Merge Rule”, “Sum”

Match Option: INTERSECT

Join vegetated classes and sum area

Analysis Tools / Overlay / Spatial Join

453

Target Features: WUPFOjoin

Join Features: VegAll

Output Feature Class: WU_VegVerStr

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features

 R-click VegArea and select “Merge Rule”, “Sum”

Match Option: INTERSECT

Add fields to store ratios of forest or vegetated area to total area

In WU_VegVerStr, add two fields: PFOratio (float) and VegRatio (float)

Calculate ratio of forest vegetation to Wetland Unit area.

In WU_VegVerStr, R-click attribute PFOratio

Field Calculate PFOratio = [PFOarea] / [Shape_Area]

Calculate ratio of vegetated classes to Wetland Unit area.

In WU_VegVerStr, R-click attribute VegRatio

Field Calculate VegRatio = [VegArea] / [Shape_Area]

454

5.6.81 VegWoody: Woody Vegetation

Version date: 14 February 2017

Strategy: completed 2/27/2016 EAB

GIS method: completed 3/3/2016 EAB & JCC; verified 3/5/2016 EAB; revision to include

VegWoody4 and VegWoody2 on 4/13/2016; new point roll-up at end; verified

4/14/2016 EAB; revision to include VegWoodyFor on 2/14/2017

Python code: started & completed 3/15/2016 MCA; VegWoodyFor revision started &

completed 2/15/2017 MCA

Final review by EAB: 3/15/2016; results of revision approved 10/4/2016; VegWoodyFor

revision approved 2/15/2017

Purpose:

VegWoody: Input to Water Quality / Potential / Vegetation Factor. Max 5 points. Floodplain

wetlands only.

VegWoody4: Input to Flood Attenuation / Potential / Vegetation Factor. Max 4 points. All

wetland types.

VegWoody2: Input to Habitat and Ecological Integrity / Potential / Structural Patches. Max 2

points. All wetland types.

VegWoodyFor: Input to Habitat and Ecological Integrity / Potential / Vegetation Factor. Max 3

points. All wetland types.

Description:

Rationale for VegWoody (water quality): Plants in a riverine wetland will improve water quality

by acting as a filter to trap sediments and associated pollutants. The plants also slow the

velocity of water which results in the deposition of sediments. Persistent, multi-stemmed plants

enhance sedimentation by offering frictional resistance to water flow (review in Adamus et al.

1991). Shrubs and trees are considered to be better at resisting water velocities than emergent

plants during flooding and are scored higher. Aquatic bed species or grazed, herbaceous (non-

woody) plants are not judged to provide much resistance to water flows.

Strategy for VegWoody: Assign points based on the ratio of forest and shrub cover to total

area.

• 5 points: forested wetlands cover more than 2/3 of the Wetland Unit

• 4 points: forest > 1/3 AND shrub/forest > 90%

• 3 points: shrub/forest > 2/3

• 2 points: shrub/forest > 1/3

• 1 point: shrub/forest > 1/10

• 0 point: shrub/forest < 1/10

Rationale for VegWoody4 (flood attenuation): Woody vegetation provides high interception

and evapotranspiration during rainfall events. Woody vegetation in a floodplain slows the

velocity of water and offers frictional resistance to water flow (Adamus et al. 1991). Shrubs and

trees are considered to be better at resisting water velocities than emergent plants during

flooding.

455

Strategy for VegWoody4: Assign points based on the ratio of forest and shrub cover to total

area.

• 4 points: forested wetlands cover more than 2/3 of the Wetland Unit

• 3 points: forest > 1/3 AND shrub/forest > 90%

• 2 points: shrub/forest > 1/2

• 1 point: shrub/forest > 1/10

• 0 point: shrub/forest < 1/10

Rationale for VegWoody2 (habitat and ecological integrity): Woody vegetation provides

multiple layers for habitat niches to develop. It is one indicator of structural patch richness.

Strategy for VegWoody2: Assign points based on the ratio of forest and woody shrub cover to

total Wetland Unit area.

• 2 points: forested wetlands cover more than 2/3 of the Wetland Unit

• 1 point: forested or shrub wetlands cover at least 10% of the Wetland Unit

• 0 point: shrub/forest < 1/10

Rationale for VegWoodyFor (habitat and ecological integrity): Forested wetlands include many

of the highest-quality wetlands in the state, such as conifer peatlands, pin oak swamps, and

blackgum swamps. Forested wetlands have many layers of habitat to support a large diversity

of organisms. Forested wetlands take decades or centuries to develop and are not easily

replaced. Woody vegetation in forested wetlands provides long-term carbon storage in roots,

branches, and trunks. Large intact patches of forested wetland have greater habitat value than

smaller or fragmented patches.

Strategy for VegWoodyFor: Assign points based on the ratio of forest cover to total wetland

area, and size of forest patch.

• 3 points: forested wetlands cover more than 2/3 of the Wetland Unit AND forested wetlands
total > 0.5 ha; OR forested wetlands comprise > 5 ha within the Wetland Unit

• 2 points: forested wetlands cover 1/3 to 2/3 of the Wetland Unit AND forested wetlands total >
0.2 ha; OR forested wetlands comprise 2-5 ha

• 1 point: forested wetlands cover 1/10 to 1/3 of the Wetland Unit OR forested wetlands
comprise > 1 ha

Definitions:

Cowardin Classification:

PFO: Palustrine Forested

PSS: Palustrine Shrubland

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb (EnhWVWetland)

Method:

Select all the woody vegetation, both forest and shrubland

456

Clear all selections.

SELECT * FROM ENHWVWetland WHERE: "ATTRIBUTE" LIKE 'PFO%' OR

"ATTRIBUTE" LIKE 'PSS%'

Create layer of woody vegetation from selection

R-click EnhWVWetland / Data / Export Data

Export: Selected features

Output feature class: “VegPFOPSS”

Add field to store woody area

Open attribute table of VegPFOPSS

Add field PFOPSSarea (float)

R-click PFOPSSarea and Field Calculator: PFOPSSarea = [SHAPE_Area]

Select just the forest vegetation, not including the shrubs

Clear Selection

SELECT * FROM ENHWVWetland WHERE: "ATTRIBUTE" LIKE 'PFO%'

Create layer of forest vegetation from selection.

R-click EnhWVWetland / Data / Export Data

Export: Selected features

Output feature class: “VegPFO”

Clear Selection

Add field to store forest area

Open attribute table of VegPFO

Add field PFOarea (float)

R-click PFOarea and Field Calculator: PFOarea = [SHAPE_Area]

Join forests to wetland units and sum the forest area

Analysis Tools / Overlay / Spatial Join

Target Features: WU_20150514

Join Features: VegPFO

Output Feature Class: WUPFOjoin

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features

 R-click PFOarea and select “Merge Rule”, “Sum”

Match Option: INTERSECT

457

Join woody vegetation and sum area

Analysis Tools / Overlay / Spatial Join

Target Features: WUPFOjoin

Join Features: VegPFOPSS

Output Feature Class: WU_VegWoody

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features

 R-click PFOPSSarea and select “Merge Rule”, “Sum”

Match Option: INTERSECT

Add fields to store ratios of forest or woody area to total area

In WU_VegWoody, add two fields: PFOratio (float) and PFOPSSratio (float)

Calculate ratio of woody vegetation to Wetland Unit area.

In WU_VegWoody, R-click attribute PFOPSSratio

Field Calculate PFOPSSratio = [PFOPSSarea] / [Shape_Area]

Calculate ratio of forest vegetation to Wetland Unit area.

In WU_VegWoody, R-click attribute PFOratio

Field Calculate PFOratio = [PFOarea] / [Shape_Area]

Add new attribute field to store points for VegWoody and set initial value to zero.

In WU_VegWoody, add field: VegWoody (short integer)

Field calculate VegWoody = 0

Assign points to Wetland Units for VegWoody

SELECT * FROM WU_VegWoody WHERE: "PFOPSSratio" > 0.1

R-click VegWoody, Field Calculate VegWoody = 1

SELECT * FROM WU_VegWoody WHERE: "PFOPSSratio" > 0.333

R-click VegWoody, Field Calculate VegWoody = 2

SELECT * FROM WU_VegWoody WHERE: "PFOPSSratio" > 0.667

R-click VegWoody, Field Calculate VegWoody = 3

SELECT * FROM WU_VegWoody WHERE: "PFOPSSratio" > 0.667 AND "PFOratio" >

0.333

R-click VegWoody, Field Calculate VegWoody = 4

458

SELECT * FROM WU_VegWoody WHERE: "PFOratio" > 0.667

R-click VegWoody, Field Calculate VegWoody = 5

Add new attribute fields to store points for VegWoody4, VegWoody2, and

VegWoodyFor and set initial values to zero.

In WU_VegWoody, add field: VegWoody4, VegWoody2, and VegWoodyFor (short integer)

Field calculate VegWoody4 = 0

Field calculate VegWoody2 = 0

Field calculate VegWoodyFor = 0

Assign points to Wetland Units for VegWoody4, VegWoody2, and VegWoodyFor

SELECT * FROM WU_VegWoody WHERE: "PFOPSSratio" > 0.1

R-click VegWoody4, Field Calculate VegWoody4 = 1

R-click VegWoody2, Field Calculate VegWoody2 = 1

SELECT * FROM WU_VegWoody WHERE: "PFOPSSratio" > 0.5

R-click VegWoody4, Field Calculate VegWoody4 = 2

SELECT * FROM WU_VegWoody WHERE: "PFOPSSratio" > 0.667 AND "PFOratio" >

0.333

R-click VegWoody4, Field Calculate VegWoody4 = 3

SELECT * FROM WU_VegWoody WHERE: "PFOratio" > 0.667

R-click VegWoody4, Field Calculate VegWoody4 = 4

R-click VegWoody2, Field Calculate VegWoody2 = 2

SELECT * FROM WU_VegWoody WHERE: "PFOratio" > 0.1 OR "PFOarea" > 10000

R-click VegWoodyFor, Field Calculate VegWoodyFor = 1

SELECT * FROM WU_VegWoody WHERE: ("PFOratio" > 0.33 AND "PFOarea" > 2000) OR

"PFOarea" > 20000

R-click VegWoodyFor, Field Calculate VegWoodyFor = 2

SELECT * FROM WU_VegWoody WHERE: ("PFOratio" > 0.667 AND "PFOarea" > 5000)

OR "PFOarea" > 50000

R-click VegWoodyFor, Field Calculate VegWoodyFor = 3

459

5.6.82 VegWQ: Vegetation

Version date: 14 March 2016

Strategy: Completed 2/27/2016 EAB

GIS method: completed 2/27/2016 EAB, verified 3/14/2016

Python coding: Started 3/23/2016 MCA & completed 3/24/2016 MCA

Final review by EAB:

Purpose:

Input to Water Quality

Max 10 points for floodplain Wetland Units; 5 points for groundwater Wetland Units.

Rationale: Plants enhance sedimentation by acting as a filter, and cause sediment particles to

drop to the wetland surface (review in Adamus and others 1991). Plants in wetlands can take on

different forms and structures. The intent of this question is to characterize how much of the

wetland is covered with plants that persist throughout the year and provide a vertical structure to

trap or filter out pollutants (live or dead trees, shrubs, and persistent herbs). It is assumed,

however, that the effectiveness at trapping sediments and pollutants is severely reduced if the

plants are grazed. Aquatic bed plants are not considered important in sequestering toxic

compounds because the toxics will be released in the fall when the plants decompose. NOTE:

this question applies only to persistent plants that are not grazed or mowed (or if grazed or

mowed, the plants are taller than 6 inches). NOTE for Level 1: To meet the "class" requirement

for Cowardin, a polygon of plants within the wetland unit needs at least 30% cover of the

specified plants type (forest, shrub, etc.). However, to count the Cowardin polygon as a "plants

structure" in the rating system the Cowardin polygon itself has to represent at least 10% of the

wetland unit in units that are smaller than 2.5 acres, or at least 1/4 acre in units that are larger.

Summary of strategy: Sum the points for VegPerUng, VegWoody, VegByLP for each Wetland

Unit. If the total is greater than the maximum allowed points, reduce to the allowed amount.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• VegPerUng (Persistent Ungrazed Vegetation)

• VegWoody (Woody Vegetation)

• VegByLP (Vegetation fronting Lakes and Ponds)

• Floodplain

Method:

Create feature class to store VegWQ factor

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_VegWQ

Add VegWQ field to Wetland Units and set initial point value to zero.

460

Open attribute table of WU_VegWQ

Add field “VegWQ” (short integer)

R-click VegWQ and Field Calculate VegWQ = 0

Spatial join to add input variables to attribute table

Spatial join (contains) to add the following to the WU_VegWQ: VegPerUng, VegWoody,

VegByLP, Floodplain

Sum the points for VegPerUng, VegWoody, and VegByLP.

R-click VegWQ and Field Calculate “VegWQ” = VegPerUng + VegWoody + VegByLP

Reduce any excess point scores to the maximum allowed.

Clear all selections.

SELECT * FROM WU_VegWQ WHERE: "VegWQ" > 10

Field Calculate (selection only) “VegWQ” = 10

Clear all selections.

SELECT * FROM WU_VegWQ WHERE: "VegWQ" > 5 AND “Floodplain” = ‘N’

Field Calculate (selection only) “VegWQ” = 5

461

5.6.83 WaterSupply: Wetland discharges to water supply intake area

Version date: 3 October 2016

Strategy: 2/14/2016 EAB

GIS method: completed and verified 3/17/2016 EAB, MCA, and Nate Gunn

Python coding: Nate Gunn 5/24/2016

Final review by EAB: 10/3/2016

Purpose:

Water Quality Function, WaterUse factor

Max 2 points

Description:

Wetland Unit is in the contributing watershed of known water supply, including either a surface

water intake or groundwater intake under direct influence of surface water.

Summary of strategy:
• Assign 1 point if the Wetland Unit intersects a polygon in a Zone of Peripheral Concern or a

Secondary Protection Area with surface water connections OR if the Wetland Unit makes up 0.1-1%
of a Surface Intake Drainage Area.

• Assign 2 points if the Wetland Unit intersects a polygon in a Zone of Critical Concern, Protection
Area, or Wellhead Protection Areas where the source is surface water or ground water under the
influence of surface water OR if the Wetland Unit makes up more than 1% of a Surface Intake
Drainage Area.

Definitions:

FAC_SRC: Type of water source for facility.

 SW surface water

 GW ground water

 GU ground water under the influence of surface water

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\environmental\CONFIDENTIAL-public_surface_water_intakes\CONFIDENTIAL-
source_water_assessment_and_protection.gdb

o Feature Class: ZPC_statewide_5hrabove (ZPC_5_hr_travel)
o Feature Class: ZCC_statewide (Zone of Critical Concern)
o Feature Class: Source_Water_Protection_Areas (Conjunctive Delineation, Wellhead

Protection Areas)

• M:\environmental\CONFIDENTIAL-public_surface_water_intakes\pswi_distance_analysis_9m.gdb
o Feature Class: pswi_watersheds_with_out_of_state_drainage (Surface Intake

Drainage Area)

• Note that data is also served publicly at http://tagis.dep.wv.gov/WVWaterPlan/

Input Variables:

http://tagis.dep.wv.gov/WVWaterPlan/

462

None

Method:

(Python method below documented by Nathan Gunn)

Create Original Area Field to the Surface Intake Drainage Area

Add Field

Input Table: Surface Intake Drainage Area

Field Name: "OrigArea"

Type: "DOUBLE"

Store the Shape Area to the Original Area Field

Input Table: Surface Intake Drainage Area

FieldName: "OrigArea"

Expression: "!SHAPE_Area!"

Expression Type: "PYTHON_9.3"

Intersect the Supplied Wetland Layer and the Surface Intake Drainage Area

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_WaterSupply1

Remove the OrigArea Field

Input Table: Surface Intake Drainage Area

Delete Field: “OrigArea”

Calculate Intersection Ratios and Scores for Wetlands and Surface Intake Drainage

Areas

Pseudo Code:

Let W be all wetlands in the supplied wetland feature class

let Aw be wetland’s area

let Awp be an specific intersection between Aw and a particular public intake drainage area p

let I be the set of intersections of wetlands and public intake drainage areas. For a wetland w,

w ϵ I if w intersects with a drainage area.

wetland list = { wetland ϵ W}

for each wetland in W:

if wetland ϵ I:

 wetland.ratio = maximum({Awp / Aw })

 else:

 wetland.ratio = 0

463

 𝑤𝑒𝑡𝑙𝑎𝑛𝑑. 𝑠𝑐𝑜𝑟𝑒(𝑤𝑒𝑡𝑙𝑎𝑛𝑑. 𝑟𝑎𝑡𝑖𝑜) = {
0, 𝑤𝑒𝑡𝑙𝑎𝑛𝑑. 𝑟𝑎𝑡𝑖𝑜 ≤ 0.001

1, 0.001 < 𝑤𝑒𝑡𝑙𝑎𝑛𝑑. 𝑟𝑎𝑡𝑖𝑜 ≤ 0.01
2, 𝑤𝑒𝑡𝑙𝑎𝑛𝑑. 𝑟𝑎𝑡𝑖𝑜 > 0.01

Selection Subroutine: “score_two_by_selection“

(method continues with GIS instructions from Elizabeth Byers)

Select Secondary Protection Areas with surface water connections.

Select by Attributes

Layer: Source_Water_Protection_Areas (=Conjunctive Delineation)

Method: Create a new selection

SELECT * FROM Source_Water_Protection_Areas WHERE: "P_TYPE" IN (NULL,

'Secondary Protection Area') AND "FAC_SRC" IN ('GU', 'SW')

Select Wetland Units within a Secondary Protection Area.

Select by location

Selection method: select features from

Target layer: WU_WaterSupply1

Source layer: Source_Water_Protection_Areas (=Conjunctive Delineation)

Check box “Use selected features”

Spatial selection method: intersect the source layer feature

Select Wetland Units within the 5-hour travel distance in a Zone of Peripheral

Concern.

Select by location

Selection method: add to the currently selected features in

Target layer: WU_WaterSupply1

Source layer: ZPC_statewide_5hrabove

Spatial selection method: intersect the source layer feature

(method continues with Python documentation by Nate Gunn)

Assign 1 point to Wetland Units.

This loop is done in memory to save time and steps.

Pseudo Code:

For each wetland_unit in selection:

 wetland_list[wetland_unit].score = max(wetland_unit.score, 1)

This assigns 1 to each selected item, but does not overwrite scores of 2, if encountered in the

previous step.

464

Selection Subroutine: “score one by selection”

(method continues with GIS documentation by Elizabeth Byers)

Select Protection Areas and Wellhead Critical Areas with surface water connections

Select by Attributes

Layer: Source_Water_Protection_Areas (=Conjunctive Delineation)

Method: Create a new selection

SELECT * FROM Source_Water_Protection_Areas WHERE: "P_TYPE" IN ('Protection Area',

'rotection Area', 'Wellhead Critical Area') AND "FAC_SRC" IN ('GU', 'SW')

Select Wetland Units within Protection Areas or Wellhead Critical Areas with surface

connections.

Select by location

Selection method: select features from

Target layer: WU_WaterSupply

Source layer: Source_Water_Protection_Areas (=Conjunctive Delineation)

Check box “Use selected features” (38 features selected)

Spatial selection method: intersect the source layer feature

Select Wetland Units within Zone of Critical Concern.

Select by location

Selection method: add to the currently selected features in

Target layer: WU_WaterSupply

Source layer: ZCC_statewide

Spatial selection method: intersect the source layer feature

(method continues with Python method by Nate Gunn)

Assign 2 points to Wetland Units within 1 km of special WaterSupply.

This loop is done in memory to save time and steps.

Pseudo Code:

For each wetland_unit in selection:

 wetland_list[wetland_unit .score = max(wetland_unit.score, 2)

Output Subroutine:

##Create WU_WATERSUPPLY Feature Class

Create Feature Class

Feature Class Name: WU_WATERSUPPLY

Template Feature Class: pwsi_scoring_output_template

465

Type: Polygon

SpatialReference: NAD_1983_UTM_Zone_17N (26917)

##Write Output to Feature Class

Pseudocode:

For each supplied_wetland in supplied_wetland_feature_class:

 geometry = supplied_wetland.geometry

 id = supplied_wetland.object_id

 new_record = [id, geometry, wetland_units[id][ratio], wetland_units[id][score]]

 WU_WATERSUPPLY.insert(new_record)

466

5.6.84 Wetland Units: Assigning Site Codes to updated statewide Wetland Units

Version date: 8 March 2019

Purpose:

Note that there is no national system for coding wetlands yet, probably because wetland

mapping still in a state of flux nationwide. This is a WVDEP protocol based on the nearest

stream code.

SiteCode =

1. Nearest stream FINALCODE (to assist with WAB visualization of location) +

2. “_W” (for wetland) +

3. Sequential number based on size of wetland for initial statewide batch, then

subsequently based on assessment order. Check existing Wetland Codes and codes

assigned in the WVWRAM MS-Access database to ensure that the first available

(unused) sequential number is assigned.

4. For replicates, add “_R1” or “_R2” (sequential number as needed)

Here are a few examples:

• PL-63_W14 (unnamed wetland)

• BS-16-A_W1 (unnamed wetland)

• MC-123-DI_W1_R1 (Whitmeadow Run Peatland, first replicate assessment)

• KG-103-BN_W1 (Cranberry Glades on the South Fork Cranberry River)

• KG-103-BN_W4 (unnamed wetland)

Procedure for updating Site Codes for statewide Wetland Units

Create Wetland Units from the updated NWI_WV polygons (see instructions to Create Wetland

Units).

Spatial join with existing Wetland Unit Site Codes from

M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb\WU_WetlCode

Update Site Codes from wetlands in the WVWRAM MS-Access database

For the remaining Wetland Units that do not have a Site Code, follow (or modify as necessary)

the Feb 2018 instructions beginning at “Iterate”.

Procedure for statewide dataset as done in Feb 2018:

Find nearest stream

ArcToolbox / Proximity / Near

Input: WU_20150514

467

Proximity to:

M:\wr\WTRSHD_BRANCH\NHD_24K_STREAM_LINES\NHD_StreamMerge_20180202_in

WV.shp

Update to: NHD_WVStreams_20210608

(M:\wr\WTRSHD_BRANCH_INTERNAL\NHD_AUID_2021\NHD_WVStreams_20210608.shp)

Note that this takes a long time to run on the statewide dataset – 4.5 hours

Export Near to WUstream

Add field WetlandCode (text)

Link WUstream to stream FINALCODE and FINALNAME2 fields (NearFID linked to FID)

Iterate:

In WUstream, summarize FINALCODE by Shape_Area (Maximum)

Join Sum_Output table back to WUstream via FINALCODE

Select by Attributes where Shape_Area = Max_Shape_Area

Field Calculate WetlandCode = [FINALCODE]&”_W1”

Select by Attributes where [WetlandCode] IS NULL

Remove all joins

Return to “Iterate” until all wetlands are coded.

Additional notes:

From Chris Daugherty: the most recent updated, as correct as possible for now stream

code/name file as of 2/7/2018.

• Most known issues are in Greenbrier and some Upper New areas where there is KARST. If you

are working in these areas, we may need to take a look at what is going on there. Steve Stutler

knows a little more about the issues there.

• M:\wr\WTRSHD_BRANCH\NHD_24K_STREAM_LINES\NHD_StreamMerge_20180202_inWV.shp

• NHD_WVStreams_20210608

(M:\wr\WTRSHD_BRANCH_INTERNAL\NHD_AUID_2021\NHD_WVStreams_2021060

8.shp)

• FINALCODE field for the stream code, to use in building the Wetland Code, and

• include as additional descriptive fields in the attribute table:

o FINALNAME2 field, and

o WetlandName assigned by the field surveyor.

468

5.6.85 WetldBird: Wetland Breeding Bird Areas

Version date: 11 October 2017

Strategy: 3/16/2017 EAB

GIS method: 10/4/2017 EAB; results verified 10/4/2017 EAB; changed path to source data

10/11/2017

Python code: 10/9/2017 YH

Final review by EAB: 10/9/2017

Purpose:

Input to Habitat / Landscape Opportunity (LandEco: Landscape Ecological Connectivity)

Description:

Maximum 3 points

Rationale: Breeding Bird Atlas blocks with high occupancy by wetland-dependent birds provide

a strong indicator of extant biodiversity and the presence of high quality wetland habitat.

Breeding Bird Atlas blocks comprise approximately 10 square miles, or one-sixth of a USGS

topographic quadrangle.

GIS Method (no field method):

This metric is based on occupancy maps for wetland breeding birds from the WV Breeding Bird

Atlas project 2017 (Rich Bailey, WVDNR Coordinator).

3 points: wetland intersects atlas block with upper 10% of values (WetBird > 0.493)

2 points: wetland intersects in atlas block with upper 10-50% of values (WetBird > 0.408)

1 point: wetland intersects atlas block in the upper 50-75% of values (WetBird > 0.354)

 (Values of “WetBird” from table: upper 5% > 0.525, 20% > 0.466, 50% > 0.408)

Note that Breeding Bird Atlas blocks do not cover the entire state; slivers of the state are

missing along the Maryland border.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\HabitatData.gdb
o Feature Class: WetlandBirds_WetBirdColumnOnly

Method:

Create feature class to store results for WetldBird and set initial value to zero

R-click WU_20150514 and select Data / Export Data / All Features

Output feature class: WetlandFunction.gdb / WU_WetlandBird1

Open attribute table of WU_WetlandBird1

Add field “WetldBird” (short integer)

469

Field calculate WetldBird = 0

Select atlas blocks in the upper 75% of wetland bird occupancy values

SELECT * FROM WetlandBirds_WetBirdColumnOnly WHERE: "WetBird" > 0.354

Select Wetland Units that intersect the selected atlas blocks

Select by Location

Selection method: select features from

Target layer(s): WU_WetlandBird1

Source layer: WetlandBirds_WetBirdColumnOnly

Check “Use selected features”

Spatial selection method for target layer feature(s): intersect the source layer feature

Assign 1 point

Open attribute table of WU_WetlandBird1

Field Calculate WetldBird = 1

Select atlas blocks in the upper 50% of wetland bird occupancy values

SELECT * FROM WetlandBirds_WetBirdColumnOnly WHERE: "WetBird" > 0.408

Select Wetland Units that intersect the selected atlas blocks

Select by Location

Selection method: select features from

Target layer(s): WU_WetlandBird1

Source layer: WetlandBirds_WetBirdColumnOnly

Check “Use selected features”

Spatial selection method for target layer feature(s): intersect the source layer feature

Assign 2 points

Open attribute table of WU_WetlandBird1

Field Calculate WetldBird = 2

Select atlas blocks in the upper 10% of wetland bird occupancy values

SELECT * FROM WetlandBirds_WetBirdColumnOnly WHERE: "WetBird" > 0.493

Select Wetland Units that intersect the selected atlas blocks

Select by Location

Selection method: select features from

470

Target layer(s): WU_WetlandBird1

Source layer: WetlandBirds_WetBirdColumnOnly

Check “Use selected features”

Spatial selection method for target layer feature(s): intersect the source layer feature

Assign 3 points and clear selections

Open attribute table of WU_WetlandBird1

Field Calculate WetldBird = 3

Clear all selections

Select wetlands that fall outside the atlas block coverage

Select by Location

Selection method: select features from

Target layer(s): WU_WetlandBird1

Source layer: WetlandBirds_WetBirdColumnOnly (no features selected)

Spatial selection method for target layer feature(s): intersect the source layer feature

Switch selection

Set temporary value of WetldBird for wetlands outside the atlas block coverage

Open attribute table of WU_WetlandBird1

Field Calculate WetldBird = 99

Spatial Join to find the closest atlas block to each wetland

Spatial Join

Target Features: WU_WetlandBird1

Join Features: WetlandBirds_WetBirdColumnOnly

Output Feature Class: WU_WetlandBird

Join Operation: JOIN_ONE_TO_ONE

Check “Keep all target features”

Field map of join features (retain the fields below):

 WUKey

 Shape_Length

 Shape_Area

 WetldBird

 WetBird

Match Option: CLOSEST

Assign points based on WetBird value to wetlands outside the atlas blocks

Open attribute table of WU_WetlandBird

471

SELECT * FROM WU_WetlandBird WHERE: "WetlBird" = 99 AND "WetBird" <= 0.354

Field Calculate WetldBird = 0

SELECT * FROM WU_WetlandBird WHERE: "WetlBird" = 99 AND "WetBird" > 0.354

AND "WetBird" <= 0.408

Field Calculate WetldBird = 1

SELECT * FROM WU_WetlandBird WHERE: "WetldBird" = 99 AND "WetBird" > 0.408

AND "WetBird" <= 0.493

Field Calculate WetldBird = 2

SELECT * FROM WU_WetlandBird WHERE: "WetldBird" = 99 AND "WetBird" > 0.493

Field Calculate WetldBird = 3

472

5.6.86 WFlowPath: Water Flow Path

Version date: 20 April 2016

Strategy: completed 15 Feb 2016 EAB

GIS detailed method: completed, 3/10/2016 EAB & JCC; Verified 3/10/2016; Revised

4/20/2016 EAB

Python coding: completed for first iteration (MCA); unfortunately this must be re-coded for this

version. There was almost no overlap in the procedure - EAB

April 11: Apologies, there has been yet another update, highlighted in yellow below, to

this procedure. I also changed the interim file naming slightly to accommodate

this change (files generated include interim files whose names are not important:

WU_WFlowPath1, WU_WFlowPath2; and the final product whose name I did

not change: WU_WFlowPath). – EAB

This was completed on 6/14/2016 MCA. Part 1 takes around 2 hours to run and might

need to be revisited.

EAB 10/3/16: The steps in part 2 below don’t appear to have been added to the code yet:

Join to add area of contributing watershed (CntrWshd)

Export join to feature class

Update isolated wetlands to outflow intermittent if contributing wshed > 40

acres

I missed adding this by using an older version of this document. The changes have been

added and I was able to fix some other problems that were occurring. The total

runtime with the Wetland Units and the input is now 22 minutes and 27 seconds.

With 25 wetland units, the execute time is 2 minutes and 14 seconds.

Final review by EAB: 10/7/2016

Purpose:

Water Quality Function

Background:

Water Flow Path is part of the Tiner wetland functional classification is based on Tiner (2011)
which describes and classifies wetlands by landscape position, landform, water flow path, and
waterbody type (LLWW).
NHD Fcodes listed at:

http://nhd.usgs.gov/userGuide/Robohelpfiles/NHD_User_Guide/Feature_Catalog/Hydrography

_Dataset/Complete_FCode_List.htm

Note on stream intersections:

In the method below, if a WU boundary intersects more than 1 perennial stream, then it is called

throughflow perennial. Presumably one of the intersections will be an outflow, and the other(s)

will be inflow. This assumption does not work for a small number of headwater wetlands on

drainage divides with no inflows but two outflows. Future work might include adding the

direction of flow to identify these wetlands.

Note on flow accumulation:

http://nhd.usgs.gov/userGuide/Robohelpfiles/NHD_User_Guide/Feature_Catalog/Hydrography_Dataset/Complete_FCode_List.htm
http://nhd.usgs.gov/userGuide/Robohelpfiles/NHD_User_Guide/Feature_Catalog/Hydrography_Dataset/Complete_FCode_List.htm

473

Paybins (2003) in southern WV noted that median watershed size to initiate intermittent flow is

14.5 +-3.4 acres, and for perennial flow is 40.8 +-18.0 acres. In the method below, wetlands

that are tagged as “isolated” but have maximum flow accumulation values > 2000, which

corresponds to a drainage area > 0.0625 mi or 40 acres), are updated from “isolated” to

“outflow”. This threshold corresponds roughly to known outflow wetlands according to

Elizabeth’s field knowledge. Note that the flow accumulation values are not very accurate. If

Mike Shank is able to better calculate the contributing watershed, we should replace the flow

accumulation below with the contributing watershed value.

Note for future work (karst):

In the future we may be able to identify Inflow Wetland Units (NHD “dangles”). There will be

very few, mostly in karst areas.

Definitions:

Options for water flow path are: Paludified, Isolated, Throughflow, Inflow, Outflow, Bi-

directional non-tidal. Modifiers are perennial, intermittent, and artificial. Not all of these can

be accurately assigned via GIS, but the main codes (IS, OU, OP, OI, TH, TI, and BI) can be

approximately assigned. Here is the full list of Tiner (2011) Water Flow Path codes potentially

found in WV:

Water Flow Path

PA Paludified

IS Isolated

IT Isolated-throughflow (connected to other wetlands in an isolated complex)

IO Isolated-outflow (connected to other wetlands in an isolated complex)

II Isolated-inflow (connected to other wetlands in an isolated complex)

ITA Isolated-artificial throughflow (connected by ditches to other artificially isolated

wetlands)

IOA Isolated-artificial outflow (connected by ditches to other artificially isolated

wetlands)

IIA Isolated-artificial inflow (connected by ditches to other artificially isolated wetlands)

IN Inflow

OU Outflow

OA Outflow-artificial (wetland connected to stream by ditches)

OP Outflow-perennial

OI Outflow-intermittent

TH Throughflow (=Throughflow-perennial)

TA Throughflow-artificial (wetland connected to stream by ditches)

TN Throughflow-entrenched

TI Throughflow-intermittent

BI Bidirectional-nontidal

BIA Bidirectional-nontidal Artificial (e.g., diked wetland)

BO Bidirectional-nontidal/outflow (lake)

TB Bidirectional-nontidal/throughflow (lake)

IB Bidirectional-nontidal/isolated (lake)

NB Bidirectional-nontidal/inflow (lake)

474

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb
o Feature Class: WU_20150514
o Feature Class: DrainageArea27m

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb (EnhWVWetland)

• M:\basemap\NHDH_WV.gdb, Feature Dataset: Hydrography, Feature Class: NHDFlowline
o Note that NHD data is incorrectly attributed (no ephemeral or intermittent streams) in

Preston County and parts of Monongalia, Barbour, Morgan, Kanawha, Putnam, Wirt,
Marshall, Tucker, and small parts of about 10 additional counties. Not much we can do
about this for now.

• M:\LayerFiles\arcsde_backup.gdb, Feature Dataset: basemap_physical_non_replica, Feature Class:
 SDE_NHD_waterbodies_24k_rivers

Method:

Create feature class to store Water Flow Path

R-click WU_20150514 and select Data / Export Data.

Output feature class: WU_WflowPath1

Add text fields to the Wetland Units feature class, to allow computation of Water Flow

Path (WFlowPath).

Add 3 text fields (4 characters wide) to WU_WFlowPath1 attribute table: FlowPath, PerInt,

WFlowPath.

PART 1: Intersect NHDflowlines and wetlands.

ArcToolbox/Analysis/Overlay/Intersect

Input features: NHDflowline, WU_WflowPath1

Output Feature Class: NHDflowline_Intersect

Join Attributes: ONLY_FID

Output Type: POINT

Create multiple points for single line segments

ArcToolbox/Data Management Tools/Features/Multipart to Singlepart

Input Features: NHDflowline_Intersect

Output Features: NHDFlowline_IntMult

Remove doubles

ArcToolbox/Data Management Tools/Generalization/Dissolve

Input Features: NHDFlowline_IntMult

Output Feature Class: NHDFlowline_IntMultDiss

475

Uncheck Create Multipart Features box

Select the intermittent or ephemeral streams

FCode definitions: 46003 Stream/river/intermittent, 46007 Stream/river/ephemeral,

33600 Canal/ditch/unattributed, 33601 Canal/ditch/aqueduct (the latter two are the C&O

canal

along the Potomac: artificial intermittent)

Select by Attribute, within attribute table of NHDFlowline

Clear all selections.

SELECT * FROM NHDFlowline WHERE: "FCODE" IN (46003, 46007, 33600, 33601, 33603)

Select the Wetland Units that intersect intermittent or ephemeral stream(s)

Select by Location

Selection method: select features from

Target layer: WU_WFlowPath1

Source layer: NHDFlowline

Check “Use selected features”

Spatial selection: intersect the source layer feature

Attribute the Wetland Units that intersect intermittent or ephemeral stream(s)

Open Attribute table of WU_WFlowPath1

R-click “PerInt” and Field Calculator PerInt = "I"

Select the perennial streams

FCode definitions: 33400 Connector, 46000 Stream/river/unattributed,

46006 Stream/river/perennial , 55800 Artificial path (most of these are incorrectly

attributed perennial streams)

Select by Attribute, within attribute table of NHDFlowline

Clear all selections.

SELECT * FROM NHDFlowline WHERE: "FCODE" IN (33400, 46000, 46006, 55800)

Select the Wetland Units that intersect perennial stream(s)

Select by Location

Selection method: select features from

Target layer: WU_WFlowPath1

Source layer: NHDFlowline

Check “Use selected features”

Spatial selection: intersect the source layer feature

Attribute the Wetland Units that intersect perennial stream(s)

476

Open Attribute table of WU_WFlowPath1

R-click “PerInt” and Field Calculate PerInt = "P"

Clear all selections.

Join Wetland Units to stream intersection points.

Analysis Tools / Overlay / Spatial Join

Target Features: WU_WFlowPath1

Join Features: NHDFlowline_IntMultDiss

Output Feature Class: WU_WFlowPath2

Join Operation: JOIN_ONE_TO_ONE

Check “Keep all target features”

Match Option: INTERSECT

Attribute FlowPath (Throughflow, Outflow, Isolated)

Select by Attributes

Select * FROM WU_WFlowPath2 WHERE: "Join_Count" > 1

R-click “FlowPath”, Field Calculator = "TH"

Select * FROM WU_WFlowPath2 WHERE: "Join_Count" = 1

R-click “FlowPath”, Field Calculator = "OU"

Select * FROM WU_WFlowPath2 WHERE: "Join_Count" = 0

R-click “FlowPath”, Field Calculator = "IS"

Clear Selections

PART 2: Update FlowPath based on adjacent streams, rivers, and impoundments

Update FlowPath from isolated to outflow for wetlands within 30 m of a mapped

stream

Select by Location

Selection method: select features from

Target layers: WU_WFlowPath2

Source layer: NHDFlowline

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 30 meters

Select by attributes

Method: select from current selection

SELECT * FROM WU_WFlowPath2 WHERE: “FlowPath” = ‘IS’

R-click “FlowPath”, Field Calculator = “OU”

R-click “PerInt”, Field Calculator = “I”

Update FlowPath from isolated to outflow for wetlands that contain an impoundment

(NWI).

477

Select by Attributes

Method: create a new selection

SELECT * FROM EnhWVWetland WHERE: "ATTRIBUTE" LIKE 'P%h%'

Select by Location

Selection method: select features from

Target layers: WU_WFlowPath2

Source layer: EnhWVWetland

Check box “Use selected features”

Spatial selection method: contain the source layer feature

Select by attributes

Method: select from current selection

SELECT * FROM WU_WFlowPath2 WHERE: “FlowPath” = ‘IS’

R-click “FlowPath”, Field Calculator = “OU”

R-click “PerInt”, Field Calculator = “I”

Join to add area of contributing watershed (CntrWshd)

ArcToolbox / Data Management Tools / Joins / Join Field

Input table: WU_WFlowPath2

Input join field: OBJECTID

Join table: DrainageArea27m

Output Join Field: WUKey

Join Fields: WUKey, CntrWshd

Export join to feature class

R-click WU_WFlowPath2 and select Data / Export Data

Output feature class: WU_WFlowPath

Update isolated wetlands to outflow intermittent if contributing watershed > 40 acres

Select by Attributes from WU_WFlowPath

SELECT * FROM WU_WFlowPath WHERE: "FlowPath" = 'IS' AND "CntrWshd" > 161874

R-click “FlowPath” field and select “Field Calculator”. Set FlowPath = "OU"

R-click “PerInt” field and select “Field Calculator”. Set PerInt = "I"

Set Flow Path to throughflow perennial for wetlands adjacent to NWI rivers

Select the NWI rivers.

Clear selections.

Select by attributes.

SELECT * FROM EnhWVWetland WHERE: "WETLAND_TYPE" = 'Riverine'

478

Select by location.

Select method: select features from

Target layer: WU_WFlowPath

Source layer: EnhWVWetland

Check box “Use selected features (1790 features selected)

Spatial selection method: share a line segment with the source layer feature

Attribute Water Flow Path for Wetland Units adjacent to NWI rivers

Open attribute table of WU_WFlowPath. View selected records

R-click “FlowPath” field and select “Field Calculator”. Set FlowPath = “TH”

R-click “PerInt” field and select “Field Calculator”. Set PerInt = “P”

Clear selections.

Select the NHD 24K Rivers and set intersecting wetlands to throughflow perennial.

Select by location.

Selection method: select features from

Target layer: WU_WFlowPath

Source layer: SDE_NHD_waterbodies_24k_rivers

Spatial selection method: intersect the source layer feature

Attribute Flow Path for Wetland Units intersecting NHD 24K rivers

Open attribute table of WU_WFlowPath. View selected records.

R-click “FlowPath” field and select “Field Calculator”. Set FlowPath = “TH”

R-click “PerInt” field and select “Field Calculator”. Set PerInt = “P”

PART 3: Attribute Water Flow Path for Outflow, Throughflow, and Isolated Wetland

Units

Clear selections. Select by Attributes in WU_WFlowPath.

SELECT * FROM WU_WFlowPath WHERE: "FlowPath" = 'TH' AND "PerInt" = 'I'

R-click “WFlowPath”, select Field calculator, and set WFlowPath = "TI"

SELECT * FROM WU_WFlowPath WHERE: "FlowPath" = 'TH' AND "PerInt" = 'P'

R-click “WFlowPath”, select Field calculator, and set WFlowPath = "TP"

SELECT * FROM WU_WFlowPath WHERE: "FlowPath" = 'OU' AND "PerInt" = 'I'

R-click “WFlowPath”, select Field calculator, and set WFlowPath = "OI"

SELECT * FROM WU_WFlowPath WHERE: "FlowPath" = 'OU' AND "PerInt" = 'P'

R-click “WFlowPath”, select Field calculator, and set WFlowPath = "OP"

479

SELECT * FROM WU_WFlowPath WHERE: "FlowPath" = 'IS'

R-click “WFlowPath”, select Field calculator, and set WFlowPath = "IS"

PART 4: Update Water Flow Path based on adjacent lakes.

Select the lakes.

Clear selections.

SELECT * FROM EnhWVWetland WHERE: "WETLAND_TYPE" = 'Lake'

Select wetlands in lake basins with bi-directional flow. This will over-write FlowPath.

Note

that there are some errors generated by over-writing: some wetlands that border a lake

but are

primarily stream wetlands are selected. However, the number of errors is smaller than

if over-

writing is not done. Future refinements could include measuring the perimeter

bordering the lake,

and if it is a small fraction of the total perimeter, then FlowPath “OU” or “TH” is not

over-written.

Select by location.

Selection method: select features from

Target layer: WU_WFlowPath

Source layer: EnhWVWetland

Check box “Use selected features” (203 features selected)

Spatial selection method: intersect the source layer feature

Attribute Flow Path for Wetland Units adjacent to lakes.

Open attribute table of WU_WFlowPath. View selected records.

R-click “FlowPath” field and select “Field Calculator”. Set FlowPath = “BI”

Attribute Water Flow Path for Wetland Units adjacent to lakes.

Select by Attributes in WU_WFlowPath.

SELECT * FROM WU_WFlowPath WHERE: "FlowPath" = 'BI' AND "WFlowPath" IN ('OP',

'OI')

R-click “WFlowPath”, select Field calculator, and set “WFlowPath” = ‘BO’.

Select by Attributes in WU_WFlowPath.

SELECT * FROM WU_WFlowPath WHERE: "FlowPath" = 'BI' AND "WFlowPath" IN ('TP',

'TI')

R-click “WFlowPath”, select Field calculator, and set WFlowPath = “TB”.

480

Select by Attributes in WU_WFlowPath.

SELECT * FROM WU_WFlowPath WHERE: "FlowPath" = 'BI' AND "WFlowPath" = 'IS'

R-click “WFlowPath”, select Field calculator, and set WFlowPath = “IB”.

481

5.6.87 WQFunction: Water Quality

Version date: 26 October 2016

Strategy: completed 3/12/2016 EAB

GIS method: completed 3/12/2016 EAB; needs verification once factors are available

Python code:

Final verification by EAB:

Purpose:

Water Quality Function

Maximum 25 points (floodplain wetlands); 24 points (groundwater wetlands)

Description:

Summary of strategy: For each Wetland Unit, sum the points for the three aspects (wetland

potential to provide function, landscape offers opportunity to carry out function, and value to

society)

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• WQPotential

• WQOpportun

• WQSociety

Method:

Create feature class to store WQFunction

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_WQFunction

Spatial join to bring in aspect values

Spatial join (contains) to bring WQPotential, WQOpportun, and WQSociety into the same table

Add WQFunction field to Wetland Units and set initial point value to zero.

Open attribute table of WU_WQFunction

Add field “WQFunction” (short integer)

R-click WQFunction and Field Calculate WQFunction = 0

482

Sum the points for each aspect of Water Quality Function for Wetland Units

R-click WQFunction and Field Calculate WQFunction = [WQPotential] + [WQOpportun] +

[WQSociety]

483

5.6.88 WQOpportun: Water Quality Opportunity

Version date: 26 October 2016

Strategy: completed 3/12/2016 EAB

GIS method: completed 3/12/2016 EAB; verified 10/26/2016 EAB

Python code:

Final review by EAB:

Purpose:

Water Quality Function

Maximum 5 points (floodplain wetlands); 4 points (groundwater wetlands)

Description:

Summary of strategy: For each Wetland Unit, sum the points for all factors within the

“Opportunity” aspect. Note that different point values for floodplain vs. groundwater wetlands

are assigned at the factor level. After points have been summed, reduce any point values that

exceed the maximum allowable points for this aspect of water quality function.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• Discharges

• ImpairedIn

• RoadRail

• Disturb50m

• DisturbWshd

• Floodplain

Method:

Create feature class to store WQOpportun

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_WQOpportun

Spatial join to bring in factor values

Spatial join (contains) to add the following to the WU_WQOpportun table: Discharges,

ImpairedIn, RoadRail, Disturb50m, DisturbWshd, Floodplain

Add WQOpportun field and set initial point value to zero.

Open attribute table of WU_WQOpportun

484

Add field “WQOpportun” (short integer)

R-click WQOpportun and Field Calculate WQOpportun = 0

Sum the factor points

R-click WQOpportun and Field Calculate WQOpportun = [Discharges] + [ImpairedIn] +

[RoadRail] + [Disturb50m] + [DisturbWshd]

Reduce values that exceed the maximum allowable points

Select by attributes

Layer: WU_Opportun

Method: Create a new selection

SELECT * FROM WU_Opportun WHERE: "Floodplain" = 'Y' AND "WQOpportun" > 5

R-click WQOpportun and Field Calculate WQOpportun = 5

Select by attributes

Layer: WU_Opportun

Method: Create a new selection

SELECT * FROM WU_Opportun WHERE: "Floodplain" = 'N' AND "WQOpportun" > 4

R-click WQOpportun and Field Calculate WQOpportun = 4

485

5.6.89 WQPlan : Watershed or Water Quality Plan Exists

Version date: 16 March 2016

Strategy: completed 3/12/2016 EAB

GIS method: completed and verified 3/16/2016 EAB

Python coding: started & complete 3/18/2016 MCA

Final review by EAB: 3/18/2016

Purpose:

Water Quality Function

Max 2 point

Description:

Rationale: Inclusion in a watershed plan, water quality plan, or having legal protected status are

all indicators that society values the water quality function of a wetland highly.

Sum the points below, for a maximum of 2 points.
• Watershed Plan. Wetland has been identified in a watershed or local plan as important for

maintaining water quality (2 points). Not all pollution and water quality problems are identified by
state water quality monitoring program. Local and watershed planning efforts sometimes identify
wetlands that are important in maintaining existing water quality. These wetlands provide a value
to society at the local level.

• TMDL. No longer used after 2022. A TMDL exists for the drainage in which the wetland is found (2
points). A Total Maximum Daily Load (TMDL) plan is a plan of action used to clean up streams that
are not meeting water quality standards. The TMDL program is part of the Watershed Branch of the
WVDEP.

• NSPA. Wetland is in the contributing watershed of a stream reach protected by the Natural Streams
Preservation Act (2 points). These include (a) Greenbrier River from its confluence with Knapps
Creek to its confluence with the New River, (b) Anthony Creek from its headwaters to its
confluence with the Greenbrier River, (c) Cranberry River from its headwaters to its confluence
with the Gauley River, (d) Birch River from the Cora Brown bridge in Nicholas county to the
confluence of the river with the Elk River, and (e) New River from its confluence with the Gauley
River to its confluence with the Greenbrier River.

• Most federally-owned lands have watershed plans to protect water quality. This includes National
Forests, National Wildlife Refuges, and National Parks.

• Conservation easements related to water quality (none known at this time)

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: WatershedPlan
o Feature Class: TMDL
o Feature Class: NatStrProAct_HUC10

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\DNR_PublicLands_20Aug2015\PublicLandsWVDN
R20150820.shp

486

Input Variables:

None (but note that WshdPlan is already coded and can be added to this)

Method:

Create feature class to store WQPlan factor

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_WQPlan

Add field to Wetland Units and set initial point value to zero.

Open attribute table of WU_WQPlan

Add field “WQPlan” (short integer)

R-click WQPlan and Field Calculate WQPlan = 0

Select Wetland Units with Watershed Plan.

Select by location

Selection method: select features from

Target layer: WU_WQPlan

Source layer: WatershedPlan

Spatial selection method: Intersect the source layer feature

Select Wetland Units with TMDL Plan.

Select by location

Selection method: add to the currently selected features in

Target layer: WU_WQPlan

Source layer: TMDL

Spatial selection method: Intersect the source layer feature

Select Wetland Units in watersheds drained by National Streams Preservation Act

streams.

Select by location

Selection method: add to the currently selected features in

Target layer: WU_WQPlan

Source layer: NatStrPreAct_HUC10

Spatial selection method: Intersect the source layer feature

Select National Parks, Forests, and Wildlife Refuges

Select by Attributes

Layer: PublicLandsWVDNR20150820.shp

487

Method: Create a new selection

SELECT * FROM PublicLandsWVDNR20150820.shp WHERE: "Ownership_" IN ('U.S Park

Service', 'U.S. Fish and Wildlife Service', 'U.S. Forest Service')

Select Wetland Units in National Parks, Forests, and Wildlife Refuges.

Select by location

Selection method: add to the currently selected features in

Target layer: WU_WQPlan

Source layer: PublicLandsWVDNR20150820.shp

Check box “Use selected features” (137 features selected)

Spatial selection method: Intersect the source layer feature

Assign 2 points to Wetland Units that are included in a watershed plan of some kind.

R-click “WQPlan” in WU_WQPlan and Field Calculate WQPlan = 2

488

5.6.90 WQPotential: Water Quality Potential

Version date: 28 October 2016

Strategy: completed 3/12/2016 EAB

GIS method: completed 3/12/2016 EAB; verified 4/18/2016 EAB

Python code: Started & Complete 6/15/2016 MCA – Problem with point counts

EAB 10/25/16: I revised the point counts with the new values for Headwater and

SWOutflow. Can you please re-run and see if they match?

Completed 10/28/2016 MCA

Final review by EAB: 10/28/2016

Purpose:

Water Quality Function

Maximum 16 points (all wetlands)

Description:

Rationale: Wetlands have an intrinsic potential to improve water quality, through filtering of

contaminants, capture of sediment, absorption of nutrients, and chemical reactions that convert

noxious compounds to benign ones (e.g., nitrates to nitrogen gas). This intrinsic capability is

related to landscape position, vegetation, microtopography, drainage patterns, soils, wetland

shape, and slope of the wetland.

Summary of strategy: For each Wetland Unit, sum the points for all factors within the

“Potential” aspect. Note that different point values for floodplain vs. groundwater wetlands are

assigned at the factor level.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• ChemTime (3 points GW)

• ClayOrganic (3 points GW)

• Depressions (5 points FL)

• Headwater (1 point – all types)

• SWOutflow (4 points GW)

• VegWQ (10 points FL, 5 points GW)

Method:

Spatial joins to bring together factor values

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_ChemTime

Join Feature: WU_ClayOrganic

Output feature class: WU_WQPotential1

489

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 Shape-Length

 Shape_Area

 ChemTime

 ClayOrganic

Match Option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_WQPotential1

Join Feature: WU_Depressions

Output feature class: WU_WQPotential2

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 Shape-Length

 Shape_Area

 ChemTime

 ClayOrganic

 Depressions

Match Option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_WQPotential2

Join Feature: WU_Headwater

Output feature class: WU_WQPotential3

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 Shape-Length

 Shape_Area

 ChemTime

 ClayOrganic

 Depressions

 Headwater

Match Option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_WQPotential3

Join Feature: WU_SWOutflow

Output feature class: WU_WQPotential4

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 Shape-Length

490

 Shape_Area

 ChemTime

 ClayOrganic

 Depressions

 Headwater

 SWOutflow

Match Option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_WQPotential4

Join Feature: WU_VegWQ

Output feature class: WU_WQPotential

Join Operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following

 Shape-Length

 Shape_Area

 ChemTime

 ClayOrganic

 Depressions

 Headwater

 SWOutflow

 VegWQ

Match Option: CONTAINS

Add WQPotential field to Wetland Units and set initial point value to zero.

Open attribute table of WU_WQPotential

Add field “WQPotential” (short integer)

R-click WQPotential and Field Calculate WQPotential = 0

Sum the factor points

R-click WQPotential and Field Calculate WQPotential = [ChemTime]+ [ClayOrganic]+

[Depressions]+ [Headwater]+ [SWoutflow]+ [VegWQ]

491

5.6.91 WQSociety: Water Quality Value to Society

Vesrion date: 18 March 2016

Strategy: completed 3/12/2016 EAB

GIS method: completed and verified 3/18/2016 EAB

Python code: started & complete 5/26/2016 MCA

Final check by EAB: 10/3/2016

Purpose:

Water Quality Function

Maximum 4 points (all wetlands)

Description:

Rationale: Wetland discharges to (<1 km above) a stream, river, or lake that is on the 303d list,

or a water body that is impacted by chronic algal blooms or power boat use. The term, "303(d)

list," is short for the list of impaired waters (stream segments, lakes) that the Clean Water Act

requires all states to submit to the Environmental Protection Agency (EPA) every two years.

Wetlands that discharge directly to these polluted waters are judged to be more valuable than

those that discharge to unpolluted bodies of water because their role at cleaning up the pollution

is critical for reducing further degradation of water quality.

Summary of strategy: For each Wetland Unit, sum the points for all factors within the “Society”

aspect. Reduce values that exceed the maximum allowable points for this aspect of water

quality function. Note that floodplain and groundwater wetlands are treated the same for this

aspect.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

Input Variables:

• HUC12WQ (1 point)

• ImpairedOut (1 point)

• WQPlan (up to 2 points)

• WQUse (up to 2 points)

Method:

Create feature class to store WQSociety

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_WQSociety1

Add WQSociety field to Wetland Units and set initial point value to zero.

Open attribute table of WU_WQSociety1

492

Add field “WQSociety” (short integer)

R-click WQSociety and Field Calculate WQSociety = 0

Spatial joins to bring in factor values

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_WQSociety1

Join Feature: HUC12WQ

Output feature class: WU_WQSociety2

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 Shape-Length

 Shape_Area

 WQSociety

 HUC12WQ

Match Option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_WQSociety2

Join Feature: ImpairedOut

Output feature class: WU_WQSociety3

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 Shape-Length

 Shape_Area

 WQSociety

 HUC12WQ

 ImpairedOut

Match Option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_WQSociety3

Join Feature: WQPlan

Output feature class: WU_WQSociety4

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 Shape-Length

 Shape_Area

 WQSociety

 HUC12WQ

 ImpairedOut

 WQPlan

Match Option: CONTAINS

ArcToolbox / Analysis Tools / Overlay / Spatial join

Target Feature: WU_WQSociety4

493

Join Feature: WQUse

Output feature class: WU_WQSociety

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following

 Shape-Length

 Shape_Area

 WQSociety

 HUC12WQ

 ImpairedOut

 WQPlan

 WQUse

Match Option: CONTAINS

Sum the factor points

R-click WQSociety and Field Calculate WQSociety = [HUC12WQ] + [ImpairedOut] +

[WQPlan] + [WQUse]

Reduce values that exceed the maximum allowable points

Select by attributes

Layer: WU_Society

Method: Create a new selection

SELECT * FROM WU_WQSociety WHERE: "WQSociety" > 4

R-click WQSociety and Field Calculate WQSociety = 4

494

5.6.92 WQUse: Water quality used by public

Version Date: 27 March 2016

Strategy: completed 3/12/2016 EAB

GIS method: 3/17/2016 completed and verified EAB

Python coding: started 3/17/2016 & completed 5/26/2016 MCA

Final review by EAB: 10/3/2016

Purpose:

Water Quality Function, Value to Society

Max 2 points

Description:

Rationale: Water quality is particularly important in areas where public use is high. Water

supply intakes, swimming areas, and economically important fisheries are some of the uses that

require good water quality. Wetlands can contribute to improved water quality if they are in the

contributing watershed for these uses.

Summary of strategy: Sum the points for Water Supply and Fisheries. Add an additional point

if the Wetland Unit is within 1 km of a swimming area, and 2 points if the Wetland Unit is

within 50 meters of a swimming area. If the total points for a Wetland Unit exceeds the

maximum allowable points for this factor, reduce the total points back to 2.

Source Data:

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb (WU_20150514)

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WaterQualityDatasets.gdb
o Feature Class: SwimmingAreas2016

Input Variables:

• WaterSupply

• Fisheries

Method:

Create feature class to store WQUse factor

R-click WU_20150514 and select Data/Export Data

Output feature class: WU_WQUse1

Add fields to Wetland Units and set initial values to zero.

Open attribute table of WU_WQUse1

Add field “WQUse” (short integer)

R-click WQUse and Field Calculate WQUse = 0

495

Add field “Swim” (short integer)

R-click Swim and Field Calculate Swim = 0

Select Wetland Units within 1 km of Swimming Area.

Select by location

Selection method: select features from

Target layer: WU_WQUse1

Source layer: SwimmingAreas2016

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 1000 meters

Assign 1 point to selected Wetland Units.

R-click “Swim” in WU_WQUse1 and Field Calculate Swim = 1

Select Wetland Units within 50 m of Swimming Area.

Select by location

Selection method: select features from

Target layer: WU_WQUse1

Source layer: SwimmingAreas2016

Spatial selection method: are within a distance of the source layer feature

Apply a search distance: 50 meters

Assign 2 point to selected Wetland Units.

R-click “Swim” in WU_WQUse1 and Field Calculate Swim = 2

Spatial Join to add variables WaterSupply and Fisheries

ArcToolbox / Analysis / Overlay / Spatial Join

Target Feature: WU_WQUse1

Join Feature: WU_WaterSupply

Output Feature Class: WU_WQUse2

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 WQUse

 Swim

 WaterSupply

ArcToolbox / Analysis / Overlay / Spatial Join

Target Feature: WU_WQUse2

Join Feature: WU_Fisheries

496

Output Feature Class: WU_WQUse

Join Operation: JOIN_ONE_TO_ONE

Field Map of Join Features: retain the following:

 Shape_Length

 Shape_Area

 WQUse

 Swim

 WaterSupply

 Fisheries

Sum the points for water quality use

In WU_WQUse, R-click WQUse and Field Calculate WQUse = [Swim] + [WaterSupply] +

[Fisheries]

Reduce points to maximum allowed for WQUse

Select by Attributes

Layer: WU_WQUse

Method: Create a new selection

SELECT * FROM WU_WQUse WHERE: "WQUse" > 2

In WU_WQUse, R-click WQUse and Field Calculate WQUse = 2

497

5.6.93 WshdPos: Watershed Position, headwaters, major river floodplains, and

karst

Version date: 2 October 2017

Strategy: 3/16/2017 EAB

GIS method: 10/2/2017 EAB; results verified 10/2/2017 EAB

Python code:

Final review by EAB:

Purpose:

Input to Habitat / Landscape Opportunity (LandHydro: Landscape Hydrologic Connectivity)

Description:

Maximum 1 point

Rationale: Headwater wetlands are upstream of all aquatic habitats and provide important

protection to these ecosystems. Major river floodplains are an important and highly threatened

habitat for toads, frogs, wetland birds, and dragonflies. Karst areas have a uniquely sensitive

underground ecology and provide calcium-rich water to above-ground ecosystems.

GIS Method (no field method):

Assign 1 point if the wetland is a

• headwater wetland OR

• Amphibian habitat: wetland is in the floodplain of a major river, defined as having a drainage
area > 5000 square miles, i.e., the Ohio, Kanawha, and lower Potomac (below Little
Conococheague Creek, 1 mile downstream of Dam No 5, 7 miles upstream of Rt. 81 bridge).
Note: Don’t include the Monongahela, New, Big Sandy, Greenbrier, Gauley, Elk, Guyandotte,
Little Kanawha, N & S Branch Potomac? Check with Tom Pauley re: amphibian habitat OR

• Odonates: *Ohio, *Kanawha, Meadow, Potomac, Cacapon, Tygart (higher elevation, but slower
and sinuous), and lower portions of the North and South Branch. The Mon and Bluestone
really don’t have much in the way of wetlands because of the dams (except a few localized
places Sue Olcott can think of on the Mon)(Note that amphibian habitat is included in Odonata
habitat; since there is only one point available for this metric, these two categories can be
combined) OR

• if the wetland occurs on karst (limestone/dolomite bedrock geology or SSURGO karst).

Source Data:

• M:\LayerFiles\arcsde_backup.gdb
o Feature Dataset: basemap_physical_non_replica

▪ Feature Class: SDE_NHD_reach_24k_gt_50_mi_drainage

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFunction.gdb
o Feature Class: WU_FloodArea

▪ Field: Floodplain
o Feature Class: WU_Headwater

▪ Field: Headwater
o Feature Class: WU_Karst

498

▪ Field: Karst

Method:

STEP 1: Wetland Units in the Floodplain of a Major River

Create feature class to store WshdPos

R-click WU_FloodArea and select Data / Export Data / All features

Output feature class: WetlandFunction.gdb / WU_WshdPos1

Add field to store major river floodplain (MajorRiverFP) and set initial value to zero

Open attribute table of WU_WshdPos1

Add field MajorRiverFP (short integer)

Field calculate MajorRiverFP = 0

Select major rivers with floodplains

SELECT * FROM SDE_NHD_reach_24k_gt_50_mi_drainage WHERE: "DA_sq_mi" > 1000

OR "GNIS_Name" IN ('Meadow River', 'Cacapon River', 'Tygart Valley River') OR

("GNIS_Name" IN ('South Branch Potomac River', 'North Branch Potomac River') AND

"DA_sq_mi" > 1000)

Select wetlands that are within 500 meters of selected rivers

Select by Location

Selection method: select features from

Target layer(s): WU_WshdPos1

Source layer: SDE_NHD_reach_24k_gt_50_mi_drainage

Use selected features (3107 features selected)

Spatial selection method for the target layer feature(s): are within a distance of the source layer

feature

Apply a search distance: 500 meters

Remove from selection any wetlands not in the floodplain

Select by Attributes

Layer: WU_WshdPos1

Method: Remove from current selection

SELECT * FROM WU_WshdPos1 WHERE: "Floodplain" = 'N'

Assign values to MajorRiverFP

Open attribute table of WU_WshdPos1

Field calculate MajorRiverFP = 1

STEP 2: Join metrics and assign points

499

Spatial Join MajorRiversFP to Headwater and Karst

Note that this can also be done with a “Join” on WUKey.

ArcToolbox/ Spatial Join

Target Features: WU_WshdPos1

Join Features: WU_Headwater

Output Feature Class: WU_WshdPos2

Join Operation: JOIN_ONE_TO_ONE

Check “Keep all target features”

Field Map of Join Features:

 WUKey

 Shape_Length

 Shape_Area

 MajorRiverFP

 Headwater

Match Option: Contains

ArcToolbox/ Spatial Join

Target Features: WU_WshdPos2

Join Features: WU_Karst

Output Feature Class: WU_WshdPos

Join Operation: JOIN_ONE_TO_ONE

Check “Keep all target features”

Field Map of Join Features:

 WUKey

 Shape_Length

 Shape_Area

 MajorRiverFP

 Headwater

 Karst

Match Option: Contains

Add field WshdPos, set initial value to zero

Open the attribute table to WU_WshdPos

Add field “WshdPos” (short integer) to attribute table

Field Calculate “WshdPos” = 0

Assign points

SELECT * FROM WU_WshdPos WHERE: "MajorRiverFP" > 0 OR "Headwater" > 0 OR

"Karst" > 0

Field Calculate WshdPos = 1

500

5.6.94 WshdUniq: Watershed Wetland Size and Uniqueness

Version date: 9 October 2017

Strategy: 3/16/2017 EAB

GIS method: 10/6/2017 EAB; results verified 10/6/2017 EAB

Python code: 10/10/20117 YH

Final review by EAB: 10/10/2017

Purpose:

Input to Habitat / Landscape Opportunity (LandEco: Landscape Ecological Connectivity)

Description:

Maximum 2 points

Rationale: Wetlands embedded in a dense or diverse network of nearby wetlands provide

greater opportunities to species to thrive and disperse.

GIS Method (no field method):

Make heat map of 12-digit HUC watershed layer with the following fields, highlighting HUCs

in the top 10% of the state. If wetland is within a “hot” HUC, award the points. Note that

thresholds are based on the values for 772 HUCs in the layer “HUCWetlandSizeUniq”.

Type diversity: number of unique NWI codes in the watershed, not including spoil

wetlands.

Density: number of vegetated NWI polygons; many of these polygons may be

contiguous with each other, forming a single wetland.

Proportional Area: proportion of the watershed's total area occupied by vegetated

wetlands as mapped by NWI.

Also, award points if the Wetland Unit is the largest vegetated wetland in its 12-digit HUC

watershed (compare area of Wetland Unit with area of largest vegetated Wetland Unit

(MaxVegArea) in the HUCWetlandSizeUniq attribute table created for this metric.

2 points: largest vegetated wetland in HUC, or HUC is in top 5% for type diversity,

density, or proportional area

1 point: HUC is in top 10% for type diversity, density, or proportional area

0 points: none of the above criteria are met

Threshold value table

 Top 5% Top 10%

DiverseNWI 28 22

DensVegNWI 70 45

RatioVeg 0.009 0.005

Source Data:

501

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Watershed.gdb
o Feature Class: HUCWetlandSizeUniq

• M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\WetlandFunction.gdb
o Feature Class: WU_VegAll

Method:

Spatial Join of Wetland Units (including VegArea) and HUC characteristics

ArcToolbox / Analysis Tools / Overlay / Spatial Join

Target Feature: WU_VegAll

Join Feature: HUCWetlandSizeUniq

Output Feature Class: WU_WshdUniq

Join operation: JOIN_ONE_TO_ONE

Check box “Keep all target features”

Field Map of Join Features: retain the following:

WUKey

VegArea

Shape_Length

Shape_Area

HUC_12

HU_12_NAME

MaxVegArea

DiverseNWI

DensVegNWI

RatioVeg

Match option: HAVE_THEIR_CENTER_IN

Create feature class to store results for WshdUniq and set initial value to zero

Open attribute table of WU_WshdUniq

Add field “WshdUniq” (short integer)

Field calculate WshdUniq = 0

Select wetlands in top 10% of HUC watersheds based on

the number of unique NWI codes, the number of vegetated NWI polygons, or

the proportional area of vegetated wetlands

SELECT * FROM WU_WshdUniq WHERE: "DiverseNWI" > 22 OR "DensVegNWI" > 45

OR "RatioVeg" > 0.005

Assign 1 point

Open attribute table of WU_WshdUniq

Field Calculate WshdUniq = 1

502

Select largest vegetated wetland in each HUC AND wetlands in top 5% of HUC

watersheds based on

type diversity, density, or proportional area of vegetated wetlands

SELECT * FROM WU_WshdUniq WHERE: "VegArea" >= "MaxVegArea" OR

"DiverseNWI" > 28 OR "DensVegNWI" > 70 OR "RatioVeg" > 0.009

Assign 2 points

Open attribute table of WU_WshdUniq

Field Calculate WshdUniq = 2

Clear all selections

503

5.7 Python 2.7 Code

The following sections detail the open-source Python 2.7 code used in the GIS portion of the

West Virginia Wetland Rapid Assessment Method.

5.7.1 Flood Attenuation Function

File Name: FAFunction.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/13/2017 (modified 10/32/2017)

Purpose:

Flood Attenuation Function

#!/usr/bin/python

import sys

sys.path.append("../..")

import arcpy

from utilities import actions

import logging

def DetermineFAFunction(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAFunction")

 # Clean up if needed

 if arcpy.Exists("WU_FAFunction"):

 arcpy.Delete_management("WU_FAFunction")

 if arcpy.Exists("WU_FAFunction1"):

 arcpy.Delete_management("WU_FAFunction1")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_FAPotential","fcFAPotential")

 arcpy.MakeFeatureLayer_management(r"WU_FAOpportun","fcFAOpportun")

 arcpy.MakeFeatureLayer_management(r"WU_FASociety","fcFASociety")

 logger.info("feature layers ready")

###

#################

 # SJ: FAPotential & FAOpportun

###

#################

504

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable("fcFAPotential")

 fmSJ.addTable("fcFAOpportun")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","FAPotential","FAOpportun"]

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcFAPotential","fcFAOpportun","WU_FAFunction1","JOIN_ONE

_TO_ONE","KEEP_ALL",fmSJ,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_FAFunction1","fcWUFAFunction1")

 logger.info("spatial join FAPotential and FAOpportun completed")

###

#################

 # SJ: FASociety

###

#################

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable("fcWUFAFunction1")

 fmSJ.addTable("fcFASociety")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","FAPotential","FAOpportun","FASociety"]

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUFAFunction1","fcFASociety","WU_FAFunction","JOIN_ON

E_TO_ONE","KEEP_ALL",fmSJ,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_FAFunction","fcWUFAFunction")

 logger.info("spatial join FASociety completed")

 ## Add FAFuntion field to Wetland Units and set initial point value to zero

 actions.DeleteField("fcWUFAFunction","FAFunction")

 arcpy.AddField_management("fcWUFAFunction", "FAFunction", "SHORT")

 arcpy.CalculateField_management("fcWUFAFunction","FAFunction","0","VB","#")

505

 logger.info("FAFuntion field added to Wetland Units and initial point value set to zero")

 ## Sum the points for each aspect of Water Quality Function for Wetland Units

 arcpy.CalculateField_management("fcWUFAFunction","FAFunction","[FAPotential] +

[FAOpportun] + [FASociety]","VB","#")

 logger.info("field FAFunction calculated")

 ## Clean up

 if arcpy.Exists("WU_FAFunction1"):

 arcpy.Delete_management("WU_FAFunction1")

506

5.7.2 Flood Attenuation Opportunity

File Name: FAOpportun.py

Developer: Yibing Han

Date: 12/13/2017

Purpose:

This script handles the execution of all the Flood Attenuation Opportunity metrics.

import datetime

import logging

import traceback

import arcpy

from Variable import Runoff50m, RunoffWshd, SlopeWshd, StreamEdge, FloodArea

from Factor import FloodIn, ConnectFL

from Aspects import FAOpportun

def procFAOpportun(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAOpportun")

 ##

 ## 1. Run Variables

 ##

 Runoff50m.DetermineRunoff50m(WetlandPoly)

 RunoffWshd.DetermineRunoffWshd(WetlandPoly)

 SlopeWshd.DetermineSlopeWshd(WetlandPoly)

 StreamEdge.DetermineStreamEdge(WetlandPoly)

 #FloodArea.DetermineFloodArea(WetlandPoly) #this should run first during initRequest

 ##

 ## 2. Run Factors

 ##

 FloodIn.DetermineFloodIn(WetlandPoly)

 ConnectFL.DetermineConnectFL()

 ##

507

 ## 3. Run Aspect

 ##

 FAOpportun.DetermineFAOpportun(WetlandPoly)

508

5.7.3 Flood Attenuation Opportunity Aspects

File Name: FAOpportun.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/7/2017 (modified 10/31/2017)

Purpose:

Flood Attenuation Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import arcpy

from utilities import actions

import logging

def DetermineFAOpportun(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAOpportun.FAOpportun")

 # Clean up if needed

 if arcpy.Exists("WU_FAOpportun1"):

 arcpy.Delete_management("WU_FAOpportun1")

 if arcpy.Exists("WU_FAOpportun"):

 arcpy.Delete_management("WU_FAOpportun")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_FloodIn","fcFloodIn")

 arcpy.MakeFeatureLayer_management(r"WU_Connect","fcConnectFL")

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea","fcFloodplain")

 logger.info("feature layers ready")

 ## Spatial joins to add input variables to Wetland Units attribute table

###

#################

 # SJ: FloodIn & ConnectFL

###

#################

 fmSJFICN = arcpy.FieldMappings()

 fmSJFICN.addTable("fcFloodIn")

 fmSJFICN.addTable("fcConnectFL")

 keepers = []

509

 keepers = ["WUKey","Shape_Length","Shape_Area","FloodIn","ConnectFL"]

 for field in fmSJFICN.fields:

 if field.name not in keepers:

 fmSJFICN.removeFieldMap(fmSJFICN.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcFloodIn","fcConnectFL","WU_FAOpportun1","JOIN_ONE_TO

_ONE","KEEP_ALL",fmSJFICN,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_FAOpportun1","fcWUFAOpportun1")

 logger.info("spatial join FloodIn and ConnectFL completed")

###

#################

 # SJ: Floodplain

###

#################

 fmSJFL = arcpy.FieldMappings()

 fmSJFL.addTable("fcWUFAOpportun1")

 fmSJFL.addTable("fcFloodplain")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","FloodIn","ConnectFL","Floodplain"]

 for field in fmSJFL.fields:

 if field.name not in keepers:

 fmSJFL.removeFieldMap(fmSJFL.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUFAOpportun1","fcFloodplain","WU_FAOpportun","JOIN_O

NE_TO_ONE","KEEP_ALL",fmSJFL,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_FAOpportun","fcWUFAOpportun")

 logger.info("spatial join Floodplain completed")

 ## Add FAOpportun field and set initial value to 0

 actions.DeleteField("fcWUFAOpportun","FAOpportun")

 arcpy.AddField_management("fcWUFAOpportun", "FAOpportun", "SHORT")

 arcpy.CalculateField_management("fcWUFAOpportun","FAOpportun","0","VB","#")

 logger.info("FAOpportun field added to Wetland Units and initial point value set to zero")

 ## Sum the factor points

arcpy.CalculateField_management("fcWUFAOpportun","FAOpportun","[FloodIn]+[ConnectF

L]","VB","#")

510

 logger.info("field FAOpportun calculated")

 ## Reduce points for groudwater wetlands to a maximum of 2

 strWHERE = """"FAOpportun" > 2 AND "Floodplain" = 'N'"""

arcpy.SelectLayerByAttribute_management("fcWUFAOpportun","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUFAOpportun","FAOpportun","2","VB","#")

 logger.info("points for groudwater wetlands reduced to a maximum of 2")

 arcpy.SelectLayerByAttribute_management("fcWUFAOpportun","CLEAR_SELECTION")

 ## Clean Up

 if arcpy.Exists("WU_FAOpportun1"):

 arcpy.Delete_management("WU_FAOpportun1")

511

5.7.4 ConnectFL: Flood Attenuation Opportunity

File Name: ConnectFL.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 12/20/2016 (modified 10/31/2017)

Purpose:

Input to Flood Attenuation / Opportunity

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineConnectFL():

 logger = logging.getLogger("WFA.FloodAttn.FAOpportun.ConnectFL")

 # Clean up if needed

 if arcpy.Exists("WU_Connect"):

 arcpy.Delete_management("WU_Connect")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea","fcFloodArea")

 arcpy.MakeFeatureLayer_management(r"WU_StreamEdge","fcStreamEdge")

 logger.info("feature layers ready")

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable("fcFloodArea")

 fmSJ.addTable("fcStreamEdge")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","FloodArea","StreamEdge"]

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcFloodArea","fcStreamEdge","WU_Connect","JOIN_ONE_TO_O

NE","KEEP_ALL",fmSJ,"CONTAINS")

 fcConnect = arcpy.mapping.Layer(r"WU_Connect")

 logger.info("spatial join of StreamEdge to wetland units completed")

512

 ## Add ConnectFL field and set initial point value to 0

 actions.DeleteField(fcConnect,"ConnectFL")

 arcpy.AddField_management(fcConnect,"ConnectFL","SHORT")

 arcpy.CalculateField_management(fcConnect,"ConnectFL","0","VB","#")

 logger.info("field ConnectFL added and initial point value set to 0")

 ## Sum the points for FloodArea and StreamEdge.

 arcpy.CalculateField_management(fcConnect,"ConnectFL","[FloodArea]+

[StreamEdge]","VB","#")

 logger.info("point values calculated for field ConnectFL")

 ## Reduce the total points to a maximum of 2

 strWHERE = """"ConnectFL" > 2"""

 arcpy.SelectLayerByAttribute_management(fcConnect,"NEW_SELECTION",strWHERE)

 arcpy.CalculateField_management(fcConnect,"ConnectFL","2","VB","#")

 logger.info("total points reduced to a maximum of 2")

 arcpy.SelectLayerByAttribute_management(fcConnect, "CLEAR_SELECTION")

 ## Clean Up

513

5.7.5 FloodIn: Flood Attenuation Opportunity

File Name: FloodIn.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/7/2017 (modified 12/05/2017)

Purpose:

Input to Flood Attenuation / Potential

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineFloodIn(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAOpportun.FloodIn")

 # Clean up if needed

 if arcpy.Exists("WU_FloodIn0"):

 arcpy.Delete_management("WU_FloodIn0")

 if arcpy.Exists("WU_FloodIn1"):

 arcpy.Delete_management("WU_FloodIn1")

 if arcpy.Exists("WU_FloodIn2"):

 arcpy.Delete_management("WU_FloodIn2")

 if arcpy.Exists("WU_FloodIn"):

 arcpy.Delete_management("WU_FloodIn")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly,"WU_FloodIn0")

 arcpy.MakeFeatureLayer_management(r"WU_SlopeWshd","fcSlopeWshd")

 arcpy.MakeFeatureLayer_management(r"WU_Runoff50m","fcRunoff50m")

 arcpy.MakeFeatureLayer_management(r"WU_RunoffWshd","fcRunoffWshd")

 logger.info("feature layers ready")

 ## Spatial joins to add input variables to Wetland Units attribute table

###

#################

 # SJ: SlopeWshd

514

###

#################

 fmSJSW = arcpy.FieldMappings()

 fmSJSW.addTable("WU_FloodIn0")

 fmSJSW.addTable("fcSlopeWshd")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","SlopeWshd"]

 for field in fmSJSW.fields:

 if field.name not in keepers:

 fmSJSW.removeFieldMap(fmSJSW.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("WU_FloodIn0","fcSlopeWshd","WU_FloodIn1","JOIN_ONE_TO

_ONE","KEEP_ALL",fmSJSW,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_FloodIn1","fcWUFloodIn1")

 logger.info("spatial join to add SlopeWshd completed")

###

#################

 # SJ: Runoff50m

###

#################

 fmSJR50M = arcpy.FieldMappings()

 fmSJR50M.addTable("fcWUFloodIn1")

 fmSJR50M.addTable("fcRunoff50m")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","SlopeWshd","Runoff50m"]

 for field in fmSJR50M.fields:

 if field.name not in keepers:

 fmSJR50M.removeFieldMap(fmSJR50M.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUFloodIn1","fcRunoff50m","WU_FloodIn2","JOIN_ONE_TO

_ONE","KEEP_ALL",fmSJR50M,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_FloodIn2","fcWUFloodIn2")

 logger.info("spatial join to add Runoff50m completed")

515

###

#################

 # SJ: RunoffWshd

###

#################

 fmSJRWSHD = arcpy.FieldMappings()

 fmSJRWSHD.addTable("fcWUFloodIn2")

 fmSJRWSHD.addTable("fcRunoffWshd")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","SlopeWshd","Runoff50m","RunoffWshd"]

 for field in fmSJRWSHD.fields:

 if field.name not in keepers:

 fmSJRWSHD.removeFieldMap(fmSJRWSHD.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUFloodIn2","fcRunoffWshd","WU_FloodIn","JOIN_ONE_TO

_ONE","KEEP_ALL",fmSJRWSHD,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_FloodIn","fcWUFloodIn")

 logger.info("spatial join to add RunoffWshd completed")

 ## Add FloodIn field and set initial value to 0

 actions.DeleteField("fcWUFloodIn","FloodIn")

 arcpy.AddField_management("fcWUFloodIn", "FloodIn", "SHORT")

 arcpy.CalculateField_management("fcWUFloodIn","FloodIn","0","VB","#")

 logger.info("field FloodIn added and initial value set to 0")

 ## Calculate sum of SlopeWshd, Runoff50m, and RunoffWshd and assign points to FloodIn

arcpy.SelectLayerByAttribute_management("fcWUFloodIn","NEW_SELECTION","""("Slope

Wshd"+ "RunoffWshd"+ "Runoff50m") > 2""")

 arcpy.CalculateField_management("fcWUFloodIn","FloodIn","1","VB","#")

arcpy.SelectLayerByAttribute_management("fcWUFloodIn","NEW_SELECTION","""("Slope

Wshd"+ "RunoffWshd"+ "Runoff50m") > 4""")

 arcpy.CalculateField_management("fcWUFloodIn","FloodIn","2","VB","#")

 logger.info("points assigned to certain Wetland Units")

 ## Clean up

 if arcpy.Exists("WU_FloodIn0"):

 arcpy.Delete_management("WU_FloodIn0")

516

 if arcpy.Exists("WU_FloodIn1"):

 arcpy.Delete_management("WU_FloodIn1")

 if arcpy.Exists("WU_FloodIn2"):

 arcpy.Delete_management("WU_FloodIn2")

517

5.7.6 FloodArea: Flood Attenuation Opportunity

File Name: FloodArea.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/8/2017 (modified 11/10/2017)

Purpose:

Floodplain (Y/N): Input to numerous Water Quality and Flood Attenuation metrics

FloodArea: Input to Flood Attenuation / Opportunity; Max 2 points (all wetlands, but only

Floodplain wetlands will score high enough to get points)

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineFloodArea(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAOpportun.FloodArea")

 ## Clean up if needed

 if arcpy.Exists("WU_FloodArea1"):

 arcpy.Delete_management("WU_FloodArea1")

 if arcpy.Exists("WU_FloodArea"):

 arcpy.Delete_management("WU_FloodArea")

 ## Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly,"fcWU")

 arcpy.MakeFeatureLayer_management(globalvars.srcFPARAFEMA,"fcFPARAFEMA")

 arcpy.MakeFeatureLayer_management(globalvars.srcPeatlands,"fcPeatlands")

 logger.info("feature layers ready")

 ## Intersect floodplain and Wetland Units

 arInputs = ["fcFPARAFEMA","fcWU"]

 arcpy.Intersect_analysis(arInputs,"WU_FloodArea1","ONLY_FID","#","INPUT")

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea1","fcWUFloodArea1")

 logger.info("floodplain intersected with wetland units")

 ## Add field to store floodplain area

 actions.DeleteField("fcWUFloodArea1","FloodAreaAF")

 arcpy.AddField_management("fcWUFloodArea1", "FloodAreaAF", "FLOAT")

518

arcpy.CalculateField_management("fcWUFloodArea1","FloodAreaAF","[Shape_Area]","VB",

"#")

 logger.info("field FloodAreaAF added to store floodplain area")

###

################

 ## Spatial join floodplain selection to Wetland Units and sum floodplain area.

###

################

 fieldmappings = arcpy.FieldMappings()

 fieldmappings.addTable("fcWU")

 fieldmappings.addTable("fcWUFloodArea1")

 fldKeyIndex = fieldmappings.findFieldMapIndex("FloodAreaAF")

 fieldmap = fieldmappings.getFieldMap(fldKeyIndex)

 fieldmap.mergeRule = "sum"

 fieldmappings.replaceFieldMap(fldKeyIndex, fieldmap)

 keepers = ["Shape_Length","Shape_Area","WUKey","FloodAreaAF"]

 for field in fieldmappings.fields:

 if field.name not in keepers:

 fieldmappings.removeFieldMap(fieldmappings.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWU","fcWUFloodArea1","WU_FloodArea","JOIN_ONE_TO_O

NE","KEEP_ALL",fieldmappings)

 arcpy.MakeFeatureLayer_management("WU_FloodArea","fcWUFloodArea")

 logger.info("spatuak join completed to sum floodplain area")

###

################

 ## Add fields to store Flood Area Ratio and Flood Area points

 actions.DeleteField("fcWUFloodArea","FloodRatio")

 arcpy.AddField_management("fcWUFloodArea", "FloodRatio", "FLOAT")

 arcpy.CalculateField_management("fcWUFloodArea","FloodRatio","0","VB","#")

 logger.info("field FloodRatio added and initial point value set to 0")

 actions.DeleteField("fcWUFloodArea","FloodArea")

 arcpy.AddField_management("fcWUFloodArea", "FloodArea", "SHORT")

 arcpy.CalculateField_management("fcWUFloodArea","FloodArea","0","VB","#")

 logger.info("field FloodArea added and initial point value set to 0")

519

 ## Calculate the ratio of floodplain are to total Wetland Units Area

arcpy.CalculateField_management("fcWUFloodArea","FloodRatio","[FloodAreaAF]/[Shape_A

rea]","VB","#")

 logger.info("field FloodRation calculated")

 ## Assign Points

arcpy.SelectLayerByAttribute_management("fcWUFloodArea","NEW_SELECTION",""""Floo

dRatio" > 0.1""")

 arcpy.CalculateField_management("fcWUFloodArea","FloodArea","1","VB","#")

arcpy.SelectLayerByAttribute_management("fcWUFloodArea","NEW_SELECTION",""""Floo

dRatio" > 0.5""")

 arcpy.CalculateField_management("fcWUFloodArea","FloodArea","2","VB","#")

 logger.info("points assigned to field FloodArea")

 arcpy.SelectLayerByAttribute_management("fcWUFloodArea", "CLEAR_SELECTION")

 ## Select Wetland Units that contain peat deposits

arcpy.SelectLayerByLocation_management("fcWUFloodArea","INTERSECT","fcPeatlands","

#","NEW_SELECTION")

 arcpy.CalculateField_management("fcWUFloodArea","FloodArea","0","VB","#")

 logger.info("points assigned to wetland units that contain peat deposits")

 arcpy.SelectLayerByAttribute_management("fcWUFloodArea", "CLEAR_SELECTION")

 ## Add field Floodplain to Wetland Units attribute table and set initial value to "N"

 actions.DeleteField("fcWUFloodArea","Floodplain")

 arcpy.AddField_management("fcWUFloodArea", "Floodplain", "TEXT",2)

 arcpy.CalculateField_management("fcWUFloodArea","Floodplain","'N'","PYTHON","#")

 logger.info("field Floodplain added and initial value set to 'N'")

 ## Select Wetland Units that have at least 10% of their area in a FEMA floodplain or Active

River Area

arcpy.SelectLayerByAttribute_management("fcWUFloodArea","NEW_SELECTION",""""Floo

dArea" > 0""")

 arcpy.CalculateField_management("fcWUFloodArea","Floodplain","'Y'","PYTHON","#")

 logger.info("field Floodplain identified in selected wetlanf units")

 arcpy.SelectLayerByAttribute_management("fcWUFloodArea", "CLEAR_SELECTION")

 ## Clean up

 if arcpy.Exists("WU_FloodArea1"):

 arcpy.Delete_management("WU_FloodArea1")

520

5.7.7 Runoff50: Flood Attenuation Opportunity

File Name: Runoff50m.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 6/16/2016 (modified 11/16/2017)

Purpose:

Flood Attenuation Function / Opportunity aspect

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineRunoff50m(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAOpportun.Runoff50m")

 # Clean up if needed

 if arcpy.Exists("WU_Runoff50m1"):

 arcpy.Delete_management("WU_Runoff50m1")

 if arcpy.Exists("Buffer50mRun"):

 arcpy.Delete_management("Buffer50mRun")

 if arcpy.Exists("Buffer50mRun_diss"):

 rcpy.Delete_management("Buffer50mRun_diss")

 if arcpy.Exists("WU_Runoff50m"):

 arcpy.Delete_management("WU_Runoff50m")

 # Setting python variables

 fcRunoffLand = arcpy.mapping.Layer(globalvars.srcRunoffLand)

 fcBuffer50m = arcpy.mapping.Layer(globalvars.srcBuffer50m)

 logger.info("feature layers ready")

 ## Create feature class to store intermediate results for Runoff50m

 arcpy.CopyFeatures_management(WetlandPoly,"WU_Runoff50m1","#","0","0","0")

 arcpy.MakeFeatureLayer_management("WU_Runoff50m1", "fcWURunoff50m1")

 logger.info("feature class WU_Runoff50m1 created")

 # Intersect the 50m buffers and the runoff land uses

 arInputData = [fcBuffer50m,fcRunoffLand]

 arcpy.Intersect_analysis(arInputData,"Buffer50mRun","ALL",output_type="INPUT")

 logger.info("intersected runoff land uses with 50m buffers")

521

 fcBuffer50mRun = arcpy.mapping.Layer(r"Buffer50mRun")

 # Dissolve runoff lands by wetland buffer

 arcpy.Dissolve_management(fcBuffer50mRun,"Buffer50mRun_diss","WUKey","BufferArea

FIRST","MULTI_PART","DISSOLVE_LINES")

 fcBuffer50mRun_diss = arcpy.mapping.Layer(r"Buffer50mRun_diss")

 logger.info("dissolved runoff lands by wetland buffer")

 # Add field and calculate ration of runoff are to total drainage

 actions.DeleteField(fcBuffer50mRun_diss,"Run50mRat")

 arcpy.AddField_management(fcBuffer50mRun_diss, "Run50mRat", "FLOAT")

arcpy.CalculateField_management(fcBuffer50mRun_diss,"Run50mRat","[Shape_Area]/[FIRST

_BufferArea]","VB","#")

 logger.info("field Run50mRat added and calculated")

 # Join ratio of runoff land to Wetland Units

arcpy.AddJoin_management("fcWURunoff50m1","WUKey","Buffer50mRun_diss","WUKey",

"KEEP_ALL")

 logger.info("ratio of runoff land joined to Wetland Units")

 # Export joined data

 #arcpy.CopyFeatures_management("fcWURunoff50m1","WU_Runoff50m","#","0","0","0")

arcpy.FeatureClassToFeatureClass_conversion("fcWURunoff50m1",arcpy.env.workspace,"WU

_Runoff50m")

 fcWURunoff50m = arcpy.mapping.Layer(r"WU_Runoff50m")

 logger.info("joined data exported")

 ## Remove Join

 arcpy.RemoveJoin_management("fcWURunoff50m1")

 logger.info("joined removed")

 # Update Null records to 0 in the Run50mRat field

arcpy.SelectLayerByAttribute_management(fcWURunoff50m,"NEW_SELECTION",""""Buffe

r50mRun_diss_Run50mRat" IS NULL""")

arcpy.CalculateField_management(fcWURunoff50m,"Buffer50mRun_diss_Run50mRat","0","

VB","#")

 logger.info("Null records updated to 0 in the Run50mRat field")

 # Add field to Wetland Units and set initial point value to zero

 actions.DeleteField(fcWURunoff50m,"Runoff50m")

522

 arcpy.AddField_management(fcWURunoff50m, "Runoff50m", "SHORT")

 arcpy.CalculateField_management(fcWURunoff50m,"Runoff50m","0","VB","#")

 logger.info("field Runoff50m added to Wetland Units and initial point value set to zero")

 # Assign Points

arcpy.SelectLayerByAttribute_management(fcWURunoff50m,"NEW_SELECTION",""""Buffe

r50mRun_diss_Run50mRat" > 0.1""")

 arcpy.CalculateField_management(fcWURunoff50m,"Runoff50m","1","VB","#")

arcpy.SelectLayerByAttribute_management(fcWURunoff50m,"NEW_SELECTION",""""Buffe

r50mRun_diss_Run50mRat" > 0.33""")

 arcpy.CalculateField_management(fcWURunoff50m,"Runoff50m","2","VB","#")

 arcpy.SelectLayerByAttribute_management(fcWURunoff50m, "CLEAR_SELECTION")

 logger.info("points assigned to wetland units")

 # Update NULL values with 0

arcpy.SelectLayerByAttribute_management(fcWURunoff50m,"NEW_SELECTION",""""Runo

ff50m" IS NULL""")

 arcpy.CalculateField_management(fcWURunoff50m,"Runoff50m","0","VB","#")

 logger.info("Null records updated to 0 in the Runoff50m field")

 arcpy.SelectLayerByAttribute_management(fcWURunoff50m, "CLEAR_SELECTION")

 if arcpy.Exists("WU_Runoff50m1"):

 arcpy.Delete_management("WU_Runoff50m1")

 if arcpy.Exists("Buffer50mRun"):

 arcpy.Delete_management("Buffer50mRun")

 if arcpy.Exists("Buffer50mRun_diss"):

 arcpy.Delete_management("Buffer50mRun_diss")

523

5.7.8 RunoffWshd: Flood Attenuation Opportunity

File Name: RunoffWshd.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 1/31/2017 (modified 11/10/2017)

Purpose:

Flood Attenuation Function / Opportunity aspect

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineRunoffWshd(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAOpportun.RunoffWshd")

 # Clean up if needed

 if arcpy.Exists("DrainAreaRun"):

 arcpy.Delete_management("DrainAreaRun")

 if arcpy.Exists("DrainAreaRun_diss"):

 arcpy.Delete_management("DrainAreaRun_diss")

 if arcpy.Exists("WU_RunoffWshd"):

 arcpy.Delete_management("WU_RunoffWshd")

 if arcpy.Exists("WU_RunoffWshd1"):

 arcpy.Delete_management("WU_RunoffWshd1")

 # Setting python variables

 fcDA27m = arcpy.mapping.Layer(globalvars.srcDrainageArea)

 fcRL = arcpy.mapping.Layer(globalvars.srcRunoffLand)

 logger.info("feature layers ready")

 ## Create feature class to store intermediate results for Runoff50m

 arcpy.CopyFeatures_management(WetlandPoly,"WU_RunoffWshd1","#","0","0","0")

 arcpy.MakeFeatureLayer_management("WU_RunoffWshd1", "fcWURunoffWshd1")

 logger.info("feature class WU_RunoffWshd1 created")

 # Intersect the drainage areas and the runoff land uses (Takes 32 minutes 23 seconds to run)

 arInputData = [fcDA27m,fcRL]

 arcpy.Intersect_analysis(arInputData,"DrainAreaRun","ALL","#","INPUT")

 fcDrainAreaRun = arcpy.mapping.Layer(r"DrainAreaRun")

524

 logger.info("drainage areas and the disturbed land uses intersected")

 # Dissolve runoff lands by drainage area (Takes around 23 hours)

 arcpy.Dissolve_management(fcDrainAreaRun,"DrainAreaRun_diss","WUKey","CntrWshd

FIRST","MULTI_PART","DISSOLVE_LINES")

 fcDrainAreaRunDiss = arcpy.mapping.Layer(r"DrainAreaRun_diss")

 logger.info("runoff lands dissolved by drainage area")

 # Add field to DrainAreaRun_diss and calculate ratio of runoff area to total drainange

 actions.DeleteField(fcDrainAreaRunDiss,"RunWshdRat")

 arcpy.AddField_management(fcDrainAreaRunDiss, "RunWshdRat", "FLOAT")

 arcpy.CalculateField_management(fcDrainAreaRunDiss, "RunWshdRat",

"[SHAPE_Area]/[FIRST_CntrWshd]", "VB")

 logger.info("field RunWshdRat added to DrainAreaRun_diss and calculated")

 # Join ratio of runoff land to Wetland Units

arcpy.AddJoin_management("fcWURunoffWshd1","WUKey",fcDrainAreaRunDiss,"WUKey",

"KEEP_ALL")

 logger.info("ratio of runoff land joined to wetland units")

 # Export joined data

 #arcpy.CopyFeatures_management("fcWURunoffWshd1", "WU_RunoffWshd")

arcpy.FeatureClassToFeatureClass_conversion("fcWURunoffWshd1",arcpy.env.workspace,"W

U_RunoffWshd")

 fcRunoffWshd = arcpy.mapping.Layer(r"WU_RunoffWshd")

 logger.info("joined data exported")

 arcpy.RemoveJoin_management("fcWURunoffWshd1")

 # Set NULL values in the DistWshdRat to 0

arcpy.SelectLayerByAttribute_management(fcRunoffWshd,"NEW_SELECTION",""""DrainAr

eaRun_diss_RunWshdRat" IS NULL""")

arcpy.CalculateField_management(fcRunoffWshd,"DrainAreaRun_diss_RunWshdRat","0","V

B","#")

 logger.info("null values in DistWshdRat set to 0")

 arcpy.SelectLayerByAttribute_management(fcRunoffWshd, "CLEAR_SELECTION")

 # Add field to Wetland Units and set initial point value to zero

 actions.DeleteField(fcRunoffWshd,"RunoffWshd")

 arcpy.AddField_management(fcRunoffWshd, "RunoffWshd", "SHORT")

 arcpy.CalculateField_management(fcRunoffWshd, "RunoffWshd", "0", "VB")

 logger.info("field RunoffWshd added to Wetland Units and initial point value set to zero")

525

 # Assign points

arcpy.SelectLayerByAttribute_management(fcRunoffWshd,"NEW_SELECTION",""""DrainAr

eaRun_diss_RunWshdRat" > 0.1""")

 arcpy.CalculateField_management(fcRunoffWshd, "RunoffWshd", "1", "VB")

arcpy.SelectLayerByAttribute_management(fcRunoffWshd,"NEW_SELECTION",""""DrainAr

eaRun_diss_RunWshdRat" > 0.25""")

 arcpy.CalculateField_management(fcRunoffWshd, "RunoffWshd", "2", "VB")

 logger.info("points assigned to field RunoffWshd")

 arcpy.SelectLayerByAttribute_management(fcRunoffWshd, "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("DrainAreaRun"):

 arcpy.Delete_management("DrainAreaRun")

 if arcpy.Exists("DrainAreaRun_diss"):

 arcpy.Delete_management("DrainAreaRun_diss")

 if arcpy.Exists("WU_RunoffWshd1"):

 arcpy.Delete_management("WU_RunoffWshd1")

526

5.7.9 SlopeWshd: Flood Attenuation Opportunity

File Name: SlopeWshd.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 5/12/2016 (modified 12/07/2017)

Purpose:

Input to Flood Attenuation Function / Opportunity aspect

#!/usr/bin/python

import sys, os, gc

sys.path.append("../../..")

gc.enable()

import logging

import arcpy

from arcpy.sa import *

from globalvars import globalvars

from utilities import actions

def Get_V(aKey, smallDict):

 try:

 return smallDict[aKey]

 except:

 return (-1)

def DetermineSlopeWshd(WetlandPoly):

 arcpy.CheckOutExtension("Spatial")

527

 logger = logging.getLogger("WFA.FloodAttn.FAOpportun.SlopeWshd")

 # Clean up if needed

 if arcpy.Exists(r"WU_SlopeWshd"):

 arcpy.Delete_management(r"WU_SlopeWshd")

 if arcpy.Exists(r"WU_SlopeWshd1"):

 arcpy.Delete_management(r"WU_SlopeWshd1")

 # Setting python variables

 parID = "WUKey"

 parID2 = "WUKey_1"

 dbf = "slope_wshd"

 temp_dir =

"M:\\wr\\WTRSHD_BRANCH_INTERNAL\\WETLAND\\WorkingFiles\\slope_wshd_temp"

 if not os.path.exists(temp_dir):

 os.mkdir(temp_dir)

 if arcpy.Exists(temp_dir + "\\tempGDB.gdb"):

 arcpy.Delete_management(temp_dir + "\\tempGDB.gdb")

 arcpy.CreateFileGDB_management(temp_dir, "tempGDB")

 #arcpy.CopyFeatures_management(globalvars.srcDrainageArea, "DrainageArea2")

 fcDA = arcpy.mapping.Layer(globalvars.srcDrainageArea)

#arcpy.MakeRasterLayer_management(r"M:\dems\ned_slope_aspect.gdb\NED_3meter_meters

_augmented_slope_pct", "fcNED3mAugSlpPct")

 logger.info("feature layers ready")

 # Add field MEAN to store zonal statistics outputs

 actions.DeleteField(fcDA,"MEAN")

 arcpy.AddField_management(fcDA, "MEAN", "SHORT")

528

 logger.info("field MEAN added to store zonal statistics outputs")

 orig_dir = arcpy.env.workspace

 arcpy.env.workspace = temp_dir + "\\tempGDB.gdb"

 arcpy.env.overwriteOutput = True

 # Zonal Statistics on DrainageArea, which contains multiple overlapping polygons

 ## Defining neighbors using spatial join

 arcpy.SpatialJoin_analysis(fcDA, fcDA, "SD" ,"JOIN_ONE_TO_MANY")

 #joinLR = arcpy.mapping.Layer(r"SD.shp")

 logger.info("Spatial join completed to define neighbors")

 ## Creating empty dictionary and load data

 dictFeatures = {}

 with arcpy.da.SearchCursor(fcDA, parID) as cursor:

 for row in cursor:

 dictFeatures[row[0]]=()

 del row, cursor

 logger.info("Empty dictionary created and data loaded")

 ## Assigning neighbors

 with arcpy.da.SearchCursor(arcpy.env.workspace + "\\SD", (parID,parID2)) as cursor:

 for row in cursor:

 aKey=row[0]

 aList=dictFeatures[aKey]

 aList+=(row[1],)

 dictFeatures[aKey]=aList

 del row, cursor

 logger.info("Neighbors assigned")

529

 ## Defining non-overlapping subsets and running zonal statistics on each

 runNo=0

 while (True):

 toShow,toHide=(),()

 nF=len(dictFeatures)

 for item in dictFeatures:

 if item not in toShow and item not in toHide:

 toShow+=(item,)

 toHide+=(dictFeatures[item])

 m=len(toShow)

 quer='"WUKey" IN '+str(toShow)

 if m==1:

 quer='"WUKey" = '+str(toShow[0])

 fcDA.definitionQuery=quer

 runNo+=1

 print("Run %i, %i polygon(s) found" % (runNo,m))

 print("Running Statistics...")

 arcpy.env.extent = fcDA.getExtent()

 zonalTable = ZonalStatisticsAsTable(fcDA, parID, globalvars.srcSlopePCT, dbf, "DATA",

"MEAN")

 print("Data transfer...")

 smallDict={}

 with arcpy.da.SearchCursor(dbf, ("WUKEY","MEAN")) as cursor:

 for row in cursor:

 smallDict[row[0]]=row[1]

 del row, cursor

 with arcpy.da.UpdateCursor(fcDA, (parID,"MEAN")) as cursor:

 for row in cursor:

 aKey=row[0]

 row[1]=Get_V(aKey, smallDict)

530

 cursor.updateRow(row)

 del row, cursor

 for item in toShow:

 del dictFeatures[item]

 m=len(dictFeatures)

 if m==0:

 break

 gc.collect()

 fcDA.definitionQuery=""

 arcpy.env.extent = fcDA.getExtent()

 logger.info("zonal statistics completed and appended to DrainageArea")

 arcpy.env.workspace = orig_dir

 ## Export the joined data to a Feature Class

 arcpy.CopyFeatures_management(fcDA, "WU_SlopeWshd1")

 fcSlopeWshd1 = arcpy.mapping.Layer(r"WU_SlopeWshd1")

 logger.info("joined data exported as WU_SlopeWshd1")

 ## Rename MEAN field

 actions.DeleteField(fcSlopeWshd1,"MnSlopeWshd")

 arcpy.AddField_management(fcSlopeWshd1, "MnSlopeWshd", "SHORT")

#arcpy.CalculateField_management(fcSlopeWshd1,"MnSlopeWshd","[slope_wshd_MEAN]","

VB","#")

 arcpy.CalculateField_management(fcSlopeWshd1,"MnSlopeWshd","[MEAN]","VB","#")

 logger.info("MEAN field renamed as MnSlopeWshd")

 ## Join the slope values to Wetland Units

531

arcpy.AddJoin_management(WetlandPoly,"WUKey",fcSlopeWshd1,"WUKey","KEEP_ALL")

 ## Export joined data

arcpy.FeatureClassToFeatureClass_conversion(WetlandPoly,arcpy.env.workspace,"WU_Slope

Wshd")

 fcWUSlopeWshd = arcpy.mapping.Layer(r"WU_SlopeWshd")

 logger.info("joined data exported")

 arcpy.RemoveJoin_management(WetlandPoly)

 ## Add field to Wetland Unites and set initial point value to zero

 actions.DeleteField(fcWUSlopeWshd,"SlopeWshd")

 arcpy.AddField_management(fcWUSlopeWshd, "SlopeWshd", "SHORT")

 arcpy.CalculateField_management(fcWUSlopeWshd,"SlopeWshd","0","VB","#")

 logger.info("field SlopeWshd added to Wetland Unites and initial point set value to zero")

 ## Assign points

#arcpy.SelectLayerByAttribute_management(fcWUSlopeWshd,"NEW_SELECTION",""""Slop

eWshd1_MedSlopeWshd" > 5""")

arcpy.SelectLayerByAttribute_management(fcWUSlopeWshd,"NEW_SELECTION",""""WU_

SlopeWshd1_MnSlopeWshd" > 5""")

 arcpy.CalculateField_management(fcWUSlopeWshd,"SlopeWshd","1","VB","#")

#arcpy.SelectLayerByAttribute_management(fcWUSlopeWshd,"NEW_SELECTION",""""Slop

eWshd1_MedSlopeWshd" > 15""")

arcpy.SelectLayerByAttribute_management(fcWUSlopeWshd,"NEW_SELECTION",""""WU_

SlopeWshd1_MnSlopeWshd" > 15""")

532

 arcpy.CalculateField_management(fcWUSlopeWshd,"SlopeWshd","2","VB","#")

 logger.info("points assigned to field SlopeWshd")

 arcpy.SelectLayerByAttribute_management(fcWUSlopeWshd, "CLEAR_SELECTION")

 if arcpy.Exists(r"WU_SlopeWshd1"):

 arcpy.Delete_management(r"WU_SlopeWshd1")

533

5.7.10 StreamEdge: Flood Attenuation Opportunity

File Name: StreamEdge.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 8/30/2016 (modified 10/31/2017)

Purpose:

Used in Flood Attenuation Function / Potential aspect / Runoff

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineStreamEdge(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAOpportun.StreamEdge")

 # Clean up if needed

 if arcpy.Exists("Rivers"):

 arcpy.Delete_management("Rivers")

 if arcpy.Exists("WUbyRivers"):

 arcpy.Delete_management("WUbyRivers")

 if arcpy.Exists("WURiverLines"):

 arcpy.Delete_management("WURiverLines")

 if arcpy.Exists("RiverEdges"):

 arcpy.Delete_management("RiverEdges")

 if arcpy.Exists("WUStream"):

 arcpy.Delete_management("WUStream")

 if arcpy.Exists("WU_StreamEdge1"):

 arcpy.Delete_management("WU_StreamEdge1")

 if arcpy.Exists("WU_StreamEdge"):

 arcpy.Delete_management("WU_StreamEdge")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly,"fcWU")

 #arcpy.MakeFeatureLayer_management(globalvars.srcInput,"fcENWI")

 arcpy.MakeFeatureLayer_management(globalvars.srcNHDFlowline, "fcNHDFlowline")

 arcpy.MakeFeatureLayer_management(globalvars.srcRivers,"fcRivers")

 logger.info("feature layers ready")

534

###

################

 # PART 1: RIVER LENGTH

###

################

 # Select NWI Rivers

 '''strWHERE = """"ATTRIBUTE" LIKE 'R%'"""

 arcpy.SelectLayerByAttribute_management("fcENWI","NEW_SELECTION",strWHERE)

 arcpy.CopyFeatures_management("fcENWI", "Rivers")

 arcpy.MakeFeatureLayer_management(r"Rivers","fcRivers")

 logger.info("NWI Rivers selected and exported")'''

 # Select Wetland Units that share a boundary with a river and export them

arcpy.SelectLayerByLocation_management("fcWU","INTERSECT","fcRivers","#","NEW_SE

LECTION")

 arcpy.CopyFeatures_management("fcWU", "WUbyRivers")

 arcpy.MakeFeatureLayer_management(r"WUbyRivers","fcWUbyRivers")

 logger.info("Wetland Units that share a boundary with a river selected and exported")

 # Convert Wetland polygons to lines

arcpy.PolygonToLine_management("fcWUbyRivers","WURiverLines","IGNORE_NEIGHBO

RS")

 arcpy.MakeFeatureLayer_management(r"WURiverLines","fcWURiverLines")

 logger.info("Wetland polygons converted to lines")

 # Retain only the wet perimeter lines

 arLayers = ["fcWURiverLines", "fcRivers"]

 arcpy.Intersect_analysis(arLayers,"RiverEdges","ONLY_FID","#","INPUT")

 arcpy.MakeFeatureLayer_management("RiverEdges","fcRiverEdges")

 logger.info("only the wet perimeter lines retained")

 # Add field and calculate wet perimeter in RiverEdges

 actions.DeleteField("fcRiverEdges","RiverPerim")

 arcpy.AddField_management("fcRiverEdges", "RiverPerim", "FLOAT")

arcpy.CalculateField_management("fcRiverEdges","RiverPerim","[Shape_Length]","VB","#")

 logger.info("field RiverPerim added and wet perimeter in RiverEdges calculated")

 # Spatial Join Wetland Units to RiverEdges

 arcpy.SelectLayerByAttribute_management("fcWURiverLines", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcRivers", "CLEAR_SELECTION")

535

 arcpy.SelectLayerByAttribute_management("fcWU", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcRiverEdges", "CLEAR_SELECTION")

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable("fcWU")

 fmSJ.addTable("fcRiverEdges")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","RiverPerim"]

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

 fldKeyIndex = fmSJ.findFieldMapIndex("RiverPerim")

 fieldmap = fmSJ.getFieldMap(fldKeyIndex)

 fieldmap.mergeRule = "Sum"

 fmSJ.replaceFieldMap(fldKeyIndex, fieldmap)

arcpy.SpatialJoin_analysis("fcWU","fcRiverEdges","WU_StreamEdge1","JOIN_ONE_TO_ON

E","KEEP_ALL",fmSJ,"INTERSECT")

 arcpy.MakeFeatureLayer_management("WU_StreamEdge1","fcWUStreamEdge1")

 logger.info("Spatial Join Wetland Units to RiverEdges completed")

###

################

 # PART 2: STREAM LENGTH

###

################

 # Intersect stream lengths with Wetland Units

 arLayers = ["fcWUStreamEdge1", "fcNHDFlowline"]

 arcpy.Intersect_analysis(arLayers,"WUStream","ONLY_FID","#","INPUT")

 arcpy.MakeFeatureLayer_management("WUStream","fcWUStream")

 logger.info("stream lengths intersected with Wetland Units")

 # Add field to WUStream to store stream length

 actions.DeleteField("fcWUStream","StreamL")

 arcpy.AddField_management("fcWUStream", "StreamL", "FLOAT")

 arcpy.CalculateField_management("fcWUStream","StreamL","[Shape_Length]","VB","#")

 logger.info("field StreamL created and calculated to store stream length")

 ## Sum the stream lengths within each WU

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable("fcWUStreamEdge1")

536

 fmSJ.addTable("fcWUStream")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","RiverPerim","StreamL"]

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

 fldKeyIndex = fmSJ.findFieldMapIndex("StreamL")

 fieldmap = fmSJ.getFieldMap(fldKeyIndex)

 fieldmap.mergeRule = "Sum"

 fmSJ.replaceFieldMap(fldKeyIndex, fieldmap)

arcpy.SpatialJoin_analysis("fcWUStreamEdge1","fcWUStream","WU_StreamEdge","JOIN_O

NE_TO_ONE","KEEP_ALL",fmSJ,"INTERSECT")

 arcpy.MakeFeatureLayer_management("WU_StreamEdge","fcWUStreamEdge")

 logger.info("spatial join completed to sum the stream lengths within each WU")

###

################

 # PART 3: Calculate ratio and assign points

###

################

 ## Convert Null values to 0

 strWHERE = """"RiverPerim" IS NULL"""

arcpy.SelectLayerByAttribute_management("fcWUStreamEdge","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUStreamEdge","RiverPerim","0","VB","#")

 strWHERE = """"StreamL" IS NULL"""

arcpy.SelectLayerByAttribute_management("fcWUStreamEdge","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUStreamEdge","StreamL","0","VB","#")

 logger.info("Null values converted to 0")

 arcpy.SelectLayerByAttribute_management("fcWUStreamEdge", "CLEAR_SELECTION")

 ## Create field StreamRatio and set initial values to 0

 actions.DeleteField("fcWUStreamEdge","StreamRatio")

 arcpy.AddField_management("fcWUStreamEdge", "StreamRatio", "FLOAT")

 arcpy.CalculateField_management("fcWUStreamEdge","StreamRatio","0","VB","#")

537

 ## Calculate field StreamRatio values

arcpy.CalculateField_management("fcWUStreamEdge","StreamRatio","([RiverPerim]+[Stream

L])/([Shape_Area]^0.5)","VB","#")

 logger.info("field StreamRatio created and calculated for wetland units")

 ## Create field StreamEdge and set initial values to 0

 actions.DeleteField("fcWUStreamEdge","StreamEdge")

 arcpy.AddField_management("fcWUStreamEdge", "StreamEdge", "SHORT")

 arcpy.CalculateField_management("fcWUStreamEdge","StreamEdge","0","VB","#")

 ## Assign StreamEdge point values

 strWHERE = """"StreamRatio" > 1"""

arcpy.SelectLayerByAttribute_management("fcWUStreamEdge","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUStreamEdge","StreamEdge","1","VB","#")

 strWHERE = """"StreamRatio" > 3.4"""

arcpy.SelectLayerByAttribute_management("fcWUStreamEdge","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUStreamEdge","StreamEdge","2","VB","#")

 logger.info("field StreamEdge created and calculated for wetland units")

 arcpy.SelectLayerByAttribute_management("fcWUStreamEdge", "CLEAR_SELECTION")

 # Clean Up

 if arcpy.Exists("Rivers"):

 arcpy.Delete_management("Rivers")

 if arcpy.Exists("WUbyRivers"):

 arcpy.Delete_management("WUbyRivers")

 if arcpy.Exists("WURiverLines"):

 arcpy.Delete_management("WURiverLines")

 if arcpy.Exists("RiverEdges"):

 arcpy.Delete_management("RiverEdges")

 if arcpy.Exists("WUStream"):

 arcpy.Delete_management("WUStream")

 if arcpy.Exists("WU_StreamEdge1"):

 arcpy.Delete_management("WU_StreamEdge1")

538

5.7.11 Flood Attenuation Potential

File Name: FAPotential.py

Developer: Yibing Han

Date: 12/13/2017

Purpose:

This script handles the execution of all the Flood Attenuation Potential metrics.

import datetime

import logging

import traceback

import arcpy

from Variables import VegAll, VegPerUng, VegWoody

from Factors import VegFA, Runoff

from Aspects import FAPotential

def procFAPotential(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAPotential")

 ##

 ## 1. Run Variables

 ##

 VegAll.DetermineVegAll(WetlandPoly)

 VegWoody.CalcVegWoody(WetlandPoly)

 #SeasonPond, Microtopo, SLOPE, WFlowPath, VegPerUng were executed with WQuality

 ##

 ## 2. Run Factors

 ##

 #Headwater: executed with WQuality

 #LowSlope: executed with WQuality

 VegFA.DetermineVegFA(WetlandPoly)

 Runoff.DetermineRunoff(WetlandPoly)

 #SWoutflow: executed with WQuality

539

 ##

 ## 3. Run Aspect

 ##

 FAPotential.DetermineFAPotential(WetlandPoly)

540

5.7.12 Flood Attenuation Potential Aspects

File Name: FAPotential.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 12/21/2016 (modified 10/31/2017)

Purpose:

Flood Attenuation Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import arcpy

from utilities import actions

import logging

def DetermineFAPotential(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAPotential.FAPotential")

 # Clean up if needed

 if arcpy.Exists("WU_FAPotential"):

 arcpy.Delete_management("WU_FAPotential")

 if arcpy.Exists("WU_FAPotential1"):

 arcpy.Delete_management("WU_FAPotential1")

 if arcpy.Exists("WU_FAPotential2"):

 arcpy.Delete_management("WU_FAPotential2")

 if arcpy.Exists("WU_FAPotential3"):

 arcpy.Delete_management("WU_FAPotential3")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_Headwater","fcHeadwater")

 arcpy.MakeFeatureLayer_management(r"WU_LowSlope","fcLowSlope")

 arcpy.MakeFeatureLayer_management(r"WU_VegFA","fcVegFA")

 arcpy.MakeFeatureLayer_management(r"WU_Runoff","fcRunoff")

 arcpy.MakeFeatureLayer_management(r"WU_SWOutflow","fcSWOutflow")

 logger.info("feature layers ready")

###

#################

 # SJ: Headwater & LowSlope

###

#################

541

 fmSJHWLS = arcpy.FieldMappings()

 fmSJHWLS.addTable("fcHeadwater")

 fmSJHWLS.addTable("fcLowSlope")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Headwater","LowSlope"]

 for field in fmSJHWLS.fields:

 if field.name not in keepers:

 fmSJHWLS.removeFieldMap(fmSJHWLS.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcHeadwater","fcLowSlope","WU_FAPotential1","JOIN_ONE_T

O_ONE","KEEP_ALL",fmSJHWLS,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_FAPotential1","fcFAPotential1")

 logger.info("spatial join Headwater and LowSlope completed")

###

#################

 # SJ: VegFA

###

#################

 fmSJVFA = arcpy.FieldMappings()

 fmSJVFA.addTable("fcFAPotential1")

 fmSJVFA.addTable("fcVegFA")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Headwater","LowSlope","VegFA"]

 for field in fmSJVFA.fields:

 if field.name not in keepers:

 fmSJVFA.removeFieldMap(fmSJVFA.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcFAPotential1","fcVegFA","WU_FAPotential2","JOIN_ONE_TO

_ONE","KEEP_ALL",fmSJVFA,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_FAPotential2","fcFAPotential2")

 logger.info("spatial join VegFA completed")

###

#################

 # SJ: Runoff

542

###

#################

 fmSJRO = arcpy.FieldMappings()

 fmSJRO.addTable("fcFAPotential2")

 fmSJRO.addTable("fcRunoff")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","Headwater","LowSlope","VegFA","Runoff"]

 for field in fmSJRO.fields:

 if field.name not in keepers:

 fmSJRO.removeFieldMap(fmSJRO.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcFAPotential2","fcRunoff","WU_FAPotential3","JOIN_ONE_TO

_ONE","KEEP_ALL",fmSJRO,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_FAPotential3","fcFAPotential3")

 logger.info("spatial join Runoff completed")

###

#################

 # SJ: SWOutflow2

###

#################

 fmSJSWOF2 = arcpy.FieldMappings()

 fmSJSWOF2.addTable("fcFAPotential3")

 fmSJSWOF2.addTable("fcSWOutflow")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","Headwater","LowSlope","VegFA","Runoff","SW

Outflow2"]

 for field in fmSJSWOF2.fields:

 if field.name not in keepers:

 fmSJSWOF2.removeFieldMap(fmSJSWOF2.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcFAPotential3","fcSWOutflow","WU_FAPotential","JOIN_ONE_

TO_ONE","KEEP_ALL",fmSJSWOF2,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_FAPotential","fcWUFAPotential")

 logger.info("spatial join SWOutflow2 completed")

543

 ## Add FAPotential field to Wetland Units and set initial point value to 0

 actions.DeleteField("fcWUFAPotential","FAPotential")

 arcpy.AddField_management("fcWUFAPotential", "FAPotential", "SHORT")

 arcpy.CalculateField_management("fcWUFAPotential","FAPotential","0","VB","#")

 logger.info("FAPotential field added to Wetland Units and initial point value set to zero")

 ## Sum the factor points

arcpy.CalculateField_management("fcWUFAPotential","FAPotential","[Headwater]+[LowSlop

e]+[VegFA]+[Runoff]+[SWOutflow2]","VB","#")

 logger.info("field FAPotential calculated")

 ## Clean Up

 if arcpy.Exists("WU_FAPotential1"):

 arcpy.Delete_management("WU_FAPotential1")

 if arcpy.Exists("WU_FAPotential2"):

 arcpy.Delete_management("WU_FAPotential2")

 if arcpy.Exists("WU_FAPotential3"):

 arcpy.Delete_management("WU_FAPotential3")

544

5.7.13 Runoff: Flood Attenuation Potential

File Name: Runoff.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 12/19/2016 (modified 12/01/2017)

Purpose:

Input to Flood Attenuation / Potential

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineRunoff(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAPotential.Runoff")

 # Clean up if needed

 if arcpy.Exists("WU_Runoff1"):

 arcpy.Delete_management("WU_Runoff1")

 if arcpy.Exists("WU_Runoff2"):

 arcpy.Delete_management("WU_Runoff2")

 if arcpy.Exists("WU_Runoff3"):

 arcpy.Delete_management("WU_Runoff3")

 if arcpy.Exists("WU_Runoff"):

 arcpy.Delete_management("WU_Runoff")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly,"fcWU")

 arcpy.MakeFeatureLayer_management(r"WU_StreamEdge","fcStreamEdge")

 arcpy.MakeFeatureLayer_management(r"WU_SeasonPond","fcSeasonPond")

 arcpy.MakeFeatureLayer_management(r"WU_Microtopo","fcMicrotopo")

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea","fcFloodplain")

 logger.info("feature layers ready")

 ## Spatial Joins to add input variables to Wetland Units attribute table

###

#################

 # SJ: StreamEdge

545

###

#################

 fmSJSR = arcpy.FieldMappings()

 fmSJSR.addTable("fcWU")

 fmSJSR.addTable("fcStreamEdge")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","StreamEdge"]

 for field in fmSJSR.fields:

 if field.name not in keepers:

 fmSJSR.removeFieldMap(fmSJSR.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWU","fcStreamEdge","WU_Runoff1","JOIN_ONE_TO_ONE","

KEEP_ALL",fmSJSR,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_Runoff1","fcRunoff1")

 logger.info("spatial join to add StreamEdge completed")

###

#################

 # SJ: SeasonPond

###

#################

 fmSJSP = arcpy.FieldMappings()

 fmSJSP.addTable("fcRunoff1")

 fmSJSP.addTable("fcSeasonPond")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","StreamEdge","SeasonPond"]

 for field in fmSJSP.fields:

 if field.name not in keepers:

 fmSJSP.removeFieldMap(fmSJSP.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcRunoff1","fcSeasonPond","WU_Runoff2","JOIN_ONE_TO_ON

E","KEEP_ALL",fmSJSP,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_Runoff2","fcRunoff2")

 logger.info("spatial join to add SeasonPond completed")

546

###

#################

 # SJ: Microtopo

###

#################

 fmSJMicro = arcpy.FieldMappings()

 fmSJMicro.addTable("fcRunoff2")

 fmSJMicro.addTable("fcMicrotopo")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","StreamEdge","SeasonPond","Microtopo"]

 for field in fmSJMicro.fields:

 if field.name not in keepers:

 fmSJMicro.removeFieldMap(fmSJMicro.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcRunoff2","fcMicrotopo","WU_Runoff3","JOIN_ONE_TO_ONE

","KEEP_ALL",fmSJMicro,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_Runoff3","fcRunoff3")

 logger.info("spatial join to add Microtopo completed")

###

#################

 # SJ: Floodplain

###

#################

 fmSJFP = arcpy.FieldMappings()

 fmSJFP.addTable("fcRunoff3")

 fmSJFP.addTable("fcFloodplain")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","StreamEdge","SeasonPond","Microtopo","Floodpl

ain"]

 for field in fmSJFP.fields:

 if field.name not in keepers:

 fmSJFP.removeFieldMap(fmSJFP.findFieldMapIndex(field.name))

547

arcpy.SpatialJoin_analysis("fcRunoff3","fcFloodplain","WU_Runoff","JOIN_ONE_TO_ONE",

"KEEP_ALL",fmSJFP,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_Runoff","fcRunoff")

 logger.info("spatial join to add Floodplain completed")

 # Add Runoff field to Wetland Units ans set initial point value to zero

 actions.DeleteField("fcRunoff","Runoff")

 arcpy.AddField_management("fcRunoff", "Runoff", "SHORT")

 arcpy.CalculateField_management("fcRunoff","Runoff","0","VB","#")

 logger.info("field Runoff added and initial value set to 0")

 # Sum the points of StreamEdge, SeasonPond, Microtopo

arcpy.CalculateField_management("fcRunoff","Runoff","[StreamEdge]+[SeasonPond]+[Microt

opo]","VB","#")

 logger.info("points of StreamEdge, SeasonPond, Microtopo summed")

 # Reduce the total points to 5 (floodplain) or 4 (groundwater).

 arcpy.SelectLayerByAttribute_management("fcRunoff","NEW_SELECTION",""""Runoff" >

5""")

 arcpy.CalculateField_management("fcRunoff","Runoff","5","VB","#")

 arcpy.SelectLayerByAttribute_management("fcRunoff","NEW_SELECTION",""""Runoff" >

4 AND "Floodplain" = 'N'""")

 arcpy.CalculateField_management("fcRunoff","Runoff","4","VB","#")

 logger.info("total maximum points reduced to 5 for floodplain and 4 for groundwater")

 arcpy.SelectLayerByAttribute_management("fcRunoff", "CLEAR_SELECTION")

 # Clean Up

 if arcpy.Exists("WU_Runoff1"):

 arcpy.Delete_management("WU_Runoff1")

 if arcpy.Exists("WU_Runoff2"):

 arcpy.Delete_management("WU_Runoff2")

 if arcpy.Exists("WU_Runoff3"):

 arcpy.Delete_management("WU_Runoff3")

548

5.7.14 VegFA: Flood Attenuation Potential

File Name: VegFA.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 6/10/2016 (modified 11/03/2017)

Purpose:

Input to Flood Attenuation / Potential

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineVegFA(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAPotential.VegFA")

 # Clean up if needed

 if arcpy.Exists("WU_VegFA1"):

 arcpy.Delete_management("WU_VegFA1")

 if arcpy.Exists("WU_VegFA2"):

 arcpy.Delete_management("WU_VegFA2")

 if arcpy.Exists("WU_VegFA3"):

 arcpy.Delete_management("WU_VegFA3")

549

 if arcpy.Exists("WU_VegFA"):

 arcpy.Delete_management("WU_VegFA")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly,"fcWU")

 arcpy.MakeFeatureLayer_management(r"WU_VegAll","fcVegAll")

 arcpy.MakeFeatureLayer_management(r"WU_VegPerUng","fcVegPerUng")

 arcpy.MakeFeatureLayer_management(r"WU_VegWoody","fcVegWoody")

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea","fcFloodplain")

 logger.info("feature layers ready")

 # Spatial joins to add input variables to Wetland Units attribute table

###

################

 # SJ: Floodplain

###

################

 fmSJ1 = arcpy.FieldMappings()

 fmSJ1.addTable("fcWU")

 fmSJ1.addTable("fcFloodplain")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Floodplain"]

 for field in fmSJ1.fields:

 if field.name not in keepers:

 fmSJ1.removeFieldMap(fmSJ1.findFieldMapIndex(field.name))

550

arcpy.SpatialJoin_analysis("fcWU","fcFloodplain","WU_VegFA1","JOIN_ONE_TO_ONE","

KEEP_ALL",fmSJ1,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_VegFA1","fcWUVegFA1")

 logger.info("spatial join of Floodplain completed")

###

################

 # SJ: VegAll

###

################

 fmSJ2 = arcpy.FieldMappings()

 fmSJ2.addTable("fcWUVegFA1")

 fmSJ2.addTable("fcVegAll")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Floodplain","VegAll"]

 for field in fmSJ2.fields:

 if field.name not in keepers:

 fmSJ2.removeFieldMap(fmSJ2.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("WU_VegFA1","fcVegAll","WU_VegFA2","JOIN_ONE_TO_ON

E","KEEP_ALL",fmSJ2,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_VegFA2","fcWUVegFA2")

 logger.info("spatial join of VegAll completed")

551

###

################

 # SJ: VegPerUng

###

################

 fmSJ3 = arcpy.FieldMappings()

 fmSJ3.addTable("fcWUVegFA2")

 fmSJ3.addTable("fcVegPerUng")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Floodplain","VegAll","VegPerUng4"]

 for field in fmSJ3.fields:

 if field.name not in keepers:

 fmSJ3.removeFieldMap(fmSJ3.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUVegFA2","fcVegPerUng","WU_VegFA3","JOIN_ONE_TO

_ONE","KEEP_ALL",fmSJ3,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_VegFA3","fcWUVegFA3")

 logger.info("spatial join of VegPerUng completed")

###

################

 # SJ: VegWoody

###

################

 fmSJ4 = arcpy.FieldMappings()

552

 fmSJ4.addTable("fcWUVegFA3")

 fmSJ4.addTable("fcVegWoody")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","Floodplain","VegAll","VegPerUng4","VegWoody

4"]

 for field in fmSJ4.fields:

 if field.name not in keepers:

 fmSJ4.removeFieldMap(fmSJ4.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUVegFA3","fcVegWoody","WU_VegFA","JOIN_ONE_TO_

ONE","KEEP_ALL",fmSJ4,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_VegFA","fcWUVegFA")

 logger.info("spatial join of VegWoody completed")

 # Add VegFA field to Wetland Units ans set initial point value to zero

 actions.DeleteField("fcWUVegFA","VegFA")

 arcpy.AddField_management("fcWUVegFA", "VegFA", "SHORT")

 arcpy.CalculateField_management("fcWUVegFA","VegFA","0","VB","#")

 logger.info("field VegWoodyFor added to store points for VegFA and initial value set to

zero")

 # Sum the points for VegALL, VegPerUng4, VegWoody4

 arcpy.CalculateField_management("fcWUVegFA","VegFA","[VegAll] + [VegPerUng4] +

[VegWoody4]","VB","#")

 logger.info("the points for VegALL, VegPerUng4, VegWoody4 summed")

 # Reduce any excess point scores to the maximum allowed

553

 arcpy.SelectLayerByAttribute_management("fcWUVegFA", "CLEAR_SELECTION")

arcpy.SelectLayerByAttribute_management("fcWUVegFA","NEW_SELECTION",""""VegFA

" > 5 AND "Floodplain" = 'N'""")

 arcpy.CalculateField_management("fcWUVegFA","VegFA","5","VB","#")

 logger.info("excess point scores reduced to the maximum allowed")

 # Clean up

 if arcpy.Exists("WU_VegFA1"):

 arcpy.Delete_management("WU_VegFA1")

 if arcpy.Exists("WU_VegFA2"):

 arcpy.Delete_management("WU_VegFA2")

 if arcpy.Exists("WU_VegFA3"):

 arcpy.Delete_management("WU_VegFA3")

554

5.7.15 VegAll: Flood Attenuation Potential

File Name: VegAll.py

Developer: Chad Ashworth (modifications by Yibing Han)

Date: 5/12/2016 (modified 11/02/2017, modified 2/3/2022 to include vegetated lacustrine

littoral and vegetated riverine polygons in selection)

Purpose:

Input to Flood Attenuation / Potential / Vegetation Factor

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineVegAll(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAPotential.VegAll")

 # Clean up if needed

 if arcpy.Exists("WU_VegAll"):

 arcpy.Delete_management("WU_VegAll")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly, "fcWU")

 #arcpy.MakeFeatureLayer_management(globalvars.srcInput,"fcENWI")

 arcpy.MakeFeatureLayer_management(r"VegAll","fcVegAll")

 logger.info("feature layers ready")

 # Select the forest, shrubland, emergent, moss, and aquatic bed vegetation

 '''strWHERE = """"ATTRIBUTE" LIKE 'PEM%' OR "ATTRIBUTE" LIKE 'PFO%' OR

"ATTRIBUTE" LIKE 'PSS%' OR "ATTRIBUTE" LIKE 'PAB%' OR "ATTRIBUTE" LIKE

'PML%' OR "ATTRIBUTE" LIKE 'L2AB%' OR "ATTRIBUTE" LIKE 'L2US5%' OR

"ATTRIBUTE" LIKE 'L2EM%' OR "ATTRIBUTE" LIKE 'R2AB%' OR "ATTRIBUTE" LIKE

'R3AB%' OR "ATTRIBUTE" LIKE 'R2US5%' OR "ATTRIBUTE" LIKE 'R3US5%' OR

"ATTRIBUTE" LIKE 'R2EM%' OR "ATTRIBUTE" LIKE 'R3EM%' OR "ATTRIBUTE"

LIKE 'R4SB7%'"""

 arcpy.SelectLayerByAttribute_management("fcENWI", "NEW_SELECTION", strWHERE)

 logger.info("the forest, shrubland, emergent, moss, and aquaitc bed vegetation selected")

 # Create layer of all vegetation area

 arcpy.CopyFeatures_management("fcENWI", "WU_VegAll1")

555

 arcpy.MakeFeatureLayer_management(r"WU_VegAll1","fcWUVegAll1")

 logger.info("layer of all vegetation area created")'''

 # Add field to store vegetation area

 actions.DeleteField("fcVegAll","VegArea")

 arcpy.AddField_management("fcVegAll", "VegArea", "FLOAT")

 arcpy.CalculateField_management("fcVegAll","VegArea","[Shape_Area]","VB","#")

 logger.info("field VegArea added to store vegetation area")

 # Join vegetation to wetland units and sume the vegetation area

###

#################

 # SJ: FloodIn

###

#################

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable("fcWU")

 fmSJFLIN.addTable("fcVegAll")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","VegArea"]

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 fldKeyIndex = fmSJFLIN.findFieldMapIndex("VegArea")

 fieldmap = fmSJFLIN.getFieldMap(fldKeyIndex)

 fieldmap.mergeRule = "Sum"

 fmSJFLIN.replaceFieldMap(fldKeyIndex, fieldmap)

arcpy.SpatialJoin_analysis("fcWU","fcVegAll","WU_VegAll","JOIN_ONE_TO_ONE","KEEP

_ALL",fmSJFLIN,"INTERSECT")

 arcpy.MakeFeatureLayer_management("WU_VegAll","fcWUVegAll")

 logger.info("vegetation joined to wetland units and the vegetation area summed up")

 # Add field to store ratio of vegetated area to total area

 actions.DeleteField("fcWUVegAll","VegRatio")

 arcpy.AddField_management("fcWUVegAll", "VegRatio", "FLOAT")

 # Calculate ratio of vegetation to Wetland Units area

556

arcpy.CalculateField_management("fcWUVegAll","VegRatio","[VegArea]/[Shape_Area]","VB

","#")

 logger.info("field VegRatio added and calculated")

 # Add new attribute field to store points for VegAll and set initial value to zero

 actions.DeleteField("fcWUVegAll","VegAll")

 arcpy.AddField_management("fcWUVegAll", "VegAll", "SHORT")

 arcpy.CalculateField_management("fcWUVegAll","VegAll","0","VB","#")

 logger.info("field VegAll added and initial value set to 0")

 # Assign points to Wetland Units for vegetation

 strWHERE = """"VegRatio" > 0.5"""

 arcpy.SelectLayerByAttribute_management("fcWUVegAll", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUVegAll","VegAll","1","VB","#")

 logger.info("points assigned to Wetland Units for woody vegetation")

 arcpy.SelectLayerByAttribute_management("fcWUVegAll", "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("VegAll"):

 arcpy.Delete_management("VegAll")

557

5.7.16 VegPerUng: Flood Attenuation Potential

File Name: VegPerUng.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 7/17/2015 (modified 11/08/2017)

Purpose:

VegPerUng: Used in Water Quality Function / Potential / Vegetation. Max 5 points.

VegPerUng4: Used in Flood Attenuation Function / Potential / Vegetation. Max 4 points.

VegPerUng1: Used in Habitat and Ecological Integrity Function / Potential / Vegetation.

Max 1 point.

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcVegPerUng(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAPotential.VegPerUng")

 # Clean up if needed

 if arcpy.Exists("VegPFOPSSPEM"):

 arcpy.Delete_management("VegPFOPSSPEM")

 if arcpy.Exists("VegPerUng"):

 arcpy.Delete_management("VegPerUng")

 if arcpy.Exists("WUVegPerUngIntersect"):

 arcpy.Delete_management("WUVegPerUngIntersect")

 if arcpy.Exists("WUVegPerUngIntersect_SUM_STAT"):

 arcpy.Delete_management("WUVegPerUngIntersect_SUM_STAT")

 if arcpy.Exists("WU_VegPerUng"):

 arcpy.Delete_management("WU_VegPerUng")

 if arcpy.Exists("WU_VegPerUng1"):

 arcpy.Delete_management("WU_VegPerUng1")

 # setting the variables

 arcpy.MakeFeatureLayer_management(globalvars.srcPasturesNotHayfields,

"fcPasturesNotHayfields")

 arcpy.MakeFeatureLayer_management(globalvars.srcEnhWetland, "fcEnhWVWetland")

 logger.info("feature layers ready")

 # Create feature class to store VegPerUng variables

558

 arcpy.CopyFeatures_management(WetlandPoly, "WU_VegPerUng1")

 arcpy.MakeFeatureLayer_management("WU_VegPerUng1", "fcWUVegPerUng1")

 logger.info("feature layer WU_VegPerUng1 created")

 # selecting and creating a feature class of forests, shrublands, and persistent emergent

vegetation sites within EnhWVWetland

 strWHERE = """"ATTRIBUTE" NOT LIKE 'PEM2%' AND ("ATTRIBUTE" LIKE

'PEM%' OR "ATTRIBUTE" LIKE 'PFO%' OR "ATTRIBUTE" LIKE 'PSS%')"""

 arcpy.SelectLayerByAttribute_management("fcEnhWVWetland", "NEW_SELECTION",

strWHERE)

 arcpy.CopyFeatures_management("fcEnhWVWetland", "VegPFOPSSPEM")

 arcpy.MakeFeatureLayer_management("VegPFOPSSPEM", "fcVegPFOPSSPEM")

 logger.info("feature class of forests, shrublands, and persistent emergent vegetation sites

within EnhWVWetland created")

 # Erase the known grazed pastures from the intermediate vegetation layer

 arcpy.Erase_analysis("fcVegPFOPSSPEM","fcPasturesNotHayfields","VegPerUng","#")

 arcpy.MakeFeatureLayer_management("VegPerUng", "fcVegPerUng")

 logger.info("known grazed pastures from the intermediate vegetation layer erased")

 # Calculate the percentage of each Wetland Unit that is persistent ungrazed vegetation

(VegPerUng)

 # Attribute each Wetland Unit with the percentage of VerPerUng

 actions.DeleteField("fcWUVegPerUng1","OrigArea")

 arcpy.AddField_management("fcWUVegPerUng1", "OrigArea", "DOUBLE")

 arcpy.CalculateField_management("fcWUVegPerUng1", "OrigArea", "!SHAPE_Area!",

"PYTHON")

 logger.info("field OrigArea created and calculated")

 # intersect "fcWUVegPerUng1" with VegPerUng

 arInputData = ["fcWUVegPerUng1","fcVegPerUng"]

 arcpy.Intersect_analysis(arInputData, "WUVegPerUngIntersect","ALL","#","INPUT")

 arcpy.MakeFeatureLayer_management("WUVegPerUngIntersect",

"fcWUVegPerUngIntersect")

 logger.info("Wetland units intersected with VegPerUng")

 # add and calculate PctIntersect field

 actions.DeleteField("fcWUVegPerUngIntersect","PctIntersect")

 arcpy.AddField_management("fcWUVegPerUngIntersect", "PctIntersect", "FLOAT")

 arcpy.CalculateField_management("fcWUVegPerUngIntersect", "PctIntersect",

"!SHAPE_Area!/!OrigArea!*100", "PYTHON")

 logger.info("field PctIntersect added and calculated")

 # Execute the Summary Statistics function

559

 arcpy.Statistics_analysis("fcWUVegPerUngIntersect",

"WUVegPerUngIntersect_SUM_STAT", [["PctIntersect", "SUM"]],

["FID_WU_VegPerUng1"])

 arcpy.MakeTableView_management(r"WUVegPerUngIntersect_SUM_STAT",

"tvWUVegPerUngIntersectSumm")

 logger.info("summary table WUVegPerUngIntersect_SUM_STAT created")

 # Add new field (VegPerUngPct) to attribute table to store the percentage of persistent

ungrazed vegetation

 actions.DeleteField("fcWUVegPerUng1","VegPerUngPct")

 arcpy.AddField_management("fcWUVegPerUng1", "VegPerUngPct", "FLOAT")

 arcpy.CalculateField_management("fcWUVegPerUng1", "VegPerUngPct", "0", "VB")

 logger.info("field VegPerUngPct added and initial value set to 0")

 # Add new field (VegPerUng) to attribute table to store the score in relation to the percentage

of persistent ungrazed vegetation

 actions.DeleteField("fcWUVegPerUng1","VegPerUng")

 arcpy.AddField_management("fcWUVegPerUng1", "VegPerUng", "SHORT")

 arcpy.CalculateField_management("fcWUVegPerUng1", "VegPerUng", "0", "VB")

 logger.info("field VegPerUng added and initial value set to 0")

 # Join Wetland Units to the WUVegPerUngIntersect_SUM_STAT table

 arcpy.AddJoin_management("fcWUVegPerUng1", "WUKey",

"tvWUVegPerUngIntersectSumm", "FID_WU_VegPerUng1")

 logger.info("joined added to the WUVegPerUngIntersect_SUM_STAT table")

arcpy.FeatureClassToFeatureClass_conversion("fcWUVegPerUng1",arcpy.env.workspace,"W

U_VegPerUng")

 arcpy.MakeFeatureLayer_management(r"WU_VegPerUng", "fcWUVegPerUng")

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUngPct",

"!WUVegPerUngIntersect_SUM_STAT_SUM_PctIntersect!", "PYTHON")

 logger.info("field VegPerUngPct calculated")

 # Remove Join

 arcpy.RemoveJoin_management("fcWUVegPerUng1")

 logger.info("join removed")

 # Replace null values with 0

 strWHERE = """"VegPerUngPct" IS NULL"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUngPct", "0", "VB")

 # Assign points to Wetland Units for VegPerUng

 strWHERE = """"VegPerUngPct" > 66.7"""

560

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng", "5", "VB")

 strWHERE = """"VegPerUngPct" < 66.701 AND "VegPerUngPct" > 33.3"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng", "3", "VB")

 strWHERE = """"VegPerUngPct" < 33.301 AND "VegPerUngPct" > 10"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng", "1", "VB")

 strWHERE = """"VegPerUngPct" < 10.001"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng", "0", "VB")

 logger.info("points assigned to field VegPerUng")

 arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","CLEAR_SELECTION")

 # add VegPerUng4 field

 actions.DeleteField("fcWUVegPerUng","VegPerUng4")

 arcpy.AddField_management("fcWUVegPerUng", "VegPerUng4", "SHORT")

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng4", "0", "VB")

 logger.info("field VegPerUng4 added and initial value set to 0")

 # add VegPerUng1 field

 actions.DeleteField("fcWUVegPerUng","VegPerUng1")

 arcpy.AddField_management("fcWUVegPerUng", "VegPerUng1", "SHORT")

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng1", "0", "VB")

 logger.info("field VegPerUng1 added and initial value set to 0")

 # Assign points to Wetland Units for VegPerUng4 and VegPerUng1

 strWHERE = """"VegPerUngPct" > 10"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng4", "1", "VB")

 strWHERE = """"VegPerUngPct" > 33.3"""

561

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng4", "2", "VB")

 strWHERE = """"VegPerUngPct" > 50"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng4", "3", "VB")

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng1", "1", "VB")

 strWHERE = """"VegPerUngPct" > 66.7"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng4", "4", "VB")

 logger.info("points assigned to fields VegPerUng1 and VegPerUng4")

 arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("VegPFOPSSPEM"):

 arcpy.Delete_management("VegPFOPSSPEM")

 if arcpy.Exists("VegPerUng"):

 arcpy.Delete_management("VegPerUng")

 if arcpy.Exists("WUVegPerUngIntersect"):

 arcpy.Delete_management("WUVegPerUngIntersect")

 if arcpy.Exists("WUVegPerUngIntersect_SUM_STAT"):

 arcpy.Delete_management("WUVegPerUngIntersect_SUM_STAT")

 if arcpy.Exists("WU_VegPerUng1"):

 arcpy.Delete_management("WU_VegPerUng1")

562

5.7.17 VegWoody: Flood Attenuation Potential

File Name: VegWoody.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/15/2016 (modified 11/03/2017)

Purpose:

Input to Water Quality / Potential / Vegetation Factor

#!/usr/: Input to Water Quality / Potential / Vegetation Factor.bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcVegWoody(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FAPotential.VegWoody")

 # Clean up if needed

 if arcpy.Exists("VegPFOPSS"):

 arcpy.Delete_management("VegPFOPSS")

 if arcpy.Exists("VegPFO"):

 arcpy.Delete_management("VegPFO")

 if arcpy.Exists("WUPFOJoin"):

 arcpy.Delete_management("WUPFOJoin")

 if arcpy.Exists("WU_VegWoody"):

 arcpy.Delete_management("WU_VegWoody")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly, "fcWU")

 arcpy.MakeFeatureLayer_management(globalvars.srcInput, "fcENWI")

 logger.info("feature layers ready")

 # Select all woody vegetation, both forest and shrubland

 strWHERE = """"ATTRIBUTE" LIKE 'PFO%' OR "ATTRIBUTE" LIKE 'PSS%'"""

 arcpy.SelectLayerByAttribute_management("fcENWI", "NEW_SELECTION", strWHERE)

 logger.info("all woody vegetation, both forest and shrubland selected")

 # Create layer of woody vegetation from selection

 arcpy.CopyFeatures_management("fcENWI", "VegPFOPSS")

 arcpy.MakeFeatureLayer_management(r"VegPFOPSS", "fcVegPFOPSS")

 logger.info("layer VegPFOPSS created of woody vegetation from selection")

563

 arcpy.SelectLayerByAttribute_management("fcENWI", "CLEAR_SELECTION")

 # Add field to store woody area

 actions.DeleteField("fcVegPFOPSS","PFOPSSarea")

 arcpy.AddField_management("fcVegPFOPSS", "PFOPSSarea", "FLOAT")

arcpy.CalculateField_management("fcVegPFOPSS","PFOPSSarea","[SHAPE_Area]","VB","#"

)

 logger.info("field PFOPSSarea to store woody area")

 # Select just the forest vegetation, not including the shrubs

 strWHERE = """"ATTRIBUTE" LIKE 'PFO%'"""

 arcpy.SelectLayerByAttribute_management("fcENWI", "NEW_SELECTION", strWHERE)

 logger.info("the forest vegetation, not including the shrubs selected")

 # Create layer of forest vegetation from selection

 arcpy.CopyFeatures_management("fcENWI", "VegPFO")

 arcpy.MakeFeatureLayer_management(r"VegPFO", "fcVegPFO")

 logger.info("layer VegPFO created of forest vegetation from selection")

 arcpy.SelectLayerByAttribute_management("fcENWI", "CLEAR_SELECTION")

 # Add field to store forest area

 actions.DeleteField("fcVegPFO","PFOarea")

 arcpy.AddField_management("fcVegPFO", "PFOarea", "FLOAT")

 arcpy.CalculateField_management("fcVegPFO","PFOarea","[SHAPE_Area]","VB","#")

 logger.info("field PFOarea added to store forest area")

 # Join forests to Wetland Units and sum the forest area

 # SJ: VegPFO

 fmSJPFO = arcpy.FieldMappings()

 fmSJPFO.addTable("fcWU")

 fmSJPFO.addTable("fcVegPFO")

 fldKeyIndex1 = fmSJPFO.findFieldMapIndex("PFOarea")

 fieldmap1 = fmSJPFO.getFieldMap(fldKeyIndex1)

 fieldmap1.mergeRule = "Sum"

 fmSJPFO.replaceFieldMap(fldKeyIndex1, fieldmap1)

arcpy.SpatialJoin_analysis("fcWU","fcVegPFO","WUPFOjoin","JOIN_ONE_TO_ONE","KEE

P_ALL",fmSJPFO,"INTERSECT")

 arcpy.MakeFeatureLayer_management("WUPFOjoin","fcWUPFOjoin")

564

 logger.info("forests joined to wetland units and the forest area summed up")

 # SJ: VegPFOPSS

 fmSJPSS = arcpy.FieldMappings()

 fmSJPSS.addTable("fcWUPFOjoin")

 fmSJPSS.addTable("fcVegPFOPSS")

 fldKeyIndex2 = fmSJPSS.findFieldMapIndex("PFOPSSarea")

 fieldmap2 = fmSJPSS.getFieldMap(fldKeyIndex2)

 fieldmap2.mergeRule = "Sum"

 fmSJPSS.replaceFieldMap(fldKeyIndex2, fieldmap2)

arcpy.SpatialJoin_analysis("fcWUPFOjoin","fcVegPFOPSS","WU_VegWoody","JOIN_ONE_

TO_ONE","KEEP_ALL",fmSJPSS,"INTERSECT")

 fcWUVegWoody = arcpy.mapping.Layer(r"WU_VegWoody")

 logger.info("woody vegetation joined to wetland units and the woody area summed up")

 # Add fields to store rations of forest and woody area to total area

 actions.DeleteField(fcWUVegWoody,"PFOratio")

 arcpy.AddField_management(fcWUVegWoody, "PFOratio", "FLOAT")

 actions.DeleteField(fcWUVegWoody,"PFOPSSratio")

 arcpy.AddField_management(fcWUVegWoody, "PFOPSSratio", "FLOAT")

 logger.info("fields PFOratio and PFOPSSratio added to store rations of forest and woody area

to total area")

 # Calculate ratio of woody vegetation to Wetland Unit area

arcpy.CalculateField_management(fcWUVegWoody,"PFOPSSratio","[PFOPSSarea]/[Shape_A

rea]","VB","#")

 logger.info("ratio of woody vegetation calculated to Wetland Unit area")

 # Calculate ratio of forest vegetation to Wetland Unit area

arcpy.CalculateField_management(fcWUVegWoody,"PFOratio","[PFOarea]/[Shape_Area]","V

B","#")

 logger.info("ratio of forest vegetation calculated to Wetland Unit area")

 # Add new attribute field to store points for VegWoody and set initial value to zero

565

 actions.DeleteField(fcWUVegWoody,"VegWoody")

 arcpy.AddField_management(fcWUVegWoody, "VegWoody", "SHORT")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody","0","VB","#")

 logger.info("field VegWoody added to store points for VegWoody and initial value set to

zero")

 actions.DeleteField(fcWUVegWoody,"VegWoody4")

 arcpy.AddField_management(fcWUVegWoody, "VegWoody4", "SHORT")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody4","0","VB","#")

 logger.info("field VegWoody4 added to store points for VegWoody and initial value set to

zero")

 actions.DeleteField(fcWUVegWoody,"VegWoody2")

 arcpy.AddField_management(fcWUVegWoody, "VegWoody2", "SHORT")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody2","0","VB","#")

 logger.info("field VegWoody2 added to store points for VegWoody and initial value set to

zero")

 actions.DeleteField(fcWUVegWoody,"VegWoodyFor")

 arcpy.AddField_management(fcWUVegWoody, "VegWoodyFor", "SHORT")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoodyFor","0","VB","#")

 logger.info("field VegWoodyFor added to store points for VegWoody and initial value set to

zero")

 # Assign points to Wetland Units for woody vegetation

 strWHERE = """"PFOPSSratio" > 0.1"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody","1","VB","#")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody4","1","VB","#")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody2","1","VB","#")

 strWHERE = """"PFOPSSratio" > 0.5"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody4","2","VB","#")

 strWHERE = """"PFOPSSratio" > 0.333"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody","2","VB","#")

 strWHERE = """"PFOPSSratio" > 0.667"""

566

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody","3","VB","#")

 strWHERE = """"PFOPSSratio" > 0.667 AND "PFOratio" > 0.333"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody","4","VB","#")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody4","3","VB","#")

 strWHERE = """"PFOratio" > 0.667"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody","5","VB","#")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody4","4","VB","#")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody2","2","VB","#")

 strWHERE = """"PFOratio" > 0.1 OR "PFOarea" > 10000"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoodyFor","1","VB","#")

 strWHERE = """("PFOratio" > 0.33 AND "PFOarea" > 2000) OR "PFOarea" > 20000"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoodyFor","2","VB","#")

 strWHERE = """("PFOratio" > 0.667 AND "PFOarea" > 5000) OR "PFOarea" > 50000"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoodyFor","3","VB","#")

 logger.info("points assigned to Wetland Units for woody vegetation")

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("VegPFOPSS"):

 arcpy.Delete_management("VegPFOPSS")

 if arcpy.Exists("VegPFO"):

 arcpy.Delete_management("VegPFO")

 if arcpy.Exists("WUPFOJoin"):

 arcpy.Delete_management("WUPFOJoin")

567

5.7.18 Flood Attenuation Society

File Name: FASociety.py

Developer: Yibing Han

Date: 12/13/2017

Purpose:

This script handles the execution of all the Flood Attenuation Value to Society metrics.

import datetime

import logging

import traceback

import arcpy

from Factors import Floodway, EconRisk

from Aspects import FASociety

def procFASociety(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FASociety")

 ##

 ## 1. Run Variables

 ##

 # None

 ##

 ## 2. Run Factors

 ##

 Floodway.DetermineFloodway(WetlandPoly)

 EconRisk.DetermineEconRisk(WetlandPoly)

 ##

 ## 3. Run Aspect

 ##

 FASociety.DetermineFASociety(WetlandPoly)

568

5.7.19 Flood Attenuation Society Aspects

File Name: FASociety.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 11/10/2016 (modified 10/31/2017)

Purpose:

Flood Attenuation Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import arcpy

from utilities import actions

import logging

def DetermineFASociety(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FASociety.FASociety")

 # Clean up if needed

 if arcpy.Exists("WU_FASociety"):

 arcpy.Delete_management("WU_FASociety")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_Floodway","fcFloodway")

 arcpy.MakeFeatureLayer_management(r"WU_EconRisk","fcEconRisk")

 logger.info("feature layers ready")

 # Spatial join Floodway & EconRisk to bring in factor values

 fmSJE = arcpy.FieldMappings()

 fmSJE.addTable("fcFloodway")

 fmSJE.addTable("fcEconRisk")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Floodway","EconRisk"]

 for field in fmSJE.fields:

 if field.name not in keepers:

 fmSJE.removeFieldMap(fmSJE.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcFloodway","fcEconRisk","WU_FASociety","JOIN_ONE_TO_O

NE","KEEP_ALL",fmSJE,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_FASociety","fcWUFASociety")

569

 logger.info("spatial join Floodway and EconRisk completed")

 # Add FASociety field to Wetland Units and set initial point value to zero

 actions.DeleteField("fcWUFASociety","FASociety")

 arcpy.AddField_management("fcWUFASociety", "FASociety", "SHORT")

 arcpy.CalculateField_management("fcWUFASociety","FASociety","0","VB","#")

 logger.info("FASociety field added to Wetland Units and initial point value set to zero")

 # Sum the factor points

arcpy.CalculateField_management("fcWUFASociety","FASociety","[Floodway]+[EconRisk]",

"VB","#")

 logger.info("field FASociety calculated")

 # Reduce the values that exceed the maximum allowable points

 strWHERE = """"FASociety" > 4"""

arcpy.SelectLayerByAttribute_management("fcWUFASociety","NEW_SELECTION",strWHE

RE)

 arcpy.CalculateField_management("fcWUFASociety","FASociety","4","VB","#")

 logger.info("points for wetlands reduced to a maximum of 4")

 arcpy.SelectLayerByAttribute_management("fcWUFASociety","CLEAR_SELECTION")

570

5.7.20 EconRisk: Flood Attenuation Society

File Name: EconRisk.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 5/12/2016 (modified 12/04/2017)

Purpose:

Flood Attenuation / Value to Society

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineEconRisk(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FASociety.EconRisk")

 # Clean up if needed

 if arcpy.Exists("WU_EconRisk"):

 arcpy.Delete_management("WU_EconRisk")

 # Setting python variables

 fcTotalLossRP100 = arcpy.mapping.Layer(globalvars.srcTotalLossRP100)

 fcWS12digit = arcpy.mapping.Layer(globalvars.srcWS12digit)

 # Create new feature class to store EconRisk data

 arcpy.CopyFeatures_management(WetlandPoly, "WU_EconRisk")

 fcWUEconRisk = arcpy.mapping.Layer(r"WU_EconRisk")

 logger.info("feature layers ready")

 # Add field to store EconRisk and set initial value to zero

 actions.DeleteField(fcWUEconRisk,"EconRisk")

 arcpy.AddField_management(fcWUEconRisk, "EconRisk", "SHORT")

 arcpy.CalculateField_management(fcWUEconRisk,"EconRisk","0","VB","#")

 logger.info("field EconRisk added and intital value set to 0")

 # Select Census blocks and assign point to Wetland Units

 # Assign 1 point to wetland in socond lowest quintile or within HUC12 with loss areas

arcpy.SelectLayerByAttribute_management(fcTotalLossRP100,"NEW_SELECTION",""""Tota

lLossRP100" > 0""")

571

arcpy.SelectLayerByLocation_management(fcWS12digit,"INTERSECT",fcTotalLossRP100,"#

","NEW_SELECTION")

arcpy.SelectLayerByLocation_management(fcWUEconRisk,"INTERSECT",fcWS12digit,"#","

NEW_SELECTION")

 arcpy.CalculateField_management(fcWUEconRisk,"EconRisk","1","VB","#")

 logger.info("1 point assigned to wetland in socond lowest quintile or within HUC12 with loss

areas")

 arcpy.SelectLayerByAttribute_management(fcWUEconRisk, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcTotalLossRP100, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcWS12digit, "CLEAR_SELECTION")

 # Assign 2 points to wetlands in middle quintile or within 1km of second highest quintile

arcpy.SelectLayerByAttribute_management(fcTotalLossRP100,"NEW_SELECTION",""""Tota

lLossRP100" > 42""")

arcpy.SelectLayerByLocation_management(fcWUEconRisk,"INTERSECT",fcTotalLossRP100

,"#","NEW_SELECTION")

 arcpy.CalculateField_management(fcWUEconRisk,"EconRisk","2","VB","#")

 logger.info("2 points assigned to wetland in middle quintile")

 arcpy.SelectLayerByAttribute_management(fcWUEconRisk, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcTotalLossRP100, "CLEAR_SELECTION")

arcpy.SelectLayerByAttribute_management(fcTotalLossRP100,"NEW_SELECTION",""""Tota

lLossRP100" > 200""")

arcpy.SelectLayerByLocation_management(fcWUEconRisk,"INTERSECT",fcTotalLossRP100

,"1000 Meters","NEW_SELECTION")

 arcpy.CalculateField_management(fcWUEconRisk,"EconRisk","2","VB","#")

 logger.info("2 points assigned to wetland within 1km of second highest quintile")

 arcpy.SelectLayerByAttribute_management(fcWUEconRisk, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcTotalLossRP100, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcWS12digit, "CLEAR_SELECTION")

 # Assign 3 points to wetlands in second highest quintile or within 2km of highest quintile

arcpy.SelectLayerByAttribute_management(fcTotalLossRP100,"NEW_SELECTION",""""Tota

lLossRP100" > 200""")

arcpy.SelectLayerByLocation_management(fcWUEconRisk,"INTERSECT",fcTotalLossRP100

,"#","NEW_SELECTION")

 arcpy.CalculateField_management(fcWUEconRisk,"EconRisk","3","VB","#")

 logger.info("3 points assigned to wetland in second highest quintile")

572

 arcpy.SelectLayerByAttribute_management(fcWUEconRisk, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcTotalLossRP100, "CLEAR_SELECTION")

arcpy.SelectLayerByAttribute_management(fcTotalLossRP100,"NEW_SELECTION",""""Tota

lLossRP100" > 1204""")

arcpy.SelectLayerByLocation_management(fcWUEconRisk,"INTERSECT",fcTotalLossRP100

,"1000 Meters","NEW_SELECTION")

 arcpy.CalculateField_management(fcWUEconRisk,"EconRisk","3","VB","#")

 logger.info("3 points assigned to wetland within 2km of highest quintile")

 arcpy.SelectLayerByAttribute_management(fcWUEconRisk, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcTotalLossRP100, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcWS12digit, "CLEAR_SELECTION")

 # Asign 4 points to wetlands in highest quintile

arcpy.SelectLayerByAttribute_management(fcTotalLossRP100,"NEW_SELECTION",""""Tota

lLossRP100" > 1204""")

arcpy.SelectLayerByLocation_management(fcWUEconRisk,"INTERSECT",fcTotalLossRP100

,"#","NEW_SELECTION")

 arcpy.CalculateField_management(fcWUEconRisk,"EconRisk","4","VB","#")

 logger.info("4 points assigned to wetland in highest quintile")

 arcpy.SelectLayerByAttribute_management(fcWUEconRisk, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcTotalLossRP100, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcWS12digit, "CLEAR_SELECTION")

573

5.7.21 Floodway: Flood Attenuation Society

File Name: Floodway.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 5/27/2016 (modified 12/04/2017)

Purpose:

Flood Attenuation Function / Value to Society

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineFloodway(WetlandPoly):

 logger = logging.getLogger("WFA.FloodAttn.FASociety.Floodway")

 # Clean up if needed

 if arcpy.Exists("WU_Floodway"):

 arcpy.Delete_management("WU_Floodway")

 # Setting python variables

 fcFHFloodway = arcpy.mapping.Layer(globalvars.srcFHFloodway)

 # Create feature class to store Floodway points

 arcpy.CopyFeatures_management(WetlandPoly, "WU_Floodway")

 fcWUFloodway = arcpy.mapping.Layer(r"WU_Floodway")

 logger.info("feature layers ready")

 # Create field to store Floodway points and set initial value to zero

 actions.DeleteField(fcWUFloodway,"Floodway")

 arcpy.AddField_management(fcWUFloodway, "Floodway", "SHORT")

 arcpy.CalculateField_management(fcWUFloodway, "Floodway", "0", "PYTHON_9.3")

 logger.info("field Floodway created and initial value set to zero")

 # Select Wetland Units that intersect a Floodway

arcpy.SelectLayerByLocation_management(fcWUFloodway,"INTERSECT",fcFHFloodway,"#

","NEW_SELECTION")

 logger.info("Wetland Units that intersect a Floodway selected")

574

 # Assign Points

 arcpy.CalculateField_management(fcWUFloodway, "Floodway", "4", "VB")

 logger.info("4 points assigned to Wetland Units that intersect a Floodway")

 arcpy.SelectLayerByAttribute_management(fcWUFloodway, "CLEAR_SELECTION")

575

5.7.22 Globalvars

 ###

File Name: globalvar.py

Developer: Yibing Han @ West Virginia GIS Tech Center

Date: 02/2018

Purpose:

Stores source data paths that are used by all the metrics involved in the Wetland Functional

Assessment

#!/usr/bin/python

Input wetlands polygon

srcInput = ""

Log file directory

srcLogFolder = "Q:\\WATER RESOURCES\\WAB\\WETLANDS\\Functional

Assessment\\3_Code\\FunctionalAssessmentFramework\\logs"

Results geodatabase directory

srcGDBFolder =

"M:\\wr\\WTRSHD_BRANCH_INTERNAL\\WETLAND\\WetlandFunctionResults\\test\\"

Working file directory

srcTempFolder = "M:\\wr\\WTRSHD_BRANCH_INTERNAL\\WETLAND\\WorkingFiles"

Final Database location

srcFinalDatabase =

"M:\\wr\\WTRSHD_BRANCH_INTERNAL\\WETLAND\\WetlandFunctionResults\\test\\WV

WRAMGISresults.mdb"

576

AquaAbund, Histosol, HydSW, IrrEdge, LandPos, MarlPEM, Microtopo, Organic,

SeasonPond, StreamEdge, VegAll, VegByLP, VegPerUng, VegWoody, WFlowPath

#srcEnhWetland =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\EnhancedNWI_20150511.gdb\CON

US_WVWetlandsProj\EnhWVWetland"

srcEnhWetland =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\NWI_WV_20190304.gdb\NWI_WV

_20190304"

Basic Geometries

srcWUPoint = r"WUPoint"

srcBuffer10m = r"Buffer10m"

srcBuffer50m = r"Buffer50m"

srcBuffer300m = r"Buffer300m"

srcBuffer1km = r"Buffer1km"

srcDrainageArea = r"DrainageArea"

AquaAbund

srcStreams = r"M:\basemap\NHD_H_West_VirginiaTransfer2022.gdb\NHDFlowline"

BRank

srcBRankInput =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Habitat

Data.gdb\BRankInput"

BRankHUC

srcBRHUC =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\BRankHUC"

BufferContig, BufferPerim, Disturb50m, DisturbWshd

577

srcDisturbedLand =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\DisturbedLand"

BufferContig

#srcBuffer300m =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb\Buffer300m"

BufferPerim

#srcBuffer10m =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb\Buffer10m"

srcInterstates = r"M:\basemap\tiger_2013\WV_Transportation_UTM.gdb\Interstates"

srcPrimaryRoads = r"M:\basemap\tiger_2013\WV_Transportation_UTM.gdb\Primary_Roads"

srcLocalRoads = r"M:\basemap\tiger_2013\WV_Transportation_UTM.gdb\Local_Roads"

srcOtherRoads =

r"M:\basemap\tiger_2013\WV_Transportation_UTM.gdb\Other_Roads_And_Trails"

srcRailway =

r"M:\LayerFiles\arcsde_backup.gdb\basemap_cultural_non_replica\SDE_railway_tiger" # Also:

RoadRail

Clay

srcPalustringPlots =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb\PalustrineP

lots"

srcSSURGO =

"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\SsurgoE

xports.gdb\SsurgoClay"

ConsFocus

srcCFArea =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Habitat

Data.gdb\ConsFocusArea"

578

Discharges

srcSeptic =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\Septic"

srcOWRNPDES = r"M:\wr\owrnpdes_.shp" # Also: Septic

srcOWRNPDESOutlets = r"M:\wr\owrnpdes_outlets.shp"

srcHPU = r"M:\mr\hpu.shp"

srcAMLAMD =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\AMLAMDFeb2016"

srcWellPads =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\WellPads_20160325"

srcNPLPoint =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\NPL_point_20160406"

srcNPLBndry =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\NPL_Bndry_20160406"

DisturbWshd, LandPos, RunoffWshd, SlopeWshd, WFlowPath, ImpairedIn

#srcDrainageArea =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb\DrainageArea27m

"

DrainageArea

srcFlowDir =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Waters

hed.gdb\hydrogrid_16U_flowdir_27m"

EconRisk

srcTotalLossRP100 =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Floodpl

ainData.gdb\TotalLossRP100"

579

srcWS12digit = r"M:\basemap\watersheds_12digit.shp"

Fisheries

srcTrout = r"M:\wr\WTRSHD_BRANCH\TROUT\Trout_Streams.shp"

srcHQSFisheries =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\DNR_Fishing\Hi

ghQualityStreamFisheriesWVDNR20150820.shp"

srcTroutStreams =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\DNR_Fishing\Tr

StStreams.shp"

FloodArea

srcFPARAFEMA =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Floodpl

ainData.gdb\FloodplainARAFEMA"

srcPeatlands =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb\Peatlands_

20160228" # Also: Histosol, Organic, SoilRunoff, WFlowPath

Floodway

srcFHFloodway =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Floodpl

ainData.gdb\FEMA_NFHL_Floodway_20231207_wmA84\FEMA_NFHL_Floodway_2023120

7_wmA84"

HInvest, OwnerAccess, PublicUse

srcLocalPark =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\Boundaries2017\c

ountyCityParkBoundaries_20107731_utm83.gdb\countyCityParkBoundaries_20170731_utm83

"

srcNF =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\Boundaries2017\

nationalForestOwnership_USFWS_20170803_utm83.gdb\nationalForestOwnership_USFWS_2

0170803_utm83" # Also: WQPlan

580

srcNP =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\Boundaries2017\

nationalParkBoundaries_nationalParkService_20170802.gdb\nationalParkBoundaries_nationalP

arkService_20170802" # Also: WQPlan

srcNWR =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\Boundaries2017\

nationalWildlifeRefuge_USFWS_20170803_utm83.gdb\nationalWildlifeRefuge_USFWS_201

70803_utm83" # Also: WQPlan

srcWMA =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\Boundaries2017\

wvdnrManagedLands_wvdnr_20170731_utm83.gdb\wvdnrManagedLands_wvdnr_20170731_

utm83"

srcSP =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\Boundaries2017\s

tateParkBoundaries_WVDNR_20170927_utm83.gdb\stateParkBoundaries_WVDNR_2017092

7_utm83"

srcSF =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\Boundaries2017\

wvStateForestBoundaries_wvdof_20171003_utm83.gdb\wvStateForestBoundaries_wvdof_201

71003_utm83"

srcBotanicalAreas =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\USFS\botanical_a

reas_MNF.shp"

srcProtectedLands =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\WV_Protected_L

ands_2015_PUBLIC\WV_Protected_Lands_2015_PUBLIC.shp"

srcNatStrPreAct =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Waters

hed.gdb\NatStrPreAct_HUC10" # Also: WQPlan

srcILF =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb\ILF_banks

"

srcRestoredWetlands =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb\RestoredW

etlands"

581

srcInfrastructure =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb\Infrastruct

ureWetlands"

srcFishAccess =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\DNR_Fishing\Pu

blicFishingAccessSites_2017_10.shp"

srcPropertyBoundary =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\201710_WVDNR

_property_boundary.gdb\PropertyBoundaries_WVDNR_20171011"

srcEBird =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Habitat

Data.gdb\eBirdHotspots"

srcTrails =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\trails_Sep_27_20

17_webmercator.shp" #also: BufferPerim

srcExempBranked =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb\Exemplary

OrBrankedWetlands31Mar2015"

Histosol, Organic

srcPalustrineplots =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandsGeodatasets.gdb\PalustrineP

lots"

srcHisticEpipedon =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Ssurgo

Exports.gdb\HisticEpipedon"

srcHistosol =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Ssurgo

Exports.gdb\Histosol"

srcSSURGOWV = r"M:\basemap\ssurgo\SSURGO.gdb\ssurgo_wv"

srcSsurgoOrganic =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Ssurgo

Exports.gdb\SsurgoOrganic"

582

HUC12WQ, ImpairedIn, ImpairedOut

srcHUC12s = r"M:\basemap\watersheds_12digit.shp"

srcPublicFishingLakes =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\DNR_Fishing\Pu

blicFishingLakesWVDNR20150820.shp"

srcAlgalStreams =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\AlgalStreams"

srcAlgalLakes =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\AlgalLakes"

srcImpairedStreams =

r"M:\wr\WTRSHD_BRANCH\303D_TMDL_IMPAIRED\WV2016_ImpairedStreams_24KNH

D.shp"

srcLimeStone = r"M:\basemap\geology_shapefiles\type\geology-TYPE-limestone.shp"

srcDolostone = r"M:\basemap\geology_shapefiles\type\geology-TYPE-dolostone.shp"

HydSW

srcNWIOpenWater =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\NWIEx

ports.gdb\NWIOpenWater"

IrrEdge

srcRiversLakes =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\NWIEx

ports.gdb\RiversLakes"

Karst

srcKarstComp =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\KarstComposite"

LandInteg

583

srcForestPatches =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\forest_patches_ov

er50acres_WVplus10mi.shp"

#srcResilientConnected =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\Resilient_and_Co

nnected_Landscapes\Resilient_and_Connected_Data.gdb\Resilient_and_Connected"

srcResilientConnected =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Res_C

onnected"

srcLIIndex =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceAsReceived\landscapeIntegrit

yIndex_WVDNR_2008_utm83_img\landscapeIntegrityIndex_WVDNR_2008_utm83.img"

#srcWUPoint =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb\WUpoint"

srcIEI =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Habitat

Data.gdb\IEIUMa2010v32"

LandPos

srcWBRivers = r"M:\basemap\national_hydrology_dataset\wb-rivers.shp"

srcFSOFlow =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\FirstSecondOrderFlowlines"

MarlPEM

srcMarlSoils =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Ssurgo

Exports.gdb\MarlSoils"

RoadRail

srcTransUTMAllRoads = r"M:\basemap\tiger_2013\WV_Transportation_UTM.gdb\All_Roads"

Runoff50m, RunoffWshd

584

srcRunoffLand =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\Runoffland"

#srcBuffer50m =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandUnits.gdb\Buffer50m"

Septic

srcSAMBPoints = r"M:\basemap\WVSAMB\structures_SAMB_points_UTM83.shp"

srcSeweredAreas =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\SeweredAreas"

srcSepticFailed =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\SepticFailureRiskStatsgo"

srcUrbanized = r"M:\LayerFiles\arcsde_backup.gdb\tiger2010\urbanized_areas"

Slope, SlopeWshd

srcSlopePCT = r" M:\elevation\statewide_slope_pct.tif"

StreamEdge

srcRivers =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\NWIEx

ports.gdb\Rivers"

VegByLP

srcLakes =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\NWIEx

ports.gdb\Lakes"

VegPerUng

srcPasturesNotHayfields =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\PasturesNotHayfields"

585

WatershedPlan, WQPlan

srcWatershedPlan =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\WatershedPlan"

WaterSupply

PSWI_WATERSHEDS = r"M:\environmental\CONFIDENTIAL-

public_surface_water_intakes\pswi_distance_analysis_9m.gdb\pswi_watersheds_with_out_of_s

tate_drainage"

ZPC_5HR = r"M:\environmental\CONFIDENTIAL-

public_surface_water_intakes\CONFIDENTIAL-

source_water_assessment_and_protection.gdb\ZPC_statewide_5hrabove"

ZCC_WV = r"M:\environmental\CONFIDENTIAL-

public_surface_water_intakes\CONFIDENTIAL-

source_water_assessment_and_protection.gdb\ZCC_statewide"

PROTECTION_AREAS = r"M:\environmental\CONFIDENTIAL-

public_surface_water_intakes\CONFIDENTIAL-

source_water_assessment_and_protection.gdb\Source_Water_Protection_Areas"

PSWI_TEMPLATE =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\templat

es.gdb\pwsi_scoring_output_template"

WetlandBird

srcWetBird =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Habitat

Data.gdb\WetlandBirds_WetBirdColumnOnly"

WFlowPath

srcNHDWB24kRivers =

r"M:\LayerFiles\arcsde_backup.gdb\basemap_physical_non_replica\SDE_NHD_waterbodies_2

4k_rivers"

srcNHDFlowline = r"M:\basemap\NHD_H_West_Virginia.gdb\Hydrography\NHDFlowline" #

Also: StreamEdge

586

WshdPos

srcDrainage =

r"M:\LayerFiles\arcsde_backup.gdb\basemap_physical_non_replica\SDE_NHD_reach_24k_gt_

50_mi_drainage"

WshdUniq

srcHUCWetSizeUniq =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Waters

hed.gdb\HUCWetlandSizeUniq"

WQUse

srcSwimmingAreas =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\SwimmingAreas2016"

WQPlan

srcTMDL =

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\SourceFunctionalAssessment\Water

QualityDatasets.gdb\TMDL"

587

5.7.23 Habitat and Ecological Integrity

File Name: HabEco.py

Developer: Yibing Han

Date: 12/13/2017

Purpose:

This script handles the execution of all metrics within the Habitat & Ecological Integrity

module.

#!/usr/bin/python

import sys

import arcpy

import datetime

import logging

import traceback

from HPotential import HPotential

from HOpportun import HOpportun

from HSociety import HSociety

from HFunction import HFuncNoBR, BRank, HFunction

logger = logging.getLogger("WFA.HabEco")

def RunHabEco(WetlandPoly):

 ## 1. Run Habitat and Ecological Integrity Opportunity Variables/Aspects/Factors

 logger.info("Running Habitat and Ecological Integrity Opportunity

Variables/Aspects/Factors...")

588

 try:

 HOpportun.procHOpportun(WetlandPoly)

 logger.info("Habitat and Ecological Integrity Opportunity Variables/Aspects/Factors

completed")

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 sys.exit(1)

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 sys.exit(1)

 ## 2. Run Habitat and Ecological Integrity Potential Variables/Aspects/Factors

 logger.info("Running Habitat and Ecological Integrity Potential

Variables/Aspects/Factors...")

 try:

 HPotential.procHPotential(WetlandPoly)

 logger.info("Habitat and Ecological Integrity Potential Variables/Aspects/Factors

completed")

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

589

 arcpy.AddError(msgs)

 logger.error(msgs)

 sys.exit(1)

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 sys.exit(1)

 ## 3. Run Habitat and Ecological Integrity Society Variables/Aspects/Factors

 logger.info("Running Habitat and Ecological Integrity Society Variables/Aspects/Factors...")

 try:

 HSociety.procHSociety(WetlandPoly)

 logger.info("Habitat and Ecological Integrity Society Variables/Aspects/Factors

completed")

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 sys.exit(1)

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

590

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 sys.exit(1)

 ## 4. Run Habitat and Ecological Integrity Function to roll up Variables/Aspects/Factors

excluding BRank

 logger.info("Running Habitat and Ecological Integrity Function to roll up

Variables/Aspects/Factors excluding BRank...")

 try:

 HFuncNoBR.CalcHFuncNoBR()

 logger.info("Habitat and Ecological Integrity Function to roll up Variables/Aspects/Factors

excluding BRank completed")

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 sys.exit(1)

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

591

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 sys.exit(1)

 ## 5. Run BRank Function

 logger.info("Running BRank Function...")

 try:

 BRank.CalcBRank(WetlandPoly)

 logger.info("BRank Function completed")

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 sys.exit(1)

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 sys.exit(1)

 ## 6. Run Habitat and Ecological Integrity Function to roll up Variables/Aspects/Factors

592

 logger.info("Running Habitat and Ecological Integrity Function to roll up

Variables/Aspects/Factors...")

 try:

 HFunction.CalcHFunction()

 logger.info("Habitat and Ecological Integrity Function to roll up Variables/Aspects/Factors

completed")

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 sys.exit(1)

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 sys.exit(1)

593

5.7.24 BRank: Habitat and Ecological Integrity Function

File Name: BRank.py

Developer: Yibing Han

Date: 10/17/2017 (revised 11/6/2017)

Purpose:

Input to Habitat / Value to Society / HUse

#!/usr/bin/python

import sys

sys.path.append("../..")

import arcpy

from utilities import actions

from globalvars import globalvars

import logging

def CalcBRank(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.BRank")

 # Clean up if needed

 if arcpy.Exists("WU_BRank"):

 arcpy.Delete_management("WU_BRank")

 if arcpy.Exists("WU_BRank_join"):

 arcpy.Delete_management("WU_BRank_join")

 if arcpy.Exists("WU_BRank_summ"):

 arcpy.Delete_management("WU_BRank_summ")

 if arcpy.Exists("WU_BRank_summB5"):

 arcpy.Delete_management("WU_BRank_summB5")

 if arcpy.Exists("WU_BRank_summB4"):

 arcpy.Delete_management("WU_BRank_summB4")

 if arcpy.Exists("WU_BRank_summB3"):

 arcpy.Delete_management("WU_BRank_summB3")

 if arcpy.Exists("WU_BRank_summB2"):

 arcpy.Delete_management("WU_BRank_summB2")

 if arcpy.Exists("WU_BRank_summB1"):

 arcpy.Delete_management("WU_BRank_summB1")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly, "fcWU")

 arcpy.MakeFeatureLayer_management(globalvars.srcBRankInput, 'fcBRankInput')

 logger.info("feature layers ready")

594

 ## STEP 1: Create feature class and add fields to store BRank values

 arcpy.CopyFeatures_management("fcWU","WU_BRank","#","0","0","0")

 arcpy.MakeFeatureLayer_management(r"WU_BRank", "fcBRank")

 logger.info("feature class WU_BRank created")

 ## Add fields to store partial B-Rank based on single elements, concentrations, and final

BRank

 actions.DeleteField("fcBRank", "BSing")

 actions.DeleteField("fcBRank", "BConc")

 actions.DeleteField("fcBRank", "BRank")

 arcpy.AddField_management("fcBRank", "BSing", "TEXT", field_length = 10)

 arcpy.AddField_management("fcBRank", "BConc", "TEXT", field_length = 10)

 arcpy.AddField_management("fcBRank", "BRank", "TEXT", field_length = 10)

 logger.info("fields added to store partial B-Rank based on single elements, concentrations,

and final BRank")

 ## STEP 2: Assign Site Biodiversity Ranks based on single element occurrences

 ## Rank B6 selection

 strWHERE = """"Srank" = 'S3' AND "OQrank" IN ('B', 'C')"""

 arcpy.SelectLayerByAttribute_management("fcBRankInput", "NEW_SELECTION",

strWHERE)

 arcpy.SelectLayerByLocation_management("fcBRank", "INTERSECT", "fcBRankInput")

 arcpy.CalculateField_management("fcBRank","BSing",'"B6"',"PYTHON")

 logger.info("B6 selection ranked")

 ## Rank B5 selection

 strWHERE = """("Grank" = 'G3' AND "OQrank" = 'D' AND ("EO_Count" = 1 OR "Flag" =

'BestState')) OR

 ("Srank" = 'S1' AND "OQrank" = 'C') OR ("Srank" = 'S2' AND "OQrank" IN

('B','C')) OR

 ("Srank" = 'S3' AND "OQrank" = 'A') OR ("SpecComm" = 'C' AND "Grank" IN

('G4', 'G5') AND "OQrank" = 'C')"""

 arcpy.SelectLayerByAttribute_management("fcBRankInput", "NEW_SELECTION",

strWHERE)

 arcpy.SelectLayerByLocation_management("fcBRank", "INTERSECT", "fcBRankInput")

 arcpy.CalculateField_management("fcBRank","BSing",'"B5"',"PYTHON")

 logger.info("B5 selection ranked")

 ## Rank B4 selection

 strWHERE = """("Grank" = 'G2' AND "OQrank" = 'D' AND ("EO_Count" = 1 OR "Flag" =

'BestState')) OR

 ("Grank" = 'G3' AND "OQrank" = 'C') OR ("Srank" = 'S1' AND "OQrank" IN ('A',

'B')) OR

 ("Srank" = 'S1' AND "OQrank" = 'C' AND ("EO_Count" = 1 OR "Flag" =

'BestState')) OR

595

 ("Srank" = 'S2' AND "OQrank" = 'A') OR ("Grank" IN ('G4', 'G5') AND "OQrank"

IN ('A', 'B', 'C')

 AND "Flag" = 'Disjunct') OR ("SpecComm" = 'C' AND "Grank" IN ('G4', 'G5')

AND "OQrank" IN ('A', 'B'))"""

 arcpy.SelectLayerByAttribute_management("fcBRankInput", "NEW_SELECTION",

strWHERE)

 arcpy.SelectLayerByLocation_management("fcBRank", "INTERSECT", "fcBRankInput")

 arcpy.CalculateField_management("fcBRank","BSing",'"B4"',"PYTHON")

 logger.info("B4 selection ranked")

 ## Rank B3 selection

 strWHERE = """("Grank" = 'G1' AND "OQrank" = 'D' AND ("EO_Count" = 1 OR "Flag" =

'BestState')) OR

 ("Grank" = 'G2' AND "OQrank" = 'C') OR ("Grank" = 'G3' AND "OQrank" IN ('A',

'B')) OR

 ("Srank" = 'S1' AND "OQrank" IN ('A', 'B') AND "Flag" = 'Disjunct') OR

 (("SpecComm" = 'C' AND "Grank" IN ('G4', 'G5')) AND "OQrank" IN ('A', 'B')

AND "Flag" = 'Best5Ecoregion')"""

 arcpy.SelectLayerByAttribute_management("fcBRankInput", "NEW_SELECTION",

strWHERE)

 arcpy.SelectLayerByLocation_management("fcBRank", "INTERSECT", "fcBRankInput")

 arcpy.CalculateField_management("fcBRank","BSing",'"B3"',"PYTHON")

 logger.info("B3 selection ranked")

 ## Rank B2 selection

 strWHERE = """("Grank" = 'G1' AND "OQrank" IN ('B', 'C')) OR ("Grank" = 'G2' AND

"OQrank" IN ('A','B')) OR

 ("Grank" = 'G3' AND "OQrank" IN ('A', 'B') AND "Flag" = 'Best5Range')"""

 arcpy.SelectLayerByAttribute_management("fcBRankInput", "NEW_SELECTION",

strWHERE)

 arcpy.SelectLayerByLocation_management("fcBRank", "INTERSECT", "fcBRankInput")

 arcpy.CalculateField_management("fcBRank","BSing",'"B2"',"PYTHON")

 logger.info("B2 selection ranked")

 ## Rank B1 selection

 strWHERE = """("Flag" = 'OnlyRange') OR ("Grank" = 'G1' AND "OQrank" = 'A') OR

 ("Grank" = 'G1' AND "OQrank" IN ('B', 'C') AND ("EO_Count" = 1 OR "Flag" =

'BestState'))"""

 arcpy.SelectLayerByAttribute_management("fcBRankInput", "NEW_SELECTION",

strWHERE)

 arcpy.SelectLayerByLocation_management("fcBRank", "INTERSECT", "fcBRankInput")

 arcpy.CalculateField_management("fcBRank","BSing",'"B1"',"PYTHON")

 logger.info("B1 selection ranked")

 arcpy.SelectLayerByAttribute_management("fcBRankInput", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcBRank", "CLEAR_SELECTION")

596

 ## STEP 3: Join Wetland Units with BRankInput

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable('fcWU')

 fmSJ.addTable('fcBRankInput')

 #removeFields = []

 #removeFields = ['Shape_Length1','Shape_Area1']

 #for field in fmSJ.fields:

 #if field.name in removeFields:

 #fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcWU', 'fcBRankInput', 'WU_BRank_join',

'JOIN_ONE_TO_MANY', 'KEEP_ALL', fmSJ, 'INTERSECT')

 arcpy.MakeFeatureLayer_management('WU_BRank_join', 'fcBRankJoin')

 logger.info("Wetland Units joined with BRankInput")

 ## STEP 4: Find the highest occurrence quality rank for each element in each Wetland Unit

 ## Set null values of RandID to zero to allow summarize function to work

 strWHERE = """"RandID" IS NULL"""

 arcpy.SelectLayerByAttribute_management("fcBRankJoin", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcBRankJoin","RandID","0","VB","#")

 arcpy.SelectLayerByAttribute_management("fcBRankJoin", "CLEAR_SELECTION")

 logger.info("null values of RandID set to zero to allow summarize function to work")

 ## Add field to hold integer transformation of OQRank

 actions.DeleteField("fcBRankJoin", "OQrankInt")

 arcpy.AddField_management("fcBRankJoin", "OQrankInt", "SHORT")

 strWHERE = """"OQrank" IS NULL"""

 arcpy.SelectLayerByAttribute_management("fcBRankJoin", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcBRankJoin","OQrankInt","0","VB","#")

 strWHERE = """"OQrank" = 'D'"""

 arcpy.SelectLayerByAttribute_management("fcBRankJoin", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcBRankJoin","OQrankInt","1","VB","#")

 strWHERE = """"OQrank" = 'C'"""

 arcpy.SelectLayerByAttribute_management("fcBRankJoin", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcBRankJoin","OQrankInt","2","VB","#")

 strWHERE = """"OQrank" = 'B'"""

 arcpy.SelectLayerByAttribute_management("fcBRankJoin", "NEW_SELECTION",

strWHERE)

597

 arcpy.CalculateField_management("fcBRankJoin","OQrankInt","3","VB","#")

 strWHERE = """"OQrank" = 'A'"""

 arcpy.SelectLayerByAttribute_management("fcBRankJoin", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcBRankJoin", "OQrankInt", "4", "VB", "#")

 logger.info("field added to hold integer transformation of OQRank")

 arcpy.SelectLayerByAttribute_management("fcBRankJoin", "CLEAR_SELECTION")

 ## Find the highest OQrank for each WUKey |RandID pair

 actions.DeleteField("fcBRankJoin", "Concat")

 arcpy.AddField_management("fcBRankJoin", "Concat", "TEXT", field_length = 20)

 arcpy.CalculateField_management("fcBRankJoin","Concat","""[WUKey]&" | "&

[RandID]""","VB","#")

 arcpy.Statistics_analysis("fcBRankJoin", "WU_BRank_summ", [["WUKey", "MIN"],

["RandID", "MIN"], ["Srank", "FIRST"], ["Grank", "FIRST"], ["SpecComm", "FIRST"],

["OQrankInt", "MAX"]], ["Concat"])

 arcpy.MakeTableView_management(r"WU_BRank_summ", "tvBRankSumm")

 logger.info("the highest OQrank for each WUKey |RandID pair found")

 ## STEP 5: Assign Site Biodiversity Rank based on concentrations of elements

 ## Rank B5 selection (Rank B6 does not have a criterion for concentrations)

 ## Select B- or C-ranked occurrences of S3 elements

 strWHERE = """"First_Srank" = 'S3' AND "Max_OQrankInt" IN (2,3)"""

 arcpy.SelectLayerByAttribute_management("tvBRankSumm", "NEW_SELECTION",

strWHERE)

 arcpy.Statistics_analysis("tvBRankSumm", "WU_BRank_summB5", [["MIN_WUKey",

"COUNT"]], ["MIN_WUKey"])

 arcpy.MakeTableView_management(r"WU_BRank_summB5", "tvBRankSummB5")

 logger.info("all unique elements within a wetland unit counted")

 ## Join table back to WU_BRank

 arcpy.AddJoin_management("fcBRank", "WUKey", "tvBRankSummB5", "MIN_WUKey")

 logger.info("table WU_BRank_summB5 joined back to WU_BRank")

 ## Select records with 4 or more elements and assign value to BConc

 strWHERE = """WU_BRank_summB5.COUNT_MIN_WUKey > 3"""

 arcpy.SelectLayerByAttribute_management("fcBRank", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcBRank", "BConc", '"B5"', "PYTHON")

 logger.info("records with 4 or more elements selected and value assigned to BConc")

 ## Remove Join

 arcpy.RemoveJoin_management("fcBRank")

 logger.info("join removed")

598

 ## Rank B4 selection

 ## Select C-ranked S1, B- or C-ranked S2, and A-ranked S3 element occurrences and C-

ranked G4 or G5 communities

 strWHERE = """("First_Srank" = 'S1' AND "Max_OQrankInt" = 2) OR ("First_Srank" = 'S2'

AND "Max_OQrankInt" IN (2,3)) OR

 ("First_Srank" = 'S3' AND "Max_OQrankInt" = 4) OR ("First_SpecComm" = 'C'

AND

 "First_Grank" IN ('G4', 'G5') AND "Max_OQrankInt" = 2)"""

 arcpy.SelectLayerByAttribute_management("tvBRankSumm", "NEW_SELECTION",

strWHERE)

 arcpy.Statistics_analysis("tvBRankSumm", "WU_BRank_summB4", [["MIN_WUKey",

"COUNT"]], ["MIN_WUKey"])

 arcpy.MakeTableView_management(r"WU_BRank_summB4", "tvBRankSummB4")

 logger.info("C-ranked S1, B- or C-ranked S2, and A-ranked S3 element occurrences and C-

ranked G4 or G5 communities selected")

 ## Join table back to WU_BRank

 arcpy.AddJoin_management("fcBRank", "WUKey", "tvBRankSummB4", "MIN_WUKey")

 logger.info("table WU_BRank_summB4 joined back to WU_BRank")

 ## Select records with 4 or more elements and assign value to BConc

 strWHERE = """WU_BRank_summB4.COUNT_MIN_WUKey > 3"""

 arcpy.SelectLayerByAttribute_management("fcBRank", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcBRank", "BConc", '"B4"', "PYTHON")

 logger.info("records with 4 or more elements selected and value assigned to BConc")

 ## Remove Join

 arcpy.RemoveJoin_management("fcBRank")

 logger.info("join removed")

 ## Rank B3 selection

 ## Select C-ranked occurrences of G3 elements and A- or B-ranked occurrences of S1

elements

 strWHERE = """("First_Grank" = 'G3' AND "Max_OQrankInt" = 2) OR ("First_Srank" =

'S1' AND "Max_OQrankInt" IN (3,4))"""

 arcpy.SelectLayerByAttribute_management("tvBRankSumm", "NEW_SELECTION",

strWHERE)

 arcpy.Statistics_analysis("tvBRankSumm", "WU_BRank_summB3", [["MIN_WUKey",

"COUNT"]], ["MIN_WUKey"])

 arcpy.MakeTableView_management(r"WU_BRank_summB3", "tvBRankSummB3")

 logger.info("C-ranked occurrences of G3 elements and A- or B-ranked occurrences of S1

elements selected")

 ## Join table back to WU_BRank

 arcpy.AddJoin_management("fcBRank", "WUKey", "tvBRankSummB3", "MIN_WUKey")

599

 logger.info("table WU_BRank_summB3 joined back to WU_BRank")

 ## Select records with 4 or more elements and assign value to BConc

 strWHERE = """WU_BRank_summB3.COUNT_MIN_WUKey > 3"""

 arcpy.SelectLayerByAttribute_management("fcBRank", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcBRank", "BConc", '"B3"', "PYTHON")

 logger.info("records with 4 or more elements selected and value assigned to BConc")

 ## Remove Join

 arcpy.RemoveJoin_management("fcBRank")

 logger.info("join removed")

 ## Rank B2 selection

 ## Select C-ranked occurrences of G2 elements and A- or B-ranked occurrences of G3

elements

 strWHERE = """("First_Grank" = 'G2' AND "Max_OQrankInt" = 2) OR ("First_Grank" =

'G3' AND "Max_OQrankInt" IN (3,4))"""

 arcpy.SelectLayerByAttribute_management("tvBRankSumm", "NEW_SELECTION",

strWHERE)

 arcpy.Statistics_analysis("tvBRankSumm", "WU_BRank_summB2", [["MIN_WUKey",

"COUNT"]], ["MIN_WUKey"])

 arcpy.MakeTableView_management(r"WU_BRank_summB2", "tvBRankSummB2")

 logger.info("C-ranked occurrences of G2 elements and A- or B-ranked occurrences of G3

elements selected")

 ## Join table back to WU_BRank

 arcpy.AddJoin_management("fcBRank", "WUKey", "tvBRankSummB2", "MIN_WUKey")

 logger.info("table WU_BRank_summB2 joined back to WU_BRank")

 ## Select records with 4 or more elements and assign value to BConc

 strWHERE = """WU_BRank_summB2.COUNT_MIN_WUKey > 3"""

 arcpy.SelectLayerByAttribute_management("fcBRank", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcBRank", "BConc", '"B2"', "PYTHON")

 logger.info("records with 4 or more elements selected and value assigned to BConc")

 ## Remove Join

 arcpy.RemoveJoin_management("fcBRank")

 logger.info("join removed")

 ## Rank B1 selection

 ## Select B-ranked occurrences of G1 elements and A- or B-ranked occurrences of G2

elements

 strWHERE = """("First_Grank" = 'G1' AND "Max_OQrankInt" = 3) OR ("First_Grank" =

'G2' AND "Max_OQrankInt" IN (3,4))"""

 arcpy.SelectLayerByAttribute_management("tvBRankSumm", "NEW_SELECTION",

strWHERE)

600

 arcpy.Statistics_analysis("tvBRankSumm", "WU_BRank_summB1", [["MIN_WUKey",

"COUNT"]], ["MIN_WUKey"])

 arcpy.MakeTableView_management(r"WU_BRank_summB1", "tvBRankSummB1")

 logger.info("B-ranked occurrences of G1 elements and A- or B-ranked occurrences of G2

elements selected")

 ## Join table back to WU_BRank

 arcpy.AddJoin_management("fcBRank", "WUKey", "tvBRankSummB1", "MIN_WUKey")

 logger.info("table WU_BRank_summB1 joined back to WU_BRank")

 ## Select records with 4 or more elements and assign value to BConc

 strWHERE = """WU_BRank_summB1.COUNT_MIN_WUKey > 3"""

 arcpy.SelectLayerByAttribute_management("fcBRank", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcBRank", "BConc", '"B1"', "PYTHON")

 logger.info("records with 4 or more elements selected and value assigned to BConc")

 ## Remove Join

 arcpy.RemoveJoin_management("fcBRank")

 logger.info("join removed")

 arcpy.SelectLayerByAttribute_management("tvBRankSumm", "CLEAR_SELECTION")

 ## STEP 6: Calculate final Site Biodiversity Rank

 strWHERE = """"BSing" = 'B6'"""

 arcpy.SelectLayerByAttribute_management("fcBRank", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcBRank", "BRank", '"B6"', "PYTHON")

 strWHERE = """"BSing" = 'B5' OR "BConc" = 'B5'"""

 arcpy.SelectLayerByAttribute_management("fcBRank", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcBRank", "BRank", '"B5"', "PYTHON")

 strWHERE = """"BSing" = 'B4' OR "BConc" = 'B4'"""

 arcpy.SelectLayerByAttribute_management("fcBRank", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcBRank", "BRank", '"B4"', "PYTHON")

 strWHERE = """"BSing" = 'B3' OR "BConc" = 'B3'"""

 arcpy.SelectLayerByAttribute_management("fcBRank", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcBRank", "BRank", '"B3"', "PYTHON")

 strWHERE = """"BSing" = 'B2' OR "BConc" = 'B2'"""

 arcpy.SelectLayerByAttribute_management("fcBRank", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcBRank", "BRank", '"B2"', "PYTHON")

 strWHERE = """"BSing" = 'B1' OR "BConc" = 'B1'"""

 arcpy.SelectLayerByAttribute_management("fcBRank", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcBRank", "BRank", '"B1"', "PYTHON")

 logger.info("final Site Biodiversity Ranks calculated")

601

 ## Populate the "Null" BRank records with "none"

 strWHERE = """"BRank" IS NULL"""

 arcpy.SelectLayerByAttribute_management("fcBRank", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcBRank", "BRank", '"none"', "PYTHON")

 logger.info("the 'Null' BRank records populated with 'none'")

 arcpy.SelectLayerByAttribute_management("fcBRank", "CLEAR_SELECTION")

 ## Note that it is preferable to have WVNHP staff check B1 sites manually to ensure they are

correct

 ## Several Wetland Units should have the BRank changed to "NULL" because the qualifying

element

 ## occurrences are not wetland species nor wetland communities.

 ## Add fields to store expert review input from the WV Natural Heritage Program

 arcpy.AddField_management("fcBRank", "WVNHP_BRank", "TEXT", field_length = 10)

 arcpy.AddField_management("fcBRank", "WVNHP_note", "TEXT", field_length = 254)

 logger.info("fields added to store expert review input from the WV Natural Heritage

Program")

 '''

 ## Solicit review from WVNHP experts or their designees regarding B1 and B2 sites (and

any other sites of interest).

 ## Check the "WVNHP_BRank" field and if it is populated, change the rank to the

WVNHP_BRank.

 strWHERE = """"WVNHP_BRank" <>''"""

 arcpy.SelectLayerByAttribute_management("fcBRank", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcBRank", "BRank", "[WVNHP_BRank]", "VB")

 logger.info("the 'Null' BRank records populated with 'none'")

 '''

 # Clean up

 if arcpy.Exists("WU_BRank_join"):

 arcpy.Delete_management("WU_BRank_join")

 if arcpy.Exists("WU_BRank_summ"):

 arcpy.Delete_management("WU_BRank_summ")

 if arcpy.Exists(r"WU_BRank_summB5"):

 arcpy.Delete_management(r"WU_BRank_summB5")

 if arcpy.Exists(r"WU_BRank_summB4"):

 arcpy.Delete_management(r"WU_BRank_summB4")

 if arcpy.Exists(r"WU_BRank_summB3"):

 arcpy.Delete_management(r"WU_BRank_summB3")

 if arcpy.Exists(r"WU_BRank_summB2"):

 arcpy.Delete_management(r"WU_BRank_summB2")

 if arcpy.Exists(r"WU_BRank_summB1"):

602

 arcpy.Delete_management(r"WU_BRank_summB1")

603

5.7.25 HFuncNoBR: Habitat and Ecological Integrity Function

File Name: HFuncNoBR.py

Developer: Yibing Han

Date: 10/19/2017

Purpose:

Input to Habitat and Ecological Integrity Function

#!/usr/bin/python

import sys

sys.path.append("../..")

import arcpy

from utilities import actions

import logging

def CalcHFuncNoBR():

 logger = logging.getLogger("WFA.HabEco.HFuncNoBR")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_HPotential","fcHPotential")

 arcpy.MakeFeatureLayer_management(r"WU_HSociety","fcHSociety")

 arcpy.MakeFeatureLayer_management(r"WU_HOpportun","fcHOpportun")

 logger.info("feature layers ready")

 # Clean up if needed

 if arcpy.Exists('WU_HFuncNoBR1'):

 arcpy.Delete_management('WU_HFuncNoBR1')

 if arcpy.Exists('WU_HFuncNoBR'):

 arcpy.Delete_management('WU_HFuncNoBR')

 ## Spatial Join to merge metrics and create feature class to store HFuncNoBR

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable("fcHPotential")

 fmSJFLIN.addTable("fcHOpportun")

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','HPotential','HOpportun']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis("fcHPotential", "fcHOpportun", 'WU_HFuncNoBR1',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management(r"WU_HFuncNoBR1", "fcHFuncNoBR1")

604

 logger.info("spatial join HPotential and HSociety completed")

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable("fcHFuncNoBR1")

 fmSJFLIN.addTable("fcHSociety")

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','HPotential','HOpportun',"HSociety"]

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis("fcHFuncNoBR1", "fcHSociety", 'WU_HFuncNoBR',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 fcHFuncNoBR = arcpy.mapping.Layer(r"WU_HFuncNoBR")

 logger.info("spatial join HFuncNoBR1 and HSociety completed")

 ## Add HFuncNoBR field to Wetland Units and set initial point value to zero.

 actions.DeleteField(fcHFuncNoBR, 'HFuncNoBR')

 arcpy.AddField_management(fcHFuncNoBR, 'HFuncNoBR', 'SHORT')

 arcpy.CalculateField_management(fcHFuncNoBR, 'HFuncNoBR', '0', 'VB', '#')

 logger.info("field HFuncNoBR added and initial value set to 0")

 ## Sum the points for HInvest and HUse

 arcpy.CalculateField_management(fcHFuncNoBR, 'HFuncNoBR', '[HPotential] +

[HOpportun] + [HSociety]', 'VB', '#')

 logger.info("field HFuncNoBR calculated")

 # Clean up

 if arcpy.Exists('WU_HFuncNoBR1'):

 arcpy.Delete_management('WU_HFuncNoBR1')

605

5.7.26 HFunction: Habitat and Ecological Integrity Function

 ###

File Name: HFunction.py

Developer: Yibing Han

Date: 10/19/2017

Purpose:

Habitat & Ecological Integrity function

#!/usr/bin/python

import sys

sys.path.append("../..")

import arcpy

from utilities import actions

import logging

def CalcHFunction():

 logger = logging.getLogger("WFA.HabEco.HFunction")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_BRank","fcBRank")

 arcpy.MakeFeatureLayer_management(r"WU_HFuncNoBR","fcHFuncNoBR")

 logger.info("feature layers ready")

 # Clean up if needed

 if arcpy.Exists('WU_HFunction'):

 arcpy.Delete_management('WU_HFunction')

606

 ## Spatial Join to merge metrics and create feature class to store Function

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable("fcBRank")

 fmSJ.addTable("fcHFuncNoBR")

 keepers = []

 keepers =

['WUKey','Shape_Length','Shape_Area','HPotential','HOpportun','HSociety','HFuncNoBR','BRa

nk']

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis("fcBRank", "fcHFuncNoBR", 'WU_HFunction',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJ, 'CONTAINS')

 fcHFunction = arcpy.mapping.Layer(r"WU_HFunction")

 logger.info("spatial join BRank and HFuncNoBR completed")

 ## Add Function field to Wetland Units and set initial point value to zero.

 actions.DeleteField(fcHFunction, 'HPotB6')

 arcpy.AddField_management(fcHFunction, 'HPotB6', 'SHORT')

 actions.DeleteField(fcHFunction, 'HFunction')

 arcpy.AddField_management(fcHFunction, 'HFunction', 'SHORT')

 arcpy.CalculateField_management(fcHFunction, 'HFunction', '[HFuncNoBR]', 'VB', '#')

 logger.info("fields added to store intermediate value for B6 sites and results and initial values

set")

 ## Select B6 wetlands

 strWHERE = """"BRank" = 'B6'"""

 arcpy.SelectLayerByAttribute_management(fcHFunction, "NEW_SELECTION",

strWHERE)

607

 logger.info("B6 wetlands selected")

 ## Add 5 points to HPotential for B6 wetlands, up to a maximum of 30 points

 arcpy.CalculateField_management(fcHFunction, "HPotB6", "[HPotential] + 5", "VB", "#")

 strWHERE = """"HPotB6" > 30"""

 arcpy.SelectLayerByAttribute_management(fcHFunction, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcHFunction, "HPotB6", "30", "VB", "#")

 logger.info("5 points added to HPotential for B6 wetlands, up to a maximum of 30 points")

 ## Select B6 wetlands and calculate HFunction

 strWHERE = """"BRank" = 'B6'"""

 arcpy.SelectLayerByAttribute_management(fcHFunction, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcHFunction, "HFunction", "[HPotB6] + [HOpportun]+

[HSociety]", "VB", "#")

 ## Select B5 wetlands and calculate HFunction

 strWHERE = """"BRank" = 'B5'"""

 arcpy.SelectLayerByAttribute_management(fcHFunction, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcHFunction, "HFunction", "[HOpportun]+ [HSociety] +

30", "VB", "#")

 ## Select B4 wetlands and calculate HFunction

 strWHERE = """"BRank" = 'B4'"""

 arcpy.SelectLayerByAttribute_management(fcHFunction, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcHFunction, "HFunction", "50", "VB", "#")

 ## Select B3 wetlands and calculate HFunction

608

 strWHERE = """"BRank" = 'B3'"""

 arcpy.SelectLayerByAttribute_management(fcHFunction, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcHFunction, "HFunction", "75", "VB", "#")

 ## Select B2 wetlands and calculate HFunction

 strWHERE = """"BRank" = 'B2'"""

 arcpy.SelectLayerByAttribute_management(fcHFunction, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcHFunction, "HFunction", "100", "VB", "#")

 ## Select B1 wetlands and calculate HFunction

 strWHERE = """"BRank" = 'B1'"""

 arcpy.SelectLayerByAttribute_management(fcHFunction, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcHFunction, "HFunction", "150", "VB", "#")

 # Clear all selections

 arcpy.SelectLayerByAttribute_management(fcHFunction, "CLEAR_SELECTION")

 # Clean up

609

5.7.27 HOpportun: Habitat and Ecological Integrity

File Name: HOpportun.py

Developer: Yibing Han

Date: 12/12/2017

Purpose:

This script handles the execution of all the Habitat and Ecological Integrity Value to Society

metrics.

import datetime

import logging

import traceback

import arcpy

from Variables import AquaAbund, BRankHUC, BufferContig, BufferPerim, ConsFocus,

LandInteg, WetldBird, Karst, WshdPos, WshdUniq

from Factors import BufferLand, LandHydro, LandEco

from Aspects import HOpportun

def procHOpportun(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HOpportun")

 ##

 ## 1. Run Variables

 ##

 AquaAbund.CalcAquaAbund(WetlandPoly)

 BRankHUC.CalcBRankHUC(WetlandPoly)

 BufferContig.CalcBufferContig(WetlandPoly)

 BufferPerim.CalcBufferPerim(WetlandPoly)

 ConsFocus.CalcConsFocus(WetlandPoly)

 LandInteg.CalcLandInteg(WetlandPoly)

 WetldBird.CalcWetldBird(WetlandPoly)

 Karst.CalcKarst(WetlandPoly)

 WshdPos.CalcWshdPos()

 WshdUniq.CalcWshdUniq()

 ##

 ## 2. Run Factors

 ##

 BufferLand.CalcBufferLand()

 LandHydro.CalcLandHydro()

 LandEco.CalcLandEco()

 ##

610

 ## 3. Run Aspect

 ##

 HOpportun.CalcHOpportun()

611

5.7.28 HOpportun: Habitat and Ecological Integrity Aspects

File Name: HOpportun.py

Developer: Yibing Han

Date: 10/10/2017

Purpose:

Habitat Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import arcpy

from utilities import actions

import logging

def CalcHOpportun():

 logger = logging.getLogger("WFA.HabEco.HOpportun.HOpportun")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_BufferLand","fcBufferLand")

 arcpy.MakeFeatureLayer_management(r"WU_LandHydro","fcLandHydro")

 arcpy.MakeFeatureLayer_management(r"WU_LandEco","fcLandEco")

 # Clean up if needed

 if arcpy.Exists("WU_HOpportun"):

 arcpy.Delete_management("WU_HOpportun")

 if arcpy.Exists("WU_HOpportun1"):

 arcpy.Delete_management("WU_HOpportun1")

 ## Spatial joins to bring together factor values

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable("fcBufferLand")

 fmSJFLIN.addTable("fcLandHydro")

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','BufferLand','LandHydro']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcBufferLand', 'fcLandHydro', 'WU_HOpportun1',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management(r"WU_HOpportun1", "fcHOpportun1")

 logger.info("Spatial Join BufferLand and LandHydro completed")

612

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable("fcHOpportun1")

 fmSJFLIN.addTable("fcLandEco")

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','BufferLand','LandHydro','LandEco']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcHOpportun1', 'fcLandEco', 'WU_HOpportun',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 fcHOpportun = arcpy.mapping.Layer(r"WU_HOpportun")

 logger.info("Spatial Join HOpportun1 and LandEco completed")

 ## Add HOpportun field and set initial point value to zero

 actions.DeleteField(fcHOpportun, "HOpportun")

 arcpy.AddField_management(fcHOpportun, "HOpportun", "SHORT")

 arcpy.CalculateField_management(fcHOpportun,"HOpportun","0","VB","#")

 logger.info("field HOpportun added and initial value set to 0")

 ## Sum the factor points

 arcpy.CalculateField_management(fcHOpportun,"HOpportun","[BufferLand]+

[LandHydro]+ [LandEco]","VB","#")

 logger.info("Points calculated to wetland units")

 # Clean up

 if arcpy.Exists("WU_HOpportun1"):

 arcpy.Delete_management("WU_HOpportun1")

613

5.7.29 BufferLand: Habitat and Ecological Integrity Opportunity

File Name: BufferLand.py

Developer: Yibing Han

Date: 10/03/2017

Purpose:

Input to Habitat & Ecological Integrity / Landscape Opportunity

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcBufferLand():

 logger = logging.getLogger("WFA.HabEco.HOpportun.BufferLand")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_BufferPerim", 'fcBufferPerim')

 arcpy.MakeFeatureLayer_management(r"WU_BufferContig", 'fcBufferContig')

 arcpy.MakeFeatureLayer_management(r"WU_LandInteg", 'fcLandInteg')

 # Clean up if needed

 if arcpy.Exists('WU_BufferLand1'):

614

 arcpy.Delete_management('WU_BufferLand1')

 if arcpy.Exists('WU_BufferLand'):

 arcpy.Delete_management('WU_BufferLand')

 logger.info("feature layers ready")

 ## Spatial join to merge BufferPerim and BufferContig into one attribute table

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable('fcBufferPerim')

 fmSJ.addTable('fcBufferContig')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','BufferPerim','BufferContig']

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcBufferPerim', 'fcBufferContig', 'WU_BufferLand1',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJ, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_BufferLand1', 'fcBufferLand1')

 logger.info("spatial join BufferPerim and BufferContig completed")

 ## Spatial join to merge LandInteg

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable('fcBufferLand1')

 fmSJ.addTable('fcLandInteg')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','BufferPerim','BufferContig','LandInteg']

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

615

 arcpy.SpatialJoin_analysis('fcBufferLand1', 'fcLandInteg', 'WU_BufferLand',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJ, 'CONTAINS')

 fcBufferLand = arcpy.mapping.Layer(r"WU_BufferLand")

 logger.info("spatial join BufferLand1 and LandInteg completed")

 ## Add BufferLand field to Wetland Units and set initial point value to zero.

 actions.DeleteField(fcBufferLand, 'BufferLand')

 arcpy.AddField_management(fcBufferLand, 'BufferLand', 'SHORT')

 arcpy.CalculateField_management(fcBufferLand, 'BufferLand', '0', 'VB', '#')

 logger.info("field BufferLand added")

 ## Sum the points for VegVerStr, VegHorInt, VegFQ

 arcpy.CalculateField_management(fcBufferLand, 'BufferLand', '[BufferPerim] +

[BufferContig] + [LandInteg]', 'VB', '#')

 logger.info("field BufferLand calculated")

 # Clean up

 if arcpy.Exists('WU_BufferLand1'):

 arcpy.Delete_management('WU_BufferLand1')

616

5.7.30 LandEco: Habitat and Ecological Integrity Opportunity

File Name: LandEco.py

Developer: Yibing Han

Date: 10/10/2017

Purpose:

Input to Habitat / Landscape Opportunity

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcLandEco():

 logger = logging.getLogger("WFA.HabEco.HOpportun.HOpportun")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_BRankHUC","fcBRankHUC")

 arcpy.MakeFeatureLayer_management(r"WU_WshdUniq","fcWshdUniq")

 arcpy.MakeFeatureLayer_management(r"WU_ConsFocus","fcConsFocus")

 arcpy.MakeFeatureLayer_management(r"WU_WetlandBird","fcWetlandBird")

 # Clean up if needed

617

 if arcpy.Exists("WU_LandEco"):

 arcpy.Delete_management("WU_LandEco")

 if arcpy.Exists("WU_LandEco1"):

 arcpy.Delete_management("WU_LandEco1")

 if arcpy.Exists("WU_LandEco2"):

 arcpy.Delete_management("WU_LandEco2")

 ## Spatial Join to merge attributes into one table

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable("fcBRankHUC")

 fmSJFLIN.addTable("fcWshdUniq")

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','BRankHUC','WshdUniq']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcBRankHUC', 'fcWshdUniq', 'WU_LandEco1',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management(r"WU_LandEco1", "fcLandEco1")

 logger.info("Spatial Join BRankHUC and WshdUniq completed")

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable("fcLandEco1")

 fmSJFLIN.addTable("fcConsFocus")

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','BRankHUC','WshdUniq','ConsFocus']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

618

 arcpy.SpatialJoin_analysis('fcLandEco1', 'fcConsFocus', 'WU_LandEco2',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management(r"WU_LandEco2", "fcLandEco2")

 logger.info("Spatial Join LandEco1 and ConsFocus completed")

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable("fcLandEco2")

 fmSJFLIN.addTable("fcWetlandBird")

 keepers = []

 keepers =

['WUKey','Shape_Length','Shape_Area','BRankHUC','WshdUniq','ConsFocus','WetldBird']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcLandEco2', 'fcWetlandBird', 'WU_LandEco',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 fcLandEco = arcpy.mapping.Layer(r"WU_LandEco")

 logger.info("Spatial Join LandEco1 and ConsFocus completed")

 ## Create feature class to store results for LandEco and set initial value to zero

 actions.DeleteField(fcLandEco, "LandEco")

 arcpy.AddField_management(fcLandEco, "LandEco", "SHORT")

 arcpy.CalculateField_management(fcLandEco,"LandEco","0","VB","#")

 logger.info("field LandEco added and initial value set to 0")

 ## Sum the metrics and assign points:

 strWHERE = """("ConsFocus" + "WetldBird" + "BRankHUC" + "WshdUniq") > 1"""

 arcpy.SelectLayerByAttribute_management(fcLandEco, "NEW_SELECTION", strWHERE)

619

 arcpy.CalculateField_management(fcLandEco,"LandEco","1","VB","#")

 logger.info("1 point assigned to qualifying wetland units")

 strWHERE = """("ConsFocus" + "WetldBird" + "BRankHUC" + "WshdUniq") > 4"""

 arcpy.SelectLayerByAttribute_management(fcLandEco, "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management(fcLandEco,"LandEco","2","VB","#")

 logger.info("2 points assigned to qualifying wetland units")

 strWHERE = """("ConsFocus" + "WetldBird" + "BRankHUC" + "WshdUniq") > 7"""

 arcpy.SelectLayerByAttribute_management(fcLandEco, "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management(fcLandEco,"LandEco","3","VB","#")

 logger.info("2 points assigned to qualifying wetland units")

 arcpy.SelectLayerByAttribute_management(fcLandEco, "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("WU_LandEco1"):

 arcpy.Delete_management("WU_LandEco1")

 if arcpy.Exists("WU_LandEco2"):

 arcpy.Delete_management("WU_LandEco2")

620

5.7.31 LandHydro: Habitat and Ecological Integrity Opportunity

File Name: LandHydro.py

Developer: Yibing Han

Date: 10/03/2017

Purpose:

Input to Habitat & Ecological Integrity / Landscape Opportunity

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcLandHydro():

 logger = logging.getLogger("WFA.HabEco.HOpportun.LandHydro")

 # Setting python variables

 fcWshdPos = arcpy.mapping.Layer(r"WU_WshdPos")

 fcAquaAbund = arcpy.mapping.Layer(r"WU_AquaAbund")

 logger.info("feature layers ready")

 # Clean up if needed

 if arcpy.Exists('WU_LandHydro'):

621

 arcpy.Delete_management('WU_LandHydro')

 ## Spatial join to merge WshdPos and AquaAbund into one attribute table

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable(fcWshdPos)

 fmSJFLIN.addTable(fcAquaAbund)

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','WshdPos','AquaAbund']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis(fcWshdPos, fcAquaAbund, 'WU_LandHydro',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 fcLandHydro = arcpy.mapping.Layer(r"WU_LandHydro")

 logger.info("spatial join WshdPos and AquaAbund completed")

 ## Add LandHydro field to Wetland Units and set initial point value to zero.

 actions.DeleteField(fcLandHydro, 'LandHydro')

 arcpy.AddField_management(fcLandHydro, 'LandHydro', 'SHORT')

 arcpy.CalculateField_management(fcLandHydro, 'LandHydro', '0', 'VB', '#')

 logger.info("field LandHydro added and initial value set to 0")

 ## Sum the points for WshdPos and AquaAbund

 arcpy.CalculateField_management(fcLandHydro, 'LandHydro', '[WshdPos] + [AquaAbund]',

'VB', '#')

 logger.info("field LandHydro calculated")

 # Clean up

622

5.7.32 AquaAbund: Habitat and Ecological Integrity Opportunity

File Name: AquaAbund.py

Developer: Yibing Han

Date: 10/03/2017

Purpose:

Input to Habitat / Landscape Opportunity (LandHydro: Landscape Hydrologic Connectivity)

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcAquaAbund(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HOpportun.AquaAbund")

 # Setting python variables

 fcBuffer1km = arcpy.mapping.Layer(globalvars.srcBuffer1km)

 fcWVWetland = arcpy.mapping.Layer(globalvars.srcEnhWetland)

 fcStreams = arcpy.mapping.Layer(globalvars.srcStreams)

 logger.info("feature layers ready")

 # Clean up if needed

623

 if arcpy.Exists('Buffer1kAqua'):

 arcpy.Delete_management('Buffer1kAqua')

 if arcpy.Exists('Buffer1kAqua_diss'):

 arcpy.Delete_management('Buffer1kAqua_diss')

 if arcpy.Exists('Buffer1kStrm'):

 arcpy.Delete_management('Buffer1kStrm')

 if arcpy.Exists('Buffer1kStrm_diss'):

 arcpy.Delete_management('Buffer1kStrm_diss')

 if arcpy.Exists('WU_AquaAbund1'):

 arcpy.Delete_management('WU_AquaAbund1')

 if arcpy.Exists('WU_AquaAbund2'):

 arcpy.Delete_management('WU_AquaAbund2')

 if arcpy.Exists('WU_AquaAbund'):

 arcpy.Delete_management('WU_AquaAbund')

 ## STEP 1 Calculate percent of 1 km buffer that contains aquatic features from NWI

 ## Create feature class to store intermediate results for AquaAbund

 arcpy.CopyFeatures_management(WetlandPoly,"WU_AquaAbund1","#","0","0","0")

 arcpy.MakeFeatureLayer_management(r"WU_AquaAbund1", "fcWUAquaAbund1")

 logger.info("feature class WU_AquaAbund1 created")

 ## Intersect the 1 km buffers and the Enhanced National Wetlands Inventory.

 arInputData = [fcBuffer1km,fcWVWetland]

 arcpy.Intersect_analysis(arInputData,"Buffer1kAqua","ALL",output_type="INPUT")

 fcBuffer1kAqua = arcpy.mapping.Layer(r"Buffer1kAqua")

 logger.info("intersect completed")

 ## Dissolve aquatic portion of wetland buffer by WUKey

 arcpy.Dissolve_management(fcBuffer1kAqua,"Buffer1kAqua_diss","WUKey","Buf1kArea

FIRST")

624

 arcpy.MakeFeatureLayer_management("Buffer1kAqua_diss", "fcBuffer1kAqua_diss")

 logger.info("aquatic portion of wetland buffer dissolved")

 ## Add field and calculate ratio of aquatic area to total buffer area.

 actions.DeleteField("fcBuffer1kAqua_diss","Aqua1kRat")

 arcpy.AddField_management("fcBuffer1kAqua_diss", "Aqua1kRat", "FLOAT")

arcpy.CalculateField_management("fcBuffer1kAqua_diss","Aqua1kRat","[Shape_Area]/[FIRS

T_Buf1kArea]","VB","#")

 logger.info("added and calculated field of Aqua1kRat")

 ## Join ratio of distrubed land to Wetland Units

arcpy.AddJoin_management("fcWUAquaAbund1","WUKey","fcBuffer1kAqua_diss","WUKey

","KEEP_ALL")

 logger.info("added join to WU_AquaAbund1")

 ## Export joined data

#arcpy.CopyFeatures_management("fcWUAquaAbund1","WU_AquaAbund2","#","0","0","0")

 arcpy.FeatureClassToFeatureClass_conversion("fcWUAquaAbund1", arcpy.env.workspace,

"WU_AquaAbund2")

 arcpy.MakeFeatureLayer_management("WU_AquaAbund2", "fcWUAquaAbund2")

 logger.info("Joined data exported as WU_AquaAbund2")

 ## Remove Join

 arcpy.RemoveJoin_management("fcWUAquaAbund1")

 logger.info("Join removed")

 # Set value of Aqua1kRat to zero for null intersections

 strWHERE = """"Buffer1kAqua_diss_Aqua1kRat" IS NULL"""

625

arcpy.SelectLayerByAttribute_management("fcWUAquaAbund2","NEW_SELECTION",strW

HERE)

arcpy.CalculateField_management("fcWUAquaAbund2","Buffer1kAqua_diss_Aqua1kRat","0"

,"VB","#")

 logger.info("field Aqua1kRat value added for null intersections")

 arcpy.SelectLayerByAttribute_management("fcWUAquaAbund2","CLEAR_SELECTION")

 ## STEP 2 Calculate total length of NHD streams in 1 km buffer

 ## Intersect the 1 km buffers and the NHD stream reaches

 arInputData = [fcBuffer1km,fcStreams]

 arcpy.Intersect_analysis(arInputData,"Buffer1kStrm","ALL",output_type="INPUT")

 fcBuffer1kStrm = arcpy.mapping.Layer(r"Buffer1kStrm")

 logger.info("intersect completed")

 ## Add field to store Stream Reach Length

 actions.DeleteField(fcBuffer1kStrm,"StrmLength")

 arcpy.AddField_management(fcBuffer1kStrm, "StrmLength", "FLOAT")

arcpy.CalculateField_management(fcBuffer1kStrm,"StrmLength","[Shape_Length]","VB","#")

 logger.info("added and calculated field of StrmLength")

 ## Delete unnecessary fields in this large table to reduce processing time in the Dissolve

below

 fields = arcpy.ListFields(fcBuffer1kStrm)

 keepList = ['WUKey','StrmLength']

 fieldsDel = [f.name for f in arcpy.ListFields(fcBuffer1kStrm) if not(f.type in

["OID","Geometry"] or f.name in ["Shape_Length","Shape_Area"] or f.name in keepList)]

 arcpy.DeleteField_management(fcBuffer1kStrm,fieldsDel)

626

 logger.info("unnecessary fields in table deleted to reduce processing time below")

 ## Dissolve stream reach lengths in the wetland buffer by WUKey

 arcpy.Dissolve_management(fcBuffer1kStrm,"Buffer1kStrm_diss","WUKey","StrmLength

SUM")

 arcpy.MakeFeatureLayer_management("Buffer1kStrm_diss", "flBuffer1kStrm_diss")

 logger.info("stream reach lengths in the wetland buffer dissolved")

 ## Join sum of stream lengths to Wetland Units

arcpy.AddJoin_management("fcWUAquaAbund2","WU_AquaAbund1_WUKey","flBuffer1kS

trm_diss","WUKey","KEEP_ALL")

 logger.info("added join to WU_AquaAbund2")

 ## Export joined data

#arcpy.CopyFeatures_management("fcWUAquaAbund2","WU_AquaAbund","#","0","0","0")

 arcpy.FeatureClassToFeatureClass_conversion("fcWUAquaAbund2", arcpy.env.workspace,

"WU_AquaAbund")

 fcWUAquaAbund = arcpy.mapping.Layer(r"WU_AquaAbund")

 logger.info("Joined data exported as WU_AquaAbund")

 ## Remove Join

 arcpy.RemoveJoin_management("fcWUAquaAbund2")

 logger.info("Join removed")

 ## Set value of FINALCODE to zero for null intersections

 strWHERE = """"Buffer1kStrm_diss_SUM_StrmLength" IS NULL"""

arcpy.SelectLayerByAttribute_management(fcWUAquaAbund,"NEW_SELECTION",strWHE

RE)

627

arcpy.CalculateField_management(fcWUAquaAbund,"Buffer1kStrm_diss_SUM_StrmLength",

"0","VB","#")

 logger.info("field SUM_StrmLength value added for null intersections")

 ## STEP 3: Assign points

 ## Add field AquaAbund, set initial value to zero

 arcpy.SelectLayerByAttribute_management(fcWUAquaAbund, "CLEAR_SELECTION")

 actions.DeleteField(fcWUAquaAbund, "AquaAbund")

 arcpy.AddField_management(fcWUAquaAbund, "AquaAbund", "SHORT")

 arcpy.CalculateField_management(fcWUAquaAbund,"AquaAbund","0","VB","#")

 logger.info("field AquaAbund added")

 ## Assign points

 ## StrmLength one SD below mean = 0, within 1 SD of mean = 1, >1 SD above mean = 2

points

 strWHERE = """"WU_AquaAbund2_Buffer1kAqua_diss_Aqua1kRat" > 0.01 OR

"Buffer1kStrm_diss_SUM_StrmLength" > 6000"""

arcpy.SelectLayerByAttribute_management(fcWUAquaAbund,"NEW_SELECTION",strWHE

RE)

 arcpy.CalculateField_management(fcWUAquaAbund,"AquaAbund","1","VB","#")

 strWHERE = """"WU_AquaAbund2_Buffer1kAqua_diss_Aqua1kRat" > 0.05 OR

"Buffer1kStrm_diss_SUM_StrmLength" > 8000"""

arcpy.SelectLayerByAttribute_management(fcWUAquaAbund,"NEW_SELECTION",strWHE

RE)

 arcpy.CalculateField_management(fcWUAquaAbund,"AquaAbund","2","VB","#")

 logger.info("AquaAbund points assigned")

 arcpy.SelectLayerByAttribute_management(fcWUAquaAbund,"CLEAR_SELECTION")

628

 # Clean up

 if arcpy.Exists('Buffer1kAqua'):

 arcpy.Delete_management('Buffer1kAqua')

 if arcpy.Exists('Buffer1kAqua_diss'):

 arcpy.Delete_management('Buffer1kAqua_diss')

 if arcpy.Exists('Buffer1kStrm'):

 arcpy.Delete_management('Buffer1kStrm')

 if arcpy.Exists('Buffer1kStrm_diss'):

 arcpy.Delete_management('Buffer1kStrm_diss')

 if arcpy.Exists('WU_AquaAbund1'):

 arcpy.Delete_management('WU_AquaAbund1')

 if arcpy.Exists('WU_AquaAbund2'):

 arcpy.Delete_management('WU_AquaAbund2')

629

5.7.33 BRankHUC: Habitat and Ecological Integrity Opportunity

File Name: BRankHUC.py

Developer: Yibing Han

Date: 10/09/2017

Purpose:

Input to Habitat / Landscape Opportunity (LandEco: Landscape Ecological Connectivity)

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcBRankHUC(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HOpportun.BRankHUC")

 # Setting python variables

 fcBRHUC = arcpy.mapping.Layer(globalvars.srcBRHUC)

 # Clean up if needed

 if arcpy.Exists("WU_BRankHUC"):

 arcpy.Delete_management("WU_BRankHUC")

630

 ## Create feature class to store results for BRankHUC and set initial value to zero

 arcpy.CopyFeatures_management(WetlandPoly,"WU_BRankHUC","#","0","0","0")

 fcBRankHUC = arcpy.mapping.Layer(r"WU_BRankHUC")

 logger.info("feature class WU_BRankHUC created")

 actions.DeleteField(fcBRankHUC, "BRankHUC")

 arcpy.AddField_management(fcBRankHUC, "BRankHUC", "SHORT")

 arcpy.CalculateField_management(fcBRankHUC,"BRankHUC","0","VB","#")

 logger.info("field BRankHUC added and initial value set to 0")

 ## Select B4- or B5 ranked watersheds

 strWHERE = """"Brank" = 'B4' OR "Brank" = 'B5'"""

 arcpy.SelectLayerByAttribute_management(fcBRHUC, "NEW_SELECTION", strWHERE)

 logger.info("B4- or B5 ranked watersheds selected")

 ## Select Wetland Units that intersect B4- or B5-ranked watershed

 arcpy.SelectLayerByLocation_management(fcBRankHUC, "INTERSECT", fcBRHUC)

 logger.info("Wetland Units that intersect B4- or B5-ranked watershed selected")

 ## Assign 1 point

 arcpy.CalculateField_management(fcBRankHUC,"BRankHUC","1","VB","#")

 logger.info("1 point assigned to qualifying wetland units")

 ## Select B3-ranked watersheds

 strWHERE = """"Brank" = 'B3'"""

 arcpy.SelectLayerByAttribute_management(fcBRHUC, "NEW_SELECTION", strWHERE)

 logger.info("B3-ranked watersheds selected")

 ## Select Wetland Units that intersect B3-ranked watershed

631

 arcpy.SelectLayerByLocation_management(fcBRankHUC, "INTERSECT", fcBRHUC)

 logger.info("Wetland Units that intersect B2-ranked watershed selected")

 ## Assign 2 points

 arcpy.CalculateField_management(fcBRankHUC,"BRankHUC","2","VB","#")

 logger.info("2 points assigned to qualifying wetland units")

 ## Select B2-ranked watersheds

 strWHERE = """"Brank" = 'B2'"""

 arcpy.SelectLayerByAttribute_management(fcBRHUC, "NEW_SELECTION", strWHERE)

 logger.info("B2-ranked watersheds selected")

 ## Select Wetland Units that intersect B2-ranked watershed

 arcpy.SelectLayerByLocation_management(fcBRankHUC, "INTERSECT", fcBRHUC)

 logger.info("Wetland Units that intersect B2-ranked watershed selected")

 ## Assign 3 points and clear selections

 arcpy.CalculateField_management(fcBRankHUC,"BRankHUC","3","VB","#")

 logger.info("3 points assigned to qualifying wetland units")

 ## Select B2-ranked watersheds

 strWHERE = """"Brank" = 'B1'"""

 arcpy.SelectLayerByAttribute_management(fcBRHUC, "NEW_SELECTION", strWHERE)

 logger.info("B2-ranked watersheds selected")

 ## Select Wetland Units that intersect B1-ranked watershed

 arcpy.SelectLayerByLocation_management(fcBRankHUC, "INTERSECT", fcBRHUC)

 logger.info("Wetland Units that intersect B1-ranked watershed selected")

632

 ## Assign 4 points and clear selections

 arcpy.CalculateField_management(fcBRankHUC,"BRankHUC","4","VB","#")

 logger.info("4 points assigned to qualifying wetland units")

 arcpy.SelectLayerByAttribute_management(fcBRHUC, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcBRankHUC, "CLEAR_SELECTION")

 # Clean up

633

5.7.34 BufferContig: Habitat and Ecological Integrity Opportunity

File Name: BufferContig.py

Developer: Yibing Han

Date: 10/02/2017

Purpose:

Input to Habitat / Opportunity / BufferLand (Buffer and Landscape Integrity)

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcBufferContig(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HOpportun.BufferContig")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly, "fcWU")

 fcBuffer300m = arcpy.mapping.Layer(globalvars.srcBuffer300m)

 fcDisturbedLand = arcpy.arcpy.mapping.Layer(globalvars.srcDisturbedLand)

 # Clean up if needed

 if arcpy.Exists("Buffer300mUndist"):

634

 arcpy.Delete_management("Buffer300mUndist")

 if arcpy.Exists("Buffer300mUndist_sing"):

 arcpy.Delete_management("Buffer300mUndist_sing")

 if arcpy.Exists("Buffer300mUndist_diss"):

 arcpy.Delete_management("Buffer300mUndist_diss")

 if arcpy.Exists("WU_BufferContig1"):

 arcpy.Delete_management("WU_BufferContig1")

 if arcpy.Exists("WU_BufferContig"):

 arcpy.Delete_management("WU_BufferContig")

 ## Erase the portions of the 300m buffer that overlap DisturbedLand

 arcpy.Erase_analysis(fcBuffer300m, fcDisturbedLand, "Buffer300mUndist")

 fcBuffer300mUndist = arcpy.mapping.Layer(r"Buffer300mUndist")

 logger.info("Feature Layers ready")

 ## The Erase tool produces multipart polygons. Change these to singlepart polygons.

 arcpy.MultipartToSinglepart_management(fcBuffer300mUndist, "Buffer300mUndist_sing")

 fcBuffer300mUndist_sing = arcpy.mapping.Layer("Buffer300mUndist_sing")

 actions.DeleteField(fcBuffer300mUndist_sing,"ContigSingArea")

 arcpy.AddField_management(fcBuffer300mUndist_sing, "ContigSingArea", "FLOAT")

 logger.info("Field ContigSingArea added")

 ## Select undisturbed buffer polygons that share a line segment with Wetland Units.

 arcpy.SelectLayerByLocation_management(fcBuffer300mUndist_sing,

"SHARE_A_LINE_SEGMENT_WITH", "fcWU")

 logger.info("undisturbed buffer polygons selected by location")

 ## Calculate area of contiguous singlepart polygons

635

arcpy.CalculateField_management(fcBuffer300mUndist_sing,"ContigSingArea","[Shape_Area]

","VB","#")

 arcpy.SelectLayerByAttribute_management(fcBuffer300mUndist_sing,

"CLEAR_SELECTION")

 strWHERE = """"ContigSingArea" IS NULL"""

 arcpy.SelectLayerByAttribute_management(fcBuffer300mUndist_sing,

"NEW_SELECTION", strWHERE)

arcpy.CalculateField_management(fcBuffer300mUndist_sing,"ContigSingArea","0","VB","#")

 arcpy.SelectLayerByAttribute_management(fcBuffer300mUndist_sing,

"CLEAR_SELECTION")

 logger.info("area of contiguous singlepart polygons calculated")

 ## Dissolve undisturbed portion of wetland buffer by WUKey

 arcpy.Dissolve_management(fcBuffer300mUndist_sing, "Buffer300mUndist_diss",

"WUKey", "Buf300Area FIRST;ContigSingArea SUM")

 arcpy.MakeFeatureLayer_management("Buffer300mUndist_diss",

"fcBuffer300mUndist_diss")

 logger.info("undisturbed portion of wetland buffer dissolved")

 ## Add field and calculate ratio of contiguous undisturbed area to total buffer area.

 actions.DeleteField("fcBuffer300mUndist_diss","ContigUndRat")

 arcpy.AddField_management("fcBuffer300mUndist_diss", "ContigUndRat", "FLOAT")

arcpy.CalculateField_management("fcBuffer300mUndist_diss","ContigUndRat","[SUM_Conti

gSingArea]/[FIRST_Buf300Area]","VB","#")

 logger.info("field ContigUndRat added and calculated")

 ## Create feature class to store intermediate results for BufferContig

 arcpy.CopyFeatures_management("fcWU","WU_BufferContig1","#","0","0","0")

 logger.info("feature class WU_BufferContig1 created")

636

 ## Join ratio of contiguous undisturbed buffer to Wetland Units

 arcpy.MakeFeatureLayer_management("WU_BufferContig1", "fcWUBufferContig1")

arcpy.AddJoin_management("fcWUBufferContig1","WUKey","fcBuffer300mUndist_diss","W

UKey","KEEP_ALL")

 logger.info("join added to Wetland Units")

 ## Export joined data

#arcpy.CopyFeatures_management("fcWUBufferContig1","WU_BufferContig","#","0","0","0"

)

 arcpy.FeatureClassToFeatureClass_conversion("fcWUBufferContig1", arcpy.env.workspace,

"WU_BufferContig")

 fcBufferContig = arcpy.mapping.Layer("WU_BufferContig")

 logger.info("joined data exported")

 ## Remove Join

 arcpy.RemoveJoin_management("fcWUBufferContig1")

 logger.info("joined removed")

 ## Set value of ContigUndRat to zero for null intersections

 strWHERE = """"Buffer300mUndist_diss_ContigUndRat" IS NULL"""

 arcpy.SelectLayerByAttribute_management(fcBufferContig, "NEW_SELECTION",

strWHERE)

arcpy.CalculateField_management(fcBufferContig,"Buffer300mUndist_diss_ContigUndRat","0

","VB","#")

 arcpy.SelectLayerByAttribute_management(fcBufferContig, "CLEAR_SELECTION")

 logger.info("field ContigUndRat value set to 0 for null intersections")

 ## Add field BufferContig, set initial value to zero

637

 actions.DeleteField(fcBufferContig,"BufferContig")

 arcpy.AddField_management(fcBufferContig, "BufferContig", "SHORT")

 arcpy.CalculateField_management(fcBufferContig,"BufferContig","0","VB","#")

 logger.info("field BufferContig added")

 ## Assign points to Wetland Units

 strWHERE = """"Buffer300mUndist_diss_ContigUndRat" > 0.6"""

 arcpy.SelectLayerByAttribute_management(fcBufferContig, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcBufferContig,"BufferContig","1","VB","#")

 strWHERE = """"Buffer300mUndist_diss_ContigUndRat" > 0.9"""

 arcpy.SelectLayerByAttribute_management(fcBufferContig, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcBufferContig,"BufferContig","2","VB","#")

 logger.info("field BufferContig values calculated")

 arcpy.SelectLayerByAttribute_management(fcBufferContig, "CLEAR_SELECTION")

 arcpy.AddField_management(fcBufferContig, "WUKey", "LONG")

arcpy.CalculateField_management(fcBufferContig,"WUKey","[WU_BufferContig1_WUKey]",

"VB","#")

 arcpy.DeleteField_management(fcBufferContig,"WU_BufferContig1_WUKey")

 # Clean up

 if arcpy.Exists("Buffer300mUndist"):

 arcpy.Delete_management("Buffer300mUndist")

 if arcpy.Exists("Buffer300mUndist_sing"):

 arcpy.Delete_management("Buffer300mUndist_sing")

 if arcpy.Exists("Buffer300mUndist_diss"):

 arcpy.Delete_management("Buffer300mUndist_diss")

638

 if arcpy.Exists("WU_BufferContig1"):

 arcpy.Delete_management("WU_BufferContig1")

639

5.7.35 BufferPerim: Habitat and Ecological Integrity Opportunity

File Name: BufferPerim.py

Developer: Yibing Han

Date: 10/03/2017

Purpose:

Input to Habitat / Opportunity / BufferLand (Buffer and Landscape Integrity)

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcBufferPerim(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HOpportun.BufferPerim")

 # Setting python variables

 fcBuffer10m = arcpy.mapping.Layer(globalvars.srcBuffer10m)

 fcDisturbedLand = arcpy.mapping.Layer(globalvars.srcDisturbedLand)

 fcInterstates = arcpy.mapping.Layer(globalvars.srcInterstates)

 fcPrimaryRoads = arcpy.mapping.Layer(globalvars.srcPrimaryRoads)

 fcLocalRoads = arcpy.mapping.Layer(globalvars.srcLocalRoads)

 fcOthers = arcpy.mapping.Layer(globalvars.srcOtherRoads)

640

 fcRailway = arcpy.mapping.Layer(globalvars.srcRailway)

 fcTrails = arcpy.mapping.Layer(globalvars.srcTrails)

 logger.info("Feature Layers ready")

 # Clean up if needed

 if arcpy.Exists("WU_BufferPerim1"):

 arcpy.Delete_management("WU_BufferPerim1")

 if arcpy.Exists("WU_BufferPerim"):

 arcpy.Delete_management("WU_BufferPerim")

 if arcpy.Exists("Buffer10mDist"):

 arcpy.Delete_management("Buffer10mDist")

 ## STEP 1 Roads and Railways

 ## Create feature class to store intermediate results for BufferPerim

 arcpy.CopyFeatures_management(WetlandPoly,"WU_BufferPerim1","#","0","0","0")

 fcBufferPerim1 = arcpy.mapping.Layer(r"WU_BufferPerim1")

 ## Add field to store road and rail type

 actions.DeleteField(fcBufferPerim1,"RoadRailType")

 arcpy.AddField_management(fcBufferPerim1, "RoadRailType", "TEXT","","","10")

 logger.info("field RoadRailType added to WU_BufferPerim1")

 ## Select Wetland Units that intersect or are within 10 meters of mapped trails

 arcpy.SelectLayerByLocation_management(fcBufferPerim1, "INTERSECT", fcTrails, "10

Meters")

 arcpy.CalculateField_management(fcBufferPerim1,"RoadRailType",'"Trail"',"VB","#")

 logger.info("field RoadRailType calculated with type 'Trail'")

 ## Select Wetland Units that intersect or are within 10 meters of other roads & trails

641

 arcpy.SelectLayerByLocation_management(fcBufferPerim1, "INTERSECT", fcOthers, "10

Meters")

 arcpy.CalculateField_management(fcBufferPerim1,"RoadRailType",'"Other"',"VB","#")

 logger.info("field RoadRailType calculated with type 'Other'")

 ## Select Wetland Units that intersect or are within 10 meters of local roads

 arcpy.SelectLayerByLocation_management(fcBufferPerim1, "INTERSECT", fcLocalRoads,

"10 Meters")

 arcpy.CalculateField_management(fcBufferPerim1,"RoadRailType",'"Local"',"VB","#")

 logger.info("field RoadRailType calculated with type 'Local'")

 ## Select Wetland Units that intersect or are within 10 meters of railways

 arcpy.SelectLayerByLocation_management(fcBufferPerim1, "INTERSECT", fcRailway, "10

Meters")

 arcpy.CalculateField_management(fcBufferPerim1,"RoadRailType",'"Rail"',"VB","#")

 logger.info("field RoadRailType calculated with type 'Rail'")

 ## Select Wetland Units that intersect or are within 10 meters of primary roads

 arcpy.SelectLayerByLocation_management(fcBufferPerim1, "INTERSECT",

fcPrimaryRoads, "10 Meters")

 arcpy.CalculateField_management(fcBufferPerim1,"RoadRailType",'"Primary"',"VB","#")

 logger.info("field RoadRailType calculated with type 'Primary'")

 ## Select Wetland Units that intersect or are within 10 meters of interstate highways

 arcpy.SelectLayerByLocation_management(fcBufferPerim1, "INTERSECT", fcInterstates,

"10 Meters")

 arcpy.CalculateField_management(fcBufferPerim1,"RoadRailType",'"Interstate"',"VB","#")

 logger.info("field RoadRailType calculated with type 'Interstate'")

 arcpy.SelectLayerByAttribute_management(fcBufferPerim1, "CLEAR_SELECTION")

 ## STEP 2 DisturbedLand

642

 ## Note that much of this step is the same as the method for Disturb50m

 # Intersect the 10m buffers and the disturbed land uses

 arInputData = [fcBuffer10m,fcDisturbedLand]

 arcpy.Intersect_analysis(arInputData,"Buffer10mDist","ALL",output_type="INPUT")

 fcBuffer10mDist = arcpy.mapping.Layer(r"Buffer10mDist")

 logger.info("intersect completed")

 # Dissolve disturbed portion of wetland buffer by WUKey

 arcpy.Dissolve_management(fcBuffer10mDist,"Buffer10mDist_diss","WUKey","Buf10Area

FIRST")

 fcBuffer10mDist_diss = arcpy.mapping.Layer(r"Buffer10mDist_diss")

 logger.info("disturbed portion of wetland buffer dissolved")

 ## Add field and calculate ratio of disturbed area to total buffer area.

 actions.DeleteField(fcBuffer10mDist_diss,"Dist10mRat")

 arcpy.AddField_management(fcBuffer10mDist_diss, "Dist10mRat", "FLOAT")

arcpy.CalculateField_management(fcBuffer10mDist_diss,"Dist10mRat","[Shape_Area]/[FIRST

_Buf10Area]","VB","#")

 logger.info("added and calculated field of Dist10mRat")

 # Join ratio of distrubed land to Wetland Units

 arcpy.MakeFeatureLayer_management("WU_BufferPerim1", "flWUBufferPerim1")

 arcpy.MakeFeatureLayer_management("Buffer10mDist_diss", "flBuffer10mDist_diss")

arcpy.AddJoin_management("flWUBufferPerim1","WUKey","flBuffer10mDist_diss","WUKey

","KEEP_ALL")

 logger.info("added join to WU_BufferPerim1")

 # Export joined data

643

#arcpy.CopyFeatures_management("flWUBufferPerim1","WU_BufferPerim","#","0","0","0")

 arcpy.FeatureClassToFeatureClass_conversion("flWUBufferPerim1", arcpy.env.workspace,

"WU_BufferPerim")

 fcBufferPerim = arcpy.mapping.Layer(r"WU_BufferPerim")

 logger.info("Joined data exported as WU_BufferPerim")

 # Remove Join

 arcpy.RemoveJoin_management("flWUBufferPerim1")

 logger.info("Join removed")

 # Set value of Dist10mRat to zero for null intersections

 strWHERE = """"Buffer10mDist_diss_Dist10mRat" IS NULL"""

arcpy.SelectLayerByAttribute_management(fcBufferPerim,"NEW_SELECTION",strWHERE)

arcpy.CalculateField_management(fcBufferPerim,"Buffer10mDist_diss_Dist10mRat","0","VB"

,"#")

 logger.info("field Dist10mRat value added for null intersections")

 ## STEP 3

 ## Assign points

 # Add field BufferPerim, set initial value to zero

 arcpy.SelectLayerByAttribute_management(fcBufferPerim, "CLEAR_SELECTION")

 actions.DeleteField(fcBufferPerim, "BufferPerim")

 arcpy.AddField_management(fcBufferPerim, "BufferPerim", "FLOAT")

 arcpy.CalculateField_management(fcBufferPerim,"BufferPerim","0","VB","#")

 logger.info("field BufferPerim added")

 # Assign points

644

 strWHERE = """"Buffer10mDist_diss_Dist10mRat" = 0 AND

"WU_BufferPerim1_RoadRailType" IS NULL"""

 arcpy.SelectLayerByAttribute_management(fcBufferPerim, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcBufferPerim,"BufferPerim","2","VB","#")

 strWHERE = """"Buffer10mDist_diss_Dist10mRat" > 0 OR

"WU_BufferPerim1_RoadRailType" IN ('Trail', 'Local', 'Other')"""

 arcpy.SelectLayerByAttribute_management(fcBufferPerim, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcBufferPerim,"BufferPerim","1","VB","#")

 strWHERE = """"Buffer10mDist_diss_Dist10mRat" > 0.25 OR

"WU_BufferPerim1_RoadRailType" IN ('Rail', 'Primary', 'Interstate')"""

 arcpy.SelectLayerByAttribute_management(fcBufferPerim, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcBufferPerim,"BufferPerim","0","VB","#")

 logger.info("calculation completed for field BufferPerim")

 arcpy.SelectLayerByAttribute_management(fcBufferPerim, "CLEAR_SELECTION")

 arcpy.AddField_management(fcBufferPerim, "WUKey", "LONG")

arcpy.CalculateField_management(fcBufferPerim,"WUKey","[WU_BufferPerim1_WUKey]","

VB","#")

 arcpy.DeleteField_management(fcBufferPerim,"WU_BufferPerim1_WUKey")

 # Clean up

 if arcpy.Exists("WU_BufferPerim1"):

 arcpy.Delete_management("WU_BufferPerim1")

 if arcpy.Exists("Buffer10mDist"):

 arcpy.Delete_management("Buffer10mDist")

645

5.7.36 ConsFocus: Habitat and Ecological Integrity Opportunity

File Name: ConsFocus.py

Developer: Yibing Han

Date: 10/09/2017 (updated 12/27/2018)

Purpose:

Input to Habitat / Landscape Opportunity (LandEco: Landscape Ecological Connectivity)

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcConsFocus(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HOpportun.ConsFocus")

 # Setting python variables

 fcCFA = arcpy.mapping.Layer(globalvars.srcCFArea)

 # Clean up if needed

 if arcpy.Exists("WU_ConsFocus"):

 arcpy.Delete_management("WU_ConsFocus")

646

 ## Create feature class to store results for ConsFocus and set initial value to zero

 arcpy.CopyFeatures_management(WetlandPoly,"WU_ConsFocus","#","0","0","0")

 fcConstFocus = arcpy.mapping.Layer(r"WU_ConsFocus")

 logger.info("feature class WU_ConsFocus created")

 actions.DeleteField(fcConstFocus, "ConsFocus")

 arcpy.AddField_management(fcConstFocus, "ConsFocus", "SHORT")

 arcpy.CalculateField_management(fcConstFocus,"ConsFocus","0","PYTHON","#")

 logger.info("field ConsFocus added and initial value set to 0")

 '''## Select all CFAs except the general CFA

 strWHERE = """"CFA_Name" <> 'General Conservation Area'"""

 arcpy.SelectLayerByAttribute_management(fcCFA, "NEW_SELECTION", strWHERE)

 logger.info("all CFAs except the general CFA selected")'''

 ## Select Wetland Units that intersect the selected CFAs

 arcpy.SelectLayerByLocation_management(fcConstFocus, "INTERSECT", fcCFA)

 logger.info("Wetland Units that intersect the selected CFAs selected")

 ## Assign 1 point

 arcpy.CalculateField_management(fcConstFocus,"ConsFocus","1","PYTHON","#")

 logger.info("1 point assigned to qualifying wetland units")

 ## Select CFAs with wetland focus

 strWHERE = """"WetlFocus" = 'yes'"""

 arcpy.SelectLayerByAttribute_management(fcCFA, "NEW_SELECTION", strWHERE)

 logger.info("CFAs with wetland focus selected")

 ## Select Wetland Units that intersect CFAs with wetland focus

647

 arcpy.SelectLayerByLocation_management(fcConstFocus, "INTERSECT", fcCFA)

 logger.info("Wetland Units that intersect CFAs with wetland focus selected")

 ## Assign 2 points

 arcpy.CalculateField_management(fcConstFocus,"ConsFocus","2","PYTHON","#")

 logger.info("2 points assigned to qualifying wetland units")

 arcpy.SelectLayerByAttribute_management(fcCFA, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcConstFocus, "CLEAR_SELECTION")

 # Clean up

648

5.7.37 Karst: Habitat and Ecological Integrity Opportunity

File Name: Karst.py

Developer: Yibing Han

Date 9/20/2017

Purpose:

Input to Habitat / Potential / Vegetation / Floristic Quality

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcKarst(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HPotential.Karst")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly, "fcWU")

 arcpy.MakeFeatureLayer_management(globalvars.srcKarstComp,"fcKarstComposite")

 # Clean up if needed

 if arcpy.Exists("WU_Karst"):

 arcpy.Delete_management("WU_Karst")

649

 if arcpy.Exists("WU_Karst1"):

 arcpy.Delete_management("WU_Karst1")

 logger.info("feature layers ready")

 ## Intersect karst and Wetland Units

 arcpy.Intersect_analysis(["fcKarstComposite", "fcWU"], "WU_Karst1", "ONLY_FID")

 logger.info("Intersect of karst and Wetland Units completed")

 ## Add field to store karst area.

 actions.DeleteField("WU_Karst1","KarstArea")

 arcpy.AddField_management("WU_Karst1", "KarstArea", "FLOAT")

 arcpy.CalculateField_management("WU_Karst1","KarstArea","[Shape_Area]","VB","#")

 arcpy.MakeFeatureLayer_management(r"WU_Karst1","fcWUKarst1")

 logger.info("field KarstArea added to store karst area")

 ## Spatial Join karst selection to Wetland Units and sum karst area.

###

#################

 # SJ: FloodIn

###

#################

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable("fcWU")

 fmSJFLIN.addTable("fcWUKarst1")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","KarstArea"]

 for field in fmSJFLIN.fields:

650

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 fldKeyIndex = fmSJFLIN.findFieldMapIndex("KarstArea")

 fieldmap = fmSJFLIN.getFieldMap(fldKeyIndex)

 fieldmap.mergeRule = "Sum"

 fmSJFLIN.replaceFieldMap(fldKeyIndex, fieldmap)

arcpy.SpatialJoin_analysis("fcWU","fcWUKarst1","WU_Karst","JOIN_ONE_TO_ONE","KEE

P_ALL",fmSJFLIN,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_Karst","fcWUKarst")

 logger.info("Spatial Join karst selection to Wetland Units completed")

 ## Add fields to store KarstRatio and Karst.

 actions.DeleteField("fcWUKarst","KarstRatio")

 arcpy.AddField_management("fcWUKarst", "KarstRatio", "FLOAT")

 arcpy.AddField_management("fcWUKarst", "Karst", "SHORT")

 arcpy.CalculateField_management("fcWUKarst","Karst","0","VB","#")

arcpy.CalculateField_management("fcWUKarst","KarstRatio","[KarstArea]/[Shape_Area]","V

B","#")

 logger.info("field KarstRatio added to store KarstRatio and Karst")

 ## Assign points to Wetland Units for VegHorInt

 strWHERE = """"KarstRatio" > 0.1"""

 arcpy.SelectLayerByAttribute_management("fcWUKarst", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUKarst","Karst","1","VB","#")

 strWHERE = """"KarstRatio" > 0.33"""

651

 arcpy.SelectLayerByAttribute_management("fcWUKarst", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUKarst","Karst","2","VB","#")

 strWHERE = """"KarstRatio" > 0.67"""

 arcpy.SelectLayerByAttribute_management("fcWUKarst", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUKarst","Karst","3","VB","#")

 logger.info("points assigned to Wetland Units for field KarstRatio")

 arcpy.SelectLayerByAttribute_management("fcWUKarst", "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("WU_Karst1"):

 arcpy.Delete_management("WU_Karst1")

652

5.7.38 LandInteg: Habitat and Ecological Integrity Opportunity

File Name: LandInteg.py

Developer: Yibing Han

Date 9/21/2017 (updated 12/27/2018)

Purpose:

Input to Habitat / Potential (VegFQ, HydIntact) and Habitat/Opportunity (Buffer and

Landscape Integrity)

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

from arcpy.sa import *

def CalcLandInteg(WetlandPoly):

 arcpy.CheckOutExtension("Spatial")

 logger = logging.getLogger("WFA.HabEco.HOpportun.LandInteg")

 # Clean up if needed

 if arcpy.Exists("LandInteg_zonal"):

 arcpy.Delete_management("LandInteg_zonal")

 if arcpy.Exists("LandResil_zonal"):

 arcpy.Delete_management("LandResil_zonal")

653

 if arcpy.Exists("WU_LandIntegDNR"):

 arcpy.Delete_management("WU_LandIntegDNR")

 if arcpy.Exists("WU_IEI1"):

 arcpy.Delete_management("WU_IEI1")

 if arcpy.Exists("WU_IEI"):

 arcpy.Delete_management("WU_IEI")

 if arcpy.Exists("WUpoint_IEI"):

 arcpy.Delete_management("WUpoint_IEI")

 if arcpy.Exists("WU_LandResil1"):

 arcpy.Delete_management("WU_LandResil1")

 if arcpy.Exists("WU_LandResil"):

 arcpy.Delete_management("WU_LandResil")

 if arcpy.Exists("WUpoint_LandResil"):

 arcpy.Delete_management("WUpoint_LandResil")

 if arcpy.Exists("WU_ForestPatch"):

 arcpy.Delete_management("WU_ForestPatch")

 if arcpy.Exists("WU_LandInteg"):

 arcpy.Delete_management("WU_LandInteg")

 if arcpy.Exists("WU_LandInteg0"):

 arcpy.Delete_management("WU_LandInteg0")

 if arcpy.Exists("WU_LandInteg1"):

 arcpy.Delete_management("WU_LandInteg1")

 if arcpy.Exists("WUpoint_LandInteg"):

 arcpy.Delete_management("WUpoint_LandInteg")

 # Setting python variables

 arcpy.CopyFeatures_management(WetlandPoly,"WU_LandInteg0","#","0","0","0")

 arcpy.MakeFeatureLayer_management("WU_LandInteg0", "fcWULandInteg0")

 arcpy.MakeFeatureLayer_management(globalvars.srcForestPatches, "fcForestPatches")

654

 arcpy.MakeRasterLayer_management(globalvars.srcIEI, "IEI")

 arcpy.MakeRasterLayer_management(globalvars.srcLIIndex, "LIIndex")

 arcpy.MakeRasterLayer_management(globalvars.srcResilientConnected, "ResilConnected")

 logger.info("feature & raster layers ready")

 ## Calculate the intermediate metric LandIntegDNR

 ## Summarize the DNR Landscape Integrity raster values for each Wetland Unit

 arcpy.gp.ZonalStatisticsAsTable("fcWULandInteg0", "WUKey", "LIIndex",

"LandInteg_zonal", "DATA", "MEAN")

 logger.info("the DNR Landscape Integrity raster values for each Wetland Unit summarized")

 ## Convert Wetland Unit polygons to points

 arcpy.MakeFeatureLayer_management(globalvars.srcWUPoint, "fcWUpoint")

 logger.info("Wetland Unit polygons converted to points")

 ## Extract the DNR Landscape Integrity raster values for each Wetland Unit centroid

 ExtractValuesToPoints("fcWUpoint", "LIIndex", "WUpoint_LandInteg")

 logger.info("DNR Landscape Integrity raster values for each Wetland Unit centroid

extracted")

 ## Delete the "Count" field from the LandInteg_zonal table since "Count" is a restricted word

 ## and may interfere with the join in the next step

 arcpy.DeleteField_management ("LandInteg_zonal","Count")

 logger.info("field Count deleted")

 ## Join Wetland Units to the LandInteg_zonal table

 arcpy.AddJoin_management("fcWULandInteg0","WUKey","LandInteg_zonal","WUKey")

 logger.info("Join Wetland Units to the LandInteg_zonal table completed")

 ## Export the joined data to a Feature Class

655

 arcpy.FeatureClassToFeatureClass_conversion("fcWULandInteg0", arcpy.env.workspace,

"WU_LandInteg1")

 logger.info("joined data exported as WU_LandInteg1")

 ## Remove Join from Wetland Units

 arcpy.RemoveJoin_management("fcWULandInteg0")

 logger.info("join removed from Wetland Units")

 ## Join WU_LandInteg1 to WUpoint_LandInteg

 arcpy.MakeFeatureLayer_management("WU_LandInteg1", "fcWULandInteg1")

 arcpy.MakeFeatureLayer_management("WUpoint_LandInteg", "fcWUPoint_LandInteg")

arcpy.AddJoin_management("fcWULandInteg1","WU_LandInteg0_WUKey","fcWUPoint_La

ndInteg","WUKey")

 logger.info("joined WU_LandInteg1 to WUpoint_LandInteg")

 ## Export joined data to feature class

 arcpy.FeatureClassToFeatureClass_conversion("fcWULandInteg1", arcpy.env.workspace,

"WU_LandIntegDNR")

 arcpy.MakeFeatureLayer_management("WU_LandIntegDNR", "fcWULandIntegDNR")

 logger.info("joined data exported as WU_LandIntegDNR")

 ## Replace NULL values of MEAN with centroid values of Landscape Integrity

 strWHERE = """"WU_LandInteg1_LandInteg_zonal_MEAN" IS NULL"""

 arcpy.SelectLayerByAttribute_management("fcWULandIntegDNR", "NEW_SELECTION",

strWHERE)

arcpy.CalculateField_management("fcWULandIntegDNR","WU_LandInteg1_LandInteg_zonal

_MEAN","!WUpoint_LandInteg_RASTERVALU!","PYTHON","#")

 arcpy.SelectLayerByAttribute_management("fcWULandIntegDNR",

"CLEAR_SELECTION")

 logger.info("NULL values of MEAN with centroid values of Landscape Integrity replaced")

656

 ## Add field LandIntegDNR, set initial value to zero

 actions.DeleteField("fcWULandIntegDNR","LandIntegDNR")

 arcpy.AddField_management("fcWULandIntegDNR", "LandIntegDNR", "SHORT")

arcpy.CalculateField_management("fcWULandIntegDNR","LandIntegDNR","0","PYTHON","

#")

 logger.info("field LandIntegDNR added and initial value set to zero")

 ## Assign points

 strWHERE = """"WU_LandInteg1_LandInteg_zonal_MEAN" > 600"""

 arcpy.SelectLayerByAttribute_management("fcWULandIntegDNR", "NEW_SELECTION",

strWHERE)

arcpy.CalculateField_management("fcWULandIntegDNR","LandIntegDNR","1","PYTHON","

#")

 strWHERE = """"WU_LandInteg1_LandInteg_zonal_MEAN" > 700"""

 arcpy.SelectLayerByAttribute_management("fcWULandIntegDNR", "NEW_SELECTION",

strWHERE)

arcpy.CalculateField_management("fcWULandIntegDNR","LandIntegDNR","2","PYTHON","

#")

 strWHERE = """"WU_LandInteg1_LandInteg_zonal_MEAN" > 800"""

 arcpy.SelectLayerByAttribute_management("fcWULandIntegDNR", "NEW_SELECTION",

strWHERE)

arcpy.CalculateField_management("fcWULandIntegDNR","LandIntegDNR","3","PYTHON","

#")

 logger.info("points assigned in field LandIntegDNR")

 logger.info("Step 1 completed")

657

 arcpy.SelectLayerByAttribute_management("fcWULandIntegDNR",

"CLEAR_SELECTION")

 ## STEP 2

 ## Note that method in nearly identical to STEP 1 except for field names and final points

 ## Calculate the intermediate metric IEI

 ## Summarize the IEI raster values for each Wetland Unit

 arcpy.gp.ZonalStatisticsAsTable("fcWULandInteg0", "WUKey", "IEI", "IEI_zonal",

"DATA", "MEAN")

 logger.info("the IEI raster values for each Wetland Unit summarized")

 ## Extract the IEI raster values for each Wetland Unit centroid

 ExtractValuesToPoints("fcWUpoint", "IEI", "WUpoint_IEI")

 logger.info("IEI raster values for each Wetland Unit centroid extracted")

 ## Delete the "Count" field from the IEI_zonal table since "Count" is a restricted word

 ## and may interfere with the join in the next step

 arcpy.DeleteField_management ("IEI_zonal","Count")

 logger.info("field Count deleted")

 ## Join Wetland Units to the IEI_zonal table

 arcpy.AddJoin_management("fcWULandInteg0","WUKey","IEI_zonal","WUKey")

 logger.info("Join Wetland Units to the IEI_zonal table completed")

 ## Export the joined data to a Feature Class

 arcpy.FeatureClassToFeatureClass_conversion("fcWULandInteg0", arcpy.env.workspace,

"WU_IEI1")

 logger.info("joined data exported as WU_IEI1")

 ## Remove Join from Wetland Units

658

 arcpy.RemoveJoin_management("fcWULandInteg0")

 logger.info("join removed from Wetland Units")

 ## Join WU_IEI1 to WUpoint_IEI

 arcpy.MakeFeatureLayer_management("WU_IEI1", "fcWUIEI1")

 arcpy.MakeFeatureLayer_management("WUpoint_IEI", "fcWUpoint_IEI")

arcpy.AddJoin_management("fcWUIEI1","WU_LandInteg0_WUKey","fcWUpoint_IEI","WU

Key")

 logger.info("joined WU_IEI1 to WUpoint_IEI")

 ## Export joined data to feature class

 arcpy.FeatureClassToFeatureClass_conversion("fcWUIEI1", arcpy.env.workspace,

"WU_IEI")

 arcpy.MakeFeatureLayer_management("WU_IEI", "fcWUIEI")

 logger.info("joined data exported as WU_IEI")

 ## Replace NULL values of MEAN with centroid values of IEI

 strWHERE = """"WU_IEI1_IEI_zonal_MEAN" IS NULL"""

 arcpy.SelectLayerByAttribute_management("fcWUIEI", "NEW_SELECTION", strWHERE)

arcpy.CalculateField_management("fcWUIEI","WU_IEI1_IEI_zonal_MEAN","!WUpoint_IEI

_RASTERVALU!","PYTHON","#")

 arcpy.SelectLayerByAttribute_management("fcWUIEI", "CLEAR_SELECTION")

 logger.info("NULL values of MEAN with centroid values of IEI replaced")

 ## Add field IEI, set initial value to zero

 actions.DeleteField("fcWUIEI","IEI")

 arcpy.AddField_management("fcWUIEI", "IEI", "SHORT")

 arcpy.CalculateField_management("fcWUIEI","IEI","0","PYTHON","#")

 logger.info("field IEI added and initial value set to zero")

659

 ## Assign points

 strWHERE = """"WU_IEI1_IEI_zonal_MEAN" > 15"""

 arcpy.SelectLayerByAttribute_management("fcWUIEI", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcWUIEI","IEI","1","PYTHON","#")

 strWHERE = """"WU_IEI1_IEI_zonal_MEAN" > 45"""

 arcpy.SelectLayerByAttribute_management("fcWUIEI", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcWUIEI","IEI","2","PYTHON","#")

 strWHERE = """"WU_IEI1_IEI_zonal_MEAN" > 70"""

 arcpy.SelectLayerByAttribute_management("fcWUIEI", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcWUIEI","IEI","3","PYTHON","#")

 logger.info("points assigned in field IEI")

 logger.info("Step 2 completed")

 arcpy.SelectLayerByAttribute_management("fcWUIEI", "CLEAR_SELECTION")

 ## STEP 3

 ## Note that method in nearly identical to STEP 1 except for field names, MAJORITY, and

final points

 ## Calculate the intermediate metric LandResil

 ## Summarize the Resilient_and_Connected raster values for each Wetland Unit

 arcpy.gp.ZonalStatisticsAsTable("fcWULandInteg0", "WUKey", "ResilConnected",

"LandResil_zonal", "DATA", "MAJORITY")

 logger.info("the Resilient_and_Connected raster values for each Wetland Unit summarized")

 ## Extract the Resilient_and_Connected raster values for each Wetland Unit centroid

 ExtractValuesToPoints("fcWUpoint", "ResilConnected", "WUpoint_LandResil")

 logger.info("Resilient_and_Connected raster values for each Wetland Unit centroid

extracted")

660

 ## Delete the "Count" field from the LandResil_zonal table since "Count" is a restricted word

 ## and may interfere with the join in the next step

 arcpy.DeleteField_management ("LandResil_zonal","Count")

 logger.info("field Count deleted")

 ## Join Wetland Units to the LandResil_zonal table

 arcpy.AddJoin_management("fcWULandInteg0","WUKey","LandResil_zonal","WUKey")

 logger.info("Join Wetland Units to the LandResil_zonal table completed")

 ## Export the joined data to a Feature Class

 arcpy.FeatureClassToFeatureClass_conversion("fcWULandInteg0", arcpy.env.workspace,

"WU_LandResil1")

 logger.info("joined data exported as WU_LandResil1")

 ## Remove Join from Wetland Units

 arcpy.RemoveJoin_management("fcWULandInteg0")

 logger.info("join removed from Wetland Units")

 ## Join WU_LandResil1 to WUpoint_LandResil

 arcpy.MakeFeatureLayer_management("WU_LandResil1", "fcWULandResil1")

 arcpy.MakeFeatureLayer_management("WUpoint_LandResil", "fcWUpoint_LandResil")

arcpy.AddJoin_management("fcWULandResil1","WU_LandInteg0_WUKey","fcWUpoint_Lan

dResil","WUKey")

 logger.info("joined WU_LandResil1 to WUpoint_LandResil")

 ## Export joined data to feature class

 arcpy.FeatureClassToFeatureClass_conversion("fcWULandResil1", arcpy.env.workspace,

"WU_LandResil")

 arcpy.MakeFeatureLayer_management("WU_LandResil", "fcWULandResil")

661

 logger.info("joined data exported as WU_LandResil")

 ## Replace NULL values of MEAN with centroid values of Landscape Integrity

 strWHERE = """"WU_LandResil1_LandResil_zonal_MAJORITY" IS NULL"""

 arcpy.SelectLayerByAttribute_management("fcWULandResil", "NEW_SELECTION",

strWHERE)

arcpy.CalculateField_management("fcWULandResil","WU_LandResil1_LandResil_zonal_MA

JORITY","!WUpoint_LandResil_RASTERVALU!","PYTHON","#")

 arcpy.SelectLayerByAttribute_management("fcWULandResil", "CLEAR_SELECTION")

 logger.info("NULL values of MEAN with centroid values of Landscape Integrity replaced")

 ## Add field LandResil, set initial value to zero

 actions.DeleteField("fcWULandResil","LandResil")

 arcpy.AddField_management("fcWULandResil", "LandResil", "SHORT")

 arcpy.CalculateField_management("fcWULandResil","LandResil","0","PYTHON","#")

 logger.info("field LandResil added and initial value set to zero")

 ## Assign points

 strWHERE = """"WU_LandResil1_LandResil_zonal_MAJORITY" IN

(2,3,4,11,12,13,14,33,112)"""

 arcpy.SelectLayerByAttribute_management("fcWULandResil", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWULandResil","LandResil","1","PYTHON","#")

 strWHERE = """"WU_LandResil1_LandResil_zonal_MAJORITY" IN

(2,4,11,12,13,14,33,112)"""

 arcpy.SelectLayerByAttribute_management("fcWULandResil", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWULandResil","LandResil","2","PYTHON","#")

662

 strWHERE = """"WU_LandResil1_LandResil_zonal_MAJORITY" IN (11,12,112)"""

 arcpy.SelectLayerByAttribute_management("fcWULandResil", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWULandResil","LandResil","3","PYTHON","#")

 logger.info("points assigned in field LandResil")

 logger.info("Step 2 completed")

 arcpy.SelectLayerByAttribute_management("fcWULandResil", "CLEAR_SELECTION")

 ## STEP 4

 ## Calculate the intermediate metric ForestPatch

 ## Spatial Join Wetland Units and Forest Patches, selecting for the largest forest patch

 ## that is intersected by the Wetland Unit

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcWULandResil')

 fmSJFLIN.addTable('fcForestPatches')

 keepers = []

 keepers =

['WU_LandResil1_WU_LandInteg0_WUKey','Shape_Length','Shape_Area','LandResil','ACRE

AGE']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 fldKeyIndex = fmSJFLIN.findFieldMapIndex("ACREAGE")

 fieldmap = fmSJFLIN.getFieldMap(fldKeyIndex)

 fieldmap.mergeRule = "Maximum"

 fmSJFLIN.replaceFieldMap(fldKeyIndex, fieldmap)

 arcpy.SpatialJoin_analysis('WU_LandResil', 'fcForestPatches', 'WU_ForestPatch',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'INTERSECT')

663

 arcpy.MakeFeatureLayer_management('WU_ForestPatch', 'fcForestPatch')

 logger.info("Spatial Join Wetland Units and Forest Patches completed")

 ## Add field ForestPatch, set initial value to zero

 actions.DeleteField("fcForestPatch","ForestPatch")

 arcpy.AddField_management("fcForestPatch", "ForestPatch", "SHORT")

 arcpy.CalculateField_management("fcForestPatch","ForestPatch","0","PYTHON","#")

 logger.info("field ForestPatch added and initial value set to zero")

 ## Assign points

 strWHERE = """"ACREAGE" >= 50"""

 arcpy.SelectLayerByAttribute_management("fcForestPatch", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcForestPatch","ForestPatch","1","PYTHON","#")

 strWHERE = """"ACREAGE" >= 247"""

 arcpy.SelectLayerByAttribute_management("fcForestPatch", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcForestPatch","ForestPatch","2","PYTHON","#")

 strWHERE = """"ACREAGE" >= 2470"""

 arcpy.SelectLayerByAttribute_management("fcForestPatch", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcForestPatch","ForestPatch","3","PYTHON","#")

 logger.info("points assigned in field ForestPatch")

 arcpy.SelectLayerByAttribute_management("fcForestPatch", "CLEAR_SELECTION")

 ## Spatial Join LandIntegDNR metric to the other two metrics

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcForestPatch')

664

 fmSJFLIN.addTable('fcWULandIntegDNR')

 keepers = []

 keepers =

['WU_LandResil1_WU_LandInteg0_WUKey','Shape_Length','Shape_Area','LandResil','Forest

Patch','LandIntegDNR']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcForestPatch', 'fcWULandIntegDNR', 'WU_LandInteg',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_LandInteg', 'fcLandInteg')

 logger.info("Spatial Join LandIntegDNR metric to the other two metrics completed")

 ## Add field LandInteg, set initial value to zero

 actions.DeleteField("fcLandInteg","LandInteg")

 arcpy.AddField_management("fcLandInteg", "LandInteg", "SHORT")

 arcpy.CalculateField_management("fcLandInteg","LandInteg","0","PYTHON","#")

 logger.info("field LandInteg added and initial value set to zero")

 ## Assign points

 strWHERE = """(("LandIntegDNR" * 2) + "LandResil" + "ForestPatch") / 4 >= 0.5"""

 arcpy.SelectLayerByAttribute_management("fcLandInteg", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcLandInteg","LandInteg","1","PYTHON","#")

 strWHERE = """(("LandIntegDNR" * 2) + "LandResil" + "ForestPatch") / 4 >= 1.5"""

 arcpy.SelectLayerByAttribute_management("fcLandInteg", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcLandInteg","LandInteg","2","PYTHON","#")

665

 strWHERE = """(("LandIntegDNR" * 2) + "LandResil" + "ForestPatch") / 4 >= 2.5"""

 arcpy.SelectLayerByAttribute_management("fcLandInteg", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcLandInteg","LandInteg","3","PYTHON","#")

 logger.info("points assigned in field LandInteg")

 logger.info("Step 3 completed")

 arcpy.SelectLayerByAttribute_management("fcLandInteg", "CLEAR_SELECTION")

 arcpy.CheckInExtension("spatial")

 # Clean up

 if arcpy.Exists("LandInteg_zonal"):

 arcpy.Delete_management("LandInteg_zonal")

 if arcpy.Exists("LandResil_zonal"):

 arcpy.Delete_management("LandResil_zonal")

 if arcpy.Exists("WU_LandInteg0"):

 arcpy.Delete_management("WU_LandInteg0")

 if arcpy.Exists("WU_LandInteg1"):

 arcpy.Delete_management("WU_LandInteg1")

 if arcpy.Exists("WU_IEI1"):

 arcpy.Delete_management("WU_IEI1")

 if arcpy.Exists("WU_IEI"):

 arcpy.Delete_management("WU_IEI")

 if arcpy.Exists("WUpoint_IEI"):

 arcpy.Delete_management("WUpoint_IEI")

 if arcpy.Exists("WU_LandResil1"):

 arcpy.Delete_management("WU_LandResil1")

 if arcpy.Exists("WU_LandResil"):

 arcpy.Delete_management("WU_LandResil")

 if arcpy.Exists("WU_LandIntegDNR"):

 arcpy.Delete_management("WU_LandIntegDNR")

666

 if arcpy.Exists("WU_ForestPatch"):

 arcpy.Delete_management("WU_ForestPatch")

 if arcpy.Exists("WUpoint_LandInteg"):

 arcpy.Delete_management("WUpoint_LandInteg")

 if arcpy.Exists("WUpoint_LandResil"):

 arcpy.Delete_management("WUpoint_LandResil")

667

5.7.39 WetldBird: Habitat and Ecological Integrity Opportunity

File Name: WetldBird.py

Developer: Yibing Han

Date: 10/09/2017

Purpose:

Input to Habitat / Landscape Opportunity (LandEco: Landscape Ecological Connectivity)

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcWetldBird(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HOpportun.WetldBird")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(globalvars.srcWetBird, "fcWetBird")

 # Clean up if needed

 if arcpy.Exists("WU_WetlandBird1"):

 arcpy.Delete_management("WU_WetlandBird1")

 if arcpy.Exists("WU_WetlandBird"):

668

 arcpy.Delete_management("WU_WetlandBird")

 logger.info("feature layers ready")

 ## Create feature class to store results for WetldBird and set initial value to zero

 arcpy.CopyFeatures_management(WetlandPoly,"WU_WetlandBird1","#","0","0","0")

 arcpy.MakeFeatureLayer_management("WU_WetlandBird1", "fcWetlandBird1")

 logger.info("feature class WU_WetlandBird1 created")

 actions.DeleteField("fcWetlandBird1", "WetldBird")

 arcpy.AddField_management("fcWetlandBird1", "WetldBird", "SHORT")

 arcpy.CalculateField_management("fcWetlandBird1","WetldBird","0","VB","#")

 logger.info("field WetldBird added and initial value set to 0")

 ## Select atlas blocks in the upper 75% of wetland bird occupancy values

 strWHERE = """"WetBird" > 0.354"""

 arcpy.SelectLayerByAttribute_management("fcWetBird", "NEW_SELECTION",

strWHERE)

 logger.info("atlas blocks in the upper 75% of wetland bird occupancy values selected")

 ## Select Wetland Units that intersect the selected atlas blocks

 arcpy.SelectLayerByLocation_management("fcWetlandBird1", "INTERSECT",

"fcWetBird")

 logger.info("Wetland Units that intersect the selected atlas blocks selected")

 ## Assign 1 points

 arcpy.CalculateField_management("fcWetlandBird1","WetldBird","1","VB","#")

 logger.info("1 point assigned to qualifying wetland units")

 ## Select atlas blocks in the upper 50% of wetland bird occupancy values

 strWHERE = """"WetBird" > 0.408"""

669

 arcpy.SelectLayerByAttribute_management("fcWetBird", "NEW_SELECTION",

strWHERE)

 logger.info("atlas blocks in the upper 50% of wetland bird occupancy values selected")

 ## Select Wetland Units that intersect the selected atlas blocks

 arcpy.SelectLayerByLocation_management("fcWetlandBird1", "INTERSECT",

"fcWetBird")

 logger.info("Wetland Units that intersect the selected atlas blocks selected")

 ## Assign 2 points

 arcpy.CalculateField_management("fcWetlandBird1","WetldBird","2","VB","#")

 logger.info("2 points assigned to qualifying wetland units")

 ## Select atlas blocks in the upper 10% of wetland bird occupancy values

 strWHERE = """"WetBird" > 0.493"""

 arcpy.SelectLayerByAttribute_management("fcWetBird", "NEW_SELECTION",

strWHERE)

 logger.info("atlas blocks in the upper 10% of wetland bird occupancy values selected")

 ## Select Wetland Units that intersect the selected atlas blocks

 arcpy.SelectLayerByLocation_management("fcWetlandBird1", "INTERSECT",

"fcWetBird")

 logger.info("Wetland Units that intersect the selected atlas blocks selected")

 ## Assign 3 points and clear selections

 arcpy.CalculateField_management("fcWetlandBird1","WetldBird","3","VB","#")

 logger.info("3 points assigned to qualifying wetland units")

 arcpy.SelectLayerByAttribute_management("fcWetBird", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcWetlandBird1", "CLEAR_SELECTION")

670

 ## Select wetlands that fall outside the atlas block coverage

 arcpy.SelectLayerByLocation_management("fcWetlandBird1", "INTERSECT",

"fcWetBird")

 arcpy.SelectLayerByAttribute_management("fcWetlandBird1", "SWITCH_SELECTION")

 logger.info("wetlands that fall outside the atlas block coverage selected")

 ## Set temporary value of WetldBird for wetlands outside the atlas block coverage

 arcpy.CalculateField_management("fcWetlandBird1","WetldBird","99","VB","#")

 logger.info("temporary value of WetldBird for wetlands outside the atlas block coverage set")

 arcpy.SelectLayerByAttribute_management("fcWetlandBird1", "CLEAR_SELECTION")

 ## Spatial Join to find the closest atlas block to each wetland

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable("fcWetlandBird1")

 fmSJ.addTable("fcWetBird")

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','WetldBird','WetBird']

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis("fcWetlandBird1", "fcWetBird", 'WU_WetlandBird',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJ, 'CLOSEST')

 fcWetlandBird = arcpy.mapping.Layer(r"WU_WetlandBird")

 logger.info("Spatial Join to find the closest atlas block to each wetland completed")

 ## Assign points based on WetBird value to wetlands outside the atlas blocks

 strWHERE = """"WetldBird" = 99 AND "WetBird" <= 0.354"""

 arcpy.SelectLayerByAttribute_management(fcWetlandBird, "NEW_SELECTION",

strWHERE)

671

 arcpy.CalculateField_management(fcWetlandBird,"WetldBird","0","VB","#")

 strWHERE = """"WetldBird" = 99 AND "WetBird" > 0.354 AND "WetBird" <= 0.408"""

 arcpy.SelectLayerByAttribute_management(fcWetlandBird, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWetlandBird,"WetldBird","1","VB","#")

 strWHERE = """"WetldBird" = 99 AND "WetBird" > 0.408 AND "WetBird" <= 0.493"""

 arcpy.SelectLayerByAttribute_management(fcWetlandBird, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWetlandBird,"WetldBird","2","VB","#")

 strWHERE = """"WetldBird" = 99 AND "WetBird" > 0.493"""

 arcpy.SelectLayerByAttribute_management(fcWetlandBird, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWetlandBird,"WetldBird","3","VB","#")

 logger.info("Points assigned to WetldBird")

 arcpy.SelectLayerByAttribute_management(fcWetlandBird, "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("WU_WetlandBird1"):

 arcpy.Delete_management("WU_WetlandBird1")

672

5.7.40 WshdPos: Habitat and Ecological Integrity Opportunity

File Name: WshdPos.py

Developer: Yibing Han

Date: 10/03/2017

Purpose:

Input to Habitat / Landscape Opportunity (LandHydro: Landscape Hydrologic Connectivity)

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcWshdPos():

 logger = logging.getLogger("WFA.HabEco.HOpportun.WshdPos")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea", 'fcFloodArea')

 arcpy.MakeFeatureLayer_management(r"WU_Headwater", 'fcHeadwater')

 arcpy.MakeFeatureLayer_management(r"WU_Karst", 'fcKarst')

 arcpy.MakeFeatureLayer_management(globalvars.srcDrainage, 'fcDrainage')

 logger.info("feature layers ready")

673

 # Clean up if needed

 if arcpy.Exists('WU_WshdPos1'):

 arcpy.Delete_management('WU_WshdPos1')

 if arcpy.Exists('WU_WshdPos2'):

 arcpy.Delete_management('WU_WshdPos2')

 if arcpy.Exists('WU_WshdPos'):

 arcpy.Delete_management('WU_WshdPos')

 ## STEP 1: Wetland Units in the Floodplain of a Major River

 ## Create feature class to store WshdPos

 arcpy.CopyFeatures_management('fcFloodArea',"WU_WshdPos1","#","0","0","0")

 arcpy.MakeFeatureLayer_management(r"WU_WshdPos1", 'fcWshdPos1')

 logger.info("feature class WU_WshdPos1 created")

 ## Add field to store major river floodplain (MajorRiverFP) and set initial value to zero

 actions.DeleteField('fcWshdPos1', 'MajorRiverFP')

 arcpy.AddField_management('fcWshdPos1', 'MajorRiverFP', 'SHORT')

 arcpy.CalculateField_management('fcWshdPos1', 'MajorRiverFP', '0', 'VB', '#')

 logger.info("field MajorRiverFP added and set to 0")

 ## Select major rivers with floodplains

 strWHERE = """"DA_sq_mi" > 1000 OR "GNIS_Name" IN ('Meadow River', 'Cacapon

River', 'Tygart Valley River') OR ("GNIS_Name" IN ('South Branch Potomac River', 'North

Branch Potomac River') AND "DA_sq_mi" > 1000)"""

 arcpy.SelectLayerByAttribute_management('fcDrainage', "NEW_SELECTION",

strWHERE)

 logger.info("Major rivers with floodplains selected")

 ## Select wetlands that are within 500 meters of selected rivers

 arcpy.SelectLayerByLocation_management('fcWshdPos1', "WITHIN_A_DISTANCE",

'fcDrainage', "500 Meters")

674

 logger.info("wetlands that are within 500 meters of selected rivers selected")

 ## Remove from selection any wetlands not in the floodplain

 strWHERE = """"Floodplain" = 'N'"""

 arcpy.SelectLayerByAttribute_management('fcWshdPos1',

"REMOVE_FROM_SELECTION", strWHERE)

 logger.info("wetlands not in the floodplain removed from selection")

 ## Assign values to MajorRiverFP

 arcpy.CalculateField_management('fcWshdPos1', 'MajorRiverFP', '1', 'VB', '#')

 arcpy.SelectLayerByAttribute_management('fcWshdPos1', "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management('fcDrainage', "CLEAR_SELECTION")

 logger.info("values Assigned for MajorRiverFP")

 ## STEP 2: Join metrics and assign points

 ## Spatial Join MajorRiversFP to Headwater and Karst

 ## Spatial join to merge BufferPerim and BufferContig into one attribute table

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable('fcWshdPos1')

 fmSJ.addTable('fcHeadwater')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','MajorRiverFP','Headwater']

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcWshdPos1', 'fcHeadwater', 'WU_WshdPos2',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJ, 'CONTAINS')

 arcpy.MakeFeatureLayer_management(r"WU_WshdPos2", 'fcWshdPos2')

675

 logger.info("spatial join WshdPos1 and Headwater completed")

 ## Spatial join to merge LandInteg

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable('fcWshdPos2')

 fmSJ.addTable('fcKarst')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','MajorRiverFP','Headwater','Karst']

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcWshdPos2', 'fcKarst', 'WU_WshdPos', 'JOIN_ONE_TO_ONE',

'KEEP_ALL', fmSJ, 'CONTAINS')

 fcWshdPos = arcpy.mapping.Layer(r"WU_WshdPos")

 logger.info("spatial join WshdPos2 and Karst completed")

 ## Add WshdPos field to Wetland Units and set initial point value to zero.

 actions.DeleteField(fcWshdPos, 'WshdPos')

 arcpy.AddField_management(fcWshdPos, 'WshdPos', 'SHORT')

 arcpy.CalculateField_management(fcWshdPos, 'WshdPos', '0', 'VB', '#')

 logger.info("field WshdPos added and value set to 0")

 ## Assign points

 strWHERE = """"MajorRiverFP" > 0 OR "Headwater" > 0 OR "Karst" > 0"""

 arcpy.SelectLayerByAttribute_management(fcWshdPos, "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management(fcWshdPos, 'WshdPos', '1', 'VB', '#')

 logger.info("field WshdPos calculated")

 arcpy.SelectLayerByAttribute_management(fcWshdPos, "CLEAR_SELECTION")

676

 # Clean up

 if arcpy.Exists('WU_WshdPos1'):

 arcpy.Delete_management('WU_WshdPos1')

 if arcpy.Exists('WU_WshdPos2'):

 arcpy.Delete_management('WU_WshdPos2')

677

5.7.41 WshdUniq: Habitat and Ecological Integrity Opportunity

File Name: ConsFocus.py

Developer: Yibing Han

Date: 10/10/2017

Purpose:

Input to Habitat / Landscape Opportunity (LandEco: Landscape Ecological Connectivity)

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcWshdUniq():

 logger = logging.getLogger("WFA.HabEco.HOpportun.WshdUniq")

 # Setting python variables

arcpy.MakeFeatureLayer_management(globalvars.srcHUCWetSizeUniq,"fcHUCWetSizeUniq"

)

 arcpy.MakeFeatureLayer_management(r"WU_VegAll","fcVegAll")

 # Clean up if needed

 if arcpy.Exists("WU_WshdUniq"):

678

 arcpy.Delete_management("WU_WshdUniq")

 ## Spatial Join of Wetland Units (including VegArea) and HUC characteristics

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable("fcVegAll")

 fmSJFLIN.addTable("fcHUCWetSizeUniq")

 keepers = []

 keepers =

['WUKey','VegArea','Shape_Length','Shape_Area','HUC_12','HU_12_NAME','MaxVegArea','D

iverseNWI','DensVegNWI','RatioVeg']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcVegAll', 'fcHUCWetSizeUniq', 'WU_WshdUniq',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'HAVE_THEIR_CENTER_IN')

 fcWshdUniq = arcpy.mapping.Layer(r"WU_WshdUniq")

 logger.info("Spatial Join of Wetland Units (including VegArea) and HUC characteristics

completed")

 ## Create feature class to store results for WshdUniq and set initial value to zero

 actions.DeleteField(fcWshdUniq, "WshdUniq")

 arcpy.AddField_management(fcWshdUniq, "WshdUniq", "SHORT")

 arcpy.CalculateField_management(fcWshdUniq,"WshdUniq","0","VB","#")

 logger.info("field WshdUniq added and initial value set to 0")

 ## Select wetlands in top 10% of HUC watersheds based on

 ## the number of unique NWI codes, the number of vegetated NWI polygons, or the

proportional area of vegetated wetlands

 strWHERE = """"DiverseNWI" > 22 OR "DensVegNWI" > 45 OR "RatioVeg" > 0.005"""

679

 arcpy.SelectLayerByAttribute_management(fcWshdUniq, "NEW_SELECTION",

strWHERE)

 logger.info("all CFAs except the general CFA selected")

 ## Assign 1 point

 arcpy.CalculateField_management(fcWshdUniq,"WshdUniq","1","VB","#")

 logger.info("1 point assigned to qualifying wetland units")

 ## Select largest vegetated wetland in each HUC AND wetlands in top 5% of HUC

watersheds based on

 ## type diversity, density, or proportional area of vegetated wetlands

 strWHERE = """"VegArea" >= "MaxVegArea" OR "DiverseNWI" > 28 OR "DensVegNWI"

> 70 OR "RatioVeg" > 0.009"""

 arcpy.SelectLayerByAttribute_management(fcWshdUniq, "NEW_SELECTION",

strWHERE)

 logger.info("CFAs with wetland focus selected")

 ## Assign 2 points

 arcpy.CalculateField_management(fcWshdUniq,"WshdUniq","2","VB","#")

 logger.info("2 points assigned to qualifying wetland units")

 arcpy.SelectLayerByAttribute_management(fcWshdUniq, "CLEAR_SELECTION")

 # Clean up

680

5.7.42 Habitat and Ecological Integrity Potential

File Name: HPotential.py

Developer: Yibing Han

Date: 12/12/2017

Purpose:

This script handles the execution of all the Habitat and Ecological Integrity Potential

metrics.

import datetime

import logging

import traceback

import arcpy

from Variables import Histosol, HydIntact, HydSW, Karst, MarlPEM, SoilIntact, SoilOrgCalc,

StrucPatch, VegFQ, VegHorInt, VegVerStr

from Factors import VegH, HydroH, SoilH

from Aspects import HPotential

def procHPotential(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HPotential")

 ##

 ## 1. Run Variables

 ##

 Histosol.CalcHistosol(WetlandPoly)

 #Karst.CalcKarst(WetlandPoly)

 MarlPEM.CalcMarlPEM(WetlandPoly)

 HydIntact.CalcHydIntact()

 HydSW.CalcHydSW()

 SoilIntact.CalcSoilIntact()

 SoilOrgCalc.CalcSoilOrgCalc()

 VegFQ.CalcVegFQ()

 VegHorInt.CalcVegHorInt()

 VegVerStr.CalcVegVerStr()

 StrucPatch.CalcStrucPatch()

 ## Executed with FloodAttenuation:

 # ConnectFL

 # Runoff50m

 # RunoffWshd

 # StreamEdge

681

 ## Executed with WaterQuality:

 # Disturb50m

 # VegPerUng1

 # VegWoody2

 # VegWoodyFor

 # WQOpportun

 ##

 ## 2. Run Factors

 ##

 VegH.CalcVegH()

 HydroH.CalcHydroH()

 SoilH.CalcSoilH()

 ##

 ## 3. Run Aspect

 ##

 HPotential.CalcHPotential()

682

5.7.43 HPotential: Habitat and Ecological Integrity Potential Aspects

File Name: HPotential.py

Developer: Yibing Han

Date 9/28/2017

Purpose:

Habitat Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import arcpy

from utilities import actions

import logging

def CalcHPotential():

 logger = logging.getLogger("WFA.HabEco.HPotential.HPotential")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_VegH", 'fcVegH')

 arcpy.MakeFeatureLayer_management(r"WU_HydroH", 'fcHydroH')

 arcpy.MakeFeatureLayer_management(r"WU_SoilH", 'fcSoilH')

 # Clean up if needed

 if arcpy.Exists('WU_HPotential1'):

 arcpy.Delete_management('WU_HPotential1')

683

 if arcpy.Exists('WU_HPotential'):

 arcpy.Delete_management('WU_HPotential')

 logger.info("feature layers ready")

 ## Spatial joins to bring together factor values

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcVegH')

 fmSJFLIN.addTable('fcHydroH')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','VegH','HydroH']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcVegH', 'fcHydroH', 'WU_HPotential1', 'JOIN_ONE_TO_ONE',

'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_HPotential1', 'fcHPotential1')

 logger.info("spatial join of VegH and HydroH completed")

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcHPotential1')

 fmSJFLIN.addTable('fcSoilH')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','VegH','HydroH','SoilH']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcHPotential1', 'fcSoilH', 'WU_HPotential',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

684

 arcpy.MakeFeatureLayer_management('WU_HPotential', 'fcHPotential')

 logger.info("spatial join of HPotential1 and SoilH completed")

 ## Add HPotential field and set initial point value to zero.

 actions.DeleteField('fcHPotential', 'HPotential')

 arcpy.AddField_management('fcHPotential', 'HPotential', 'SHORT')

 arcpy.CalculateField_management('fcHPotential', 'HPotential', '0', 'VB', '#')

 logger.info("HPotential field added and initial point value set to zero")

 ## Sum the factor points

 arcpy.CalculateField_management("fcHPotential","HPotential","[VegH]+ [HydroH]+

[SoilH]","VB","#")

 logger.info("HPotential field caculated")

 # Clean up

 if arcpy.Exists('WU_HPotential1'):

 arcpy.Delete_management('WU_HPotential1')

685

5.7.44 HydroH: Habitat and Ecological Integrity Potential

File Name: HydroH.py

Developer: Yibing Han

Date 9/27/2017

Purpose:

Input to Habitat & Ecological Integrity / Potential

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcHydroH():

 logger = logging.getLogger("WFA.HabEco.HPotential.HydroH")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_Connect", 'fcConnectFL')

 arcpy.MakeFeatureLayer_management(r"WU_HydroH", 'fcHydroH')

 # Clean up if needed

 logger.info("feature layers ready")

686

 ## Add field to store ConnectFL

 actions.DeleteField('fcHydroH', 'ConnectFL1')

 arcpy.AddField_management('fcHydroH', 'ConnectFL1', 'SHORT')

 logger.info("field ConnectFL1 added to store ConnectFL")

 ## Add Join to merge fields into one attribute table

 arcpy.AddJoin_management("fcHydroH","WUKey","fcConnectFL","WUKey")

 logger.info("Add Join to merge fields into one attribute table completed")

 ## Calculate field ConnectFL1

 arcpy.CalculateField_management('fcHydroH', 'WU_HydroH.ConnectFL1',

'[WU_Connect.ConnectFL]', 'VB', '#')

 logger.info("field ConnectFL1 calculated")

 ## Remove Join

 arcpy.RemoveJoin_management("fcHydroH")

 logger.info("join removed")

 ## Add field to store HydroH and set initial value to zero

 actions.DeleteField('fcHydroH', 'HydroH')

 arcpy.AddField_management('fcHydroH', 'HydroH', 'SHORT')

 arcpy.CalculateField_management('fcHydroH', 'HydroH', '0', 'VB', '#')

 logger.info("field added to store HydroH and initial value set to zero")

 ## Assign points to HydroH

 arcpy.CalculateField_management('fcHydroH', 'HydroH', '[HydIntact] + [HydSW] +

[ConnectFL1]', 'VB', '#')

 logger.info("points assigned to HydroH")

 # Clean up if needed

687

5.7.45 SoilH: Habitat and Ecological Integrity Potential

File Name: SoilH.py

Developer: Yibing Han

Date 9/28/2017

Purpose:

Input to Habitat & Ecological Integrity / Potential

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcSoilH():

 logger = logging.getLogger("WFA.HabEco.HPotential.SoilH")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_Disturb50m", 'fcDisturb50m')

 arcpy.MakeFeatureLayer_management(r"WU_SoilOrgCalc", 'fcSoilOrgCalc')

 arcpy.MakeFeatureLayer_management(r"WU_StrucPatch", 'fcStrucPatch')

 # Clean up if needed

 if arcpy.Exists('WU_SoilH1'):

688

 arcpy.Delete_management('WU_SoilH1')

 if arcpy.Exists('WU_SoilH'):

 arcpy.Delete_management('WU_SoilH')

 logger.info("feature layers ready")

 ## Spatial Joins to merge fields into one attribute table

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcDisturb50m')

 fmSJFLIN.addTable('fcSoilOrgCalc')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','SoilIntact','SoilOrgCalc']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcDisturb50m', 'fcSoilOrgCalc', 'WU_SoilH1',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_SoilH1', 'fcSoilH1')

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcSoilH1')

 fmSJFLIN.addTable('fcStrucPatch')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','SoilIntact','SoilOrgCalc','StrucPatch']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcSoilH1', 'fcStrucPatch', 'WU_SoilH', 'JOIN_ONE_TO_ONE',

'KEEP_ALL', fmSJFLIN, 'CONTAINS')

689

 arcpy.MakeFeatureLayer_management('WU_SoilH', 'fcSoilH')

 logger.info("Spatial Joins to merge fields into one attribute table completed")

 ## Add SoilH field and set initial point value to zero.

 actions.DeleteField('fcSoilH', 'SoilH')

 arcpy.AddField_management('fcSoilH', 'SoilH', 'SHORT')

 arcpy.CalculateField_management('fcSoilH', 'SoilH', '0', 'VB', '#')

 logger.info("field SoilH added and initial value set to zero")

 ## Assign points to fcSoilH

 arcpy.CalculateField_management("fcSoilH","SoilH","[SoilIntact] + [SoilOrgCalc] +

[StrucPatch]","VB","#")

 logger.info("points assigned to SoilH")

 # Clean up

 if arcpy.Exists('WU_SoilH1'):

 arcpy.Delete_management('WU_SoilH1')

690

5.7.46 VegH: Habitat and Ecological Integrity Potential

File Name: VegH.py

Developer: Yibing Han

Date 9/25/2017

Purpose:

Input to Habitat & Ecological Integrity / Potential

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcVegH():

 logger = logging.getLogger("WFA.HabEco.HPotential.VegH")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_VegVerStr", 'fcVegVerStr')

 arcpy.MakeFeatureLayer_management(r"WU_Microtopo", 'fcMicrotopo')

 arcpy.MakeFeatureLayer_management(r"WU_VegFQ", 'fcVegFQ')

 # Clean up if needed

 if arcpy.Exists('WU_VegH'):

691

 arcpy.Delete_management('WU_VegH')

 if arcpy.Exists('WU_VegH1'):

 arcpy.Delete_management('WU_VegH1')

 logger.info("feature layers ready")

 ## Spatial join to merge VegVerStr and VegHorInt into one attribute table

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcVegVerStr')

 fmSJFLIN.addTable('fcMicrotopo')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','VegVerStr','VegHorInt']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcVegVerStr', 'fcMicrotopo', 'WU_VegH1',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_VegH1', 'fcVegH1')

 logger.info("Spatial join to merge VegVerStr and VegHorInt completed")

 ## Spatial join to merge VegFQ

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcVegH1')

 fmSJFLIN.addTable('fcVegFQ')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','VegVerStr','VegHorInt','VegFQ']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

692

 arcpy.SpatialJoin_analysis('fcVegH1', 'fcVegFQ', 'WU_VegH', 'JOIN_ONE_TO_ONE',

'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_VegH', 'fcVegH')

 logger.info("Spatial join to merge VegFQ completed")

 ## Add VegH field to Wetland Units and set initial point value to zero.

 actions.DeleteField('fcVegH', 'VegH')

 arcpy.AddField_management('fcVegH', 'VegH', 'SHORT')

 arcpy.CalculateField_management('fcVegH', 'VegH', '0', 'VB', '#')

 logger.info("field VegH added and initial value set to 0")

 ## Sum the points for VegVerStr, VegHorInt, VegFQ

 arcpy.CalculateField_management('fcVegH', 'VegH', '[VegVerStr] + [VegHorInt] +

[VegFQ]', 'VB', '#')

 logger.info("Points calculated for field VegH")

 # Clean up

 if arcpy.Exists('WU_VegH1'):

 arcpy.Delete_management('WU_VegH1')

693

5.7.47 Histosol: Habitat and Ecological Integrity Potential

File Name: Histosol.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 2/7/2017 (modified 11/10/2017)

Purpose:

Input to Habitat and Ecological Integrity / Intrinsic Potential

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcHistosol(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HPotential.Histosol")

 # Clean up if needed

 if arcpy.Exists("WU_Histosol"):

 arcpy.Delete_management("WU_Histosol")

 # Setting python variables

 arcpy.CopyFeatures_management(WetlandPoly, "WU_Histosol")

 fcWUHistosol = arcpy.mapping.Layer(r"WU_Histosol")

694

 fcPeatlands = arcpy.mapping.Layer(globalvars.srcPeatlands)

 fcPalustrineplots = arcpy.mapping.Layer(globalvars.srcPalustrineplots)

 fcHisticEpipedon = arcpy.mapping.Layer(globalvars.srcHisticEpipedon)

 fcHistosol = arcpy.mapping.Layer(globalvars.srcHistosol)

 # fcSSURGOWV = arcpy.mapping.Layer(globalvars.srcSSURGOWV)

 fcNWI = arcpy.mapping.Layer(globalvars.srcInput)

 logger.info("feature layers ready")

 # Add Histosol field to Wetland Units and set initial point value to zero

 actions.DeleteField(fcWUHistosol,"Histosol")

 arcpy.AddField_management(fcWUHistosol, "Histosol", "SHORT")

 arcpy.CalculateField_management(fcWUHistosol,"Histosol","0","VB","#")

 logger.info("field Histosol added and initial point value set to 0")

###

#################################

 ## Part 1: Histic Epipedon

###

#################################

 ## Select Palustrine plots that have peat or muck soils (conservative assumption that these are

histic epipedons) or organic oils 20-39 cm thick

 strSelectAttr = """"Soil_Textu" LIKE '%peat%' OR "Soil_Textu" LIKE '%muck%' OR

"Profile__1" LIKE '%peat%' OR "Profile__1" LIKE '%muck%' or("Depth_of_o" > 19 AND

"Depth_of_o" < 40)"""

arcpy.SelectLayerByAttribute_management(fcPalustrineplots,"NEW_SELECTION",strSelectA

ttr)

 ## Select Wetland Units that intersect palustrine plots with histic epipedons.

695

arcpy.SelectLayerByLocation_management(fcWUHistosol,"INTERSECT",fcPalustrineplots,"#

","NEW_SELECTION")

 ## Update value for "Histosol" based on palustrine plots.

 arcpy.CalculateField_management(fcWUHistosol,"Histosol","2","VB","#")

 arcpy.SelectLayerByAttribute_management(fcWUHistosol, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcPalustrineplots, "CLEAR_SELECTION")

 ## Select Wetland Units that intersect with the SSURGO histic epipedon selection.

arcpy.SelectLayerByLocation_management(fcWUHistosol,"INTERSECT",fcHisticEpipedon,"#

","NEW_SELECTION")

 ## Update calue for "Histosol" based on ssurgo data

 arcpy.CalculateField_management(fcWUHistosol,"Histosol","2","VB","#")

 arcpy.SelectLayerByAttribute_management(fcWUHistosol, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcHisticEpipedon, "CLEAR_SELECTION")

###

#################################

 ## Part 2: Histosol

###

#################################

 ## Select Palustrine plots that have organic soils at least 40cm thick

 strSelectAttr = """"DepOrgSoil" > 39"""

arcpy.SelectLayerByAttribute_management(fcPalustrineplots,"NEW_SELECTION",strSelectA

ttr)

696

 ## Select Wetland Units that intersect palustrine plots with histic histosols.

arcpy.SelectLayerByLocation_management(fcWUHistosol,"INTERSECT",fcPalustrineplots,"#

","NEW_SELECTION")

 ## Update value for "Histosol" based on palustrine plots.

 arcpy.CalculateField_management(fcWUHistosol,"Histosol","3","VB","#")

 arcpy.SelectLayerByAttribute_management(fcWUHistosol, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcPalustrineplots, "CLEAR_SELECTION")

 ## Select Wetland Units that intersect with the SSURGO histosol selection.

arcpy.SelectLayerByLocation_management(fcWUHistosol,"INTERSECT",fcHistosol,"#","NE

W_SELECTION")

 ## Update calue for "Histosol" based on ssurgo data

 arcpy.CalculateField_management(fcWUHistosol,"Histosol","3","VB","#")

 arcpy.SelectLayerByAttribute_management(fcWUHistosol, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcHistosol, "CLEAR_SELECTION")

###

#################################

 ## Part 3: Peatlands

###

#################################

 ## Select Wetland Units that are peatlands.

arcpy.SelectLayerByLocation_management(fcWUHistosol,"INTERSECT",fcPeatlands,"#","NE

W_SELECTION")

697

 ## Update calue for "Histosol" based on peatlands

 arcpy.CalculateField_management(fcWUHistosol,"Histosol","3","VB","#")

 arcpy.SelectLayerByAttribute_management(fcWUHistosol, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcPeatlands, "CLEAR_SELECTION")

###

#################################

 ## Part 4: NWI Organic Modifier

###

#################################

 ## Select polygons that have an organic modifier in the Nation Wetland Inventory

arcpy.SelectLayerByAttribute_management(fcNWI,"NEW_SELECTION",""""ATTRIBUTE"

LIKE '%g'""")

 ## Select Wetland Unit that intersect organic NWI polygons.

arcpy.SelectLayerByLocation_management(fcWUHistosol,"INTERSECT",fcNWI,"#","NEW_

SELECTION")

 ## Update calue for "Histosol" based on NWI

 arcpy.CalculateField_management(fcWUHistosol,"Histosol","3","VB","#")

 arcpy.SelectLayerByAttribute_management(fcWUHistosol, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcNWI, "CLEAR_SELECTION")

 # Clean up

698

5.7.48 HydIntact: Habitat and Ecological Integrity Potential

File Name: HydIntact.py

Developer: Yibing Han

Date 9/25/2017

Purpose:

Input to Habitat & Ecological Integrity / Potential

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcHydIntact():

 logger = logging.getLogger("WFA.HabEco.HPotential.HydIntact")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_WQOpportun", 'fcWQOpportun')

 arcpy.MakeFeatureLayer_management(r"WU_LandInteg", 'fcLandInteg')

 # Clean up if needed

 if arcpy.Exists('WU_HydroH'):

 arcpy.Delete_management('WU_HydroH')

699

 logger.info("feature layers ready")

 ## Spatial join to merge WQOpportun and LandInteg into one attribute table

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcWQOpportun')

 fmSJFLIN.addTable('fcLandInteg')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','WQOpportun','LandInteg']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcWQOpportun', 'fcLandInteg', 'WU_HydroH',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_HydroH', 'fcHydroH')

 logger.info("Spatial join to merge WQOpportun and LandInteg completed")

 ## Add HydIntact field to Wetland Units and set initial point value to zero.

 actions.DeleteField('fcHydroH', 'HydIntact')

 arcpy.AddField_management('fcHydroH', 'HydIntact', 'SHORT')

 arcpy.CalculateField_management('fcHydroH', 'HydIntact', '0', 'VB', '#')

 logger.info("field HydIntact added and initial value set to 0")

 ## Assign points to HydIntact

 strWHERE = """("WQOpportun" = 5 AND "LandInteg" IN (2,3)) OR ("WQOpportun" = 4

AND "LandInteg" IN (0,1))"""

 arcpy.SelectLayerByAttribute_management("fcHydroH", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcHydroH","HydIntact","1","VB","#")

700

 strWHERE = """("WQOpportun" = 4 AND "LandInteg" IN (2,3)) OR ("WQOpportun" = 3

AND "LandInteg" IN (0,1))"""

 arcpy.SelectLayerByAttribute_management("fcHydroH", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcHydroH","HydIntact","2","VB","#")

 strWHERE = """("WQOpportun" = 3 AND "LandInteg" IN (2,3)) OR ("WQOpportun" = 2

AND "LandInteg" IN (0,1))"""

 arcpy.SelectLayerByAttribute_management("fcHydroH", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcHydroH","HydIntact","3","VB","#")

 strWHERE = """("WQOpportun" = 2 AND "LandInteg" IN (2,3)) OR ("WQOpportun" = 1

AND "LandInteg" IN (0,1))"""

 arcpy.SelectLayerByAttribute_management("fcHydroH", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcHydroH","HydIntact","4","VB","#")

 strWHERE = """("WQOpportun" = 1 AND "LandInteg" IN (2,3)) OR ("WQOpportun" = 0

AND "LandInteg" IN (0,1))"""

 arcpy.SelectLayerByAttribute_management("fcHydroH", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcHydroH","HydIntact","5","VB","#")

 strWHERE = """"WQOpportun" = 0 AND "LandInteg" IN (2,3)"""

 arcpy.SelectLayerByAttribute_management("fcHydroH", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcHydroH","HydIntact","6","VB","#")

 logger.info("Points assigned for wetland units to HydIntact")

 arcpy.SelectLayerByAttribute_management("fcHydroH", "CLEAR_SELECTION")

 # Clean up

701

5.7.49 HydSW: Habitat and Ecological Integrity Potential

File Name: HydSW.py

Developer: Yibing Han

Date 9/25/2017

Purpose:

Input to Habitat & Ecological Integrity / Intrinsic Potential / Hydrology

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcHydSW():

 logger = logging.getLogger("WFA.HabEco.HPotential.HydSW")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_HydroH", 'fcHydroH')

 arcpy.MakeFeatureLayer_management(globalvars.srcInput,"fcInput")

 arcpy.MakeFeatureLayer_management(globalvars.srcNWIOpenWater, 'fcNWIOpenWater')

 logger.info("feature layers ready")

 ## Select the wetland polygons that are attributed as open water, including lakes, rivers, and

open

702

 ## water palustrine (aquatic bed, unconsolidated bottom, unconsolidated shore) AND have a

 ## hydrologic regime that is (permanently flooded, semipermanently flooded, intermittently

exposed)

 ## AND are not spoil.

 '''strWHERE = """("ATTRIBUTE" LIKE 'L%' OR"ATTRIBUTE" LIKE 'R%' OR

"ATTRIBUTE" LIKE 'PAB%' OR "ATTRIBUTE" LIKE 'PUB%' OR "ATTRIBUTE" LIKE

'PUS%') AND ("ATTRIBUTE" LIKE '%H%' OR "ATTRIBUTE" LIKE '%G%' OR

"ATTRIBUTE" LIKE '%F%') AND "ATTRIBUTE" NOT LIKE '%s%'"""

 arcpy.SelectLayerByAttribute_management("fcEnhWVWetland", "NEW_SELECTION",

strWHERE)

 logger.info("wetland polygons that are attributed as open water selected")

 ## Create open water layer from selection

arcpy.CreateFileGDB_management(r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND",

"NWIExports.gdb")

 arcpy.CopyFeatures_management("fcEnhWVWetland", globalvars.srcNWIOpenWater)

 arcpy.MakeFeatureLayer_management(globalvars.srcNWIOpenWater, 'fcNWIOpenWater')

 logger.info("open water layer from selection created")'''

 ## Add field to store HydSW and set initial value to zero

 actions.DeleteField("fcHydroH","HydSW")

 arcpy.AddField_management("fcHydroH", "HydSW", "SHORT")

 arcpy.CalculateField_management("fcHydroH","HydSW","0","PYTHON","#")

 logger.info("field HydSW created and initial value set to zero")

 ## Select the Wetland Units that intersect or touch NWIOpenWater

 arcpy.SelectLayerByLocation_management("fcHydroH", "INTERSECT",

"fcNWIOpenWater")

 logger.info("Wetland Units that intersect or touch NWIOpenWater selected")

 ## Select the Wetland Units that contain open water within their boundaries

703

 strWHERE = """("ATTRIBUTE" LIKE 'L%' OR"ATTRIBUTE" LIKE 'R%' OR

"ATTRIBUTE" LIKE 'PAB%' OR "ATTRIBUTE" LIKE 'PUB%' OR "ATTRIBUTE" LIKE

'PUS%') AND ("ATTRIBUTE" LIKE '%H%' OR "ATTRIBUTE" LIKE '%G%' OR

"ATTRIBUTE" LIKE '%F%') AND "ATTRIBUTE" NOT LIKE '%s%'"""

 arcpy.SelectLayerByAttribute_management("fcInput", "NEW_SELECTION", strWHERE)

 arcpy.SelectLayerByLocation_management("fcHydroH","INTERSECT","fcInput")

 ## Assign points to HydSW

 arcpy.CalculateField_management("fcHydroH","HydSW","1","PYTHON","#")

 arcpy.SelectLayerByAttribute_management("fcHydroH", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcInput", "CLEAR_SELECTION")

 logger.info("points assigned to HydSW")

 # Clean up

704

5.7.50 Karst: Habitat and Ecological Integrity Potential

File Name: Karst.py

Developer: Yibing Han

Date 9/20/2017

Purpose:

Input to Habitat / Potential / Vegetation / Floristic Quality

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcKarst(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HPotential.Karst")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly, "fcWU")

 arcpy.MakeFeatureLayer_management(globalvars.srcKarstComp,"fcKarstComposite")

 # Clean up if needed

 if arcpy.Exists("WU_Karst"):

 arcpy.Delete_management("WU_Karst")

705

 if arcpy.Exists("WU_Karst1"):

 arcpy.Delete_management("WU_Karst1")

 logger.info("feature layers ready")

 ## Intersect karst and Wetland Units

 arcpy.Intersect_analysis(["fcKarstComposite", "fcWU"], "WU_Karst1", "ONLY_FID")

 logger.info("Intersect of karst and Wetland Units completed")

 ## Add field to store karst area.

 actions.DeleteField("WU_Karst1","KarstArea")

 arcpy.AddField_management("WU_Karst1", "KarstArea", "FLOAT")

 arcpy.CalculateField_management("WU_Karst1","KarstArea","[Shape_Area]","VB","#")

 arcpy.MakeFeatureLayer_management(r"WU_Karst1","fcWUKarst1")

 logger.info("field KarstArea added to store karst area")

 ## Spatial Join karst selection to Wetland Units and sum karst area.

###

#################

 # SJ: FloodIn

###

#################

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable("fcWU")

 fmSJFLIN.addTable("fcWUKarst1")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","KarstArea"]

 for field in fmSJFLIN.fields:

706

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 fldKeyIndex = fmSJFLIN.findFieldMapIndex("KarstArea")

 fieldmap = fmSJFLIN.getFieldMap(fldKeyIndex)

 fieldmap.mergeRule = "Sum"

 fmSJFLIN.replaceFieldMap(fldKeyIndex, fieldmap)

arcpy.SpatialJoin_analysis("fcWU","fcWUKarst1","WU_Karst","JOIN_ONE_TO_ONE","KEE

P_ALL",fmSJFLIN,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_Karst","fcWUKarst")

 logger.info("Spatial Join karst selection to Wetland Units completed")

 ## Add fields to store KarstRatio and Karst.

 actions.DeleteField("fcWUKarst","KarstRatio")

 arcpy.AddField_management("fcWUKarst", "KarstRatio", "FLOAT")

 arcpy.AddField_management("fcWUKarst", "Karst", "SHORT")

 arcpy.CalculateField_management("fcWUKarst","Karst","0","VB","#")

arcpy.CalculateField_management("fcWUKarst","KarstRatio","[KarstArea]/[Shape_Area]","V

B","#")

 logger.info("field KarstRatio added to store KarstRatio and Karst")

 ## Assign points to Wetland Units for VegHorInt

 strWHERE = """"KarstRatio" > 0.1"""

 arcpy.SelectLayerByAttribute_management("fcWUKarst", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUKarst","Karst","1","VB","#")

 strWHERE = """"KarstRatio" > 0.33"""

707

 arcpy.SelectLayerByAttribute_management("fcWUKarst", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUKarst","Karst","2","VB","#")

 strWHERE = """"KarstRatio" > 0.67"""

 arcpy.SelectLayerByAttribute_management("fcWUKarst", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUKarst","Karst","3","VB","#")

 logger.info("points assigned to Wetland Units for field KarstRatio")

 arcpy.SelectLayerByAttribute_management("fcWUKarst", "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("WU_Karst1"):

 arcpy.Delete_management("WU_Karst1")

708

5.7.51 MarlPEM: Habitat and Ecological Integrity Potential

File Name: MarlPEM.py

Developer: Yibing Han

Date 9/20/2017

Purpose:

Input to Habitat / Potential / Vegetation / Floristic Quality

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcMarlPEM(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HPotential.MarlPEM")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly, "fcWU")

 arcpy.MakeFeatureLayer_management(globalvars.srcMarlSoils,"fcMarlSoils")

 arcpy.MakeFeatureLayer_management(globalvars.srcInput,"fcENWI")

 # Clean up if needed

 if arcpy.Exists("WU_MarlPEM"):

709

 arcpy.Delete_management("WU_MarlPEM")

 if arcpy.Exists("WU_MarlPEM1"):

 arcpy.Delete_management("WU_MarlPEM1")

 if arcpy.Exists("VegPEM"):

 arcpy.Delete_management("VegPEM")

 logger.info("feature layers ready")

 ## Select emergent wetlands and export feature class

 strWHERE = """"ATTRIBUTE" LIKE 'PEM%'"""

 arcpy.SelectLayerByAttribute_management("fcENWI", "NEW_SELECTION", strWHERE)

 arcpy.CopyFeatures_management("fcENWI", "VegPEM")

 arcpy.MakeFeatureLayer_management(r"VegPEM","fcVegPEM")

 logger.info("emergent wetlands selected and exported as VegPEM")

 arcpy.SelectLayerByAttribute_management("fcENWI", "CLEAR_SELECTION")

 ## Intersect MarlSoils and emergent wetlands (PEM)

 arcpy.Intersect_analysis(["fcMarlSoils", "fcVegPEM"], "WU_MarlPEM1", "ONLY_FID")

 logger.info("Intersect of MarlSoils and emergent wetland completed")

 ## Add field to store emergent wetland/marl area.

 actions.DeleteField("WU_MarlPEM1","MarlPEMAre")

 arcpy.AddField_management("WU_MarlPEM1", "MarlPEMAre", "FLOAT")

arcpy.CalculateField_management("WU_MarlPEM1","MarlPEMAre","[Shape_Area]","VB","#

")

 arcpy.MakeFeatureLayer_management(r"WU_MarlPEM1","fcWUMarlPEM1")

 logger.info("field MarlPEMAre added to store emergent wetland/marl area")

 ## Spatial Join MarlPEM to Wetland Units and sum MarlPEM area.

710

###

#################

 # SJ: FloodIn

###

#################

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable("fcWU")

 fmSJFLIN.addTable("fcWUMarlPEM1")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","MarlPEMAre"]

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 fldKeyIndex = fmSJFLIN.findFieldMapIndex("MarlPEMAre")

 fieldmap = fmSJFLIN.getFieldMap(fldKeyIndex)

 fieldmap.mergeRule = "Sum"

 fmSJFLIN.replaceFieldMap(fldKeyIndex, fieldmap)

arcpy.SpatialJoin_analysis("fcWU","fcWUMarlPEM1","WU_MarlPEM","JOIN_ONE_TO_O

NE","KEEP_ALL",fmSJFLIN,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_MarlPEM","fcWUMarlPEM")

 logger.info("Spatial Join MarlPEM to Wetland Units completed")

 ## Add fields to store MarlPEMRat and MarlPEM, and set initial value of MarlPEM = 0.

 actions.DeleteField("fcWUMarlPEM","KarstRatio")

711

 arcpy.AddField_management("fcWUMarlPEM", "MarlPEMRat", "FLOAT")

 arcpy.AddField_management("fcWUMarlPEM", "MarlPEM", "SHORT")

 arcpy.CalculateField_management("fcWUMarlPEM","MarlPEM","0","VB","#")

 logger.info("field MarlPEM added and initial value set to 0")

 ## Calculate the ratio of MarlPEM area to total Wetland Unit area.

arcpy.CalculateField_management("fcWUMarlPEM","MarlPEMRat","[MarlPEMAre]/[Shape_

Area]","VB","#")

 logger.info("field MarlPEMRat calculated")

 ## Assign points to Wetland Units

 strWHERE = """"MarlPEMAre" > 200"""

 arcpy.SelectLayerByAttribute_management("fcWUMarlPEM", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUMarlPEM","MarlPEM","1","VB","#")

 strWHERE = """"MarlPEMRat" > 0.5"""

 arcpy.SelectLayerByAttribute_management("fcWUMarlPEM", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUMarlPEM","MarlPEM","2","VB","#")

 strWHERE = """"MarlPEMAre" > 10000"""

 arcpy.SelectLayerByAttribute_management("fcWUMarlPEM", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUMarlPEM","MarlPEM","3","VB","#")

 logger.info("points assigned to Wetland Units for field MarlPEM")

 arcpy.SelectLayerByAttribute_management("fcWUMarlPEM", "CLEAR_SELECTION")

 # Clean up

712

 if arcpy.Exists("WU_MarlPEM1"):

 arcpy.Delete_management("WU_MarlPEM1")

 if arcpy.Exists("VegPEM"):

 arcpy.Delete_management("VegPEM")

713

5.7.52 SoilIntact: Habitat and Ecological Integrity Potential

File Name: SoilIntact.py

Developer: Yibing Han

Date 9/28/2017

Purpose:

Input to Habitat & Ecological Integrity / Potential / SoilH

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcSoilIntact():

 logger = logging.getLogger("WFA.HabEco.HPotential.SoilIntact")

 # Setting python variables

 fcDisturb50m = arcpy.mapping.Layer(r"WU_Disturb50m")

 logger.info("feature layers ready")

 # Clean up if needed

 ## Add SoilIntact field to Wetland Units and set initial point value to zero.

714

 actions.DeleteField(fcDisturb50m, 'SoilIntact')

 arcpy.AddField_management(fcDisturb50m, 'SoilIntact', 'SHORT')

 arcpy.CalculateField_management(fcDisturb50m, 'SoilIntact', '0', 'VB', '#')

 logger.info("field SoilIntact added and initial value set to 0")

 ## Assign points to SoilIntact

 strWHERE = """"Buffer50mDist_diss_Dist50mRat" = 0"""

 arcpy.SelectLayerByAttribute_management(fcDisturb50m, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcDisturb50m,"SoilIntact","2","VB","#")

 strWHERE = """"Buffer50mDist_diss_Dist50mRat" > 0"""

 arcpy.SelectLayerByAttribute_management(fcDisturb50m, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcDisturb50m,"SoilIntact","1","VB","#")

 strWHERE = """"Buffer50mDist_diss_Dist50mRat" > 0.5"""

 arcpy.SelectLayerByAttribute_management(fcDisturb50m, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcDisturb50m,"SoilIntact","0","VB","#")

 logger.info("points assigned to SoilIntact")

 arcpy.SelectLayerByAttribute_management(fcDisturb50m, "CLEAR_SELECTION")

 #clean up

715

5.7.53 SoilOrgCalc: Habitat and Ecological Integrity Potential

File Name: SoilOrgCalc.py

Developer: Yibing Han

Date 9/28/2017

Purpose:

Input to Habitat & Ecological Integrity / Potential / SoilH

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcSoilOrgCalc():

 logger = logging.getLogger("WFA.HabEco.HPotential.SoilOrgCalc")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_Histosol", 'fcHistosol')

 arcpy.MakeFeatureLayer_management(r"WU_Karst", 'fcKarst')

 # Clean up if needed

 if arcpy.Exists('WU_SoilOrgCalc'):

 arcpy.Delete_management('WU_SoilOrgCalc')

 logger.info("feature layers ready")

716

 ## Spatial Joins to merge fields into one attribute table

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcHistosol')

 fmSJFLIN.addTable('fcKarst')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','Histosol','Karst']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcHistosol', 'fcKarst', 'WU_SoilOrgCalc', 'JOIN_ONE_TO_ONE',

'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_SoilOrgCalc', 'fcSoilOrgCalc')

 logger.info("Spatial Joins to merge fields into one attribute table completed")

 ## Add SoilOrgCalc field and set initial point value to zero.

 actions.DeleteField('fcSoilOrgCalc', 'SoilOrgCalc')

 arcpy.AddField_management('fcSoilOrgCalc', 'SoilOrgCalc', 'SHORT')

 arcpy.CalculateField_management('fcSoilOrgCalc', 'SoilOrgCalc', '0', 'VB', '#')

 logger.info("SoilOrgCalc field added and initial point value set to zero")

 ## Assign points to fcSoilH

 strWHERE = """("Histosol" + "Karst") > 0"""

 arcpy.SelectLayerByAttribute_management("fcSoilOrgCalc", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcSoilOrgCalc","SoilOrgCalc","1","VB","#")

 logger.info("points assigned to fcSoilH")

 arcpy.SelectLayerByAttribute_management("fcSoilOrgCalc", "CLEAR_SELECTION")

 # Clean up

717

5.7.54 StrucPatch: Habitat and Ecological Integrity Potential

File Name: StrucPatch.py

Developer: Yibing Han

Date 9/29/2017

Purpose:

Input to Habitat & Ecological Integrity / Potential / SoilH

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcStrucPatch():

 logger = logging.getLogger("WFA.HabEco.HPotential.StrucPatch")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_Microtopo", 'fcMicrotopo')

 arcpy.MakeFeatureLayer_management(r"WU_StreamEdge", 'fcStreamEdge')

 arcpy.MakeFeatureLayer_management(r"WU_VegVerStr", 'fcVegVerStr')

 # Clean up if needed

 if arcpy.Exists('WU_StrucPatch1'):

718

 arcpy.Delete_management('WU_StrucPatch1')

 if arcpy.Exists('WU_StrucPatch'):

 arcpy.Delete_management('WU_StrucPatch')

 logger.info("feature layers ready")

 ## Spatial joins to merge input metrics (VegHorInt, VegVerStr, StreamEdge) into one

attribute table

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcMicrotopo')

 fmSJFLIN.addTable('fcVegVerStr')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','VegHorInt','VegVerStr']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcMicrotopo', 'fcVegVerStr', 'WU_StrucPatch1',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_StrucPatch1', 'fcStrucPatch1')

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcStrucPatch1')

 fmSJFLIN.addTable('fcStreamEdge')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','VegHorInt','VegVerStr','StreamRatio']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

719

 arcpy.SpatialJoin_analysis('fcStrucPatch1', 'fcStreamEdge', 'WU_StrucPatch',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_StrucPatch', 'fcStrucPatch')

 logger.info("Spatial Joins to to merge input metrics (VegHorInt, VegVerStr, StreamEdge)

into one attribute table completed")

 ## Add StreamEdge3 field and set initial point value to zero.

 actions.DeleteField('fcStrucPatch', 'StreamEdge3')

 arcpy.AddField_management('fcStrucPatch', 'StreamEdge3', 'SHORT')

 arcpy.CalculateField_management('fcStrucPatch', 'StreamEdge3', '0', 'VB', '#')

 logger.info("StreamEdge3 field added and initial point value set to zero")

 ## Assign points to StreamEdge3

 strWHERE = """"StreamRatio" > 0"""

 arcpy.SelectLayerByAttribute_management("fcStrucPatch", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcStrucPatch","StreamEdge3","1","VB","#")

 strWHERE = """"StreamRatio" > 1.4"""

 arcpy.SelectLayerByAttribute_management("fcStrucPatch", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcStrucPatch","StreamEdge3","2","VB","#")

 strWHERE = """"StreamRatio" > 2.4"""

 arcpy.SelectLayerByAttribute_management("fcStrucPatch", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcStrucPatch","StreamEdge3","3","VB","#")

 logger.info("points assigned to StreamEdge3")

 ## Clear previous selection

 arcpy.SelectLayerByAttribute_management("fcStrucPatch", "CLEAR_SELECTION")

720

 ## Add StrucPatch field and set initial point value to zero.

 actions.DeleteField('fcStrucPatch', 'StrucPatch')

 arcpy.AddField_management('fcStrucPatch', 'StrucPatch', 'SHORT')

 arcpy.CalculateField_management('fcStrucPatch', 'StrucPatch', '0', 'VB', '#')

 logger.info("StrucPatch field added and initial point value set to zero")

 ## Assign points to StrucPatch

 strWHERE = """("VegHorInt" + "VegVerStr" + "StreamEdge3") > 1"""

 arcpy.SelectLayerByAttribute_management("fcStrucPatch", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcStrucPatch","StrucPatch","1","VB","#")

 strWHERE = """("VegHorInt" + "VegVerStr" + "StreamEdge3") > 3"""

 arcpy.SelectLayerByAttribute_management("fcStrucPatch", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcStrucPatch","StrucPatch","2","VB","#")

 strWHERE = """("VegHorInt" + "VegVerStr" + "StreamEdge3") > 5"""

 arcpy.SelectLayerByAttribute_management("fcStrucPatch", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcStrucPatch","StrucPatch","3","VB","#")

 logger.info("points assigned to StrucPatch")

 arcpy.SelectLayerByAttribute_management("fcStrucPatch", "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists('WU_StrucPatch1'):

 arcpy.Delete_management('WU_StrucPatch1')

721

5.7.55 VegFQ: Habitat and Ecological Integrity Potential

File Name: VegFQ.py

Developer: Yibing Han

Date 9/25/2017

Purpose:

Input to Habitat and Ecological Integrity / Intrinsic Potential

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcVegFQ():

 logger = logging.getLogger("WFA.HabEco.HPotential.VegFQ")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r'WU_VegPerUng', 'fcVegPerUng')

 arcpy.MakeFeatureLayer_management(r'WU_VegWoody', 'fcVegWoody')

 arcpy.MakeFeatureLayer_management(r'WU_MarlPEM', 'fcMarlPEM')

 arcpy.MakeFeatureLayer_management(r'WU_Histosol', 'fcHistosol')

 arcpy.MakeFeatureLayer_management(r'WU_Karst', 'fcKarst')

 arcpy.MakeFeatureLayer_management(r'WU_Disturb50m', 'fcDisturb50m')

722

 arcpy.MakeFeatureLayer_management(r'WU_LandInteg', 'fcLandInteg')

 arcpy.MakeFeatureLayer_management(r'WU_VegAll', 'fcVegAll')

 # Clean up if needed

 if arcpy.Exists('WU_VegFQ'):

 arcpy.Delete_management('WU_VegFQ')

 if arcpy.Exists('WU_VegFQ1'):

 arcpy.Delete_management('WU_VegFQ1')

 if arcpy.Exists('WU_VegFQ2'):

 arcpy.Delete_management('WU_VegFQ2')

 if arcpy.Exists('WU_VegFQ3'):

 arcpy.Delete_management('WU_VegFQ3')

 if arcpy.Exists('WU_VegFQ4'):

 arcpy.Delete_management('WU_VegFQ4')

 if arcpy.Exists('WU_VegFQ5'):

 arcpy.Delete_management('WU_VegFQ5')

 if arcpy.Exists('WU_VegFQ6'):

 arcpy.Delete_management('WU_VegFQ6')

 logger.info("feature layers ready")

 ## Spatial join to merge VegPerUng1 and VegWoodyFor metrics

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcVegPerUng')

 fmSJFLIN.addTable('fcVegWoody')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','VegPerUng1','VegWoodyFor']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

723

 arcpy.SpatialJoin_analysis('fcVegPerUng', 'fcVegWoody', 'WU_VegFQ1',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_VegFQ1', 'fcVegFQ1')

 ## Spatial join to merge MarlPEM metric

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcVegFQ1')

 fmSJFLIN.addTable('fcMarlPEM')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','VegPerUng1','VegWoodyFor','MarlPEM']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcVegFQ1', 'fcMarlPEM', 'WU_VegFQ2',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_VegFQ2', 'fcVegFQ2')

 logger.info("Spatial join to merge MarlPEM metric completed")

 ## Spatial join to merge Histosol metric

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcVegFQ2')

 fmSJFLIN.addTable('fcHistosol')

 keepers = []

 keepers =

['WUKey','Shape_Length','Shape_Area','VegPerUng1','VegWoodyFor','MarlPEM',"Histosol"]

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

724

 arcpy.SpatialJoin_analysis('fcVegFQ2', 'fcHistosol', 'WU_VegFQ3', 'JOIN_ONE_TO_ONE',

'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_VegFQ3', 'fcVegFQ3')

 logger.info("Spatial join to merge Histosol metric completed")

 ## Spatial join to merge Karst metric

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcVegFQ3')

 fmSJFLIN.addTable('fcKarst')

 keepers = []

 keepers =

['WUKey','Shape_Length','Shape_Area','VegPerUng1','VegWoodyFor','MarlPEM',"Histosol","

Karst"]

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcVegFQ3', 'fcKarst', 'WU_VegFQ4', 'JOIN_ONE_TO_ONE',

'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_VegFQ4', 'fcVegFQ4')

 logger.info("Spatial join to merge Karst metric completed")

 ## Spatial join to merge Dist50mRat

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcVegFQ4')

 fmSJFLIN.addTable('fcDisturb50m')

 keepers = []

 keepers =

['WUKey','Shape_Length','Shape_Area','VegPerUng1','VegWoodyFor','MarlPEM',"Histosol","

Karst","Buffer50mDist_diss_Dist50mRat"]

725

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcVegFQ4', 'fcDisturb50m', 'WU_VegFQ5',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_VegFQ5', 'fcVegFQ5')

 logger.info("Spatial join to merge Dist50mRat completed")

 ## Spatial join to merge LandInteg metric

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcVegFQ5')

 fmSJFLIN.addTable('fcLandInteg')

 keepers = []

 keepers =

['WUKey','Shape_Length','Shape_Area','VegPerUng1','VegWoodyFor','MarlPEM',"Histosol","

Karst","Buffer50mDist_diss_Dist50mRat","LandInteg"]

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcVegFQ5', 'fcLandInteg', 'WU_VegFQ6',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_VegFQ6', 'fcVegFQ6')

 logger.info("Spatial join to merge LandInteg metric completed")

 ## Spatial join to merge VegArea

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable('fcVegFQ6')

 fmSJFLIN.addTable('fcVegAll')

 keepers = []

726

 keepers =

['WUKey','Shape_Length','Shape_Area','VegPerUng1','VegWoodyFor','MarlPEM',"Histosol","

Karst","Buffer50mDist_diss_Dist50mRat","LandInteg","VegArea"]

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcVegFQ6', 'fcVegAll', 'WU_VegFQ', 'JOIN_ONE_TO_ONE',

'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 arcpy.MakeFeatureLayer_management('WU_VegFQ', 'fcVegFQ')

 logger.info("Spatial join to merge VegArea completed")

 ## Add fields to store Dist50mFQ and VegFQand set initial values to zero

 actions.DeleteField('fcVegFQ', 'VegFQ')

 arcpy.AddField_management('fcVegFQ', 'Dist50mFQ', 'SHORT')

 arcpy.CalculateField_management('fcVegFQ', 'Dist50mFQ', '0', 'VB', '#')

 arcpy.AddField_management('fcVegFQ', 'VegFQ', 'SHORT')

 arcpy.CalculateField_management('fcVegFQ', 'VegFQ', '0', 'VB', '#')

 logger.info("fields added to store Dist50mFQ and VegFQand set initial values to zero")

 ## Assign points to Dist50mFQ

 strWHERE = """"Buffer50mDist_diss_Dist50mRat" < 0.25"""

 arcpy.SelectLayerByAttribute_management("fcVegFQ", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcVegFQ","Dist50mFQ","1","VB","#")

 strWHERE = """"Buffer50mDist_diss_Dist50mRat" < 0.1"""

 arcpy.SelectLayerByAttribute_management("fcVegFQ", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcVegFQ","Dist50mFQ","2","VB","#")

 strWHERE = """"Buffer50mDist_diss_Dist50mRat" = 0"""

727

 arcpy.SelectLayerByAttribute_management("fcVegFQ", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcVegFQ","Dist50mFQ","3","VB","#")

 logger.info("points assigned to Dist50mFQ")

 arcpy.SelectLayerByAttribute_management("fcVegFQ", "CLEAR_SELECTION")

 ## Sum all points for VegFQ

 arcpy.CalculateField_management('fcVegFQ', 'VegFQ', '[VegPerUng1] + [VegWoodyFor] +

[MarlPEM] + [Histosol] + [Karst] + [Dist50mFQ] + [LandInteg]', 'VB', '#')

 logger.info("points summed for VegFQ")

 ## Reduce VegFQ values to cap of 9 points total

 strWHERE = """"VegFQ" > 9"""

 arcpy.SelectLayerByAttribute_management("fcVegFQ", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcVegFQ","VegFQ","9","VB","#")

 logger.info("VegFQ values reduced to cap of 9 points total")

 ## Reduce VegFQ values to zero for unvegetated wetlands

 strWHERE = """"VegArea" IS NULL"""

 arcpy.SelectLayerByAttribute_management("fcVegFQ", "NEW_SELECTION", strWHERE)

 arcpy.CalculateField_management("fcVegFQ","VegFQ","0","VB","#")

 logger.info("VegFQ values reduced to zero for unvegetated wetlands")

 arcpy.SelectLayerByAttribute_management("fcVegFQ", "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists('WU_VegFQ1'):

 arcpy.Delete_management('WU_VegFQ1')

 if arcpy.Exists('WU_VegFQ2'):

 arcpy.Delete_management('WU_VegFQ2')

 if arcpy.Exists('WU_VegFQ3'):

 arcpy.Delete_management('WU_VegFQ3')

728

 if arcpy.Exists('WU_VegFQ4'):

 arcpy.Delete_management('WU_VegFQ4')

 if arcpy.Exists('WU_VegFQ5'):

 arcpy.Delete_management('WU_VegFQ5')

 if arcpy.Exists('WU_VegFQ6'):

 arcpy.Delete_management('WU_VegFQ6')

729

5.7.56 VegHorInt: Habitat and Ecological Integrity Potential

File Name: VegHorInt.py

Developer: Yibing Han

Date 9/20/2017

Purpose:

Input to Habitat / Potential / Vegetation

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcVegHorInt():

 logger = logging.getLogger("WFA.HabEco.HPotential.VegHorInt")

 # Clean up if needed

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_Microtopo","fcWUMicrotopo")

 logger.info("feature layers ready")

 ## Add new attribute field to store points for VegHorInt and set initial value to zero.

730

 actions.DeleteField("fcWUMicrotopo","VegHorInt")

 arcpy.AddField_management("fcWUMicrotopo", "VegHorInt", "SHORT")

 arcpy.CalculateField_management("fcWUMicrotopo","VegHorInt","0","VB","#")

 logger.info("field VegHorInt added and initial value set to 0")

 ## Assign points to Wetland Units for VegHorInt

 strWHERE = """"MicroRatio" > 4 AND "Join_Count" > 1"""

 arcpy.SelectLayerByAttribute_management("fcWUMicrotopo", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUMicrotopo","VegHorInt","1","VB","#")

 strWHERE = """"MicroRatio" > 6 AND "Join_Count" > 2"""

 arcpy.SelectLayerByAttribute_management("fcWUMicrotopo", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUMicrotopo","VegHorInt","2","VB","#")

 strWHERE = """"MicroRatio" > 10 AND "Join_Count" > 4"""

 arcpy.SelectLayerByAttribute_management("fcWUMicrotopo", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUMicrotopo","VegHorInt","3","VB","#")

 logger.info("Points assigned to field VegHorInt")

 arcpy.SelectLayerByAttribute_management("fcWUMicrotopo", "CLEAR_SELECTION")

 # Clean up

731

5.7.57 VegVerStr: Habitat and Ecological Integrity Potential

File Name: VegVerStr.py

Developer: Yibing Han

Date 9/18/2017

Purpose:

Input to Habitat / Potential / Vegetation Factor.

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcVegVerStr():

 logger = logging.getLogger("WFA.HabEco.HPotential.VegVerStr")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_VegWoody","fcVegWoody")

 arcpy.MakeFeatureLayer_management(r"WU_VegAll","fcVegAll")

 # Clean up if needed

 if arcpy.Exists("WU_VegVerStr"):

 arcpy.Delete_management("WU_VegVerStr")

732

 logger.info("feature layers ready")

 ## Retrieve the fields PFOarea (forest area in m2) and PFOratio (ratio of forest area to total

wetland

 ## area) from the WU_VegWoody feature class.

 ## Retrieve the fields VegArea (vegetated area in m2) and VegRatio (ratio of vegetated area

to total

 ## wetland area) from the WU_VegAll feature class.

 ## Store the fields in a new feature class: WU_VegVerStr.

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable("fcVegAll")

 fmSJFLIN.addTable("fcVegWoody")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","PFOarea","PFOratio","VegArea","VegRatio"]

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcVegAll","fcVegWoody","WU_VegVerStr","JOIN_ONE_TO_O

NE","KEEP_ALL",fmSJFLIN,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_VegVerStr","fcWUVegVerStr")

 logger.info("spatial join of VegArea and VegAll completed")

 ## Add new attribute field to store points for VegVerStr and set initial value to zero.

 actions.DeleteField("fcWUVegVerStr","VegVerStr")

 arcpy.AddField_management("fcWUVegVerStr", "VegVerStr", "SHORT")

 arcpy.CalculateField_management("fcWUVegVerStr","VegVerStr","0","VB","#")

733

 logger.info("field VegVerStr added and initial value set to 0")

 ## Assign points to Wetland Units for VegVerStr

 strWHERE = """"VegRatio" > 0.05 AND "VegArea" > 500"""

 arcpy.SelectLayerByAttribute_management("fcWUVegVerStr", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUVegVerStr","VegVerStr","1","VB","#")

 strWHERE = """"PFOratio" > 0.05 AND "PFOarea" > 500 AND "VegRatio" > 0.5"""

 arcpy.SelectLayerByAttribute_management("fcWUVegVerStr", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUVegVerStr","VegVerStr","2","VB","#")

 strWHERE = """"PFOratio" > 0.5 AND "PFOarea" > 500"""

 arcpy.SelectLayerByAttribute_management("fcWUVegVerStr", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUVegVerStr","VegVerStr","3","VB","#")

 logger.info("Points assigned to field VegVerStr")

 arcpy.SelectLayerByAttribute_management("fcWUVegVerStr", "CLEAR_SELECTION")

 # Clean up

734

5.7.58 Habitat and Ecological Integrity Society

File Name: HSociety.py

Developer: Yibing Han

Date: 12/12/2017

Purpose:

This script handles the execution of all the Habitat and Ecological Integrity Value to

Society metrics.

import datetime

import logging

import traceback

import arcpy

from Variables import OwnerAccess, PublicUse

from Factors import HInvest, HUse

from Aspects import HSociety

def procHSociety(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HSociety")

 ##

 ## 1. Run Variables

 ##

 OwnerAccess.CalcOwnerAccess(WetlandPoly)

 PublicUse.CalcPublicUse(WetlandPoly)

 ##

 ## 2. Run Factors

 ##

 HInvest.CalcHInvest(WetlandPoly)

 HUse.CalcHUse()

 ##

 ## 3. Run Aspect

 ##

 HSociety.CalcHSociety()

735

5.7.59 Habitat and Ecological Integrity Society Aspects

File Name: HSociety.py

Developer: Yibing Han

Date: 10/19/2017

Purpose:

Habitat Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import arcpy

from utilities import actions

import logging

def CalcHSociety():

 logger = logging.getLogger("WFA.HabEco.HSociety.HSociety")

 # Setting python variables

 fcHInvest = arcpy.mapping.Layer(r"WU_HInvest")

 fcHUse = arcpy.mapping.Layer(r"WU_HUse")

 logger.info("feature layers ready")

 # Clean up if needed

 if arcpy.Exists('WU_HSociety'):

 arcpy.Delete_management('WU_HSociety')

736

 ## Spatial join to merge WshdPos and AquaAbund into one attribute table

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable(fcHInvest)

 fmSJFLIN.addTable(fcHUse)

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','HInvest','HUse']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis(fcHInvest, fcHUse, 'WU_HSociety', 'JOIN_ONE_TO_ONE',

'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 fcHSociety = arcpy.mapping.Layer(r"WU_HSociety")

 logger.info("spatial join HInvest and HUse completed")

 ## Add HSociety field to Wetland Units and set initial point value to zero.

 actions.DeleteField(fcHSociety, 'HSociety')

 arcpy.AddField_management(fcHSociety, 'HSociety', 'SHORT')

 arcpy.CalculateField_management(fcHSociety, 'HSociety', '0', 'VB', '#')

 logger.info("field HSociety added and initial value set to 0")

 ## Sum the points for HInvest and HUse

 arcpy.CalculateField_management(fcHSociety, 'HSociety', '[HInvest] + [HUse]', 'VB', '#')

 logger.info("field HSociety calculated")

 # Clean up

737

5.7.60 Hinvest: Habitat and Ecological Integrity Society

File Name: HInvest.py

Developer: Yibing Han

Date: 10/19/2017

Purpose:

Input to Habitat / Value to Society

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcHInvest(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HSociety.HInvest")

 # Clean up if needed

 if arcpy.Exists("WU_HInvest"):

 arcpy.Delete_management("WU_HInvest")

 # Setting python variables

 fcLocalPark = arcpy.mapping.Layer(globalvars.srcLocalPark)

 fcNF = arcpy.mapping.Layer(globalvars.srcNF)

738

 fcNP = arcpy.mapping.Layer(globalvars.srcNP)

 fcNWR = arcpy.mapping.Layer(globalvars.srcNWR)

 fcWMA = arcpy.mapping.Layer(globalvars.srcWMA)

 fcSP = arcpy.mapping.Layer(globalvars.srcSP)

 fcSF = arcpy.mapping.Layer(globalvars.srcSF)

 fcBotanicalAreas = arcpy.mapping.Layer(globalvars.srcBotanicalAreas)

 fcProtectedLands = arcpy.mapping.Layer(globalvars.srcProtectedLands)

 fcNatStrPreAct = arcpy.mapping.Layer(globalvars.srcNatStrPreAct)

 fcILF = arcpy.mapping.Layer(globalvars.srcILF)

 fcRestoredWetlands = arcpy.mapping.Layer(globalvars.srcRestoredWetlands)

 logger.info("feature layers ready")

 ## STEP 1: Create feature class and add field to store results; set initial value to zero

 arcpy.CopyFeatures_management(WetlandPoly,"WU_HInvest","#","0","0","0")

 fcHInvest = arcpy.mapping.Layer(r"WU_HInvest")

 logger.info("feature class WU_HInvest created")

 actions.DeleteField(fcHInvest, "HInvest")

 arcpy.AddField_management(fcHInvest, "HInvest", "SHORT")

 arcpy.CalculateField_management(fcHInvest,"HInvest","0","VB","#")

 logger.info("field HInvest added and initial value set to 0")

 ## Low investment

 ## Select wetlands that intersect state or local public lands

 arcpy.SelectLayerByLocation_management(fcHInvest, "INTERSECT", fcSP)

 arcpy.SelectLayerByLocation_management(fcHInvest, "INTERSECT", fcWMA, "",

"ADD_TO_SELECTION")

 arcpy.SelectLayerByLocation_management(fcHInvest, "INTERSECT", fcSF, "",

"ADD_TO_SELECTION")

739

 arcpy.SelectLayerByLocation_management(fcHInvest, "INTERSECT", fcLocalPark, "",

"ADD_TO_SELECTION")

 logger.info("wetlands that intersect state or local public lands selected")

 ## Add wetlands that intersect Natural Streams Preservation Act watersheds to selection

 arcpy.SelectLayerByLocation_management(fcHInvest, "INTERSECT", fcNatStrPreAct, "",

"ADD_TO_SELECTION")

 logger.info("wetlands that intersect Natural Streams Preservation Act watersheds added to

selection")

 ## Add wetlands that intersect Department of Defense Lands to selection

 strWHERE = """"OwnName" = 'Department of Defense (DOD)'"""

 arcpy.SelectLayerByAttribute_management(fcProtectedLands, "NEW_SELECTION",

strWHERE)

 arcpy.SelectLayerByLocation_management(fcHInvest, "INTERSECT", fcProtectedLands, "",

"ADD_TO_SELECTION")

 logger.info("wetlands that intersect Department of Defense Lands added to selection")

 ## Assign point and clear selections

 arcpy.CalculateField_management(fcHInvest,"HInvest","1","VB","#")

 logger.info("1 point assigned to qualifying wetland units")

 arcpy.SelectLayerByAttribute_management(fcHInvest, "CLEAR_SELECTION")

 ## Moderate investment

 ## Select lands owned by USFS

 strWHERE = """"Ownership" = 'Forest Service'"""

 arcpy.SelectLayerByAttribute_management(fcNF, "NEW_SELECTION", strWHERE)

 ## Select wetlands that intersect selected areas

 arcpy.SelectLayerByLocation_management(fcHInvest, "INTERSECT", fcNF)

 logger.info("wetlands that intersect selected National Forests added to selection")

740

 ## Assign points and clear selections

 arcpy.CalculateField_management(fcHInvest,"HInvest","2","VB","#")

 logger.info("2 points assigned to qualifying wetland units")

 arcpy.SelectLayerByAttribute_management(fcHInvest, "CLEAR_SELECTION")

 ## High investment

 ## Select Private Conservation Lands with Gap Status = 1 and USFS Wilderness Areas

 strWHERE = """("Mang_Name" IN ('EWPP-FPE', 'WRP', 'CLRLT', 'Potomac Conservancy',

'The Nature Conservancy (TNC)', 'WVLT', 'Forest Legacy') OR "GAP_Sts" = '1' OR "PdesTp"

= 'Wilderness Area') AND ("PdesTp" <> 'Wild and Scenic River' AND "PdesTp" <> 'National

Wildlife Refuge')"""

 arcpy.SelectLayerByAttribute_management(fcProtectedLands, "NEW_SELECTION",

strWHERE)

 ## Select wetlands that intersect selected areas

 arcpy.SelectLayerByLocation_management(fcHInvest, "INTERSECT", fcProtectedLands)

 logger.info("wetlands that intersect selected Private Conservation Lands added to selection")

 ## Add to Selection wetlands that intersect National Wildlife Refuges or National Parks

 arcpy.SelectLayerByLocation_management(fcHInvest, "INTERSECT", fcNWR, "",

"ADD_TO_SELECTION")

 arcpy.SelectLayerByLocation_management(fcHInvest, "INTERSECT", fcNP, "",

"ADD_TO_SELECTION")

 logger.info("wetlands that intersect National Parks and Wildlife Refuges added to selection")

 ## Add to Selection wetlands that intersect special botanical areas

 arcpy.SelectLayerByLocation_management(fcHInvest, "INTERSECT", fcBotanicalAreas, "",

"ADD_TO_SELECTION")

 logger.info("wetlands that intersect special botanical areas added to selection")

 ## Add to Selection wetlands that intersect Mitigation Banks and In-Lieu Fee sites

 arcpy.SelectLayerByLocation_management(fcHInvest, "WITHIN_A_DISTANCE", fcILF,

"100 Meters", "ADD_TO_SELECTION")

741

 logger.info("wetlands that intersect Mitigation Banks and In-Lieu Fee sites added to

selection")

 ## Add to Selection wetlands that intersect other restored, enhanced or created wetland sites

 arcpy.SelectLayerByLocation_management(fcHInvest, "INTERSECT", fcRestoredWetlands,

"", "ADD_TO_SELECTION")

 logger.info("wetlands that intersect other restored, enhanced or created wetland sites added to

selection")

 ## Add to Selection wetlands in WVDNR State Natural Areas

 strWHERE = """"Unit_Nm" IN ('Canaan Valley Resort State Park', 'Cathedral State Park',

'Beartown State Park')"""

 arcpy.SelectLayerByAttribute_management(fcSP, "NEW_SELECTION", strWHERE)

 ## Select wetlands that intersect selected areas

 arcpy.SelectLayerByLocation_management(fcHInvest, "INTERSECT", fcSP, "",

"ADD_TO_SELECTION")

 logger.info("wetlands in WVDNR State Natural Areas added to selection")

 ## Assign points and clear selections

 arcpy.CalculateField_management(fcHInvest,"HInvest","3","VB","#")

 logger.info("3 points assigned to qualifying wetland units")

 arcpy.SelectLayerByAttribute_management(fcHInvest, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcNF, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcProtectedLands, "CLEAR_SELECTION")

 # Clean up

742

5.7.61 HUse: Habitat and Ecological Integrity Society

File Name: HUse.py

Developer: Yibing Han

Date: 10/18/2017

Purpose:

Habitat Function / Value to Society

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcHUse():

 logger = logging.getLogger("WFA.HabEco.HSociety.HUse")

 # Setting python variables

 fcOwnerAccess = arcpy.mapping.Layer(r"WU_OwnerAccess")

 fcPublicUse = arcpy.mapping.Layer(r"WU_PublicUse")

 logger.info("feature layers ready")

 # Clean up if needed

 if arcpy.Exists('WU_HUse'):

743

 arcpy.Delete_management('WU_HUse')

 ## Spatial join to merge WshdPos and AquaAbund into one attribute table

 fmSJFLIN = arcpy.FieldMappings()

 fmSJFLIN.addTable(fcOwnerAccess)

 fmSJFLIN.addTable(fcPublicUse)

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','OwnerAccess','PublicUse']

 for field in fmSJFLIN.fields:

 if field.name not in keepers:

 fmSJFLIN.removeFieldMap(fmSJFLIN.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis(fcOwnerAccess, fcPublicUse, 'WU_HUse',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJFLIN, 'CONTAINS')

 fcHUse = arcpy.mapping.Layer(r"WU_HUse")

 logger.info("spatial join PublicUse and OwnerAccess completed")

 ## Add HUse field to Wetland Units and set initial point value to zero.

 actions.DeleteField(fcHUse, 'HUse')

 arcpy.AddField_management(fcHUse, 'HUse', 'SHORT')

 arcpy.CalculateField_management(fcHUse, 'HUse', '0', 'VB', '#')

 logger.info("field HUse added and initial value set to 0")

 ## Sum the points for OwnerAccess and PublicUse

 arcpy.CalculateField_management(fcHUse, 'HUse', '[OwnerAccess] + [PublicUse]', 'VB', '#')

 logger.info("field HUse calculated")

 # Clean up

744

5.7.62 OwnerAccess: Habitat and Ecological Integrity Society

File Name: OwnerAccess.py

Developer: Yibing Han

Date: 10/17/2017

Purpose:

Input to Habitat / Value to Society / HUse

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcOwnerAccess(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HSociety.OwnerAccess")

 # Clean up if needed

 if arcpy.Exists("WU_OwnerAccess"):

 arcpy.Delete_management("WU_OwnerAccess")

 # Setting python variables

 fcLocalPark = arcpy.mapping.Layer(globalvars.srcLocalPark)

 fcNF = arcpy.mapping.Layer(globalvars.srcNF)

745

 fcNP = arcpy.mapping.Layer(globalvars.srcNP)

 fcNWR = arcpy.mapping.Layer(globalvars.srcNWR)

 fcDNRLands = arcpy.mapping.Layer(globalvars.srcWMA)

 fcSP = arcpy.mapping.Layer(globalvars.srcSP)

 fcSF = arcpy.mapping.Layer(globalvars.srcSF)

 fcProtectedLands = arcpy.mapping.Layer(globalvars.srcProtectedLands)

 fcILF = arcpy.mapping.Layer(globalvars.srcILF)

 fcInfrastructure = arcpy.mapping.Layer(globalvars.srcInfrastructure)

 logger.info("feature layers ready")

 ## STEP 1: Create feature class and add field to store results; set initial value to zero

 arcpy.CopyFeatures_management(WetlandPoly,"WU_OwnerAccess","#","0","0","0")

 fcOwnerAccess = arcpy.mapping.Layer(r"WU_OwnerAccess")

 logger.info("feature class WU_OwnerAccess created")

 actions.DeleteField(fcOwnerAccess, "OwnerAccess")

 arcpy.AddField_management(fcOwnerAccess, "OwnerAccess", "SHORT")

 arcpy.CalculateField_management(fcOwnerAccess,"OwnerAccess","0","VB","#")

 logger.info("field OwnerAccess added and initial value set to 0")

 ## STEP 2: Private lands with seasonal, partial, or case-by-case public access

 ## Select wetlands that intersect partial-access Protected Lands

 strWHERE = """"P_Des_Nm" IN ('Harewood (Washington)', 'Ice Mountain (Riverbirch

Inc.)', 'Upper Shavers Fork')"""

 arcpy.SelectLayerByAttribute_management(fcProtectedLands, "NEW_SELECTION",

strWHERE)

 arcpy.SelectLayerByLocation_management(fcOwnerAccess, "INTERSECT",

fcProtectedLands)

 logger.info("wetlands that intersect partial-access Protected Lands selected")

746

 ## Add wetlands that intersect InfrastructureWetlands, all of which have at least partial

access

 arcpy.SelectLayerByLocation_management(fcOwnerAccess, "INTERSECT",

fcInfrastructure, "", "ADD_TO_SELECTION")

 logger.info("wetlands that intersect InfrastructureWetlands added")

Add wetlands that intersect partial-access RIBITS and ILF sites

strWHERE = """"Project_Name" = 'Tygart Valley'"""

arcpy.SelectLayerByAttribute_management(fcILF, "NEW_SELECTION", strWHERE)

arcpy.SelectLayerByLocation_management(fcOwnerAccess, "WITHIN_A_DISTANCE",

fcILF, "100 Meters", "ADD_TO_SELECTION")

logger.info("wetlands that intersect partial-access RIBITS and ILF sites added")

 ## Assign point and clear selections

 arcpy.CalculateField_management(fcOwnerAccess,"OwnerAccess","1","VB","#")

 logger.info("1 point assigned to qualifying wetland units")

 arcpy.SelectLayerByAttribute_management(fcOwnerAccess, "CLEAR_SELECTION")

 ## STEP 3: Public Ownership

 ## Select wetlands that intersect state or local public lands

 arcpy.SelectLayerByLocation_management(fcOwnerAccess, "INTERSECT", fcSP)

 arcpy.SelectLayerByLocation_management(fcOwnerAccess, "INTERSECT", fcDNRLands,

"", "ADD_TO_SELECTION")

 arcpy.SelectLayerByLocation_management(fcOwnerAccess, "INTERSECT", fcSF, "",

"ADD_TO_SELECTION")

 arcpy.SelectLayerByLocation_management(fcOwnerAccess, "INTERSECT", fcLocalPark,

"", "ADD_TO_SELECTION")

 logger.info("wetlands that intersect state or local public lands selected")

747

 ## Add National Parks and Wildlife Refuges to selection

 arcpy.SelectLayerByLocation_management(fcOwnerAccess, "INTERSECT", fcNP, "",

"ADD_TO_SELECTION")

 arcpy.SelectLayerByLocation_management(fcOwnerAccess, "INTERSECT", fcNWR, "",

"ADD_TO_SELECTION")

 logger.info("wetlands that intersect National Parks and Wildlife Refuges added to selection")

 ## Add U.S. Army Corps of Engineers lands to selection

 strWHERE = """"Mang_Name" = 'US Army Corps of Engineers'"""

 arcpy.SelectLayerByAttribute_management(fcProtectedLands, "NEW_SELECTION",

strWHERE)

 arcpy.SelectLayerByLocation_management(fcOwnerAccess, "INTERSECT",

fcProtectedLands, "", "ADD_TO_SELECTION")

 logger.info("wetlands that intersect U.S. Army Corps of Engineers lands added to selection")

 ## Add National Forests to selection

 strWHERE = """"Ownership" = 'Forest Service'"""

 arcpy.SelectLayerByAttribute_management(fcNF, "NEW_SELECTION", strWHERE)

 arcpy.SelectLayerByLocation_management(fcOwnerAccess, "INTERSECT", fcNF, "",

"ADD_TO_SELECTION")

 logger.info("wetlands that intersect National Forests added to selection")

 ## Assign points and clear selections

 arcpy.CalculateField_management(fcOwnerAccess,"OwnerAccess","2","VB","#")

 logger.info("2 points assigned to qualifying wetland units")

 arcpy.SelectLayerByAttribute_management(fcOwnerAccess, "CLEAR_SELECTION")

 ## STEP 4: Select private lands with permanent public access

 strWHERE = """"P_Des_Nm" IN ('Brush Creek (McPherson/Robertson)', 'Bear Rocks Lake

Wildlife Management Area', 'Brooklyn Heights (Hills)', 'Cranesville Swamp Preserve', 'Eidolon

Nature Preserve', 'Greenland Gap (Amendment)(Greenland Lodge Inc)', 'Hungry Beech',

'Murphy Preserve', 'Pike Knob', 'Pike Knob (Smith)', 'Slaty Mountain (Westvaco)', 'Yankauer

748

Nature Preserve', 'Canaan Valley/Dolly Sods (Moshein)', 'Core Arboretum') OR "Comments" =

'Stauffer''s Marsh (PVAS)'"""

 arcpy.SelectLayerByAttribute_management(fcProtectedLands, "NEW_SELECTION",

strWHERE)

 logger.info("private lands with permanent public access selected")

 ## Select wetlands that intersect selected areas

 arcpy.SelectLayerByLocation_management(fcOwnerAccess, "INTERSECT",

fcProtectedLands)

 ## Select open-access wetlands from the InfrastructureWetlands feature class

 strWHERE = """"Access" = 'public'"""

 arcpy.SelectLayerByAttribute_management(fcInfrastructure, "NEW_SELECTION",

strWHERE)

 logger.info("open-access wetlands selected")

 ## Select wetlands that intersect selected areas

 arcpy.SelectLayerByLocation_management(fcOwnerAccess, "INTERSECT",

fcInfrastructure, "", "ADD_TO_SELECTION")

 logger.info("wetlands that intersect selected areas added to selection")

 ## Assign point and clear selections

 arcpy.CalculateField_management(fcOwnerAccess,"OwnerAccess","2","VB","#")

 logger.info("2 points assigned to qualifying wetland units")

 arcpy.SelectLayerByAttribute_management(fcOwnerAccess, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcProtectedLands, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcILF, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcNF, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcInfrastructure, "CLEAR_SELECTION")

 # Clean up

749

5.7.63 PublicUse: Habitat and Ecological Integrity Society

 ###

File Name: PublicUse.py

Developer: Yibing Han

Date: 10/17/2017

Purpose:

Input to Habitat / Value to Society / HUse

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcPublicUse(WetlandPoly):

 logger = logging.getLogger("WFA.HabEco.HSociety.PublicUse")

 # Clean up if needed

 if arcpy.Exists("WU_PublicUse"):

 arcpy.Delete_management("WU_PublicUse")

 # Setting python variables

 fcLocalPark = arcpy.mapping.Layer(globalvars.srcLocalPark)

 fcNWR = arcpy.mapping.Layer(globalvars.srcNWR)

750

 fcWMA = arcpy.mapping.Layer(globalvars.srcWMA)

 fcSP = arcpy.mapping.Layer(globalvars.srcSP)

 fcFishAccess = arcpy.mapping.Layer(globalvars.srcFishAccess)

 fcBotanicalAreas = arcpy.mapping.Layer(globalvars.srcBotanicalAreas)

 fcPropertyBoundary = arcpy.mapping.Layer(globalvars.srcPropertyBoundary)

 fcEBird = arcpy.mapping.Layer(globalvars.srcEBird)

 fcTrails = arcpy.mapping.Layer(globalvars.srcTrails)

 fcExemp_Branked = arcpy.mapping.Layer(globalvars.srcExempBranked)

 fcInfrastructure = arcpy.mapping.Layer(globalvars.srcInfrastructure)

 logger.info("feature layers ready")

 ## STEP 1: Create feature class and add field to store results; set initial value to zero

 arcpy.CopyFeatures_management(WetlandPoly,"WU_PublicUse","#","0","0","0")

 fcPublicUse = arcpy.mapping.Layer(r"WU_PublicUse")

 logger.info("feature class WU_PublicUse created")

 actions.DeleteField(fcPublicUse, "PublicUse")

 arcpy.AddField_management(fcPublicUse, "PublicUse", "SHORT")

 arcpy.CalculateField_management(fcPublicUse,"PublicUse","0","VB","#")

 logger.info("field PublicUse added and initial value set to 0")

 ## STEP 2: Moderate public use

 ## Select WMAs and State Forests identified as hunting/trapping areas for wetland species

 strWHERE = """"hWaterfowl" = 1 OR "hGrouse" = 1 OR "hWoodcock" = 1 OR "tBeaver"

= 1 OR "tMink" = 1 OR "tMuskrat" = 1 OR "hDeer" = 1 OR "hBear" = 1 OR "hRabbit" = 1

OR "tBobcat" = 1 OR "tCoyote" = 1 OR "tRedFox" = 1 OR "tRaccoon" = 1 OR "tOpossum"

= 1"""

 arcpy.SelectLayerByAttribute_management(fcPropertyBoundary, "NEW_SELECTION",

strWHERE)

751

 arcpy.SelectLayerByLocation_management(fcPublicUse, "INTERSECT",

fcPropertyBoundary)

 logger.info("WMAs and State Forests identified as hunting/trapping areas for wetland species

selected")

 ## Assign point and clear selections

 arcpy.CalculateField_management(fcPublicUse,"PublicUse","1","VB","#")

 logger.info("1 point assigned to qualifying wetland units")

 arcpy.SelectLayerByAttribute_management(fcPublicUse, "CLEAR_SELECTION")

 ## STEP 3: High public use

 ## Select wetlands within 10 m of a mapped trail or a public fishing access point

 arcpy.SelectLayerByLocation_management(fcPublicUse, "WITHIN_A_DISTANCE",

fcTrails, "10 Meters", "NEW_SELECTION")

 arcpy.SelectLayerByLocation_management(fcPublicUse, "WITHIN_A_DISTANCE",

fcFishAccess, "10 Meters", "ADD_TO_SELECTION")

 logger.info("wetlands within 10 m of a mapped trail or a public fishing access point

selected")

 ## Add to Selection wetlands in National Wildlife Refuges

 arcpy.SelectLayerByLocation_management(fcPublicUse, "INTERSECT", fcNWR, "",

"ADD_TO_SELECTION")

 logger.info("wetlands that intersect National Parks and Wildlife Refuges added to selection")

 ## Add to Selection wetlands in special botanical areas supporting long-term research

 arcpy.SelectLayerByLocation_management(fcPublicUse, "INTERSECT", fcBotanicalAreas,

"", "ADD_TO_SELECTION")

 logger.info("wetlands in special botanical areas supporting long-term research added to

selection")

 ## Add to Selection wetlands in certain state parks

752

 strWHERE = """"Unit_Nm" IN ('Blackwater Falls State Park', 'Canaan Valley Resort State

Park', 'Cathedral State Park')"""

 arcpy.SelectLayerByAttribute_management(fcSP, "NEW_SELECTION", strWHERE)

 arcpy.SelectLayerByLocation_management(fcPublicUse, "INTERSECT", fcSP, "",

"ADD_TO_SELECTION")

 logger.info("wetlands in certain state parks added to selection")

 ## Add to Selection wetlands in certain local parks

 strWHERE = """"Unit_Nm" IN ('WV Botanic Garden', 'Meadowood Park', 'McDonough

Wildlife Refuge ', 'Johnson T. Janes Nature Preserve and Conservation Park')"""

 arcpy.SelectLayerByAttribute_management(fcLocalPark, "NEW_SELECTION",

strWHERE)

 arcpy.SelectLayerByLocation_management(fcPublicUse, "INTERSECT", fcLocalPark, "",

"ADD_TO_SELECTION")

 logger.info("wetlands in certain local parks added to selection")

 ## Add to Selection wetlands in certain WMAs

 strWHERE = """"Unit_Nm" IN ('Fairfax Pond / Rehe Wildlife Management Area', 'Green

Bottom Wildlife Management Area', 'Little Canaan Wildlife Management Area', 'McClintic

Wildlife Management Area', 'Meadow River Wildlife Management Area', 'Pleasant Creek

Wildlife Management Area', 'Short Mountain Wildlife Management Area', 'Valley Bend

Wetlands Wildlife Management Area')"""

 arcpy.SelectLayerByAttribute_management(fcWMA, "NEW_SELECTION", strWHERE)

 arcpy.SelectLayerByLocation_management(fcPublicUse, "INTERSECT", fcWMA, "",

"ADD_TO_SELECTION")

 logger.info("wetlands in certain WMAs added to selection")

 ## Add to Selection certain Exemplary Wetlands not already selected

753

 strWHERE = """"Name" IN ('Alder Run Bog', 'Altona-Piedmont Marsh', 'Bear Rocks Bog',

'Cranesville Swamp', 'Harewood Marsh', 'Spruce Knob Lake inlet', 'Spruce Knob Lake outlet',

'Winfield Swamp')"""

 arcpy.SelectLayerByAttribute_management(fcExemp_Branked, "NEW_SELECTION",

strWHERE)

 arcpy.SelectLayerByLocation_management(fcPublicUse, "INTERSECT",

fcExemp_Branked, "", "ADD_TO_SELECTION")

 logger.info("wetlands in certain WMAs added to selection")

 ## Add to Selection wetlands from the InfrastructureWetlands feature class

 arcpy.SelectLayerByLocation_management(fcPublicUse, "INTERSECT", fcInfrastructure,

"", "ADD_TO_SELECTION")

 logger.info("wetlands in certain Infrastructure Wetlands added to selection")

 ## Add to Selection wetlands within 100 meters of an eBird birding hotspot

 arcpy.SelectLayerByLocation_management(fcPublicUse, "WITHIN_A_DISTANCE",

fcEBird, "100 Meters", "ADD_TO_SELECTION")

 logger.info("wetlands within 100 meters of an eBird birding hotspot added to selection")

 ## Assign points and clear selections

 arcpy.CalculateField_management(fcPublicUse,"PublicUse","2","VB","#")

 logger.info("2 points assigned to qualifying wetland units")

 arcpy.SelectLayerByAttribute_management(fcPublicUse, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcPropertyBoundary, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcSP, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcLocalPark, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcWMA, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcExemp_Branked, "CLEAR_SELECTION")

 # Clean up

754

5.7.64 Actions: Utilities

File Name: actions.py

Developer: Chad Ashworth

Date 7/8/2015

Purpose:

This script is a module that contains functions that perform

actions against python object (delete/update/etc)

#!/usr/bin/python

import arcpy, sys

import sqlite3 as lite

def CreateGeoDB(gdbName):

 strFullPath = ""

 #strWorkspace = GetGISData("Workspace")

 strWorkspace =

"M:\\wr\\WTRSHD_BRANCH_INTERNAL\\WETLAND\\WetlandFunctionResults\\test"

 arcpy.CreateFileGDB_management(strWorkspace, gdbName)

 strFullPath = strWorkspace + "\\" + gdbName

 return strFullPath

'''

def GetGISData(lyrName):

 con = None

 data = ""

 strLayerLoc = ""

755

 try:

 con = lite.connect(r"db\wetlandFA.db")

 cur = con.cursor()

 strSelect = "select d_location from dataSource where d_name = '" + lyrName + "'"

 cur.execute(strSelect)

 data = cur.fetchone()

 strLayerLoc = data[0]

 except lite.Error, e:

 print "Error %s:" % e.args[0]

 sys.exit(1)

 finally:

 if con:

 con.close()

 return str(strLayerLoc)'''

def CheckFieldExists(table,field):

 lstFields = arcpy.ListFields(table,field)

 fieldCount = len(lstFields)

 if fieldCount == 1:

 retVal = True

 elif fieldCount == 0:

 retVal = False

 return retVal

756

def DeleteField(table,field):

 retVal = ""

 blnFieldFind = CheckFieldExists(table,field)

 #commented out screen prints so code will work with ArcMap Toolbox code

 #if blnFieldFind == True:

 # retVal = raw_input("\nThe " + str(field) + " field in the " + str(table) + " table already

exists.\nDo you wish to delete the field(Y/N): ")

 if retVal.upper() == "Y":

 blnFieldFind = False

 elif retVal.upper() == "N":

 #print "field " + str(field) + " did not exist"

 exit()

 if blnFieldFind == True:

 arcpy.DeleteField_management(table, field)

def UpdateTable(table,fields,ufield,value,where):

 with arcpy.da.UpdateCursor(table,fields,where) as cUT:

 for rUT in cUT:

 rUT[ufield] = value

 cUT.updateRow(rUT)

757

5.7.65 ActiveRiverArea: Utilities

File Name: ActiveRiverArea.py

Developer: Chad Ashworth

Date 5/1/2015

Purpose:

This script determines if a wetland polygon is in an active river area.

#!/usr/bin/python

import arcpy

from utilities import actions

def WetlandInARA(WetlandPoly):

 # setting the work environment

 arcpy.CheckOutExtension("Spatial")

 lyrARA =

arcpy.mapping.Layer("M:\\wr\\WTRSHD_BRANCH_INTERNAL\\WETLAND\\ActiveRiver

Area_gdb\\ActiveRiverArea.gdb\\ara_wv_514")

 strARA_WV_514_NMC_POLY_SHP =

"M:\\wr\WTRSHD_BRANCH_INTERNAL\\WETLAND\\" + str(WetlandPoly) +

"_ARA_TEMP.shp"

 #clean up if needed

 strRefDelLyr = str(WetlandPoly) + "_DevLyr"

 if arcpy.Exists(strRefDelLyr):

 arcpy.Delete_management(strRefDelLyr)

 strRefARA = str(WetlandPoly) + "_ARA"

 if arcpy.Exists(strRefARA):

 arcpy.Delete_management(strRefARA)

758

 strRefWetIsecARA = str(WetlandPoly) + "_WetIsecARA"

 if arcpy.Exists(strRefWetIsecARA):

 arcpy.Delete_management(strRefWetIsecARA)

 if arcpy.Exists(strARA_WV_514_NMC_POLY_SHP):

 arcpy.Delete_management(strARA_WV_514_NMC_POLY_SHP)

 # adding/deleting the Floodplain_FEMA

 actions.DeleteField(WetlandPoly,"Floodplain_ARA")

 arcpy.AddField_management(WetlandPoly, "Floodplain_ARA", "TEXT",1)

 ###

###############

 # 1.

 sql = "DESC_SHORT NOT LIKE 'Material Contribution Zone%'"

 outExtractByAtrb = arcpy.sa.ExtractByAttributes(lyrARA,sql)

 outExtractByAtrb.save(strRefARA)

 # 2.

 arcpy.RasterToPolygon_conversion(strRefARA, strARA_WV_514_NMC_POLY_SHP,

"NO_SIMPLIFY")

 # 3.

 arcpy.Intersect_analysis([[WetlandPoly], strARA_WV_514_NMC_POLY_SHP],

strRefWetIsecARA,"ALL")

 arcpy.MakeFeatureLayer_management(strRefWetIsecARA, strRefDelLyr)

 strWetlandPolyPK = "FID_" + str(WetlandPoly) # dynamically createing the foreign key field

to the WetlandPoly

 arcpy.AddJoin_management(strRefDelLyr, strWetlandPolyPK, str(WetlandPoly),

"OBJECTID") # join to WetlandPoly

759

 #arcpy.CopyFeatures_management(strRefDelLyr, strRefDelLyr)

 # declaring what fields i need to calculate the percent intersect

 ## EDIT TO DYNAMICALLY CREATE FIELD NAMES

 strWetlandId = str(WetlandPoly) + ".OBJECTID"

 strWetlandShapeArea = str(WetlandPoly) + ".Shape_Area"

 strWetlandFlARA = str(WetlandPoly) + ".Floodplain_ARA"

 fldsDL = [strWetlandId,strRefWetIsecARA +

".Shape_Area",strWetlandShapeArea,strWetlandFlARA]

 ###

 #arcpy.CopyFeatures_management("development_layer", "development_layer")

 edit = arcpy.da.Editor(arcpy.env.workspace)

 edit.startEditing(False, True)

 edit.startOperation()

 # updating the UA field with a Y if 10% or more are in an urban area

 with arcpy.da.SearchCursor(strRefDelLyr, fldsDL) as curWetlandAll:

 for rWetlandAll in curWetlandAll:

 intPercentIntersect = int(rWetlandAll[1]/rWetlandAll[2]*100)

 if intPercentIntersect >= 10:

 strWhere = "OBJECTID = " + str(rWetlandAll[0])

 actions.UpdateTable(WetlandPoly,["Floodplain_ARA"],0,"Y",strWhere)

 # updating the rest of the fields to N

 strWhere = "Floodplain_ARA is null"

 actions.UpdateTable(WetlandPoly,["Floodplain_ARA"],0,"N",strWhere)

760

 ###

 # ADD CODE TO SELECT NOTHING

 ###

 edit.stopEditing(True)

 arcpy.Delete_management(strRefWetIsecARA)

 arcpy.Delete_management(strRefDelLyr)

 arcpy.Delete_management(strRefARA)

761

5.7.66 AllResults: Utilities

File Name: AllResults.py

Developer: Yibing Han

Date: 02/25/2018

Purpose:

This script calculates the total assessment scores of wetland units

#!/usr/bin/python

import logging

import datetime

import arcpy

import actions

from globalvars import globalvars

def CalcAllResults(WetlandPoly):

 logger = logging.getLogger("WFA.AllResults")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly, "fcWU")

 arcpy.MakeFeatureLayer_management(r"WU_Function", "fcWUFunction")

 arcpy.MakeFeatureLayer_management(globalvars.srcInput, "fcENWI")

 logger.info("feature layers ready")

 # Clean up if needed

 if arcpy.Exists('WU_AllResults1'):

762

 arcpy.Delete_management('WU_AllResults1')

 if arcpy.Exists('WU_AllResults'):

 arcpy.Delete_management('WU_AllResults')

 if arcpy.Exists('AllResultsTable'):

 arcpy.Delete_management('AllResultsTable')

 ## STEP 1: Add the identifier fields (link to original input polygons) to Wetland units scoring

fields

 fmSJAll0 = arcpy.FieldMappings()

 fmSJAll0.addTable("fcENWI")

 fmSJAll0.addTable("fcWU")

 keepers = []

 keepers = ['SiteCode','WetlandName','SurveyDate',"WUKey"]

 for field in fmSJAll0.fields:

 if field.name not in keepers:

 fmSJAll0.removeFieldMap(fmSJAll0.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWU","fcENWI","WU_AllResults1","JOIN_ONE_TO_ONE","K

EEP_ALL",fmSJAll0,"INTERSECT")

 arcpy.MakeFeatureLayer_management("WU_AllResults1","fcWUAllResults1")

 logger.info("identifier fields joined to WU_Function")

 ## STEP 2: Add the scoring fields

 # Make Query Table to join all scoring fields

 #fc_not_needed = [WetlandPoly,

"Buffer10m","Buffer1km","Buffer300m","Buffer50m","DrainageArea", "WU_BRank",

"WU_FAFunction", "WU_FAOpportun", "WU_FAPotential", "WU_FASociety",

"WU_Function", "WU_HFunction", "WU_HFunctionNoBR", "WU_HOpportun",

"WU_HPotential", "WU_HSociety", "WU_WQFunction", "WU_WQOpportun",

"WU_WQPotential", "WU_WQSociety", "WUPoint"];

#arcpy.MakeQueryTable_management(in_table="WU_AllResults1;WU_AquaAbund;WU_Con

763

nect;WU_ClayOrganic;WU_Clay;WU_ChemTime;WU_BufferPerim;WU_BufferLand;WU_B

RankHUC;WU_BufferContig;WU_ConsFocus;WU_Depressions;WU_Discharges;WU_Disturb

50m;WU_DisturbWshd;WU_EconRisk;WU_Fisheries;WU_FloodArea;WU_FloodIn;WU_Floo

dway;WU_Headwater;WU_HInvest;WU_Histosol;WU_HUC12WQ;WU_HUse;WU_HydroH;

WU_ImpairedIn;WU_ImpairedOut;WU_IrrEdge;WU_Karst;WU_LandEco;WU_LandHydro;W

U_LandInteg;WU_LandPos;WU_LowSlope;WU_MarlPEM;WU_Microtopo;WU_Organic;WU

_OwnerAccess;WU_PublicUse;WU_RoadRail;WU_Runoff;WU_Runoff50m;WU_RunoffWsh

d;WU_SeasonPond;WU_SLOPE;WU_SlopeWshd;WU_SoilH;WU_SoilOrgCalc;WU_StreamE

dge;WU_StrucPatch;WU_SWOutflow;WU_VegAll;WU_VegByLP;WU_VegFA;WU_VegFQ;

WU_VegH;WU_VegPerUng;WU_VegVerStr;WU_VegWoody;WU_VegWQ;WU_WaterSuppl

y;WU_WetlandBird;WU_WflowPath;WU_WQPlan;WU_WQUse;WU_WshdPos;WU_WshdU

niq", out_table="AllResultsTable", in_key_field_option="NO_KEY_FIELD", in_key_field="",

in_field="WU_AllResults1.WetlandName #;WU_AllResults1.SurveyDate

#;WU_AllResults1.WUKey #;WU_AquaAbund.AquaAbund #;WU_Connect.ConnectFL

#;WU_ClayOrganic.ClayOrganic #;WU_Clay.Clay #;WU_ChemTime.ChemTime

#;WU_BufferPerim.BufferPerim #;WU_BufferLand.BufferLand

#;WU_BRankHUC.BRankHUC #;WU_BufferContig.BufferContig

#;WU_ConsFocus.ConsFocus #;WU_Depressions.Depressions #;WU_Discharges.Discharges

#;WU_Disturb50m.Disturb50m #;WU_Disturb50m.SoilIntact

#;WU_DisturbWshd.DisturbWshd #;WU_EconRisk.EconRisk #;WU_Fisheries.Fisheries

#;WU_FloodArea.FloodArea #;WU_FloodArea.Floodplain #;WU_FloodIn.FloodIn

#;WU_Floodway.Floodway #;WU_Headwater.Headwater #;WU_HInvest.HInvest

#;WU_Histosol.Histosol #;WU_HUC12WQ.HUC12WQ #;WU_HUse.HUse

#;WU_HydroH.HydIntact #;WU_HydroH.HydSW #;WU_HydroH.HydroH

#;WU_ImpairedIn.ImpairedIn #;WU_ImpairedOut.ImpairedOut #;WU_IrrEdge.IrrEdge

#;WU_Karst.Karst #;WU_LandEco.LandEco #;WU_LandHydro.LandHydro

#;WU_LandInteg.LandResil #;WU_LandInteg.LandInteg #;WU_LandPos.LandPos

#;WU_LowSlope.LowSlope #;WU_MarlPEM.MarlPEM #;WU_Microtopo.Microtopo

#;WU_Microtopo.VegHorInt #;WU_Organic.Organic #;WU_OwnerAccess.OwnerAccess

#;WU_PublicUse.PublicUse #;WU_RoadRail.RoadRail #;WU_Runoff.Runoff

#;WU_Runoff50m.Runoff50m #;WU_RunoffWshd.RunoffWshd

#;WU_SeasonPond.SeaPondRatio #;WU_SeasonPond.SeasonPond #;WU_SLOPE.SLOPE

#;WU_SlopeWshd.SlopeWshd #;WU_SoilH.SoilH #;WU_SoilOrgCalc.SoilOrgCalc

#;WU_StreamEdge.StreamEdge #;WU_StrucPatch.StrucPatch #;WU_SWOutflow.SWOutflow

#;WU_SWOutflow.SWOutflow2 #;WU_VegAll.VegAll #;WU_VegByLP.VegByLP

#;WU_VegFA.VegFA #;WU_VegFQ.Dist50mFQ #;WU_VegFQ.VegFQ #;WU_VegH.VegH

#;WU_VegPerUng.VegPerUng #;WU_VegPerUng.VegPerUng4

#;WU_VegPerUng.VegPerUng1 #;WU_VegVerStr.VegVerStr #;WU_VegWoody.VegWoody

#;WU_VegWoody.VegWoody4 #;WU_VegWoody.VegWoodyFor #;WU_VegWQ.VegWQ

#;WU_WaterSupply.WaterSupply #;WU_WetlandBird.WetldBird

#;WU_WflowPath.WFlowPath #;WU_WQPlan.WQPlan #;WU_WQUse.WQUse

764

#;WU_WshdPos.WshdPos #;WU_WshdUniq.WshdUniq #",

where_clause="WU_AllResults1.WUKey =

WU_AquaAbund.WU_AquaAbund2_WU_AquaAbund1_WUKey AND

WU_AllResults1.WUKey = WU_BRankHUC.WUKey AND WU_AllResults1.WUKey =

WU_BufferContig.WUKey AND WU_AllResults1.WUKey = WU_BufferLand.WUKey AND

WU_AllResults1.WUKey = WU_BufferPerim.WUKey AND WU_AllResults1.WUKey =

WU_ChemTime.WUKey AND WU_AllResults1.WUKey = WU_Clay.WUKey AND

WU_AllResults1.WUKey = WU_ClayOrganic.WUKey AND WU_AllResults1.WUKey =

WU_Connect.WUKey AND WU_AllResults1.WUKey = WU_ConsFocus.WUKey AND

WU_AllResults1.WUKey = WU_EconRisk.WUKey AND WU_AllResults1.WUKey =

WU_DisturbWshd.WU_DisturbWshd1_WUKey AND WU_AllResults1.WUKey =

WU_Discharges.WUKey AND WU_AllResults1.WUKey =

WU_Disturb50m.WU_Disturb50m1_WUKey AND WU_AllResults1.WUKey =

WU_Depressions.WUKey AND WU_AllResults1.WUKey = WU_Fisheries.WUKey AND

WU_AllResults1.WUKey = WU_FloodArea.WUKey AND WU_AllResults1.WUKey =

WU_FloodIn.WUKey AND WU_AllResults1.WUKey = WU_Floodway.WUKey AND

WU_AllResults1.WUKey = WU_Headwater.WUKey AND WU_AllResults1.WUKey =

WU_HInvest.WUKey AND WU_AllResults1.WUKey = WU_Histosol.WUKey AND

WU_AllResults1.WUKey = WU_HUC12WQ.WUKey AND WU_AllResults1.WUKey =

WU_HUse.WUKey AND WU_AllResults1.WUKey = WU_HydroH.WUKey AND

WU_AllResults1.WUKey = WU_ImpairedIn.WUKey AND WU_AllResults1.WUKey =

WU_ImpairedOut.WUKey AND WU_AllResults1.WUKey = WU_IrrEdge.WUKey AND

WU_AllResults1.WUKey = WU_Karst.WUKey AND WU_AllResults1.WUKey =

WU_LandEco.WUKey AND WU_AllResults1.WUKey = WU_LandHydro.WUKey AND

WU_AllResults1.WUKey = WU_LandInteg.WU_LandResil1_WU_LandInteg0_WUKey AND

WU_AllResults1.WUKey = WU_LandPos.WUKey AND WU_AllResults1.WUKey =

WU_LowSlope.WUKey AND WU_AllResults1.WUKey = WU_MarlPEM.WUKey AND

WU_AllResults1.WUKey = WU_Microtopo.WUKey AND WU_AllResults1.WUKey =

WU_Organic.WUKey AND WU_AllResults1.WUKey = WU_OwnerAccess.WUKey AND

WU_AllResults1.WUKey = WU_PublicUse.WUKey AND WU_AllResults1.WUKey =

WU_RoadRail.WUKey AND WU_AllResults1.WUKey = WU_Runoff.WUKey AND

WU_AllResults1.WUKey = WU_Runoff50m.WU_Runoff50m1_WUKey AND

WU_AllResults1.WUKey = WU_RunoffWshd.WU_RunoffWshd1_WUKey AND

WU_AllResults1.WUKey = WU_VegAll.WUKey AND WU_AllResults1.WUKey =

WU_SWOutflow.WUKey AND WU_AllResults1.WUKey = WU_StrucPatch.WUKey AND

WU_AllResults1.WUKey = WU_StreamEdge.WUKey AND WU_AllResults1.WUKey =

WU_SoilOrgCalc.WUKey AND WU_AllResults1.WUKey = WU_SoilH.WUKey AND

WU_AllResults1.WUKey = WU_SlopeWshd.WU_SlopeWshd1_WUKey AND

WU_AllResults1.WUKey = WU_SLOPE.WUKey AND WU_AllResults1.WUKey =

WU_SeasonPond.WUKey AND WU_AllResults1.WUKey = WU_VegByLP.WUKey AND

WU_AllResults1.WUKey = WU_VegFA.WUKey AND WU_AllResults1.WUKey =

765

WU_VegFQ.WUKey AND WU_AllResults1.WUKey = WU_VegH.WUKey AND

WU_AllResults1.WUKey = WU_VegPerUng.WU_VegPerUng1_WUKey AND

WU_AllResults1.WUKey = WU_VegVerStr.WUKey AND WU_AllResults1.WUKey =

WU_VegWoody.WUKey AND WU_AllResults1.WUKey = WU_VegWQ.WUKey AND

WU_AllResults1.WUKey = WU_WaterSupply.WUKey AND WU_AllResults1.WUKey =

WU_WetlandBird.WUKey AND WU_AllResults1.WUKey = WU_WflowPath.WUKey AND

WU_AllResults1.WUKey = WU_WQPlan.WUKey AND WU_AllResults1.WUKey =

WU_WQUse.WUKey AND WU_AllResults1.WUKey = WU_WshdPos.WUKey AND

WU_AllResults1.WUKey = WU_WshdUniq.WUKey")

 in_tables =

"WU_AllResults1;WU_AquaAbund;WU_Connect;WU_ClayOrganic;WU_Clay;WU_ChemTi

me;WU_BufferPerim;WU_BufferLand;WU_BRankHUC;WU_BufferContig;WU_ConsFocus;

WU_Depressions;WU_Discharges;WU_Disturb50m;WU_DisturbWshd;WU_EconRisk;WU_Fi

sheries;WU_FloodArea;WU_FloodIn;WU_Floodway;WU_Headwater;WU_HInvest;WU_Histo

sol;WU_HUC12WQ;WU_HUse;WU_HydroH;WU_ImpairedIn;WU_ImpairedOut;WU_IrrEdg

e;WU_Karst;WU_LandEco;WU_LandHydro;WU_LandInteg;WU_LandPos;WU_LowSlope;W

U_MarlPEM;WU_Microtopo;WU_Organic;WU_OwnerAccess;WU_PublicUse;WU_RoadRail;

WU_Runoff;WU_Runoff50m;WU_RunoffWshd;WU_SeasonPond;WU_SLOPE;WU_SlopeWs

hd;WU_SoilH;WU_SoilOrgCalc;WU_StreamEdge;WU_StrucPatch;WU_SWOutflow;WU_Ve

gAll;WU_VegByLP;WU_VegFA;WU_VegFQ;WU_VegH;WU_VegPerUng;WU_VegVerStr;

WU_VegWoody;WU_VegWQ;WU_WaterSupply;WU_WetlandBird;WU_WflowPath;WU_W

QPlan;WU_WQUse;WU_WshdPos;WU_WshdUniq"

 in_fields = "WU_AllResults1.WetlandName #;WU_AllResults1.SurveyDate #;"

 if len(arcpy.ListFields("fcWUAllResults1", "SiteCode")) > 0:

 in_fields += "WU_AllResults1.SiteCode #;"

 in_fields += "WU_AllResults1.WUKey #;WU_AquaAbund.AquaAbund

#;WU_Connect.ConnectFL #;WU_ClayOrganic.ClayOrganic #;WU_Clay.Clay

#;WU_ChemTime.ChemTime #;WU_BufferPerim.BufferPerim #;WU_BufferLand.BufferLand

#;WU_BRankHUC.BRankHUC #;WU_BufferContig.BufferContig

#;WU_ConsFocus.ConsFocus #;WU_Depressions.Depressions #;WU_Discharges.Discharges

#;WU_Disturb50m.Disturb50m #;WU_Disturb50m.SoilIntact

#;WU_DisturbWshd.DisturbWshd #;WU_EconRisk.EconRisk #;WU_Fisheries.Fisheries

#;WU_FloodArea.FloodArea #;WU_FloodArea.Floodplain #;WU_FloodIn.FloodIn

#;WU_Floodway.Floodway #;WU_Headwater.Headwater #;WU_HInvest.HInvest

#;WU_Histosol.Histosol #;WU_HUC12WQ.HUC12WQ #;WU_HUse.HUse

#;WU_HydroH.HydIntact #;WU_HydroH.HydSW #;WU_HydroH.HydroH

#;WU_ImpairedIn.ImpairedIn #;WU_ImpairedOut.ImpairedOut #;WU_IrrEdge.IrrEdge

#;WU_Karst.Karst #;WU_LandEco.LandEco #;WU_LandHydro.LandHydro

#;WU_LandInteg.LandResil #;WU_LandInteg.LandInteg #;WU_LandPos.LandPos

766

#;WU_LowSlope.LowSlope #;WU_MarlPEM.MarlPEM #;WU_Microtopo.Microtopo

#;WU_Microtopo.VegHorInt #;WU_Organic.Organic #;WU_OwnerAccess.OwnerAccess

#;WU_PublicUse.PublicUse #;WU_RoadRail.RoadRail #;WU_Runoff.Runoff

#;WU_Runoff50m.Runoff50m #;WU_RunoffWshd.RunoffWshd

#;WU_SeasonPond.SeaPondRatio #;WU_SeasonPond.SeasonPond #;WU_SLOPE.SLOPE

#;WU_SlopeWshd.SlopeWshd #;WU_SoilH.SoilH #;WU_SoilOrgCalc.SoilOrgCalc

#;WU_StreamEdge.StreamEdge #;WU_StrucPatch.StrucPatch #;WU_SWOutflow.SWOutflow

#;WU_SWOutflow.SWOutflow2 #;WU_VegAll.VegAll #;WU_VegByLP.VegByLP

#;WU_VegFA.VegFA #;WU_VegFQ.Dist50mFQ #;WU_VegFQ.VegFQ #;WU_VegH.VegH

#;WU_VegPerUng.VegPerUng #;WU_VegPerUng.VegPerUng4

#;WU_VegPerUng.VegPerUng1 #;WU_VegVerStr.VegVerStr #;WU_VegWoody.VegWoody

#;WU_VegWoody.VegWoody4 #;WU_VegWoody.VegWoodyFor #;WU_VegWQ.VegWQ

#;WU_WaterSupply.WaterSupply #;WU_WetlandBird.WetldBird

#;WU_WflowPath.WFlowPath #;WU_WQPlan.WQPlan #;WU_WQUse.WQUse

#;WU_WshdPos.WshdPos #;WU_WshdUniq.WshdUniq #"

 where_clause = "WU_AllResults1.WUKey =

WU_AquaAbund.WU_AquaAbund2_WU_AquaAbund1_WUKey AND

WU_AllResults1.WUKey = WU_BRankHUC.WUKey AND WU_AllResults1.WUKey =

WU_BufferContig.WUKey AND WU_AllResults1.WUKey = WU_BufferLand.WUKey AND

WU_AllResults1.WUKey = WU_BufferPerim.WUKey AND WU_AllResults1.WUKey =

WU_ChemTime.WUKey AND WU_AllResults1.WUKey = WU_Clay.WUKey AND

WU_AllResults1.WUKey = WU_ClayOrganic.WUKey AND WU_AllResults1.WUKey =

WU_Connect.WUKey AND WU_AllResults1.WUKey = WU_ConsFocus.WUKey AND

WU_AllResults1.WUKey = WU_EconRisk.WUKey AND WU_AllResults1.WUKey =

WU_DisturbWshd.WU_DisturbWshd1_WUKey AND WU_AllResults1.WUKey =

WU_Discharges.WUKey AND WU_AllResults1.WUKey =

WU_Disturb50m.WU_Disturb50m1_WUKey AND WU_AllResults1.WUKey =

WU_Depressions.WUKey AND WU_AllResults1.WUKey = WU_Fisheries.WUKey AND

WU_AllResults1.WUKey = WU_FloodArea.WUKey AND WU_AllResults1.WUKey =

WU_FloodIn.WUKey AND WU_AllResults1.WUKey = WU_Floodway.WUKey AND

WU_AllResults1.WUKey = WU_Headwater.WUKey AND WU_AllResults1.WUKey =

WU_HInvest.WUKey AND WU_AllResults1.WUKey = WU_Histosol.WUKey AND

WU_AllResults1.WUKey = WU_HUC12WQ.WUKey AND WU_AllResults1.WUKey =

WU_HUse.WUKey AND WU_AllResults1.WUKey = WU_HydroH.WUKey AND

WU_AllResults1.WUKey = WU_ImpairedIn.WUKey AND WU_AllResults1.WUKey =

WU_ImpairedOut.WUKey AND WU_AllResults1.WUKey = WU_IrrEdge.WUKey AND

WU_AllResults1.WUKey = WU_Karst.WUKey AND WU_AllResults1.WUKey =

WU_LandEco.WUKey AND WU_AllResults1.WUKey = WU_LandHydro.WUKey AND

WU_AllResults1.WUKey = WU_LandInteg.WU_LandResil1_WU_LandInteg0_WUKey AND

WU_AllResults1.WUKey = WU_LandPos.WUKey AND WU_AllResults1.WUKey =

WU_LowSlope.WUKey AND WU_AllResults1.WUKey = WU_MarlPEM.WUKey AND

767

WU_AllResults1.WUKey = WU_Microtopo.WUKey AND WU_AllResults1.WUKey =

WU_Organic.WUKey AND WU_AllResults1.WUKey = WU_OwnerAccess.WUKey AND

WU_AllResults1.WUKey = WU_PublicUse.WUKey AND WU_AllResults1.WUKey =

WU_RoadRail.WUKey AND WU_AllResults1.WUKey = WU_Runoff.WUKey AND

WU_AllResults1.WUKey = WU_Runoff50m.WU_Runoff50m1_WUKey AND

WU_AllResults1.WUKey = WU_RunoffWshd.WU_RunoffWshd1_WUKey AND

WU_AllResults1.WUKey = WU_VegAll.WUKey AND WU_AllResults1.WUKey =

WU_SWOutflow.WUKey AND WU_AllResults1.WUKey = WU_StrucPatch.WUKey AND

WU_AllResults1.WUKey = WU_StreamEdge.WUKey AND WU_AllResults1.WUKey =

WU_SoilOrgCalc.WUKey AND WU_AllResults1.WUKey = WU_SoilH.WUKey AND

WU_AllResults1.WUKey = WU_SlopeWshd.WU_SlopeWshd1_WUKey AND

WU_AllResults1.WUKey = WU_SLOPE.WU_SLOPE1_WUKey AND

WU_AllResults1.WUKey = WU_SeasonPond.WUKey AND WU_AllResults1.WUKey =

WU_VegByLP.WUKey AND WU_AllResults1.WUKey = WU_VegFA.WUKey AND

WU_AllResults1.WUKey = WU_VegFQ.WUKey AND WU_AllResults1.WUKey =

WU_VegH.WUKey AND WU_AllResults1.WUKey =

WU_VegPerUng.WU_VegPerUng1_WUKey AND WU_AllResults1.WUKey =

WU_VegVerStr.WUKey AND WU_AllResults1.WUKey = WU_VegWoody.WUKey AND

WU_AllResults1.WUKey = WU_VegWQ.WUKey AND WU_AllResults1.WUKey =

WU_WaterSupply.WUKey AND WU_AllResults1.WUKey = WU_WetlandBird.WUKey AND

WU_AllResults1.WUKey = WU_WflowPath.WUKey AND WU_AllResults1.WUKey =

WU_WQPlan.WUKey AND WU_AllResults1.WUKey = WU_WQUse.WUKey AND

WU_AllResults1.WUKey = WU_WshdPos.WUKey AND WU_AllResults1.WUKey =

WU_WshdUniq.WUKey"

 arcpy.MakeQueryTable_management(in_tables, "AllResultsTable", "NO_KEY_FIELD", "",

in_fields, where_clause)

 arcpy.TableToGeodatabase_conversion("AllResultsTable",arcpy.env.workspace)

 arcpy.MakeTableView_management(arcpy.env.workspace +

"\\AllResultsTable","tvAllResults")

 ## STEP 3: Join output table to WU_Function

arcpy.AddJoin_management("fcWUFunction","WUKey","tvAllResults","WU_AllResults1_W

UKey")

 arcpy.FeatureClassToFeatureClass_conversion("fcWUFunction", arcpy.env.workspace,

"WU_AllResults")

 arcpy.RemoveJoin_management("fcWUFunction")

768

 arcpy.MakeFeatureLayer_management("WU_AllResults", "fcWUAllResults")

 logger.info("output table joined to WU_Function")

 # Clean and simplify field names

 arcpy.DeleteField_management("fcWUAllResults",["AllResultsTable_OBJECTID",

"AllResultsTable_WU_AllResults1_WUKey"])

 fields = arcpy.ListFields("fcWUAllResults")

 for field in fields:

 if len(field.name.split("_")) == 3:

 newFieldName = field.name.split("_")[2]

 arcpy.AddField_management("fcWUAllResults", newFieldName, field.type)

 arcpy.CalculateField_management("fcWUAllResults", newFieldName, "!" + field.name

+ "!", "PYTHON")

 arcpy.DeleteField_management("fcWUAllResults", field.name)

 else if len(field.name.split("_")) == 4:

 newFieldName = field.name.split("_")[3]

 arcpy.AddField_management("fcWUAllResults", newFieldName, field.type)

 arcpy.CalculateField_management("fcWUAllResults", newFieldName, "!" + field.name

+ "!", "PYTHON")

 arcpy.DeleteField_management("fcWUAllResults", field.name)

 logger.info("field names cleaned and simplified")

 ## STEP 4: Export to personal geodatabase in preparation for Access Database merge

 strOutputName = "AllResults_" + str(datetime.date.today().year) +

'{:02}'.format(datetime.date.today().month) + '{:02}'.format(datetime.date.today().day)

 arcpy.FeatureClassToFeatureClass_conversion("fcWUAllResults",

r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WetlandFunctionResults\test\WVWR

AMGISresults.mdb", strOutputName)

 # Clean up

 if arcpy.Exists('WU_AllResults1'):

769

 arcpy.Delete_management('WU_AllResults1')

 if arcpy.Exists('AllResultsTable'):

 arcpy.Delete_management('AllResultsTable')

770

5.7.67 CalcFunction: Utilities

File Name: CalcFunction.py

Developer: Yibing Han

Date: 02/25/2018

Purpose:

This script calculates the total assessment scores of wetland units

#!/usr/bin/python

import logging

import arcpy

import actions

def CalcFunction():

 logger = logging.getLogger("WFA.FinalRun")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_WQFunction","fcWQFunction")

 arcpy.MakeFeatureLayer_management(r"WU_FAFunction","fcFAFunction")

 arcpy.MakeFeatureLayer_management(r"WU_HFunction","fcHFunction")

 logger.info("feature layers ready")

 # Clean up if needed

 if arcpy.Exists('WU_Function1'):

 arcpy.Delete_management('WU_Function1')

 if arcpy.Exists('WU_Function2'):

771

 arcpy.Delete_management('WU_Function2')

 if arcpy.Exists('WU_Function'):

 arcpy.Delete_management('WU_Function')

 ## STEP 1: Calculate the value of HCondition

 ## Add field HCondition to feature class WU_HFunction and set initial value

 actions.DeleteField("fcHFunction", 'HCondition')

 arcpy.AddField_management("fcHFunction", 'HCondition', 'SHORT')

 arcpy.CalculateField_management("fcHFunction", 'HCondition', '!HPotential! +

!HOpportun!', 'PYTHON', '#')

 logger.info("field HCondition added and initial value calculated")

 ## Select B6 wetlands and re-calculate HCondition

 strWHERE = """"BRank" = 'B6'"""

 arcpy.SelectLayerByAttribute_management("fcHFunction", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcHFunction", 'HCondition', '!HPotB6! + !HOpportun!',

'PYTHON', '#')

 logger.info("B6 wetlands selected and HCondition re-calculated")

 ## Select B5 wetlands and re-calculate HCondition

 strWHERE = """"BRank" = 'B5'"""

 arcpy.SelectLayerByAttribute_management("fcHFunction", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcHFunction", 'HCondition', '!HOpportun! + 30',

'PYTHON', '#')

 logger.info("B5 wetlands selected and HCondition re-calculated")

 ## Select B1-B4 wetlands and re-calculate HCondition

 strWHERE = """"BRank" IN ('B1', 'B2', 'B3', 'B4')"""

772

 arcpy.SelectLayerByAttribute_management("fcHFunction", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcHFunction", 'HCondition', '!HFunction!', 'PYTHON',

'#')

 logger.info("B1-B4 wetlands selected and HCondition re-calculated")

 arcpy.SelectLayerByAttribute_management("fcHFunction", "CLEAR_SELECTION")

 ## STEP 2: Spatial Join to merge metrics and create feature class to store Function

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable("fcWQFunction")

 fmSJ.addTable("fcFAFunction")

 keepers = []

 keepers =

['WUKey','Shape_Length','Shape_Area','WQFunction','WQOpportun','WQPotential','WQSociet

y','FAFunction','FAOpportun','FAPotential','FASociety']

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis("fcWQFunction", "fcFAFunction", 'WU_Function1',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJ, 'CONTAINS')

 arcpy.MakeFeatureLayer_management(r"WU_Function1", "fcFunction1")

 logger.info("spatial join WQFunction and FAFunction completed")

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable("fcFunction1")

 fmSJ.addTable("fcHFunction")

 keepers = []

 keepers =

['WUKey','Shape_Length','Shape_Area','WQFunction','WQOpportun','WQPotential','WQSociet

773

y','FAFunction','FAOpportun','FAPotential','FASociety','HFunction','HOpportun','HPotential','H

Society','HCondition','BRank','HFuncNoBR']

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis("fcFunction1", "fcHFunction", 'WU_Function2',

'JOIN_ONE_TO_ONE', 'KEEP_ALL', fmSJ, 'CONTAINS')

 arcpy.MakeFeatureLayer_management(r"WU_Function2","fcFunction2")

 logger.info("spatial join Function1 and HFunction completed")

 ## STEP 3: Add Function field to Wetland Units and set initial point value to zero.

 actions.DeleteField("fcFunction2", 'Function')

 arcpy.AddField_management("fcFunction2", 'Function', 'SHORT')

 arcpy.CalculateField_management("fcFunction2", 'Function', '!WQFunction! + !FAFunction!

+ !HFunction!', 'PYTHON', '#')

 logger.info("field Function added and calculated")

 ## STEP 4: Add and calculate fields to store roll-up scores Condition, RegFunction, and

DNRLandAcq

 actions.DeleteField("fcFunction2","Condition")

 arcpy.AddField_management("fcFunction2", "Condition", "SHORT")

 arcpy.CalculateField_management("fcFunction2","Condition","!WQPotential! +

!FAPotential! + !HCondition!","PYTHON","#")

 actions.DeleteField("fcFunction2","RegFunction")

 arcpy.AddField_management("fcFunction2", "RegFunction", "SHORT")

 arcpy.CalculateField_management("fcFunction2","RegFunction","!Condition! +

!WQOpportun! + !FAOpportun!","PYTHON","#")

 actions.DeleteField("fcFunction2","DNRLandAcq")

774

 arcpy.AddField_management("fcFunction2", "DNRLandAcq", "SHORT")

 arcpy.CalculateField_management("fcFunction2","DNRLandAcq","!Condition! +

!WQSociety! + !FASociety! + !HSociety!","PYTHON","#")

 logger.info("fields added and calculated to store roll-up scores Condition, RegFunction, and

DNRLandAcq")

 ## Select B1-B4 wetlands and re-calculate DNRLandAcq

 strWHERE = """"BRank" IN ('B1', 'B2', 'B3', 'B4')"""

 arcpy.SelectLayerByAttribute_management("fcFunction2", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcFunction2", 'DNRLandAcq', '!Condition! +

!WQSociety! + !FASociety!', 'PYTHON', '#')

 logger.info("B1-B4 wetlands selected and DNRLandAcq re-calculated")

 arcpy.SelectLayerByAttribute_management("fcFunction2", "CLEAR_SELECTION")

 ## Reorder fields

 new_field_order = ["WUKey", "Function", "RegFunction", "Condition", "DNRLandAcq",

"BRank", "FAFunction", "FAOpportun", "FAPotential", "FASociety", "HCondition",

"HFuncNoBR", "HFunction", "HOpportun", "HPotential", "HSociety", "WQFunction",

"WQOpportun", "WQPotential", "WQSociety"]

 existing_fields = arcpy.ListFields("fcFunction2")

 existing_mapping = arcpy.FieldMappings()

 existing_mapping.addTable("fcFunction2")

 new_mapping = arcpy.FieldMappings()

 for field_name in new_field_order:

 mapping_index = existing_mapping.findFieldMapIndex(field_name)

 if mapping_index != -1:

 field_map = existing_mapping.fieldMappings[mapping_index]

 new_mapping.addFieldMap(field_map)

 arcpy.Merge_management("fcFunction2", "WU_Function", new_mapping)

775

 logger.info("fields reordered")

 # Clean up

 if arcpy.Exists('WU_Function1'):

 arcpy.Delete_management('WU_Function1')

 if arcpy.Exists('WU_Function2'):

 arcpy.Delete_management('WU_Function2')

776

5.7.68 CreateBasicGeom: Utilities

File Name: CreateBasicGeom.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 1/27/2017 (modified 11/1/2017)

Purpose:

Create 50m buffers for wetland units

#!/usr/bin/python

import datetime

import time

import logging

import arcpy

import actions

def CreateBasicGeom(WetlandPoly):

 logger = logging.getLogger("WFA.initRequest.CreateBasicGeom")

 # Clean up if needed

 if arcpy.Exists("WUpoint"):

 arcpy.Delete_management("WUpoint")

 if arcpy.Exists("Buffer10m"):

 arcpy.Delete_management("Buffer10m")

 if arcpy.Exists("Buffer50m"):

 arcpy.Delete_management("Buffer50m")

 if arcpy.Exists("Buffer300m"):

 arcpy.Delete_management("Buffer300m")

777

 if arcpy.Exists("WU_Buffer1km"):

 arcpy.Delete_management("WU_Buffer1km")

 # Setting python variables

 # fcDrainageAreas =

arcpy.mappng.Layer(r"M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\WorkingFiles\T

AGIS\wetlands_27m.gdb\drainageareas")

 # logger.info("feature layers ready")

 # Create Wetland Units Points

 arcpy.FeatureToPoint_management(WetlandPoly, "WUPoint", "INSIDE")

 logger.info("Wetland Units Points layer created")

 # Create Buffer Wetland Units by 10/50/300/1000 meters

 arcpy.Buffer_analysis(WetlandPoly,"Buffer10m","10

Meters","OUTSIDE_ONLY","ROUND","NONE","#")

 arcpy.Buffer_analysis(WetlandPoly,"Buffer50m","50

Meters","OUTSIDE_ONLY","ROUND","NONE","#")

 arcpy.Buffer_analysis(WetlandPoly,"Buffer300m","300

Meters","OUTSIDE_ONLY","ROUND","NONE","#")

 arcpy.Buffer_analysis(WetlandPoly,"Buffer1km","1000

Meters","OUTSIDE_ONLY","ROUND","NONE","#")

 fcBuffer10m = arcpy.mapping.Layer(r"Buffer10m")

 fcBuffer50m = arcpy.mapping.Layer(r"Buffer50m")

 fcBuffer300m = arcpy.mapping.Layer(r"Buffer300m")

 fcBuffer1km = arcpy.mapping.Layer(r"Buffer1km")

 logger.info("buffers layers of Wetland Units created")

 # Add field to store buffer area

 actions.DeleteField(fcBuffer10m, "BufferArea")

 arcpy.AddField_management(fcBuffer10m, "Buf10Area", "FLOAT")

778

 arcpy.CalculateField_management(fcBuffer10m, "Buf10Area", "!Shape_Area!",

"PYTHON", "#")

 actions.DeleteField(fcBuffer50m, "BufferArea")

 arcpy.AddField_management(fcBuffer50m, "BufferArea", "FLOAT")

 arcpy.CalculateField_management(fcBuffer50m, "BufferArea", "!Shape_Area!",

"PYTHON", "#")

 actions.DeleteField(fcBuffer300m, "Buf300Area")

 arcpy.AddField_management(fcBuffer300m, "Buf300Area", "FLOAT")

 arcpy.CalculateField_management(fcBuffer300m, "Buf300Area", "!Shape_Area!",

"PYTHON", "#")

 actions.DeleteField(fcBuffer1km,"Buf1kArea")

 arcpy.AddField_management(fcBuffer1km, "Buf1kArea", "FLOAT")

 arcpy.CalculateField_management(fcBuffer1km, "Buf1kArea", "!Shape_Area!",

"PYTHON", "#")

 logger.info("field BufferArea created and calculated for each buffer layer")

 # Create DrainageArea27m

 '''

 actions.DeleteField(fcDrainageAreas,"WUKey")

 arcpy.AddField_management(fcDrainageAreas, "WUKey", "LONG")

 arcpy.CalculateField_management(fcDrainageAreas, "WUKey", "!grid_code! + 1",

"PYTHON", "#")

arcpy.Dissolve_management(fcDrainageAreas,"DrainageArea27m","WUKey","","MULTI_PA

RT","DISSOLVE_LINES")

 logger.info("layer DraomageArea27m created")

 '''

779

5.7.69 CreateWetlandUnits: Utilities

File Name: CreateWetlandUnits.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 7/8/2015 (modified 12/14/2017, 1/26/2022)

Purpose:

This script intersects is to create wetland units from

NWI polygons.

Note: The numbers in the commments reflect the number in

"2b Creating Wetland Units from NWI polygons.docx"

#!/usr/bin/python

import datetime

import time

import logging

import arcpy

import actions

def CreateWetlandUnits(WetlandPoly):

 logger = logging.getLogger("WFA.initRequest.CreateWetlandUnits")

 #fcWetlandUnits = uid + "_" + str(time.strftime("%Y%m%d_%H%M%S"))

 now = datetime.datetime.now()

 intCurMonth = datetime.date.today().month

 intCurDay = datetime.date.today().day

780

 fcWetlandUnits = "WU_" + str(datetime.date.today().year) + '{:02}'.format(intCurMonth) +

'{:02}'.format(intCurDay)

 # Clean up if needed

 if arcpy.Exists(fcWetlandUnits):

 arcpy.Delete_management(fcWetlandUnits)

 if arcpy.Exists("WUWorkingDS"):

 arcpy.Delete_management("WUWorkingDS")

 if arcpy.Exists("WUdissolve"):

 arcpy.Delete_management("WUdissolve")

 ## Create new feature class that contains all palustrine wetlands, vegetated riverine wetlands,

and vegetated lacustrine wetlands

 strWHERE = """"ATTRIBUTE" LIKE 'P%' OR "ATTRIBUTE" LIKE 'R2AB%' OR

"ATTRIBUTE" LIKE 'R3AB%' OR "ATTRIBUTE" LIKE 'R2US5%' OR "ATTRIBUTE"

LIKE 'R3US5%' OR "ATTRIBUTE" LIKE 'R2EM%' OR "ATTRIBUTE" LIKE 'R3EM%' OR

"ATTRIBUTE" LIKE 'R4SB7%' OR "ATTRIBUTE" LIKE 'L2AB%' OR "ATTRIBUTE"

LIKE 'L2US5%' OR "ATTRIBUTE" LIKE 'L2EM%'"""

 arcpy.SelectLayerByAttribute_management(WetlandPoly, "NEW_SELECTION",

strWHERE)

 arcpy.CopyFeatures_management(WetlandPoly,"WUWorkingDS")

 fcWorkingDS = arcpy.mapping.Layer("WUWorkingDS")

 logger.info("WUWorkingDS created to store wetland units that doesn't contain permanently

flooded and unvegetated rivers and lakes, and industrial and waste disposal ponds")

 ## Dissolve NWI polygons

arcpy.Dissolve_management(fcWorkingDS,"WUdissolve","","","SINGLE_PART","DISSOLV

E_LINES")

 arcpy.MakeFeatureLayer_management("WUdissolve", "fcWUDissolve")

 logger.info("NWI polygons dissolved")

781

 # Create output feature class

 lyrWUDissolve = arcpy.mapping.Layer("WUdissolve")

 arcpy.FeatureClassToFeatureClass_conversion(lyrWUDissolve, arcpy.env.workspace,

fcWetlandUnits)

 arcpy.RepairGeometry_management(fcWetlandUnits)

 arcpy.AddSpatialIndex_management(fcWetlandUnits)

 logger.info("output feature class created for Wetland Units")

 # Add unique ID field for Wetland Units

 actions.DeleteField(fcWetlandUnits,"WUKey")

 arcpy.AddField_management(fcWetlandUnits, "WUKey", "LONG")

 arcpy.CalculateField_management(fcWetlandUnits, "WUKey", "!OBJECTID!", "PYTHON")

 logger.info("field WUKey added to Wetland Units")

 # Clean up

 if arcpy.Exists("WUWorkingDS"):

 arcpy.Delete_management("WUWorkingDS")

 if arcpy.Exists("WUdissolve"):

 arcpy.Delete_management("WUdissolve")

 return fcWetlandUnits

782

5.7.70 DrainageArea: Utilities

File Name: DrainageArea.py

Developer: Yibing Han

Date: 01/26/2018

Purpose:

Input to Flood Attenuation Function / Opportunity aspect

#!/usr/bin/python

import sys, os, gc

sys.path.append("../..")

gc.enable()

import logging

import arcpy

from arcpy.sa import *

from globalvars import globalvars

import actions

def DetermineDrainageArea(WetlandPoly):

 arcpy.CheckOutExtension("Spatial")

 logger = logging.getLogger("WFA.DrainageArea")

 # Clean up if needed

 if arcpy.Exists(r"DrainageArea0"):

 arcpy.Delete_management(r"DrainageArea0")

 if arcpy.Exists(r"DrainageArea"):

783

 arcpy.Delete_management(r"DrainageArea")

 # Setting python variables

 orig_dir = arcpy.env.workspace

 temp_dir =

"M:\\wr\\WTRSHD_BRANCH_INTERNAL\\WETLAND\\WorkingFiles\\drainage_area_temp

"

 if not os.path.exists(temp_dir):

 os.mkdir(temp_dir)

 if arcpy.Exists(temp_dir + "\\tempGDB.gdb"):

 arcpy.Delete_management(temp_dir + "\\tempGDB.gdb")

 arcpy.CreateFileGDB_management(temp_dir, "tempGDB")

 ## Create feature class to hold watershed polygon output

 sr = arcpy.SpatialReference(26917)

 arcpy.CreateFeatureclass_management(orig_dir, "DrainageArea0", "POLYGON","","","",sr)

 actions.DeleteField("DrainageArea0", "Gridcode")

 arcpy.AddField_management("DrainageArea0", "Gridcode", "LONG")

 logger.info("feature class DrainageArea0 created to hold watershed polygon")

 ## BEGIN LOOP; start with WUKey = 1 and repeat until all Wetland Units are processed

 arcpy.FeatureClassToFeatureClass_conversion(WetlandPoly, temp_dir + "\\tempGDB.gdb",

"WU_temp")

 arcpy.env.workspace = temp_dir + "\\tempGDB.gdb"

 arcpy.env.overwriteOutput = True

 arcpy.env.extent = globalvars.srcFlowDir

 arcpy.env.snapRaster = globalvars.srcFlowDir

 with arcpy.da.SearchCursor("WU_temp", "WUKey") as cursor:

 for row in cursor:

 # Copy Wetland Unit polygon to a temporary feature class

 strWhere = "WUKey = " + str(row[0])

784

 #tmpName = "temp_{0}".format(row[0])

 arcpy.FeatureClassToFeatureClass_conversion("WU_temp", arcpy.env.workspace,

"temppoly", strWhere)

 # Convert temporary feature class to a temporary grid

 arcpy.PolygonToRaster_conversion(arcpy.env.workspace + "\\temppoly", "WUKey",

"tempras", "CELL_CENTER", "", 27)

 if arcpy.GetRasterProperties_management(arcpy.env.workspace + "\\tempras",

"ALLNODATA").getOutput(0) == '1':

 arcpy.Buffer_analysis(arcpy.env.workspace + "\\temppoly", "temppolyB", 27)

 arcpy.PolygonToRaster_conversion(arcpy.env.workspace + "\\temppolyB",

"WUKey", "tempras", "CELL_CENTER", "WUKey", 27)

 # Run watershed command using temporary grid as input

 #outWatershed = arcpy.sa.Watershed(globalvars.srcFlowDir, "tempras", "Value")

 #outWatershed.save("temprasout.tif")

 #arcpy.gp.Watershed_sa(globalvars.srcFlowDir,arcpy.env.workspace +

"\\tempras","temprasout","Value")

 outWatershed = Watershed(globalvars.srcFlowDir,arcpy.env.workspace +

"\\tempras","Value")

 # Convert watershed grid to a polygon

 #arcpy.RasterToPolygon_conversion(arcpy.env.workspace + "\\temprasout",

"temppolyout", "NO_SIMPLIFY", "Value")

 arcpy.RasterToPolygon_conversion(outWatershed, "temppolyout", "NO_SIMPLIFY",

"Value")

 # Append polygon to DrainageArea0 feature class

 arcpy.Append_management(arcpy.env.workspace + "\\temppolyout", orig_dir +

"\\DrainageArea0", "NO_TEST")

 logger.info("Row " + str(row[0]) +" appended to feature class")

 del row, cursor

 gc.collect()

 ## END LOOP when all Wetland Units are processed

785

 arcpy.env.workspace = orig_dir

#arcpy.FeatureClassToFeatureClass_conversion("DrainageArea0",orig_dir,"DrainageArea1",""

""Gridcode" > 0""")

 logger.info("All Wetland Units have now been added to DrainageArea0")

 ## Add field to DrainageArea feature class to store WUKey

 actions.DeleteField("DrainageArea0", "WUKey")

 arcpy.AddField_management("DrainageArea0", "WUKey", "LONG")

 arcpy.CalculateField_management("DrainageArea0", "WUKey", "!Gridcode!", "PYTHON")

arcpy.Dissolve_management("DrainageArea0","DrainageArea","WUKey","","MULTI_PART",

"DISSOLVE_LINES")

 logger.info("field WUKey added to DrainageArea")

 ## Add field to store Contributing Watershed Area

 actions.DeleteField("DrainageArea", "CntrWshd")

 arcpy.AddField_management("DrainageArea", "CntrWshd", "LONG")

 arcpy.CalculateField_management("DrainageArea", "CntrWshd", "int(!Shape_Area!)",

"PYTHON")

 # Clean Up

 if arcpy.Exists(r"DrainageArea0"):

 arcpy.Delete_management(r"DrainageArea0")

786

5.7.71 FloodArea: Utilities

File Name: FloodArea.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/8/2017 (modified 11/10/2017)

Purpose:

Floodplain (Y/N): Input to numerous Water Quality and Flood Attenuation metrics

FloodArea: Input to Flood Attenuation / Opportunity; Max 2 points (all wetlands, but only

Floodplain wetlands will score high enough to get points)

#!/usr/bin/python

import sys

sys.path.append("../..")

import logging

import arcpy

from globalvars import globalvars

import actions

def DetermineFloodArea(WetlandPoly):

 logger = logging.getLogger("WFA.FloodArea")

 ## Clean up if needed

 if arcpy.Exists("WU_FloodArea1"):

 arcpy.Delete_management("WU_FloodArea1")

 if arcpy.Exists("WU_FloodArea"):

 arcpy.Delete_management("WU_FloodArea")

787

 ## Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly,"fcWU")

 arcpy.MakeFeatureLayer_management(globalvars.srcFPARAFEMA,"fcFPARAFEMA")

 arcpy.MakeFeatureLayer_management(globalvars.srcPeatlands,"fcPeatlands")

 logger.info("feature layers ready")

 ## Intersect floodplain and Wetland Units

 arInputs = ["fcFPARAFEMA","fcWU"]

 arcpy.Intersect_analysis(arInputs,"WU_FloodArea1","ONLY_FID","#","INPUT")

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea1","fcWUFloodArea1")

 logger.info("floodplain intersected with wetland units")

 ## Add field to store floodplain area

 actions.DeleteField("fcWUFloodArea1","FloodAreaAF")

 arcpy.AddField_management("fcWUFloodArea1", "FloodAreaAF", "FLOAT")

arcpy.CalculateField_management("fcWUFloodArea1","FloodAreaAF","!Shape_Area!","PYT

HON","#")

 logger.info("field FloodAreaAF added to store floodplain area")

###

################

 ## Spatial join floodplain selection to Wetland Units and sum floodplain area.

###

################

 fieldmappings = arcpy.FieldMappings()

 fieldmappings.addTable("fcWU")

 fieldmappings.addTable("fcWUFloodArea1")

788

 fldKeyIndex = fieldmappings.findFieldMapIndex("FloodAreaAF")

 fieldmap = fieldmappings.getFieldMap(fldKeyIndex)

 fieldmap.mergeRule = "sum"

 fieldmappings.replaceFieldMap(fldKeyIndex, fieldmap)

 keepers = ["Shape_Length","Shape_Area","WUKey","FloodAreaAF"]

 for field in fieldmappings.fields:

 if field.name not in keepers:

 fieldmappings.removeFieldMap(fieldmappings.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWU","fcWUFloodArea1","WU_FloodArea","JOIN_ONE_TO_O

NE","KEEP_ALL",fieldmappings)

 arcpy.MakeFeatureLayer_management("WU_FloodArea","fcWUFloodArea")

 logger.info("spatuak join completed to sum floodplain area")

###

################

 ## Add fields to store Flood Area Ratio and Flood Area points

 actions.DeleteField("fcWUFloodArea","FloodRatio")

 arcpy.AddField_management("fcWUFloodArea", "FloodRatio", "FLOAT")

 arcpy.CalculateField_management("fcWUFloodArea","FloodRatio","0","PYTHON","#")

 logger.info("field FloodRatio added and initial point value set to 0")

 actions.DeleteField("fcWUFloodArea","FloodArea")

 arcpy.AddField_management("fcWUFloodArea", "FloodArea", "SHORT")

 arcpy.CalculateField_management("fcWUFloodArea","FloodArea","0","PYTHON","#")

 logger.info("field FloodArea added and initial point value set to 0")

 ## Calculate the ratio of floodplain are to total Wetland Units Area

789

arcpy.CalculateField_management("fcWUFloodArea","FloodRatio","!FloodAreaAF!/!Shape_A

rea!","PYTHON","#")

 logger.info("field FloodRation calculated")

 ## Assign Points

arcpy.SelectLayerByAttribute_management("fcWUFloodArea","NEW_SELECTION",""""Floo

dRatio" > 0.1""")

 arcpy.CalculateField_management("fcWUFloodArea","FloodArea","1","PYTHON","#")

arcpy.SelectLayerByAttribute_management("fcWUFloodArea","NEW_SELECTION",""""Floo

dRatio" > 0.5""")

 arcpy.CalculateField_management("fcWUFloodArea","FloodArea","2","PYTHON","#")

 logger.info("points assigned to field FloodArea")

 arcpy.SelectLayerByAttribute_management("fcWUFloodArea", "CLEAR_SELECTION")

 ## Select Wetland Units that contain peat deposits

arcpy.SelectLayerByLocation_management("fcWUFloodArea","INTERSECT","fcPeatlands","

#","NEW_SELECTION")

 arcpy.CalculateField_management("fcWUFloodArea","FloodArea","0","PYTHON","#")

 logger.info("points assigned to wetland units that contain peat deposits")

 arcpy.SelectLayerByAttribute_management("fcWUFloodArea", "CLEAR_SELECTION")

 ## Add field Floodplain to Wetland Units attribute table and set initial value to "N"

 actions.DeleteField("fcWUFloodArea","Floodplain")

 arcpy.AddField_management("fcWUFloodArea", "Floodplain", "TEXT",2)

 arcpy.CalculateField_management("fcWUFloodArea","Floodplain","'N'","PYTHON","#")

 logger.info("field Floodplain added and initial value set to 'N'")

790

 ## Select Wetland Units that have at least 10% of their area in a FEMA floodplain or Active

River Area

arcpy.SelectLayerByAttribute_management("fcWUFloodArea","NEW_SELECTION",""""Floo

dArea" > 0""")

 arcpy.CalculateField_management("fcWUFloodArea","Floodplain","'Y'","PYTHON","#")

 logger.info("field Floodplain identified in selected wetland units")

 arcpy.SelectLayerByAttribute_management("fcWUFloodArea", "CLEAR_SELECTION")

 ## Clean up

 if arcpy.Exists("WU_FloodArea1"):

 arcpy.Delete_management("WU_FloodArea1")

791

5.7.72 Floodplain: Utilities

File Name: floodplain.py

Developer: Chad Ashworth

Date 4/24/2015

Purpose:

This script intersects the WVWRAP wetland polygons and the FEMA

floodplain polygons and determines if the WVWRAP wetland is

10% or more in the FEMA floodplain.

#!/usr/bin/python

import arcpy

from utilities import actions

arcpy.env.overwriteOutput = True

def WetlandInFloodplain(WetlandPoly):

 ## cleaning up if needed

 if arcpy.Exists("WETLAND_FP_INTERSECT"):

 arcpy.Delete_management("WETLAND_FP_INTERSECT")

 if arcpy.Exists("lyrWetlandAllData"):

 arcpy.Delete_management("lyrWetlandAllData")

 ## reference to the floodzone layer

 fcFP = actions.GetGISData("FloodZone")

 # adding/deleting the Floodplain_FEMA

 actions.DeleteField(WetlandPoly,"Floodplain_FEMA")

792

 arcpy.AddField_management(WetlandPoly, "Floodplain_FEMA", "TEXT",1)

 ## Perform an intersect between WVWRAP sites & FloodPlain feature classes

 arcpy.Intersect_analysis([[WetlandPoly], [fcFP]], "WETLAND_FP_INTERSECT","ALL")

 ## Join intersecting feature class with lyrWetlandAllData

 arcpy.MakeFeatureLayer_management("WETLAND_FP_INTERSECT", "lyrWetlandAllData")

 arcpy.AddJoin_management("lyrWetlandAllData", "FID_wvFldZone_20130410_wgs84wmA",

fcFP, "OBJECTID") # join to Flood Zone Data

 strWetlandPolyPK = "FID_" + str(WetlandPoly) # dynamically createing the foreign key field

to the WetlandPoly

 arcpy.AddJoin_management("lyrwetlandalldata", strWetlandPolyPK, str(WetlandPoly),

"OBJECTID") # join to WetlandPoly

 arcpy.CopyFeatures_management("lyrWetlandAllData", "lyrWetlandAllData")

 ##

 edit = arcpy.da.Editor(arcpy.env.workspace)

 edit.startEditing(False, True)

 edit.startOperation()

 # declaring what fields i need to calculate the percent intersect

 strWetlandId = str(WetlandPoly) + ".OBJECTID"

 strWetlandShapeArea = str(WetlandPoly) + ".Shape_Area"

 strWetlandFlFEMA = str(WetlandPoly) + ".Floodplain_FEMA"

 fldsDL =

[strWetlandId,"WETLAND_FP_INTERSECT.Shape_Area",strWetlandShapeArea,strWetlandF

lFEMA]

 # updating the UA field with a Y if 10% or more are in an urban area

 with arcpy.da.SearchCursor("lyrWetlandAllData", fldsDL) as curWetlandAll:

793

 for rWetlandAll in curWetlandAll:

 intPercentIntersect = int(rWetlandAll[1]/rWetlandAll[2]*100)

 if intPercentIntersect >= 10:

 strWhere = "OBJECTID = " + str(rWetlandAll[0])

 actions.UpdateTable(WetlandPoly,["Floodplain_FEMA"],0,"Y",strWhere)

 # updating the rest of the fields to N

 strWhere = "Floodplain_FEMA is null"

 actions.UpdateTable(WetlandPoly,["Floodplain_FEMA"],0,"N",strWhere)

 edit.stopEditing(True)

 arcpy.Delete_management("lyrWetlandAllData")

 arcpy.Delete_management("WETLAND_FP_INTERSECT")

 arcpy.Delete_management("lyrWetlandAllData")

794

5.7.73 InitRequest: Utilities

File Name: initRequest.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 10/24/2015 (modified 02/2018)

Purpose:

This script starts the Wetland Functional Assessment process by creating wetland unit

polygons, basic geometries and flood-related layers.

#!/usr/bin/python

import sys, os

import arcpy

import logging

import traceback

import actions

from CreateWetlandUnits import *

from CreateBasicGeom import *

from FloodArea import *

from DrainageArea import *

#from Floodplain import *

#from ActiveRiverArea import *

def MainUtil(WetlandPoly):

 logger = logging.getLogger("WFA.initRequest")

 ## 1. Check Geometry

 '''sr = arcpy.SpatialReference(26917)

 arcpy.CreateFeatureDataset_management(arcpy.env.workspace,"CONUS_wetlands", sr)

 arcpy.CreateFeatureDataset_management(arcpy.env.workspace,"CONUS_projects", sr)

795

 arcpy.FeatureClassToFeatureClass_conversion(WetlandPoly, arcpy.env.workspace +

"\\CONUS_wetlands","CONUS_wet_poly")

 arcpy.FeatureClassToFeatureClass_conversion("WUboundary", arcpy.env.workspace +

"\\CONUS_projects","CONUS_wet_projects")

 arcpy.AddField_management(r"CONUS_wetlands\CONUS_wet_poly", "QAQC_CODE",

"TEXT")

 arcpy.AddField_management(r"CONUS_wetlands\CONUS_wet_poly",

"WETLAND_TYPE", "TEXT")

 arcpy.AddField_management(r"CONUS_wetlands\CONUS_wet_poly", "ACRES",

"FLOAT")

 arcpy.AddField_management(r"CONUS_projects\CONUS_wet_projects", "ACRES",

"FLOAT")

 arcpy.CreateTopology_management(r"CONUS_wetlands","CONUS_wet_poly_Topology")

 logger.info("Wetland database schema for QAQC set up")

arcpy.ImportToolbox('M:\wr\WTRSHD_BRANCH_INTERNAL\WETLAND\NWI_QAQC_T

ool\NWI_QAQC_Tool.tbx')

 arcpy.Model_QAQC(arcpy.env.workspace,"Name","CONUS","true")

 logger.info("QAQC completed for input wetlands")

 arcpy.CopyFeatures_management(r"CONUS_wetlands\CONUS_wet_poly",

"WetlandInput_QAQC")

 WetlandPoly = arcpy.mapping.Layer("WetlandInput_QAQC")

 arcpy.Delete_management(r"CONUS_projects")

 arcpy.Delete_management(r"CONUS_wetlands")'''

 ## 2. Create Wetland Units

 logger.info("Creating wetland Units")

 try:

 strWU = CreateWetlandUnits(WetlandPoly)

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

796

 logger.error(msgs)

 logger.error("Failed to create Wetland Units")

 sys.exit(1)

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 logger.error("Failed to create Wetland Units")

 sys.exit(1)

 ## 3. Create basic geometries used for assessment of Wetland Units

 logger.info("Creating basic geometries used for assessment of Wetland Units")

 try:

 CreateBasicGeom(strWU)

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 logger.error("Failed to create basic geometries used for assessment of Wetland Units")

 sys.exit(1)

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

797

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 logger.error("Failed to create basic geometries used for assessment of Wetland Units")

 sys.exit(1)

 ## 4. Floodplain

 try:

 DetermineFloodArea(strWU)

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 logger.error("Failed to calculate flood area")

 sys.exit(1)

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

798

 logger.error(msgs)

 logger.error("Failed to calculate flood area")

 sys.exit(1)

 ## 5. DrainageArea

 try:

 DetermineDrainageArea(strWU)

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 logger.error("Failed to calculate flood area")

 sys.exit(1)

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 logger.error("Failed to calculate flood area")

 sys.exit(1)

 return strWU

799

5.7.74 Water Quality

File Name: WQuality.py

Developer: Yibing Han

Date: 12/13/2017

Purpose:

This script handles the execution of all metrics within the Water Quality module.

#!/usr/bin/python

import sys

import arcpy

import datetime

import logging

import traceback

from WQPotential import WQPotential

from WQOpportun import WQOpportun

from WQSociety import WQSociety

from WQFunction import WQFunction

logger = logging.getLogger("WFA.WQuality")

def RunWaterQuality(WetlandPoly):

 ## 1. Run Water Quality Potential Variables/Aspects/Factors

 logger.info("Running Water Quality Potential Variables/Aspects/Factors...")

 try:

800

 WQPotential.procWQPotential(WetlandPoly)

 logger.info("Water Quality Potential Variables/Aspects/Factors completed")

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 sys.exit(1)

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 sys.exit(1)

 ## 2. Run Water Quality Opportunity Variables/Aspects/Factors

 logger.info("Running Water Quality Opportunity Variables/Aspects/Factors...")

 try:

 WQOpportun.procWQOpportun(WetlandPoly)

 logger.info("Water Quality Opportunity Variables/Aspects/Factors completed")

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 sys.exit(1)

801

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 sys.exit(1)

 ## 3. Run Water Quality Society Variables/Aspects/Factors

 logger.info("Running Water Quality Society Variables/Aspects/Factors...")

 try:

 WQSociety.procWQSociety(WetlandPoly)

 logger.info("Water Quality Society Variables/Aspects/Factors completed")

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(1) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 sys.exit(1)

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

802

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 sys.exit(1)

 ## 4. Run Water Quality Function to roll up Variables/Aspects/Factors

 logger.info("Running Water Quality Function to roll up Variables/Aspects/Factors...")

 try:

 WQFunction.DetermineWQFunction(WetlandPoly)

 logger.info("Water Quality Function to roll up Variables/Aspects/Factors completed")

 except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 sys.exit(1)

 except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 sys.exit(1)

803

5.7.75 Water Quality Function

File Name: WQFunction.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/13/2017 (modified 11/02/2017)

Purpose:

Water Quality Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import arcpy

from utilities import actions

import logging

def DetermineWQFunction(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQFunction")

 # Clean up if needed

 if arcpy.Exists("WU_WQFunction0"):

 arcpy.Delete_management("WU_WQFunction0")

 if arcpy.Exists("WU_WQFunction1"):

 arcpy.Delete_management("WU_WQFunction1")

 if arcpy.Exists("WU_WQFunction2"):

 arcpy.Delete_management("WU_WQFunction2")

 if arcpy.Exists("WU_WQFunction"):

804

 arcpy.Delete_management("WU_WQFunction")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_WQPotential","fcWQPotential")

 arcpy.MakeFeatureLayer_management(r"WU_WQOpportun","fcWQOpportun")

 arcpy.MakeFeatureLayer_management(r"WU_WQSociety","fcWQSociety")

 logger.info("feature layers ready")

 ## Create feature class to store WQFunction

 arcpy.CopyFeatures_management(WetlandPoly, "WU_WQFunction0")

 arcpy.MakeFeatureLayer_management("WU_WQFunction0","fcWUWQFunction0")

 logger.info("feature class WU_WQFunction0 created")

 ## Spatial join to bring in aspect values

###

#################

 # SJ: WQPotential

###

#################

 fmSJWQPO = arcpy.FieldMappings()

 fmSJWQPO.addTable("fcWUWQFunction0")

 fmSJWQPO.addTable("fcWQPotential")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","WQPotential"]

 for field in fmSJWQPO.fields:

 if field.name not in keepers:

 fmSJWQPO.removeFieldMap(fmSJWQPO.findFieldMapIndex(field.name))

805

arcpy.SpatialJoin_analysis("fcWUWQFunction0","fcWQPotential","WU_WQFunction1","JOI

N_ONE_TO_ONE","KEEP_ALL",fmSJWQPO,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQFunction1","fcWQFunction1")

 logger.info("Spatial Join completed to add variable WQPotential")

###

#################

 # SJ: WQOpportun

###

#################

 fmSJWQOP = arcpy.FieldMappings()

 fmSJWQOP.addTable("fcWQFunction1")

 fmSJWQOP.addTable("fcWQOpportun")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","WQPotential","WQOpportun"]

 for field in fmSJWQOP.fields:

 if field.name not in keepers:

 fmSJWQOP.removeFieldMap(fmSJWQOP.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWQFunction1","fcWQOpportun","WU_WQFunction2","JOIN_

ONE_TO_ONE","KEEP_ALL",fmSJWQOP,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQFunction2","fcWQFunction2")

 logger.info("Spatial Join completed to add variable WQOpportun")

806

###

#################

 # SJ: WQSociety

###

#################

 fmSJWQS = arcpy.FieldMappings()

 fmSJWQS.addTable("fcWQFunction2")

 fmSJWQS.addTable("fcWQSociety")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","WQPotential","WQOpportun","WQSociety"]

 for field in fmSJWQS.fields:

 if field.name not in keepers:

 fmSJWQS.removeFieldMap(fmSJWQS.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWQFunction2","fcWQSociety","WU_WQFunction","JOIN_ON

E_TO_ONE","KEEP_ALL",fmSJWQS,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQFunction","fcWQFunction")

 logger.info("Spatial Join completed to add variable WQSociety")

 ## Add WQFunction field to Wetland Units and set initial point value to 0

 actions.DeleteField("fcWQFunction","WQFunction")

 arcpy.AddField_management("fcWQFunction", "WQFunction", "SHORT")

 arcpy.CalculateField_management("fcWQFunction","WQFunction","0","VB","#")

 logger.info("WQFunction field added to Wetland Units and initial point values set to zero")

807

 ## Sum the points for each aspect of Water Quality Function for Wetland Units

arcpy.CalculateField_management("fcWQFunction","WQFunction","[WQPotential]+[WQOpp

ortun]+[WQSociety]","VB","#")

 logger.info("points summed for WQFunction")

 ## Clean up

 if arcpy.Exists("WU_WQFunction0"):

 arcpy.Delete_management("WU_WQFunction0")

 if arcpy.Exists("WU_WQFunction1"):

 arcpy.Delete_management("WU_WQFunction1")

 if arcpy.Exists("WU_WQFunction2"):

 arcpy.Delete_management("WU_WQFunction2")

808

5.7.76 Water Quality Opportunity

File Name: WQOpportun.py

Developer: Yibing Han

Date: 12/13/2017

Purpose:

This script handles the execution of all the Water Quality Opportunity metrics.

import datetime

import logging

import traceback

import arcpy

from Factors import Discharges, ImpairedIn, RoadRail, Disturb50m, DisturbWshd

from Aspects import WQOpportun

def procWQOpportun(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQOpportun")

 ##

 ## 1. Run Variables

 ##

 # None

 ##

 ## 2. Run Factors

809

 ##

 Discharges.DetermineDischarges(WetlandPoly)

 ImpairedIn.DetermineImpairedIn()

 RoadRail.CalcRoadRail(WetlandPoly)

 Disturb50m.DetermineDisturb50m(WetlandPoly)

 DisturbWshd.DetermineDisturbWshd(WetlandPoly)

 ##

 ## 3. Run Aspect

 ##

 WQOpportun.DetermineWQOpportun(WetlandPoly)

810

5.7.77 Water Quality Opportunity Aspects

File Name: WQOpportun.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 6/15/2016 (modified 11/02/2017)

Purpose:

Water Quality Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import arcpy

from utilities import actions

import logging

def DetermineWQOpportun(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQOpportun")

 # Clean up if needed

 if arcpy.Exists("WU_WQOpportun0"):

 arcpy.Delete_management("WU_WQOpportun0")

 if arcpy.Exists("WU_WQOpportun1"):

 arcpy.Delete_management("WU_WQOpportun1")

 if arcpy.Exists("WU_WQOpportun2"):

 arcpy.Delete_management("WU_WQOpportun2")

 if arcpy.Exists("WU_WQOpportun3"):

811

 arcpy.Delete_management("WU_WQOpportun3")

 if arcpy.Exists("WU_WQOpportun4"):

 arcpy.Delete_management("WU_WQOpportun4")

 if arcpy.Exists("WU_WQOpportun5"):

 arcpy.Delete_management("WU_WQOpportun5")

 if arcpy.Exists("WU_WQOpportun"):

 arcpy.Delete_management("WU_WQOpportun")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly,"WU_WQOpportun0")

 arcpy.MakeFeatureLayer_management(r"WU_Discharges","fcDischarges")

 arcpy.MakeFeatureLayer_management(r"WU_ImpairedIn","fcImpairedIn")

 arcpy.MakeFeatureLayer_management(r"WU_RoadRail","fcRoadRail")

 arcpy.MakeFeatureLayer_management(r"WU_Disturb50m","fcDisturb50m")

 arcpy.MakeFeatureLayer_management(r"WU_DisturbWshd","fcDisturbWshd")

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea","fcFloodplain")

 logger.info("feature layers ready")

 # Spatial join to bring in factor values

###

#################

 # SJ: Discharges

###

#################

 fmSJDis = arcpy.FieldMappings()

 fmSJDis.addTable("WU_WQOpportun0")

 fmSJDis.addTable("fcDischarges")

 keepers = []

812

 keepers = ["WUKey","Shape_Length","Shape_Area","Discharges"]

 for field in fmSJDis.fields:

 if field.name not in keepers:

 fmSJDis.removeFieldMap(fmSJDis.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("WU_WQOpportun0","fcDischarges","WU_WQOpportun1","JOIN

_ONE_TO_ONE","KEEP_ALL",fmSJDis,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQOpportun1","fcWQOpportun1")

 logger.info("Spatial Join completed to add variable Discharges")

###

#################

 # SJ: ImpairedIn

###

#################

 fmSJII = arcpy.FieldMappings()

 fmSJII.addTable("fcWQOpportun1")

 fmSJII.addTable("fcImpairedIn")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Discharges","ImpairedIn"]

 for field in fmSJII.fields:

 if field.name not in keepers:

 fmSJII.removeFieldMap(fmSJII.findFieldMapIndex(field.name))

813

arcpy.SpatialJoin_analysis("fcWQOpportun1","fcImpairedIn","WU_WQOpportun2","JOIN_O

NE_TO_ONE","KEEP_ALL",fmSJII,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQOpportun2","fcWQOpportun2")

 logger.info("Spatial Join completed to add variable ImpairedIn")

###

#################

 # SJ: RoadRail

###

#################

 fmSJRR = arcpy.FieldMappings()

 fmSJRR.addTable("WU_WQOpportun2")

 fmSJRR.addTable("fcRoadRail")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Discharges","ImpairedIn","RoadRail"]

 for field in fmSJRR.fields:

 if field.name not in keepers:

 fmSJRR.removeFieldMap(fmSJRR.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWQOpportun2","fcRoadRail","WU_WQOpportun3","JOIN_ON

E_TO_ONE","KEEP_ALL",fmSJRR,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQOpportun3","fcWQOpportun3")

 logger.info("Spatial Join completed to add variable RoadRail")

814

###

#################

 # SJ: Distrub50m

###

#################

 fmSJD50 = arcpy.FieldMappings()

 fmSJD50.addTable("fcWQOpportun3")

 fmSJD50.addTable("fcDisturb50m")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","Discharges","ImpairedIn","RoadRail","Disturb50m

"]

 for field in fmSJD50.fields:

 if field.name not in keepers:

 fmSJD50.removeFieldMap(fmSJD50.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWQOpportun3","fcDisturb50m","WU_WQOpportun4","JOIN_O

NE_TO_ONE","KEEP_ALL",fmSJD50,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQOpportun4","fcWQOpportun4")

 logger.info("Spatial Join completed to add variable Distrub50m")

###

#################

 # SJ: DistrubWshd

###

#################

815

 fmSJDW = arcpy.FieldMappings()

 fmSJDW.addTable("fcWQOpportun4")

 fmSJDW.addTable("fcDisturbWshd")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","Discharges","ImpairedIn","RoadRail","Disturb50m

","DisturbWshd"]

 for field in fmSJDW.fields:

 if field.name not in keepers:

 fmSJDW.removeFieldMap(fmSJDW.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWQOpportun4","fcDisturbWshd","WU_WQOpportun5","JOIN_

ONE_TO_ONE","KEEP_ALL",fmSJDW,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQOpportun5","fcWQOpportun5")

 logger.info("Spatial Join completed to add variable DistrubWshd")

###

#################

 # SJ: Floodplain

###

#################

 fmSJFP = arcpy.FieldMappings()

 fmSJFP.addTable("fcWQOpportun5")

 fmSJFP.addTable("fcFloodplain")

 keepers = []

816

 keepers =

["WUKey","Shape_Length","Shape_Area","Discharges","ImpairedIn","RoadRail","Disturb50m

","DisturbWshd","Floodplain"]

 for field in fmSJFP.fields:

 if field.name not in keepers:

 fmSJFP.removeFieldMap(fmSJFP.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWQOpportun5","fcFloodplain","WU_WQOpportun","JOIN_ON

E_TO_ONE","KEEP_ALL",fmSJFP,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQOpportun","fcWQOpportun")

 logger.info("Spatial Join completed to add variable Floodplain")

 # Add WQOpportun field and set initial value to 0

 actions.DeleteField("fcWQOpportun","WQOpportun")

 arcpy.AddField_management("fcWQOpportun", "WQOpportun", "SHORT")

 arcpy.CalculateField_management("fcWQOpportun","WQOpportun","0","VB","#")

 logger.info("WQOpportun field added to Wetland Units and initial point values set to zero")

 # Sum the factor points

 arcpy.CalculateField_management("fcWQOpportun","WQOpportun","[Discharges] +

[ImpairedIn] + [RoadRail] + [Disturb50m] + [DisturbWshd]","VB","#")

 logger.info("points summed for WQOpportun")

 # Reduce values that exceed the maximum allowable points

arcpy.SelectLayerByAttribute_management("fcWQOpportun","NEW_SELECTION",""""Flood

plain" = 'Y' AND "WQOpportun" > 5""")

 arcpy.CalculateField_management("fcWQOpportun","WQOpportun","5","VB","#")

 arcpy.SelectLayerByAttribute_management("fcWQOpportun", "CLEAR_SELECTION")

817

arcpy.SelectLayerByAttribute_management("fcWQOpportun","NEW_SELECTION",""""Flood

plain" = 'N' AND "WQOpportun" > 4""")

 arcpy.CalculateField_management("fcWQOpportun","WQOpportun","4","VB","#")

 arcpy.SelectLayerByAttribute_management("fcWQOpportun", "CLEAR_SELECTION")

 logger.info("points reduced to maximum allowed for WQOpportun")

 # Clean up

 if arcpy.Exists("WU_WQOpportun0"):

 arcpy.Delete_management("WU_WQOpportun0")

 if arcpy.Exists("WU_WQOpportun1"):

 arcpy.Delete_management("WU_WQOpportun1")

 if arcpy.Exists("WU_WQOpportun2"):

 arcpy.Delete_management("WU_WQOpportun2")

 if arcpy.Exists("WU_WQOpportun3"):

 arcpy.Delete_management("WU_WQOpportun3")

 if arcpy.Exists("WU_WQOpportun4"):

 arcpy.Delete_management("WU_WQOpportun4")

 if arcpy.Exists("WU_WQOpportun5"):

 arcpy.Delete_management("WU_WQOpportun5")

818

5.7.78 Discharges: Water Quality Opportunity

File Name: Discharges.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 6/8/2016 (modified 12/01/2017)

Purpose:

Water Quality Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineDischarges(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQOpportun.Discharges")

 # Clean up if needed

 if arcpy.Exists("WU_Discharges"):

 arcpy.Delete_management("WU_Discharges")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(globalvars.srcSeptic, "fcSeptic")

 arcpy.MakeFeatureLayer_management(globalvars.srcOWRNPDES, "fcOWRNPDES")

819

 arcpy.MakeFeatureLayer_management(globalvars.srcOWRNPDESOutlets,

"fcOWRNPDESOutlets")

 arcpy.MakeFeatureLayer_management(globalvars.srcHPU, "fcHPU")

 arcpy.MakeFeatureLayer_management(globalvars.srcAMLAMD, "fcAMLAMD")

 arcpy.MakeFeatureLayer_management(globalvars.srcWellPads, "fcWellPads")

 arcpy.MakeFeatureLayer_management(globalvars.srcNPLPoint, "fcNPLPoint")

 arcpy.MakeFeatureLayer_management(globalvars.srcNPLBndry, "fcNPLBndry")

 # Create feature class to store Discharges variable

 arcpy.CopyFeatures_management(WetlandPoly, "WU_Discharges")

 fcWUDischarges = arcpy.mapping.Layer(r"WU_Discharges")

 logger.info("feature layers ready")

 # Add Discharges field to Wetland Units and set the initial value to zero

 actions.DeleteField(fcWUDischarges,"Discharges")

 arcpy.AddField_management(fcWUDischarges, "Discharges", "SHORT")

 arcpy.CalculateField_management(fcWUDischarges, "Discharges", "0", "VB")

 logger.info("field Discharges added and initial value set to 0")

###

 ## PART 1: Select the owrnpdes_ records that are not deep injection points

 ## and not septic tanks, then select wetlands within 100m of selected points or septic

###

 strWHERE = """"perm_type" = '401 Certification' OR "perm_type" = 'Industrial' OR

"perm_type" = 'Sewage' OR "perm_type" = 'UIC Sewage' OR "perm_type" = 'UIC Stormwater

Industrial'"""

 arcpy.SelectLayerByAttribute_management("fcOWRNPDES", "NEW_SELECTION",

strWHERE)

820

 # Select Wetland Units within 100m of Septic or selected NPDES records and assign 1 point

arcpy.SelectLayerByLocation_management(fcWUDischarges,"INTERSECT","fcSeptic","100

Meters","NEW_SELECTION")

arcpy.SelectLayerByLocation_management(fcWUDischarges,"INTERSECT","fcOWRNPDES"

,"100 Meters","ADD_TO_SELECTION")

 logger.info("Wetland Units within 100m of Septic or selected NPDES records selected")

 arcpy.CalculateField_management(fcWUDischarges,"Discharges","1","VB","#")

 logger.info("1 point assigned to selected wetland units")

 arcpy.SelectLayerByAttribute_management(fcWUDischarges, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcSeptic", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcOWRNPDES", "CLEAR_SELECTION")

###

#########

 ## PART 2: Select relevant records from owrnpdes_outlets that are not deep injection

###

#########

 strWHERE = """"perm_type" = 'Industrial' OR "perm_type" = 'Sewage' OR "perm_type" =

'UIC Sewage' OR "perm_type" = 'UIC Stormwater Industrial'"""

 arcpy.SelectLayerByAttribute_management("fcOWRNPDESOutlets",

"NEW_SELECTION", strWHERE)

 # Select relevant records (outlets with open status) from Hydrologic Protection Units

 #strWHERE = """"stat_flag" = 'O' AND "insp_type" = 'OUTLT'""" #Field names change

3/15/2017 MCA

 strWHERE = """"STATUS_FLA" = 'O' AND "INSPECTA_1" = 'OUTLT'"""

821

 arcpy.SelectLayerByAttribute_management("fcHPU", "NEW_SELECTION", strWHERE)

 logger.info("relevant records (outlets with open status) from Hydrologic Protection Units

selected")

 # Select Wetland Units within 100m of potential discharges and assign 2 points

arcpy.SelectLayerByLocation_management(fcWUDischarges,"INTERSECT","fcOWRNPDES

Outlets","100 Meters","NEW_SELECTION")

 arcpy.SelectLayerByLocation_management(fcWUDischarges,"INTERSECT","fcHPU","100

Meters","ADD_TO_SELECTION")

arcpy.SelectLayerByLocation_management(fcWUDischarges,"INTERSECT","fcAMLAMD","

100 Meters","ADD_TO_SELECTION")

arcpy.SelectLayerByLocation_management(fcWUDischarges,"INTERSECT","fcWellPads","10

0 Meters","ADD_TO_SELECTION")

arcpy.SelectLayerByLocation_management(fcWUDischarges,"INTERSECT","fcNPLPoint","1

00 Meters","ADD_TO_SELECTION")

arcpy.SelectLayerByLocation_management(fcWUDischarges,"INTERSECT","fcNPLBndry","

100 Meters","ADD_TO_SELECTION")

 logger.info("Wetland Units within 100m of potential discharges selected")

 arcpy.CalculateField_management(fcWUDischarges,"Discharges","2","VB","#")

 logger.info("2 points assigned to selected wetland units")

 arcpy.SelectLayerByAttribute_management(fcWUDischarges, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcOWRNPDESOutlets",

"CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcHPU", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcAMLAMD", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcWellPads", "CLEAR_SELECTION")

822

 arcpy.SelectLayerByAttribute_management("fcNPLPoint", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcNPLBndry", "CLEAR_SELECTION")

823

5.7.79 Distrub50: Water Quality Opportunity

File Name: Disturb50m.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 6/16/2016 (modified 10/31/2017)

Purpose:

Water Quality Function / Opportunity aspect

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineDisturb50m(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQOpportun.Disturb50m")

 # Clean up if needed

 if arcpy.Exists("Buffer50mDist"):

 arcpy.Delete_management("Buffer50mDist")

 if arcpy.Exists("Buffer50mDist_diss"):

 arcpy.Delete_management("Buffer50mDist_diss")

 if arcpy.Exists("WU_Disturb50m"):

 arcpy.Delete_management("WU_Disturb50m")

824

 if arcpy.Exists("WU_Disturb50m1"):

 arcpy.Delete_management("WU_Disturb50m1")

 # Setting python variables

 fcDisturbedLand = arcpy.mapping.Layer(globalvars.srcDisturbedLand)

 fcBuffer50m = arcpy.mapping.Layer(globalvars.srcBuffer50m)

 logger.info("feature layers ready")

 ## Create feature class to store intermediate results for Disturb50m

 arcpy.CopyFeatures_management(WetlandPoly,"WU_Disturb50m1","#","0","0","0")

 arcpy.MakeFeatureLayer_management("WU_Disturb50m1", "fcWUDisturb50m1")

 logger.info("feature class WU_Disturb50m1 created")

 # Intersect the 50m buffers and the disturbed land uses

 arInputData = [fcBuffer50m,fcDisturbedLand]

 arcpy.Intersect_analysis(arInputData,"Buffer50mDist","ALL",output_type="INPUT")

 fcBuffer50mDist = arcpy.mapping.Layer(r"Buffer50mDist")

 logger.info("intersected disturbed land uses with 50m buffers")

 # Dissolve disturbed lands by wetland buffer

 arcpy.Dissolve_management(fcBuffer50mDist,"Buffer50mDist_diss","WUKey","BufferArea

FIRST","MULTI_PART","DISSOLVE_LINES")

 fcBuffer50mDist_diss = arcpy.mapping.Layer(r"Buffer50mDist_diss")

 logger.info("dissolved disturbed lands by wetland buffer")

 # Add field and calculate ration of disturbed are to total drainage

 actions.DeleteField(fcBuffer50mDist_diss,"Dist50mRat")

 arcpy.AddField_management(fcBuffer50mDist_diss, "Dist50mRat", "FLOAT")

825

arcpy.CalculateField_management(fcBuffer50mDist_diss,"Dist50mRat","[Shape_Area]/[FIRST

_BufferArea]","VB","#")

 logger.info("field Dist50mRat added and calculated")

 # Join ratio of Disturbed land to Wetland Units

arcpy.AddJoin_management("fcWUDisturb50m1","WUKey","Buffer50mDist_diss","WUKey",

"KEEP_ALL")

 logger.info("ratio of Disturbed land joined to Wetland Units")

 # Export joined data

 #arcpy.CopyFeatures_management("fcWUDisturb50m1","WU_Disturb50m","#","0","0","0")

arcpy.FeatureClassToFeatureClass_conversion("fcWUDisturb50m1",arcpy.env.workspace,"W

U_Disturb50m")

 fcWUDisturb50m = arcpy.mapping.Layer(r"WU_Disturb50m")

 logger.info("joined data exported")

 ## Remove Join

 arcpy.RemoveJoin_management("fcWUDisturb50m1")

 logger.info("joined removed")

 # Update Null records to 0 in the Dist50mRat field

arcpy.SelectLayerByAttribute_management(fcWUDisturb50m,"NEW_SELECTION",""""Buff

er50mDist_diss_Dist50mRat" IS NULL""")

arcpy.CalculateField_management(fcWUDisturb50m,"Buffer50mDist_diss_Dist50mRat","0","

VB","#")

 logger.info("Null records updated to 0 in the Dist50mRat field")

826

 # Add field to Wetland Units and set initial point value to zero

 actions.DeleteField(fcWUDisturb50m,"Disturb50m")

 arcpy.AddField_management(fcWUDisturb50m, "Disturb50m", "SHORT")

 arcpy.CalculateField_management(fcWUDisturb50m,"Disturb50m","0","VB","#")

 logger.info("field Disturb50m added to Wetland Units and initial point value set to zero")

 # Assign Points

arcpy.SelectLayerByAttribute_management(fcWUDisturb50m,"NEW_SELECTION",""""Buff

er50mDist_diss_Dist50mRat" > 0.1""")

 arcpy.CalculateField_management(fcWUDisturb50m,"Disturb50m","1","VB","#")

arcpy.SelectLayerByAttribute_management(fcWUDisturb50m,"NEW_SELECTION",""""Buff

er50mDist_diss_Dist50mRat" > 0.25""")

 arcpy.CalculateField_management(fcWUDisturb50m,"Disturb50m","2","VB","#")

arcpy.SelectLayerByAttribute_management(fcWUDisturb50m,"NEW_SELECTION",""""Buff

er50mDist_diss_Dist50mRat" > 0.5""")

 arcpy.CalculateField_management(fcWUDisturb50m,"Disturb50m","3","VB","#")

 logger.info("points assigned to wetland units")

 arcpy.SelectLayerByAttribute_management(fcWUDisturb50m, "CLEAR_SELECTION")

 # Update NULL values with 0

arcpy.SelectLayerByAttribute_management(fcWUDisturb50m,"NEW_SELECTION",""""Distu

rb50m" IS NULL""")

 arcpy.CalculateField_management(fcWUDisturb50m,"Disturb50m","0","VB","#")

 arcpy.SelectLayerByAttribute_management(fcWUDisturb50m, "CLEAR_SELECTION")

 logger.info("Null records updated to 0 in the Disturb50m field")

827

 # Clean up

 if arcpy.Exists("Buffer50mDist"):

 arcpy.Delete_management("Buffer50mDist")

 if arcpy.Exists("Buffer50mDist_diss"):

 arcpy.Delete_management("Buffer50mDist_diss")

 if arcpy.Exists("WU_Disturb50m1"):

 arcpy.Delete_management("WU_Disturb50m1")

828

5.7.80 DistubWshd: Water Quality Opportunity

File Name: DisturbWshd.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 5/27/2016 (modified 11/10/2017)

Purpose:

Water Quality Function / Opportunity aspect

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineDisturbWshd(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQOpportun.DisturbWshd")

 # Clean up if needed

 #if arcpy.Exists("DrainAreaDist"):

 #arcpy.Delete_management("DrainAreaDist")

 if arcpy.Exists("DrainAreaDist_diss"):

 arcpy.Delete_management("DrainAreaDist_diss")

 if arcpy.Exists("WU_DisturbWshd"):

 arcpy.Delete_management("WU_DisturbWshd")

829

 if arcpy.Exists("WU_DisturbWshd1"):

 arcpy.Delete_management("WU_DisturbWshd1")

 # Setting python variables

 fcDA27m = arcpy.mapping.Layer(globalvars.srcDrainageArea)

 fcDL = arcpy.mapping.Layer(globalvars.srcDisturbedLand)

 logger.info("feature layers ready")

 ## Create feature class to store intermediate results for Disturb50m

 arcpy.CopyFeatures_management(WetlandPoly,"WU_DisturbWshd1","#","0","0","0")

 arcpy.MakeFeatureLayer_management("WU_DisturbWshd1", "fcWUDisturbWshd1")

 logger.info("feature class WU_DisturbWshd1 created")

 # Intersect the drainage areas and the disturbed land uses (Takes 32 minutes 23 seconds to

run)

 #arInputData = [fcDA27m,fcDL]

 #arcpy.Intersect_analysis(arInputData,"DrainAreaDist","ALL","#","INPUT")

 fcDrainAreaDist = arcpy.mapping.Layer(r"DrainAreaDist")

 logger.info("drainage areas and the disturbed land uses intersected")

 # Dissolve disturbed lands by drainage area (Takes around 23 hours)

 arcpy.Dissolve_management(fcDrainAreaDist,"DrainAreaDist_diss","WUKey","CntrWshd

FIRST","MULTI_PART","DISSOLVE_LINES")

 fcDrainAreaDistDiss = arcpy.mapping.Layer(r"DrainAreaDist_diss")

 logger.info("disturbed lands dissolved by drainage area")

 # Add field to DrainAreaDist_diss and calculate ratio of disturbed area to total drainange

 actions.DeleteField(fcDrainAreaDistDiss,"DistWshdRat")

 arcpy.AddField_management(fcDrainAreaDistDiss, "DistWshdRat", "FLOAT")

830

 arcpy.CalculateField_management(fcDrainAreaDistDiss, "DistWshdRat",

"[SHAPE_Area]/[FIRST_CntrWshd]", "VB")

 logger.info("field DistWshdRat added to DrainAreaDist_diss and calculated")

 # Join ratio of disturbed land to Wetland Units

arcpy.AddJoin_management("fcWUDisturbWshd1","WUKey",fcDrainAreaDistDiss,"WUKey"

,"KEEP_ALL")

 logger.info("ratio of disturbed land joined to wetland units")

 # Export joined data

 #arcpy.CopyFeatures_management("fcWUDisturbWshd1", "WU_DisturbWshd")

arcpy.FeatureClassToFeatureClass_conversion("fcWUDisturbWshd1",arcpy.env.workspace,"W

U_DisturbWshd")

 fcDisturbWshd = arcpy.mapping.Layer(r"WU_DisturbWshd")

 logger.info("joined data exported")

 arcpy.RemoveJoin_management("fcWUDisturbWshd1")

 # Set NULL values in the DistWshdRat to 0

arcpy.SelectLayerByAttribute_management(fcDisturbWshd,"NEW_SELECTION",""""DrainAr

eaDist_diss_DistWshdRat" IS NULL""")

arcpy.CalculateField_management(fcDisturbWshd,"DrainAreaDist_diss_DistWshdRat","0","V

B","#")

 logger.info("null values in DistWshdRat set to 0")

 arcpy.SelectLayerByAttribute_management(fcDisturbWshd, "CLEAR_SELECTION")

 # Add field to Wetland Units and set initial point value to zero

 actions.DeleteField(fcDisturbWshd,"DisturbWshd")

 arcpy.AddField_management(fcDisturbWshd, "DisturbWshd", "SHORT")

831

 arcpy.CalculateField_management(fcDisturbWshd, "DisturbWshd", "0", "VB")

 logger.info("field DisturbWshd added to Wetland Units and initial point value set to zero")

 # Assign points

arcpy.SelectLayerByAttribute_management(fcDisturbWshd,"NEW_SELECTION",""""DrainAr

eaDist_diss_DistWshdRat" > 0.1""")

 arcpy.CalculateField_management(fcDisturbWshd, "DisturbWshd", "1", "VB")

 logger.info("points assigned to field DisturbWshd")

 arcpy.SelectLayerByAttribute_management(fcDisturbWshd, "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("DrainAreaDist"):

 arcpy.Delete_management("DrainAreaDist")

 if arcpy.Exists("DrainAreaDist_diss"):

 arcpy.Delete_management("DrainAreaDist_diss")

 if arcpy.Exists("WU_DisturbWshd1"):

 arcpy.Delete_management("WU_DisturbWshd1")

832

5.7.81 ImpairedIn: Water Quality Opportunity

File Name: ImpairedIn.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 6/10/2016 (modified 12/06/2017)

Purpose:

Water Quality Function, Opportunity Aspect

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineImpairedIn():

 logger = logging.getLogger("WFA.WQuality.WQOpportun.ImpairedIn")

 # Clean up if needed

 if arcpy.Exists("WU_ImpairedIn"):

 arcpy.Delete_management("WU_ImpairedIn")

 # Setting python variables

 fcPublicFishing = arcpy.mapping.Layer(globalvars.srcPublicFishingLakes)

 fcAlgalStreams = arcpy.mapping.Layer(globalvars.srcAlgalStreams)

833

 fcAlgalLakes = arcpy.mapping.Layer(globalvars.srcAlgalLakes)

 fcDA27m = arcpy.mapping.Layer(globalvars.srcDrainageArea)

 fcWV202IS24kNHD = arcpy.mapping.Layer(globalvars.srcImpairedStreams)

 #fcEPAOverlist24KNHD = arcpy.mapping.Layer(globalvars.srcEPAOverlist)

 # Create feature class to store ImpairedIn variable

 arcpy.CopyFeatures_management(r"WU_FloodArea", "WU_ImpairedIn")

 fcWUImpairedIn = arcpy.mapping.Layer(r"WU_ImpairedIn")

 logger.info("feature layers ready")

 # Add ImpairedIn field to Wetland Units and set the initial value to zero

 actions.DeleteField(fcWUImpairedIn,"ImpairedIn")

 arcpy.AddField_management(fcWUImpairedIn, "ImpairedIn", "SHORT")

 arcpy.CalculateField_management(fcWUImpairedIn, "ImpairedIn", "0", "VB")

 logger.info("field ImpairedIn added and initial value set to 0")

 # Add field to DrainageArea27m and set initial value to "N"

 actions.DeleteField(fcDA27m,"ImpairSrc")

 arcpy.DeleteField_management(fcDA27m,"ImpairSrc")

 arcpy.AddField_management(fcDA27m, "ImpairSrc", "TEXT", 2)

 arcpy.CalculateField_management(fcDA27m,"ImpairSrc","'N'","PYTHON_9.3")

 logger.info("field ImpairSrc added and initial value set to 'N'")

 # Select lakes with power boat use

 strWHERE = """"BoatType" NOT LIKE 'No%'"""

 arcpy.SelectLayerByAttribute_management(fcPublicFishing, "NEW_SELECTION",

strWHERE)

 logger.info("lakes with power boat use selected")

 # Select Drainage Areas with power boat use

834

arcpy.SelectLayerByLocation_management(fcDA27m,"INTERSECT",fcPublicFishing,"#","NE

W_SELECTION")

 logger.info("Drainage Areas with power boat use selected")

 # Select Drainage Areas with algal lakes

arcpy.SelectLayerByLocation_management(fcDA27m,"INTERSECT",fcAlgalLakes,"#","ADD

_TO_SELECTION")

 logger.info("Drainage Areas with algal lakes selected")

 # Select Drainage Areas with algal streams

arcpy.SelectLayerByLocation_management(fcDA27m,"INTERSECT",fcAlgalStreams,"#","AD

D_TO_SELECTION")

 logger.info("Drainage Areas with algal streams selected")

 # Select Drainage Area with impaired streams

arcpy.SelectLayerByLocation_management(fcDA27m,"INTERSECT",fcWV202IS24kNHD,"#

","ADD_TO_SELECTION")

#arcpy.SelectLayerByLocation_management(fcDA27m,"INTERSECT",fcEPAOverlist24KNH

D,"#","ADD_TO_SELECTION")

 logger.info("Drainage Area with impaired streams selected")

 # Set ImpairSrc to yes for Drainage Areas with an impaired water source

 arcpy.CalculateField_management(fcDA27m,"ImpairSrc","'Y'","PYTHON_9.3")

 logger.info("ImpairSrc set to yes for Drainage Areas with an impaired water source")

 arcpy.SelectLayerByAttribute_management(fcWUImpairedIn, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcPublicFishing, "CLEAR_SELECTION")

835

 arcpy.SelectLayerByAttribute_management(fcAlgalLakes, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcAlgalStreams, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcWV202IS24kNHD, "CLEAR_SELECTION")

 # Join Drainage Areas to Wetland Units

arcpy.JoinField_management(fcWUImpairedIn,"WUKey",fcDA27m,"WUKey","WUKey;Impa

irSrc")

 logger.info("Drainage Areas joined to Wetland Units")

 # Assign 1 point to floodplain Wetland Units with impaired waters in their Drainage Area

 strWHERE = """"Floodplain" = 'Y' AND "ImpairSrc" = 'Y'"""

 arcpy.SelectLayerByAttribute_management(fcWUImpairedIn, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUImpairedIn, "ImpairedIn", "1", "VB")

 logger.info("1 point assigned to floodplain Wetland Units with impaired waters in their

Drainage Area")

 # Clear selections

 arcpy.SelectLayerByAttribute_management(fcWUImpairedIn, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcDA27m, "CLEAR_SELECTION")

 # Select lakes with power boat use

 strWHERE = """"BoatType" NOT LIKE 'No%'"""

 arcpy.SelectLayerByAttribute_management(fcPublicFishing, "NEW_SELECTION",

strWHERE)

 logger.info("lakes with power boat use selected")

 # Select Wetland Units adjacent to lakes with power boat use

836

arcpy.SelectLayerByLocation_management(fcWUImpairedIn,"INTERSECT",fcPublicFishing,"

5 Meters","NEW_SELECTION")

 logger.info("Wetland Units adjacent to lakes with power boat use selected")

 # Select Wetland Units adjacent to algal lakes

arcpy.SelectLayerByLocation_management(fcWUImpairedIn,"INTERSECT",fcAlgalLakes,"5

Meters","ADD_TO_SELECTION")

 logger.info("Wetland Units adjacent to algal lakes selected")

 # Select Wetland Units adjacent to algal streams

arcpy.SelectLayerByLocation_management(fcWUImpairedIn,"INTERSECT",fcAlgalStreams,"

5 Meters","ADD_TO_SELECTION")

 logger.info("Wetland Units adjacent to algal streams selected")

 # Select Wetland Units adjacent to impaired streams

arcpy.SelectLayerByLocation_management(fcWUImpairedIn,"INTERSECT",fcWV202IS24kN

HD,"5 Meters","ADD_TO_SELECTION")

#arcpy.SelectLayerByLocation_management(fcWUImpairedIn,"INTERSECT",fcEPAOverlist2

4KNHD,"#","ADD_TO_SELECTION")

 logger.info("Wetland Units adjacent to impaired streams selected")

 # Assign 2 points to floodplain Wetland Units adjacent to impaired waters in their Drainage

Area

 arcpy.CalculateField_management(fcWUImpairedIn,"ImpairedIn","2","PYTHON_9.3")

 logger.info("1 point assigned to floodplain Wetland Units adjacent to impaired waters in their

Drainage Area")

 # Clear selections

837

 arcpy.SelectLayerByAttribute_management(fcWUImpairedIn, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcPublicFishing, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcAlgalLakes, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcAlgalStreams, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcWV202IS24kNHD, "CLEAR_SELECTION")

838

5.7.82 RoadRail: Water Quality Opportunity

File Name: RoadRail.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/15/2016 (modified 11/28/2017)

Purpose:

Water Quality Function, Opportunity aspect

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcRoadRail(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQOpportun.RoadRail")

 # Clean up if needed

 if arcpy.Exists("WU_RoadRail"):

 arcpy.Delete_management("WU_RoadRail")

 WVRailway = arcpy.mapping.Layer(globalvars.srcRailway)

 WVTransUTMAllRoads = arcpy.mapping.Layer(globalvars.srcTransUTMAllRoads)

839

 # Create feature class to store RoadRail variable

 arcpy.CopyFeatures_management(WetlandPoly, "WU_RoadRail")

 WURoadRail = arcpy.mapping.Layer(r"WU_RoadRail")

 logger.info("feature layers ready")

 # Add RoadRail field to Wetland Units and set initial point value to zero

 actions.DeleteField(WURoadRail,"RoadRail")

 arcpy.AddField_management(WURoadRail, "RoadRail", "SHORT")

 arcpy.CalculateField_management(WURoadRail,"RoadRail","0","VB","#")

 logger.info("RoadRail field added and initial value set to 0")

 # Select the Wetland Units withing 50 meters of a road of railroad track and assign 1 points

 arcpy.SelectLayerByLocation_management(WURoadRail,"WITHIN_A_DISTANCE",WVTran

sUTMAllRoads,"50 Meters","NEW_SELECTION")

 arcpy.SelectLayerByLocation_management(WURoadRail,"WITHIN_A_DISTANCE",WVRail

way,"50 Meters","ADD_TO_SELECTION")

 arcpy.CalculateField_management(WURoadRail,"RoadRail","1","VB","#")

 logger.info("1 point assigned to certain wetland units")

 arcpy.SelectLayerByAttribute_management(WURoadRail, "CLEAR_SELECTION")

 # Select the Wetland Units withing 5 meters of a road of railroad track and assign 2 points

 arcpy.SelectLayerByLocation_management(WURoadRail,"WITHIN_A_DISTANCE",WVTran

sUTMAllRoads,"5 Meters","NEW_SELECTION")

 arcpy.SelectLayerByLocation_management(WURoadRail,"WITHIN_A_DISTANCE",WVRail

way,"5 Meters","ADD_TO_SELECTION")

 arcpy.CalculateField_management(WURoadRail,"RoadRail","2","VB","#")

 logger.info("2 points assigned to certain wetland units")

 arcpy.SelectLayerByAttribute_management(WURoadRail, "CLEAR_SELECTION")

840

5.7.83 Water Quality Potential

File Name: WQPotential.py

Developer: Yibing Han

Date: 12/13/2017

Purpose:

This script handles the execution of all the Water Quality Potential metrics.

import datetime

import logging

import traceback

import arcpy

from Variables import Clay, IrrEdge, LandPos, LowSlope, Microtopo, Organic, SeasonPond,

SLOPE, VegByLP, VegPerUng, VegWoody, WFlowPath

from Factors import ChemTime, ClayOrganic, Depressions, Headwater, SWoutflow, VegWQ

from Aspects import WQPotential

def procWQPotential(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential")

 ##

 ## 1. Run Variables

 ##

 Clay.Clay(WetlandPoly)

 IrrEdge.CalcIrrEdge(WetlandPoly)

841

 WFlowPath.DetermineWFlowPath(WetlandPoly)

 LandPos.DetermineLandPos(WetlandPoly)

 SLOPE.CalcSLOPE(WetlandPoly)

 LowSlope.CalcLowSlope(WetlandPoly)

 Microtopo.MicroTopo(WetlandPoly)

 Organic.OrganicFactor(WetlandPoly)

 SeasonPond.CalcSeasonPond(WetlandPoly)

 VegByLP.CalcVegByLP(WetlandPoly)

 VegPerUng.CalcVegPerUng(WetlandPoly)

 VegWoody.CalcVegWoody(WetlandPoly)

 ##

 ## 2. Run Factors

 ##

 ChemTime.CalcChemTime(WetlandPoly)

 ClayOrganic.DetermineClayOrganic(WetlandPoly)

842

 Depressions.CalcDepressions(WetlandPoly)

 Headwater.DetermineHW(WetlandPoly)

 SWoutflow.DetermineSWoutflow(WetlandPoly)

 VegWQ.CalcVegWQ(WetlandPoly)

 ##

 ## 3. Run Aspect

 ##

 WQPotential.DetermineWQPotential(WetlandPoly)

843

5.7.84 Water Quality Potential Aspects

File Name: WQPotential.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 6/16/2016 (modified 11/02/2017)

Purpose:

Water Quality Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import arcpy

from utilities import actions

import logging

def DetermineWQPotential(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.WQPotential")

 # Clean up if needed

 if arcpy.Exists("WU_WQPotential1"):

 arcpy.Delete_management("WU_WQPotential1")

 if arcpy.Exists("WU_WQPotential2"):

 arcpy.Delete_management("WU_WQPotential2")

 if arcpy.Exists("WU_WQPotential3"):

 arcpy.Delete_management("WU_WQPotential3")

 if arcpy.Exists("WU_WQPotential4"):

844

 arcpy.Delete_management("WU_WQPotential4")

 if arcpy.Exists("WU_WQPotential"):

 arcpy.Delete_management("WU_WQPotential")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_ChemTime","fcChemTime")

 arcpy.MakeFeatureLayer_management(r"WU_ClayOrganic","fcClayOrganic")

 arcpy.MakeFeatureLayer_management(r"WU_Depressions","fcDepressions")

 arcpy.MakeFeatureLayer_management(r"WU_Headwater","fcHeadwater")

 arcpy.MakeFeatureLayer_management(r"WU_SWOutflow","fcSWOutflow")

 arcpy.MakeFeatureLayer_management(r"WU_VegWQ","fcVegWQ")

 logger.info("feature layers ready")

 # Spatial join to bring together the factor values

###

#################

 # SJ: ChemTime & ClayOrganic

###

#################

 fmSJCC = arcpy.FieldMappings()

 fmSJCC.addTable("fcChemTime")

 fmSJCC.addTable("fcClayOrganic")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","ChemTime","ClayOrganic"]

 for field in fmSJCC.fields:

 if field.name not in keepers:

 fmSJCC.removeFieldMap(fmSJCC.findFieldMapIndex(field.name))

845

arcpy.SpatialJoin_analysis("fcChemTime","fcClayOrganic","WU_WQPotential1","JOIN_ONE

_TO_ONE","KEEP_ALL",fmSJCC,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQPotential1","fcWQPotential1")

 logger.info("Spatial Join completed to add variables ChemTime and ClayOrganic")

###

#################

 # SJ: Depression

###

#################

 fmSJD = arcpy.FieldMappings()

 fmSJD.addTable("fcWQPotential1")

 fmSJD.addTable("fcDepressions")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","ChemTime","ClayOrganic","Depressions"]

 for field in fmSJD.fields:

 if field.name not in keepers:

 fmSJD.removeFieldMap(fmSJD.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWQPotential1","fcDepressions","WU_WQPotential2","JOIN_O

NE_TO_ONE","KEEP_ALL",fmSJD,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQPotential2","fcWQPotential2")

 logger.info("Spatial Join completed to add variable Depression")

846

###

#################

 # SJ: Headwater

###

#################

 fmSJH = arcpy.FieldMappings()

 fmSJH.addTable("fcWQPotential2")

 fmSJH.addTable("fcHeadwater")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","ChemTime","ClayOrganic","Depressions","Headw

ater"]

 for field in fmSJH.fields:

 if field.name not in keepers:

 fmSJH.removeFieldMap(fmSJH.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWQPotential2","fcHeadwater","WU_WQPotential3","JOIN_ON

E_TO_ONE","KEEP_ALL",fmSJH,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQPotential3","fcWQPotential3")

 logger.info("Spatial Join completed to add variable Depression")

###

#################

 # SJ: SWOutFlow

###

#################

847

 fmSJSW = arcpy.FieldMappings()

 fmSJSW.addTable("fcWQPotential3")

 fmSJSW.addTable("fcSWOutflow")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","ChemTime","ClayOrganic","Depressions","Headw

ater","SWOutflow"]

 for field in fmSJSW.fields:

 if field.name not in keepers:

 fmSJSW.removeFieldMap(fmSJSW.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWQPotential3","fcSWOutflow","WU_WQPotential4","JOIN_O

NE_TO_ONE","KEEP_ALL",fmSJSW,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQPotential4","fcWQPotential4")

 logger.info("Spatial Join completed to add variable SWOutflow")

###

#################

 # SJ: VegWQ

###

#################

 fmSJV = arcpy.FieldMappings()

 fmSJV.addTable("fcWQPotential4")

 fmSJV.addTable("fcVegWQ")

 keepers = []

848

 keepers =

["WUKey","Shape_Length","Shape_Area","ChemTime","ClayOrganic","Depressions","Headw

ater","SWOutflow","VegWQ"]

 for field in fmSJV.fields:

 if field.name not in keepers:

 fmSJV.removeFieldMap(fmSJV.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWQPotential4","fcVegWQ","WU_WQPotential","JOIN_ONE_T

O_ONE","KEEP_ALL",fmSJV,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQPotential","fcWQPotential")

 logger.info("Spatial Join completed to add variable VegWQ")

 # Add WQPotential field to Wetland Units and set the initial point value to zero

 actions.DeleteField("fcWQPotential","WQPotential")

 arcpy.AddField_management("fcWQPotential", "WQPotential", "SHORT")

 arcpy.CalculateField_management("fcWQPotential","WQPotential","0","VB")

 logger.info("WQPotential field added to Wetland Units and initial point values set to zero")

 # Sum the factor points

 arcpy.CalculateField_management("fcWQPotential","WQPotential","[ChemTime] +

[ClayOrganic] + [Depressions] + [Headwater] + [SWOutflow] + [VegWQ]","VB","#")

 logger.info("points summed for WQPotential")

 # Clean up

 if arcpy.Exists("WU_WQPotential1"):

 arcpy.Delete_management("WU_WQPotential1")

 if arcpy.Exists("WU_WQPotential2"):

 arcpy.Delete_management("WU_WQPotential2")

 if arcpy.Exists("WU_WQPotential3"):

849

 arcpy.Delete_management("WU_WQPotential3")

 if arcpy.Exists("WU_WQPotential4"):

 arcpy.Delete_management("WU_WQPotential4")

850

5.7.85 ChemTime: Water Quality Potential

File Name: ChemTime.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/21/2016 (modified 12/05/2017)

Purpose:

Input to Water Quality

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcChemTime(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.ChemTime")

 # Clean up if needed

 if arcpy.Exists("WU_ChemTime"):

 arcpy.Delete_management("WU_ChemTime")

 if arcpy.Exists("WU_ChemTime0"):

 arcpy.Delete_management("WU_ChemTime0")

 if arcpy.Exists("WU_ChemTime1"):

 arcpy.Delete_management("WU_ChemTime1")

851

 if arcpy.Exists("WU_ChemTime2"):

 arcpy.Delete_management("WU_ChemTime2")

 if arcpy.Exists("WU_ChemTime3"):

 arcpy.Delete_management("WU_ChemTime3")

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea","fcFloodplain")

 arcpy.MakeFeatureLayer_management(r"WU_SeasonPond","fcSeasonPond")

 arcpy.MakeFeatureLayer_management(r"WU_SLOPE","fcSLOPE")

 arcpy.MakeFeatureLayer_management(r"WU_IrrEdge","fcIrrEdge")

 # Create feature class to store ChemTime variable

 arcpy.CopyFeatures_management(WetlandPoly, "WU_ChemTime0")

 arcpy.MakeFeatureLayer_management(r"WU_ChemTime0","fcWUChemTime0")

 logger.info("feature layers ready")

###

#################

 # SJ: Floodplain

###

#################

 fmSJFP = arcpy.FieldMappings()

 fmSJFP.addTable("fcWUChemTime0")

 fmSJFP.addTable("fcFloodplain")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Floodplain"]

 for field in fmSJFP.fields:

 if field.name not in keepers:

852

 fmSJFP.removeFieldMap(fmSJFP.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUChemTime0","fcFloodplain","WU_ChemTime1","JOIN_ON

E_TO_ONE","KEEP_ALL",fmSJFP,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_ChemTime1","fcWUChemTime1")

 logger.info("spatial join completed to add field Floodplain")

###

#################

 # SJ: SeasonPond

###

#################

 fmSJSP = arcpy.FieldMappings()

 fmSJSP.addTable("fcWUChemTime1")

 fmSJSP.addTable("fcSeasonPond")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Floodplain","SeasonPond"]

 for field in fmSJSP.fields:

 if field.name not in keepers:

 fmSJSP.removeFieldMap(fmSJSP.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUChemTime1","fcSeasonPond","WU_ChemTime2","JOIN_O

NE_TO_ONE","KEEP_ALL",fmSJSP,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_ChemTime2","fcWUChemTime2")

 logger.info("spatial join completed to add field SeasonPond")

853

###

#################

 # SJ: SLOPE

###

#################

 fmSJSL = arcpy.FieldMappings()

 fmSJSL.addTable("fcWUChemTime2")

 fmSJSL.addTable("fcSLOPE")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Floodplain","SeasonPond","SLOPE"]

 for field in fmSJSL.fields:

 if field.name not in keepers:

 fmSJSL.removeFieldMap(fmSJSL.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUChemTime2","fcSLOPE","WU_ChemTime3","JOIN_ONE_

TO_ONE","KEEP_ALL",fmSJSL,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_ChemTime3","fcWUChemTime3")

 logger.info("spatial join completed to add field SLOPE")

###

#################

 # SJ: IrrEdge

###

#################

 fmSJIR = arcpy.FieldMappings()

854

 fmSJIR.addTable("fcWUChemTime3")

 fmSJIR.addTable("fcIrrEdge")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","Floodplain","SeasonPond","SLOPE","IrrEdge"]

 for field in fmSJIR.fields:

 if field.name not in keepers:

 fmSJIR.removeFieldMap(fmSJIR.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUChemTime3","fcIrrEdge","WU_ChemTime","JOIN_ONE_T

O_ONE","KEEP_ALL",fmSJIR,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_ChemTime","fcWUChemTime")

 logger.info("spatial join completed to add field IrrEdge")

 # Add field to Wetland Units and set initial point value to SeasonPond

 actions.DeleteField("fcWUChemTime","ChemTime")

 arcpy.AddField_management("fcWUChemTime", "ChemTime", "SHORT")

arcpy.CalculateField_management("fcWUChemTime","ChemTime","[SeasonPond]","VB","#")

 logger.info("field ChemTime added and initial value set to SeasonPond")

 # Filter Seasonal Ponding (SeasonPond) points based on Slope and Floodplain

 strWHERE = """"SLOPE" > 5 OR "Floodplain" = 'Y'"""

 arcpy.SelectLayerByAttribute_management("fcWUChemTime", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUChemTime","ChemTime","0","VB","#")

 strWHERE = """"SLOPE" > 2 AND"SLOPE" < 6 AND "ChemTime" > 2"""

855

 arcpy.SelectLayerByAttribute_management("fcWUChemTime", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUChemTime","ChemTime","2","VB","#")

 logger.info("points assigned to ChemTime")

 # Add point for irregular edge (IrrEdge)

 strWHERE = """"IrrEdge" = 1 AND "Floodplain" = 'N' AND "ChemTime" < 3"""

 arcpy.SelectLayerByAttribute_management("fcWUChemTime", "NEW_SELECTION",

strWHERE)

arcpy.CalculateField_management("fcWUChemTime","ChemTime","[ChemTime]+1","VB","#

")

 logger.info("point added for irregular edge")

 arcpy.SelectLayerByAttribute_management("fcWUChemTime", "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("WU_ChemTime0"):

 arcpy.Delete_management("WU_ChemTime0")

 if arcpy.Exists("WU_ChemTime1"):

 arcpy.Delete_management("WU_ChemTime1")

 if arcpy.Exists("WU_ChemTime2"):

 arcpy.Delete_management("WU_ChemTime2")

 if arcpy.Exists("WU_ChemTime3"):

 arcpy.Delete_management("WU_ChemTime3")

856

5.7.86 ClayOrganic: Water Quality Potential

File Name: ClayOrganic.py

Developer: Chad Ashworth (modified by Yibing Han)

Date 4/5/2016 (modified 12/08/2017)

Purpose:

Input to Water Quality

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineClayOrganic(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.ClayOrganics")

 # Clean up if needed

 if arcpy.Exists("WU_ClayOrganic"):

 arcpy.Delete_management("WU_ClayOrganic")

 if arcpy.Exists("WU_ClayOrganic0"):

 arcpy.Delete_management("WU_ClayOrganic0")

 if arcpy.Exists("WU_ClayOrganic1"):

 arcpy.Delete_management("WU_ClayOrganic1")

857

 if arcpy.Exists("WU_ClayOrganic2"):

 arcpy.Delete_management("WU_ClayOrganic2")

 if arcpy.Exists("WU_ClayOrganic3"):

 arcpy.Delete_management("WU_ClayOrganic3")

 # Setting environment variables

 arcpy.MakeFeatureLayer_management(r"WU_Organic","fcOrganic")

 arcpy.MakeFeatureLayer_management(r"WU_Clay","fcClay")

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea","fcWUFloodplain")

 arcpy.MakeFeatureLayer_management(r"WU_SeasonPond","fcWUSeasonPond")

 arcpy.CopyFeatures_management(WetlandPoly, "WU_ClayOrganic0")

 arcpy.MakeFeatureLayer_management(r"WU_ClayOrganic0","fcWUClayOrganic0")

 logger.info("feature layers ready")

 # Join Clay and Organic to combine the two fields into one feature class called

WU_ClayOrganic

###

#################

 # SJ: Organic

###

#################

 fmSJORG = arcpy.FieldMappings()

 fmSJORG.addTable("fcWUClayOrganic0")

 fmSJORG.addTable("fcOrganic")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Organic"]

858

 for field in fmSJORG.fields:

 if field.name not in keepers:

 fmSJORG.removeFieldMap(fmSJORG.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUClayOrganic0","fcOrganic","WU_ClayOrganic1","JOIN_ON

E_TO_ONE","KEEP_ALL",fmSJORG,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_ClayOrganic1","fcWUClayOrganic1")

 logger.info("spatial join completed to add field Organic")

###

#################

 # SJ: Clay

###

#################

 fmSJClay = arcpy.FieldMappings()

 fmSJClay.addTable("fcWUClayOrganic1")

 fmSJClay.addTable("fcClay")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Organic","Clay"]

 for field in fmSJClay.fields:

 if field.name not in keepers:

 fmSJClay.removeFieldMap(fmSJClay.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUClayOrganic1","fcClay","WU_ClayOrganic2","JOIN_ONE_

TO_ONE","KEEP_ALL",fmSJClay,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_ClayOrganic2","fcWUClayOrganic2")

859

 logger.info("spatial join completed to add field Clay")

###

#################

 # SJ: Floodplain

###

#################

 fmSJFP = arcpy.FieldMappings()

 fmSJFP.addTable("fcWUClayOrganic2")

 fmSJFP.addTable("fcWUFloodplain")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Organic","Clay","Floodplain"]

 for field in fmSJClay.fields:

 if field.name not in keepers:

 fmSJClay.removeFieldMap(fmSJClay.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUClayOrganic2","fcWUFloodplain","WU_ClayOrganic3","JO

IN_ONE_TO_ONE","KEEP_ALL",fmSJFP,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_ClayOrganic3","fcWUClayOrganic3")

 logger.info("spatial join completed to add field Floodplain")

###

#################

 # SJ: SeasonPond

860

###

#################

 fmSJSP = arcpy.FieldMappings()

 fmSJSP.addTable("fcWUClayOrganic3")

 fmSJSP.addTable("fcWUSeasonPond")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","Organic","Clay","Floodplain","SeaPondRatio","Se

asonPond"]

 for field in fmSJSP.fields:

 if field.name not in keepers:

 fmSJSP.removeFieldMap(fmSJSP.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUClayOrganic3","fcWUSeasonPond","WU_ClayOrganic","JO

IN_ONE_TO_ONE","KEEP_ALL",fmSJSP,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_ClayOrganic","fcWUClayOrganic")

 logger.info("spatial join completed to add field SeasonPond")

 # Add ClayOrganic field to Wetland Units and set initial point value to zero

 actions.DeleteField("fcWUClayOrganic","ClayOrganic")

 arcpy.AddField_management("fcWUClayOrganic", "ClayOrganic", "SHORT")

 arcpy.CalculateField_management("fcWUClayOrganic","ClayOrganic","0","VB","#")

 logger.info("field ClayOrganic added to Wetland Units and initial point value set to zero")

 # Assign points to wetland units not in floodplain with clay or organic soils and seasonal

ponding

 strwhere = """"Floodplain" = 'N' and ("Clay" = 'Y' or "Organic" = 'Y') and "SeaPondRatio" >

0.1"""

861

arcpy.SelectLayerByAttribute_management("fcWUClayOrganic","NEW_SELECTION",strwhe

re)

 arcpy.CalculateField_management("fcWUClayOrganic","ClayOrganic","1","python","#")

 strwhere = """"Floodplain" = 'N' and ("Clay" = 'Y' or "Organic" = 'Y') and "SeaPondRatio" >

0.5"""

arcpy.SelectLayerByAttribute_management("fcWUClayOrganic","NEW_SELECTION",strwhe

re)

 arcpy.CalculateField_management("fcWUClayOrganic","ClayOrganic","2","python","#")

 strwhere = """"Floodplain" = 'N' and ("Clay" = 'Y' or "Organic" = 'Y') and "SeaPondRatio" >

0.9"""

arcpy.SelectLayerByAttribute_management("fcWUClayOrganic","NEW_SELECTION",strwhe

re)

 arcpy.CalculateField_management("fcWUClayOrganic","ClayOrganic","3","python","#")

 logger.info("points 1, 2, or 3 assigned to wetland units not in floodplain with clay or organic

soils and seasonal ponding")

 arcpy.SelectLayerByAttribute_management("fcWUClayOrganic", "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("WU_ClayOrganic0"):

 arcpy.Delete_management("WU_ClayOrganic0")

 if arcpy.Exists("WU_ClayOrganic1"):

 arcpy.Delete_management("WU_ClayOrganic1")

 if arcpy.Exists("WU_ClayOrganic2"):

 arcpy.Delete_management("WU_ClayOrganic2")

 if arcpy.Exists("WU_ClayOrganic3"):

 arcpy.Delete_management("WU_ClayOrganic3")

862

5.7.87 Depressions: Water Quality Potential

File Name: Depressions.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/21/2016 (modified 11/29/2017)

Purpose:

Input to Water Quality; Max 5 points, floodplain wetlands only.

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcDepressions(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.Depressions")

 # Clean up if needed

 if arcpy.Exists("WU_Depressions"):

 arcpy.Delete_management("WU_Depressions")

 if arcpy.Exists("WU_Depressions0"):

 arcpy.Delete_management("WU_Depressions0")

 if arcpy.Exists("WU_Depressions1"):

 arcpy.Delete_management("WU_Depressions1")

863

 if arcpy.Exists("WU_Depressions2"):

 arcpy.Delete_management("WU_Depressions2")

 if arcpy.Exists("WU_Depressions3"):

 arcpy.Delete_management("WU_Depressions3")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea","fcFloodplain")

 arcpy.MakeFeatureLayer_management(r"WU_Microtopo","fcMicrotopo")

 arcpy.MakeFeatureLayer_management(r"WU_LowSlope","fcLowSlope")

 arcpy.MakeFeatureLayer_management(r"WU_IrrEdge","fcIrrEdge")

 logger.info("feature layers ready")

 # Create feature class to store Depressions variable

 arcpy.CopyFeatures_management(WetlandPoly, "WU_Depressions0")

 arcpy.MakeFeatureLayer_management(r"WU_Depressions0","fcWUDepressions0")

 logger.info("feature copied to store Depressions variable")

 # Spatial join to add input variables to attribute table

###

#################

 # SJ: Floodplain

###

#################

 fmSJWPO0 = arcpy.FieldMappings()

 fmSJWPO0.addTable("fcWUDepressions0")

 fmSJWPO0.addTable("fcFloodplain")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Floodplain"]

864

 for field in fmSJWPO0.fields:

 if field.name not in keepers:

 fmSJWPO0.removeFieldMap(fmSJWPO0.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUDepressions0","fcFloodplain","WU_Depressions1","JOIN_O

NE_TO_ONE","KEEP_ALL",fmSJWPO0,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_Depressions1","fcWUDepressions1")

 logger.info("Spatial join to add input Floodplain to attribute table completed")

###

#################

 # SJ: Microtopo

###

#################

 fmSJWPO1 = arcpy.FieldMappings()

 fmSJWPO1.addTable("fcWUDepressions1")

 fmSJWPO1.addTable("fcMicrotopo")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Floodplain","Microtopo"]

 for field in fmSJWPO1.fields:

 if field.name not in keepers:

 fmSJWPO1.removeFieldMap(fmSJWPO1.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUDepressions1","fcMicrotopo","WU_Depressions2","JOIN_O

NE_TO_ONE","KEEP_ALL",fmSJWPO1,"CONTAINS")

865

 arcpy.MakeFeatureLayer_management("WU_Depressions2","fcWUDepressions2")

 logger.info("Spatial join to add input Microtopo to attribute table completed")

###

#################

 # SJ: LowSlope

###

#################

 fmSJWPO2 = arcpy.FieldMappings()

 fmSJWPO2.addTable("fcWUDepressions2")

 fmSJWPO2.addTable("fcLowSlope")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","Floodplain","Microtopo","LowSlope"]

 for field in fmSJWPO2.fields:

 if field.name not in keepers:

 fmSJWPO2.removeFieldMap(fmSJWPO2.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUDepressions2","fcLowSlope","WU_Depressions3","JOIN_O

NE_TO_ONE","KEEP_ALL",fmSJWPO2,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_Depressions3","fcWUDepressions3")

 logger.info("Spatial join to add input LowSlope to attribute table completed")

###

#################

 # SJ: IrrEdge

866

###

#################

 fmSJWPO3 = arcpy.FieldMappings()

 fmSJWPO3.addTable("fcWUDepressions3")

 fmSJWPO3.addTable("fcIrrEdge")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","Floodplain","Microtopo","LowSlope","IrrEdge"]

 for field in fmSJWPO3.fields:

 if field.name not in keepers:

 fmSJWPO3.removeFieldMap(fmSJWPO3.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUDepressions3","fcIrrEdge","WU_Depressions","JOIN_ONE_

TO_ONE","KEEP_ALL",fmSJWPO3,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_Depressions","fcWUDepressions")

 logger.info("Spatial join to add input IrrEdge to attribute table completed")

 # Add field to Wetland Units and set initial point value to zero

 actions.DeleteField("fcWUDepressions","Depressions")

 arcpy.AddField_management("fcWUDepressions", "Depressions", "SHORT")

 arcpy.CalculateField_management("fcWUDepressions","Depressions","0","VB","#")

 logger.info("field Depressions added and initial value set to 0")

 # Sum points for surface depression (Depressions) in floodplain Wetland Units

arcpy.SelectLayerByAttribute_management("fcWUDepressions","NEW_SELECTION",""""Fl

oodplain" = 'Y'""")

867

arcpy.CalculateField_management("fcWUDepressions","Depressions","[Microtopo]+[LowSlop

e]+[IrrEdge]","VB","#")

 logger.info("field Depressions calculated")

 arcpy.SelectLayerByAttribute_management("fcWUDepressions", "CLEAR_SELECTION")

 ## Clean up

 if arcpy.Exists("WU_Depressions0"):

 arcpy.Delete_management("WU_Depressions0")

 if arcpy.Exists("WU_Depressions1"):

 arcpy.Delete_management("WU_Depressions1")

 if arcpy.Exists("WU_Depressions2"):

 arcpy.Delete_management("WU_Depressions2")

 if arcpy.Exists("WU_Depressions3"):

 arcpy.Delete_management("WU_Depressions3")

868

5.7.89 Headwater: Water Quality Potential

File Name: Headwater.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 6/15/2016 (modified 11/28/2017)

Purpose:

Input to Water Quality (Potential) and Flood Attenuation (Potential) functions

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineHW(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.Headwater")

 # Clean up if needed

 if arcpy.Exists("WU_Headwater"):

 arcpy.Delete_management("WU_Headwater")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly,"fcWU")

 arcpy.MakeFeatureLayer_management(r"WU_LandPos","fcWULandPos")

869

 logger.info("feature layers ready")

 # Spatial join to add input variable to attribute table

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable("fcWU")

 fmSJ.addTable("fcWULandPos")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","LandPos"]

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWU","fcWULandPos","WU_Headwater","JOIN_ONE_TO_ONE

","KEEP_ALL",fmSJ,"CONTAINS")

 logger.info("spatial join completed to add input variable to attribute table")

 fcWUHeadwater = arcpy.mapping.Layer(r"WU_Headwater")

 # Add Headwater field to Wetland Units and set the inital point value to zero

 actions.DeleteField(fcWUHeadwater,"Headwater")

 arcpy.AddField_management(fcWUHeadwater, "Headwater", "SHORT")

 arcpy.CalculateField_management(fcWUHeadwater, "Headwater", "0", "PYTHON")

 logger.info("field Headwater added and initial point value set to 0")

 # Assin 1 point to Wetland Units with Landscape Position headwater modifier

arcpy.SelectLayerByAttribute_management(fcWUHeadwater,"NEW_SELECTION",""""LandP

os" LIKE '%h'""")

 arcpy.CalculateField_management(fcWUHeadwater,"Headwater","1","PYTHON","#")

870

 logger.info("point assigned to Wetland Units with Landscape Position headwater modifier")

 arcpy.SelectLayerByAttribute_management(fcWUHeadwater, "CLEAR_SELECTION")

871

5.7.90 SWoutflow: Water Quality Potential

File Name: SWoutflow.py

Developer: Chad Ashworth (modified by Yibing Han)

Date 6/14/2016 (modified 12/05/2017)

Purpose:

SWOutflow: Input to Water Quality. / SWOutflow2: Input to Flood Attenuation.

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineSWoutflow(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.SWoutflow")

 # Clean up if needed

 if arcpy.Exists("WU_SWOutflow"):

 arcpy.Delete_management("WU_SWOutflow")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_WFlowPath","fcWFlowPath")

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea","fcWUFloodplain")

872

 logger.info("feature layers ready")

###

################

 # Spatial join to add input variables to attribute table

###

################

 fmSJ2 = arcpy.FieldMappings()

 fmSJ2.addTable("fcWFlowPath")

 fmSJ2.addTable("fcWUFloodplain")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","WFlowPath","Floodplain"]

 for field in fmSJ2.fields:

 if field.name not in keepers:

 fmSJ2.removeFieldMap(fmSJ2.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWFlowPath","fcWUFloodplain","WU_SWOutflow","JOIN_ON

E_TO_ONE","KEEP_ALL",fmSJ2,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_SWOutflow","fcWUSWoutflow")

 logger.info("spatial join to add WFlowPath and Floodplain completed")

###

################

 # Add SWOutflow fields to Wetland Units and set inital value to zero

873

###

################

 actions.DeleteField("fcWUSWoutflow","SWOutflow")

 arcpy.AddField_management("fcWUSWoutflow", "SWOutflow", "SHORT")

 arcpy.CalculateField_management("fcWUSWoutflow","SWOutflow","0","PYTHON_9.3")

 logger.info("field SWOutflow added and initial value set to 0")

 actions.DeleteField("fcWUSWoutflow","SWOutflow2")

 arcpy.AddField_management("fcWUSWoutflow", "SWOutflow2", "SHORT")

 arcpy.CalculateField_management("fcWUSWoutflow","SWOutflow2","0","PYTHON_9.3")

 logger.info("field SWOutflow2 added and initial value set to 0")

###

################

 # Assign points for to SWoutflow

###

################

arcpy.SelectLayerByAttribute_management("fcWUSWoutflow","NEW_SELECTION",""""Flo

odplain" = 'N'""")

 arcpy.CalculateField_management("fcWUSWoutflow","SWOutflow","1","VB","#")

arcpy.SelectLayerByAttribute_management("fcWUSWoutflow","NEW_SELECTION",""""Flo

odplain" = 'N' AND "WFlowPath" IN ('OI','TI','BI','IB')""")

 arcpy.CalculateField_management("fcWUSWoutflow","SWOutflow","3","VB","#")

 arcpy.CalculateField_management("fcWUSWoutflow","SWOutflow2","1","VB","#")

874

arcpy.SelectLayerByAttribute_management("fcWUSWoutflow","NEW_SELECTION",""""Flo

odplain" = 'N' AND "WFlowPath" IN ('IS')""")

 arcpy.CalculateField_management("fcWUSWoutflow","SWOutflow","4","VB","#")

 arcpy.CalculateField_management("fcWUSWoutflow","SWOutflow2","2","VB","#")

 logger.info("points assigned to SWOutflow and SWOutflow2")

875

5.7.91 VegWQ: Water Quality Potential

File Name: VegWQ.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/23/2016 (modified 11/02/2017)

Purpose:

Input to Water Quality

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcVegWQ(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.VegWQ")

 #clean up if needed

 if arcpy.Exists("WU_VegWQ0"):

 arcpy.Delete_management("WU_VegWQ0")

 if arcpy.Exists("WU_VegWQ1"):

 arcpy.Delete_management("WU_VegWQ1")

 if arcpy.Exists("WU_VegWQ2"):

 arcpy.Delete_management("WU_VegWQ2")

876

 if arcpy.Exists("WU_VegWQ3"):

 arcpy.Delete_management("WU_VegWQ3")

 if arcpy.Exists("WU_VegWQ"):

 arcpy.Delete_management("WU_VegWQ")

 arcpy.MakeFeatureLayer_management(r"WU_VegPerUng","fcVegPerUng")

 arcpy.MakeFeatureLayer_management(r"WU_VegWoody","fcVegWoody")

 arcpy.MakeFeatureLayer_management(r"WU_VegByLP","fcVegByLP")

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea","fcFloodplain")

 logger.info("feature layers ready")

 # Create feature class to store VegWQ variable

 arcpy.CopyFeatures_management(WetlandPoly, "WU_VegWQ0")

 arcpy.MakeFeatureLayer_management(r"WU_VegWQ0","WUVegWQ0")

 logger.info("feature class WU_VegWQ0 created")

 # Add VegWQ field to Wetland Units and set initial point value to zero

 actions.DeleteField("WUVegWQ0","VegWQ")

 arcpy.AddField_management("WUVegWQ0", "VegWQ", "SHORT")

 arcpy.CalculateField_management("WUVegWQ0","VegWQ","0","VB","#")

 logger.info("field VegWQ added to Wetland Units and initial point value set to zero")

###

#################

 # SJ: VegPerUng

###

#################

 fmSJVPU = arcpy.FieldMappings()

 fmSJVPU.addTable("WUVegWQ0")

877

 fmSJVPU.addTable("fcVegPerUng")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","VegWQ","VegPerUng"]

 for field in fmSJVPU.fields:

 if field.name not in keepers:

 fmSJVPU.removeFieldMap(fmSJVPU.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("WUVegWQ0","fcVegPerUng","WU_VegWQ1","JOIN_ONE_TO

_ONE","KEEP_ALL",fmSJVPU,"CONTAINS")

 arcpy.MakeFeatureLayer_management(r"WU_VegWQ1","WUVegWQ1")

 logger.info("spatial join for VegPerUng completed")

 ## Spatial join to add input variables to attribute table

###

#################

 # SJ: VegWoody (3 NULL Records)

###

#################

 fmSJVW = arcpy.FieldMappings()

 fmSJVW.addTable("WUVegWQ1")

 fmSJVW.addTable("fcVegWoody")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","VegWQ","VegPerUng","VegWoody"]

 for field in fmSJVW.fields:

878

 if field.name not in keepers:

 fmSJVW.removeFieldMap(fmSJVW.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("WUVegWQ1","fcVegWoody","WU_VegWQ2","JOIN_ONE_TO_

ONE","KEEP_ALL",fmSJVW,"CONTAINS")

 arcpy.MakeFeatureLayer_management(r"WU_VegWQ2","WUVegWQ2")

 logger.info("spatial join for VegWoody completed")

###

#################

 # SJ: VegByLP (10776 NULL Records)

###

#################

 fmSJVLP = arcpy.FieldMappings()

 fmSJVLP.addTable("WUVegWQ2")

 fmSJVLP.addTable("fcVegByLP")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","VegWQ","VegPerUng","VegWoody","VegByLP"]

 for field in fmSJVLP.fields:

 if field.name not in keepers:

 fmSJVLP.removeFieldMap(fmSJVLP.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("WUVegWQ2","fcVegByLP","WU_VegWQ3","JOIN_ONE_TO_

ONE","KEEP_ALL",fmSJVLP,"CONTAINS")

 arcpy.MakeFeatureLayer_management(r"WU_VegWQ3","WUVegWQ3")

879

 logger.info("spatial join for VegByLP completed")

###

#################

 # SJ: Floodplain

###

#################

 fmSJFP = arcpy.FieldMappings()

 fmSJFP.addTable("WUVegWQ3")

 fmSJFP.addTable("fcFloodplain")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","VegWQ","VegPerUng","VegWoody","VegByLP",

"Floodplain"]

 for field in fmSJFP.fields:

 if field.name not in keepers:

 fmSJFP.removeFieldMap(fmSJFP.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("WUVegWQ3","fcFloodplain","WU_VegWQ","JOIN_ONE_TO_O

NE","KEEP_ALL",fmSJFP,"CONTAINS")

 arcpy.MakeFeatureLayer_management(r"WU_VegWQ","WUVegWQ")

 logger.info("spatial join for Floodplain completed")

 # Sum the point for VegPerUng, VegWoody, and VegByLP

 arcpy.CalculateField_management("WUVegWQ","VegWQ","[VegPerUng] + [VegWoody]

+ [VegByLP]","VB","#")

 logger.info("the point summed for VegPerUng, VegWoody, and VegByLP")

880

 # Reduce any excess point scores to the maxiumim allowed

 arcpy.SelectLayerByAttribute_management("WUVegWQ", "CLEAR_SELECTION")

arcpy.SelectLayerByAttribute_management("WUVegWQ","NEW_SELECTION",""""VegWQ

" > 10""")

 arcpy.CalculateField_management("WUVegWQ","VegWQ","10","VB","#")

 arcpy.SelectLayerByAttribute_management("WUVegWQ", "CLEAR_SELECTION")

arcpy.SelectLayerByAttribute_management("WUVegWQ","NEW_SELECTION",""""VegWQ

" > 5 AND "Floodplain" = 'N'""")

 arcpy.CalculateField_management("WUVegWQ","VegWQ","5","VB","#")

 logger.info("excess point scores reduced to the maxiumim allowed")

 arcpy.SelectLayerByAttribute_management("WUVegWQ", "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("WU_VegWQ0"):

 arcpy.Delete_management("WU_VegWQ0")

 if arcpy.Exists("WU_VegWQ1"):

 arcpy.Delete_management("WU_VegWQ1")

 if arcpy.Exists("WU_VegWQ2"):

 arcpy.Delete_management("WU_VegWQ2")

 if arcpy.Exists("WU_VegWQ3"):

 arcpy.Delete_management("WU_VegWQ3")

881

5.7.92 Clay: Water Quality Potential

File Name: Clay.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/2/2016 (modified 11/16/2017)

Purpose:

Input to Water Quality / Clay and Organic Soils Factor

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def Clay(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.Clay")

 # Clean up if needed

 if arcpy.Exists("WU_Clay"):

 arcpy.Delete_management("WU_Clay")

 PalustringPlots = arcpy.mapping.Layer(globalvars.srcPalustringPlots)

 SSURGO = arcpy.mapping.Layer(globalvars.srcSSURGO)

 logger.info("feature layers ready")

882

###

##########

 # Part 1: Palustrine Plots

###

##########

 #Create feature class to store Clay value

 arcpy.CopyFeatures_management(WetlandPoly,"WU_Clay","#","0","0","0")

 fcWUClay = arcpy.mapping.Layer("WU_Clay")

 logger.info("WU_Clay created to store Clay value")

 # add Clay field to Wetland Poly

 actions.DeleteField(fcWUClay,"Clay")

 arcpy.AddField_management(fcWUClay, "Clay", "TEXT", "", "", "2")

 arcpy.CalculateField_management(fcWUClay, "Clay", "'N'", "PYTHON_9.3")

 logger.info("field Clay added to Wetland units and initial value set to 'N'")

 # Select Wetland Units that intersect palustrine plots selection

 strWHERE = """("Soil_Textu" LIKE '%clay%' OR "Profile__1" LIKE '%clay%') AND

"Depth_of_o" IN (' ','0','1','2','3','4')"""

 arcpy.SelectLayerByAttribute_management(PalustringPlots, "NEW_SELECTION",

strWHERE)

 logger.info("Wetland Units that intersect palustrine plots selection selected")

 # Update the value for Clay based on Palustrine plots

 arcpy.SelectLayerByLocation_management(fcWUClay, "INTERSECT", PalustringPlots, "",

"NEW_SELECTION")

 arcpy.CalculateField_management(fcWUClay, "Clay", "'Y'", "PYTHON_9.3")

 arcpy.SelectLayerByAttribute_management(fcWUClay, "CLEAR_SELECTION")

883

 arcpy.SelectLayerByAttribute_management(PalustringPlots, "CLEAR_SELECTION")

 logger.info("the value for Clay based on Palustrine plots updated")

###

##########

 # Part 2: SSURGO

###

##########

 # Select Wetland Units that intersect with the SSURGO selection.

 arcpy.SelectLayerByLocation_management(fcWUClay, "INTERSECT", SSURGO, "",

"NEW_SELECTION")

 logger.info("Wetland Units that intersect with the SSURGO selection selected")

 # Update the value for Clay based on SSURGO

 arcpy.CalculateField_management(fcWUClay, "Clay", "'Y'", "PYTHON_9.3")

 arcpy.SelectLayerByAttribute_management(fcWUClay, "CLEAR_SELECTION")

 logger.info("the value for Clay based on SSURGO updated")

 # Clean up

884

5.7.93 IrrEdge: Water Quality Potential

File Name: IrrEdge.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/7/2016 (modified 11/16/2017)

Purpose:

Input to Water Quality/Surface Depressions

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcIrrEdge(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.IrrEdge")

 # Clean up if needed

 if arcpy.Exists("RiversLakes"):

 arcpy.Delete_management("RiversLakes")

 if arcpy.Exists("WU_RiversLakes"):

 arcpy.Delete_management("WU_RiversLakes")

 if arcpy.Exists("Intersecting_lines"):

 arcpy.Delete_management("Intersecting_lines")

885

 if arcpy.Exists("DryEdges"):

 arcpy.Delete_management("DryEdges")

 if arcpy.Exists("WU_IrrEdge"):

 arcpy.Delete_management("WU_IrrEdge")

 if arcpy.Exists("WU_IrrEdge1"):

 arcpy.Delete_management("WU_IrrEdge1")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(globalvars.srcRiversLakes,"fcRiversLakes")

 logger.info("feature layers ready")

 #Create feature class to store intermediate value

 arcpy.CopyFeatures_management(WetlandPoly,"WU_IrrEdge1","#","0","0","0")

 arcpy.MakeFeatureLayer_management("WU_IrrEdge1", "fcWUIrrEdge1")

 logger.info("WU_IrrEdge1 created to store intermediate value")

 # deleting then adding the IrrEdgeRat

 actions.DeleteField("fcWUIrrEdge1","IrrEdgeRat")

 arcpy.AddField_management("fcWUIrrEdge1", "IrrEdgeRat", "FLOAT")

 # Calculate initial value of IrrEdgeRat for Wetland Units

 arcpy.CalculateField_management("fcWUIrrEdge1","IrrEdgeRat","[Shape_Length] /(

[Shape_Area]^0.5)","VB","#")

 logger.info("field IrrEdgeRat added and calculated")

 # Select the Wetland Units that border a river or lake

arcpy.SelectLayerByLocation_management("fcWUIrrEdge1","INTERSECT","fcRiversLakes",

"#","NEW_SELECTION")

 arcpy.CopyFeatures_management("fcWUIrrEdge1", "WU_RiversLakes")

886

 logger.info("Wetland Units that border a river or lake selected and exported")

 # Convert Wetland polygons to lines

arcpy.PolygonToLine_management("WU_RiversLakes","Intersecting_lines","IGNORE_NEIG

HBORS")

 arcpy.MakeFeatureLayer_management("Intersecting_lines", "fcIntersectingLines")

 logger.info("wetland polygons converted to lines")

 # Erase the wet perimeter lines

 arcpy.Erase_analysis("fcIntersectingLines","fcRiversLakes","DryEdges","#")

 arcpy.MakeFeatureLayer_management(r"DryEdges","fcDryEdges")

 logger.info("wet perimeter lines erased")

 # deleting then adding the DryPerim

 actions.DeleteField("fcDryEdges","DryPerim")

 arcpy.AddField_management("fcDryEdges", "DryPerim", "FLOAT")

 arcpy.CalculateField_management("fcDryEdges","DryPerim","[Shape_Length]","VB","#")

 logger.info("field DryPerim added and value calculated")

 # Reset to NULL records from DryEdges with length < 26. These are mapping or

computational errors

 strWHERE = """"DryPerim" < 26"""

 arcpy.SelectLayerByAttribute_management("fcDryEdges", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcDryEdges","DryPerim","NULL","VB","#")

 logger.info("NULL records from DryEdges with length < 26 reseted to NULL")

###

#################

887

 # SJ: Wetland Units & DryEdges

###

#################

 arcpy.SelectLayerByAttribute_management("fcDryEdges", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcWUIrrEdge1", "CLEAR_SELECTION")

 fmSJWUD = arcpy.FieldMappings()

 fmSJWUD.addTable("fcWUIrrEdge1")

 fmSJWUD.addTable("fcDryEdges")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","IrrEdgeRat","DryPerim"]

 for field in fmSJWUD.fields:

 if field.name not in keepers:

 fmSJWUD.removeFieldMap(fmSJWUD.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUIrrEdge1","fcDryEdges","WU_IrrEdge","JOIN_ONE_TO_O

NE","KEEP_ALL",fmSJWUD,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_IrrEdge","fcWUIrrEdge")

 logger.info("spatial join of WU_IrrEdge1 and DryEdges completed")

###

#################

 strWHERE = """"DryPerim" > 0"""

 arcpy.SelectLayerByAttribute_management("fcWUIrrEdge", "NEW_SELECTION",

strWHERE)

888

 # Update the value of IrrEdgeRar for the selected records

arcpy.CalculateField_management("fcWUIrrEdge","IrrEdgeRat","[DryPerim]/([Shape_Area]^0

.5)","VB","#")

 arcpy.SelectLayerByAttribute_management("fcWUIrrEdge", "CLEAR_SELECTION")

 logger.info("the value of IrrEdgeRar updated for the selected records")

 # Add IrrEdge point field and set the initial value to zeo

 actions.DeleteField("fcWUIrrEdge","IrrEdge")

 arcpy.AddField_management("fcWUIrrEdge", "IrrEdge", "SHORT")

 arcpy.CalculateField_management("fcWUIrrEdge","IrrEdge","0","VB","#")

 logger.info("field IrrEdge added and initial value set to 0")

 # Assign 1 point if IrrEdgeRat > 6

 strWHERE = """"IrrEdgeRat" > 6"""

 arcpy.SelectLayerByAttribute_management("fcWUIrrEdge", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUIrrEdge","IrrEdge","1","VB","#")

 logger.info("1 point assigned for IrrEdge if IrrEdgeRat > 6 for wetland units")

 arcpy.SelectLayerByAttribute_management("fcWUIrrEdge", "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("RiversLakes"):

 arcpy.Delete_management("RiversLakes")

 if arcpy.Exists("WU_RiversLakes"):

 arcpy.Delete_management("WU_RiversLakes")

 if arcpy.Exists("Intersecting_lines"):

 arcpy.Delete_management("Intersecting_lines")

 if arcpy.Exists("DryEdges"):

 arcpy.Delete_management("DryEdges")

889

 if arcpy.Exists("WU_IrrEdge1"):

 arcpy.Delete_management("WU_IrrEdge1")

890

5.7.94 LandPos: Water Quality Potential

File Name: LandPos.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 6/14/2016 (modified 11/28/2017)

Purpose:

Basic functional variable, used in several functional equations

Input to Water Quality/Headwater Location

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineLandPos(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.LandPos")

 # Clean up if needed

 if arcpy.Exists("WU_LandPos"):

 arcpy.Delete_management("WU_LandPos")

 if arcpy.Exists("WU_LandPos1"):

 arcpy.Delete_management("WU_LandPos1")

891

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_FloodArea","fcWUFloodplain")

 arcpy.MakeFeatureLayer_management(r"WU_WflowPath","fcWFlowPath")

 arcpy.MakeFeatureLayer_management(globalvars.srcDrainageArea,"fcDA27m")

 arcpy.MakeFeatureLayer_management(globalvars.srcWBRivers,"fcWBRivers")

 arcpy.MakeFeatureLayer_management(globalvars.srcFSOFlow,"fcFSOFlow")

 arcpy.MakeFeatureLayer_management(globalvars.srcEnhWetland,"fcENWI")

 logger.info("feature layers ready")

###

#################

 # SJ: Joins to add variables to new Landscape Position feature class

###

#################

 fmSJFP = arcpy.FieldMappings()

 fmSJFP.addTable("fcWFlowPath")

 fmSJFP.addTable("fcWUFloodplain")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","WFlowPath","Floodplain"]

 for field in fmSJFP.fields:

 if field.name not in keepers:

 fmSJFP.removeFieldMap(fmSJFP.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWFlowPath","fcWUFloodplain","WU_LandPos1","JOIN_ONE_

TO_ONE","KEEP_ALL",fmSJFP,"CONTAINS")

 arcpy.MakeFeatureLayer_management(r"WU_LandPos1","fcWULandPos1")

892

 logger.info("spatial join WFlowPath and Floodplain completed")

arcpy.JoinField_management("fcWULandPos1","OBJECTID","fcDA27m","WUKey","WUKe

y;CntrWshd")

 logger.info("join field completed")

 # Export join to feature class

 arcpy.CopyFeatures_management("fcWULandPos1","WU_LandPos","#","0","0","0")

 arcpy.MakeFeatureLayer_management(r"WU_LandPos","fcWULandPos")

 logger.info("joined data exported")

 # Add text field to the Wetland Units feature class

 actions.DeleteField("fcWULandPos","LandPos")

 arcpy.AddField_management("fcWULandPos", "LandPos", "TEXT", 5)

 logger.info("field LandPos added to wetland units")

 # Assign Lotic Stream Lanscape Position

 arcpy.SelectLayerByAttribute_management("fcWULandPos", "CLEAR_SELECTION")

arcpy.SelectLayerByAttribute_management("fcWULandPos","NEW_SELECTION",""""Flood

plain" = 'Y'""")

 arcpy.CalculateField_management("fcWULandPos","LandPos","'LS'","PYTHON_9.3","#")

 arcpy.SelectLayerByAttribute_management("fcWULandPos", "CLEAR_SELECTION")

 logger.info("Lotic stream landscape position assigned")

 # Assign Lotic River Landscape Position

 actions.DeleteField("fcWULandPos","River")

 arcpy.AddField_management("fcWULandPos", "River", "TEXT", 2)

893

arcpy.SelectLayerByLocation_management("fcWULandPos","WITHIN_A_DISTANCE","fcW

BRivers","200 Meters","NEW_SELECTION")

 arcpy.CalculateField_management("fcWULandPos","River","'Y'","PYTHON_9.3")

arcpy.SelectLayerByAttribute_management("fcWULandPos","NEW_SELECTION",""""LandP

os" = 'LS' AND "River" = 'Y'""")

 arcpy.CalculateField_management("fcWULandPos","LandPos","'LR'","PYTHON_9.3","#")

 arcpy.SelectLayerByAttribute_management("fcWULandPos", "CLEAR_SELECTION")

 logger.info("Lotic river landscape position assigned")

 # Assign headwater modifier to Lotic Landscape Position for wetlands intersecting first and

second order streams, outflow wetlands, and wetlands with intermittent flow.

 # Include isolated wetlands for now since almost all of these are actually outlfow wetlands,

but the streams flowing from them are too small to show up on the NHD.

 actions.DeleteField("fcWULandPos","FSOStream")

 arcpy.AddField_management("fcWULandPos", "FSOStream", "TEXT", 2)

arcpy.SelectLayerByLocation_management("fcWULandPos","INTERSECT","fcFSOFlow","#"

,"NEW_SELECTION")

arcpy.CalculateField_management("fcWULandPos","FSOStream","'Y'","PYTHON_9.3","#")

#arcpy.SelectLayerByAttribute_management(fcWULandPos,"NEW_SELECTION",""""LandP

os" = 'LS' AND ("FSOStream" = 'Y' OR "WFlowPath" LIKE '%O%' OR "WFlowPath" LIKE

'%I%')""")

arcpy.SelectLayerByAttribute_management("fcWULandPos","NEW_SELECTION","LandPos

= 'LS' AND ((POSITION('O' IN WFlowPath) > 0) OR (POSITION('I' IN WFlowPath) > 0) OR

(FSOStream = 'Y'))")

 arcpy.CalculateField_management("fcWULandPos","LandPos","'LSh'","PYTHON_9.3","#")

 logger.info("headwater modifier assigned to Lotic Landscape position for certain wetlands")

894

 # Assign Lentic Landscape Position

 arcpy.SelectLayerByAttribute_management("fcWULandPos", "CLEAR_SELECTION")

arcpy.SelectLayerByAttribute_management("fcENWI","NEW_SELECTION",""""WETLAND

_TYPE" = 'Lake'""")

arcpy.SelectLayerByLocation_management("fcWULandPos","WITHIN_A_DISTANCE","fcE

NWI","25 Meters","NEW_SELECTION")

 arcpy.CalculateField_management("fcWULandPos","LandPos","'LE'","PYTHON_9.3","#")

 logger.info("Lentic Landscape position assigned")

 # Assign Terrene Landscape Position

 arcpy.SelectLayerByAttribute_management("fcWULandPos", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcENWI", "CLEAR_SELECTION")

arcpy.SelectLayerByAttribute_management("fcWULandPos","NEW_SELECTION",""""LandP

os" IS NULL""")

 arcpy.CalculateField_management("fcWULandPos","LandPos","'TE'","PYTHON_9.3","#")

 logger.info("Terrene Landscape position assigned")

 # Assign headwater modifier to Terrene Landscape Position for wetlands intersecting first

and second order streams, outflow wetlands, and wetlands with intermittent flow.

 # Include isolated wetlands for now since almost all of these are actually outlfow wetlands,

but the streams flowing from them are too small to show up on the NHD.

arcpy.SelectLayerByAttribute_management("fcWULandPos","NEW_SELECTION","""LandPo

s = 'TE' AND ((POSITION('O' IN WFlowPath) > 0) OR (POSITION('I' IN WFlowPath) > 0)

OR (FSOStream = 'Y'))""")

 arcpy.CalculateField_management("fcWULandPos","LandPos","'TEh'","PYTHON_9.3","#")

 logger.info("headwater modifier assigned to Terrene Landscape position for certain

wetlands")

895

 # Assign headwater modifier to Terrene Landscape Position for wetlands with small

contributing watershed

arcpy.SelectLayerByAttribute_management("fcWULandPos","NEW_SELECTION",""""LandP

os" = 'TE' AND "CntrWshd" < 161874""")

 arcpy.CalculateField_management("fcWULandPos","LandPos","'TEh'","PYTHON_9.3","#")

 arcpy.SelectLayerByAttribute_management("fcWULandPos", "CLEAR_SELECTION")

 logger.info("headwater modifier assigned to Terrene Landscape Position for wetlands with

small contributing watershed")

 # Assign headwater modifier to Terrene Landscape Position for wetlands that occupy a large

percentage of their contributing watershed

 actions.DeleteField("fcWULandPos","PropWshd")

 arcpy.AddField_management("fcWULandPos", "PropWshd", "DOUBLE")

 arcpy.CalculateField_management("fcWULandPos","PropWshd","[Shape_Area]/

[CntrWshd]","VB","#")

arcpy.SelectLayerByAttribute_management("fcWULandPos","NEW_SELECTION",""""LandP

os" = 'TE' AND "PropWshd" > 0.05""")

 arcpy.CalculateField_management("fcWULandPos","LandPos","'TEh'","PYTHON_9.3","#")

 arcpy.SelectLayerByAttribute_management("fcWULandPos", "CLEAR_SELECTION")

 logger.info("headwater modifier assigned to Terrene Landscape for wetlands that occupy a

large percentage of their contributing watershed")

 # Clean Up

 if arcpy.Exists("WU_LandPos1"):

 arcpy.Delete_management("WU_LandPos1")

896

5.7.95 Lowslope: Water Quality Potential

File Name: LowSlope.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/3/2016 (modified 11/28/2017)

Purpose:

Water Quality Function / Potential / Surface Depressions Factor (Max 2 points)

Flood Attenuation Function / Potential

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcLowSlope(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.LowSlope")

 # Clean up if needed

 if arcpy.Exists("WU_LowSlope"):

 arcpy.Delete_management("WU_LowSlope")

 #Setting Python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly, "fcWU")

897

 arcpy.MakeFeatureLayer_management(r"WU_SLOPE", "fcWUSLOPE")

 logger.info("feature layers ready")

 ## Create feature class to store LowSlope

 fmSJLS = arcpy.FieldMappings()

 fmSJLS.addTable('fcWU')

 fmSJLS.addTable('fcWUSLOPE')

 keepers = []

 keepers = ['WUKey','Shape_Length','Shape_Area','SLOPE']

 for field in fmSJLS.fields:

 if field.name not in keepers:

 fmSJLS.removeFieldMap(fmSJLS.findFieldMapIndex(field.name))

 arcpy.SpatialJoin_analysis('fcWU', 'fcWUSLOPE', 'WU_LowSlope', 'JOIN_ONE_TO_ONE',

'KEEP_ALL', fmSJLS, 'CONTAINS')

 fcWULowSlope = arcpy.mapping.Layer(r"WU_LowSlope")

 logger.info("feature class WU_LowSlope created to store LowSlope")

 # deleting then add the LowSlope field and setting the value to 0

 actions.DeleteField(fcWULowSlope,"LowSlope")

 arcpy.AddField_management(fcWULowSlope, "LowSlope", "SHORT")

 arcpy.CalculateField_management(fcWULowSlope, "LowSlope", "0", "PYTHON_9.3")

 logger.info("field LowSlope added and initial value set to 0")

 # LowSlope field

 # assigning 2 points to wetlands with a slope < 2

898

 strWHERE = """"SLOPE" < 2"""

 arcpy.SelectLayerByAttribute_management(fcWULowSlope, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWULowSlope, "LowSlope", "2", "PYTHON_9.3")

 arcpy.SelectLayerByAttribute_management(fcWULowSlope, "CLEAR_SELECTION")

 # assigning 1 points to wetlands with a slope > 1 and < 6

 strWHERE = """"SLOPE" > 1 AND "SLOPE" < 6 """

 arcpy.SelectLayerByAttribute_management(fcWULowSlope, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWULowSlope, "LowSlope", "1", "PYTHON_9.3")

 arcpy.SelectLayerByAttribute_management(fcWULowSlope, "CLEAR_SELECTION")

 logger.info("points assigned to wetland units")

899

5.7.96 Microtopo: Water Quality Potential

File Name: Microtopo.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/3/2016 (modified 11/09/2017)

Purpose:

Input to Water Quality/Surface Depressions

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def MicroTopo(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.Microtopo")

 # Clean up if needed

 if arcpy.Exists("NWIpalustrine"):

 arcpy.Delete_management("NWIpalustrine")

 if arcpy.Exists("WU_Microtopo"):

 arcpy.Delete_management("WU_Microtopo")

 # Setting python variables

900

 arcpy.MakeFeatureLayer_management(WetlandPoly,"fcWU")

 arcpy.MakeFeatureLayer_management(globalvars.srcInput, "fcEnhWVWetland")

 logger.info("feature layers ready")

 # Create a new layer form the palustring polygons in the NWI

 strWHERE = """"ATTRIBUTE" LIKE 'P%'"""

 arcpy.SelectLayerByAttribute_management("fcEnhWVWetland", "NEW_SELECTION",

strWHERE)

 arcpy.CopyFeatures_management("fcEnhWVWetland", "NWIpalustrine")

 arcpy.MakeFeatureLayer_management("NWIpalustrine","fcNWIpalustrine")

 arcpy.SelectLayerByAttribute_management("fcEnhWVWetland", "CLEAR_SELECTION")

###

#################

 # SJ: NWIpalustrine

###

#################

 # Sum the permieters of the palustrine polygons that make up each Wetland Unit

arcpy.SpatialJoin_analysis("fcWU","fcNWIpalustrine","WU_Microtopo","JOIN_ONE_TO_O

NE","KEEP_ALL",

 """WUKey "WUKey" true true false 4 Long 0 0 ,First,#,fcWU,WUKey,-1,-1;

 Shape_Length "Shape_Length" false true true 8 Double 0 0

,First,#,fcWU,Shape_Length,-1,-1;

 Shape_Area "Shape_Area" false true true 8 Double 0 0 ,First,#,fcWU,Shape_Area,-1,-1;

 SHAPE_Length_1 "SHAPE_Length" false true true 8 Double 0 0

,Sum,#,fcNWIpalustrine,SHAPE_Length,-1,-1;

 SHAPE_Area_1 "SHAPE_Area" false true true 8 Double 0 0

,First,#,fcNWIpalustrine,SHAPE_Area,-1,-1""",

 "INTERSECT","#","#")

901

 fcWUMicrotopo = arcpy.mapping.Layer(r"WU_Microtopo")

 logger.info("Spatial Join completed to sum the permieters of the palustrine polygons that

make up each Wetland Unit")

###

#################

 # deleting then adding the MicroRatio, and Microtopo fields

 actions.DeleteField(fcWUMicrotopo,"MicroRatio")

 arcpy.AddField_management(fcWUMicrotopo, "MicroRatio", "FLOAT")

 actions.DeleteField(fcWUMicrotopo,"Microtopo")

 arcpy.AddField_management(fcWUMicrotopo, "Microtopo", "SHORT")

 # Divide the perimeter of summed palustrine polygons by the square roof of the Wetland Unit

Area

 arcpy.CalculateField_management(fcWUMicrotopo,"MicroRatio","[SHAPE_Length_1]/(

[Shape_Area]^0.5)","VB","#")

 # Assign points to Wetland Units

 arcpy.CalculateField_management(fcWUMicrotopo, "Microtopo", "0", "PYTHON")

 strWHERE = """"MicroRatio" > 8"""

 arcpy.SelectLayerByAttribute_management(fcWUMicrotopo, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUMicrotopo, "Microtopo", "1", "PYTHON")

 arcpy.SelectLayerByAttribute_management(fcWUMicrotopo, "CLEAR_SELECTION")

 strWHERE = """"MicroRatio" > 15"""

 arcpy.SelectLayerByAttribute_management(fcWUMicrotopo, "NEW_SELECTION",

strWHERE)

902

 arcpy.CalculateField_management(fcWUMicrotopo, "Microtopo", "2", "PYTHON")

 arcpy.SelectLayerByAttribute_management(fcWUMicrotopo, "CLEAR_SELECTION")

 if arcpy.Exists("NWIpalustrine"):

 arcpy.Delete_management("NWIpalustrine")

903

5.7.97 Organic: Water Quality Potential

File Name: Organic.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/18/2016 (modified 11/29/2017)

Purpose:

Input to Water Quality / Clay and Organic Soils Factor

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def OrganicFactor(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.Organic")

 # Clean up if needed

 if arcpy.Exists("WU_Organic"):

 arcpy.Delete_management("WU_Organic")

 # Setting python variables

 fcSsurgoOrganic = arcpy.mapping.Layer(globalvars.srcSsurgoOrganic)

 fcEnhancedNWI = arcpy.mapping.Layer(globalvars.srcInput)

904

 fcPeatlands = arcpy.mapping.Layer(globalvars.srcPeatlands)

 fcPalustrinePlots = arcpy.mapping.Layer(globalvars.srcPalustrineplots)

 fcSSURGO = arcpy.mapping.Layer(globalvars.srcSSURGOWV)

 arcpy.CopyFeatures_management(WetlandPoly, "WU_Organic")

 fcWUOrganic = arcpy.mapping.Layer(r"WU_Organic")

 logger.info("feature layers ready")

 # Add field Organic to Wetland Units and set initial point value to "no organic"

 actions.DeleteField(fcWUOrganic,"Organic")

 arcpy.AddField_management(fcWUOrganic, "Organic", "TEXT", 2)

 arcpy.CalculateField_management(fcWUOrganic,"Organic","'N'","PYTHON","#")

 logger.info("field Organic added and initial value set to N")

 ## PART 1: PEATLANDS

 # Select Wetland Units that are peatlands

arcpy.SelectLayerByLocation_management(fcWUOrganic,"INTERSECT",fcPeatlands,"#","NE

W_SELECTION")

 logger.info("wetland units that are peatlands selected")

 # Update value for "Organic" based on peatlands

 arcpy.CalculateField_management(fcWUOrganic,"Organic","'Y'","PYTHON","#")

 arcpy.SelectLayerByAttribute_management(fcWUOrganic, "CLEAR_SELECTION")

 logger.info("field Organic updated to wetland units that are peatlands")

 ## PART 2: NWI ORGANIC MATTER

 # Select polygons that have an organic modifier in the National Wetland Inventory

 strWHERE = """"ATTRIBUTE" LIKE '%g'"""

905

 arcpy.SelectLayerByAttribute_management(fcEnhancedNWI, "NEW_SELECTION",

strWHERE)

 # Select Wetland Units that intersect organic NWI polygons

arcpy.SelectLayerByLocation_management(fcWUOrganic,"INTERSECT",fcEnhancedNWI,"#"

,"NEW_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcEnhancedNWI, "CLEAR_SELECTION")

 logger.info("wetland units that intersect organic NWI polygons selected")

 # Update value for "Organic" based on NWI

 arcpy.CalculateField_management(fcWUOrganic,"Organic","'Y'","PYTHON","#")

 arcpy.SelectLayerByAttribute_management(fcWUOrganic, "CLEAR_SELECTION")

 logger.info("field Organic updated to wetland units that intersect organic NWI polygons")

 ## PART 3: PALUSTRINE PLOTS

 # Select Palustrine plots that have peat or much soils

 strWHERE = """"Soil_Textu" LIKE '%peat%' OR "Soil_Textu" LIKE '%muck%' OR

"Profile__1" LIKE '%peat%' OR "Profile__1" LIKE '%muck%' OR "Depth_of_o" NOT IN

('','0','1')"""

arcpy.SelectLayerByAttribute_management(fcPalustrinePlots,"NEW_SELECTION",strWHER

E)

 # Select Wetland Units that intersect palustrine plots with organic soils

arcpy.SelectLayerByLocation_management(fcWUOrganic,"INTERSECT",fcPalustrinePlots,"#

","NEW_SELECTION")

 logger.info("wetland units that intersect palustrine plots with organic soils selected")

 # Update value for "Organic" based on palustrine plots

 arcpy.CalculateField_management(fcWUOrganic,"Organic","'Y'","PYTHON","#")

906

 arcpy.SelectLayerByAttribute_management(fcWUOrganic, "CLEAR_SELECTION")

 logger.info("field Organic updated to wetland units that intersect palustrine plots with organic

soils")

 ## PART 4: SSURGO SELECTION

 # Select Wetland Units that intersect with SSURGO selection

arcpy.SelectLayerByLocation_management(fcWUOrganic,"INTERSECT",fcSsurgoOrganic,"#

","NEW_SELECTION")

 logger.info("wetland units that intersect with SSURGO selection selected")

 # Update value for "Organic" based on SSURGO

 arcpy.CalculateField_management(fcWUOrganic,"Organic","'Y'","PYTHON","#")

 arcpy.SelectLayerByAttribute_management(fcWUOrganic, "CLEAR_SELECTION")

 logger.info("field Organic updated to wetland units that intersect with SSURGO selection")

907

5.7.98 SeasonPond: Water Quality Potential

File Name: SeasonPond.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/15/2016 (modified 12/01/2017; modified 2/3/2022 to expand selection to include

vegetated lacustrine littoral and vegetated riverine polygons)

Purpose:

Input to Water Quality/Potential aspect/ChemTime Factor

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcSeasonPond(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.SeasonPond")

 # Clean up if needed

 if arcpy.Exists("WU_SeasonPond1"):

 arcpy.Delete_management("WU_SeasonPond1")

 if arcpy.Exists("WU_SeasonPond"):

 arcpy.Delete_management("WU_SeasonPond")

 # Setting python variables

908

 arcpy.MakeFeatureLayer_management(globalvars.srcInput, "fcEnhWVWetland")

 arcpy.MakeFeatureLayer_management(WetlandPoly,"fcWU")

 logger.info("feature layers ready")

 # Select all wetland polygons that are not permanently flooded

 strWHERE = """"ATTRIBUTE" NOT LIKE '%H%' AND ("ATTRIBUTE" LIKE 'P%' OR

"ATTRIBUTE" LIKE 'L2AB%' OR "ATTRIBUTE" LIKE 'L2US5%' OR "ATTRIBUTE"

LIKE 'L2EM%' OR "ATTRIBUTE" LIKE 'R2AB%' OR "ATTRIBUTE" LIKE 'R3AB%' OR

"ATTRIBUTE" LIKE 'R2US5%' OR "ATTRIBUTE" LIKE 'R3US5%' OR "ATTRIBUTE"

LIKE 'R2EM%' OR "ATTRIBUTE" LIKE 'R3EM%' OR "ATTRIBUTE" LIKE 'R4SB7%')"""

 arcpy.SelectLayerByAttribute_management("fcEnhWVWetland", "NEW_SELECTION",

strWHERE)

 logger.info("all the aplustrine wetland that are not permanently flooded selected")

 # Create layer of non-permanently flooded wetlands from selection

 arcpy.CopyFeatures_management("fcEnhWVWetland", "WU_SeasonPond1")

 arcpy.MakeFeatureLayer_management("WU_SeasonPond1","fcSeasonPond1")

 logger.info("layer of non-permanently flooded wetlands from selection created")

 arcpy.SelectLayerByAttribute_management("fcEnhWVWetland", "CLEAR_SELECTION")

 #Add field to store shape area

 actions.DeleteField("fcSeasonPond1","SeaPondRatio")

 arcpy.AddField_management("fcSeasonPond1", "SHAPE_Area_1", "FLOAT")

arcpy.CalculateField_management("fcSeasonPond1","SHAPE_Area_1","[SHAPE_Area]","VB

","#")

 logger.info("field SHAPE_Area_1 added and value calculated")

###

#################

 # SJ: SeasonPond

909

###

#################

 # Join non-permananently flooded wetlands to Wetland Units and sum the non-permanently

flooded area

 fmSJ = arcpy.FieldMappings()

 fmSJ.addTable("fcWU")

 fmSJ.addTable("fcSeasonPond1")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","SHAPE_Area_1"]

 for field in fmSJ.fields:

 if field.name not in keepers:

 fmSJ.removeFieldMap(fmSJ.findFieldMapIndex(field.name))

 fldKeyIndex = fmSJ.findFieldMapIndex("SHAPE_Area_1")

 fieldmap = fmSJ.getFieldMap(fldKeyIndex)

 fieldmap.mergeRule = "Sum"

 fmSJ.replaceFieldMap(fldKeyIndex, fieldmap)

arcpy.SpatialJoin_analysis("fcWU","fcSeasonPond1","WU_SeasonPond","JOIN_ONE_TO_O

NE","KEEP_ALL",fmSJ,"INTERSECT")

 fcSeasonPond = arcpy.mapping.Layer(r"WU_SeasonPond")

 logger.info("Spatial join non-permananently flooded wetlands to Wetland Units and sum the

non-permanently flooded area")

 # Add field to store ration of non-permanently-flooded area to total area

 actions.DeleteField(fcSeasonPond,"SeaPondRatio")

 arcpy.AddField_management(fcSeasonPond, "SeaPondRatio", "FLOAT")

910

 logger.info("field SeaPondRatio added to store ration of non-permanently-flooded area to

total area")

 # Calculate raio o fnon-permanently flooded to Wetland Unit area

arcpy.CalculateField_management(fcSeasonPond,"SeaPondRatio","[SHAPE_Area_1]/[Shape_

Area]","VB","#")

 logger.info("raio o fnon-permanently flooded calculated to Wetland Unit area")

 # Add field to store points for fnon-permanently flooded area and set initial value to zero

 actions.DeleteField(fcSeasonPond,"SeasonPond")

 arcpy.AddField_management(fcSeasonPond, "SeasonPond", "SHORT")

 arcpy.CalculateField_management(fcSeasonPond,"SeasonPond","0","VB","#")

 logger.info("field SeasonPond added and initial value set to 0")

 # Assign points to Wetland Units for seasonal ponding

 strWHERE = """"SeaPondRatio" > 0.1"""

 arcpy.SelectLayerByAttribute_management(fcSeasonPond, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcSeasonPond,"SeasonPond","1","VB","#")

 strWHERE = """"SeaPondRatio" > 0.4"""

 arcpy.SelectLayerByAttribute_management(fcSeasonPond, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcSeasonPond,"SeasonPond","2","VB","#")

 strWHERE = """"SeaPondRatio" > 0.7"""

 arcpy.SelectLayerByAttribute_management(fcSeasonPond, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcSeasonPond,"SeasonPond","3","VB","#")

 logger.info("points assigned to Wetland Units for SeasonPond")

911

 arcpy.SelectLayerByAttribute_management(fcSeasonPond, "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("WU_SeasonPond1"):

 arcpy.Delete_management("WU_SeasonPond1")

912

5.7.99 Slope: Water Quality Potential

File Name: SLOPE.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/2/2016 (modified 11/28/2017)

Purpose:

Calculate slope as the median value of percent

slope pixels within a Wetland Unit

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

from arcpy.sa import *

def CalcSLOPE(WetlandPoly):

 arcpy.CheckOutExtension("Spatial")

 logger = logging.getLogger("WFA.WQuality.WQPotential.SLOPE")

 # Clean up if needed

 if arcpy.Exists("ZonalSt_WU_SLOPE"):

 arcpy.Delete_management("ZonalSt_WU_SLOPE")

 if arcpy.Exists("WU_SLOPE"):

913

 arcpy.Delete_management("WU_SLOPE")

 if arcpy.Exists("WU_SLOPE1"):

 arcpy.Delete_management("WU_SLOPE1")

 # Copy Wetland Units feature class

 arcpy.CopyFeatures_management(WetlandPoly,"WU_SLOPE1")

 arcpy.MakeFeatureLayer_management("WU_SLOPE1", "fcWUSLOPE1")

 logger.info("feature layer ready")

 # Zonal statistics

 #arcpy.CalculateStatistics_management(globalvars.srcSlopePCT)

 #ZonalSt_WU_SLOPE = ZonalStatisticsAsTable(WetlandPoly, "WUKey",

globalvars.srcSlopePCT, "ZonalSt_WU_SLOPE", "NODATA", "MEDIAN")

 arcpy.gp.ZonalStatisticsAsTable("fcWUSLOPE1", "WUKey", globalvars.srcSlopePCT,

"ZonalSt_WU_SLOPE", "NODATA", "MEDIAN")

 logger.info("zonal statistics completed")

 # join table

 arcpy.AddJoin_management("fcWUSLOPE1", "WUKey", "ZonalSt_WU_SLOPE",

"WUKey")

 logger.info("zonal statistics table joined to wetland units")

 # create feature class from the Wetland Poly data joined with the Zonal Statistics Output

Table

 arcpy.FeatureClassToFeatureClass_conversion("fcWUSLOPE1", arcpy.env.workspace,

"WU_SLOPE")

 WUSlope = arcpy.mapping.Layer(r"WU_SLOPE")

 logger.info("feature class WU_SLOPE created")

 actions.DeleteField(WUSlope,"SLOPE")

 arcpy.AddField_management(WUSlope, "SLOPE", "SHORT")

914

arcpy.CalculateField_management(WUSlope,"SLOPE","[ZonalSt_WU_SLOPE_MEDIAN]","

VB","#")

 logger.info("field SLOPE added and calculated")

 # remove join

 arcpy.RemoveJoin_management("fcWUSLOPE1")

 if arcpy.Exists("ZonalSt_WU_SLOPE"):

 arcpy.Delete_management("ZonalSt_WU_SLOPE")

 if arcpy.Exists("WU_SLOPE1"):

 arcpy.Delete_management("WU_SLOPE1")

915

5.7.100 VegByLP: Water Quality Potential

File Name: VegByLP.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/22/2016 (modified 12/06/2017)

Purpose:

Used in Water Quality Function / Potential aspect / Vegetation Factor

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcVegByLP(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.VegByLP")

 # Clean up if needed

 if arcpy.Exists("WU_VegByLP1"):

 arcpy.Delete_management("WU_VegByLP1")

 if arcpy.Exists("WU_VegByLP"):

 arcpy.Delete_management("WU_VegByLP")

 if arcpy.Exists("VegAll"):

 arcpy.Delete_management("VegAll")

916

 if arcpy.Exists("Lakes"):

 arcpy.Delete_management("Lakes")

 if arcpy.Exists("WUbyLake"):

 arcpy.Delete_management("WUbyLake")

 if arcpy.Exists("WUbyLakeVegAll"):

 arcpy.Delete_management("WUbyLakeVegAll")

 if arcpy.Exists("Ponds"):

 arcpy.Delete_management("Ponds")

 if arcpy.Exists("WUwithPond"):

 arcpy.Delete_management("WUwithPond")

 if arcpy.Exists("WUwithPondVegAll"):

 arcpy.Delete_management("WUwithPondVegAll")

 if arcpy.Exists("WUwithPondVegAll_join"):

 arcpy.Delete_management("WUwithPondVegAll_join")

 if arcpy.Exists("WU_VegByLake"):

 arcpy.Delete_management("WU_VegByLake")

 # Setting Python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly,"fcWU")

 arcpy.MakeFeatureLayer_management(globalvars.srcInput,"fcInput")

 arcpy.MakeFeatureLayer_management(globalvars.srcRiversLakes,"fcRiversLakes")

 arcpy.MakeFeatureLayer_management(r"WU_WflowPath","fcWUflowPath")

 logger.info("feature layers ready")

 # Add fields to Wetland Units and set initial point value to zero

 actions.DeleteField("fcWU","VegByLP")

 arcpy.AddField_management("fcWU", "VegByLP", "SHORT")

 arcpy.CalculateField_management("fcWU","VegByLP","0","VB","#")

 logger.info("field VegByLP added and initial value set to 0")

917

 actions.DeleteField("fcWU","VegStream")

 arcpy.AddField_management("fcWU", "VegStream", "SHORT")

 logger.info("field VegStream added")

 actions.DeleteField("fcWU","PondRatio")

 arcpy.AddField_management("fcWU", "PondRatio", "FLOAT")

 logger.info("field PondRatio added")

###

#######

 # PART 1: CREATE VEGETATION LAYER

###

#######

 # Select the forest, shrubland, ermegent, moss, and aquatic bed vegetation

arcpy.SelectLayerByAttribute_management("fcInput","NEW_SELECTION",""""ATTRIBUTE

" LIKE 'PEM%' OR "ATTRIBUTE" LIKE 'PFO%' OR "ATTRIBUTE" LIKE 'PSS%' OR

"ATTRIBUTE" LIKE 'PAB%' OR "ATTRIBUTE" LIKE 'PML%'""")

 arcpy.CopyFeatures_management("fcInput", "VegAll")

 arcpy.MakeFeatureLayer_management(r"VegAll","fcVegAll")

 logger.info("forest, shrubland, ermegent, moss, and aquatic bed vegetation selected and

exported")

###

#######

 # PART 2: CREATE RIVER AND LAKE SELECTIONS

###

#######

918

 # Select Wetland Units that share a boundary with rivers or lakes

 arcpy.SelectLayerByAttribute_management("fcInput", "CLEAR_SELECTION")

arcpy.SelectLayerByLocation_management("fcWU","INTERSECT","fcRiversLakes","#","NE

W_SELECTION")

 arcpy.CopyFeatures_management("fcWU","WUbyLake","#","0","0","0")

 arcpy.MakeFeatureLayer_management(r"WUbyLake","fcWUbyLake")

 logger.info("Wetland Units that share a boundary with lakes selected and exported")

 # Select WUbyLake that are vegetated

arcpy.SelectLayerByLocation_management("fcWUbyLake","CONTAINS","fcVegAll","#","N

EW_SELECTION")

 arcpy.CopyFeatures_management("fcWUbyLake","WUbyLakeVegAll","#","0","0","0")

 arcpy.MakeFeatureLayer_management(r"WUbyLakeVegAll","fcWUbyLakeVegAll")

 logger.info("Wetland Units that share a boundary with lakes selected and exported")

 # Assign 1 point to VegByLP for the selected Wetland Units

 arcpy.CalculateField_management("fcWUbyLakeVegAll","VegByLP","1","VB","#")

 logger.info("1 point assignd to VegByLP for the selected Wetland Units")

###

#######

 # PART 3: CREATE POND SELECTIONS

###

#######

 # Select ponds.

arcpy.SelectLayerByAttribute_management("fcInput","NEW_SELECTION",""""ATTRIBUTE

" LIKE 'PA%' OR "ATTRIBUTE" LIKE 'PU%'""")

919

 arcpy.CopyFeatures_management("fcInput","Ponds","#","0","0","0")

 arcpy.MakeFeatureLayer_management(r"Ponds","fcPonds")

 logger.info("ponds selected and exported")

 # Select Wetland Units that contain ponds

arcpy.SelectLayerByLocation_management("fcWU","CONTAINS","fcPonds","#","NEW_SEL

ECTION")

 arcpy.CopyFeatures_management("fcWU","WUwithPond","#","0","0","0")

 arcpy.MakeFeatureLayer_management(r"WUwithPond","fcWUwithPond")

 logger.info("Wetland Units that contain ponds selected and exported")

 # Select WUwithPond that are vegetated

arcpy.SelectLayerByLocation_management("fcWUwithPond","CONTAINS","fcVegAll","#","

NEW_SELECTION")

 arcpy.CopyFeatures_management("fcWUwithPond","WUwithPondVegAll","#","0","0","0")

 arcpy.MakeFeatureLayer_management(r"WUwithPondVegAll","fcWUwithPondVegAll")

 logger.info("WUwithPond that are vegetated selected and exported")

 # Add Area fields and calculate geometry

 actions.DeleteField("fcPonds","PondArea")

 arcpy.AddField_management("fcPonds", "PondArea", "FLOAT")

 arcpy.CalculateField_management("fcPonds","PondArea","[SHAPE_Area]","VB","#")

 logger.info("field PondArea added and calculated")

 actions.DeleteField("WUwithPondVegAll","WUArea")

 arcpy.AddField_management("WUwithPondVegAll", "WUArea", "FLOAT")

arcpy.CalculateField_management("WUwithPondVegAll","WUArea","[SHAPE_Area]","VB",

"#")

920

 logger.info("field WUArea added and calculated")

 # Spatial join vegetated WU with ponds

 fmSJPonds = arcpy.FieldMappings()

 fmSJPonds.addTable("fcWUwithPondVegAll")

 fmSJPonds.addTable("fcPonds")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","VegByLP","PondRatio","VegStream","PondArea",

"WUArea"]

 for field in fmSJPonds.fields:

 if field.name not in keepers:

 fmSJPonds.removeFieldMap(fmSJPonds.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUwithPondVegAll","fcPonds","WUwithPondVegAll_join","J

OIN_ONE_TO_ONE","KEEP_ALL",fmSJPonds,"CONTAINS")

arcpy.MakeFeatureLayer_management(r"WUwithPondVegAll_join","fcWUwithPondVegAllJo

in")

 logger.info("spatial join WUwithPondVegAll and Ponds completed")

 # Calculate ratio of pond area (Ponds) to vegetated Wetland Unit (WUwithPondVegAll_join)

arcpy.CalculateField_management("fcWUwithPondVegAllJoin","PondRatio","[PondArea]/[W

UArea]","VB","#")

 logger.info("field PondRatio calculated")

 # Assign 1 point to VegByLP if pond area is < 100% of Wetland Unit area

921

arcpy.SelectLayerByAttribute_management("fcWUwithPondVegAllJoin","NEW_SELECTION

",""""PondRatio" < 1""")

 arcpy.CalculateField_management("fcWUwithPondVegAllJoin","VegByLP","1","VB","#")

 logger.info("1 point assigned to VegByLP if pond area is < 100% of Wetland Unit area")

 # PART 4: COMBINE RESULTS

 # Spatial Join lake results to Wetland Units

 arcpy.SelectLayerByAttribute_management("fcWU", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcWUwithPondVegAllJoin",

"CLEAR_SELECTION")

 actions.DeleteField("fcWUbyLakeVegAll","VegByLP_1")

 arcpy.AddField_management("fcWUbyLakeVegAll", "VegByLP_1", "SHORT")

arcpy.CalculateField_management("fcWUbyLakeVegAll","VegByLP_1","[VegByLP]","VB","

#")

 fmSJLakes = arcpy.FieldMappings()

 fmSJLakes.addTable("fcWU")

 fmSJLakes.addTable("fcWUbyLakeVegAll")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","VegByLP","VegByLP_1","PondRatio"]

 for field in fmSJLakes.fields:

 if field.name not in keepers:

 fmSJLakes.removeFieldMap(fmSJLakes.findFieldMapIndex(field.name))

922

arcpy.SpatialJoin_analysis("fcWU","fcWUbyLakeVegAll","WU_VegByLake","JOIN_ONE_T

O_ONE","KEEP_ALL",fmSJLakes,"INTERSECT")

 arcpy.MakeFeatureLayer_management(r"WU_VegByLake","fcWUVegByLake")

 logger.info("spatial join of lake results completed")

 # Select lake results and write to Wetland Units

 strWHERE = """"VegByLP_1" = 1"""

 arcpy.SelectLayerByAttribute_management("fcWUVegByLake", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUVegByLake","VegByLP","1","VB","#")

 logger.info("lake results selected and written to Wetland Units")

 arcpy.SelectLayerByAttribute_management("fcWUVegByLake", "CLEAR_SELECTION")

 ## Spatial Join pond results to Wetland Units

 arcpy.SelectLayerByAttribute_management("fcWU", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcWUwithPondVegAllJoin",

"CLEAR_SELECTION")

 actions.DeleteField("fcWUwithPondVegAllJoin","VegByLP_12")

 arcpy.AddField_management("fcWUwithPondVegAllJoin", "VegByLP_12", "SHORT")

arcpy.CalculateField_management("fcWUwithPondVegAllJoin","VegByLP_12","[VegByLP]",

"VB","#")

 fmSJWU = arcpy.FieldMappings()

 fmSJWU.addTable("fcWUVegByLake")

 fmSJWU.addTable("fcWUwithPondVegAllJoin")

 keepers = []

923

 keepers =

["WUKey","Shape_Length","Shape_Area","VegByLP","VegByLP_1","VegByLP_12","PondR

atio"]

 for field in fmSJWU.fields:

 if field.name not in keepers:

 fmSJWU.removeFieldMap(fmSJWU.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUVegByLake","fcWUwithPondVegAllJoin","WU_VegByLP1

","JOIN_ONE_TO_ONE","KEEP_ALL",fmSJWU,"INTERSECT")

 arcpy.MakeFeatureLayer_management(r"WU_VegByLP1","fcWUVegByLP1")

 logger.info("spatial join of pond results completed")

 # Select pond results and write to Wetland Units

 strWHERE = """"VegByLP_12" = 1"""

 arcpy.SelectLayerByAttribute_management("fcWUVegByLP1", "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUVegByLP1","VegByLP","1","VB","#")

 arcpy.SelectLayerByAttribute_management("fcWUVegByLP1", "CLEAR_SELECTION")

 logger.info("pond results selected and written to Wetland Units")

 # Delete unnecessary fields from WU_VegByLP1

 arcpy.DeleteField_management("fcWUVegByLP1","VegByLP_1;VegByLP_12")

###

#######

 # PART 5: Add vegetated wetlands that contain a through-flowing perennial stream.

###

#######

924

 ## Spatial Join WU_VegByLP1 to WU_WFlowPath

 fmSJPerennial = arcpy.FieldMappings()

 fmSJPerennial.addTable("fcWUVegByLP1")

 fmSJPerennial.addTable("fcWUflowPath")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","VegByLP","PondRatio","VegStream","WFlowPat

h"]

 for field in fmSJPerennial.fields:

 if field.name not in keepers:

 fmSJPerennial.removeFieldMap(fmSJPerennial.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUVegByLP1","fcWUflowPath","WU_VegByLP","JOIN_ONE

_TO_ONE","KEEP_ALL",fmSJPerennial,"CONTAINS")

 arcpy.MakeFeatureLayer_management(r"WU_VegByLP","fcWUVegByLP")

 logger.info("spatial join WU_VegByLP1 to WU_WFlowPath completed")

 # Select vegetated wetlands

arcpy.SelectLayerByLocation_management("fcWUVegByLP","INTERSECT","fcVegAll","#",

"NEW_SELECTION")

 # Select vegetated wetlands that contain a through-flowing perennial stream

 strWHERE = """"WFlowPath" = 'TP'"""

 arcpy.SelectLayerByAttribute_management("fcWUVegByLP", "SUBSET_SELECTION",

strWHERE)

 arcpy.CalculateField_management("fcWUVegByLP","VegByLP","1","VB","#")

 arcpy.SelectLayerByAttribute_management("fcWUVegByLP", "CLEAR_SELECTION")

925

 logger.info("perennial stream results selected and written to Wetland Units")

 # Clean up

 arcpy.DeleteField_management("fcWU", "VegByLP;PondRatio;VegStream")

 if arcpy.Exists("WU_VegByLP1"):

 arcpy.Delete_management("WU_VegByLP1")

 if arcpy.Exists("WUbyLake"):

 arcpy.Delete_management("WUbyLake")

 if arcpy.Exists("WUbyLakeVegAll"):

 arcpy.Delete_management("WUbyLakeVegAll")

 if arcpy.Exists("Ponds"):

 arcpy.Delete_management("Ponds")

 if arcpy.Exists("WUwithPond"):

 arcpy.Delete_management("WUwithPond")

 if arcpy.Exists("WUwithPondVegAll"):

 arcpy.Delete_management("WUwithPondVegAll")

 if arcpy.Exists("WUwithPondVegAll_join"):

 arcpy.Delete_management("WUwithPondVegAll_join")

 if arcpy.Exists("WU_VegByLake"):

 arcpy.Delete_management("WU_VegByLake")

926

5.7.101 VegPerUng: Water Quality Potential

File Name: VegPerUng.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 7/17/2015 (modified 11/08/2017)

Purpose:

VegPerUng: Used in Water Quality Function / Potential / Vegetation. Max 5 points.

VegPerUng4: Used in Flood Attenuation Function / Potential / Vegetation. Max 4 points.

VegPerUng1: Used in Habitat and Ecological Integrity Function / Potential / Vegetation.

Max 1 point.

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcVegPerUng(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.VegPerUng")

 # Clean up if needed

 if arcpy.Exists("VegPFOPSSPEM"):

 arcpy.Delete_management("VegPFOPSSPEM")

 if arcpy.Exists("VegPerUng"):

 arcpy.Delete_management("VegPerUng")

927

 if arcpy.Exists("WUVegPerUngIntersect"):

 arcpy.Delete_management("WUVegPerUngIntersect")

 if arcpy.Exists("WUVegPerUngIntersect_SUM_STAT"):

 arcpy.Delete_management("WUVegPerUngIntersect_SUM_STAT")

 if arcpy.Exists("WU_VegPerUng"):

 arcpy.Delete_management("WU_VegPerUng")

 if arcpy.Exists("WU_VegPerUng1"):

 arcpy.Delete_management("WU_VegPerUng1")

 # setting the variables

 arcpy.MakeFeatureLayer_management(globalvars.srcPasturesNotHayfields,

"fcPasturesNotHayfields")

 arcpy.MakeFeatureLayer_management(globalvars.srcInput, "fcEnhWVWetland")

 logger.info("feature layers ready")

 # Create feature class to store VegPerUng variables

 arcpy.CopyFeatures_management(WetlandPoly, "WU_VegPerUng1")

 arcpy.MakeFeatureLayer_management("WU_VegPerUng1", "fcWUVegPerUng1")

 logger.info("feature layer WU_VegPerUng1 created")

 # selecting and creating a feature class of forests, shrublands, and persistent emergent

vegetation sites within EnhWVWetland

 strWHERE = """"ATTRIBUTE" NOT LIKE 'PEM2%' AND ("ATTRIBUTE" LIKE

'PEM%' OR "ATTRIBUTE" LIKE 'PFO%' OR "ATTRIBUTE" LIKE 'PSS%')"""

 arcpy.SelectLayerByAttribute_management("fcEnhWVWetland", "NEW_SELECTION",

strWHERE)

 arcpy.CopyFeatures_management("fcEnhWVWetland", "VegPFOPSSPEM")

 arcpy.MakeFeatureLayer_management("VegPFOPSSPEM", "fcVegPFOPSSPEM")

 arcpy.SelectLayerByAttribute_management("fcEnhWVWetland", "CLEAR_SELECTION")

 logger.info("feature class of forests, shrublands, and persistent emergent vegetation sites

within EnhWVWetland created")

928

 # Erase the known grazed pastures from the intermediate vegetation layer

 arcpy.Erase_analysis("fcVegPFOPSSPEM","fcPasturesNotHayfields","VegPerUng","#")

 arcpy.MakeFeatureLayer_management("VegPerUng", "fcVegPerUng")

 logger.info("known grazed pastures from the intermediate vegetation layer erased")

 # Calculate the percentage of each Wetland Unit that is persistent ungrazed vegetation

(VegPerUng)

 # Attribute each Wetland Unit with the percentage of VerPerUng

 actions.DeleteField("fcWUVegPerUng1","OrigArea")

 arcpy.AddField_management("fcWUVegPerUng1", "OrigArea", "DOUBLE")

 arcpy.CalculateField_management("fcWUVegPerUng1", "OrigArea", "!SHAPE_Area!",

"PYTHON")

 logger.info("field OrigArea created and calculated")

 # intersect "fcWUVegPerUng1" with VegPerUng

 arInputData = ["fcWUVegPerUng1","fcVegPerUng"]

 arcpy.Intersect_analysis(arInputData, "WUVegPerUngIntersect","ALL","#","INPUT")

 arcpy.MakeFeatureLayer_management("WUVegPerUngIntersect",

"fcWUVegPerUngIntersect")

 logger.info("Wetland units intersected with VegPerUng")

 # add and calculate PctIntersect field

 actions.DeleteField("fcWUVegPerUngIntersect","PctIntersect")

 arcpy.AddField_management("fcWUVegPerUngIntersect", "PctIntersect", "FLOAT")

 arcpy.CalculateField_management("fcWUVegPerUngIntersect", "PctIntersect",

"!SHAPE_Area!/!OrigArea!*100", "PYTHON")

 logger.info("field PctIntersect added and calculated")

 # Execute the Summary Statistics function

929

 arcpy.Statistics_analysis("fcWUVegPerUngIntersect",

"WUVegPerUngIntersect_SUM_STAT", [["PctIntersect", "SUM"]],

["FID_WU_VegPerUng1"])

 arcpy.MakeTableView_management(r"WUVegPerUngIntersect_SUM_STAT",

"tvWUVegPerUngIntersectSumm")

 logger.info("summary table WUVegPerUngIntersect_SUM_STAT created")

 '''# Add new field (VegPerUngPct) to attribute table to store the percentage of persistent

ungrazed vegetation

 actions.DeleteField("fcWUVegPerUng1","VegPerUngPct")

 arcpy.AddField_management("fcWUVegPerUng1", "VegPerUngPct", "FLOAT")

 arcpy.CalculateField_management("fcWUVegPerUng1", "VegPerUngPct", "0", "VB")

 logger.info("field VegPerUngPct added and initial value set to 0")

 # Add new field (VegPerUng) to attribute table to store the score in relation to the percentage

of persistent ungrazed vegetation

 actions.DeleteField("fcWUVegPerUng1","VegPerUng")

 arcpy.AddField_management("fcWUVegPerUng1", "VegPerUng", "SHORT")

 arcpy.CalculateField_management("fcWUVegPerUng1", "VegPerUng", "0", "VB")

 logger.info("field VegPerUng added and initial value set to 0")'''

 # Join Wetland Units to the WUVegPerUngIntersect_SUM_STAT table

 arcpy.AddJoin_management("fcWUVegPerUng1", "WUKey",

"tvWUVegPerUngIntersectSumm", "FID_WU_VegPerUng1")

 logger.info("join added to the WUVegPerUngIntersect_SUM_STAT table")

 arcpy.FeatureClassToFeatureClass_conversion("fcWUVegPerUng1", arcpy.env.workspace,

"WU_VegPerUng")

 arcpy.MakeFeatureLayer_management(r"WU_VegPerUng", "fcWUVegPerUng")

 # Add new field (VegPerUngPct) to attribute table to store the percentage of persistent

ungrazed vegetation

 actions.DeleteField("fcWUVegPerUng","VegPerUngPct")

930

 arcpy.AddField_management("fcWUVegPerUng", "VegPerUngPct", "FLOAT")

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUngPct", "0", "PYTHON")

 logger.info("field VegPerUngPct added and initial value set to 0")

 # Add new field (VegPerUng) to attribute table to store the score in relation to the percentage

of persistent ungrazed vegetation

 actions.DeleteField("fcWUVegPerUng","VegPerUng")

 arcpy.AddField_management("fcWUVegPerUng", "VegPerUng", "SHORT")

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng", "0", "PYTHON")

 logger.info("field VegPerUng added and initial value set to 0")

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUngPct",

"!WUVegPerUngIntersect_SUM_STAT_SUM_PctIntersect!", "PYTHON")

 logger.info("field VegPerUngPct calculated")

 # Remove Join

 arcpy.RemoveJoin_management("fcWUVegPerUng1")

 logger.info("join removed")

 # Replace null values with 0

 strWHERE = """"VegPerUngPct" IS NULL"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUngPct", "0", "VB")

 # Assign points to Wetland Units for VegPerUng

 strWHERE = """"VegPerUngPct" > 66.7"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

931

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng", "5", "VB")

 strWHERE = """"VegPerUngPct" < 66.701 AND "VegPerUngPct" > 33.3"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng", "3", "VB")

 strWHERE = """"VegPerUngPct" < 33.301 AND "VegPerUngPct" > 10"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng", "1", "VB")

 strWHERE = """"VegPerUngPct" < 10.001"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng", "0", "VB")

 logger.info("points assigned to field VegPerUng")

 arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","CLEAR_SELECTION")

 # add VegPerUng4 field

 actions.DeleteField("fcWUVegPerUng","VegPerUng4")

 arcpy.AddField_management("fcWUVegPerUng", "VegPerUng4", "SHORT")

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng4", "0", "VB")

 logger.info("field VegPerUng4 added and initial value set to 0")

 # add VegPerUng1 field

 actions.DeleteField("fcWUVegPerUng","VegPerUng1")

 arcpy.AddField_management("fcWUVegPerUng", "VegPerUng1", "SHORT")

932

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng1", "0", "VB")

 logger.info("field VegPerUng1 added and initial value set to 0")

 # Assign points to Wetland Units for VegPerUng4 and VegPerUng1

 strWHERE = """"VegPerUngPct" > 10"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng4", "1", "VB")

 strWHERE = """"VegPerUngPct" > 33.3"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng4", "2", "VB")

 strWHERE = """"VegPerUngPct" > 50"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng4", "3", "VB")

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng1", "1", "VB")

 strWHERE = """"VegPerUngPct" > 66.7"""

arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","NEW_SELECTION",strWH

ERE)

 arcpy.CalculateField_management("fcWUVegPerUng", "VegPerUng4", "4", "VB")

 logger.info("points assigned to fields VegPerUng1 and VegPerUng4")

 arcpy.SelectLayerByAttribute_management("fcWUVegPerUng","CLEAR_SELECTION")

 # Clean up

933

 if arcpy.Exists("VegPFOPSSPEM"):

 arcpy.Delete_management("VegPFOPSSPEM")

 if arcpy.Exists("VegPerUng"):

 arcpy.Delete_management("VegPerUng")

 if arcpy.Exists("WUVegPerUngIntersect"):

 arcpy.Delete_management("WUVegPerUngIntersect")

 if arcpy.Exists("WUVegPerUngIntersect_SUM_STAT"):

 arcpy.Delete_management("WUVegPerUngIntersect_SUM_STAT")

 if arcpy.Exists("WU_VegPerUng1"):

 arcpy.Delete_management("WU_VegPerUng1")

934

5.7.102 VegWoody: Water Quality Potential

File Name: VegWoody.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/15/2016 (modified 11/03/2017)

Purpose:

Input to Water Quality / Potential / Vegetation Factor

#!/usr/: Input to Water Quality / Potential / Vegetation Factor.bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcVegWoody(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.VegWoody")

 # Clean up if needed

 if arcpy.Exists("VegPFOPSS"):

 arcpy.Delete_management("VegPFOPSS")

 if arcpy.Exists("VegPFO"):

 arcpy.Delete_management("VegPFO")

 if arcpy.Exists("WUPFOJoin"):

 arcpy.Delete_management("WUPFOJoin")

935

 if arcpy.Exists("WU_VegWoody"):

 arcpy.Delete_management("WU_VegWoody")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(WetlandPoly, "fcWU")

 arcpy.MakeFeatureLayer_management(globalvars.srcInput, "fcENWI")

 logger.info("feature layers ready")

 # Select all woody vegetation, both forest and shrubland

 strWHERE = """"ATTRIBUTE" LIKE 'PFO%' OR "ATTRIBUTE" LIKE 'PSS%'"""

 arcpy.SelectLayerByAttribute_management("fcENWI", "NEW_SELECTION", strWHERE)

 logger.info("all woody vegetation, both forest and shrubland selected")

 # Create layer of woody vegetation from selection

 arcpy.CopyFeatures_management("fcENWI", "VegPFOPSS")

 arcpy.MakeFeatureLayer_management(r"VegPFOPSS", "fcVegPFOPSS")

 logger.info("layer VegPFOPSS created of woody vegetation from selection")

 arcpy.SelectLayerByAttribute_management("fcENWI", "CLEAR_SELECTION")

 # Add field to store woody area

 actions.DeleteField("fcVegPFOPSS","PFOPSSarea")

 arcpy.AddField_management("fcVegPFOPSS", "PFOPSSarea", "FLOAT")

arcpy.CalculateField_management("fcVegPFOPSS","PFOPSSarea","[SHAPE_Area]","VB","#"

)

 logger.info("field PFOPSSarea to store woody area")

 # Select just the forest vegetation, not including the shrubs

 strWHERE = """"ATTRIBUTE" LIKE 'PFO%'"""

 arcpy.SelectLayerByAttribute_management("fcENWI", "NEW_SELECTION", strWHERE)

936

 logger.info("the forest vegetation, not including the shrubs selected")

 # Create layer of forest vegetation from selection

 arcpy.CopyFeatures_management("fcENWI", "VegPFO")

 arcpy.MakeFeatureLayer_management(r"VegPFO", "fcVegPFO")

 logger.info("layer VegPFO created of forest vegetation from selection")

 arcpy.SelectLayerByAttribute_management("fcENWI", "CLEAR_SELECTION")

 # Add field to store forest area

 actions.DeleteField("fcVegPFO","PFOarea")

 arcpy.AddField_management("fcVegPFO", "PFOarea", "FLOAT")

 arcpy.CalculateField_management("fcVegPFO","PFOarea","[SHAPE_Area]","VB","#")

 logger.info("field PFOarea added to store forest area")

 # Join forests to Wetland Units and sum the forest area

###

#################

 # SJ: VegPFO

###

#################

 fmSJPFO = arcpy.FieldMappings()

 fmSJPFO.addTable("fcWU")

 fmSJPFO.addTable("fcVegPFO")

 fldKeyIndex1 = fmSJPFO.findFieldMapIndex("PFOarea")

 fieldmap1 = fmSJPFO.getFieldMap(fldKeyIndex1)

 fieldmap1.mergeRule = "Sum"

 fmSJPFO.replaceFieldMap(fldKeyIndex1, fieldmap1)

937

arcpy.SpatialJoin_analysis("fcWU","fcVegPFO","WUPFOjoin","JOIN_ONE_TO_ONE","KEE

P_ALL",fmSJPFO,"INTERSECT")

 arcpy.MakeFeatureLayer_management("WUPFOjoin","fcWUPFOjoin")

 logger.info("forests joined to wetland units and the forest area summed up")

###

#################

 # SJ: VegPFOPSS

###

#################

 fmSJPSS = arcpy.FieldMappings()

 fmSJPSS.addTable("fcWUPFOjoin")

 fmSJPSS.addTable("fcVegPFOPSS")

 fldKeyIndex2 = fmSJPSS.findFieldMapIndex("PFOPSSarea")

 fieldmap2 = fmSJPSS.getFieldMap(fldKeyIndex2)

 fieldmap2.mergeRule = "Sum"

 fmSJPSS.replaceFieldMap(fldKeyIndex2, fieldmap2)

arcpy.SpatialJoin_analysis("fcWUPFOjoin","fcVegPFOPSS","WU_VegWoody","JOIN_ONE_

TO_ONE","KEEP_ALL",fmSJPSS,"INTERSECT")

 fcWUVegWoody = arcpy.mapping.Layer(r"WU_VegWoody")

 logger.info("woody vegetation joined to wetland units and the woody area summed up")

 # Add fields to store rations of forest and woody area to total area

 actions.DeleteField(fcWUVegWoody,"PFOratio")

 arcpy.AddField_management(fcWUVegWoody, "PFOratio", "FLOAT")

 actions.DeleteField(fcWUVegWoody,"PFOPSSratio")

938

 arcpy.AddField_management(fcWUVegWoody, "PFOPSSratio", "FLOAT")

 logger.info("fields PFOratio and PFOPSSratio added to store rations of forest and woody area

to total area")

 # Calculate ratio of woody vegetation to Wetland Unit area

arcpy.CalculateField_management(fcWUVegWoody,"PFOPSSratio","[PFOPSSarea]/[Shape_A

rea]","VB","#")

 logger.info("ratio of woody vegetation calculated to Wetland Unit area")

 # Calculate ratio of forest vegetation to Wetland Unit area

arcpy.CalculateField_management(fcWUVegWoody,"PFOratio","[PFOarea]/[Shape_Area]","V

B","#")

 logger.info("ratio of forest vegetation calculated to Wetland Unit area")

###

########################

 # Add new attribute field to store points for VegWoody and set initial value to zero

###

########################

 actions.DeleteField(fcWUVegWoody,"VegWoody")

 arcpy.AddField_management(fcWUVegWoody, "VegWoody", "SHORT")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody","0","VB","#")

 logger.info("field VegWoody added to store points for VegWoody and initial value set to

zero")

 actions.DeleteField(fcWUVegWoody,"VegWoody4")

 arcpy.AddField_management(fcWUVegWoody, "VegWoody4", "SHORT")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody4","0","VB","#")

939

 logger.info("field VegWoody4 added to store points for VegWoody and initial value set to

zero")

 actions.DeleteField(fcWUVegWoody,"VegWoody2")

 arcpy.AddField_management(fcWUVegWoody, "VegWoody2", "SHORT")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody2","0","VB","#")

 logger.info("field VegWoody2 added to store points for VegWoody and initial value set to

zero")

 actions.DeleteField(fcWUVegWoody,"VegWoodyFor")

 arcpy.AddField_management(fcWUVegWoody, "VegWoodyFor", "SHORT")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoodyFor","0","VB","#")

 logger.info("field VegWoodyFor added to store points for VegWoody and initial value set to

zero")

 # Assign points to Wetland Units for woody vegetation

 strWHERE = """"PFOPSSratio" > 0.1"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody","1","VB","#")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody4","1","VB","#")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody2","1","VB","#")

 strWHERE = """"PFOPSSratio" > 0.5"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody4","2","VB","#")

 strWHERE = """"PFOPSSratio" > 0.333"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

940

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody","2","VB","#")

 strWHERE = """"PFOPSSratio" > 0.667"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody","3","VB","#")

 strWHERE = """"PFOPSSratio" > 0.667 AND "PFOratio" > 0.333"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody","4","VB","#")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody4","3","VB","#")

 strWHERE = """"PFOratio" > 0.667"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody","5","VB","#")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody4","4","VB","#")

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoody2","2","VB","#")

 strWHERE = """"PFOratio" > 0.1 OR "PFOarea" > 10000"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoodyFor","1","VB","#")

 strWHERE = """("PFOratio" > 0.33 AND "PFOarea" > 2000) OR "PFOarea" > 20000"""

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoodyFor","2","VB","#")

 strWHERE = """("PFOratio" > 0.667 AND "PFOarea" > 5000) OR "PFOarea" > 50000"""

941

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "NEW_SELECTION",

strWHERE)

 arcpy.CalculateField_management(fcWUVegWoody,"VegWoodyFor","3","VB","#")

 logger.info("points assigned to Wetland Units for woody vegetation")

 arcpy.SelectLayerByAttribute_management(fcWUVegWoody, "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("VegPFOPSS"):

 arcpy.Delete_management("VegPFOPSS")

 if arcpy.Exists("VegPFO"):

 arcpy.Delete_management("VegPFO")

 if arcpy.Exists("WUPFOJoin"):

 arcpy.Delete_management("WUPFOJoin")

942

5.7.103 WFlowPath: Water Quality Potential

File Name: WFlowPath.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 4/5/2016 (modified 11/28/2017)

Purpose:

Water Quality Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineWFlowPath(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQPotential.WFlowPath")

 # Clean up if needed

 if arcpy.Exists("WU_WflowPath1"):

 arcpy.Delete_management("WU_WflowPath1")

 if arcpy.Exists("NHDflowline_Intersect"):

 arcpy.Delete_management("NHDflowline_Intersect")

 if arcpy.Exists("NHDflowline_IntMult"):

 arcpy.Delete_management("NHDflowline_IntMult")

943

 if arcpy.Exists("NHDflowline_IntMultDiss"):

 arcpy.Delete_management("NHDflowline_IntMultDiss")

 if arcpy.Exists("WU_WflowPath2"):

 arcpy.Delete_management("WU_WflowPath2")

 if arcpy.Exists("WU_WflowPath"):

 arcpy.Delete_management("WU_WflowPath")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(globalvars.srcInput,"fcENWI")

 arcpy.MakeFeatureLayer_management(globalvars.srcNHDWB24kRivers,

"fcNHDWB24kRivers")

 arcpy.MakeFeatureLayer_management(globalvars.srcNHDFlowline,"fcNHDFlowline")

 arcpy.MakeFeatureLayer_management(globalvars.srcDrainageArea,"fcDA27m")

 arcpy.MakeFeatureLayer_management(globalvars.srcLakes,"fcLakes")

 arcpy.MakeFeatureLayer_management(globalvars.srcRivers,"fcRivers")

 arcpy.CopyFeatures_management(WetlandPoly, "WU_WflowPath1")

 arcpy.MakeFeatureLayer_management(r"WU_WflowPath1","fcWUflowPath1")

 logger.info("feature layers ready")

 # Add text fields to the Wetland Units feature class, to allow computation of Water Flow Path

(WFlowPath)

 actions.DeleteField("fcWUflowPath1","FlowPath")

 arcpy.AddField_management("fcWUflowPath1", "FlowPath", "TEXT", 4)

 actions.DeleteField("fcWUflowPath1","PerInt")

 arcpy.AddField_management("fcWUflowPath1", "PerInt", "TEXT", 4)

 actions.DeleteField("fcWUflowPath1","WFlowPath")

 arcpy.AddField_management("fcWUflowPath1", "WFlowPath", "TEXT", 4)

944

 logger.info("text fields added to the Wetland Units")

###

 # PART 1: Intersect NHDFlowlines and wetlands

###

 arInputData = ["fcWUflowPath1","fcNHDFlowline"]

 arcpy.Intersect_analysis(arInputData,"NHDflowline_Intersect","ONLY_FID","#","POINT")

 fcNHDflowline_Intersect = arcpy.mapping.Layer(r"NHDflowline_Intersect")

 logger.info("intersect NHDFlowlines and wetlands completed")

 # Create multiple points for single line segments

arcpy.MultipartToSinglepart_management(fcNHDflowline_Intersect,"NHDflowline_IntMult")

 fcNHDflowline_IntMult = arcpy.mapping.Layer(r"NHDflowline_IntMult")

 logger.info("multiple points feature created")

 # Remove doubles

arcpy.Dissolve_management(fcNHDflowline_IntMult,"NHDflowline_IntMultDiss","#","#","SI

NGLE_PART","DISSOLVE_LINES")

 fcNHDflowline_IntMultDiss = arcpy.mapping.Layer(r"NHDflowline_IntMultDiss")

 logger.info("dissolve completed to remove doubles")

 # Clear all selections

 arcpy.SelectLayerByAttribute_management("fcWUflowPath1", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcNHDFlowline", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcNHDflowline_IntMult,

"CLEAR_SELECTION")

945

 arcpy.SelectLayerByAttribute_management(fcNHDflowline_IntMultDiss,

"CLEAR_SELECTION")

 # Select by attribute, within attribute table of NHDFlowline

 strWhere = """"FCode" IN (46003,46007,33600,33601, 33603)"""

arcpy.SelectLayerByAttribute_management("fcNHDFlowline","NEW_SELECTION",strWhere

)

 logger.info("certain NHDFlowline selected")

 # Select the wetland units that intersect intermittent or ephemeral stream(s)

arcpy.SelectLayerByLocation_management("fcWUflowPath1","INTERSECT","fcNHDFlowlin

e","#","NEW_SELECTION")

 logger.info("wetland units that intersect intermittent or ephemeral stream(s) selected")

 # Attribute the Wetland Units that intersect intermittent or ephemeral stream(s)

 arcpy.CalculateField_management("fcWUflowPath1","PerInt","'I'","PYTHON")

 logger.info("value assigned to wetland units that intersect intermittent or ephemeral

stream(s)")

 # Select by attribute, within attribute table of NHDFlowline

 arcpy.SelectLayerByAttribute_management("fcWUflowPath1", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcNHDFlowline", "CLEAR_SELECTION")

 strWhere = """"FCode" IN (33400,46000,46006,55800)"""

arcpy.SelectLayerByAttribute_management("fcNHDFlowline","NEW_SELECTION",strWhere

)

 logger.info("certain NHDFlowline selected")

 # Select the Wetland Units that intersect perennial stream(s)

946

arcpy.SelectLayerByLocation_management("fcWUflowPath1","INTERSECT","fcNHDFlowlin

e","#","NEW_SELECTION")

 logger.info("wetland units that intersect perennial stream(s) selected")

 # Attribue the Wetland Units that intersect perennial stream(s)

 arcpy.CalculateField_management("fcWUflowPath1","PerInt","'P'","PYTHON")

 arcpy.SelectLayerByAttribute_management("fcWUflowPath1", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcNHDFlowline", "CLEAR_SELECTION")

 logger.info("value assigned to wetland units that intersect perennial stream(s)")

 # Join Wetland Units to stream intersection points

 arcpy.MakeFeatureLayer_management(r"WU_WflowPath1","fcWUflowPath1")

arcpy.MakeFeatureLayer_management(r"NHDflowline_IntMultDiss","fcNHDflowline_IntMult

Diss")

 fmSJFP = arcpy.FieldMappings()

 fmSJFP.addTable("fcWUflowPath1")

 fmSJFP.addTable("fcNHDflowline_IntMultDiss")

arcpy.SpatialJoin_analysis("fcWUflowPath1","fcNHDflowline_IntMultDiss","WU_WflowPath

2","JOIN_ONE_TO_ONE","KEEP_ALL",fmSJFP,"INTERSECT")

 logger.info("spatial join Wetland Units to stream intersection points completed")

 fcWUflowPath2 = arcpy.mapping.Layer(r"WU_WflowPath2")

 # Attribute FlowPath (Throughflow, Outflow, Isolated)

arcpy.SelectLayerByAttribute_management(fcWUflowPath2,"NEW_SELECTION",""""Join_C

ount" > 1""")

 arcpy.CalculateField_management(fcWUflowPath2,"FlowPath","'TH'","PYTHON")

947

arcpy.SelectLayerByAttribute_management(fcWUflowPath2,"NEW_SELECTION",""""Join_C

ount" = 1""")

 arcpy.CalculateField_management(fcWUflowPath2,"FlowPath","'OU'","PYTHON")

arcpy.SelectLayerByAttribute_management(fcWUflowPath2,"NEW_SELECTION",""""Join_C

ount" = 0""")

 arcpy.CalculateField_management(fcWUflowPath2,"FlowPath","'IS'","PYTHON")

 logger.info("FlowPath attribute values assigned to Wetland Units")

 arcpy.SelectLayerByAttribute_management(fcWUflowPath2, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcNHDFlowline", "CLEAR_SELECTION")

###

 # PART 2: Update FlowPath based on adjcent streams, rivers, and impoundments

###

 # Update FlowPath from isolated to outflow for wetlands within 30m of a mapped stream

arcpy.SelectLayerByLocation_management(fcWUflowPath2,"WITHIN_A_DISTANCE","fcN

HDFlowline","30 Meters","NEW_SELECTION")

 strWhere = """"FlowPath" = 'IS'"""

arcpy.SelectLayerByAttribute_management(fcWUflowPath2,"SUBSET_SELECTION",strWhe

re)

 arcpy.CalculateField_management(fcWUflowPath2,"FlowPath","'OU'","PYTHON","#")

 arcpy.CalculateField_management(fcWUflowPath2,"PerInt","'I'","PYTHON","#")

948

 logger.info("values of FlowPath from isolated to outflow for wetlands within 30m of a

mapped stream updated")

 # Update FlowPath from isolate to outflow wetlands that contain an impoundment (NWI)

 arcpy.SelectLayerByAttribute_management(fcWUflowPath2, "CLEAR_SELECTION")

 strWhere = """"ATTRIBUTE" LIKE 'P%h%'"""

 arcpy.SelectLayerByAttribute_management("fcENWI","NEW_SELECTION",strWhere)

arcpy.SelectLayerByLocation_management(fcWUflowPath2,"CONTAINS","fcENWI","#","NE

W_SELECTION")

 strWhere = """"FlowPath" = 'IS'"""

arcpy.SelectLayerByAttribute_management(fcWUflowPath2,"SUBSET_SELECTION",strWhe

re)

 arcpy.CalculateField_management(fcWUflowPath2,"FlowPath",'"OU"',"PYTHON","#")

 arcpy.CalculateField_management(fcWUflowPath2,"PerInt",'"I"',"PYTHON","#")

 logger.info("values of FlowPath from isolate to outflow wetlands that contain an

impoundment (NWI) updated")

 # Join to add area of contributing watershed (CntrWshd)

 arcpy.SelectLayerByAttribute_management(fcWUflowPath2, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcENWI", "CLEAR_SELECTION")

arcpy.JoinField_management(fcWUflowPath2,"OBJECTID","fcDA27m","WUKey","WUKey;

CntrWshd")

 logger.info("area of contributing watershed joined")

 # Export join to feature class

 arcpy.CopyFeatures_management(fcWUflowPath2, "WU_WflowPath")

949

 arcpy.MakeFeatureLayer_management(r"WU_WflowPath", "fcWUflowPath")

 logger.info("joined feature exported")

 # Update isolated wetland to outflow intermittent if contributing watershed > 40 acres

arcpy.SelectLayerByAttribute_management("fcWUflowPath","NEW_SELECTION",""""Flow

Path" = 'IS' AND "CntrWshd" > 161874""")

 arcpy.CalculateField_management("fcWUflowPath","FlowPath","'OU'","PYTHON","#")

 arcpy.CalculateField_management("fcWUflowPath","PerInt","'I'","PYTHON","#")

 logger.info("values of isolated wetland to outflow intermittent if contributing watershed > 40

acres updated")

 arcpy.SelectLayerByAttribute_management("fcWUflowPath", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcENWI", "CLEAR_SELECTION")

 # Set Flow Path to throughflow perennial for wetlands adjacent to NWI rivers

 # Select NWI rivers

 #

arcpy.SelectLayerByAttribute_management("fcENWI","NEW_SELECTION",""""WETLAND

_TYPE" = 'Riverine'""")

arcpy.SelectLayerByLocation_management("fcWUflowPath","INTERSECT","fcRivers","#","

NEW_SELECTION")

 logger.info("NWI rivers selected")

 # Attribute Water Flow Path for Wetland Units Adjacent to NWI rivers

 arcpy.CalculateField_management("fcWUflowPath","FlowPath","'TH'","PYTHON","#")

 arcpy.CalculateField_management("fcWUflowPath","PerInt","'P'","PYTHON","#")

 logger.info("values assigned to Flow Path for Wetland Units intersecting NHD 24K rivers")

 arcpy.SelectLayerByAttribute_management("fcWUflowPath", "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management("fcENWI", "CLEAR_SELECTION")

950

 # Select the NHD 24K Rivers and set intersecting wetland to throughflow perennial

arcpy.SelectLayerByLocation_management("fcWUflowPath","INTERSECT","fcNHDWB24k

Rivers","#","NEW_SELECTION")

 # Attribute Flow Path for Wetland Units intersecting NHD 24K rivers

 arcpy.CalculateField_management("fcWUflowPath","FlowPath","'TH'","PYTHON","#")

 arcpy.CalculateField_management("fcWUflowPath","PerInt","'P'","PYTHON","#")

 logger.info("values assigned to Flow Path for Wetland Units intersecting NHD 24K rivers")

###

###########

 # PART 3: Attribute Water Flow Path for Outflow, Throughflow and Isolated Wetland Units

###

###########

arcpy.SelectLayerByAttribute_management("fcWUflowPath","NEW_SELECTION",""""Flow

Path" = 'TH' AND "PerInt" = 'I'""")

 arcpy.CalculateField_management("fcWUflowPath","WFlowPath","'TI'","PYTHON","#")

arcpy.SelectLayerByAttribute_management("fcWUflowPath","NEW_SELECTION",""""Flow

Path" = 'TH' AND "PerInt" = 'P'""")

 arcpy.CalculateField_management("fcWUflowPath","WFlowPath","'TP'","PYTHON","#")

arcpy.SelectLayerByAttribute_management("fcWUflowPath","NEW_SELECTION",""""Flow

Path" = 'OU' AND "PerInt" = 'I'""")

 arcpy.CalculateField_management("fcWUflowPath","WFlowPath","'OI'","PYTHON","#")

951

arcpy.SelectLayerByAttribute_management("fcWUflowPath","NEW_SELECTION",""""Flow

Path" = 'OU' AND "PerInt" = 'P'""")

 arcpy.CalculateField_management("fcWUflowPath","WFlowPath","'OP'","PYTHON","#")

arcpy.SelectLayerByAttribute_management("fcWUflowPath","NEW_SELECTION",""""Flow

Path" = 'IS'""")

 arcpy.CalculateField_management("fcWUflowPath","WFlowPath","'IS'","PYTHON","#")

 logger.info("values assigned to Flow Path for Outflow, Throughflow and Isolated Wetland

Units")

###

###########

 # PART 4: Update Water Flow Path Based on adjacent lakes

###

###########

 arcpy.SelectLayerByAttribute_management("fcWUflowPath", "CLEAR_SELECTION")

#arcpy.SelectLayerByAttribute_management("fcENWI","NEW_SELECTION",""""WETLAN

D_TYPE" = 'Lake'""")

arcpy.SelectLayerByLocation_management("fcWUflowPath","INTERSECT","fcLakes","#","N

EW_SELECTION")

 # Attribute Flow Path for Wetland Units adjacent to lakes

 arcpy.CalculateField_management("fcWUflowPath","FlowPath","'BI'","PYTHON","#")

 logger.info("values assigned to Flow Path for Wetland Units adjacent to lakes")

 # Attribute Water Flow Path for Wetland Units adjacent to lakes

 arcpy.SelectLayerByAttribute_management("fcWUflowPath", "CLEAR_SELECTION")

952

 arcpy.SelectLayerByAttribute_management("fcENWI", "CLEAR_SELECTION")

arcpy.SelectLayerByAttribute_management("fcWUflowPath","NEW_SELECTION",""""Flow

Path" = 'BI' AND "WFlowPath" IN ('OP', 'OI')""")

 arcpy.CalculateField_management("fcWUflowPath","WFlowPath","'BO'","PYTHON","#")

arcpy.SelectLayerByAttribute_management("fcWUflowPath","NEW_SELECTION",""""Flow

Path" = 'BI' AND "WFlowPath" IN ('TP', 'TI')""")

 arcpy.CalculateField_management("fcWUflowPath","WFlowPath","'TB'","PYTHON","#")

arcpy.SelectLayerByAttribute_management("fcWUflowPath","NEW_SELECTION",""""Flow

Path" = 'BI' AND "WFlowPath" = 'IS'""")

 arcpy.CalculateField_management("fcWUflowPath","WFlowPath","'IB'","PYTHON","#")

 logger.info("values assigned to WFlowPath field")

 arcpy.SelectLayerByAttribute_management("fcWUflowPath", "CLEAR_SELECTION")

 # Clean up

 if arcpy.Exists("WU_WflowPath1"):

 arcpy.Delete_management("WU_WflowPath1")

 if arcpy.Exists("NHDflowline_Intersect"):

 arcpy.Delete_management("NHDflowline_Intersect")

 if arcpy.Exists("NHDflowline_IntMult"):

 arcpy.Delete_management("NHDflowline_IntMult")

 if arcpy.Exists("NHDflowline_IntMultDiss"):

 arcpy.Delete_management("NHDflowline_IntMultDiss")

 if arcpy.Exists("WU_WflowPath2"):

 arcpy.Delete_management("WU_WflowPath2")

953

5.7.104 Water Quality Society

File Name: WQSociety.py

Developer: Yibing Han

Date: 12/13/2017

Purpose:

This script handles the execution of all the Water Quality Value to Society metrics.

import datetime

import logging

import traceback

import arcpy

from Variables import Fisheries, WaterSupply

from Factors import HUC12WQ, ImpairedOut, WQPlan, WQUse

from Aspects import WQSociety

def procWQSociety(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQSociety")

 ##

 ## 1. Run Variables

 ##

 Fisheries.CalcFisheries(WetlandPoly)

 WaterSupply.DetermineWaterSupply(WetlandPoly)

954

 ##

 ## 2. Run Factors

 ##

 HUC12WQ.DetermineHUC12WQ(WetlandPoly)

 ImpairedOut.CalcImpairedOut(WetlandPoly)

 WQPlan.CalcWQPlan(WetlandPoly)

 WQUse.CalcWQUse(WetlandPoly)

 ##

 ## 3. Run Aspect

 ##

 WQSociety.DetermineWQSociety(WetlandPoly)

955

5.7.105 Water Quality Society Aspects

File Name: WQSociety.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 5/26/2016 (modified 11/02/2017)

Purpose:

Water Quality Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import arcpy

from utilities import actions

import logging

def DetermineWQSociety(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQSociety.WQSociety")

 # Setting python variables

 arcpy.MakeFeatureLayer_management(r"WU_HUC12WQ","fcHUC12WQ")

 arcpy.MakeFeatureLayer_management(r"WU_ImpairedOut","fcImpairedOut")

 arcpy.MakeFeatureLayer_management(r"WU_WQPlan","fcWQPlan")

 arcpy.MakeFeatureLayer_management(r"WU_WQUse","fcWQUse")

 logger.info("feature layers ready")

956

 # Clean up if needed

 if arcpy.Exists("WU_WQSociety1"):

 arcpy.Delete_management("WU_WQSociety1")

 if arcpy.Exists("WU_WQSociety2"):

 arcpy.Delete_management("WU_WQSociety2")

 if arcpy.Exists("WU_WQSociety3"):

 arcpy.Delete_management("WU_WQSociety3")

 if arcpy.Exists("WU_WQSociety4"):

 arcpy.Delete_management("WU_WQSociety4")

 if arcpy.Exists("WU_WQSociety"):

 arcpy.Delete_management("WU_WQSociety")

 # Create feature class to store WQSociety

 arcpy.CopyFeatures_management(WetlandPoly, "WU_WQSociety1")

 arcpy.MakeFeatureLayer_management(r"WU_WQSociety1","fcWUSociety1")

 logger.info("feature class WU_WQSociety1 created")

 # Add WQSociety field to Wetland Units and set initial point value to zero

 actions.DeleteField("fcWUSociety1","WQSociety")

 arcpy.AddField_management("fcWUSociety1", "WQSociety", "SHORT")

 arcpy.CalculateField_management("fcWUSociety1","WQSociety","0","VB","#")

 logger.info("WQSociety field added to Wetland Units and initial point values set to zero")

 # Spatial joins to bring in factor values

###

#################

 # SJ: HUC12WQ

957

###

#################

 fmSJHUC = arcpy.FieldMappings()

 fmSJHUC.addTable("fcWUSociety1")

 fmSJHUC.addTable("fcHUC12WQ")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","WQSociety","HUC12WQ"]

 for field in fmSJHUC.fields:

 if field.name not in keepers:

 fmSJHUC.removeFieldMap(fmSJHUC.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUSociety1","fcHUC12WQ","WU_WQSociety2","JOIN_ONE_

TO_ONE","KEEP_ALL",fmSJHUC,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQSociety2","fcWUSociety2")

 logger.info("Spatial Join completed to add variable HUC12WQ")

###

#################

 # SJ: ImpairedOut

###

#################

 fmSJIO = arcpy.FieldMappings()

 fmSJIO.addTable("WU_WQSociety2")

 fmSJIO.addTable("fcImpairedOut")

958

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","WQSociety","HUC12WQ","ImpairedOut"]

 for field in fmSJIO.fields:

 if field.name not in keepers:

 fmSJIO.removeFieldMap(fmSJIO.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("WU_WQSociety2","fcImpairedOut","WU_WQSociety3","JOIN_O

NE_TO_ONE","KEEP_ALL",fmSJIO,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQSociety3","fcWUSociety3")

 logger.info("Spatial Join completed to add variable ImpairedOut")

###

#################

 # SJ: WQPlan

###

#################

 fmSJWQP = arcpy.FieldMappings()

 fmSJWQP.addTable("fcWUSociety3")

 fmSJWQP.addTable("fcWQPlan")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","WQSociety","HUC12WQ","ImpairedOut","WQPla

n"]

 for field in fmSJWQP.fields:

959

 if field.name not in keepers:

 fmSJWQP.removeFieldMap(fmSJWQP.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUSociety3","fcWQPlan","WU_WQSociety4","JOIN_ONE_TO

_ONE","KEEP_ALL",fmSJWQP,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQSociety4","fcWUSociety4")

 logger.info("Spatial Join completed to add variable WQPlan")

###

#################

 # SJ: WQUse

###

#################

 fmSJWQP = arcpy.FieldMappings()

 fmSJWQP.addTable("fcWUSociety4")

 fmSJWQP.addTable("fcWQUse")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","WQSociety","HUC12WQ","ImpairedOut","WQPla

n","WQUse"]

 for field in fmSJWQP.fields:

 if field.name not in keepers:

 fmSJWQP.removeFieldMap(fmSJWQP.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUSociety4","fcWQUse","WU_WQSociety","JOIN_ONE_TO_

ONE","KEEP_ALL",fmSJWQP,"CONTAINS")

960

 arcpy.MakeFeatureLayer_management("WU_WQSociety","fcWUSociety")

 logger.info("Spatial Join completed to add variable WQUse")

 # Sum the factor points

 arcpy.CalculateField_management("fcWUSociety","WQSociety","[HUC12WQ] +

[ImpairedOut] + [WQPlan] + [WQUse]","VB","#")

 logger.info("points summed for WQSociety")

 # Reduce values that exceed the maximum allowable points

arcpy.SelectLayerByAttribute_management("fcWUSociety","NEW_SELECTION",""""WQSoc

iety" > 4""")

 arcpy.CalculateField_management("fcWUSociety","WQSociety","4","VB","#")

 arcpy.SelectLayerByAttribute_management("fcWUSociety", "CLEAR_SELECTION")

 logger.info("points reduced to maximum allowed for WQSociety")

 # Clean up

 if arcpy.Exists("WU_WQSociety1"):

 arcpy.Delete_management("WU_WQSociety1")

 if arcpy.Exists("WU_WQSociety2"):

 arcpy.Delete_management("WU_WQSociety2")

 if arcpy.Exists("WU_WQSociety3"):

 arcpy.Delete_management("WU_WQSociety3")

 if arcpy.Exists("WU_WQSociety4"):

 arcpy.Delete_management("WU_WQSociety4")

961

5.7.106 Huc12WQ: Water Quality Society

File Name: HUC12WQ.py

Developer: Chad Ashworth (modified by Yibing Han)

Date 3/18/2016 (modified 12/05/2017)

Purpose:

Water Quality Function, Value to Society

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def DetermineHUC12WQ(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQSociety.HUC12WQ")

 # Clean up if needed

 if arcpy.Exists("WU_HUC12WQ"):

 arcpy.Delete_management("WU_HUC12WQ")

 # Setting python variables

 shpHUC12s = arcpy.mapping.Layer(globalvars.srcHUC12s)

 PublicFishingLakes = arcpy.mapping.Layer(globalvars.srcPublicFishingLakes)

962

 fcAlgalStreams = arcpy.mapping.Layer(globalvars.srcAlgalStreams)

 fcAlgalLakes = arcpy.mapping.Layer(globalvars.srcAlgalLakes)

 shpImpairedStreams = arcpy.mapping.Layer(globalvars.srcImpairedStreams)

 shpLimestone = arcpy.mapping.Layer(globalvars.srcLimeStone)

 shpDolostone = arcpy.mapping.Layer(globalvars.srcDolostone)

 # Create feature class to store ImpairedOut variable

 arcpy.CopyFeatures_management(WetlandPoly, "WU_HUC12WQ")

 WUHUC12WQ = arcpy.mapping.Layer(r"WU_HUC12WQ")

 logger.info("feature layers ready")

 # Add field to Wetland Units and set initial point value to zero

 actions.DeleteField(WUHUC12WQ,"HUC12WQ")

 arcpy.AddField_management(WUHUC12WQ, "HUC12WQ", "SHORT")

 arcpy.CalculateField_management(WUHUC12WQ,"HUC12WQ","0","VB","#")

 logger.info("field HUC12WQ added and initial value set to 0")

 # Select lakes with power boat use

 strWHERE = """"BoatType" NOT LIKE 'No%'"""

 arcpy.SelectLayerByAttribute_management(PublicFishingLakes, "NEW_SELECTION",

strWHERE)

 logger.info("lakes with power boat use selected")

 # Select HUC12s that contain lakes with power boat use

arcpy.SelectLayerByLocation_management(shpHUC12s,"INTERSECT",PublicFishingLakes,"#

","NEW_SELECTION")

 logger.info("HUC12s that contain lakes with power boat use selected")

 # Select HUC12s that contain algal lakes

963

arcpy.SelectLayerByLocation_management(shpHUC12s,"INTERSECT",fcAlgalLakes,"#","AD

D_TO_SELECTION")

 logger.info("HUC12s that contain algal lakes selected")

 # Select HUC12s that contain algal streams

arcpy.SelectLayerByLocation_management(shpHUC12s,"INTERSECT",fcAlgalStreams,"#","

ADD_TO_SELECTION")

 logger.info("HUC12s that contain algal streams selected")

 # Select HUC12s that contain impaired stream reaches

arcpy.SelectLayerByLocation_management(shpHUC12s,"INTERSECT",shpImpairedStreams,"

#","ADD_TO_SELECTION")

 logger.info("HUC12s that contain impaired stream reaches selected")

 # Select HUC12s that contain karst

arcpy.SelectLayerByLocation_management(shpHUC12s,"INTERSECT",shpLimestone,"#","A

DD_TO_SELECTION")

arcpy.SelectLayerByLocation_management(shpHUC12s,"INTERSECT",shpDolostone,"#","A

DD_TO_SELECTION")

 logger.info("HUC12s that contain karst selected")

 #Select Wetland Units with water quality issues

arcpy.SelectLayerByLocation_management(WUHUC12WQ,"INTERSECT",shpHUC12s,"#","

NEW_SELECTION")

 logger.info("Wetland Units with water quality issues selected")

 # Assign 1 point to Wetland Units in HUC12s with water quality issues

964

 arcpy.CalculateField_management(WUHUC12WQ,"HUC12WQ","1","VB","#")

 logger.info("1 point assigned to Wetland Units in HUC12s with water quality issues")

 arcpy.SelectLayerByAttribute_management(WUHUC12WQ, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(shpHUC12s, "CLEAR_SELECTION")

965

5.7.107 ImpairedOut: Water Quality Society

File Name: ImpairedOut.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/16/2016 (modified 12/06/2017)

Purpose:

Water Quality Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcImpairedOut(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQSociety.ImpairedOut")

 # Clean up if needed

 if arcpy.Exists("WU_ImpairedOut"):

 arcpy.Delete_management("WU_ImpairedOut")

 PublicFishingLakes = arcpy.mapping.Layer(globalvars.srcPublicFishingLakes)

 fcAlgalStreams = arcpy.mapping.Layer(globalvars.srcAlgalStreams)

 fcAlgalLakes = arcpy.mapping.Layer(globalvars.srcAlgalLakes)

966

 shpImpairedStreams = arcpy.mapping.Layer(globalvars.srcImpairedStreams)

 #shpEPAOverlist24KNHD = arcpy.mapping.Layer(globalvars.srcEPAOverlist)

 shpLimestone = arcpy.mapping.Layer(globalvars.srcLimeStone)

 shpDolostone = arcpy.mapping.Layer(globalvars.srcDolostone)

 # Create feature class to store ImpairedOut variable

 arcpy.CopyFeatures_management(WetlandPoly, "WU_ImpairedOut")

 WUImpairedOut = arcpy.mapping.Layer(r"WU_ImpairedOut")

 logger.info("feature layers ready")

 # Add field to Wetland Units and set initial point value to zero

 actions.DeleteField(WUImpairedOut,"ImpairedOut")

 arcpy.AddField_management(WUImpairedOut, "ImpairedOut", "SHORT")

 arcpy.CalculateField_management(WUImpairedOut,"ImpairedOut","0","VB","#")

 logger.info("field ImpairedOut added and initial value set to 0")

 # Select lakes with power boat use

 strWHERE = """"BoatType" NOT LIKE 'No%'"""

 arcpy.SelectLayerByAttribute_management(PublicFishingLakes, "NEW_SELECTION",

strWHERE)

 logger.info("lakes with power boat use selected")

 # Select Wetland Units < 1km from lakes with power boat use

arcpy.SelectLayerByLocation_management(WUImpairedOut,"INTERSECT",PublicFishingLak

es,"1000 Meters","NEW_SELECTION")

 logger.info("Wetland Units < 1km from lakes with power boat use selected")

 # Select Wetland Units < 1km from algal lakes

967

arcpy.SelectLayerByLocation_management(WUImpairedOut,"INTERSECT",fcAlgalLakes,"10

00 Meters","ADD_TO_SELECTION")

 logger.info("Wetland Units < 1km from algal lakes selected")

 # Select Wetland Units < 1km from algal streams

arcpy.SelectLayerByLocation_management(WUImpairedOut,"INTERSECT",fcAlgalStreams,"

1000 Meters","ADD_TO_SELECTION")

 logger.info("Wetland Units < 1km from algal streams selected")

 # Select Wetland Units < 1km from impaired stream reaches

arcpy.SelectLayerByLocation_management(WUImpairedOut,"INTERSECT",shpImpairedStrea

ms,"1000 Meters","ADD_TO_SELECTION")

#arcpy.SelectLayerByLocation_management(WUImpairedOut,"INTERSECT",shpEPAOverlist

24KNHD,"1000 Meters","ADD_TO_SELECTION")

 logger.info("Wetland Units < 1km from impaired stream reaches selected")

 # Select Wetland Units on karst

arcpy.SelectLayerByLocation_management(WUImpairedOut,"INTERSECT",shpLimestone,"#"

,"ADD_TO_SELECTION")

arcpy.SelectLayerByLocation_management(WUImpairedOut,"INTERSECT",shpDolostone,"#"

,"ADD_TO_SELECTION")

 logger.info("Wetland Units on karst selected")

 # Assign 1 point to Wetland Units that dishcharge to impaired waters

 arcpy.CalculateField_management(WUImpairedOut,"ImpairedOut","1","VB","#")

 logger.info("1 point assigned to Wetland Units that discharge to impaired waters")

968

 arcpy.SelectLayerByAttribute_management(PublicFishingLakes, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(WUImpairedOut, "CLEAR_SELECTION")

969

5.7.108 WQPlan: Water Quality Society

File Name: WQPlan.py

Developer: Chad Ashworth (modified and updated by Yibing Han)

Date: 3/18/2016, modified 11/02/2017, TMDL removed March 2023

Purpose:

Water Quality Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcWQPlan(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQSociety.WQPlan")

 #clean up if needed

 if arcpy.Exists("WU_WQPlan"):

 arcpy.Delete_management("WU_WQPlan")

 # Setting python variables

 fcWatershedPlan = arcpy.mapping.Layer(globalvars.srcWatershedPlan)

 fcTDML = arcpy.mapping.Layer(globalvars.srcTMDL)

970

 fcNatStrProAct_HUC10 = arcpy.mapping.Layer(globalvars.srcNatStrPreAct)

 fcNF = arcpy.mapping.Layer(globalvars.srcNF)

 fcNP = arcpy.mapping.Layer(globalvars.srcNP)

 fcNWR = arcpy.mapping.Layer(globalvars.srcNWR)

 # Create feature class to store WQPlan factor

 arcpy.CopyFeatures_management(WetlandPoly, "WU_WQPlan")

 WUWQPlan = arcpy.mapping.Layer(r"WU_WQPlan")

 logger.info("feature layers ready")

 # Add field to Wetland Units and set initial point value to zero

 actions.DeleteField(WUWQPlan,"WQPlan")

 arcpy.AddField_management(WUWQPlan, "WQPlan", "SHORT")

 arcpy.CalculateField_management(WUWQPlan,"WQPlan","0","VB","#")

 logger.info("WQPlan field added to Wetland Units and initial point values set to zero")

 # Select Wetland Units with Watershed Plan

arcpy.SelectLayerByLocation_management(WUWQPlan,"INTERSECT",fcWatershedPlan,"#",

"NEW_SELECTION")

 logger.info("Wetland Units with Watershed Plan selected")

 # Select Wetland Units with TMDL Plan

arcpy.SelectLayerByLocation_management(WUWQPlan,"INTERSECT",fcTDML,"#","ADD_

TO_SELECTION")

 logger.info("Wetland Units with TMDL Plan selected")

 # Select Wetland Units in watershed drained by National Streams Preservation Act streams

971

arcpy.SelectLayerByLocation_management(WUWQPlan,"INTERSECT",fcNatStrProAct_HUC

10,"#","ADD_TO_SELECTION")

 logger.info("Wetland Units with TMDL Plan selected")

 # Select National Forest owned by Forest Service

 arcpy.SelectLayerByAttribute_management(fcNF,"NEW_SELECTION",""""Ownership" =

'Forest Service'""")

 logger.info("National Forest owned by Forest Service selected")

 # Select Wetland Units in Nation Parks, Forets, and Wildlife Refuges

arcpy.SelectLayerByLocation_management(WUWQPlan,"INTERSECT",fcNF,"#","ADD_TO_

SELECTION")

arcpy.SelectLayerByLocation_management(WUWQPlan,"INTERSECT",fcNP,"#","ADD_TO_

SELECTION")

arcpy.SelectLayerByLocation_management(WUWQPlan,"INTERSECT",fcNWR,"#","ADD_T

O_SELECTION")

 logger.info("Wetland Units in Nation Parks, Forets, and Wildlife Refuges selected")

 # Assign 2 points to Wetland Units that are included in a watershed plan of some kind

 arcpy.CalculateField_management(WUWQPlan,"WQPlan","2","VB","#")

 logger.info("2 points assigned to Wetland Units that are included in a watershed plan of some

kind")

 arcpy.SelectLayerByAttribute_management(WUWQPlan, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(fcNF, "CLEAR_SELECTION")

972

5.7.109 WQuse: Water Quality Society

File Name: WQUse.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/18/2016 (modified 11/02/2017)

Purpose:

Water Quality Function, Value to Society

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcWQUse(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQSociety.WQUse")

 # Clean up if needed

 if arcpy.Exists("WU_WQUse1"):

 arcpy.Delete_management("WU_WQUse1")

 if arcpy.Exists("WU_WQUse2"):

 arcpy.Delete_management("WU_WQUse2")

 if arcpy.Exists("WU_WQUse"):

 arcpy.Delete_management("WU_WQUse")

973

 # Setting python variables

 arcpy.MakeFeatureLayer_management(globalvars.srcSwimmingAreas,"fcSwimmingAreas")

 arcpy.MakeFeatureLayer_management(r"WU_WaterSupply","fcWaterSupply")

 arcpy.MakeFeatureLayer_management(r"WU_Fisheries","fcFisheries")

 logger.info("feature layers ready")

 # Create feature class to store WQPlan factor

 arcpy.CopyFeatures_management(WetlandPoly, "WU_WQUse1")

 arcpy.MakeFeatureLayer_management(r"WU_WQUse1","fcWUWQUse1")

 logger.info("feature class WU_WQUse1 created")

 # Add fields to Wetland Units and set initial point value to zero

 actions.DeleteField("fcWUWQUse1","WQUse")

 arcpy.AddField_management("fcWUWQUse1", "WQUse", "SHORT")

 arcpy.CalculateField_management("fcWUWQUse1","WQUse","0","VB","#")

 actions.DeleteField("fcWUWQUse1","Swim")

 arcpy.AddField_management("fcWUWQUse1", "Swim", "SHORT")

 arcpy.CalculateField_management("fcWUWQUse1","Swim","0","VB","#")

 logger.info("WQUse and Swim fields added to Wetland Units and initial point values set to

zero")

 # Select Wetland Units within 1km of Swimming Area

arcpy.SelectLayerByLocation_management("fcWUWQUse1","INTERSECT","fcSwimmingAr

eas","1000 Meters","NEW_SELECTION")

 logger.info("Wetland Units within 1km of Swimming Area selected")

 # Assign 1 point to selected Wetland Units

974

 arcpy.CalculateField_management("fcWUWQUse1","Swim","1","VB","#")

 logger.info("1 point assigned to selected Wetland Units")

 # Select Wetland Units within 50m of Swimming Area

arcpy.SelectLayerByLocation_management("fcWUWQUse1","INTERSECT","fcSwimmingAr

eas","50 Meters","NEW_SELECTION")

 logger.info("Wetland Units within 50m of Swimming Area selected")

 # Assign 2 points to selected Wetland Units

 arcpy.CalculateField_management("fcWUWQUse1","Swim","2","VB","#")

 logger.info("2 points assigned to selected Wetland Units")

 arcpy.SelectLayerByAttribute_management("fcWUWQUse1", "CLEAR_SELECTION")

 # Spatial join to bring together the factor values

###

#################

 # SJ: WaterSupply

###

#################

 fmSJWS = arcpy.FieldMappings()

 fmSJWS.addTable("fcWUWQUse1")

 fmSJWS.addTable("fcWaterSupply")

 keepers = []

 keepers = ["WUKey","Shape_Length","Shape_Area","WQUse","Swim","WaterSupply"]

 for field in fmSJWS.fields:

975

 if field.name not in keepers:

 fmSJWS.removeFieldMap(fmSJWS.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUWQUse1","fcWaterSupply","WU_WQUse2","JOIN_ONE_T

O_ONE","KEEP_ALL",fmSJWS,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQUse2","fcWUWQUse2")

 logger.info("Spatial Join completed to add variable WaterSupply")

###

#################

 # SJ: Fisheries

###

#################

 fmSJF = arcpy.FieldMappings()

 fmSJF.addTable("fcWUWQUse2")

 fmSJF.addTable("fcFisheries")

 keepers = []

 keepers =

["WUKey","Shape_Length","Shape_Area","WQUse","Swim","WaterSupply","Fisheries"]

 for field in fmSJF.fields:

 if field.name not in keepers:

 fmSJF.removeFieldMap(fmSJF.findFieldMapIndex(field.name))

arcpy.SpatialJoin_analysis("fcWUWQUse2","fcFisheries","WU_WQUse","JOIN_ONE_TO_O

NE","KEEP_ALL",fmSJF,"CONTAINS")

 arcpy.MakeFeatureLayer_management("WU_WQUse","fcWUWQUse")

976

 logger.info("Spatial Join completed to add variable Fisheries")

 # Sum the points for water quality use

 arcpy.CalculateField_management("fcWUWQUse","WQUse","[Swim] + [WaterSupply] +

[Fisheries]","VB","#")

 logger.info("points summed for WQUse")

 # Reduce points to maximum allowed for WQUse

arcpy.SelectLayerByAttribute_management("fcWUWQUse","NEW_SELECTION",""""WQUs

e" > 2""")

 arcpy.CalculateField_management("fcWUWQUse","WQUse","2","VB","#")

 arcpy.SelectLayerByAttribute_management("fcWUWQUse", "CLEAR_SELECTION")

 logger.info("points reduced to maximum allowed for WQUse")

 ## Clean up

 if arcpy.Exists("WU_WQUse1"):

 arcpy.Delete_management("WU_WQUse1")

 if arcpy.Exists("WU_WQUse2"):

 arcpy.Delete_management("WU_WQUse2")

977

5.7.110 Fisheries: Water Quality Society

File Name: Fisheries.py

Developer: Chad Ashworth (modified by Yibing Han)

Date: 3/16/2016 (modified 12/04/2017)

Purpose:

Water Quality Function

#!/usr/bin/python

import sys

sys.path.append("../../..")

import logging

import arcpy

from globalvars import globalvars

from utilities import actions

def CalcFisheries(WetlandPoly):

 logger = logging.getLogger("WFA.WQuality.WQSociety.Fisheries")

 # Clean up if needed

 if arcpy.Exists("WU_Fisheries"):

 arcpy.Delete_management("WU_Fisheries")

 # Setting python variables

 TroutUpdate = arcpy.mapping.Layer(globalvars.srcTrout)

 HQSFisheries = arcpy.mapping.Layer(globalvars.srcHQSFisheries)

978

 TroutStreams = arcpy.mapping.Layer(globalvars.srcTroutStreams)

 # Create feature class to store Fisheries variable

 arcpy.CopyFeatures_management(WetlandPoly, "WU_Fisheries")

 WUFisheries = arcpy.mapping.Layer(r"WU_Fisheries")

 logger.info("feature layers ready")

 # Add field to Wetland Units and set initial point value to zero

 actions.DeleteField(WUFisheries,"Fisheries")

 arcpy.AddField_management(WUFisheries, "Fisheries", "SHORT")

 arcpy.CalculateField_management(WUFisheries,"Fisheries","0","VB","#")

 logger.info("field Fisheries added and initial value set to 0")

 # Select Wetland Units within 1km of perennial trout stream

arcpy.SelectLayerByLocation_management(WUFisheries,"INTERSECT",TroutUpdate,"1000

Meters","NEW_SELECTION")

 logger.info("Wetland Units within 1km of perennial trout stream selected")

 # Select Wetland Units within 1km of high quality stream fisheries

arcpy.SelectLayerByLocation_management(WUFisheries,"INTERSECT",HQSFisheries,"1000

Meters","ADD_TO_SELECTION")

 logger.info("Wetland Units within 1km of high quality stream fisheries selected")

 # Select Wetland Units within 1km of stocked trout streams

arcpy.SelectLayerByLocation_management(WUFisheries,"INTERSECT",TroutStreams,"1000

Meters","ADD_TO_SELECTION")

 logger.info("Wetland Units within 1km of stocked trout streams selected")

979

 # Assign 1 point to Wetland Units that disharge to economic fisheries

 arcpy.CalculateField_management(WUFisheries,"Fisheries","1","VB","#")

 logger.info("1 point assigned to Wetland Units that discharge to economic fisheries")

 arcpy.SelectLayerByAttribute_management(WUFisheries, "CLEAR_SELECTION")

 # Select special fisheries

 strWHERE = """"StockCode" NOT LIKE 'NS'"""

 arcpy.SelectLayerByAttribute_management(TroutStreams, "NEW_SELECTION",

strWHERE)

 strWHERE = """"RegType" = 'Catch-and-Release' OR "RegType" = 'Children and Class Q'

OR "RegType" = 'Fly-fishing-Only'"""

arcpy.SelectLayerByAttribute_management(TroutStreams,"ADD_TO_SELECTION",strWHE

RE)

 logger.info("special fisheries selected")

 # Select Wetland Units within 1 km of special fisheries

arcpy.SelectLayerByLocation_management(WUFisheries,"INTERSECT",TroutStreams,"1000

Meters","NEW_SELECTION")

 logger.info("Wetland Units within 1 km of special fisheries selected")

 # Assign 2 points to Wetland Units within 1km of special fisheries

 arcpy.CalculateField_management(WUFisheries,"Fisheries","2","VB","#")

 logger.info("2 points assigned to Wetland Units within 1km of special fisheries")

 arcpy.SelectLayerByAttribute_management(WUFisheries, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(TroutStreams, "CLEAR_SELECTION")

980

5.7.111 WaterSupply: Water Quality Society

File Name: WaterSupply.py

Developer: Chad Ashworth, Nate Gunn (modified by Yibing Han)

Date: 5/18/2016 (modified 12/08/2017)

Purpose:

This script contains functions which score wetlands based upon spatial

relationships to water supply #intakes. The "variable" (feature class)

output is referred to as WaterSupply in accompanying documentation

#!/usr/bin/python

import sys, os

sys.path.append("../../..")

import arcpy

from globalvars import globalvars

from datetime import datetime

import collections

from utilities import actions

import logging

logger = logging.getLogger("WFA.WQuality.WQSociety.WaterSupply")

Setting Python variables

RATIO = "contribution"

KEY = "wetland"

PSWI = "intake"

ITEMS_TO_REMOVE = ["WU_WaterSupply", "Surface_Intake_Drainage_Area_Intersect"]

981

#if __name__ == "__main__":

def DetermineWaterSupply(WetlandPoly):

 # Clean up if needed

 if arcpy.Exists("WU_WaterSupply"):

 arcpy.Delete_management("WU_WaterSupply")

 if arcpy.Exists("Surface_Intake_Drainage_Area_Intersect"):

 arcpy.Delete_management("Surface_Intake_Drainage_Area_Intersect")

 if arcpy.Exists("pswi_watersheds_with_out_of_state_drainage"):

 arcpy.Delete_management("pswi_watersheds_with_out_of_state_drainage")

 # Reading layers

 wetlands = WetlandPoly

 public_water_intakes_orig = globalvars.PSWI_WATERSHEDS

 arcpy.CopyFeatures_management(public_water_intakes_orig,

"pswi_watersheds_with_out_of_state_drainage")

 public_water_intakes =

arcpy.mapping.Layer("pswi_watersheds_with_out_of_state_drainage")

 zpc_5hr = arcpy.mapping.Layer(globalvars.ZPC_5HR)

 protection_areas = arcpy.mapping.Layer(globalvars.PROTECTION_AREAS)

 logger.info("layers ready")

 items = PublicWaterSupplyCheck(wetlands, public_water_intakes, zpc_5hr, protection_areas,

public_water_intakes)

 #sanity_check(items, wetlands)

 # Clean up

 if arcpy.Exists("Surface_Intake_Drainage_Area_Intersect"):

 arcpy.Delete_management("Surface_Intake_Drainage_Area_Intersect")

 if arcpy.Exists("pswi_watersheds_with_out_of_state_drainage"):

982

 arcpy.Delete_management("pswi_watersheds_with_out_of_state_drainage")

################ OPTIMIZED CODE STARTS HERE

#Calculate each wetland's max contribution to a surface intake drainage area

def get_wetland_unit_contribution(wetland_unit, surface_intake_drainage_area, output):

 ## Create Original Area Field to the Surface Intake Drainage Area

 actions.DeleteField(surface_intake_drainage_area, "OrigArea")

 arcpy.AddField_management(surface_intake_drainage_area, "OrigArea", "DOUBLE")

 arcpy.CalculateField_management(surface_intake_drainage_area, "OrigArea",

"!SHAPE_Area!", "PYTHON_9.3")

 logger.info("field OrigArea created and calculated")

 ## Intersect the Supplied Wetland Layer and the Surface Intake Drainage Area

 lyrs = [wetland_unit, surface_intake_drainage_area]

arcpy.Intersect_analysis(lyrs,"Surface_Intake_Drainage_Area_Intersect","ALL","#","INPUT")

 logger.info("intersect complete for Supplied Wetland Layer and the Surface Intake Drainage

Area")

 #delete original area

 #arcpy.DeleteField_management(in_table=surface_intake_drainage_area,

drop_field="OrigArea")

This will help keep things reliable if run in immediate mode. It also speeds testing.

def cleanup_workspace():

 # get the TOC by way of the map document and current frame

 if "ArcMap" in sys.executable:

 doc = arcpy.mapping.MapDocument("CURRENT")

 frame = doc.activeDataFrame

983

 # clear the TOC or Delete attempts will fail

 for lyr in arcpy.mapping.ListLayers(doc):

 if lyr.name in ITEMS_TO_REMOVE:

 arcpy.mapping.RemoveLayer(frame, lyr)

 # clear the FCs used in intermediate steps and prior run results.

 for item in ITEMS_TO_REMOVE:

 if arcpy.Exists(item):

 #print("Deleting {}".format(item,))

 arcpy.Delete_management(item)

 logger.info("workspace cleaned up")

#area ratio based scoring

#NOTE: the documentation uses percentage scoring. Be careful to use percentage

#in results if

def score(ratio):

 retval = 0

 if ratio:

 if ratio > 0.001:

 retval = 1

 if ratio > 0.01:

 retval = 2

 return retval

def classify_wetlands_by_intersection(wetlands, pswi_watersheds):

 #a range would be faster, but requires no gaps in OIDs for this class

 sc = arcpy.da.SearchCursor(wetlands, ["OID@"])

 items = {}

 for item in sc:

 items[item[0]] = {KEY: item[0], RATIO: 0.0}

984

 del sc

 sc = arcpy.da.SearchCursor("Surface_Intake_Drainage_Area_Intersect", ['FID_' +

wetlands.name, 'FID_' + pswi_watersheds.name, 'SHAPE@AREA' , 'OrigArea'])

 #store the max contribution towards a drainage area for any wetland unit which intersects

 for item in sc:

 #print("listing item {}".format(item,))

 wlu = item[0]

 #print("Already stored? {}".format(key in items))

 if wlu in items and items[wlu]:

 testval = {PSWI: item[1], RATIO: item[2] / item[3]} # new (key, ratio intersection area

to intake area)

 if testval[RATIO] > items[wlu][RATIO]:

 items[wlu] = testval

 else:

 items[wlu] = {PSWI:item[1], RATIO: item[2] / item[3]} # store dictionary of (pwsi,

ratio intersection area to intake area)

 zeroes = 0

 ones = 0

 twos = 0

 for item in items:

 item_score = score(items[item][RATIO]) #score based on the stored ratio

 if item_score == 0:

 zeroes += 1

 if item_score ==1:

 ones += 1

 if item_score == 2:

 twos += 1

 items[item]['score'] = item_score

 #if item_score > 0:

 #print("wetland {} contains item: {}".format(item, items[item]))

985

 #print "Classification results immediately after intersection scoring"

 #print "zeroes: {}".format(zeroes,)

 #print "ones : {}".format(ones,)

 #print "twos : {}".format(twos,)

 #print ""

 return items

 logger.info("the max contribution towards a drainage area for any wetland unit which

intersects stored")

#Perform the selections by attributes and intersections to generate scores of 1

def score_one_by_selection(wetlands, zpc_5hr, protection_areas, items):

 ## Select Secondary Protection Areas with surface water connections.

 strWhere1Pt = """"P_TYPE" in (NULL, 'Secondary Protection Area') AND "FAC_SRC" IN

('GU', 'SW')"""

 arcpy.SelectLayerByAttribute_management(protection_areas, "NEW_SELECTION",

strWhere1Pt)

 logger.info("Secondary Protection Areas with surface water connections selected")

 ## Select Wetland units within a Secondary Protection Area.

 arcpy.SelectLayerByLocation_management(wetlands, "INTERSECT", protection_areas, "",

"NEW_SELECTION")

 logger.info("Wetland units within a Secondary Protection Area selected")

 ## Select Wetland Units within the 5-hour travel distance in a Zone of Peripheral Concern.

 arcpy.SelectLayerByLocation_management(wetlands, "INTERSECT", zpc_5hr, "",

"ADD_TO_SELECTION")

 logger.info("Wetland Units within the 5-hour travel distance in a Zone of Peripheral Concern

added to selection")

 with arcpy.da.SearchCursor(wetlands, ["OID@"]) as sc:

 for record in sc:

986

 oid = record[0]

 items[oid]['score'] = max(items[oid]['score'], 1)

 del sc

 logger.info("1 point scores generated for wetland units")

 arcpy.SelectLayerByAttribute_management(protection_areas, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(wetlands, "CLEAR_SELECTION")

#Perform the selections by attributes and intersections to generate scores of 2

def score_two_by_selection(wetlands, protection_areas, items):

 #print("Scoring twos by selection...")

 ## Select Protection Areas and Wellhead Critical Areas with surface water connections

 strWhere2Pt = """"P_TYPE" IN ('Protection Area', 'rotection Area', 'Wellhead Critical Area')

AND "FAC_SRC" IN ('GU', 'SW') """

 arcpy.SelectLayerByAttribute_management(protection_areas, "NEW_SELECTION",

strWhere2Pt)

 logger.info("Protection Areas and Wellhead Critical Areas with surface water connections

selected")

 ## Select Wetland Units within Protection Areas or Wellhead Critical Areas with surface

connections.

 arcpy.SelectLayerByLocation_management(wetlands, "INTERSECT", protection_areas, "",

"NEW_SELECTION")

 logger.info("Wetland Units within Protection Areas or Wellhead Critical Areas with surface

connections selected")

 ## Select Wetland Units within Zone of Critical Concern.

 arcpy.SelectLayerByLocation_management(wetlands, "INTERSECT", globalvars.ZCC_WV,

"", "ADD_TO_SELECTION")

 logger.info("Wetland Units within Zone of Critical Concern added to selection")

987

 with arcpy.da.SearchCursor(wetlands, ["OID@"]) as sc:

 for record in sc:

 oid = record[0]

 items[oid]['score'] = max(items[oid]['score'], 2)

 del sc

 logger.info("2 points scores generated for wetland units")

 arcpy.SelectLayerByAttribute_management(protection_areas, "CLEAR_SELECTION")

 arcpy.SelectLayerByAttribute_management(wetlands, "CLEAR_SELECTION")

#do a timed run of the wetland process

def PublicWaterSupplyCheck(wetlands, intakes, zpcs, protection_areas, pswi_watersheds):

 items = None

 fcPublicWaterIntakeIntersect = "Surface_Intake_Drainage_Area_Intersect"

 cleanup_workspace()

 #perform the intersection used for scoring

 get_wetland_unit_contribution(wetlands, intakes, "WU_WaterSupply")

 #score based on the wetland

 items = classify_wetlands_by_intersection(wetlands, pswi_watersheds)

 #1s

 score_one_by_selection(wetlands, zpcs, protection_areas, items)

 #2s

 score_two_by_selection(wetlands, protection_areas, items)

988

 output_results(items, wetlands)

 return items

 logger.info("completed output WU_WaterSupply")

'''

def sanity_check(items, wetlands):

 #print("\nSanity check for results: ")

 check = len(items) == int(arcpy.GetCount_management("WU_WaterSupply").getOutput(0))

 #print "Number of Wetlands in FC is consistent with number of results: {}\n".format(check,)

 #print("Total wetland counts per score:\n")

 zeroes = 0

 ones = 0

 twos = 0

 for item in items:

 val = items[item]['score']

 if val == 2:

 twos += 1

 elif val == 1:

 ones += 1

 else:

 zeroes += 1

 #print("zeroes : {}".format(str(zeroes).rjust(8),))

 #print("ones : {}".format(str(ones).rjust(8),))

 #print("twos : {}".format(str(twos).rjust(8),))

 total = ones + twos + zeroes

 #print("-" * 17)

 #print("Total : {}".format(str(total).rjust(8),))

 logger.info("Completed sanity check for results")

989

'''

def output_results(items, wetlands):

 ws = arcpy.env.workspace

 template = globalvars.PSWI_TEMPLATE

 target_path = os.path.join(ws, "WU_WaterSupply")

 if arcpy.Exists(template):

 if arcpy.Exists(target_path):

 arcpy.Delete_management(target_path)

 sr = arcpy.SpatialReference(26917)

 arcpy.CreateFeatureclass_management(arcpy.env.workspace, "WU_WaterSupply",

"POLYGON", template, "DISABLED", "DISABLED", sr)

 logger.info("empty feature class created for WU_WaterSupply")

 #

 arcpy.SelectLayerByAttribute_management(wetlands,"CLEAR_SELECTION")

 with arcpy.da.SearchCursor(wetlands, ["OID@", "Shape@", "WUKey"]) as sc,

arcpy.da.InsertCursor(target_path, ["OID@", "Shape@", "WUKey", "PctInt", "WaterSupply"])

as ic:

 for record in sc:

 # [oid, geometry, ratio, score]

 wlu = record[0]

 row = [wlu, record[1], record[2], items[wlu][RATIO] * 100, items[wlu]['score']]

 ic.insertRow(row)

 del sc

 del ic

 logger.info("stored records loaded into WU_WaterSupply")

 else:

 logger.warn("The supplied output feature class {} template is missing.".format(template,))

990

5.7.112 Wetland Functional Assessment Tool Launch Script

File Name: wfa.py

Developer: Yibing Han @ West Virginia GIS Tech Center

Methodology: Elizabeth Byers @ WV DEP

Date: 02/2018

Purpose:

This is the main launching script that initiates the Wetland Functional Assessment.

For questions or concerns, please contact:

Email: Yibing Han (yibing.han@mail.wvu.edu) / Kurt Donaldson

(kurt.donaldson@mail.wvu.edu)

Mailing Address:

WV GIS Technical Center

WVU Department of Geology & Geography

330 Brooks Hall

P.O. Box 6300

Morgantown, WV 26506

Phone: (304) 293-0557

#!/usr/bin/python

import sys, os

sys.path.append(os.path.abspath("."))

import gc

gc.enable()

import datetime

import time

991

import logging

import traceback

import arcpy

from globalvars import globalvars

from utilities import initRequest, actions, calcFunction, calcAllResults

from wquality import WQuality

from floodattn import FloodAttn

from habeco import HabEco

#scriptPath = os.path.abspath(__file__)

#thisFolder = os.path.dirname(scriptPath)

arcpy.env.overwriteOutput = True

#Set logger

logger = logging.getLogger("WFA")

logger.setLevel(logging.INFO)

#loggerFilePath = os.path.join(thisFolder, "logs")

loggerFile = os.path.join(globalvars.srcLogFolder, "WFA_" +

str(time.strftime("%Y%m%d_%H%M%S")) + ".txt")

fh = logging.FileHandler(loggerFile)

formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')

fh.setFormatter(formatter)

logger.addHandler(fh)

ch = logging.StreamHandler()

ch.setLevel(logging.INFO)

ch.setFormatter(formatter)

logger.addHandler(ch)

992

logger.info("program started")

uid = "WetlandFunction"

strUploadFile = sys.argv[1]

globalvars.srcInput = strUploadFile

fcWetlandInput = arcpy.mapping.Layer(strUploadFile)

arcpy.AddMessage("Input Feature Class: " + str(strUploadFile))

Geodatabase/Workspace

fcGeodbFCName = uid + "_" + str(time.strftime("%Y%m%d_%H%M%S"))

arcpy.CreateFileGDB_management(globalvars.srcGDBFolder, fcGeodbFCName)

strWorkspace = globalvars.srcGDBFolder + "\\" + fcGeodbFCName + ".gdb"

arcpy.env.workspace = strWorkspace

arcpy.AddMessage("Target Geodatabase: " + str(fcGeodbFCName))

initial run to create variables used across the sections

logger.info("Running initial functions to create variables used across the sections")

arcpy.AddMessage("Running initial functions to create variables used across the sections")

try:

 fcWU = arcpy.mapping.Layer(initRequest.MainUtil(fcWetlandInput))

 arcpy.AddMessage("Initial run completed to create variables used across the sections")

except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 arcpy.AddMessage("Initial run to created variables failed")

993

 sys.exit(1)

 for handler in logger.handlers:

 logger.removeHandler(handler)

except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 arcpy.AddMessage("Initial run to created variables failed")

 sys.exit(1)

 for handler in logger.handlers:

 logger.removeHandler(handler)

run the Water Quality Assessment

logger.info("Running Water Quality Assessment")

arcpy.AddMessage("Running Water Quality Assessment")

try:

 WQuality.RunWaterQuality(fcWU)

 arcpy.AddMessage("Water Quality Assessment completed")

except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 arcpy.AddMessage("Habitat and Ecological Integrity Assessmemt failed")

994

 sys.exit(1)

 for handler in logger.handlers:

 logger.removeHandler(handler)

except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 arcpy.AddMessage("Water Quality Assessment failed")

 sys.exit(1)

 for handler in logger.handlers:

 logger.removeHandler(handler)

run Flood Attenuation Assessment

logger.info("Running Flood Attenuation Assessment")

arcpy.AddMessage("Running Flood Attenuation Assessment")

try:

 FloodAttn.RunFloodAttn(fcWU)

 arcpy.AddMessage("Flood Attenuation Assessment completed")

except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 arcpy.AddMessage("Flood Attenuation Assessment failed")

995

 sys.exit(1)

 for handler in logger.handlers:

 logger.removeHandler(handler)

except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 arcpy.AddMessage("Flood Attenuation Assessment failed")

 sys.exit(1)

 for handler in logger.handlers:

 logger.removeHandler(handler)

run Habitat and Ecological Integrity Assessment

logger.info("Running Habitat and Ecological Integrity Assessment")

arcpy.AddMessage("Running Habitat and Ecological Integrity Assessment")

try:

 HabEco.RunHabEco(fcWU)

 arcpy.AddMessage("Habitat and Ecological Integrity Assessment completed")

except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 arcpy.AddMessage("Habitat and Ecological Integrity Assessment failed")

996

 sys.exit(1)

 for handler in logger.handlers:

 logger.removeHandler(handler)

except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 arcpy.AddMessage("Habitat and Ecological Integrity Assessment failed")

 sys.exit(1)

 for handler in logger.handlers:

 logger.removeHandler(handler)

run Final Assessment that aggregates all three previous sections

logger.info("Running final assessment that aggregates all three previous sections")

arcpy.AddMessage("Running final assessment that aggregates all three previous sections")

try:

 calcFunction.CalcFunction()

 arcpy.AddMessage("Final Assessment (Pt.1) completed")

except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 arcpy.AddMessage("Final Assessment failed")

997

 sys.exit(1)

 for handler in logger.handlers:

 logger.removeHandler(handler)

except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 arcpy.AddMessage("Final Assessment (Pt.1) failed")

 sys.exit(1)

 for handler in logger.handlers:

 logger.removeHandler(handler)

run Final Assessment that aggregates all scoreing fields

logger.info("Running final assessment that aggregates all three previous sections")

arcpy.AddMessage("Running final assessment that aggregates all three previous sections")

try:

 calcAllResults.CalcAllResults(fcWU)

 arcpy.AddMessage("Final Assessment (Pt.2) completed")

except arcpy.ExecuteError:

 msgs = "EXECUTE ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(msgs)

 logger.error(msgs)

 arcpy.AddMessage("Final Assessment (Pt.2) failed")

998

 sys.exit(1)

 for handler in logger.handlers:

 logger.removeHandler(handler)

except:

 tb = sys.exc_info()[2]

 tbinfo = traceback.format_tb(tb)[0]

 pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" +

str(sys.exc_info()[1])

 msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages(2) + "\n"

 arcpy.AddError(pymsg)

 arcpy.AddError(msgs)

 logger.error(pymsg)

 logger.error(msgs)

 arcpy.AddMessage("Final Assessment (Pt.2) failed")

 sys.exit(1)

 for handler in logger.handlers:

 logger.removeHandler(handler)

logger.info("program ended")

for handler in logger.handlers:

 logger.removeHandler(handler)

