

Greenbrier @ Howard Creek

The river is about 3-4 feet deep, and the water column is full of algae on this side of the river.

Below Ronceverte

Above Davis Spring (2008)

Algae Impact on Greenbrier River

Source Tracking Conclusions

Filamentous algae clearly correlated with P-discharge from WWTPs along the Greenbrier River

http://www.wvdep.org/Docs/16873_Assessment_Filamentous_Algae_Greenbrie_%20River.pdf

Why weren't other rivers experiencing similar problems???

Can you find what is different?

	hardness	Alk	рН	T. Phos	NO3-NO2
Tug Fork	220	124	6.8-8.3	0.052	0.56
Coal River	205	110	7.2-8.2	0.017	0.854
Dunkard Creek	134	89	7.2-8.6	0.06	0.57
West Fork River	252	68	6.7-8.0	0.06	0.56
South Branch of Potomac	105	85	7.4-9.1	0.075	0.5
Shenandoah River	175	117	7.7-8.8	0.07	0.98
Opequon Creek	292	211	7.3-8.5	0.25	2.1
Indian Creek	202	189	7.6-8.3	0.088	1.7
Greenbrier River	50	60	6.6-8.6	0.018	0.46

Similar Chemistry....

Tygart Valley River
Cacapon River
Bluestone River
New River
NF Hughes River
Greenbrier River

Tygart Valley River

T. Phos 0.04Alk 44Hardness 71

Cacapon River

T. Phos 0 .021Alk 56Hardness 98

New River

T. Phos 0.03Alk 60Hardness 80

South Fork of South Branch Potomac

T. Phos Alk Hardness 0.01 91 130

South Branch-Franklin

T. Phos Alk Hardness 0.01 123 128

South Branch (OF)

T. Phos Alk Hardness 0..43 97 141

Shenandoah River

T. Phos Alk Hardness

0.07117174

River	Avg. Hardness (mg/l)	Algae Development	
Greenbrier River	65	Severe	
North Fork Hughes River	63	Low ^T	
Tygart Valley River	70	High	
New River	79	Moderate ^D	
Kanawha River	85	None ^T	
Cacapon River	96	High	
South Fork/South Branch Potomac River	112	Moderate	
Bluestone River	121	Moderate	
South Branch Potomac River	130	Low-Moderate	
Guyandotte River	145	None	
West Fork River	190	None	
Monongahela River	149	None	
Tug Fork	178	None	
North Branch Potomac River	214	None	
Shenandoah River	174	None	
Birch River	221	None	
Coal River	284	None	
Mud River	373	None	

River	Avg. Hardness (mg/l)	Algae Development	
Greenbrier River	65	Severe	
Tygart Valley River	70	High	
Cacapon River	96	High	
South Fork/South Branch Potomac River	112	Moderate	
Bluestone River	121	Moderate	
South Branch Potomac River	130	Low-Moderate	
Guyandotte River	145	None	
West Fork River	190	None	
Monongahela River	149	None	
Tug Fork	178	None	
North Branch Potomac River	214	None	
Shenandoah River	174	None	
Birch River	221	None	
Coal River	284	None	
Mud River	373	None	

River	Avg. Alkalinity (mg/l)	Algae Development	
Cheat River	17	None	
Cherry River	18	None	
Gauley River	24	None	
Upper Greenbrier River	30	None	
Lower Elk River	35	None	
Tygart Valley River	44	Severe	
Lower Greenbrier River	54	High	
Cacapon River	56	High	
South Branch Potomac River	97	Low-Moderate	

Algae Limiting factors

	Alkalinity	Hardness	Turbidity
Cherry River	X		
Elk River	X		
Gauley River	X		
Cheat River	X		
Little Kanawha	X		X
Kanawha			X
Tug Fork		X	
West Fork		X	X
Shenendoah		X	
Opequon		X	X
Guyandotte		X	

What makes algae grow?

- Physical Needs
 - Clear (shallow) water
 - Low silt accumulation (rocky bottom)
- Nutritional Needs
 - Carbon (106), Nitrogen (16), Phosphorus (1)
 - In most surface waters, phosphorus is the limiting nutritional factor for algae growth.
- Right Chemistry
 - Alkalinity >35-40
 - Hardness <150 (WV conditions)</p>

Hardness

- <60 mg/l soft</p>
- 60-120 moderately hard
- 120-180 hard
- >180 very hard

The Chemistry...

$$\blacksquare$$
 Ca⁺² + PO₄⁻³ <==>

 $Mg(H_2PO_4)_2$

MgHPO₄

 $Mg_3(PO_4)_2$

 $Ca_2Mg(PO_4)_2$

 $Ca_3(PO4)_2$

 $Ca(H_2PO4)_2 \cdot H_2O$

 $Ca(H_2PO_4)_2$

CaHPO₄

 $Ca_4(PO4)_2O$

 $Ca_5(PO_4)_3OH$

 $Ca(PO4)_2-H_2O$

 $Ca_4H(PO_4)_3$

 $Ca_5F(PO4)_3$

Researchers....

"results suggest that pH combined with Ca and Mg activity are the dominant chemical controls on P chemistry in this P enriched system." (Bedore, 2008)

"Significant regression line" in relationship of *chlorophyll a* concentrations and Ca/Mg ratio (Kawaga et al, 1989)

Dissolved Ca and Mg have a "regulating effect" on P-nutrition (Neel, 1979)

A Ca/Mg ratio less than 4 had a negative effect on algal growth, and a Ca/Mg ratio greater than 5 enhanced growth (Masayoshi, 2000).

Researchers...

Phosphorus co-precipitates with calcite in highly alkaline aquatic environments. (Plant *et al*, 2002; Avimelech 1980; Salinger 1993)

Long term P-accumulation in the Everglades was linearly correlated with Ca⁺² accumulation (Reddy *et al* 1993).

Ca-P precipitation is a natural mechanism to control eutrophication in hard water lakes (Hartley, 1997)

Key question #1

Is there a threshold available phosphorus concentration for algae blooms to occur on "nutrient sensitive" streams?

Key question #2

What level of filamentous algae bloom is problematic?

River	Bottom Cover (%)	Water Column Fill (%)	Biomass (g/ft²)	Impact Index
South Branch @ Old Fields	53	3.7	12.5	1.97
North Fork Hughes at North Bend	54	60	44.3	2.59
North Fork Hughes at Cairo	23	4	19.7	1.85
Greenbrier-Hillsboro 1	40	18	26.5	2.30
Greenbrier-Hillsboro 2	53	28	21.8	2.43
Greenbrier- Caldwell	53	32	33.6	2.46
Greenbrier - Coffman Hill Rd.	80	27	31.4	2.48
Greenbrier - near Rt 62 bridge 1	41	16	24.1	2.28
Greenbrier - near Rt 62 bridge 2	85	7	15.3	2.20
Greenbrier-Ronceverte	74	50	76.3	2.59
Greenbrier- US Alderson	64	23	48.4	2.42
Greenbrier- 1 mile below Alderson	39	10	23.1	2.17
Greenbrier-Lowell	46	9	16.7	2.17
Hypothetical	20	8	17.5	1.97

Algae Impact Index = $(1.5*log BC + ln WC)^{0.5}$

2009 Goals

- Investigate "threshold" P-concentration using low level analyses. (~15 sites with intensive monitoring through summer)
- Delineate algae development on Greenbrier and Tygart:
 - Spatially and chronologically
 - Relate to Nutrient concentrations
- Define "nuisance level" of filamentous algae (user surveys)