The Role of Soil-Bound Nitrogen in the Atlantic Slope Fish Kills: Nitrite and Un-ionized Ammonia Toxicity

Ben Lowman and Andy Johnson WVDEP

1-30-08

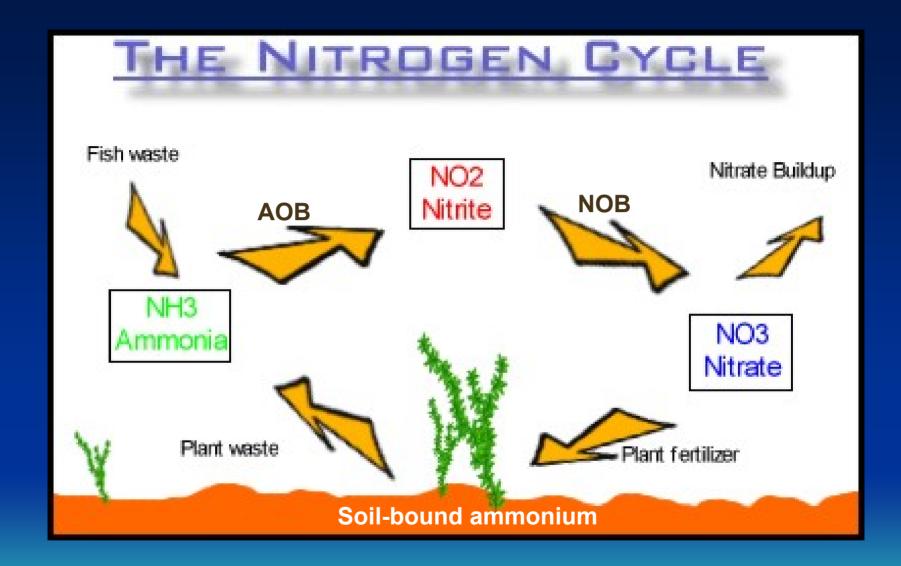
Hypothesis:

Freshwater fishes in the Potomac drainage are exposed to toxic levels of nitrite and/or un-ionized ammonia as part of natural spawning behaviors. Bacteria residing in the streambed sediment "fix" abundant nitrogen, exhibiting a seasonal phenology and life history conducive to accumulation of toxicants.

Overview

- N cycle / background / sources of additional input
- Ammonia / ammonium relation to water quality
- Phenology of AOB and NOB
- Exposure of fishes /spawning behaviors
- Effects of exposure...more than just brown blood disease...un-ionized ammonia extremely toxic

Nitrogen and Soil


- N cycle = nutrient and food availability
- Occurs at all levels, but most prevalent in soil
- Most N from excrement is already in organic form; easy fixation to NO₃
- Some N in more concentrated forms like uric acid (birds, reptiles) and urea
- Concentrated products mobilize by acidic rainfall
- Ultimate fate of N may be as soil-bound ammonium

Nitrogen Sources

- Atmospheric
- WWTP's
- Land application of:
 - Human wastes
 - Agricultural wastes
- Fertilizer runoff
- De-icing / Blasting Agents

How Bacteria Factor In

- N cycle in freshwater and soil is initiated by bacteria (e.g. ammonia oxidizing bacteria)
- N cycle fulfilled for plants when nitrite oxidizing bacteria produce nitrate
- Nitrate is only form of N usable by plants
- Some plants, including stargrass, have rhizospheres to house N-fixing bacteria

Proof in the Plants

Fate of Ammonium in Streams

- Ammonium is quickly attracted to soil particles (+/-)
- Soil-bound ammonium accumulates in depositional areas
- Steambed sediments become rich for bacterial metabolism
- Inherently held by clay soils

WQ and Ammonium

- Alkaline conditions conducive to ammonia formation
- High pH drives the reaction
- Un-ionized ammonia has irreparable impact on fish gills (only few tolerate)
- Especially toxic to freshwater fishes adapted to low salinity

Nitrogen Fixing Bacteria

Ammonia Oxidizing Bacteria (AOB)

 Prefers higher pH
 Lower temperature for metabolic activity

Nitrogen Oxidizing Bacteria (NOB)

 Metabolizes nitrite into nitrate
 Most active later in season as NO₂ becomes available

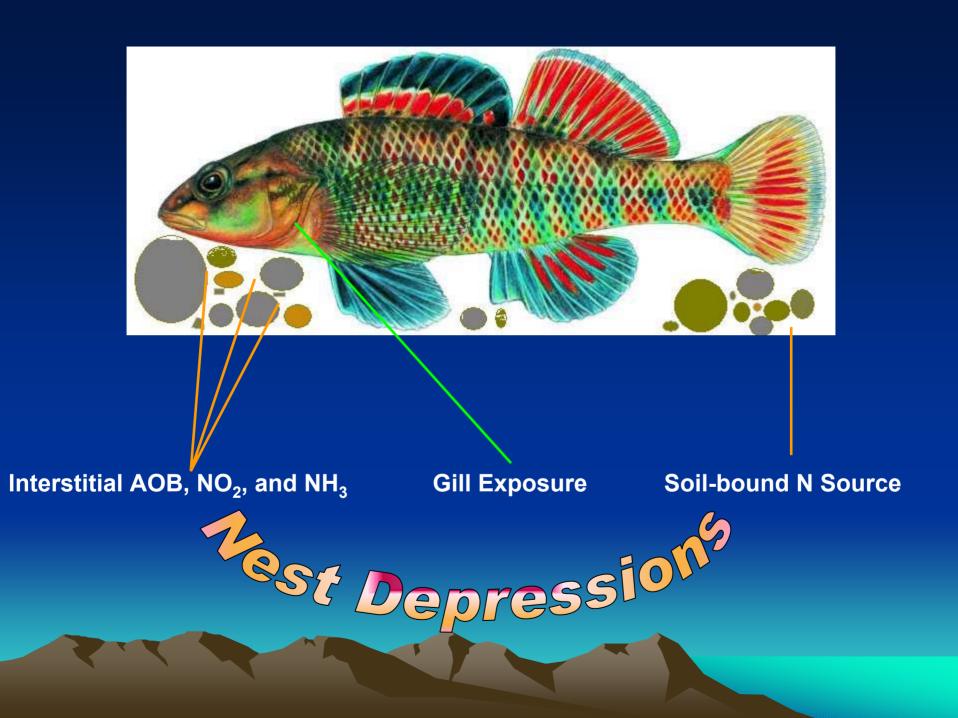
Phenology of AOB and NOB

- AOB becomes active in early spring, prior to plant production
- NOB becomes most active as nitrite is available for food
- Both bacteria have approximately same temperature of max. metabolism
- Exhibit feedback mechanism and seasonal response

Exposure Vectors

- Soil-bound ammonium not typically encountered in water column
- Spawning behaviors initiate disturbance of interstitial soil bacteria and toxic N products
- Most fishes occurring in stony habitats are lithophilic to some degree
- Nest guarding and delayed egg laying exaggerate exposure

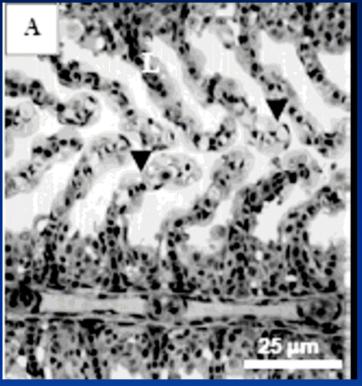
Probable Exposure Scenario


Spawning Phenology

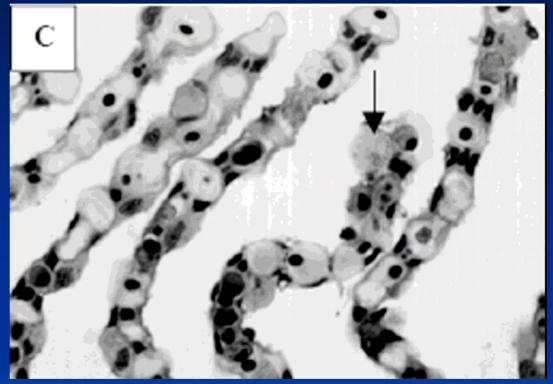
- Lithophilic spawners begin nest building as AOB metabolizes ammonia into nitrite
- Depression makers are particularly vulnerable
- Both sexes susceptible at certain times / peak NO₂ production / high pH and NH₃
- Side-flopping and nest fanning may intensify exposure
- Drive to complete life history stage is intense

Observations on Impacted Spawners

- Mound builders vs depression makers
- Nest guarding
- Mature / nuptial male stonerollers
- Common and striped shiner males
- Golden redhorses, both sexes
- Some white and hogsuckers



NO₂ and Fishes' Gills


- NO₂ incurred by chloride cells on gill surfaces
- NO₂ changes structural confirmation of chloride cells and impedes functionality
- NO₂ does not always reach blood stream
- Survival depends on degree of damage
- Younger fish more tolerant via alternative respiratory mechanisms

Gill Filament and Lamellae

Control Group

Experimental Group

▼Arrowheads show chloride cells

Electron Microscopy Results

- Reduction in chloride cells in lamellar epithelium
- Irreparable damage to mitochondria of chloride cells
- Cessation of ATP production
- Leads to energy starvation and death

Causes of Death

- Suffocation in most individuals
- Severe liver damage due to anaerobic respiration
- Common bacterial infections:
 - Aeromonas
 - Columnaris
 - Pseudomonas

Supporting Evidence

- Rooted vegetation demonstrates N fixation occurring in soils
- Seasonal phenology has some biological signature
- Exposure among fishes likely mirrors spawning behaviors
- Behavior of moribund fishes indicates respiratory / osmoregulatory / fatigue

Preliminary Sample Results

- Sediment ammonia samples six locales
 - 3 within South Branch watershed
 - Old Fields (215.4 mg/kg)
 - Upper Tract (61.4 mg/kg)
 - South Fork (25.7 mg/kg)
 - 3 Charleston samples
 - Large river Elk River (<MDL)
 - WWTP Campbells Creek (45.6 mg/kg)
 - Headwater Davis Creek (~MDL)

Questions

Poultry Excrement

- Waste products stem from evolutionary past / water conservation
- Most kidney wastes (like reptiles) are highly concentrated uric acid
- Combined liquid and solid wastes before excretion from cloaca
- 3X more N per volume than beef / 2X more N than swine

Poultry Manure on the Landscape

- Combined excrement and other materials (e.g. alum, organic materials) to make litter
- Plowed into soil to bind N to soil
- Rainfall moves uric acid as:
 - Whole insoluble particles
 - Ammonia from H₂SO₄ rxn (as mostly ammonium) in free form
 - Soils with bound ammonium

Litter Statistics

- 1000 chickens create 1 ton of manure
- 83 million birds per year in watershed (2002 Ag. census)
- 83,000 tons of excrement annually
- Insert WV Ag. Stat. here for N content