625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699

R. Alex Bosiljevac Environmental Coordinator

EQT

April 4, 2017

CERTIFIED MAIL # 7015 1520 0002 1412 2878

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70-D General Permit Registration Application EQT Production Company OXF-155 Natural Gas Production Site

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G70-D General Permit Registration Application for the OXF-155 natural gas production site. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

R. Alex Bosiljevac EQT Corporation

Enclosures

PROJECT REPORT

EQT Production OXF-155 Pad

G70-D Permit Application

Where energy meets innovation.

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

March 2017

Environmental solutions delivered uncommonly well

1. INTRODUCTION	4
1.1. FACILITY AND PROJECT DESCRIPTION	4
1.2. SOURCE STATUS	4
1.3. G70-D APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	8
3.1. Prevention of Significant Deterioration Source Classification	8
3.2. Title V Operating Permit Program	8
3.3. New Source Performance Standards	8
2.2.1 NCDC Submerta D. Da. Dh. and Da. Steam Concreting Units	0
3.3.1. NSPS Subparts D, Da, DD, and DC – Steam Generating Units	9
3.3.2. NSPS Subparts K, Ka, and KD – Storage vessels for Petroleum Elquids/volatile Organic Elquids	9
3.3.3. NSPS Subparts JJJJ – Stationary Spark Ignition Internal Combustion Engines	9
3.3.4. NSPS Subpart 0000 - Crude OII and Natural Gas Production, Transmission, and Distribution	9
3.3.5. NSPS Subpart 0000a—Crude OII and Natural Gas Facilities	10
3.3.6. Non-Applicability of All Other NSPS	10
3.4. National Emission Standards for Hazardous Air Pollutants	10
3.4.1. 40 CFR 63 Subpart HH – Oil and Natural Gas Production Facilities	11
3.4.2. 40 CFR 63 Subpart ZZZZ – Stationary Reciprocating Internal Engines	11
3.4.3. 40 CFR 63 Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers	11
3.5. West Virginia SIP Regulations	11
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers	12
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contribu	ites
to an Objectionable Odor	12
3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse	12
3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources	12
3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation Storage and Other Sources of Fugitive Particulate Matter	on, 12
3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	12
3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	13
3.5.8. Non-Applicability of Other SIP Rules	13
4. G70-D APPLICATION FORMS	14
ATTACHMENT A: SINGLE SOURCE DETERMINATION	
ATTACHMENT B: SITING CRITERIA WAIVER (NOT APPLICABLE)	
ATTACHMENT C: BUSINESS CERTIFICATE	

ATTACHMENT D: PROCESS FLOW DIAGRAM

ATTACHMENT E: PROCESS DESCRIPTION

- ATTACHMENT F: PLOT PLAN
- ATTACHMENT G: AREA MAP
- ATTACHMENT H: G70-D SECTION APPLICABILITY FORM
- ATTACHMENT I: EMISSION UNITS TABLE
- ATTACHMENT J: FUGITIVE EMISSIONS SUMMARY SHEET
- ATTACHMENT K: GAS WELL DATA SHEET
- ATTACHMENT L: STORAGE VESSEL DATA SHEET
- ATTACHMENT M: HEATERS DATA SHEET
- ATTACHMENT N: ENGINES DATA SHEET
- ATTACHMENT O: TRUCK LOADING DATA SHEET
- ATTACHMENT P: GLYCOL DEHYDRATOR DATA SHEET (NOT APPLICABLE)
- ATTACHMENT Q: PNEUMATIC CONTROLLER DATA SHEET
- ATTACHMENT R: PNEUMATIC PUMP DATA SHEET (NOT APPLICABLE)
- ATTACHMENT S: AIR POLLUTION CONTROL DEVICE DATA SHEET
- ATTACHMENT T: EMISSION CALCULATIONS
- ATTACHMENT U: EMISSION SUMMARY SHEET
- ATTACHMENT V: CLASS I LEGAL ADVERTISEMENT
- ATTACHMENT W: GENERAL PERMIT REGISTRATION APPLICATION FEE

EQT Production Company (EQT) is submitting this Class II General Permit (G70-D) application to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of new equipment at a new natural gas production well pad, OXF-155, located in Doddridge County, West Virginia.

1.1. FACILITY AND PROJECT DESCRIPTION

The OXF-155 pad is a natural gas production facility that will consists of six (6) natural gas wells. Natural gas and liquids (including water and condensate) are extracted from deposits underneath the surface. Natural gas is transported from the well to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels.

This application seeks to permit the following equipment:

- Six (6) 400 barrel (bbl) storage tanks for condensate/water (produced fluids) controlled by two (2) combustors, one rated at 19.22 MMBtu/hr and one rated at 11.66 MMbtu/hr;
- One (1) 100 bbl storage tanks for sand and produced fluids from the sand separator (vapors from this tank may be controlled by combustors but are not represented as controlled in this application);
- Six (6) line heaters, each rated at 1.54 MMBtu/hr (heat input);
 One (1) low pressure separator and associated 2.31 MMbtu/hr line heater (heat input);
- One (1) vapor recovery unit (VRU) powered by a natural gas fired 405 horsepower (hp) Caterpillar engine, with a backup natural gas fired 110 horsepower (hp) Engine Distributors Inc. (EDI) engine for when production declines. The smaller engine will replace the larger engine, but both engines are included in the potential emission calculations assuming continuous operation;
- > Produced fluid truck loading; and
- > Associated piping and components.

A process flow diagram is included as Attachment D. A comparison of the potential emissions of the proposed equipment at the wellpad in comparison with G70-D emission limits is provided in Table 1. Facility emissions are well below the permit limits. Note that in accordance with condition 1.1.1. of the G70-D permit, fugitive emissions are not considered in determining eligibility of the permit.

Pollutant	Wellpad Potential Annual Emissions (tpy)	G70-D Maximum Annual Emission Limits (tpy)		
Nitrogen Oxides	28.57	50		
Carbon Monoxide	27.12	80		
Volatile Organic Compounds	14.54	80		
Particulate Matter – 10/2.5	1.72	20		
Sulfur Dioxide	0.12	20		
Individual HAP (n-hexane) ¹	5.98	8		
Total HAP ¹	6.79	20		

Table 1 - Comparison of Wellpad Potential Emissions to G70-D Permit Emission Limits

1. Includes fugitive emissions

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the OXF-155 Pad for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled.

There are no Marcellus facilities within a quarter-mile radius of the OXF-155 Pad. The nearest wellpad, OXF-136, is located approximately 0.35 miles southeast of OXF-155. Therefore, the OXF-155 pad should be considered a separate stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V permitting.

1.3. G70-D APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) G70-D permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: Regulatory Discussion;
- > Section 4: G70-D Application Form;
- > Attachment A: Single Source Determination;
- > Attachment B: Siting Criteria Waiver (Not Applicable);
- > Attachment C: Business Certificate;
- > Attachment D: Process Flow Diagram;
- > Attachment E: Process Description;
- > Attachment F: Plot Plan;
- > Attachment G: Area Map;
- > Attachment H: G70-D Section Applicability Form;
- > Attachment I: Emission Units Table;
- > Attachment J: Fugitive Emissions Summary Sheet;
- > Attachment K: Gas Well Data Sheet;
- > Attachment L: Storage Vessel Data Sheet;
- > Attachment M: Heaters Data Sheet;
- > Attachment N: Engines Data Sheet;
- > Attachment O: Truck Loading Data Sheet;
- > Attachment P: Glycol Dehydrator Data Sheet (Not Applicable);
- > Attachment Q: Pneumatic Controller Data Sheet
- > Attachment R: Pneumatic Pump Data Sheet (Not Applicable);
- > Attachment S: Air Pollution Control Device Data Sheet;
- > Attachment T: Emission Calculations;
- > Attachment U: Emission Summary Sheet;
- > Attachment V: Class I Legal Advertisement; and
- > Attachment W: General Permit Registration Application Fee.

The characteristics of the air emissions from the natural gas production operations, along with the methodology for calculating these emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment S of this application.

Emissions from this project will result from natural gas combustion in the line heaters, VRU engine, enclosed combustors, as well as storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The method by which emissions from each of these source types, as well as the existing source types, are calculated is summarized below.

- Line Heaters and Enclosed Combustors: Potential emissions of criteria pollutants and hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for natural gas external combustion.¹ These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.²
- VRU Engines: Potential emissions of oxides of nitrogen (NO_x), carbon monoxide (CO), and volatile organic compounds (VOC) are calculated using vendor guarantees. For the Caterpillar VRU engine, formaldehyde, is calculated using manufacturer vendor guarantees. The remaining criteria pollutants and HAPs are calculated using U.S. EPA's AP-42 factors for natural gas fired engines.³ These calculations assume a specific heat content of natural gas of 1,050 Btu/scf (conservatively lower than the site-specific gas analysis). Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.
- Fugitive Equipment Leaks: Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with emission factors from the *Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995.* Emission factors are based on average measured TOC from component types indicated. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.⁴ Pneumatic devices at the wellpad are intermittent bleed and are assumed to be in operation 1/3 of the year.
- Storage Tanks: Working, breathing and flashing emissions of VOC and HAPs from the storage tanks at the facility are calculated using Bryan Research & Engineering ProMax® Software. Controlled calculations assume an overall control efficiency (capture and destruction) of 95%. The throughput for the produced fluids tanks are based on engineering estimates of monthly condensate and produced water at the OXF-136 well pad (i.e., the maximum monthly throughput for the pad times 12). The composition for the analysis was from a sample taken at OXF-136. Emissions of VOC and HAPs from the sand separator tank are calculated using E&P TANK v2.0. The produced fluids throughput is calculated as follows:

$$Throughput \left(\frac{bbl}{day}\right) = \left(Condensate \ Composition \ (\%) + \left(Produced \ Water \ Throughput \ \left(\frac{bbl}{month}\right)\right)\right) * \frac{12\left(\frac{input}{year}\right)}{365\left(\frac{day}{year}\right)}$$

> Tank Truck Loading: Uncontrolled emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using Bryan Research Engineering ProMax® Software. Truck

² 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

³U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 3.2, Natural Gas-fired Reciprocating Engines, Supplement D, August 2000.

⁴ 40 CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

loading is controlled by the enclosed combustors. U.S. EPA's AP-42 Chapter 5 Section 2 factors were used for capture efficiency.⁵

> Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁶

⁵ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 5.2, Transportation And Marketing Of Petroleum Liquids, June 2008. ⁶ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-D permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpad. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PREVENTION OF SIGNIFICANT DETERIORATION SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration. PSD regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad is not a major source with respect to the PSD program since its potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia CSR 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP and 100 tpy of all other regulated pollutants. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards, located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpad. The following NSPS could potentially apply to the wellpad:

- > 40 CFR Part 60 Subparts D/Da/Db/Dc Steam Generating Units
- > 40 CFR Part 60 Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines

EQT Production, LLC | OXF-155 Pad Trinity Consultants

- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

3.3.1. NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMbtu/hr, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All of the tanks at the wellpad have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpad.

3.3.3. NSPS Subparts JJJJ - Stationary Spark Ignition Internal Combustion Engines

New Source Performance Standards 40 CFR Part 60 Subpart JJJJ (NSPS JJJJ) affects owners and operators of stationary spark ignition internal combustion engines (SI ICE) that commence construction, reconstruction or modification after June 12, 2006. Applicability dates are based on the date the engine was ordered by the operator. The proposed 405 HP engine (VRU Caterpillar engine) at the well pad is a 4-stroke rich burn, spark ignition engine manufactured before June 12, 2006 (February of 2000). As such, this engine is not subject to the requirements of this rule. The proposed 110 HP EDI engine (VRU EDI engine) is an engine manufactured after January 1st, 2011 and subject to this subpart. The engine has been certified to meet the applicable emission limited in Table 1 of Subpart JJJJ. EQT will operate this engine according to the manufacturer's recommended practices and demonstrate compliance with the requirements specified in 40 CFR§60.4243 (maintenance plan/records) for certified affected SI ICE at the facility. No stack testing is required for certified engines.

3.3.4. NSPS Subpart OOOO - Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 and or before September 18, 2015. This NSPS was published in the Federal Register on August 16, 2012, and subsequently amended. The proposed project does not change applicability dates with respect to NSPS Subpart OOOO for existing equipment. Therefore, this subpart is not applicable to the proposed project.

3.3.5. NSPS Subpart OOOOa-Crude Oil and Natural Gas Facilities

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, applies to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

- > Hydraulically fractured wells;
- Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;

EQT Production, LLC | OXF-155 Pad Trinity Consultants

- Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production and processing segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

Based on the rule, the following paragraphs describe the applicability of the facilities to be located at the proposed facility.

40 CFR 60.5385 requires owners and operators of affected reciprocating compressors to change the rod packing prior to operating 26,000 hours or prior to 36 months since start up or the last packing replacement. However, according to §60.5365a, compressors located at well sites are not affected facilities under Subpart 0000a. As such, the VRU compressor will not be an affected facility in this subpart.

There are six (6) produced fluid storage vessels at the wellpad. The storage vessels at the facility will each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the G70-D permit. As such, per 60.5365a(e), the tanks will not be storage vessel affected facilities under the rule.

The proposed well pad is an affected facility under 60.5365a(i). Therefore, EQT will be required to monitor all fugitive emission components (ex. connectors, flanges, etc.) with an optical gas imaging (OGI) device, and repair all sources of fugitive emissions in accordance with the rule. EQT must also develop a corporate-wide monitoring plan and a site specific monitoring plan (or one plan that incorporates all required elements), and conduct surveys on a semi-annual basis. EQT is also subject to the applicable recordkeeping and reporting requirements of the rule.

The new pneumatic controllers will potentially be subject to NSPS 0000a. Per 60.5365a(d)(1), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000a.

3.3.6. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000) and associated equipment (Subparts D-Dc and K-Kb), the applicability of a particular NSPS to the wellpad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpad:

> 40 CFR Part 63 Subpart HH – Oil and Natural Gas Production Facilities

- > 40 CFR Part 63 Subpart ZZZZ Stationary Reciprocating Internal Combustion Engines
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

The applicability of these NESHAP Subparts is discussed in the following sections.

3.4.1. 40 CFR 63 Subpart HH - Oil and Natural Gas Production Facilities

This standard contains requirements for both major and area sources of HAP. At area sources, the only affected source is a triethylene glycol dehydration unit (§63.760(b)(2)). The wellpad does not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

3.4.2. 40 CFR 63 Subpart ZZZZ - Stationary Reciprocating Internal Engines

This rule affects reciprocating internal combustion engines (RICE) located at a major and area sources of HAP. The proposed 405 hp Caterpillar engine is an existing non-emergency, non-black start 4 stroke rich burn engine located at an area source. Per 63.6603(a), the requirements for existing engines located at area sources are summarized in Table 2d and for non-emergency, non-black start 4SRB stationary RICE \leq 500 hp include:

- Change oil and filter every 2,160 hours of operation or annually, whichever comes first,
- Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary, and
- Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.

EQT will comply with the applicable work practice requirements of the rule and keep the associated records for the 405 HP engine.

40 CFR §63.6590(c) states that a new or reconstructed stationary RICE located at an area HAP source must meet the requirements of NESHAP Subpart ZZZZ by meeting the requirements of NSPS Subpart JJJJ. No further requirements apply for such engines under NESHAP Subpart ZZZZ. The 110 hp EDI engine is considered a new stationary RICE. Therefore, the requirements contained in §63.6590(c) are applicable. EQT will be in compliance with applicable requirements of 40 CFR 63 Subpart ZZZZ by meeting the applicable requirements of 40 CFR 60 Subpart JJJJ for the 110 hp engine.

3.4.3. 40 CFR 63 Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The line heaters are natural gas-fired and are specifically exempt from this subpart. Therefore, no sources at the wellpad are subject to any requirements under 40 CFR 63 Subpart JJJJJJ.

3.5. WEST VIRGINIA SIP REGULATIONS

The wellpad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpad is generally subject to this requirement. However, due to the nature of the process at the wellpad, production of objectionable odor from the wellpad during normal operation is unlikely.

3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustors are incinerators and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpad, EQT will be complying with 45 CSR 16.

3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank proposed for the wellpad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at this wellpad.

3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the wellpad, EQT will be complying with 45 CSR 34. Note that there are no applicable requirements under 40 CFR Parts 61 and 63 for the wellpad.

3.5.8. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpad.

The WVDEP permit application forms contained in this application include all applicable G70-D application forms including the required attachments.

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-D GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

☑ CONSTRUCTION☑ MODIFICATION☑ RELOCATION

□CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE

SECTION 1. GENERAL INFORMATION

Name of Applicant (as registered with the	WV Secretary of State	's Office): EQT Production	Company	
Federal Employer ID No. (FEIN): 25-0724	685			
Applicant's Mailing Address: 625 Liberty	Avenue, Suite 1700			
City: Pittsburgh	State: PA		ZIP Code: 15222	
Facility Name: OXF 155 Wellpad				
Operating Site Physical Address: See lat/l If none available, list road, city or town an	ong d zip of facility.			
City: Summers	Zip Code: 26421		County: Doddridge	
Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: 39.21338° Longitude: -80.80996°				
SIC Code: 1311 NAICS Code: 211111	D	AQ Facility ID No. (For exist	ing facilities)	
(CERTIFICATION OF	INFORMATION		
Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned G70-D Registration Application will be returned to the applicant. Furthermore, if the G70-D forms are not utilized the application will be returned to the applicant. No substitution of forms is allowed				
I hereby certify that <u>Mike Gavin</u> is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Division of Air Quality immediately. I hereby certify that all information contained in this G70-D General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made the provide the most comprehensive information possible.				
Responsible Official Signature:// Name and Title: Mike Gavin, Vice Preside Email: gavinm@eqt.com	nt Phone: Date:	412-553- F/14/17 Fax:	5700	
If applicable: Authorized Representative Signature: Name and Title: Email:	Phone: Date:	Fax:		
If applicable: Environmental Contact Name and Title: Alex Bosiljevac, Environ Email: ABosiljevac@eqt.com	mental Coordinator Date:	Phone: 412-395-3699	Fax: 412-395-7027	

Briefly describe the proposed new operation and/or any change(s) to the facility: EQT Production Company (EQT) is submitting this Class II General Permit (G70-D) application to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of ane we equipment at a new natural gas production well pad, OXF-155, Incated in Doddridge County, West Virginia. Directions to the facility: From WV DEP, head west on Pleasant Valley Road toward Ruskin Drive. Turn inft onto Kingmont road. Turn left onto SOUS Summylade road. Turn left onto C for 82 (JOK) of Road. Turn left onto Form of Hughes River. Finally, turn left onto CO Rue 25/2. OXF-155 what be on your left. TATCHMENTS AND SUPPORTING DOCUMENTS Data enclosed the following required documents: Check payable to WDEP – Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). Check attached to front of application. Twish to pay by determine transfer. Contact for payment (incl. name and email address): 81 wish to pay by determine transfer. Contact for payment (incl. name and email address): 81 wish to pay by determine transfer. Contact for payment (incl. name and email address): 81 wish to pay by determine transfer. Contact for payment (incl. name and email address): 81 wish to pay by determine transfer. Contact for payment (incl. name and email address): 81 wish to pay by credit card. Contact for payment (incl. name and email address): 81 wish to pay by credit card. Contact for payment (incl. name and email address): 81 wish to pay by credit card. Contact for payment (incl. name and email address): 81 wish to pay by credit card. Subpart ZZZ and/or HI ⁻¹ 100 yon SNSHAP fee of 40 CFR63, Subpart ZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subpart IIII address 111 address 112 100 yon SNSHAP fee sapply to new construction or if the source is bring modified. 8 Responsible Official or Authorized Representative Signature (in applicabl	OPERATING SITE INFORMATION				
EQP Production Company (EQT) is submitting this Class II General Permit (G70-D) application to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of new equipment at a new natural gas productions to the facility: From WV DEP. Lead west on Pleasant Valley Road toward Ruskin Drive. Turn right onto Kingmont road. Turn left onto OVE 2012. A state of the facility: From WV DEP. Lead west on Pleasant Valley Road toward Ruskin Drive. Turn right onto Kingmont road. Turn left onto OVE 2012. A CATACHMENTS AND SUPPORTING DOCUMENTS TATACHMENTS AND SUPPORTING DOCUMENTS Thate cond. Turn left onto C o Re 21/00 Arod Road. Turn left onto S Form of Hughes River. Finally, turn left onto OV Re 23/2. OXF-155 would be on your left. Check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). Use the statistical of fortion of application. Use the statistical of fortion of application. Use on the yob vertical card. Contact for payment (incl. name and email address): R. Alex Bosiljevae, abodijevae Genetical S1000 NSPS for for 40 CFR60, Subpart IIII, JJJ, OOOO and/or OOOO a " S25,000 NSPS for for 40 CFR60, Subpart ZZZ And/or HI " 'Only one NSPS for will apply. S25,000 N	Briefly describe the proposed new operation and/or any change	ge(s) to the facility:			
Directions to the facility: From WV DEP, head west on Pleasant Valley Road toward Ruskin Drive. Turn right onto Kingmont road. Turn left on merge onto 17-59. Take exit 19 to merge onto 12-50 W toward Clarkshurg/Hridgeport. Turn left onto Old U.S 50F/Sunnyside road. Turn left onto CR te 21/Oxford Road. Turn left onto S Form of Hughes River. Finally, turn left onto CO Rte 23/2. OXF-155 would be on your left. Thave enclosed the following required documents: Check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). Check attached to front of application. Check attached to fort of application. Sis500 (Construction, Modification, and Relocation) Sis500 (Construction) Sis500 (Construction) Sis500 (Construction) Sis500 (Construction) Sis5	EQT Production Company (EQT) is submitting this Class II General Permit (G70-D) application to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of new equipment at a new natural gas production well pad, OXF-155, located in Doddridge County, West Virginia.				
From WV DEP, head west on Pleasant Valley Road toward Ruskin Drive. Turn right onto Kingmont road. Turn left to to BGE Sanayado exist. Turn left onto SGE Sanayado exist. SGE	Directions to the facility:				
ATTACHMENTS AND SUPPORTING DOCUMENTS I have enclosed the following required documents: Check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). Check attached to front of application. and the appropriate application fee (per 45CSR13 and 45CSR22). I wish to pay by credit card. Contact for payment (incl. name and email address): R. Alex Bosiljevac@eqt.com B\$500 (Construction, Modification, and Relocation) IS300 (Class II Administrative Update) B\$1.000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, 0000 and/or 000001 S23.000 NSPA fee for 40 CFR63, Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fee will apply. To Supprise the source is being modified. Ø Responsible Official or Authorized Representative Signature (if applicable) Single Source Determination Form (must be completed) – Attachment A I String Criteria Waiver (if applicable) – Attachment B I Current Business Certificate – Attachment C I Process Flow Diagram – Attachment D I Process Description – Attachment I I Group Carbon Applicability Form – Attachment I I Emission Units/ERD Table – Attachment I I grave Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYSS, etc.), etc. where applicable) – Attachment I <td colspan="4">From WV DEP, head west on Pleasant Valley Road toward Ruskin Drive. Turn right onto Kingmont road. Turn left to merge onto I-79S. Take exit 119 to merge onto US-50 W toward Clarksburg/Bridgeport. Turn left onto Old U.S 50E/Sunnyside road. Turn left onto Co Rte 21/Oxford Road. Turn left onto S Form of Hughes River. Finally, turn left onto CO Rte 23/2. OXF-155 would be on your left.</td>	From WV DEP, head west on Pleasant Valley Road toward Ruskin Drive. Turn right onto Kingmont road. Turn left to merge onto I-79S. Take exit 119 to merge onto US-50 W toward Clarksburg/Bridgeport. Turn left onto Old U.S 50E/Sunnyside road. Turn left onto Co Rte 21/Oxford Road. Turn left onto S Form of Hughes River. Finally, turn left onto CO Rte 23/2. OXF-155 would be on your left.				
I have enclosed the following required documents: Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). □ Check attached to front of application. □ I wish to pay by cerdit card. Contact for payment (incl. name and email address): ○ I wish to pay by cerdit card. Contact for payment (incl. name and email address): ○ I wish to pay by cerdit card. Contact for payment (incl. name and email address): ○ I wish to pay by cerdit card. Contact for payment (incl. name and email address): ○ I wish to pay by cerdit card. Contact for payment (incl. name and email address): ○ S000 (Construction, Modification, and Relocation) □ \$3000 (Class II Administrative Update) ○ S1000 NSPS fee for 40 CFR63, Subpart ZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. × 20 oly one NESHAP fee will apply. * ○ Oly one NESHAP fee will apply. * ○ Not contact for must be completed) - Attachment A * ○ Single Source Determination Form (must be completed) - Attachment A * ○ Single Source Determination Form (must be completed) - Attachment G * ○ Process Flow Diagram - Attachment D © I Process Description - Attachment E ○ Proto Payment (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable)	ATTACHMENTS AND SU	PPORTING DOCUMENTS			
Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). □ Check attached to front of application. □ I wish to pay by cell card. Contact for payment (incl. name and email address): ③ Wish to pay by credit card. Contact for payment (incl. name and email address): ③ No pay by credit card. Contact for payment (incl. name and email address): ③ No pay by credit card. Contact for payment (incl. name and email address): ③ No on SPS fee for 40 CFR60, Subpart IIII, JJJ, OOOO and/or OOOOa ¹ ③ S300 (Class II Administrative Update) ② Aly one NSPS fee will apply. ² Only Section Applicabitint Authorized Representative Signature (if ap	I have enclosed the following required documen	ts:			
□ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): R. Alex Bosiljevac, abosiljevac@eqt.com 05500 (Construction, Modification, and Relocation) □ S300 (Class II Administrative Update) 051,000 NSPS fee for 40 CFR60. Subpart III, JJJJ, OOOO and/or OOOOa ¹ □ S300 (Class II Administrative Update) 1 Only one NSB1AP fee will apply. □ Oly one NESHAP fee will apply. □ Oly one NESHAP fee will apply. 2 Only one NESHAP fee will apply. □ Subpart JJJJ, MOOO and/or OOOOa ¹ □ Single Source Determination Form (must be completed) – Attachment A □ Sting Criteria Waiver (if applicable) – Attachment B □ Current Business Certificate – Attachment C ○ Process Flow Diagram – Attachment F □ Area Map – Attachment G □ Grob Determination Form (must be completed) – Attachment K □ Storage Vessel(s) Data Sheet (if applicable) – Attachment K □ Storage Vessel(s) Data Sheet (if applicable) – Attachment K □ Storage Vessel(s) Data Sheet (if applicable) – Attachment K □ Storage Vessel(s) Data Sheet (if applicable) – Attachment K □ Storage Vessel(s) Data Sheet (if applicable) – Attachment K □ Storage Vessel(s) Data Sheet (if applicable) – Attachment K □ Storage Vessel(s) Data Sheet (if applicable) – Attachment K □ Storage Vessel(s) Data Sheet (if applicable) – Attachment K □ Storage Vessel(s) If applicable) – Attachment K <	Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).			
 ¹ Only one NSPS fee will apply. ² Only one NSPS fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified. ² Responsible Official or Authorized Representative Signature (if applicable) ³ Single Source Determination Form (must be completed) – Attachment A ⁵ Single Source Determination Form (must be completed) – Attachment A ⁶ Single Source Determination Form (must be completed) – Attachment A ⁶ Single Source Determination Form (must be completed) – Attachment A ⁶ Single Source Determination Form (must be completed) – Attachment A ⁶ Single Source Determination Form (must be completed) – Attachment A ⁶ Single Source Determination Form (must be completed) – Attachment A ⁶ Single Source Determination Form (must be completed) – Attachment A ⁶ Single Source Determination Form (must be completed) – Attachment A ⁶ Single Source Determination Form - Attachment H ⁶ Erission Summary Sheet – Attachment H ⁶ Erission Summary Sheet – Attachment J ⁶ Ga Well Affected Facility Data Sheet (if applicable) – Attachment K ⁶ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYs, etc.), etc. where applicable) – Attachment L ⁶ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M ⁶ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O ⁶ Glycol Dehydration Unit Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment P ⁶ Pneumatic Control Iers Data Sheet - Attachment P ⁶ Pneumatic Control Iers Data Sheet - Attachment R ⁶ Air Poll	 □ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): ⊠ I wish to pay by credit card. Contact for payment (incl. name and email address): R. Alex Bosiljevac, abosiljevac@eqt.com ⊠\$500 (Construction, Modification, and Relocation) □\$300 (Class II Administrative Update) №\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO and/or OOOOa¹ 				
⊠ Responsible Official or Authorized Representative Signature (if applicable) △ Single Source Determination Form (must be completed) – Attachment A □ Siting Criteria Waiver (if applicable) – Attachment B ⊠ Current Business Certificate – Attachment C ○ Process Flow Diagram – Attachment D ⊠ Process Description – Attachment E ○ Plot Plan – Attachment F ⊠ Area Map – Attachment G ○ G70-D Section Applicability Form – Attachment H ⊠ Emission Units/ERD Table – Attachment I ○ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L ○ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ○ Tanker Truck/Rail Car Loading Data Sheet(if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P ○ Pneumatic Control Ders Data Sheet - Attachment R ○ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S ○ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T ○ Facility-wide Emission Summary Sheet(s) – Attachment U ○ Class I Legal Advertisement – Attachment V	 ¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESH requirements by complying with NSPS, Subparts IIII and/or J. NSPS and NESHAP fees apply to new construction or if the set. 	HAP fee will be waived for new engines that satisfy JJJ. <i>burce is being modified</i> .			
Single Source Determination Form (must be completed) - Attachment A Siting Criteria Waiver (if applicable) - Attachment B Surrent Business Certificate - Attachment C Process Flow Diagram - Attachment D Process Description - Attachment E Plot Plan - Attachment F Area Map - Attachment G G70-D Section Applicability Form - Attachment H Emission Units/ERD Table - Attachment I Gas Well Affected Facility Data Sheet (if applicable) - Attachment K Fugitive Emissions Summary Sheet - Attachment L Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) - Attachment L Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) - Attachment L Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) - Attachment L Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) - Attachment L Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, Simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) - Attachment L Storage Vessel(s) Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) - Attachment M Storage Vessel(s) Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and ou	Responsible Official or Authorized Representative Signatu	re (if applicable)			
□ Siting Criteria Waiver (if applicable) – Attachment B ⊠ Current Business Certificate – Attachment C ⊠ Process Flow Diagram – Attachment D ⊠ Process Description – Attachment E ⊠ Plot Plan – Attachment F ⊠ Area Map – Attachment G ⊠ G70-D Section Applicability Form – Attachment H ⊠ Emission Units/ERD Table – Attachment I ⊠ Fugitive Emissions Summary Sheet – Attachment J ⊠ Emission Units/ERD Table – Attachment I ⊠ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K ⊠ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L ⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M ⊠ Internal Combustion Engine Data Sheet(if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P ⊠ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Pneumatic Pump Data Sheet – Attachment R ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S ⊠ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if appl	Single Source Determination Form (must be completed) –	Attachment A			
⊠ Process Flow Diagram – Attachment D ⊠ Process Description – Attachment E ⊠ Plot Plan – Attachment F ⊠ Area Map – Attachment G ⊠ G70-D Section Applicability Form – Attachment H ⊠ Emission Units/ERD Table – Attachment I ⊠ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K ⊠ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L ⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M ⊠ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P ⊠ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Pneumatic Pump Data Sheet – Attachment R ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S ⊠ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T ⊠ Facility-wide Emission Summary Sheet(s) – Attachment U ⊠ Class I Legal Advertisement – Attachment V ⊠ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments	□ Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C			
☑ Plot Plan – Attachment F ☑ Area Map – Attachment G ☑ G70-D Section Applicability Form – Attachment H ☑ Emission Units/ERD Table – Attachment I ☑ Fugitive Emissions Summary Sheet – Attachment J ☑ Emission Units/ERD Table – Attachment I ☑ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K ☑ ☑ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L ☑ ☑ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M ☑ ☑ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ☑ ☑ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O ☐ ☐ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment Q ☑ ☑ Pneumatic Controllers Data Sheet – Attachment Q ☑ ☑ ☑ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S ☑ ☑ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T ☑ ☑ Facility-wide Emission Summary Sheet(s) – Attachment U ☑ ☑ ☑ Class I Legal Advert	Image: Process Flow Diagram - Attachment DImage: Process Description - Attachment E				
⊠ G70-D Section Applicability Form – Attachment H ⊠ Emission Units/ERD Table – Attachment I ⊠ Fugitive Emissions Summary Sheet – Attachment J ⊠ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K ⊠ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L ⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M ⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ⊠ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P ⊠ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Ari Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S ⊠ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T ⊠ Facility-wide Emission Summary Sheet(s) – Attachment U ⊠ Class I Legal Advertisement – Attachment V ⊠ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments	🖾 Plot Plan – Attachment F 🛛 🖾 Area Map – Attachment G				
 ☑ Fugitive Emissions Summary Sheet – Attachment J ☑ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K ☑ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L ☑ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M ☑ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ☑ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P ☑ Pneumatic Controllers Data Sheet – Attachment Q ☑ Pneumatic Pump Data Sheet – Attachment R ☑ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment T ☑ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T ☑ Facility-wide Emission Summary Sheet(s) – Attachment U ☑ Class I Legal Advertisement – Attachment V ☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments 	☐ G70-D Section Applicability Form – Attachment H ⊠ Emission Units/ERD Table – Attachment I				
⊠ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K ⊠ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L ⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M ⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ⊠ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P ⊠ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Pneumatic Pump Data Sheet – Attachment R ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S ⊠ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T ⊠ Facility-wide Emission Summary Sheet(s) – Attachment U ⊠ Class I Legal Advertisement – Attachment V ⊠ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments	I Fugitive Emissions Summary Sheet – Attachment J				
⊠ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L ⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M ⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ⊠ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P ⊠ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Pneumatic Pump Data Sheet – Attachment R ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S ⊠ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T ⊠ Class I Legal Advertisement – Attachment V ⊠ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments	Gas Well Affected Facility Data Sheet (if applicable) – At	tachment K			
 ☑ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M ☑ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ☑ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P ☑ Pneumatic Controllers Data Sheet – Attachment Q ☑ Pneumatic Pump Data Sheet – Attachment R ☑ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S ☑ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T ☑ Facility-wide Emission Summary Sheet(s) – Attachment U ☑ Class I Legal Advertisement – Attachment V ☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments 	Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment L	EPA Tanks, simulation software (e.g. ProMax, E&P Tanks,			
 ☑ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ☑ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P ☑ Pneumatic Controllers Data Sheet – Attachment Q ☑ Pneumatic Pump Data Sheet – Attachment R ☑ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S ☑ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T ☑ Facility-wide Emission Summary Sheet(s) – Attachment U ☑ Class I Legal Advertisement – Attachment V ☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments 	⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, M	⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M			
 ⊠ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P ⊠ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Pneumatic Pump Data Sheet – Attachment R ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S ⊠ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T ⊠ Facility-wide Emission Summary Sheet(s) – Attachment U ⊠ Class I Legal Advertisement – Attachment V ⊠ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments 	\boxtimes Internal Combustion Engine Data Sheet(s) (include manufa N	acturer performance data sheet(s) if applicable) – Attachment			
 □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P □ Pneumatic Controllers Data Sheet – Attachment Q □ Pneumatic Pump Data Sheet – Attachment R □ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S □ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T □ Facility-wide Emission Summary Sheet(s) – Attachment U □ Class I Legal Advertisement – Attachment V □ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments 	⊠ Tanker Truck/Rail Car Loading Data Sheet (if applicable)	– Attachment O			
 Pneumatic Controllers Data Sheet – Attachment Q Pneumatic Pump Data Sheet – Attachment R Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T Facility-wide Emission Summary Sheet(s) – Attachment U Class I Legal Advertisement – Attachment V One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments 	\Box Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P				
 Pneumatic Pump Data Sheet – Attachment R Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T Facility-wide Emission Summary Sheet(s) – Attachment U Class I Legal Advertisement – Attachment V One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments 	Pneumatic Controllers Data Sheet – Attachment Q				
 Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T Facility-wide Emission Summary Sheet(s) – Attachment U Class I Legal Advertisement – Attachment V One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments 	Pneumatic Pump Data Sheet – Attachment R				
 Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T Facility-wide Emission Summary Sheet(s) – Attachment U Class I Legal Advertisement – Attachment V One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments 	Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S				
 ☑ Facility-wide Emission Summary Sheet(s) - Attachment U ☑ Class I Legal Advertisement - Attachment V ☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments 	Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T				
 Class I Legal Advertisement – Attachment V One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments 	⊠ Facility-wide Emission Summary Sheet(s) – Attachment U				
Sone (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments	🖾 Class I Legal Advertisement – Attachment V				

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A

Single Source Determination

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment and activities in the same industrial grouping (defined by SIC code)?	
Yes \boxtimes No \square	
Is there equipment and activities under the control of the same person/people? Yes \boxtimes No \square	
Is there equipment and activities located on the same site or on sites that share equipment and are within $\frac{1}{4}$ mile of each other? Yes \square No \boxtimes	

ATTACHMENT A: SINGLE SOURCE DETERMINATION MAP

Figure 1 - Map of OXF-155 Location with 1 Mile Radius Circle

<u>Coordinates:</u> Latitude: 39°12'34.28"N Longitude: 80°48'20.73"W

ATTACHMENT B

Siting Criteria Waiver (Not Applicable)

ATTACHMENT B - SITING CRITERIA WAIVER – NOT APPLICABLE

If applicable, please complete this form and it must be notarized.

G70-D General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

Ι_____ _____ hereby Print Name acknowledge and agree that ______ General Permit Applicant's Name will construct an emission unit(s) at a natural gas production facility that will be located within 300' of my dwelling and/or business. . I hereby offer this waiver of siting criteria to the West Virginia Department of Environmental Protection Division of Air Quality as permission to construct, install and operate in such location. Signed: Signature Date Signature Date Taken, subscribed and sworn before me this _____ day of _____, 20_____. My commission expires: SEAL____ Notary Public

ATTACHMENT C

Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT D

Process Flow Diagram

ATTACHMENT E

Process Description

ATTACHMENT E: PROCESS DESCRIPTION

This G70-D Permit Application involves the construction of a new natural gas production wellpad (OXF-155). The wellpad will consist of eleven (6) wells, each with the same basic operation. The following equipment will be installed at the facility: six (6) storage tanks, one (1) low pressure separator with associated heater and vapor recovery units (VRUs), six (6) line heaters, and one (1) sand separator tank.

The incoming gas/liquid stream from the underground wells will pass through a sand separator, where sand, water, and residual solids are displaced and transferred to the sand separator tank (S014). The gas stream will then pass through the line heaters (S007-S012) to raise/maintain temperature. The stream will then pass through the high pressure (3 phase) separators, which will separate gas (natural gas from the separator is sent to the sales line) from liquids (condensate and produced water). The produced fluids stream will then pass through the low pressure separator, where it is heated (S013) to volatilize (flash off) lighter hydrocarbons and separate condensate and produced water in the liquid stream. The flash gas from the condensate stream is recovered by the Vapor Recovery Unit, which utilizes a natural gas-fired engine (S015 and S016) driven compressor to raise the pressure of the flash gas and route it back into the natural gas pipeline. The condensate is then transferred to the produced fluid storage vessels (S001-S006).

Emissions from the storage vessels are controlled by two enclosed combustors (C001, C002). Once the tanks are filled, the contents are loaded into trucks for transport. EQT utilizes vapor balancing in the condensate truck loading operations, which means the vapors displaced by the filling of tanker trucks (S017) are routed back into the battery of tanks and ultimately to the combustors.

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

ATTACHMENT G

Area Map

ATTACHMENT G: AREA MAP

Figure 1 - Map of OXF-155 Location

Zone: 17 UTM Northing (KM): 4340.46 UTM Easting (KM): 516.77 Elevation: ~1,210 ft

ATTACHMENT H

G70-D Section Applicability Form

ATTACHMENT H – G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-D APPLICABLE SECTIONS				
\boxtimes Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOOa)			
\boxtimes Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹			
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)			
⊠ Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH			
Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc			
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)			
□Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)			
⊠Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)			
⊠ Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines			
⊠ Section 14.0	Tanker Truck/Rail Car Loading ²			
□Section 15.0	Glycol Dehydration Units ³			

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

3 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emission Units Table

EQT Production, LLC | OXF-155 Pad Trinity Consultants

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S002	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S003	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S004	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S005	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S006	C001-C002	Produced Fluid Storage Tank	TBD	TBD	400 bbl	New	C001-C002	
S007	E007	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S008	E008	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S009	E009	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S010	E010	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S011	E011	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S012	E012	Line Heater	TBD	TBD	1.54 MMBtu/hr	New	None	
S013	E013	Separator Heater	TBD	TBD	2.31 MMBtu/hr	New	None	
S014	E014	Sand Separator Storage Tank	TBD	TBD	140 bbl	New	C001-C002 (Optional)	
S015	E015	VRU Caterpillar Engine	TBD	TBD	405 hp	New	None	
--	--	---------------------------	-----	-----	----------------------	-----	-----------	--
S016	E016	VRU EDI Engine	TBD	TBD	110 hp	New	None	
S017	E017 (Uncaptured) C001-C002 (Controlled, Captured)	Liquid Loading	TBD	TBD	15,925,997 gal/yr	New	C001-C002	
C001	C001	Tank Combustor	TBD	TBD	11.66 MMBtu/hr	New	NA	
C002	C002	Tank Combustor	TBD	TBD	19.22 MMBtu/hr	New	NA	
 ¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S, or other appropriate designation. ² For Emission Points use the following numbering system:1E, 2E, 3E, or other appropriate designation. ³ When required by rule 								

⁴ New, modification, removal, existing
⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.
⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emissions Summary Sheet

	ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET									
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary.									
	Source/Equipment: Fugitive Emissions									
Leak Detection Method Used \Box Audible, visual, and olfactory (AVO) inspections \Box Infrared (FLIR) cameras \boxtimes Other (please describe) Will condition 12.1.1 of the G70-D							□ None required			
Componer	Closed		Source of Leak Factors	Stream type		Estimated Emi	ssions (tpy)			
Туре	Vent System	Count	(EPA, other (specify))	(gas, liquid, etc.)	VOC	НАР	GHG (methane, CO ₂ e)			
Pumps	□ Yes ⊠ No	11	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).	□ Gas ⊠ Liquid □ Both	2.02	0.24	0.37			
Valves	□ Yes ⊠ No	374	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).	⊠ Gas □ Liquid □ Both	6.14	0.74	35.56			
Safety Reli Valves	ef \square Yes \boxtimes No	25	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).	⊠ Gas □ Liquid □ Both	7.02	0.84	3.46			
Open Endeo Lines	d □ Yes ⊠ No	26	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).	□ Gas □ Liquid ⊠ Both	0.12	0.01	5.48			
Sampling Connection	s Yes No	0	N/A	□ Gas □ Liquid □ Both						
Connection (Not samplin	s S No	1,664	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).	□ Gas □ Liquid ⊠ Both	8.39	1.01	17.60			
Compresso	rs □ Yes ⊠ No	2	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).	⊠ Gas □ Liquid □ Both	1.26	0.15	29.41			
Flanges	□ Yes □ No		(included in connections)	☐ Gas ☐ Liquid ☐ Both						
Other ¹	□ Yes ⊠ No	30	40 CFR 98 Subpart W	⊠ Gas □ Liquid □ Both	10.05	1.20	476.03			
¹ Other equip	oment types may	include cor	npressor seals, relief valves, diaphragms, drains, meters, etc.							
D1 '	1 1 .*	C .1								

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): Pneumatic Controller count is 'Other' category. An estimate of Miscellaneous Gas Venting emissions are included in the Emission Calculations and serve to include such sources as compressor venting, pigging, vessel blowdowns and other sources.

Please indicate if there are any closed vent bypasses (include component): N/A

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck/rail car loading, etc.) N/A

ATTACHMENT K

Gas Well Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
47-1706755	TBD	TBD	Green	Yes - OOOOa
47-1706756	TBD	TBD	Green	Yes - OOOOa
47-1706757	TBD	TBD	Green	Yes - OOOOa
47-1706758	TBD	TBD	Green	Yes - OOOOa
47-1706759	TBD	TBD	Green	Yes - OOOOa
47-1706768	TBD	TBD	Green	Yes - OOOOa

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

ATTACHMENT L

Storage Vessel Data Sheet

EQT Production, LLC | OXF-155 Pad Trinity Consultants

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - ⊠ Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate

⊠ Resulting flash emission factor or flashing emissions from simulation

 $\boxtimes~$ Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

1. Bulk Storage Area Name	2. Tank Name			
OXF-155	Produced Fluids Tanks (water and condensate)			
3. Emission Unit ID number	4. Emission Point ID number			
S001-S006	C001-C002			
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:			
Was the tank manufactured after August 23, 2011 and on or	\boxtimes New construction \square New stored material \square Other \square			
before September 18, 2015?	Relocation			
\Box Yes \boxtimes No				
Was the tank manufactured after September 18, 2015?				
\boxtimes Yes \square No				
7A. Description of Tank Modification (if applicable) N/A				
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.			
\Box Yes \boxtimes No				
7C. Was USEPA Tanks simulation software utilized?				
\Box Yes \boxtimes No				
If Yes, please provide the appropriate documentation and items	8-42 below are not required.			

GENERAL INFORMATION (REQUIRED)

TANK INFORMATION

8. Design Capacity (<i>specify barrels or gallons</i>). Use the internal cross-sectional area multiplied by internal height.				
400 bb1s				
9A. Tank Internal Diameter (ft.) 129B. Tank Internal Height (ft.) 20				
10A. Maximum Liquid Height (ft.) 2010B. Average Liquid Height (ft.) 10				
11A. Maximum Vapor Space Height (ft.) 2011B. Average Vapor Space Height (ft.) 10				
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume". 400 bbls				

13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached				
emissions calculations for all throughput values	emissions calculations for all throughput values				
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions				
emissions calculations for all throughput values	calculations for all throughput values				
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No				
If yes, (A) What is the volume expansion capacity of the system	(gal)?				
(B) What are the number of transfers into the system per y	/ear?				
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat roof	\boxtimes cone roof \square dome roof \square other (describe)				
□ External Floating Roof □ pontoon roof □ double deck roof					
□ Domed External (or Covered) Floating Roof					
□ Internal Floating Roof □ vertical column support	□ self-supporting				
□ Variable Vapor Space □ lifter roof □ diaphragm					
□ Pressurized □ spherical □ cylindrical					
□ Other (describe)					
PRESSURE/VACUUM CONTROL DATA					
19. Check as many as apply:					

□ Rupture Disc (psig)

□ Carbon Adsorption¹

🛛 Vent to Vapor Combustion Device¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors) \Box Condenser¹

 \boxtimes Conservation Vent (psig)

0.5 oz Vacuum Setting 14.4 oz Pressure Setting

□ Emergency Relief Valve (psig)

□ Inert Gas Blanket of _____

□ Does Not Apply

Pressure Setting Vacuum Setting

 \Box Thief Hatch Weighted \Box Yes \boxtimes No

¹ Complete appropriate Air Pollution Control Device Sheet

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).

Material Name	me Flashing Loss		Breathing Loss		Working Loss		Total		Estimation Method ¹
							Emissions Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	

See attached Emissions Calculation for all values

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATION INFORMATION					
21. Tank Shell Construction:					
\boxtimes Riveted \square Gunite lined \square Epoxy-coated rivets \square Other (describe)					
21A. Shell Color: Blue	21B. Roof Color: Blue	21C. Year Last Painted: N/A			
22. Shell Condition (if metal and unlined):					
⊠ No Rust □ Light Rust □ Dense Rust □ Not applicable					

22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating temperature:	If yes, operating 22C. If yes, how is heat provided to be a service of the servic					
23. Operating Pressure Range (psig):							
Must be listed for tanks using VRUs with closed vent syst	em.						
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome	24B. If yes	, for cone roof, provide slop (ft/ft):				
\boxtimes Yes \square No	roof provide radius (ft):	0.17					
25. Complete item 25 for Floating Roof Tanks Does not app	bly 🗵	•					
25A. Year Internal Floaters Installed:							
25B. Primary Seal Type (check one): Metallic (mechanical) s	hoe seal 🗌 Liquid me	ounted resilie	ent seal				
	it seal \Box Other (de	escribe):					
25C. Is the Floating Roof equipped with a secondary seal? \Box Yes	□ No						
25D. If yes, how is the secondary seal mounted? (<i>check one</i>) \Box S	Shoe \Box Rim \Box Of	ther (describe	e):				
25E. Is the floating roof equipped with a weather shield? \Box Yes	□ No						
25F. Describe deck fittings:							
26. Complete the following section for Internal Floating Roof Tank	as \square Does not appl	ly					
26A. Deck Type: Bolted Welded	26B. For bolted decks	s, provide deck	construction:				
26C. Deck seam. Continuous sheet construction:							
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide \Box 5 x 7.5 ft. wi	de \Box 5 x 12 ft. wide	\Box other (des	scribe)				
26D. Deck seam length (ft.): 26E. Area of deck (ft ²):	26F. For column supp	oorted	26G. For column supported				
	tanks, # of columns:		tanks, diameter of column:				
27. Closed Vent System with VRU? 🛛 Yes 🗆 No							
28. Closed Vent System with Enclosed Combustor? \square Yes \square No)						
SITE INFORMATION - Not Applicable: Tank calculations	performed using ProM	lax software					
29. Provide the city and state on which the data in this section are bas	sed:						
30. Daily Avg. Ambient Temperature (°F):	31. Annual Avg. Max	imum Temper	ature (°F):				
32. Annual Avg. Minimum Temperature (°F):	33. Avg. Wind Speed	33. Avg. Wind Speed (mph):					
34. Annual Avg. Solar Insulation Factor (BTU/ft ² -day):	35. Atmospheric Pres	sure (psia):					
LIQUID INFORMATION - Not Applicable: Tank calculatio	ns performed using Pr	oMax softwa	are				
36. Avg. daily temperature range of bulk liquid (°F):	36A. Minimum (°F):	36B. Maxi	mum (°F):				
37. Avg. operating pressure range of tank (psig):	37A. Minimum (psig): 37B. Maximum (psig):						
38A. Minimum liquid surface temperature (°F):	38B. Corresponding v	38B. Corresponding vapor pressure (psia):					
39A. Avg. liquid surface temperature (°F):	39B. Corresponding v	39B. Corresponding vapor pressure (psia):					
40A. Maximum liquid surface temperature (°F):	40B. Corresponding v	apor pressure/	(psia):				
41. Provide the following for each liquid or gas to be stored in the tar	k. Add additional pages if	necessary.					
41A. Material name and composition:							
41B. CAS number:							
41C. Liquid density (lb/gal):							
41D. Liquid molecular weight (lb/lb-mole):							
41E. Vapor molecular weight (lb/lb-mole):							
41F. Maximum true vapor pressure (psia):							
41G. Maximum Reid vapor pressure (psia):							
41H. Months Storage per year.							
From: To:							
42. Final maximum gauge pressure and temperature prior to transfer							

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name			
OXF-155	Sand Separator Tank			
3. Emission Unit ID number	4. Emission Point ID number			
S014	E014			
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:			
Was the tank manufactured after August 23, 2011 and on or	\boxtimes New construction \square New stored material			
before September 18, 2015?	\Box Other \Box Relocation			
\Box Yes \boxtimes No				
Was the tank manufactured after September 18, 2015?				
🛛 Yes 🗌 No				
7A. Description of Tank Modification (if applicable) N/A				
7B. Will more than one material be stored in this tank? If so, a.	separate form must be completed for each material.			
\Box Yes \boxtimes No				
7C. Was USEPA Tanks simulation software utilized?				
\Box Yes \boxtimes No				
If Yes, please provide the appropriate documentation and items	8-42 below are not required.			

TANK INFORMATION

8. Design Capacity (specify barre	els or gallons). Use the internal	l cross-sectional area multiplied by internal height.				
140 bbls	10	OD Taula Internal II.: $h(f_{t}) = 10$				
9A. Tank Internal Diameter (It.)	10	9B. Tank Internal Height (It.) 10				
10A. Maximum Liquid Height (f		10B. Average Liquid Height (ft.) 5				
11A. Maximum Vapor Space He	ight (ft.) 10	11B. Average Vapor Space Height (ft.) 5				
12. Nominal Capacity (specify ba	<i>crrels or gallons</i>). This is also l	known as "working volume". 140 bbls				
13A. Maximum annual throughp	ut (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached				
emissions calculations for all th	roughput values	emissions calculations for all throughput values				
14. Number of tank turnovers per	year See attached	15. Maximum tank fill rate (gal/min) See attached emissions				
emissions calculations for all th	roughput values	calculations for all throughput values				
16. Tank fill method \Box Subme	rged 🛛 Splash	Bottom Loading				
17. Is the tank system a variable	vapor space system?	🖾 No				
If yes, (A) What is the volume exp	pansion capacity of the system	(gal)?				
(B) What are the number o	f transfers into the system per y	/ear?				
18. Type of tank (check all that a	pply):					
\boxtimes Fixed Roof \square vertical	\boxtimes horizontal \square flat roof	\Box cone roof \Box dome roof \Box other (describe)				
□ External Floating Roof	\Box pontoon roof \Box double	deck roof				
□ Domed External (or Covered)	Floating Roof					
□ Internal Floating Roof	□ vertical column support	□ self-supporting				
□ Variable Vapor Space □ lifter roof □ diaphragm						
□ Pressurized	\Box spherical \Box cylindrical					

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:	
☑ Does Not Apply	□ Rupture Disc (psig)
□ Inert Gas Blanket of	\Box Carbon Adsorption ¹
\Box Vent to Vapor Combustion Device ¹ (vapor combus	stors, flares, thermal oxidizers, enclosed combustors)
□ Conservation Vent (psig)	\Box Condenser ¹
Vacuum Setting Pressure Setting	
□ Emergency Relief Valve (psig)	

Vacuum Setting Pressure Setting

 \Box Thief Hatch Weighted \Box Yes \Box No

¹ Complete appropriate Air Pollution Control Device Sheet

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).

Material Name	Flashi	ng Loss	Breathi	ng Loss	Working Loss		orking Loss Total Emissions Loss		Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
See attached Emissions Calculation for all values									

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATION INFORMATION								
21. Tank Shell Construction:								
\Box Riveted \Box Gunite lined \Box Epoxy-coated rivets \boxtimes Other (describe) Welded								
21A. Shell Color: Gray	21B. Roof Color: Gra	у	21C. Year	Last Painted: New				
22. Shell Condition (if metal and unlined):								
\boxtimes No Rust \square Light Rust \square Dense	Rust 🗌 Not applic	able						
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperature:	22C. If ye	s, how is heat provided to tank?				
23. Operating Pressure Range (psig):	I							
Must be listed for tanks using VRUs wi	th closed vent system	l .						
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provide radius (ft):	24B. If ye	s, for cone roof, provide slop (ft/ft):				
\Box Yes \boxtimes No								
25. Complete item 25 for Floating Roof Tanks	\square Does not apply	\boxtimes						
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (check one): Met	allic (mechanical) sho	e seal 🛛 🗆 Liquid mo	unted resili	ent seal				
🗆 Vap	or mounted resilient s	eal \Box Other (des	scribe):					
25C. Is the Floating Roof equipped with a seco	ndary seal? 🛛 Yes	□ No						
25D. If yes, how is the secondary seal mounted	? (check one) 🗌 Sho	e 🗆 Rim 🗆 Otl	her (describ	e):				
25E. Is the floating roof equipped with a weath	er shield? 🛛 Yes	🗆 No						
25F. Describe deck fittings:								
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes Does not apply	у					
26A. Deck Type: Bolted W	/elded	26B. For bolted decks,	, provide dec	k construction:				
26C. Deck seam. Continuous sheet construction	n:							
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wid	e \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide \Box	other (de	escribe)				
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column support	orted	26G. For column supported				
		tanks, # of columns:		tanks, diameter of column:				
27. Closed Vent System with VRU? \Box Yes	⊠ No							
28. Closed Vent System with Enclosed Combu	stor? 🗆 Yes 🖾 No							
SITE INFORMATION - Not Applicable:	Tank calculations pe	erformed using E&P	Tank softv	vare				
29. Provide the city and state on which the data	in this section are based:							
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Maxi	mum Tempe	erature (°F):				
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed	(mph):					

34. Annual Avg. Solar Insulation Factor (BTU/ft ² -day):		35. Atmospheric Pressure (psia):					
LIQUID INFORMATION - Not Applicable: Tank calculations performed using E&P Tank software							
36. Avg. daily temperature range of bulk	36A. Minimum (°F):			36B. Maximur	m (°F):		
liquid (°F):							
37. Avg. operating pressure range of tank	37A. Minimum (psig):			37B. Maximur	n (psig):		
(psig):							
38A. Minimum liquid surface temperature (°F)	:	38B. (Corresponding va	apor pressure (ps	ia):		
39A. Avg. liquid surface temperature (°F):		39B. (Corresponding va	apor pressure (ps	ia):		
40A. Maximum liquid surface temperature (°F)	:	40B. Corresponding vapor pressure (psia):					
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if 1	necessary.			
41A. Material name and composition:							
41B. CAS number:							
41C. Liquid density (lb/gal):							
41D. Liquid molecular weight (lb/lb-mole):							
41E. Vapor molecular weight (lb/lb-mole):							
41F. Maximum true vapor pressure (psia):							
41G. Maximum Reid vapor pressure (psia):							
41H. Months Storage per year.							
From: To:							
42. Final maximum gauge pressure and							
temperature prior to transfer into tank used as							
inputs into flashing emission calculations.							

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source							
ID # ¹	Status ²	Content ³	Volume ⁴				
Not Applicable							

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following: EXIST Existing Equipment NEW Installation of New Equipment

REM Equipment Removed

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT M

Heaters Data Sheet

EQT Production, LLC | OXF-155 Pad Trinity Consultants

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

			1 (/			
Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S007	E007	Line Heater	TBD	New	1.54	~1,360
S008	E008	Line Heater	TBD	New	1.54	~1,360
S009	E009	Line Heater	TBD	New	1.54	~1,360
\$010	E010	Line Heater	TBD	New	1.54	~1,360
S011	E011	Line Heater	TBD	New	1.54	~1,360
S012	E012	Line Heater	TBD	New	1.54	~1,360
S013 E013		Separator Heater	TBD	New	2.31	~1,360

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

Engines Data Sheet

EQT Production, LLC | OXF-155 Pad Trinity Consultants

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. Generator(s) and microturbine generator(s) shall also use this form.

Emission Unit II	D#1	S	015	S	016		
Engine Manufacturer/Model		Caterpil	lar/G3408	Engine Distrik	outors Inc/CSG- 537		
Manufacturers R	ated bhp/rpm	4	05	1	10		
Source Status ²		1	NS		NS		
Date Installed/ Modified/Remov	ved/Relocated ³	20	017	2	017		
Engine Manufac /Reconstruction	tured Date ⁴	Februa	ary 2000	Augu	st 2015		
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ↓40CFR60 Subpart JJJJ ↓JJJJ Certified? ↓40CFR60 Subpart IIII ↓IIII Certified? ↓40CFR63 Subpart ZZZZ ↓NESHAP ZZZZ/ NSPS JJJJ ₩indow ↓NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ ⋈ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? ⋈ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ☐ 40CFR60 Subpart JJJJ ☐ JJJJ Certified? ☐ 40CFR60 Subpart IIII ☐ IIII Certified? ☐ 40CFR63 Subpart ZZZZ ☐ NESHAP ZZZZ/ NSPS JJJJ Window ☐ NESHAP ZZZZ Remote Sources 	
Engine Type ⁶		45	SRB	4	SRB		
APCD Type ⁷		N	SCR	N	SCR		
Fuel Type ⁸		F	RG	RG			
H ₂ S (gr/100 scf)			0	0			
Operating bhp/rg	pm	4	05	110			
BSFC (BTU/bhp	-hr)	8,	260	6,510			
Hourly Fuel Thr	oughput	3,186 ft ³ /hr NA gal/hr		682 ft ³ /hr NA gal/hr		ft³/hi gal/h	r
Annual Fuel Thr (Must use 8,760 emergency gener	oughput hrs/yr unless rator)	27.9 MMft ³ / NA gal/yr	yr	6.0 MMft ³ /yr NA gal/yr		MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter	ours of ed	Yes 🖂	No 🗆	Yes 🛛 No 🗆		Yes D No D	
	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹
Vendor Spec	NO _x	2.14	9.39	0.24	1.06		
Vendor Spec	СО	2.23	9.78	0.49	2.12		
Vendor Spec	VOC	0.17	0.74	0.18	0.81		
AP-42	SO ₂	< 0.01	<0.01	<0.01	< 0.01		
AP-42	PM ₁₀	0.06	0.28	0.01	0.06		
Vendor Spec/AP-42	Formaldehyde	0.07	0.31	0.01	0.06		
AP-42	Total HAPs	0.11	0.49	0.02	0.10		
40 CFR Part 98 Subpart C	GHG (CO ₂ e)	392	1,716	84	367		

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRB	Four St	roke Rich Burn			
7	Enter th	e Air Pollution Control Device (APCD) type designa	tion(s) u	sing the fo	llowing codes:			
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precon Low Emission (Oxidation Catal	nbustion Cham Combustion yst	bers	
8	Enter th	e Fuel Type using the following codes:						
	PQ	Pipeline Quality Natural Gas RC	3 R	aw Natura	l Gas /Production	Gas	D	Diesel
9	Enter t	he Potential Emissions Data Reference design	ation us	ing the f	ollowing codes	. Attach all re	fere	nce data used.
	MD	Manufacturer's Data	А	P AP	-42			
	GR	GRI-HAPCalc ^{1M}	0	T Oth	ner	(please list)		

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# S015 use extra pages as necessary)

	t ID# 5015 us	c cxtra pages as necessary)
Air Pollution	Control Device Mar Yes ⊠	ufacturer's Data Sheet included? No 🗆
⊠ NSCR		□ Oxidation Catalyst
Provide details of process control used for fuel injection	r proper mixing/cont	rol of reducing agent with gas stream: Sequential multi-part
Manufacturer: Miratech (or equivalent)		Model #: IQ-18-08 (or equivalent)
Design Operating Temperature: 995 °F		Design gas volume: 1587 scfm
Service life of catalyst:		Provide manufacturer data? 🛛 Yes 🛛 🖓 No
Volume of gas handled: 1587 acfm at 1,60	00 oF	Operating temperature range for NSCR/Ox Cat: From 750 °F to 1250 °F
Reducing agent used, if any:		Ammonia slip (ppm):
Pressure drop against catalyst bed (delta F	P): 3 inches of H_2O	
Provide description of warning/alarm syst	em that protects uni	when operation is not meeting design conditions:
Is temperature and pressure drop of cataly \Box Yes \boxtimes No	st required to be mo	nitored per 40CFR63 Subpart ZZZZ?
How often is catalyst recommended or req	uired to be replaced	(hours of operation)?
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, w NSPS/GACT, Table 2d of 40 CFR 63 Sub	hy (please list any n opart ZZZZ.	naintenance required and the applicable sections in

G3408

GAS ENGINE TECHNICAL DATA

CATERPILLAR®

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: EXHAUST OXYGEN (% O2):	1800RATING :9.7APPLICASCACRATING :130FUEL:210FUEL SYTAFUEL PRJW+OC, ACFUEL MRCDISFUEL LHWCALTITUDSTANDARD SETTING2.0	STRATEGY: TION: LEVEL: STEM: ESSURE RANGE(ps THANE NUMBER: / (Btu/scf): E CAPABILITY AT 7'	ig): 7°F INLET AIR TE	STANDARD GAS COMPRESSION CONTINUOUS NAT GAS HPG IMPCO 20.0-25.0 80 905 5000		
RATIN	NG	NOTES	LOAD	100%	75%	50%
ENGINE POWER	(WITHOUT FA	N) (1)	bhp	400	300	200
ENGINE EFFICIENCY	(ISO 3046	/1) (2)	%	33.8	32.5	29.1
	(NOMINA	AL) (2)	%	33.8	32.5	29.1
ENGINE	DATA					
FUEL CONSUMPTION	(ISO 3046	/1) (3)	Btu/bhp-hr	7539	7822	8731
FUEL CONSUMPTION	(NOMIN/	L) (3)	Btu/bhp-hr	7539	7822	8731
AIR FLOW (77°F, 14.7 psia)	(WF	T) (4) (5)	ft3/min	600	480	356
AIR FLOW	(WF	T) (4) (5)	lb/hr	2659	2128	1578
FUEL FLOW (60ºF, 14.7 psia)			scfm	55	43	32
COMPRESSOR OUT PRESSURE			in Hg(abs)	46.4	43.4	39.5
COMPRESSOR OUT TEMPERATURE			°F	187	173	152
AFTERCOOLER AIR OUT TEMPERATURE			°F	153	153	149
INLET MAN. PRESSURE		(6)	in Hg(abs)	43.6	35.8	28.0
INLET MAN. TEMPERATURE	(MEASURED IN PLENU	M) (7)	°F	153	153	149
TIMING		(8)	°BTDC	22	22	22
EXHAUST TEMPERATURE - ENGINE OUTLET		(9)	°F	966	914	846
EXHAUST GAS FLOW (@engine outlet temp, 14	I.5 psia) (WF	T) (10) (5)	ft3/min	1774	1364	962
EXHAUST GAS MASS FLOW	(WE	T) (10) (5)	lb/hr	2810	2246	1666
		-				
		(11)(12)	a/bhp-hr	24.64	22.90	20.00
		(11)(13)	g/bhp-hr	1 60	1.60	1.60
THC (mol. wt. of 15.84)		(11)(13)	g/bhp-hr	2 60	2 20	2.30
NMHC (mol. wt. of 15.84)		(11)(13)	g/bhp-hr	0.39	0.33	0.35
NMNEHC (VOCs) (mol. wt. of 15.84)		(11)(13)(14)	g/bhp-hr	0.26	0.22	0.23
HCHO (Formaldehyde)		(11)(13)	g/bhp-hr	0.19	0.23	0.21
CO2		(11)(13)	g/bhp-hr	492	510	569
EXHAUST OXYGEN		(11)(15)	% DRY	2.0	2.3	2.5
LAMBDA		(11)(15)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.10	1.13	1.12
			-	•	•	
		(16)	Rtu/min	50211	20075	20106
		(10)	Btu/min	16233	13528	11535
		(17)(23)	Btu/min	2008	1563	1164
		(10)	Btu/min	2000	2139	1824
HEAT REJECTION TO EXHAUST (LHV TO 77°E	-)	(13)(23)	Btu/min	12044	8942	6079
HEAT REJECTION TO EXHAUST (LHV TO 350°	, ?F)	(20)(21)	Btu/min	8022	5836	3793
HEAT REJECTION TO AFTERCOOLER (AC)	• /	(22)(24)	Btu/min	412	193	22
		()()	2.0/11	I		

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1. (Standard reference conditions of 77°F, 29.60 in Hg barometric pressure.) No overload permitted at rating shown. Consult the altitude deration factor chart for applications that exceed the rated altitude or temperature.

Emission levels are at engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions. Tolerances specified are dependent upon fuel quality. Fuel methane number cannot vary more than ± 3. Part load data may require engine adjustment.

For notes information consult page three.

G3408

FUEL USAGE GUIDE:

This table shows the derate factor and full load set point timing required for a given fuel. Note that deration and set point timing adjustment may be required as the methane number decreases. Methane number is a scale to measure detonation characteristics of various fuels. The methane number of a fuel is determined by using the Caterpillar methane number calculation

ALTITUDE DERATION FACTORS:

This table shows the deration required for various air inlet temperatures and altitudes. Use this information along with the fuel usage guide chart to help determine actual engine power for vour site

ACTUAL ENGINE RATING:

To determine the actual rating of the engine at site conditions, one must consider separately, limitations due to fuel characteristics and air system limitations. The Fuel Usage Guide deration establishes fuel limitations. The Altitude/Temperature deration factors and RPC (reference the Caterpillar Methane Program) establish air system limitations. RPC comes into play when the Altitude/Temperature deration is less than 1.0 (100%). Under this condition, add the two factors together. When the site conditions do not require an Altitude/ Temperature derate (factor is 1.0), it is assumed the turbocharger has sufficient capability to overcome the low fuel relative power, and RPC is ignored. To determine the actual power available, take the lowest rating between 1) and 2).

1) Fuel Usage Guide Deration

2) 1-((1-Altitude/Temperature Deration) + (1-RPC))

AFTERCOOLER HEAT REJECTION FACTORS(ACHRF):

To maintain a constant air inlet manifold temperature, as the inlet air temperature goes up, so must the heat rejection. As altitude increases, the turbocharger must work harder to overcome the lower atmospheric pressure. This increases the amount of heat that must be removed from the inlet air by the aftercooler. Use the aftercooler heat rejection factor (ACHRF) to adjust for inlet air temp and altitude conditions. See note 24 for application of this factor in calculating the heat exchanger sizing criteria. Failure to properly account for these factors could result in detonation and cause the engine to shutdown or fail.

MINIMUM SPEED CAPABILITY AT THE RATED SPEED'S SITE TORQUE (RPM):

This table shows the minimum allowable engine turndown speed where the engine will maintain the Rated Speed's Torque for the given ambient conditions.

NOTES:

- 1. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.
- 2. ISO 3046/1 engine efficiency tolerance is (+)0, (-)5% of full load % efficiency value. Nominal engine efficiency tolerance is ± 5.0% of full load % efficiency value.
- 3. ISO 3046/1 fuel consumption tolerance is (+)5, (-)0% of full load data. Nominal fuel consumption tolerance is ± 5.0% of full load data.
- 4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.
- 7. Inlet manifold temperature is a nominal value with a tolerance of ± 9°F.
- 8. Timing indicated is for use with the minimum fuel methane number specified. Consult the appropriate fuel usage guide for timing at other methane numbers.
- 9. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 10. Exhaust flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 6 %.
- 11. Emissions data is at engine exhaust flange prior to any after treatment.
- 12. NOx values are "Not to Exceed". 13. CO, CO2, THC, NMHC, NMNEHC, and HCHO values are "Not to Exceed" levels. THC, NMHC, and NMNEHC do not include aldehydes.
- 14. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 15. Exhaust Oxygen tolerance is ± 0.5 .
- 16. LHV rate tolerance is ± 5.0%.
- 17. Heat rejection to jacket water value displayed includes heat to jacket water alone. Value is based on treated water. Tolerance is ± 10% of full load data.
- 18. Heat rejection to atmosphere based on treated water. Tolerance is \pm 50% of full load data.
- 19. Lube oil heat rate based on treated water. Tolerance is ± 20% of full load data. 20. Exhaust heat rate based on treated water. Tolerance is \pm 10% of full load data.
- 21. Heat rejection to exhaust (LHV to 77°F) value shown includes unburned fuel and is not intended to be used for sizing or recovery calculations.
- 22. Heat rejection to aftercooler based on treated water. Tolerance is ±5% of full load data.
- 23. Total Jacket Water Circuit heat rejection is calculated as: (JW x 1.1) + (OC x 1.2). Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.
- 24. Total Aftercooler Circuit heat rejection is calculated as: AC x ACHRF x 1.05. Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

CATERPILLAR®

ENGINE POWER (bhp):	400	COOLING SYSTEM:	JW+OC, AC
ENGINE SPEED (rpm):	1800	AFTERCOOLER WATER INLET (°F):	130
EXHAUST MANIFOLD:	WC	JACKET WATER OUTLET (°F):	210

Free Field Mechanical and Exhaust Noise

SOUND PRESSURE LEVEL (dB)											
		(Octave Ba	and Cent	er Freque	ency (OB	CF)				
100%	6 Load Data		dB(A)	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
Mechanical	Distance from	3.3	94.5	82.4	85.4	84.4	87.4	91.4	87.4	82.4	83.4
Sound	the Engine (ft)	23.0	83.5	74.7	79.7	74.7	76.7	78.7	77.7	73.7	72.7
		49.2	77.5	69.4	74.4	68.4	70.4	73.4	71.4	67.4	64.4
Exhaust Sound	Distance from	4.9	109.9	107.1	109.5	108.8	105.8	101.3	101.8	102.8	101.1
	the Engine (ft)	23.0	96.5	96	100.3	96	90.7	89.3	88.3	89.3	86
		49.2	89.9	89.3	93.6	89.3	84	82.6	81.6	82.6	79.4

SOUND PARAMETER DEFINITION:

G3408

Data Variability Statement: Sound data presented by Caterpillar has been measured in accordance with ISO 6798 in a Grade 3 test environment. Measurements made in accordance with ISO 6798 will result in some amount of uncertainty. The uncertainties depend not only on the accuracies with which sound pressurelevels and measurement surface areas are determined, but also on the 'near-field error' which increases for smaller measurement distances and lower frequencies. The uncertainty for a Grade 3 test environment, that has a source that produces sounds that are uniformly distributed in frequency over the frequency range of interest, is equal to 4 dB (A-weighted). This uncertainty is expressed as the largest value of the standard deviation.

Installation Drawings

Front End View

Left Side View

Power Curves (corrected per SAE J1349)

Engine Speed (RPM)

Powertrain Assemblies & Components Provided By Ford Component Sales For additional information Contact:

400 University Ct • Blackwood NJ 08012 856/228-7298 • Fax:856/228-5531 www.edi-dist.com

CSG-637 EFI

3.7 Liter 6-Cylinder

Options

Engine Cooling Fans • 14" (355mm) diameter suction • 14" (355mm) diameter pusher Flywheels • 11.5" (292mm) SAE over-center clutch • flat face flywheel **Flywheel Housings** • SAE #3 **Exhaust Manifold** • rear dump down **Power Steering Pump** Air Conditioning Wiring Harnesses **Discrete Speed Switch** Variable Speed Hand Throttle Variable Speed Foot Pedal **Engine Mounts** • Automotive with insulators • Open power unit **Electronic Instrument Panel, Gauges** Three Way Catalyst / Muffler Standard

Transmissions 6R80 electronic shift

Emissions Information

California Air Resources Board (CARB) Environmental Protection Agency (EPA) Emission Certified Packages

Warranty

Contact Engine Distributors, Inc for warranty details.

Powertrain Assemblies & Components Provided By Ford Component Sales

Specifications

Engine Type	V-6
Bore and Stroke	3.7"x 3.4" (94mm x 86mm)
Displacement	3.7L Liter (225.7 CID)
Compression Ratio	10.5:1
Oil Capacity	6 qts. including filter
Net Weight	355 Lbs. with accessories (161 Kgs.)
Dimensions	L 25.4" x W 29.5" x H 29.4"
	(646 mm x 751 mm x 748 mm)

Gasoline (corrected per SAE J1349)

Unleaded 87 or 89 octane		
Intermittent Power	107 [HP] @ 3200rpm	(80 [kW] @ 3200rpm)
Continuous Power	96 [HP] @ 3200rpm	(72 [kW] @ 3200rpm)
Intermittent Torque	193 [ft-lbs] @ 2600rpm	(261 [N-m] @ 2600rpm)
Continuous Torque	173 [ft-lbs] @ 2600rpm	(235 [N-m] @ 3200rpm)

Natural Gas (corrected per SAE J1349)

Fuel Specification	1050 BTU/FT3	
Intermittent Power	110 [HP] @ 3200rpm	(82 [kW] @ 3200rpm)
Continuous Power	99 [HP] @ 3200rpm	(74 [kW] @ 3200rpm)
Intermittent Torque	191 [ft-lbs] @1600rpm	(259 [N-m] @ 1600rpm)
Continuous Torque	172 [ft-lbs] @1600rpm	(233 [N-m] @ 1600rpm)

Liquefied Petroleum Gas (corrected per SAE J1349)

Fuel Specification	HD-5	
Intermittent Power	118 [HP] @ 3200rpm	(88 [kW] @ 3200rpm)
Continuous Power	106 [HP] @ 3200rpm	(79 [kW] @ 3200rpm)
Intermittent Torque	209 [ft-lbs] @ 2600rpm	(284 [N-m] @ 2600rpm)
Continuous Torque	188 [ft-lbs] @ 2600rpm	(255 [N-m] @ 2600rpm)

Standard Features / Benefits

Set-for-life valvetrain

Deep skirted, ribbed cylinder block casting for rigidity

150 AMP Alternator

Aluminum cylinder block and heads.

Chain driven dual camshafts with automatic tensioning system

Structural front cover and deep sump oil pan

Alternate fuel ready valvetrain components

Individual coil on plug electronic ignition

Four main bolts with side bolts through block for strength and durability

Gasoline Sequential Port Fuel Injection

Closed loop fuel control for all fuels

Electronic engine management system with built-in engine protection against detonation, high coolant temperature, low oil pressure, over speed shutdown and starter lockout

Next generation governing – discrete speeds, variable speeds, drive by wire – using the highest quality components.

Variable CAM Timing for intake camshafts - advances or retards timing to maximize engine power and fuel efficiency

Forged steel crankshaft

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 40 CFR Part 1048, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60, 40 CFR Part 1048. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60, 40 CFR Part 1048. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1048.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

ATTACHMENT O

Truck Loading Data Sheet

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: S017 Emission Point ID#:		: C001-C002, E017 Year Installed/Modified: N/A				ied: N/A		
Emission Unit Description: Uncaptured losses from loading of produced fluids into tanker trucks								
			Loading A	Area Data				
Number of Pumps: 1		Numbe	r of Liquids	Loaded: 1		Max numbe at one (1) ti	r of truck me: 1	s/rail cars loading
Are tanker trucks/rail cars pressure tested for leaks at this or any other location? \Box Yes \boxtimes No \Box Not Required If Yes, Please describe:						□ Not Required		
Provide description of c back into battery of tan	Provide description of closed vent system and any bypasses. Trucks utilize vapor recovery lines to route displaced vapors back into battery of tanks.						displaced vapors	
Are any of the following Closed System to ta Closed System to ta Closed System to ta	g truck/rail car l nker truck/rail ca nker truck/rail ca nker truck/rail ca	oadout sy ar passing ar passing ar not pas	stems utilize g a MACT le g a NSPS lev ssing an annu	ed? vel annual le el annual lea ial leak test a	ak test? k test? nd has v	apor return?		
Pro	jected Maximu	n Opera	ing Schedul	e (for rack o	r transf	er point as a	whole)	
Time	Jan – Ma	ır	Apr	- Jun	J	ul – Sept		Oct - Dec
Hours/day	Varies	Varies Va		ries		Varies		Varies
Days/week	7			7		7		7
	Bul	k Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name	Pr	Produced Fluids						
Max. Daily Throughput (1000 gal/day)	See a cale thr	See attached emissions calculations for all throughput values						
Max. Annual Throughpu (1000 gal/yr)	it See a calc thr	See attached emissions calculations for all throughput values						
Loading Method ¹ SP								
Max. Fill Rate (gal/min)	Varies						
Average Fill Time (min/loading)		Varies						
Max. Bulk Liquid Temperature (°F)	See	See ProMax results						
True Vapor Pressure ²	See	ProMax	results					
Cargo Vessel Condition	3	U						
Control Equipment or Method4VB, ECD (captured loading losses)								

Max. Collection Efficiency (%)		70	
Max. Control Efficiency (%)		98	
Max.VOC	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate Annual See attached emiss (ton/yr) calculations for breat		See attached emission calculations for breakdown	
Max.HAP Loading (lb/hr)		See attached emission calculations for breakdown	
Rate	Annual Annual See attached emission (ton/yr) calculations for breakdown		
Estimation Method ⁵		AP-42 Section 5.2 Methodology (via ProMax)	

1	BF	Bottom Fill	SP	Splash Fil	1	SUB	Submerged Fill
2	At max	ximum bulk liquid temperature		-			-
3	В	Ballasted Vessel	С	Cleaned		U	Uncleaned (dedicated service)
	0	Other (describe)					
4	List a	s many as apply (complete	and submit a	ppropriate A	ir Pollution Control	l Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicated Vapor B	alance (c	closed system)

Enclosed Combustion Device Thermal Oxidization or Incineration ECD F Flare

ТО

5 EPA

EPA Emission Factor in AP-42 Test Measurement based upon test data submittal Material Balance Other (describe) MBТМ 0

ATTACHMENT P

Glycol Dehydrator Data Sheet (Not Applicable)

EQT Production, LLC | OXF-155 Pad Trinity Consultants

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET - NOT APPLICABLE

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI- GLYCalcTM input and aggregate report. Use extra pages if necessary.

1 00	0 1	10	•				
Manufacturer:			Model:				
Max. Dry Gas Flow	Rate: mmscf	/day	Reboiler Design Heat Input: MMBTU/hr				
Design Type: 🗆 TH	EG 🗆 DEG	🗆 EG	Source Status ¹ :				
Date Installed/Mod	ified/Removed ² :		Regenerator Still V	/ent APCD/ERD ³ :			
Control Device/ER	D ID# ³ :		Fuel HV (BTU/scf):				
H ₂ S Content (gr/10	0 scf):		Operation (hours/y	ear):			
Pump Rate (gpm):			·				
Water Content (wt	%) in: Wet Gas:	Dry (Gas:				
Is the glycol dehyd	ration unit exempt fro	om 40CFR63 Section	764(d)? 🗆 Yes	□ No: If Yes, ans	wer the following:		
The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in $63.772(b)(1)$ of this subpart. \Box Yes \Box No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in $63.772(b)(2)$ of this subpart. \Box Yes							
L NO	ration unit located wi	thin on Urbanized A	raa (UA) or Urban Cl	ustar (UC)? \Box Vac			
Is a lean glycol pun	nn ontimization plan	being utilized? \Box Ve					
Recycling the glyco	l dehydration unit ha	$\frac{1}{1}$	af the rehailer				
\Box Yes \Box No	i denydration dnit of	tek to the fluine zone	or the resolution.				
Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. \Box Yes \Box No							
What happens wher Still vent emissi Still vent emissi Still vent emissi	What happens when temperature controller shuts off fuel to the reboiler? Still vent emissions to the atmosphere. Still vent emissions stopped with valve.						
Please indicate if th	ne following equipme	nt is present.					
Burner managen	ient system that conti	Control Dovice	Technical Data	pors			
		Control Device	Technical Data				
	Pollutants Controlled	1	Manufacturer'	s Guaranteed Contro	l Efficiency (%)		
		Emissi	ons Data				
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)		
			NO _x				
			СО				
	Reboiler Vent		VOC				
			SO_2				
			PM ₁₀				

Image: style in the style in					
GRI-GlyCalcTMVOCIntermediateGRI-GlyCalcTMBenzeneIntermediateGRI-GlyCalcTMTolueneIntermediateGRI-GlyCalcTMEthylbenzeneIntermediateGRI-GlyCalcTMKylenesIntermediateGRI-GlyCalcTMN-HexaneIntermediateGRI-GlyCalcTMVOCIntermediateGRI-GlyCalcTMSenzeneIntermediateGRI-GlyCalcTMVOCIntermediateGRI-GlyCalcTMBenzeneIntermediateGRI-GlyCalcTMBenzeneIntermediateGRI-GlyCalcTMTolueneIntermediateGRI-GlyCalcTMSenzeneIntermediateGRI-GlyCalcTMSenzeneIntermediateGRI-GlyCalcTMSenzeneIntermediateGRI-GlyCalcTMEthylbenzeneIntermediateGRI-GlyCalcTMEthylbenzeneIntermediateGRI-GlyCalcTMSkylenesIntermediateGRI-GlyCalcTMSkylenesIntermediateGRI-GlyCalcTMNylenesIntermediateGRI-GlyCalcTMNylenesIntermediateGRI-GlyCalcTMNylenesIntermediateGRI-GlyCalcTMNylenesIntermediateGRI-GlyCalcTMNylenesIntermediateGRI-GlyCalcTMNylenesIntermediateGRI-GlyCalcTMNylenesIntermediateGRI-GlyCalcTMNylenesIntermediateGRI-GlyCalcTMNylenesIntermediateGRI-GlyCalcTMNylenesIntermediateGRI-GlyCalcTMNylenesIntermediate </td <td></td> <td></td> <td></td> <td>GHG (CO₂e)</td> <td></td>				GHG (CO ₂ e)	
Glycol Regenerator Still VentGRI-GlyCalcTMBenzeneImage: constant of the stant of the			GRI-GlyCalc [™]	VOC	
$ \begin{array}{ c c c c c } \hline GRI-GlyCalc^{TM} & Toluene & \hline GRI-GlyCalc^{TM} & Ethylbenzene & \hline GRI-GlyCalc^{TM} & Sylenes & \hline GRI-GlyCalc^{TM} & Sylenes & \hline GRI-GlyCalc^{TM} & n-Hexane & \hline GRI-GlyCalc^{TM} & VOC & \hline GRI-GlyCalc^{TM} & Senzene & \hline GRI-GlyCalc^{TM} & Benzene & \hline GRI-GlyCalc^{TM} & Benzene & \hline GRI-GlyCalc^{TM} & GRI-GlyCalc^{TM} & Toluene & \hline GRI-GlyCalc^{TM} & Senzene & \hline GRI-GlyCalc^{TM} & Sylenes & \hline GRI-GlyCalc^{TM} & NYenes & \hline GRI-GlyCalc^{TM} & NYenes & \hline GRI-GlyCalc^{TM} & NYenes & \hline Sylenes &$			GRI-GlyCalc TM	Benzene	
$ \begin{array}{ c c c c } \hline Regenerator \\ Still Vent \\ \hline \\ Still Vent \\ \hline \\ \hline \\ GRI-GlyCalc^{TM} \\ \hline \\ GRI-GlyCalc^{TM} \\ \hline \\ \\ \hline \\ \\ GRI-GlyCalc^{TM} \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline$		Glycol	GRI-GlyCalc TM	Toluene	
$ \begin{array}{ c c c c } \hline & GRI-GlyCalc^{TM} & Xylenes & & & & & & & \\ \hline & GRI-GlyCalc^{TM} & N-Hexane & & & & & & \\ \hline & GRI-GlyCalc^{TM} & VOC & & & & & & \\ \hline & GRI-GlyCalc^{TM} & Benzene & & & & & & \\ \hline & GRI-GlyCalc^{TM} & Toluene & & & & & \\ \hline & GRI-GlyCalc^{TM} & Ethylbenzene & & & & & \\ \hline & GRI-GlyCalc^{TM} & Xylenes & & & & \\ \hline & GRI-GlyCalc^{TM} & N & & & & & \\ \hline & GRI-GlyCalc^{TM} & N & & & & & \\ \hline & GRI-GlyCalc^{TM} & N & & & & & \\ \hline & GRI-GlyCalc^{TM} & N & & & & & \\ \hline & GRI-GlyCalc^{TM} & N & & & & & \\ \hline & & & & & & & \\ \hline & & & &$		Still Vent	GRI-GlyCalc TM	Ethylbenzene	
$ \begin{array}{ c c c c } \hline GRI-GlyCalc^{TM} & n-Hexane & & & & \\ \hline GRI-GlyCalc^{TM} & VOC & & & & \\ \hline GRI-GlyCalc^{TM} & Benzene & & & \\ \hline GRI-GlyCalc^{TM} & Toluene & & & \\ \hline GRI-GlyCalc^{TM} & Ethylbenzene & & & \\ \hline GRI-GlyCalc^{TM} & Xylenes & & & \\ \hline GRI-GlyCalc^{TM} & n-Hexane & & & \\ \hline \end{array} $			GRI-GlyCalc TM	Xylenes	
GRI-GlyCalc TM VOC Image: Constant of the system of the			GRI-GlyCalc TM	n-Hexane	
$ \begin{array}{ c c c c } \hline GRI-GlyCalc^{TM} & Benzene & \hline \\ \hline GRI-GlyCalc^{TM} & Toluene & \hline \\ \hline GRI-GlyCalc^{TM} & Ethylbenzene & \hline \\ \hline GRI-GlyCalc^{TM} & Xylenes & \hline \\ \hline GRI-GlyCalc^{TM} & n-Hexane & \hline \\ \hline \end{array} $		Glycol Flash Tank	GRI-GlyCalc [™]	VOC	
$ \begin{array}{c} Glycol \ Flash \\ Tank \\ \hline \\ GRI \ GlyCalc^{TM} \\ \hline \\ GRI \ GlyCalc^{TM} \\ \hline \\ GRI \ GlyCalc^{TM} \\ \hline \\ \hline \\ GRI \ GlyCalc^{TM} \\ \hline \\ $			GRI-GlyCalc TM	Benzene	
Tank GRI-GlyCalc TM Ethylbenzene GRI-GlyCalc TM Xylenes GRI-GlyCalc TM n-Hexane			GRI-GlyCalc TM	Toluene	
GRI-GlyCalc TM Xylenes GRI-GlyCalc TM n-Hexane			GRI-GlyCalc TM	Ethylbenzene	
GRI-GlyCalc TM n-Hexane			GRI-GlyCalc TM	Xylenes	
			GRI-GlyCalc TM	n-Hexane	

1 Enter the Source Status using the following codes:

NS Construction of New Source ES Existing Source

MS Modification of Existing Source

2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:
 - NANoneCDCondenserFLFlareCCCondenser/Combustion CombinationTOThermal OxidizerOOther(please list)Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent

4 Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the well site incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

5 Enter the Potential Emissions Data Reference designation using the following codes:

- MD Manufacturer's Data AP AP-42
 - GR GRI-GLYCalcTM OT Other (please list)
- 6 Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q

Pneumatic Controller Data Sheet

EQT Production, LLC | OXF-155 Pad Trinity Consultants

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
🗌 Yes 🛛 No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.

ATTACHMENT R

Pneumatic Pump Data Sheet (Not Applicable)

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

Yes No

Please list.

Source ID #	Date	Pump Make/Model	Pump Size
		l	
ATTACHMENT S

Air Pollution Control Device Data Sheet

EQT Production, LLC | OXF-155 Pad Trinity Consultants

ATTACHMENT S – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.							
Emission Unit ID: Not Applicable	Make/Model:						
Primary Control Device ID:	Make/Model:						
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No						
Secondary Control Device ID:	Make/Model:						
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No						

VAPOR COMBUSTION (Including Enclosed Combustors)										
			General In	formation						
Control Devi Capture Eff Control Effi	ce ID#: C001 iciency – 100% ciency – 98%			Installation Date: New Modified Relocated						
Maximum Ra ~7,850 scfh	ated Total Flow C 188,000	apacity scfd		Maximum DesignHeat Input (from mfg. spec sheet)Design H11.66 MMBTU/hr1,500 BT			leat Content 'U/scf			
Control Device Information										
Enclosed	Type of Vapor Combustion Control? Enclosed Combustion Device Elevated Flare Thermal Oxidizer Ground Flare									
Manufacture Model: Encle	Manufacturer: LEED FabricationHours of operation per year? 8,760Model: Enclosed Combustor 48"Hours of operation per year? 8,760									
List the emis	sion units whose	emissions	are controlled by this	vapor contr	ol device	e (Emissior	n Point ID# S001-S006, S016)			
Emission Unit ID#	Emission Source Description			Emission Unit ID#	Emissio	on Source	Description			
S001-S006	Produced Fluid	s Tank								
S017	Captured Liqui	d Loading								
If this v	apor combustor o	controls en	nissions from more the	an six (6) em	ission un	iits, please	attach additional pages.			
Assist Type	(Flares only)		Flare Height	Tip Diameter			Was the design per §60.18?			
Steam Pressure	☐ Air ⊠ Non		~25 feet	4 feet			□ Yes □ No ⊠ N/A Provide determination.			
			Waste Gas 1	Information	l					
Maximum V	Waste Gas Flow F (scfm)	ate 130	Heat Value of W Varies	′aste Gas Str BTU/ft³	ream	Exit Vel	ocity of the Emissions Stream Varies (ft/s)			
	Provide an	attachme	nt with the characteri	stics of the v	vaste gas	stream to	be burned.			
			Pilot Gas I	nformation						
Number o	f Pilot Lights 1	Fuel F Fl	Flow Rate to Pilot ame per Pilot ~50 scfh	Heat Input per Pilot 0.05 BTU/hr			Will automatic re-ignition be used? □ Yes ⊠ No			
If automatic	re-ignition is use	d, please d	lescribe the method.							
Is pilot flame presence of t	e equipped with a he flame? ⊠	monitor to Yes	o detect the □ No	If Yes, what type? ⊠ Thermocouple □ Infrared □ Ultraviolet □ Camera □ Other:						
Describe all <i>unavailable</i> ,	operating ranges please indicate).	and mainte See attach	enance procedures req ned information on un	uired by the it	manufac	turer to ma	aintain the warranty. (If			
Additional in Please attach performance	formation attach copies of manuf testing.	ed? ⊠ Ye acturer's d	es 🗆 No lata sheets, drawings,	flame demoi	nstration	per §60.18	or §63.11(b) and			

VAPOR COMBUSTION (Including Enclosed Combustors)									
			General II	iformation					
Control Device ID# Capture Efficiency Control Efficiency	: C002 - 100% - 98%			Installation Date:					
Maximum Rated To ~12,812.5 scfh	tal Flow C 307,5	apacity 00 scfd		Maximum Design Heat Input (from mfg. spec sheet) 19.22 MMBTU/hr	leat Content 'U/scf				
			Control Devic	e Information					
Enclosed Combu	Type of Vapor Combustion Control? Enclosed Combustion Device Elevated Flare Ground Flare Thermal Oxidizer								
Manufacturer: LEEI Model: Enclosed Co	Manufacturer: LEED Fabrication Model: Enclosed Combustor 60"Hours of operation per year? 8,760								
List the emission un	its whose	emissions	are controlled by this	s vapor control device	(Emission	n Point ID# S001-S006, S016)			
Emission Unit ID#	Emission	n Source D	Description	Emission Unit ID#	Emissi	on Source Description			
S001-S006	Produce	d Fluids T	ank						
S017	Captured	l Liquid L	oading						
If this vapor co	ombustor c	ontrols em	nissions from more the	an six (6) emission un	its, please	attach additional pages.			
Assist Type (Flares	only)		Flare Height	Tip DiameterWas the design per §60.1					
Steam Pressure	Air 🛛 Air		~25 feet	4 feet		☐ Yes ☐ No ⊠ N/A Provide determination.			
		·	Waste Gas	Information					
Maximum Waste C (scf	as Flow R m)	ate 130	Heat Value of W Varies	⁷ aste Gas Stream BTU/ft ³	Exit Vel	ocity of the Emissions Stream Varies (ft/s)			
1	Provide an	attachmer	nt with the characteri	stics of the waste gas	stream to	be burned.			
			Pilot Gas I	nformation					
Number of Pilot I 1	Lights	Fuel F Fl	Flow Rate to Pilot ame per Pilot ~50 scfh	Heat Input per 0.05 MMBTU	Pilot /hr	Will automatic re-ignition be used? □ Yes ⊠ No			
If automatic re-ignit	tion is use	d, please d	escribe the method.						
Is pilot flame equipp presence of the flam	ped with a ne? ⊠	monitor to Yes	o detect the □ No	If Yes, what type? ⊠ Thermocouple □ Infrared □ Ultraviolet □ Camera □ Other:					
Describe all operation unavailable, please	Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). See attached information on unit								
Additional informat Please attach copies performance testing	ion attache of manufa	ed? ⊠ Ye acturer's d	s 🗌 No ata sheets, drawings,	flame demonstration	per §60.18	or §63.11(b) and			

CONDENSER – Not Applicable									
General Information									
Control Device ID#: Installation Date: New Modified									
Manufacturer:	Model:	Control Device Name:							
Control Efficiency (%):									
Manufacturer's required temperature range for control efficie	ncy. °F								
Describe the warning and/or alarm system that protects again	st operation when uni	t is not meeting the design requirements:							
Describe all operating ranges and maintenance procedures rec	uired by the manufac	cturer to maintain the warranty.							
Additional information attached? Yes No Please attach copies of manufacturer's data sheets.									
Is condenser routed to a secondary APCD or ERD?									

ADSORPTION SYSTEM – Not Applicable								
General I	nformation							
Control Device ID#:	Installation Date:							
Manufacturer:	Model: Control Device Name:							
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:							
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter: ft Adsorber area: ft ²							
Adsorbent type and physical properties:	Overall Control Efficiency (%):							
Working Capacity of Adsorbent (%):								
Operating	Parameters							
Inlet volume: scfm @ °F								
Adsorption time per adsorption bed (life expectancy): Breakthrough Capacity (lbs of VOC/100 lbs of adsorben								
Temperature range of carbon bed adsorber. °F - °F	·							
Control Device	Technical Data							
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)							
Describe the warning and/or alarm system that protects again	st operation when unit is not meeting the design requirements:							
Has the control device been tested by the manufacturer and co	ertified?							
Describe all operating ranges and maintenance procedures rec	uired by the manufacturer to maintain the warranty.							
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings,	and performance testing.							

	VAPOR RECOVERY UNIT										
General Information											
Emission Unit II	D#: S015, S016	Installation Date: TBD ⊠ New □ Modified □ Relocated									
	Device Information										
Manufacturer: C Model: G3408 &	Manufacturer: Caterpillar & Engine Distributors Inc Model: G3408 & CSG-637										
List the emission (Emission Point	List the emission units whose emissions are controlled by this vapor recovery unit (Emission Point ID# NA)										
Emission Unit ID#	Emission Source Description	Emission Unit ID#	On D# Emission Source Description								
NA	Low Pressure Separator										
If this vapor	recovery unit controls emissions from more t	han six (6) e	emission units, please o	attach additional pages.							
Additional infor Please attach cop	mation attached? ⊠ Yes □ No pies of manufacturer's data sheets, drawings,	and perform	ance testing.								
The registrant m recovery unit.	The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor recovery unit.										
The registrant m of Section 8.1.2	ay claim a capture and control efficiency of 9 of this general permit.	98% if the V	RU has a backup flare	that meet the requirements							

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.

												1	
				Item/Tag No	.:				Page		1	of	2
1	\cap			Project No :		<u></u>			Revision			R	-
				FIOJECT NO.					Nevision.			D	
1	LEED								Date:		27	February	y 2014
1	FABRICATION			Project:					Bv:			15	-
				Project.					Dy.			12	
	Envire	omental Control Equipment		P.O. No.:		-			Checked:			SG	
		Data Sheet		REO No 1		_			Annrover	٩٠		MS	
-		2414 0.1001		Ni Q No					Approved	u.		1415	
	Client:			Ref. P&ID:		-							
	Site [.]								Sunnlier:		LEEL		ΔΤΙΟΝ
	Site:								Supplier.		LLLI	DIADIG	Allon
	Unit/Lease:			Remarks:		-			Model No	0.:		L30-0011	00
				GE	NERAL								
	Design Code:						NDC.				ED Fabrica	tion Sto	ndordo
1	Design Code:						NDE:			LC	ED Fabrica	ation Sta	nuarus
2	Service:						Custom	er Specs:			Yes		
2	Description:	Standard Dual	Stage // High	Efficiency Combu	stor								
5	Description.	Standard Duar	Stage 40 mgm	Linclency combu	5101		I						
				PROC	ESS DAT	ГА							
					Process	Conditions:							
	Gas Composition:			mol %		No de la la							
						variable		valu	e	Units			
4	Methane					Flow Rate		Up to	140	Mscfo	1		
-	Ethono					Droccuro		Lin to	12	on/in*			
э	Ethane					Flessule		0010	12	02/10/			
6	Propane				-	Temperature	e			°F			
7	I-Butane				M	olecular Wei	ght		1				
Ľ					-								
8	n-Butane				Proce	ess/waste Si	tream	[√] Gas			LIQUID		
9	I-Pentane				Detailed	d Process De	scriptio	n / Process N	otes:				
10	n-Dontono				1 Turne	own 10-1	lased on	an expector	normal	neratio	rate india	ated ab	ove
110	n-rentane				2. 10110	00 0/	Haseu Ull	an expected	. normai u	perating	, rate mult	area abi	
11	n-Hexane				2. DRE:	98 % operat	ting at d	esıgn conditi	ons				
12	CO2				3. Burne	er Pressure [Drop: Mi	n. 0.10 oz/in	2				
1					-								
13	NZ				_								
14	Helium												
15	H ₂ O				_								
16	C7												
17	<u> </u>												
1/	<u> </u>				_								
18	C9												
19	C10												
					-								
20	C11+												
21		TOTAL											
	Other Components:			DDM//	Availab	la I Itilitias							
	other components.			111010	Availab	ic ouncies.							
22	H2S				F	uel / Pilot G	as		Min.	30psig I	Vatural Ga	s /Propa	ne 40-50 SCFH
23	Benzene				li li	nstrument A	ir		NA				
	T .1					Darrea			420.1				
24	Toluene					Power			120 \	V / 60 Hz	or Solar P	ower	
25	E-Benzene					Steam			NA				
26	Xylene					Purge Gas							
	Apienie			DECK		•							
				DESIG		A							
27	Ambient Temperatures	5:			Noise P	erformance	Require	ments:			Unde	r 85 dBA	1
28		LOW ^O E		-20	Structural Design Code:								
20		2000, 1		20	Structural Design Code:				ASCE				
29	L	High, °F		120	Wind D	esign Code:				ASCE			
30	Design Conditions:	Pressure/Temperature							Г				
21	Max Relative Humidit	× %	1	90	1		Process	e/Sneed			100 mm	h	
1		,,,,,					1103501	c, speed		100 mpn			
32	Elevation (ASL), ft						Catego	ry					
33	Area Classification:		Clas	s I Div 2	Seismic	Design Code	e:						
1.	Electrical Design Co.d.			NEC	1	0	Locatio	n					
54	Lieunital Design Code:				1		LUCATIO			_			
1				EQUIPMENT	SPECIF	ICATION							
35	Type:	Elevated V F	nclosed		Equinm	ent Design							
20	<u> </u>						· · · ·		1			10.11	
30	l					C	ompone	Int		ivia	erial / Size	e / Katin	g / Other
37		Stack	/lultiple Stack		Burner								
38		Portable / Trailer				Burner Tir	Assist	Gas Burner			21	04 55	
1					1	barnet filp	ונונגרי ן י	Jus Durrict					
39						В	urner Bo	dy			Carb	on Steel	
40	Smokeless By:	Steam A	Assist Air		Pilot								
<u>4</u> 1		Gas Assist	Stading		1		Pilot Ti-				24	04 SS	
1			aging		+		εποι Πβ				31	Um 33	
42						P	ilot Line	(s)			Carb	on Steel	
43	Stack:	Self Supporting			Firebox	/ Stack			1				
14	Flare Burner		mokoloss		1		CL - 11				A 1	on Charl	
44							Snell				Carb	un steel	
45	Pilot:	✓ Intermittent	Continuous				Piping				Carb	on Steel	
46	Pilot Air Inspirator	✓ Local	Remote				Nozzleo				Carb	on Steel	
1					+			÷			Carb		
47	Pilot Flame Control: No Ves (Ther			coupie)	1		Flanges				Carb	on Steel	
48							Insulatio	n			Bla	anket	
49	Pilot Ignition:	Elamefront Generator	Inspirating to	nitor	1	Inc	ulation	Dinc			20	04 SS	
[.]				,	+	ins		1113		304 SS			
50	0 Electronic Automatic		J Automatic	Manual			Refracto	ry		NA			
51	51 With Pilot Flame Control				Refractory Anchors					NA			
57	52 With Auto Pilot Re-Ignition				Ketractory Anchors								
52					Ladders and Platforms				NA				
53						Stack Sa	mple Co	nnections			Per EPA r	equirem	ents
54	Pilot Ignition Backup	Manual Specify	iezo-Flectric				Sight Gla	\$5				2	
[not ignition backup:		ICLO-LICULIIL		+		A DIA	JJ				4	
55	1	I I Battery Pack			1		Other						

					Itom /Teg No.			Daga		2	-4	2
	0				Item/ Tag No.:			Page		2	or	3
					Project No.:			Revision	1:		В	
-								Date:		27	February	2014
					Project:			By:			JS	
	Enviro	nmental	Control Equip	ment	P.O. No.:		-	Checked	1:		SG	
		Dat	ta Sheet		RFQ No.:		-	Approve	ed:		MS	
	Client:				Ref. P&ID:		-					
	Site:							Supplier	r:	LEE	D FABRICA	TION
	Unit/Lease:				Remarks:		-	Model N	No.:		L30-0011-(00
				I	EQUIPMENT S	PECIF	ICATION					
56	Flame Detection:	Th	ermocouple	✓ Ionization Rod	А	uxiliar	y Equipment					
57		Ο υν	Scanner				Valves				NA	
58	General Configuration:						Blowers				NA	
59	-		¢.				Dampers				NΔ	
60			and the second second	and the second se	F		Inlet KO / Liquid Seal				NA	
61							Elamo / Detenation Arrestor				Vac	
62			a	ъ			Fiame / Deconation Arresto				162	
62					Ir	istrum			Charl	with Calls	for and	
03							Solenoids / Shut-Off Valves		Cneck	with Sales	ior availa	DIE CONTIG.
64			· .				Flow Meters				NA	
65					F		Calorimeter				NA	
66							Pressure Switches/Transmitters				NA	
67			4				Thermocouples		Check	with Sales	for availa	ble config.
68					_	Т	emperature Switches/Transmitte	ers			NA	
69				0			BMS		Check	with Sales	for availa	ble config.
70			100	The P			CEMS				NA	
71			ar				Other				NA	
72			A HOLE									
73												
74			ALS I									
75												
				FA	ABRICATION A	ND IN	ISPECTION					
76	Special requirements		Skid Mounted	Concrete Pad		Equipment Info						
77			Other				Component			Weight /	Dimensio	ns
78					в	urner	component			Weight /	Dimensio	115
79	Inspection		Vendor Standa	rd		umer	Burner Accembly					
80	inspection		Othor Specific	14		tool	Burner Assembly					
01	Material Certification		Vandar Standa	rd	3	LACK				40 1 0	D 25 L II	
01				iu						48 " 0	U X Z5 ' H	
82			IVITK	ampliance			Pilot lip					
83		<u> </u>		ompliance			Pilot Line(s)					
84			Other (Specify)				Stack Assembly					
85	NDE	\checkmark	Vendor Standa	rd	A	uxiliar	y Equipment					
86			Radiography. S	pecify:			Blowers					
87			Ultrasonic. Spe	ecify:			Inlet KO / Liquid Seal					
88			Liquid Penetrar	nt.			Flame / Detonation Arrestor					
89			Magnetic Partic	les.			Skid					
90			PMI. Specify:		In	nstrum	entation & Controls					
91			Other. Specify:				BMS					
92	Surface Preparation	\checkmark	Vendor Standa	rd			Control Panel					
93			Other. Specify:									
94	Paint System	\checkmark	Vendor Standa	rd								
95			Other. Specify:									
96	Finished Color		Vendor Standa	rd					1			
97			Other. Specify:						1			
98			· · · · · · · · · · · · · · · · · · ·									
99												
<u> </u>	Additional Notes								1			

				1			D			
	0			Item/Tag No.:			Page	1 of 3		
				Project No.:			Revision:	A		
18	IFFD						Date:	10 November 2014		
1	FABRICATION			Ductort			Den	10		
				Project:			ву:	12		
	Envir	omental Control Equipment		P.O. No.:	-		Checked:	SG		
		Data Sheet		RFQ No.:	-		Approved:	MS		
	Client:			Ref P&ID	_			1		
	chent.			Nell Folid.	-					
	Site:						Supplier:	LEED FABRICATION		
	Unit/Lease:			Remarks:	-		Model No.:	L30-0028-00		
		-		GENER	RAL					
1	Docign Code:				<u>-</u>			EED Exprise tion Standards		
1	Design code.					NDE.				
2	Service:					Customer Specs:		Yes Yes		
3	Description:	Standard Dual	Stage 60 High Effi	ciency Combustor				✓ No		
			PROCESS	DATA						
				11002255						
	Gas Composition:			mol %	cess Conditions:					
					Variable	Valu	e Unit	ts		
4	Methane				Flow Rate	Up to 3	300 Msc	fd		
-	Fahama				Drocouro	Unite	12/:-	-2		
5	Ethane				Pressure	0010	12 02/1	12		
6	Propane				Temperature	:	°F			
7	I-Butane				Molecular Wei	ght				
9	n-Butane				Process/Waste St	ream J Gas		Liquid		
				.	- Jeels, waste St					
9	I-Pentane			De	talled Process De	scription / Process N	otes:			
10	n-Pentane			1. 1	Furndown 10:1. B	ased on an expected	I normal operation	ng rate indicated above.		
11	n-Hexane			2. 1	DRE: 98 % operat	ing at design conditi	ons			
12	<u> </u>			3. 1	Burner Pressure D	rop: Min. 0.12 oz/in	2			
12	02			4. (Gas mixture heati	ng value estimated	to be 1500 BTU/9	SCF unless specified by customer		
13	N2			-7. (o - and continued i				
14	Helium									
15	H-O		1							
12	1120									
16	C7									
17	C8									
18	69									
10										
19	C10									
20	C11+									
21		ΤΟΤΑΙ								
	0.1	TOTAL		DDM() (
	Other Components:			PPIVIV AV	allable Utilities:					
22	H2S				Fuel / Pilot Ga	IS	Min. 30psig	Natural Gas /Propane 40-50 SCFH		
23	Benzene				Instrument A	ir	NA			
24	Toluono				Dower		120 V / 60 L	da or Solar Dowor		
24	Toluelle				Tower		120 V / 00 I			
25	E-Benzene				Steam		NA			
26	Xylene				Purge Gas					
				DESIGN	DATA					
27	Ambient Temperature			No	Noise Performance Requirements: Under 85 dBA					
21	Ambient remperatures			NO	Noise Performance Requirements.			onder 65 dbA		
28		Low, °F	-20	Str	uctural Design Co	de:				
29		High, ⁰F	120) Wi	nd Design Code:			ASCE		
30	Design Conditions:	Pressure/Temperature								
24	May Relative Liveridia		00		Descence / Crossed					
10		y, /u	90			i i cooure/ opeeu		100 1101		
32	Elevation (ASL), ft					Category				
33	Area Classification:		Class I	Div 2 Sei	smic Design Code	:				
34	Electrical Design Code:		NF	c		Location	1			
[[*]							I			
l	_				LEIFICATION					
35	Type:	Elevated 🗸 E	nclosed	Equ	uipment Design:		•			
36		Above Ground			C	omponent	Ma	aterial / Size / Rating / Other		
37		Stack I	Aultiple Stack	p.,	mer					
	<u> </u>		ingris ordon	ьu	-	1				
38					Burner Tip	/ Assist Gas Burner		Stainless Steel		
39					Bu	irner Body		Carbon Steel		
40	Smokeless By:	Steam A	ssist Air	Pile	ot					
<u>4</u> 1			taging			Pilot Tin	1	Stainless Steel		
, → ⊥			aging					Stanness Steel		
42					Pi	ilot Line(s)		Carbon Steel		
43	Stack: Self Supporting				ebox / Stack					
44	Flare Burner: Non-Smokeless Smokeless Gas Assist					Shell	l l	Carbon Steel		
<u>۸</u> ۲						Dining		Carbon Steel		
45	Pilot: Intermittent Continuous					FILIII		Carbon Steel		
46	Pilot Air Inspirator: 🗸 Local 🗌 Remote					Nozzles		Carbon Steel		
47	Pilot Flame Control: No Ves (Thermoco			ple)		Flanges		Carbon Steel		
48				1	I	nsulation	1	Blanket		
				or			Blanket			
49	Pilot Ignition:			UI	Ins	uiation Pins		Stainless Steel		
50	Electronic Image: Automa			Manual	R	lefractory		NA		
51	51 With Pilot Flame Control				Refra	ctory Anchors		NA		
57	52 With Auto Pilot Re-Ignition				Refractory Anchors					
52					Ladders and Platforms			NA		
53					Stack Sar	nple Connections		Per EPA requirements		
54	Pilot Ignition Backup:	Manual Specify: i.e P	iezo-Electric		S	ight Glass		2		
I		Dettery Deek	-		-	Othor				

_								1				
1	~				Item/Tag No.:			Page		2	of	3
	\cap				Project No.:			Revision	1:		Α	
	LEED							Date:		10 M	lovember	2014
	FABRICATION				Project:			By:			JS	
	Enviror	nmenta	l Control Equip	ment	P.O. No.:		-	Checked	1:		SG	
		Da	ta Sheet		REO No.:		-	Approve	ed:		MS	
	Client:	-			Ref P&ID		_					
	Cite:				Ref. F GID.			Cumplian		1000		TION
	Site:							Supplier		LEEL	7 FADRICA	
	Unit/Lease:				Remarks:			Model	No.:		.30-0028-0)0
						PECIF	ICATION		1			
56	Flame Detection:		nermocouple	✓ Ionization Rod	A	uxiliar	y Equipment					
57		U\	V Scanner				Valves				NA	
58	General Configuration:						Blowers				NA	
59							Dampers				NA	
60							Inlet KO / Liquid Seal				NA	
61							Flame / Detonation Arrestor			,	Yes	
62					In	strum	entation & Controls					
63							Solenoids / Shut-Off Valves		Check	with Sales	for availa	ble config.
64							Flow Meters		Check	with Sales	for availa	ble config
65							Calorimotor		Check	Jaies		ere connig.
66					-				Charle	with Coler-	for avail-	blo confin
60					-		Pressure Switches/ Hallshitters		Check	with Sales		ble config.
67			1.0		-		I nermocouples		Check with Sales for available config.			bie config.
68						I	emperature Switches/Transmitte	rs	Check with Sales for available config.			
69			N				BMS		Check	with Sales	for availal	ole config.
70					_		CEMS				NA	
71				- \	_		Other				NA	
72			1.									
73												
74												
75												
				FA	BRICATION AN	ND IN	SPECTION					
76	Special requirements		Skid Mounted	✓ Concrete Pad			Eq	uipment	Info			
77			Other				Component			Weight /	Dimensio	ns
78					В	urner				-		
79	Inspection		Vendor Standa	ard			Burner Assembly					
80			Other. Specify:		St	tack	,					
81	Material Certification		Vendor Standa	ard			Stack Assembly		6	0 " OD x 30) ' H. 7.00(0 Lbs
82] MTR				Pilot Tin		-			
83			Certificate of (Compliance			Pilot Line(s)					
84			Other (Specify).			Concrete Rad			10'v10' 10	21 600	lbs
85	NDF		Vendor Standa	y. ard		uviliar	v Equipment			16 716 16	. 21,000 1	
86				nu Spocify:	A	uxillal	Plowers					
00				ppeuly.			biowers					
0/			j un asonic. Sp	eciry:								
88			Liquid Penetra	ni.			Fiame / Detonation Arrestor					
89				JIE3.			Skid					
90			PMI Specify:		In	strum	entation & Controls					
91		<u> </u>	j Otner. Specify:				BMS					
92	Surface Preparation		Vendor Standa	ard			Control Panel					
93		<u> </u>	Uther. Specify:									
94	Paint System		Vendor Standa	ard								
95		<u>L</u>	Other. Specify:									
96	Finished Color	\checkmark	Vendor Standa	ard								
97			Other. Specify	:								
98												
99												
1	Additional Notes											

0	Item/Tag No.:	Page	3 of 3
	Project No.:	Revision:	A
FABRICATION		Date:	10 November 2014
Fauitesmental Control Fauitment	Project:	By:	JS
Data Sheet	P.U. NO.: -	Checked:	SG
Client.	Ref P&ID:	Approvea:	IVIS
Site:		Supplier	LEED FARRICATION
Unit/Lease:	Remarks:	Model No.:	L30-0028-00
	GENERAL ARRANGEMENT	model Holi	-50 0020 00

		Pressure			
Flare Size	# of Orifices (N)	(OZ/in ²)	m³/s	mSCFD	MMBTU/hr
18	2	1	0.0021	6.34	0.39
18	2	2	0.0029	8.97	0.56
18	2	3	0.0036	10.99	0.68
18	2	4	0.0042	12.69	0.78
18	2	5	0.0046	14.18	0.88
18	2	6	0.0051	15.54	0.96
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0075	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

§ MMBTU/hr values are calculated based on 1500 BTU/scf gas

 $P_{age} 15$

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

 $\frac{1}{2}$

ATTACHMENT T

Emission Calculations

EQT Production, LLC | OXF-155 Pad Trinity Consultants

Company Name: EQT Production, LLC Facility Name: OXF-155 Wellpad Project Description: G70-D Application

Facility-Wide Emission Summary - Controlled

Wells	6	per pad	Carbon equivale	ent emissions (CO2e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:
Storage Tanks	6	per pad	CO ₂	1
Sand Separator Tank	1	per pad	CH4	25
Line Heaters	7	per pad	N20	298
Compressor	2	per pad		
High Pressure Separator	6	per pad		
Low Pressure Separator	1	per pad		
Vapor Recovery Unit	1	per pad		
Tank Combustor	2	per pad		
Length of lease road	2,100	feet		

Emission	Emission	Emission	N	0 _x	0	:0	v	00	S	02	PI	M ₁₀	PN	M _{2.5}	C	H ₄	C	0 ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001-C002	S001-S006	Storage Vessels					0.41	1.79							0.29	1.26	7.17	31.41
C001-C002	S017	Captured Liquid Loading					1.73	0.45										
C001	C001	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	0.00	0.00	1,371.10	6,005.43
C002	C002	Tank Combustor	1.89	8.28	1.59	6.95	2.8E-04	1.2E-03	0.01	0.05	0.14	0.63	0.14	0.63	0.00	0.00	2,256.10	9,881.72
C001	S001-S006, S017, C001		1.15	5.03	0.96	4.22	1.07	1.12	0.01	0.03	0.09	0.38	0.09	0.38	0.14	0.63	1374.69	6021.14
C002	S001-S006, S017, C002		1.89	8.28	1.59	6.95	1.07	1.12	0.01	0.05	0.14	0.63	0.14	0.63	0.14	0.63	2259.68	9897.42
E007	S007	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.36	789.99
E008	S008	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.36	789.99
E009	S009	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.36	789.99
E010	S010	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.36	789.99
E011	S011	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.36	789.99
E012	S012	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.36	789.99
E013	S013	Separator Heater	0.22	0.96	0.18	0.81	0.01	0.05	1.3E-03	5.8E-03	0.02	0.07	0.02	0.07	0.01	0.02	270.27	1,183.79
E014	S014	Sand Separator Tank					0.19	0.83							0.02	0.09	0.50	2.18
E015	S015	Caterpillar VRU Engine	2.14	9.39	2.23	9.78	0.17	0.74	2.0E-03	0.01	0.06	0.28	0.06	0.28	0.01	0.03	391.72	1,715.75
E016	S016	EDI VRU Engine	0.24	1.06	0.49	2.12	0.18	0.81	4.2E-04	1.8E-03	0.01	0.06	0.01	0.06	0.00	0.01	83.85	367.28
E017	S017	Uncaptured Liquid Loading					37.13	9.65										
		Fugitives						36.30								44.12		1,103.11
		Haul Roads										1.76		0.18				
Facility Total			6.52	28.57	6.19	27.12	39.88	50.84	0.03	0.12	0.39	3.48	0.39	1.90	0.34	45.61	5,462.89	25,030.58
Facility Total (excludin	ng fugitive emissions)		6.52	28.57	6.19	27.12	39.88	14.54	0.03	0.12	0.39	1.72	0.39	1.72	0.34	1.50	5,462.89	23,927.47
1. Environmente data	والمحاجبة والمحاجبة والمتعادية والمتعادية والمحاجبة والمحاجبة والمحاجبة والمحاجبة والمحاجبة والمحاجبة	and a second	weter Deint I	Sector for a	stans as table			din a contrati		and a fear and have	terrel i eccel) II		and harmonic	d to a state out		

1. Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

Company Name: EQT Production, LLC Facility Name: OXF-155 Wellpad Project Description: G70-D Application

IF.

Emission	Emission	Emission	Forma	ldehyde	Ben	zene	Tol	uene	Ethylb	enzene	Xyle	enes	n-He	exane	Tota	BTEX	Tot	al HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy														
C001-C002	S001-S006	Storage Vessels			1.8E-04	7.8E-04	3.6E-04	1.6E-03	2.4E-05	1.0E-04	2.2E-04	9.5E-04	0.05	0.21	7.7E-04	3.4E-03	0.05	0.21
C001-C002	S017	Captured Liquid Loading			1.0E-03	2.6E-04	1.2E-03	3.1E-04	6.2E-05	1.6E-05	5.3E-04	1.4E-04	0.17	0.04	2.8E-03	7.3E-04	0.17	0.04
C001	C001	Tank Combustor																
C002	C002	Tank Combustor																
C001	S001-S006, S017, C001				5.9E-04	5.2E-04	7.7E-04	9.3E-04	4.3E-05	6.0E-05	3.7E-04	5.4E-04	1.1E-01	1.3E-01	1.8E-03	2.1E-03	1.1E-01	1.3E-01
C002	S001-S006, S017, C002				5.9E-04	5.2E-04	7.7E-04	9.3E-04	4.3E-05	6.0E-05	3.7E-04	5.4E-04	1.1E-01	1.3E-01	1.8E-03	2.1E-03	1.1E-01	1.3E-01
E007	S007	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E008	S008	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E009	S009	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E010	S010	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E011	S011	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E012	S012	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	8.1E-06	3.5E-05	2.8E-03	0.01
E013	S013	Separator Heater	1.6E-04	7.2E-04	4.6E-06	2.0E-05	7.5E-06	3.3E-05					4.0E-03	0.02	1.2E-05	5.3E-05	4.1E-03	0.02
E014	S014	Sand Separator Tank			< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01	< 0.01	< 0.01	4.0E-03	< 0.01	< 0.01	2.0E-03	4.0E-03	1.9E-02
E015	S015	Caterpillar VRU Engine	0.07	0.31	5.3E-03	2.3E-02	1.9E-03	8.2E-03	8.3E-05	3.6E-04	6.5E-04	2.9E-03			0.01	0.03	0.11	0.49
E016	S016	EDI VRU Engine	0.01	0.06	1.1E-03	5.0E-03	4.0E-04	1.8E-03	1.8E-05	7.8E-05	1.4E-04	6.1E-04			1.7E-03	0.01	0.02	0.10
E017	S017	Uncaptured Liquid Loading			0.02	0.01	0.03	0.01	1.3E-03	3.4E-04	1.1E-02	3.0E-03	3.61	0.94	0.06	0.02	3.67	0.96
		Fugitives				< 0.01		< 0.01		< 0.01		< 0.01		4.70		< 0.01	< 0.01	4.88
		Haul Roads																
Facility Total			0.09	0.38	0.03	0.04	0.03	0.02	1.5E-03	9.0E-04	0.01	0.01	3.85	5.98	0.07	0.06	4.05	6.79
Facility Total (excluding	ng fugitive emissions)		0.09	0.38	2.9E-02	0.04	2.9E-02	2.0E-02	1.5E-03	9.0E-04	1.3E-02	7.5E-03	3.85	1.28	0.07	0.06	4.05	1.91

1. Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

EQT Production, LLC Company Name: Facility Name: OXF-155 Wellpad **Project Description:** G70-D Application

	Produced Fluids Storage Vessels					
Potential Throughput Operational Hours	8.760 hrs/vr					
Maximum Condensate Throughput ¹	4,876 bbl/month					
Maximum Produced Water Throughput ¹	26,723 bbl/month					

95%

Overall Control Efficiency of Combustors

Storage Tanks - Uncontrolled

	Br	eathing	Woi	rking	Flas	hing	Total Em	issions
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Methane	< 0.001	< 0.001	< 0.001	< 0.001	5.736	25.125	5.736	25.125
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	3.881	16.999	3.881	16.999
Propane	0.031	0.134	0.920	4.028	2.062	9.033	3.013	13.195
Isobutane	0.008	0.035	0.157	0.689	0.582	2.549	0.747	3.273
n-Butane	0.018	0.081	0.392	1.716	1.389	6.086	1.800	7.882
Isopentane	0.007	0.033	0.135	0.591	0.599	2.623	0.741	3.247
n-Pentane	0.007	0.030	0.119	0.520	0.570	2.499	0.696	3.048
n-Hexane	0.010	0.042	0.166	0.728	0.775	3.394	0.951	4.164
Cyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
n-Heptane	0.001	0.004	0.014	0.062	0.069	0.302	0.084	0.367
n-Octane	4.5E-04	0.002	0.008	0.034	0.038	0.167	0.046	0.203
n-Nonane	1.0E-04	4.6E-04	0.002	0.008	0.009	0.040	0.011	0.048
n-Decane	1.4E-04	0.001	0.002	0.011	0.013	0.055	0.015	0.067
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Isohexane	0.001	0.002	0.010	0.043	0.045	0.199	0.056	0.245
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	1.3E-05	5.8E-05	0.002	0.007	0.002	0.008	0.004	0.016
Toluene	3.6E-05	1.6E-04	0.002	0.007	0.005	0.024	0.007	0.031
Ethylbenzene	2.9E-06	1.3E-05	7.0E-05	3.1E-04	4.0E-04	0.002	4.7E-04	0.002
m-Xylene	2.6E-05	1.1E-04	0.001	0.003	0.004	0.016	0.004	0.019
Isooctane	2.6E-06	1.1E-05	4.5E-05	2.0E-04	2.2E-04	0.001	2.6E-04	0.001
Total VOC Emissions:	0.08	0.36	1.93	8.45	6.16	27.00	8.18	35.81
Total HAP Emissions:	9.7E-03	0.04	0.17	0.75	0.79	3.45	0.97	4.23

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). Non-methane emissions are taken from the tank emissions stencil. Methane emissions are taken from the flash stream composition. ² Composition of condensate from OXF-136 sample from 3/10/2013.

EQT Production, LLC OXF-155 Wellpad G70-D Application

Produced Fluids Storage Vessels

Storage Tanks - Controlled

		Breathing	Wo	rking	Flas	hing	Total Emissions		
	lb/hr	tpy		8	lb/hr	tpy	lb/hr	tpy	
Methane	< 0.001	<0.001	<0.001	<0.001	0.287	1.256	0.287	1.256	
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	0.194	0.850	0.194	0.850	
Propane	0.002	0.007	0.046	0.201	0.103	0.452	0.151	0.660	
Isobutane	3.9E-04	0.002	0.008	0.034	0.029	0.127	0.037	0.164	
n-Butane	0.001	0.004	0.020	0.086	0.069	0.304	0.090	0.394	
Isopentane	3.7E-04	0.002	0.007	0.030	0.030	0.131	0.037	0.162	
n-Pentane	3.4E-04	0.001	0.006	0.026	0.029	0.125	0.035	0.152	
n-Hexane	4.8E-04	0.002	0.008	0.036	0.039	0.170	0.048	0.208	
Cyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	4.1E-05	1.8E-04	0.001	0.003	0.003	0.015	0.004	0.018	
n-Octane	2.2E-05	9.8E-05	3.9E-04	0.002	0.002	0.008	0.002	0.010	
n-Nonane	5.2E-06	2.3E-05	9.0E-05	4.0E-04	4.6E-04	0.002	0.001	0.002	
n-Decane	7.1E-06	3.1E-05	1.2E-04	0.001	0.001	0.003	0.001	0.003	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Isohexane	2.9E-05	1.2E-04	4.9E-04	0.002	0.002	0.010	0.003	0.012	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	6.6E-07	2.9E-06	8.0E-05	3.5E-04	9.7E-05	4.2E-04	1.8E-04	0.001	
Toluene	1.8E-06	7.9E-06	8.1E-05	3.6E-04	2.7E-04	0.001	3.6E-04	0.002	
Ethylbenzene	1.4E-07	6.3E-07	3.5E-06	1.5E-05	2.0E-05	8.7E-05	2.4E-05	1.0E-04	
m-Xylene	1.3E-06	5.7E-06	2.9E-05	1.3E-04	1.9E-04	0.001	2.2E-04	0.001	
Isooctane	1.3E-07	5.7E-07	2.2E-06	9.8E-06	1.1E-05	4.7E-05	1.3E-05	5.8E-05	
Total VOC Emissions:	4.1E-03	0.02	0.10	0.42	0.31	1.35	0.41	1.79	
Total HAP Emissions:	4.9E-04	2.1E-03	8.5E-03	3.7E-02	3.9E-02	0.17	0.05	0.21	

EQT Production, LLC OXF-155 Wellpad G70-D Application

Sand Separator Tank

Throughput Parameter	Value	Units
Tank Capacity Operational Hours	4,200 8,760	gallons hrs/vr
Throughput	200	bbl/month
Percent Produced Water	50%	
Total Produced Water Throughput	100	bbl/month

¹ Conservatively assumes 2 turnovers/month of sand and produced water.

Description	Potential Throughput (gal/yr)
Produced Water and Sand	100,800

Sand Separator Tank (100 bbl) - Uncontrolled ^{2, 3}

Constituent	Total Em lb/hr	iissions ¹ tpy
Methane	0.020	0.087
Ethane	0.035	0.152
Propane	0.050	0.218
Isobutane	0.020	0.089
n-Butane	0.051	0.222
Isopentane	0.029	0.127
n-Pentane	0.023	0.099
Hexanes	0.006	0.026
Heptanes	0.005	0.023
Octane	0.002	0.007
Nonane	< 0.001	0.001
Decane	< 0.001	< 0.001
Benzene	< 0.001	0.001
Toluene	< 0.001	0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
n-Hexane	0.004	0.017
2,2,4-Trimethylpentane	< 0.001	< 0.001
Total HC Emissions:	0.245	1.071
Total VOC Emissions:	0.190	0.832
Total HAP Emissions:	0.004	0.019

 2 E&P TANK 2.0 calculates working, breathing and flashing losses and reports the sum as one total. 3 E&P TANK v2.0 emission calculations are based on OXF-136 condensate sample from 03/10/2013

EQT Production, LLC OXF-155 Wellpad G70-D Application

Sand Separator Tank

Sand Separator Tank (140 bbl) - Controlled (Per tank)

Constituent	Total En lb/hr	nissions tny
constituent	10/11	сру
Methane	0.020	0.087
Ethane	0.035	0.152
Propane	0.050	0.218
Isobutane	0.020	0.089
n-Butane	0.051	0.222
Isopentane	0.029	0.127
n-Pentane	0.023	0.099
Hexanes	0.006	0.026
Heptanes	0.005	0.023
Octane	0.002	0.007
Nonane	< 0.001	0.001
Decane	< 0.001	< 0.001
Benzene	< 0.001	0.001
Toluene	< 0.001	0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
n-Hexane	0.004	0.017
2,2,4-Trimethylpentane	<0.001	< 0.001
Total Emissions:	0.245	1.072
Total VOC Emissions:	0.190	0.832
Total HAP Emissions:	0.004	0.019

EOT Production, LLC OXF-155 Wellpad G70-D Application

Compressor Engine

Engine Information:

Manufacturer:	Caterpilllar
Model No.:	G3408
Engine ID	S015
Stroke Cycle:	4-stroke
Type of Burn:	Rich
Rated Horsepower (bhp):	405

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Specific Fuel Consumption (Btu/bhp-hr):	8,260
Maximum Fuel Consumption at 100% Load (scf/hr):	3,186
Heat Input (MMBtu/hr):	3.35
Potential Fuel Consumption (MMBtu/yr):	29,305
Max. Fuel Consumption at 100%(MMscf/hr):	0.0032
Max. Fuel Consumption (MMscf/yr):	27.9
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Dellustant	Emission	IIit.a	Maximum Emis	Potential sions	Estimation Basis / Emission
Ponutant	Factor	Factor		tpy	Factor Source
NO _x	2.40	g/bhp-hr	2.14	9.39	Vendor Specifications
NMNEHC	0.11	g/bhp-hr	0.10	0.43	Vendor Specifications
VOC (includes HCHO)			0.17	0.74	VOC + HCHO
со	2.50	g/bhp-hr	2.23	9.78	Vendor Specifications
SO _X	0.001	lb/MMBtu	< 0.01	< 0.01	AP-42, Table 3.2-3 (Aug-2000)
PM ₁₀	0.02	lb/MMBtu	0.06	0.28	AP-42, Table 3.2-3 (Aug-2000)
PM _{2.5}	0.02	lb/MMBtu	0.06	0.28	AP-42, Table 3.2-3 (Aug-2000)
Formaldehyde (HCHO)	0.08	g/bhp-hr	0.07	0.31	Vendor Specifications
GHG (CO ₂ e)	See Table Below		392	1,716	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Table Below		0.11	0.49	AP-42, Table 3.2-3 (Aug-2000)

Notes:

1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).

2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

EQT Production, LLC OXF-155 Wellpad G70-D Application

Compressor Engine						
Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:						
		Units	Maximum	Potential		
Pollutant	Emission		Emissions		Estimation Basis / Emission	
	ractor		lbs/hr	tpy	Factor Source	
GHGs:						
CO ₂	116.98	lb/MMBtu	391.32	1713.98	40 CFR 98, Table C-1	
CH ₄	0.002	lb/MMBtu	0.01	0.03	40 CFR 98, Table C-2	
N ₂ O	0.0001	kg/MMBtu	7.4E-04	3.2E-03	40 CFR 98, Table C-2	
GHG (CO ₂ e)			392	1,716		
Organic HAPs:						
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	8.46E-05	3.71E-04	AP-42, Table 3.2-3 (Aug-2000)	
1,1,2-Trichloroethane	1.53E-05	lb/MMBtu	5.12E-05	2.24E-04	AP-42, Table 3.2-3 (Aug-2000)	
1,3-Butadiene	6.63E-04	lb/MMBtu	2.22E-03	9.7E-03	AP-42, Table 3.2-3 (Aug-2000)	
1,3-Dichloropropene	1.27E-05	lb/MMBtu	4.25E-05	1.86E-04	AP-42, Table 3.2-3 (Aug-2000)	
Acetaldehyde	2.79E-03	lb/MMBtu	9.3E-03	4.1E-02	AP-42, Table 3.2-3 (Aug-2000)	
Acrolein	2.63E-03	lb/MMBtu	8.8E-03	3.9E-02	AP-42, Table 3.2-3 (Aug-2000)	
Benzene	1.58E-03	lb/MMBtu	5.3E-03	2.3E-02	AP-42, Table 3.2-3 (Aug-2000)	
Carbon Tetrachloride	1.77E-05	lb/MMBtu	5.92E-05	2.59E-04	AP-42, Table 3.2-3 (Aug-2000)	
Chlorobenzene	1.29E-05	lb/MMBtu	4.32E-05	1.89E-04	AP-42, Table 3.2-3 (Aug-2000)	
Chloroform	1.37E-05	lb/MMBtu	4.58E-05	2.01E-04	AP-42, Table 3.2-3 (Aug-2000)	
Ethylbenzene	2.48E-05	lb/MMBtu	8.30E-05	3.63E-04	AP-42, Table 3.2-3 (Aug-2000)	
Ethylene Dibromide	2.13E-05	lb/MMBtu	7.13E-05	3.12E-04	AP-42, Table 3.2-3 (Aug-2000)	
Methanol	3.06E-03	lb/MMBtu	1.0E-02	4.5E-02	AP-42, Table 3.2-3 (Aug-2000)	
Methylene Chloride	4.12E-05	lb/MMBtu	1.38E-04	6.04E-04	AP-42, Table 3.2-3 (Aug-2000)	
Naphthalene	9.71E-05	lb/MMBtu	3.25E-04	1.42E-03	AP-42, Table 3.2-3 (Aug-2000)	
РАН	1.41E-04	lb/MMBtu	4.72E-04	2.07E-03	AP-42, Table 3.2-3 (Aug-2000)	
Styrene	1.19E-05	lb/MMBtu	3.98E-05	1.74E-04	AP-42, Table 3.2-3 (Aug-2000)	
Toluene	5.58E-04	lb/MMBtu	1.87E-03	8.2E-03	AP-42, Table 3.2-3 (Aug-2000)	
Vinyl Chloride	7.18E-06	lb/MMBtu	2.40E-05	1.05E-04	AP-42, Table 3.2-3 (Aug-2000)	
Xylene	1.95E-04	lb/MMBtu	6.52E-04	2.86E-03	AP-42, Table 3.2-3 (Aug-2000)	
Total HAP	0.11	0.49				

EOT Production, LLC OXF-155 Wellpad G70-D Application

Compressor Engine

Engine Information:

Manufacturer:	Ford
Model No.:	CSG-637
Engine ID	S016
Stroke Cycle:	4-stroke
Type of Burn:	Rich
Rated Horsepower (bhp):	110

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Specific Fuel Consumption (Btu/bhp-hr):	6,510
Maximum Fuel Consumption at 100% Load (scf/hr):	682
Heat Input (MMBtu/hr):	0.72
Potential Fuel Consumption (MMBtu/yr):	6,273
Max. Fuel Consumption at 100%(MMscf/hr):	0.0007
Max. Fuel Consumption (MMscf/yr):	6.0
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

	Emission	** **	Maximum Potential Emissions		Estimation Basis / Emission
Pollutant	Factor	Factor		tpy	Factor Source
NO _x	1.00	g/bhp-hr	0.24	1.06	Vendor Specifications
NMNEHC	0.70	g/bhp-hr	0.17	0.74	Vendor Specifications
VOC (includes HCHO)			0.18	0.81	VOC + HCHO
со	2.00	g/bhp-hr	0.49	2.12	Vendor Specifications
SO _x	0.001	lb/MMBtu	< 0.01	< 0.01	AP-42, Table 3.2-3 (Aug-2000)
PM ₁₀	0.02	lb/MMBtu	0.01	0.06	AP-42, Table 3.2-3 (Aug-2000)
PM _{2.5}	0.02	lb/MMBtu	0.01	0.06	AP-42, Table 3.2-3 (Aug-2000)
Formaldehyde (HCHO)	0.02	lb/MMBtu	0.01	0.06	AP-42, Table 3.2-3 (Aug-2000)
GHG (CO ₂ e)	See Table Below		84	367	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Table Below		0.02	0.10	AP-42, Table 3.2-3 (Aug-2000)

Notes:

1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).

2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

EQT Production, LLC OXF-155 Wellpad G70-D Application

Compressor Engine						
Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAI	P) Emissions	Calculations:				
Pollutant	Emission	Unite	Maximum Emis	Potential sions	Estimation Basis / Emission	
Polluan	Factor	Ulius	lbs/hr	tpy	Factor Source	
GHGs:						
CO ₂	116.98	lb/MMBtu	83.77	366.90	40 CFR 98, Table C-1	
CH ₄	0.002	lb/MMBtu	0.00	0.01	40 CFR 98, Table C-2	
N ₂ O	0.0001	kg/MMBtu	1.6E-04	6.9E-04	40 CFR 98, Table C-2	
GHG (CO ₂ e)			84	367		
Organic HAPs:						
1,1,2,2-Tetrachloroethane	2.53E-05	lb/MMBtu	1.81E-05	7.94E-05	AP-42, Table 3.2-3 (Aug-2000)	
1,1,2-Trichloroethane	1.53E-05	lb/MMBtu	1.10E-05	4.80E-05	AP-42, Table 3.2-3 (Aug-2000)	
1,3-Butadiene	6.63E-04	lb/MMBtu	4.75E-04	2.08E-03	AP-42, Table 3.2-3 (Aug-2000)	
1,3-Dichloropropene	1.27E-05	lb/MMBtu	9.09E-06	3.98E-05	AP-42, Table 3.2-3 (Aug-2000)	
Acetaldehyde	2.79E-03	lb/MMBtu	2.00E-03	8.8E-03	AP-42, Table 3.2-3 (Aug-2000)	
Acrolein	2.63E-03	lb/MMBtu	1.88E-03	8.2E-03	AP-42, Table 3.2-3 (Aug-2000)	
Benzene	1.58E-03	lb/MMBtu	1.13E-03	4.96E-03	AP-42, Table 3.2-3 (Aug-2000)	
Carbon Tetrachloride	1.77E-05	lb/MMBtu	1.27E-05	5.55E-05	AP-42, Table 3.2-3 (Aug-2000)	
Chlorobenzene	1.29E-05	lb/MMBtu	9.24E-06	4.05E-05	AP-42, Table 3.2-3 (Aug-2000)	
Chloroform	1.37E-05	lb/MMBtu	9.81E-06	4.30E-05	AP-42, Table 3.2-3 (Aug-2000)	
Ethylbenzene	2.48E-05	lb/MMBtu	1.78E-05	7.78E-05	AP-42, Table 3.2-3 (Aug-2000)	
Ethylene Dibromide	2.13E-05	lb/MMBtu	1.53E-05	6.68E-05	AP-42, Table 3.2-3 (Aug-2000)	
Methanol	3.06E-03	lb/MMBtu	2.19E-03	9.6E-03	AP-42, Table 3.2-3 (Aug-2000)	
Methylene Chloride	4.12E-05	lb/MMBtu	2.95E-05	1.29E-04	AP-42, Table 3.2-3 (Aug-2000)	
Naphthalene	9.71E-05	lb/MMBtu	6.95E-05	3.05E-04	AP-42, Table 3.2-3 (Aug-2000)	
РАН	1.41E-04	lb/MMBtu	1.01E-04	4.42E-04	AP-42, Table 3.2-3 (Aug-2000)	
Styrene	1.19E-05	lb/MMBtu	8.52E-06	3.73E-05	AP-42, Table 3.2-3 (Aug-2000)	
Toluene	5.58E-04	lb/MMBtu	4.00E-04	1.75E-03	AP-42, Table 3.2-3 (Aug-2000)	
Vinyl Chloride	7.18E-06	lb/MMBtu	5.14E-06	2.25E-05	AP-42, Table 3.2-3 (Aug-2000)	
Xylene	1.95E-04	lb/MMBtu	1.40E-04	6.12E-04	AP-42, Table 3.2-3 (Aug-2000)	
Total HAP			0.02	0.10		

Company Name:	EQT Production, LLC
Facility Name:	OXF-155 Wellpad
Project Description:	G70-D Application

Tank Combustor				
Source Designation.	C001			
Pilot Fuel Used:	Natural Gas			
Higher Heating Value (HHV) (Btu/scf):	1,050			
Pilot Rating (MMBtu/hr)	0.05			
Combustor Rating (MMBtu/hr) ¹	11.66			
Combustor Rating (Mscfd) ¹	188.38			
Combustor Rating (scf/hr)	7849.17			
Pilot Fuel Consumption (scf/hr):	50.00			
Potential Annual Hours of Operation (hr/yr):	8,760			

¹ Maximum heat input for 48" model from Leed Enclosed Combustor Operations Manual

² Combustor is used as back-up controlled device in case of VRU malfunction.

Enclosed Combustor Emissions

	Emission Factors ²	Com	hustor	Pi	lot	Тс	ntal
Pollutant	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO _x	0.10	1.14	5.01	5.1E-03	0.02	1.15	5.03
со	0.08	0.96	4.21	4.3E-03	0.02	0.96	4.22
VOC	5.4E-03			2.8E-04	1.2E-03	0.00	0.00
SO ₂	5.9E-04	0.01	0.03	3.1E-05	1.4E-04	0.01	0.03
PM/PM ₁₀	0.01	0.09	0.38	3.9E-04	1.7E-03	0.09	0.38
CO ₂	117.00	1364.189	5975.146	6.14	26.90	1370.33	6002.05
CH ₄	2.2E-03			1.2E-04	5.1E-04	0.00	0.00
N ₂ O	2.2E-04	2.6E-03	0.01	1.2E-05	5.1E-05	2.6E-03	0.01

² Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at the wellpad. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

Combustor Maximum Loading:

7849.17 scf	lb-mol	22.58 lb	=	467 lb/hr
hr	379.5 scf	lb-mol		

Company Name:	EQT Production, LLC
Facility Name:	OXF-155 Wellpad
Project Description:	G70-D Application

Source Designation:	C002	
Pilot Fuel Used:	Natural Gas	
Higher Heating Value (HHV) (Btu/scf):	1,050	
Pilot Rating (MMBtu/hr)	0.05	
Combustor Rating (MMBtu/hr) ¹	19.22	
Combustor Rating (Mscfd) ¹	188.38	
Combustor Rating (scf/hr)	7849.17	
Pilot Fuel Consumption (scf/hr):	50.00	
Potential Annual Hours of Operation (hr/yr):	8,760	

¹ Maximum heat input for 60" model from Leed Enclosed Combustor Operations Manual

² Combustor is used as back-up controlled device in case of VRU malfunction.

Enclosed Combustor Emissions

	Emission	Com	nustor	Pi	lot	Тс	atal
Pollutant	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO _x	0.10	1.88	8.25	5.1E-03	0.02	1.89	8.28
со	0.08	1.58	6.93	4.3E-03	0.02	1.59	6.95
VOC	5.4E-03			2.8E-04	1.2E-03	0.00	0.00
SO ₂	5.9E-04	0.01	0.05	3.1E-05	1.4E-04	0.01	0.05
PM/PM ₁₀	0.01	0.14	0.63	3.9E-04	1.7E-03	0.14	0.63
CO ₂	117.00	2248.688	9849.254	6.14	26.90	2254.83	9876.16
CH ₄	2.2E-03			1.2E-04	5.1E-04	0.00	0.00
N ₂ O	2.2E-04	4.2E-03	0.02	1.2E-05	5.1E-05	4.2E-03	0.02

² Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at the wellpad. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

Combustor Maximum Loading:

7849.17 scf	lb-mol	22.58 lb	=	467 lb/hr
hr	379.5 scf	lb-mol		

Company Name: Facility Name:	EQT Production, LLC OXF-155 Wellpad				
Project Description:	G70-D Application				
	Line Heater				
Source Designation:	S007-S012				

bource Designation.	0007 0012	
Fuel Used:	Natural Gas	
Higher Heating Value (HHV) (Btu/scf):	1,050	
Heat Input (MMBtu/hr)	1.54	
Fuel Consumption (MMscf/hr):	1.47E-03	
Potential Annual Hours of Operation (hr/yr):	8,760	

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions			
Pollutant	(lb/MMscf) ^{1,4}	(lb/hr) ²	(tons/yr) ³		
NO _x	100	0.15	0.64		
со	84	0.12	0.54		
VOC	5.5	0.01	0.04		
SO ₂	0.6	8.8E-04	3.9E-03		
PM Total	7.6	0.01	0.05		
PM Condensable	5.7	0.01	0.04		
PM ₁₀ (Filterable)	1.9	2.8E-03	0.01		
PM _{2.5} (Filterable)	1.9	2.8E-03	0.01		
Lead	5.00E-04	7.3E-07	3.2E-06		
CO ₂	117.0	180.18	789.17		
CH ₄	2.21E-03	3.4E-03	1.5E-02		
N ₂ O	2.21E-04	3.4E-04	1.5E-03		

EQT Production, LLC OXF-155 Wellpad G70-D Application

Line Heater

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions			
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³		
HAPs:					
2-Methylnaphthalene	2.4E-05	3.5E-08	1.5E-07		
3-Methylchloranthrene	1.8E-06	2.6E-09	1.2E-08		
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.3E-08	1.0E-07		
Acenaphthene	1.8E-06	2.6E-09	1.2E-08		
Acenaphthylene	1.8E-06	2.6E-09	1.2E-08		
Anthracene	2.4E-06	3.5E-09	1.5E-08		
Benz(a)anthracene	1.8E-06	2.6E-09	1.2E-08		
Benzene	2.1E-03	3.1E-06	1.3E-05		
Benzo(a)pyrene	1.2E-06	1.8E-09	7.7E-09		
Benzo(b)fluoranthene	1.8E-06	2.6E-09	1.2E-08		
Benzo(g,h,i)perylene	1.2E-06	1.8E-09	7.7E-09		
Benzo(k)fluoranthene	1.8E-06	2.6E-09	1.2E-08		
Chrysene	1.8E-06	2.6E-09	1.2E-08		
Dibenzo(a,h) anthracene	1.2E-06	1.8E-09	7.7E-09		
Dichlorobenzene	1.2E-03	1.8E-06	7.7E-06		
Fluoranthene	3.0E-06	4.4E-09	1.9E-08		
Fluorene	2.8E-06	4.1E-09	1.8E-08		
Formaldehyde	7.5E-02	1.1E-04	4.8E-04		
Hexane	1.8E+00	2.6E-03	1.2E-02		
Indo(1,2,3-cd)pyrene	1.8E-06	2.6E-09	1.2E-08		
Naphthalene	6.1E-04	8.9E-07	3.9E-06		
Phenanthrene	1.7E-05	2.5E-08	1.1E-07		
Pyrene	5.0E-06	7.3E-09	3.2E-08		
Toluene	3.4E-03	5.0E-06	2.2E-05		
Arsenic	2.0E-04	2.9E-07	1.3E-06		
Beryllium	1.2E-05	1.8E-08	7.7E-08		
Cadmium	1.1E-03	1.6E-06	7.1E-06		
Chromium	1.4E-03	2.1E-06	9.0E-06		
Cobalt	8.4E-05	1.2E-07	5.4E-07		
Manganese	3.8E-04	5.6E-07	2.4E-06		
Mercury	2.6E-04	3.8E-07	1.7E-06		
Nickel	2.1E-03	3.1E-06	1.3E-05		
Selenium	2.4E-05	3.5E-08	1.5E-07		
Total HAP		2.8E-03	1.2E-02		

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emission factor spract (bb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
 ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Company Name:	EQT Production, LLC	
Facility Name:	OXF-155 Wellpad	
Project Description:	G70-D Application	

	Separator Heate		
Source Designation:	S013		
Fuel Used:	Natural Gas		
Higher Heating Value (HHV) (Btu/scf):	1,050		
Heat Input (MMBtu/hr)	2.31		
Fuel Consumption (MMscf/hr):	2.20E-03		
Potential Annual Hours of Operation (hr/yr):	8,760		

Criteria and Manufacturer Specific Pollutant Emission Rates;

	Emission Factor	Potential Emissions		
Pollutant	(lb/MMscf) ^{1,4}	(lb/hr) ²	(tons/yr) ³	
NO _x	100	0.22	0.96	
со	84	0.18	0.81	
VOC	5.5	0.01	0.05	
SO ₂	0.6	1.3E-03	5.8E-03	
PM Total	7.6	0.02	0.07	
PM Condensable	5.7	0.01	0.05	
PM ₁₀ (Filterable)	1.9	4.2E-03	0.02	
PM _{2.5} (Filterable)	1.9	4.2E-03	0.02	
Lead	5.00E-04	1.1E-06	4.8E-06	
CO ₂	117.0	269.99	1182.57	
CH ₄	2.21E-03	5.1E-03	2.2E-02	
N ₂ O	2.21E-04	5.1E-04	2.2E-03	

EQT Production, LLC OXF-155 Wellpad G70-D Application

Separator Heater

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Potential Emissions		
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³		
HAPs:					
2-Methylnaphthalene	2.4E-05	5.3E-08	2.3E-07		
3-Methylchloranthrene	1.8E-06	4.0E-09	1.7E-08		
7,12-Dimethylbenz(a)anthracene	1.6E-05	3.5E-08	1.5E-07		
Acenaphthene	1.8E-06	4.0E-09	1.7E-08		
Acenaphthylene	1.8E-06	4.0E-09	1.7E-08		
Anthracene	2.4E-06	5.3E-09	2.3E-08		
Benz(a)anthracene	1.8E-06	4.0E-09	1.7E-08		
Benzene	2.1E-03	4.6E-06	2.0E-05		
Benzo(a)pyrene	1.2E-06	2.6E-09	1.2E-08		
Benzo(b)fluoranthene	1.8E-06	4.0E-09	1.7E-08		
Benzo(g,h,i)perylene	1.2E-06	2.6E-09	1.2E-08		
Benzo(k)fluoranthene	1.8E-06	4.0E-09	1.7E-08		
Chrysene	1.8E-06	4.0E-09	1.7E-08		
Dibenzo(a,h) anthracene	1.2E-06	2.6E-09	1.2E-08		
Dichlorobenzene	1.2E-03	2.6E-06	1.2E-05		
Fluoranthene	3.0E-06	6.6E-09	2.9E-08		
Fluorene	2.8E-06	6.2E-09	2.7E-08		
Formaldehyde	7.5E-02	1.6E-04	7.2E-04		
Hexane	1.8E+00	4.0E-03	1.7E-02		
Indo(1,2,3-cd)pyrene	1.8E-06	4.0E-09	1.7E-08		
Naphthalene	6.1E-04	1.3E-06	5.9E-06		
Phenanthrene	1.7E-05	3.7E-08	1.6E-07		
Pyrene	5.0E-06	1.1E-08	4.8E-08		
Toluene	3.4E-03	7.5E-06	3.3E-05		
Arsenic	2.0E-04	4.4E-07	1.9E-06		
Beryllium	1.2E-05	2.6E-08	1.2E-07		
Cadmium	1.1E-03	2.4E-06	1.1E-05		
Chromium	1.4E-03	3.1E-06	1.3E-05		
Cobalt	8.4E-05	1.8E-07	8.1E-07		
Manganese	3.8E-04	8.4E-07	3.7E-06		
Mercury	2.6E-04	5.7E-07	2.5E-06		
Nickel	2.1E-03	4.6E-06	2.0E-05		
Selenium	2.4E-05	5.3E-08	2.3E-07		
Total HAP		4.1E-03	1.8E-02		

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emission factor spract (lb/hr)_{Emission} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
 ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

EQT Production, LLC OXF-155 Wellpad G70-D Application

Liquid Loading

Throughput Capture Efficiency Control Efficiency

15,925,997 gal/yr 70% non-tested tanker trucks 98% Combustor destruction efficiency

Liquid Loading Emissions

	Uncontrolled Emissions		Uncapture	d Emissions	Controlled Emissions	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Propane	54.015	14.044	16.205	4.213	0.756	0.197
Isobutane	10.711	2.785	3.213	0.835	0.150	0.039
n-Butane	26.010	6.763	7.803	2.029	0.364	0.095
Isopentane	9.603	2.497	2.881	0.749	0.134	0.035
n-Pentane	8.570	2.228	2.571	0.668	0.120	0.031
n-Hexane	12.046	3.132	3.614	0.940	0.169	0.044
Cyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
n-Heptane	1.021	0.266	0.306	0.080	0.014	0.004
n-Octane	0.560	0.146	0.168	0.044	0.008	0.002
n-Nonane	0.131	0.034	0.039	0.010	0.002	4.77E-04
n-Decane	0.177	0.046	0.053	0.014	0.002	0.001
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Isohexane	0.715	0.186	0.215	0.056	0.010	0.003
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.072	0.019	0.021	0.006	0.001	2.61E-04
Toluene	0.085	0.022	0.026	0.007	0.001	3.10E-04
Ethylbenzene	0.004	0.001	0.001	3.43E-04	6.16E-05	1.60E-05
m-Xylene	0.038	0.010	0.011	0.003	0.001	1.39E-04
Isooctane	0.003	0.001	0.001	2.54E-04	4.56E-05	1.19E-05
Total VOC Emissions:	123.76	32.18	37.13	9.65	1.73	0.45
Total HAP Emissions:	12.25	3.18	3.67	0.96	0.17	0.04

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate).
² Hourly emissions assume two hours of loading per day, five days per week.

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 — Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP	VOC Emissions ³ (tpy)	HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	11	2.02	1.00	0.12	2.02	0.24
Compressor	Gas	0.22800	2	4.40	0.29	0.03	1.26	0.15
Valves	Gas	0.00597	374	21.53	0.29	0.03	6.14	0.74
Pressure Relief Valves	Gas	0.10400	25	24.60	0.29	0.03	7.02	0.84
Open-Ended Lines	All	0.00170	26	0.42	0.29	0.03	0.12	0.01
Connectors	All	0.00183	1,664	29.40	0.29	0.03	8.39	1.01
Intermittent Pneumatic Devices ⁴	Gas	13.5	30				10.05	1.20
			Emission Totals:	82.37			34.99	4.19

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic equipment values are from 40 CFR 98 Subpart W, Table W-1A (units of scf/hr/component). Pneumatic controller assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) + 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	11	2.02	< 0.01	< 0.01	< 0.01	< 0.01	0.07
Compressor	Gas	0.22800	2	4.40					0.15
Valves	Gas	0.00597	374	21.53	< 0.01	< 0.01	< 0.01	< 0.01	0.74
Pressure Relief Valves	Gas	0.10400	25	24.60	< 0.01	< 0.01	< 0.01	< 0.01	0.84
Open-Ended Lines	All	0.00170	26	0.42	< 0.01	< 0.01	< 0.01	< 0.01	0.01
Connectors	All	0.00183	1,664	29.40	< 0.01	< 0.01	< 0.01	< 0.01	1.01
Intermittent Pneumatic Devices ⁴	Gas	13.5	30		< 0.01	< 0.01	< 0.01	< 0.01	1.20
			Emission Totals:	82.37	<0.01	<0.01	<0.01	<0.01	4.02

¹ U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic equipment values are from 40 CFR 98 Subpart W, Table W-1A (units of scf/hr/component). Pneumatic controller assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

GHG Fugitive Emissions from Component Leaks

Component	Component Count	GHG Emission Factor ¹ (scf/hr/componen	CH ₄ Emissions ^{2,3}	CO ₂ Emissions ^{2,3}	CO ₂ e Emissions ⁴
component	component count		(upy)	(ψy)	(tpy)
Pumps	11	0.01	0.01	7.6E-05	0.37
Compressor	2	4.17	1.18	0.01	29.41
Valves	374	0.027	1.42	0.01	35.56
Pressure Relief Devices	25	0.04	0.14	7.1E-04	3.46
Open-Ended Lines	26	0.061	0.22	1.1E-03	5.48
Connectors	1,664	0.003	0.70	3.6E-03	17.60
Intermittent Pneumatic Devices	30	13.5	19.04	0.10	476.03
To	tal		22.71	0.12	567.90

¹ Population emission factors for gas service in the Eastern U.S. from Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production , 40 CFR 98, Subpart W (table W-6 for compressor). Pneumatic assumes operation 1/3 of the year. ² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

Mole fractions of CH4 and CO2 based on gas analysis:

CH₄. 76% CO2: 0.14% 1

25

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

Carbon Dioxide (CO₂): Methane (CH₄):

Company Name: EQT Production, LLC OXF-155 Wellpad Facility Name: **Project Description:** G70-D Application

Fugitive Emissions

Fugitive Emissions from Miscellaneous Venting

Source	# of Events (yr)	Vented Gas Volume (scf/event)	Volume (scf/yr)	VOC Emissions (tpy)	Benzene Emissions (tpy)	Toluene Emissions (tpy)	Ethylbenzene Emissions (tpy)	Xylene Emissions (tpy)	n-Hexane Emissions (tpy)	HAP Emissions (tpy)	CH4 Emissions (tpy)	CO ₂ Emissions (tpy)	CO ₂ e Emissions (tpy)
Compressor #1 Startup/ Shutdown	24	5,000	120,000	1.02	<0.01	<0.01	<0.01	<0.01	0.12	0.12	1.93	0.01	48.30
VRU Upsets	24	50,000	1,200,000	0.20	< 0.01	< 0.01	< 0.01	< 0.01	0.55	0.55	19.32	0.10	483.03
Rod Packing Venting			9,630	0.08	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01	0.16	8.0E-04	3.88
Total				1.31	<0.01	<0.01	<0.01	<0.01	0.68	0.68	21.40	0.11	535.21

¹ VOC and HAP emissions are based on sum of the fractions of the pollutants in the site-specific gas analysis in those classifications, and are calculated in accordance with standard conversion methodology and factors.

² CH₄ and CO₂ emissions are based on fractions of these pollutants in the site-specific gas analysis, and are calculated in accordance with Equations W-35 and W-36 in Subpart W of 40 CFR 98.

 3 GHG (CO₂e) is carbon dioxide equivalent, which is the summation of CO₂ (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

⁴ Total number of Compressor #1 maintenance activities and other shutdown/restarts is estimated to be 2 events per month

⁵ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

⁶ Potential emissions CH₄/CO₂ (tpty) = Gas volume vented (scf/yr) * Mole % CH₄/CO₂ + 100 * Density CH₄/CO₂ (kg/scf) * 1,000 (g/kg) + 453.6 (g/lb) + 2,000 (lb/ton) / Gas venting volumes are based on engineering estimates.

⁸ Total number of VRU upset events is estimated to be 2 events per month. During periods of VRU downtime, all vapors will be sent to the flare for control. VRU upset emission calculations conservatively assumes 98% destruction efficiency
Company Name:
 EQT Production, LLC

 Facility Name:
 OXF-155 Wellpad

 Project Description:
 G70-D Application

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

Unpaved Roads	s: E (lb/VMT)	= k(s/12) ^a (W/3)	[»])*[(365-p)/3	65]
	PM	PM ₁₀	PM _{2.5}	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
а	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	I PM	Emissions (tpy PM ₁₀) PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	0.40 0.40	3,981 200	3,167 159	0 0	6.78 0.12	1.73 0.03	0.17 0.00
Total Potential Emissions	8							6.90	1.76	0.18

Company Name: EQT Production, LLC Facility Name: OXF-155 Wellpad Project Description: G70-D Application

Gas Analysis	

Sample Location: Sample Date: HHV (Btu/scf):	OXF-134 Gas Analysis 7/25/2016 1,360	Note: A conservatively	v low BTU content of 1,	.050 was used for calcu	ulations.
Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.143	44.01	0.06	0.00	0.278
Nitrogen	0.641	28.01	0.18	0.01	0.795
Methane	76.062	16.04	12.20	0.54	54.034
Ethane	12.286	30.07	3.69	0.16	16.362
Propane	4.336	44.10	1.91	0.08	8.468
Isobutane	0.870	58.12	0.51	0.02	2.240
n-Butane	2.100	58.12	1.22	0.05	5.406
Isopentane	0.861	72.15	0.62	0.03	2.750
n-Pentane	0.910	72.15	0.66	0.03	2.908
n-Hexane ¹	0.896	86.18	0.77	0.03	3.420
Cyclohexane ¹	0.896	84.16	0.75	0.03	3.340
Totals	100.000		22.58	1.00	100
1. Hexanes plus assumed to be split equally					

TOC (Total)	99.22	98.93
VOC (Total)	10.87	28.53
HAP (Total)	0.90	3.42

			OXF-155 Plant Schema	tic		
Client Name:	EQT Production				Job: V1.0	
Location:	OXF 155 Wellpad					
Flowsheet:	OXF-155					
		Eaton Inti Tong S. F. Jaton Inti Proton 723 (rs) Tong Tong Tong Tong Tong Tong Tong Tong			trust The second se	

Page 1 of 12

			Process St All St Tabulated b	reams Report treams by Total Phase			
Client Name:	EQT Production				Job: V1.0		
Elowsheet:	OXF 155 Wellpa	a					
			Conn	ections			
			Combined	Combined	Compressed	Conden Flash	HP PW
			Flash Vapor	Flowstream	Gas to Sales	Gas	
From Block			MIX-100	MIX-102	CE-5	Oil Tanks	High Pressure Separator
To Block				Preheat	MIX-101	MIX-100	MIX-103
			Stream C	omposition			· · · · ·
Mole Fraction			Combined Flash Vapor	Combined Flowstream	Compressed Gas to Sales	Conden Flash Gas	HP PW
Nitrogen			0.000534333	0.00493002	0.00201661	0.00046863	1.96529E-06
Methane			0.301646	0.586369	0.487209	0.285748	0.000395443
CO2 Ethane			0.00234308	0.00110762	0.00222129	0.0022382	6.18818E-05
Propane			0.170513	0.0345902	0.109051	0.175206	1.28894E-05
Isobutane			0.0379897	0.00708168	0.0253243	0.0394814	1.11752E-06
n-Butane			0.0913238	0.0171335	0.0617018	0.0937187	5.50183E-06
Isopentane			0.0327393	0.00731387	0.0243335	0.0339057	1.11056E-06
n-Hexane			0.0374128	0.0144021	0.0340537	0.0391424	9.24102E-07
Methylcyclopentar	ne		0	0	0	0	0
Benzene			9.7852E-05	3.23691E-05	8.188E-05	9.71852E-05	5.05222E-07
Cyclohexane			0	0	0	0	0
n-neplane			0.0029532	0.00186464	0.003095	0.00310467	2 21461E-08
n-Nonane			0.000327803	0.000767653	0.00046648	0.000347762	2.41802E-09
n-Decane			0.000423801	0.00224401	0.000695917	0.000451244	1.82075E-09
n-Undecane			0	0	0	0	0
Dodecane Water			0 0243964	0 215993	0.0287273	0.0243921	0 999507
Triethylene Glycol			0.0243304	0.213995	0.0207273	0.0243921	0.333307
Oxygen			0	0	0	0	0
Argon			0	0	0	0	0
Carbon Monoxide			0	0	0	0	0
Isohexane			0.00215451	0.0006946	0.00183356	0.00224592	6.38636E-08
3-Methylpentane			0	0	0	0	0
Neohexane			0	0	0	0	0
2,3-Dimethylbutar	ie		0	0	0	0	0
Isooctane	e		8.0768E-06	4.75143E-06	8.20416E-06	8.52007E-06	1.25426E-10
Decane, 2-Methyl	-		0	0	0	0	0
Toluene			0.000238958	0.000133189	0.00022995	0.000235765	1.31343E-06
m-Xylene			0.000144243	0.000156203	0.00016087	0.00014061	7.46451E-07
Linyibenzene			1.559752-05	1.03332-03	1.749092-03	1.557062-05	0.13200L-00
			Combined Flash Vapor	Combined Flowstream	Compressed Gas to Sales	Conden Flash Gas	HP PW
Mass Flow			Ib/h	lb/h	Ib/h	Ib/h	Ib/h
Methane			1 57484	492.9	37 1278	1.39783	4 57975
CO2			0.0335585	173.973	0.46437	0.0300361	0.267845
Ethane			2.56031	10277.3	27.492	2.42504	1.34329
Propane			2.44693	5443.68	22.8422	2.35583	0.410313
n-Butane			0.718584	2554 12	6.99186	0.699735	0.0468905
Isopentane			0.768719	1883.3	8.33962	0.745935	0.0578438
n-Pentane			0.742224	1981.11	8.39095	0.725826	0.049503
n-Hexane			1.04923	4429.49	13.9399	1.02856	0.0574897
Methylcyclopenta	ne		0	0	0	0	0
Benzene			0.00248746	9.02386	0.0303814	0.00231482	0.0284896

* User Specified Values ? Extrapolated or Approximate Values

		Process Str All St Tabulated b	reams Report treams by Total Phase			
Client Name:	EQT Production			Job: V1.0	- F	
Location:	OXF 155 Wellpad					
Flowsheet:	OXF-155					
		Combined	Combined	Compressed	Condon Elash	
Mass Flow		Flash Vapor Ib/h	Flowstream Ib/h	Gas to Sales Ib/h	Gas Ib/h	lb/h
Cyclohexane		0	0	0	0	0
n-Heptane		0.0963028	666.831	1.4/316	0.0948617	0.00397576
n-Nonane		0.0136822	351.386	0.284198	0.0136005	0.000223883
n-Decane		0.0196237	1139.51	0.470348	0.0195776	0.000187019
n-Undecane		0	0	0	0	0
Dodecane		0 1/2022	12997.5	2 45929	0 122005	12000 1
Triethylene Glycol		0.143033	13007.3	2.43038	0.133993	12999.1
Oxygen		0	0	0	0	0
Argon		0	0	0	0	0
Carbon Monoxide		0	0	0	0	0
Isohexane		0 0604229	213.63	0 750571	0 0590169	0 00397305
3-Methylpentane		0.0004223	0	0.750571	0.0000100	0.00007.000
Neohexane		0	0	0	0	0
2,3-Dimethylbutane	9	0	0	0	0	0
Methylcyclohexane		0 00020025	0	0 00445166	0	0
Decane, 2-Methyl-		0.00030025	1.93708	0.00445166	0.000290708	1.0343E-03
Toluene		0.00716525	43.7978	0.100644	0.006624	0.0873642
m-Xylene		0.00498364	59.1856	0.0811278	0.00455193	0.0572097
Ethylbenzene		0.000538898	6.18861	0.00882478	0.00049779	0.00624854
Volumetric Flow		Combined Flash Vapor ft^3/h	Combined Flowstream ft^3/h	Compressed Gas to Sales ft^3/h	Conden Flash Gas ft^3/h	HP PW
Volumetric Flow		Combined Flash Vapor ft^3/h 0.0665982	Combined Flowstream ft^3/h 147.174	Compressed Gas to Sales ft^3/h 0.184251	Conden Flash Gas ft^3/h 0.0547465	HP PW gpm 0.000118758
Volumetric Flow Nitrogen Methane		Combined Flash Vapor ft^3/h 0.0665982 37.4088	Combined Flowstream ft^3/h 147.174 14501.5	Compressed Gas to Sales ft^3/h 0.184251 42.9326	Conden Flash Gas ft^3/h 0.0547465 33.2123	HP PW gpm 0.000118758 0.0247356
Volumetric Flow Nitrogen Methane CO2		Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 0.289465	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 4400.40	Compressed Gas to Sales ft^3/h 0.184251 42.9326 0.19109	Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 0.259133	HP PW gpm 0.000118758 0.0247356 0.000458425
Volumetric Flow Nitrogen Methane CO2 Ethane Pronane		Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275 335	Compressed Gas to Sales ft^3/h 0.184251 42.9326 0.19109 15.854 8 53206	Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 30.4344 19.9921	HP PW gpm 0.000118758 0.0247356 0.000458425 0.00486909 0.00126158
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane		Combined Flash Vapor ft*3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515	Compressed Gas to Sales ft^3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983	Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362	HP PW gpm 0.000118758 0.0247356 0.000458425 0.00486909 0.00126158 0.000131311
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane		Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472	Compressed Gas to Sales ft^3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583	Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013	HP PW gpm 0.000118758 0.0247356 0.000458425 0.00486909 0.00126158 0.000131311 0.000637438
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane		Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065	Compressed Gas to Sales ft^3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541	Conden Flash Gas ft*3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907	HP PW gpm 0.000118758 0.0247356 0.000458425 0.00486909 0.00126158 0.000131311 0.000637438 0.000148301
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane o Horage		Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.42065	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.4092	Compressed Gas to Sales ft^3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.20042	Conden Flash Gas ft*3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078	HP PW gpm 0.000118758 0.0247356 0.000458425 0.00486909 0.00126158 0.000131311 0.000637438 0.000148301 0.000127084
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane	Δ	Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0	Conden Flash Gas ft*3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0	HP PW gpm 0.000118758 0.0247356 0.000458425 0.00486909 0.00126158 0.000131311 0.000637438 0.000148301 0.000127084 0.000139973 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene	9	Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0.0116968	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506	Conden Flash Gas ft*3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807	HP PW gpm 0.000118758 0.0247356 0.000458425 0.00486909 0.00126158 0.000131311 0.000637438 0.000148301 0.000127084 0.000139973 0 5.61386E-05
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane	9	Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0.0116968 0	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0	Conden Flash Gas ft*3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0	HP PW gpm 0.000118758 0.0247356 0.000458425 0.00486909 0.00126158 0.000131311 0.000637438 0.000148301 0.000127084 0.000139973 0 5.61386E-05 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane	9	Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0.0116968 0 0.347566	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 12.6193 40.0040	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.190253 0.404000	Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0.108807 0 0.342122 0.47005	HP PW gpm 0.000118758 0.0247356 0.00458425 0.00486909 0.00126158 0.000131311 0.000637438 0.000148301 0.000127084 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Octane	9	Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0 0.0116968 0 0 0.347566 0.173565	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 12.6193 13.6343 6.02172	Compressed Gas to Sales ft^3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.190253 0.104603	Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0108807 0 0.342122 0.172065 0.0376025	HP PW gpm 0.000118758 0.0247356 0.00458425 0.00458425 0.00126158 0.00131311 0.000637438 0.000148301 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.07169E.07
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane	9	Combined Flash Vapor ft*3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0 0.0116968 0 0 0.347566 0.173565 0.0378707 0.0485409	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 12.6193 13.6343 6.92172 22.2705	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.190253 0.104603 0.0249117 0.034524	Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0108807 0 0.0342122 0.172065 0.0376035 0.0483662	HP PW gpm 0.000118758 0.0247356 0.00458425 0.00458425 0.00131311 0.000637438 0.000148301 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane	9	Combined Flash Vapor ft*3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0 0.0116968 0 0 0.0116968 0 0 0.347566 0.173565 0.0378707 0.0485409 0 0	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 0 12.6193 13.6343 6.92172 22.2705 0	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.190253 0.104603 0.0249117 0.034524 0	Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0342122 0.172065 0.0376035 0.0483662 0 0	HP PW gpm 0.000118758 0.0247356 0.00458425 0.00458425 0.00126158 0.000131311 0.000637438 0.000148301 0.000127084 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0 0 0 0 0 0 0 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane n-Undecane Dodecane	9	Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0.0116968 0 0.347566 0.173565 0.0378707 0.0485409 0 0	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 0.110369 0 12.6193 13.6343 6.92172 22.2705 0 0	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.0190253 0.104603 0.0249117 0.034524 0 0	Conden Flash Gas ft*3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0108807 0 0.342122 0.172065 0.0376035 0.0483662 0 0	HP PW gpm 0.000118758 0.0247356 0.000458425 0.00126158 0.000131311 0.000637438 0.000148301 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Decane n-Undecane Dodecane Water	9	Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0 0.0116968 0 0 0.347566 0.173565 0.0378707 0.0485409 0 0 0 0	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 12.6193 13.6343 6.92172 22.2705 0 0 0 228.432	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.190253 0.104603 0.0249117 0.034524 0 0 0 0 2.45281	Conden Flash Gas ft*3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.342122 0.172065 0.0376035 0.0483662 0 0 0 2.8306	HP PW gpm 0.000118758 0.0247356 0.000458425 0.00126158 0.000131311 0.000637438 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0 26.775
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentame Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Heptane n-Decane n-Undecane Dodecane Water Triethylene Glycol	e	Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0 0.0116968 0 0 0.347566 0.173565 0.0378707 0.0485409 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 12.6193 13.6343 6.92172 22.2705 0 0 228.432 0 0	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.190253 0.104603 0.0249117 0.034524 0 0 2.45281 0 0	Conden Flash Gas ft*3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0108807 0 0.0108807 0 0.342122 0.172065 0.0376035 0.0483662 0 0 0 2.8306 0 0 0	HP PW gpm 0.000118758 0.0247356 0.00458425 0.00458425 0.00126158 0.00126158 0.000131311 0.000637438 0.000148301 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0 26.775 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Decane n-Decane n-Undecane Dodecane Water Tritethylene Glycol Oxygen Argon	e	Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0.0116968 0 0.347566 0.173565 0.0378707 0.0485409 0 3.02038 0 0	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 0.110369 0 0.110369 0 0 12.6193 13.6343 6.92172 22.2705 0 0 0 228.432 0 0 0 0 0 0	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70554 2.22912 0 0.00541506 0 0.190253 0.104603 0.0249117 0.034524 0 0 0.02492117 0.034524 0 0 0 2.45281 0 0 0 0 0	Conden Flash Gas ft*3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0342122 0.172065 0.0376035 0.0483662 0 0 0 2.8306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HP PW gpm 0.000118758 0.0247356 0.00458425 0.00458425 0.00126158 0.00126158 0.000131311 0.000637438 0.000127084 0.000127084 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Doceane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide	9	Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0.0116968 0 0.347566 0.173565 0.0378707 0.0485409 0 0 0 0 0 0 0 0 0 0 0.0347566 0.173565 0.0378707 0.0485409 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 0.110369 0 0.110369 0 0 12.6193 13.6343 6.92172 22.2705 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.190253 0.104603 0.0249117 0.034524 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.342122 0.172065 0.0376035 0.0483662 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>HP PW gpm 0.000118758 0.0247356 0.00458425 0.00458425 0.00126158 0.00126158 0.000131311 0.000637438 0.000148301 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0</td>	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 0.110369 0 0.110369 0 0 12.6193 13.6343 6.92172 22.2705 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.190253 0.104603 0.0249117 0.034524 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.342122 0.172065 0.0376035 0.0483662 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HP PW gpm 0.000118758 0.0247356 0.00458425 0.00458425 0.00126158 0.00126158 0.000131311 0.000637438 0.000148301 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane	9	Combined Flash Vapor ft*3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0.0116968 0 0.347566 0.173565 0.0378707 0.0485409 0 0 0 0.0378707 0.0378707 0.0485409 0	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 0.110369 0 0.110369 0 0 12.6193 13.6343 6.92172 22.2705 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.190253 0.104603 0.0249117 0.034524 0 0 0.0249117 0.034524 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0483662 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HP PW gpm 0.000118758 0.0247356 0.00458425 0.00458425 0.00126158 0.00126158 0.000131311 0.000637438 0.000148301 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane	9	Combined Flash Vapor ft*3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0.0116968 0 0.347566 0.173565 0.0378707 0.0485409 0 0 0 0 0 0 0.0378707 0.0485409 0	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 0.110369 0 0.110369 0 0.110369 0 0 12.6193 13.6343 6.92172 22.2705 0 0 0 0 228.432 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.190253 0.104603 0.0249117 0.034524 0 0 0 0.0249117 0.034524 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.342122 0.172065 0.0376035 0.0483662 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HP PW gpm 0.000118758 0.0247356 0.00458425 0.00458425 0.00126158 0.000131311 0.000637438 0.000127084 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane	9	Combined Flash Vapor ft*3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0.0116968 0 0.347566 0.173565 0.0378707 0.0485409 0 0 0 0 0 0 0.0378707 0.0485409 0	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 0.110369 0 0.110369 0 0 12.6193 13.6343 6.92172 22.2705 0 0 0 228.432 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.00541506 0 0.190253 0.104603 0.0249117 0.034524 0 0 0.0249117 0.034524 0 0 0 0.0249117 0.034524 0 0 0 0 0.121735 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0376035 0.0376035 0.0483662 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HP PW gpm 0.000118758 0.0247356 0.000458425 0.00126158 0.00126158 0.000131311 0.000131311 0.000148301 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Heptane n-Octane n-Deccane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane	9	Combined Flash Vapor ft*3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0.0116968 0 0.347566 0.173565 0.0378707 0.0485409 0 0 0 0 0 0 0.0378707 0.0485409 0	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 0.110369 0 0 12.6193 13.6343 6.92172 22.2705 0 0 0 228.432 0 0 0 0 228.432 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.00541506 0 0.00541506 0 0.104603 0.104603 0.0249117 0.034524 0 0 0 2.45281 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conden Flash Gas ft^3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.342122 0.172065 0.0376035 0.0483662 0 0 0 0 0 0 0.172065 0.0376035 0.0483662 0 <td>HP PW gpm 0.000118758 0.0247356 0.000458425 0.00118758 0.00458425 0.00131311 0.000637438 0.000126158 0.000131311 0.000637438 0.000127084 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0</td>	HP PW gpm 0.000118758 0.0247356 0.000458425 0.00118758 0.00458425 0.00131311 0.000637438 0.000126158 0.000131311 0.000637438 0.000127084 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane	9	Combined Flash Vapor ft*3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0.0116968 0 0.347566 0.173565 0.0378707 0 0 3.02038 0 0 0 0 0 0.0256189 0	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 0.110369 0 0 12.6193 13.6343 6.92172 22.2705 0 0 0 228.432 0 0 0 0 228.432 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.70954 2.22912 0 0.00541506 0 0.00541506 0 0.190253 0.104603 0.0249117 0.034524 0 0 0.0249117 0.034524 0 0 0 0.024581 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conden Flash Gas ft*3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.342122 0.172065 0.0376035 0.0483662 0 0 0 0 2.8306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HP PW gpm 0.000118758 0.0247356 0.00458425 0.00458425 0.00126158 0.00126158 0.000131311 0.000131311 0.000148301 0.000148301 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0 0 0 26.775 0 <tr< td=""></tr<>
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Decane n-Undecane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane	e e e	Combined Flash Vapor ft^3/h 0.0665982 37.4088 0.289465 32.1296 20.7667 4.59507 11.0277 3.92679 3.78583 4.43965 0 0.0116968 0 0.347566 0.173565 0.0378707 0.0485409 0 0 3.02038 0 0 0 0 0 0.0256189 0	Combined Flowstream ft^3/h 147.174 14501.5 21.9692 1406.12 275.335 35.0515 69.8472 27.3065 29.4917 77.1083 0 0.110369 0 0.110369 0 0.110369 0 0 12.6193 13.6343 6.92172 22.2705 0 0 0 228.432 0 0 0 0 228.432 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Compressed Gas to Sales ft*3/h 0.184251 42.9326 0.19109 15.854 8.53206 1.8983 4.55583 1.71541 1.7054 2.22912 0 0.00541506 0 0.000541506 0 0.190253 0.104603 0.0249117 0.034524 0 0 0.0249117 0.034524 0 0 0 0.0249117 0.034524 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conden Flash Gas ft*3/h 0.0547465 33.2123 0.259133 30.4344 19.9921 4.47362 10.6013 3.80907 3.70078 4.34973 0 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0108807 0 0.0342122 0.172065 0.0376035 0.0483662 0 0 0 0.28306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HP PW gpm 0.000118758 0.0247356 0.00458425 0.00458425 0.00126158 0.000131311 0.000637438 0.000127084 0.000127084 0.000127084 0.000127084 0.000139973 0 5.61386E-05 0 9.35186E-06 4.15636E-06 4.97169E-07 4.08588E-07 0

* User Specified Values ? Extrapolated or Approximate Values ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

			Process Str All St Tabulated b	reams Report reams by Total Phase					
Client Name:	EQT Productio	n			Job: V1.0	•			
Location:	OXF 155 Wellp	bad							
Flowsheet:	OXF-155								
					·				
Volumetric Flow			Combined Flash Vapor ft^3/h	Combined Flowstream ft^3/h	Compressed Gas to Sales ft^3/h	Conden Flash Gas ft^3/h	HP PW gpm		
m-Xylene			0.0169375	0.895098	0.00928054	0.0154587	0.000110494		
Ethylbenzene			0.00183308	0.092784	0.00101697	0.001692	1.20022E-05		
	Stream Properties								
Property		Units	Combined	Combined	Compressed	Conden Flash	HP PW		
			Flash Vapor	Flowstream	Gas to Sales	Gas			
Temperature		°F	69.9947	56.5703	413.789	70	184.305		
Pressure		psig	0.25	700	500 *	0.25 *	500		
Mole Fraction Vapor			0.999997	0.694601	1	1	0		
Mole Fraction Light I	_iquid		3.17612E-06	0.0894322	0	0	1		
Mole Fraction Heavy	[,] Liquid		0	0.215967	0	0	0		
Molecular Weight		lb/lbmol	36.9671	22.5139	31.4805	37.5956	18.0165		
Mass Density		lb/ft^3	0.0983046	4.76016	1.80687	0.100015	60.4884		
Mass Flow		lb/h	12.0305	80351.7	149.539	11.464	13006.4		
Vapor Volumetric Flo	0W	ft^3/h	122.38	16880.1	82.7614	114.623	215.023		
Liquid Volumetric Flo	0W	gpm	15.2578	2104.53	10.3183	14.2907	26.808		
Std Vapor Volumetri	c Flow	MMSCFD	0.00296397	32.5049	0.0432631	0.00277718	6.57494		
Specific Gravity					1.08694	1.29807	0.969848		
API Gravity							10.0213		
Net Ideal Gas Heatir	ng Value	Btu/ft^3	1925.19	1005.33	1644.24	1956.91	0.533512		
Net Liquid Heating V	alue	Btu/lb	19615.7	16699.4	19688.1	19604.3	-1047.96		
Std Liquid Volumetri	c Flow	sgpm	0.0520685	384.267	0.688807	0.0492475	26.0285		

Warnings

ProMax:ProMax!Project!Flowsheets!OXF-155!PStreams!Combined Flowstream Warning: The temperature of 56.5703 °F is below hydrate formation.

Remarks

E

		Process S All S Tabulated	treams Report Streams by Total Phase			
Client Name:	EQT Production	d		Job: V1.0		
Flowsheet:	OXF 155 Wellpa	d				
	1			Ļ		
		Coni	nections			
		HPG to	LPT	LPT Gas to	Pipeline	Produced
From Block		Compressor	Condensate	VRU	MIX 101	Water In
FIOID DIOCK		Separator	Separator	Separator	MIX-TUT	Separator
To Block		MIX-101	Oil Tanks	CE-5		Water Tanks
		Stream C	Composition			
		HPG to	LPT	LPT Gas to	Pipeline	Produced
Mole Fraction		Compressor	Condensate	VKU		water in
Nitrogen		0.00622102	9.67324E-06	0.00201661	0.00621397	6.19934E-08
Methane		0.739465	0.0069513	0.487209	0.739041	2.90378E-05
CO2		0.00139373	7.53785E-05	0.00222129	0.00139512	2.17902E-06
Ethane		0.120507	0.0138356	0.192475	0.120628	1.47507E-05
Isobutane		0.0433401	0.0202200	0.109051	0.0434503	7 71270E-07
n-Butane		0.00002131	0.0466717	0.0617018	0.0213328	3.16677F-06
Isopentane		0.00895435	0.0424194	0.0243335	0.00898015	7.20985E-07
n-Pentane		0.00937465	0.0529196	0.0244833	0.0094	3.98236E-07
n-Hexane		0.0168098	0.233833	0.0340537	0.0168388	4.12976E-07
Methylcyclopentar	ne	0	0	0	0	0
Benzene		3.75246E-05	0.000551135	8.188E-05	3.7599E-05	4.04107E-07
n-Hentane		0.00201405	0 0594985	0.003095	0 00201587	2 33309E-08
n-Octane		0.00158698	0.0999102	0.00181442	0.00158736	5.49097E-09
n-Nonane		0.00055583	0.0732868	0.00046648	0.00055568	9.38439E-10
n-Decane		0.00112357	0.303464	0.000695917	0.00112285	4.56803E-10
n-Undecane		0	0	0	0	0
Dodecane		0 0174006	0	0	0 0174285	0
Triethylene Glycol		0.0174096	0.00110081	0.0287273	0.0174285	0.999941
Oxvgen		0	0	0	0	0
Argon		0	0	0	0	0
Carbon Monoxide		0	0	0	0	0
Cyclopentane		0	0	0	0	0
Isohexane		0.00082219	0.00918315	0.00183356	0.000823886	2.94469E-08
Neohexane		0	0	0	0	0
2.3-Dimethylbutan	е	0	0	0	0	0
Methylcyclohexan	e	0	0	0	0	0
Isooctane		5.13017E-06	0.000151872	8.20416E-06	5.13533E-06	5.20658E-11
Decane, 2-Methyl-	-	0	0	0	0	0
I oluene m Xulono		0.000141428	0.00463879	0.00022995	0.000141577	8.96449E-07
Fthylbenzene		1 46728F-05	0.0103429	1 74989E-05	1 46775E-05	5 11202E-07
2			0.0010101			01112022 00
		HPG to	LPT	LPT Gas to	Pipeline	Produced
		Compressor	Condensate	VRU		Water In
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen		492.627	0.00431251	0.268349	492.895	0.00125308
		33533.5	1.//4/2	37.1278	335/0.6	0.336125
Ethane		10242 9	6 62078	27 492	10270 4	0.320036
Propane		5402.26	18.404	22.8422	5425.1	0.175905
Isobutane		1449.32	12.6559	6.99186	1456.32	0.032346
n-Butane		3493.79	43.1706	17.0354	3510.83	0.132808
Isopentane		1826.22	48.7063	8.33962	1834.56	0.0375338
n-Pentane		1911.94	60.7628	8.39095	1920.33	0.0207318
n-Hexane Methylovolonontor		4094.84	320.686	13.9399	4108.78	0.0256788
Benzene		8 28558	0 68512	0.0303814	8 31596	0 0227762
* User Specified Values		0.20338	4 0 16071 0	0.0000014	Licensed to Trinity Cons	

? Extrapolated or Approximate Values

Copyright © 2002-2016 BRE Group, Ltd.

censed to Frinity Consultants, Inc. a

		Process St All S Tabulated I	reams Report treams by Total Phase			
Client Name:	EQT Production			Job: V1.0	•	
Location:	OXF 155 Wellpad					
Flowsheet.	UXF-155					
Mass Flow		HPG to Compressor Ib/h	LPT Condensate Ib/h	LPT Gas to VRU Ib/h	Pipeline lb/h	Produced Water In Ib/h
Cyclohexane		0	0	0	0	0
n-Heptane		570.476	94.8799	1.47316	571.949	0.00168684
n-Nonane		201.515	149.587	0.284198	201.799	8.68456E-05
n-Decane		451.896	687.144	0.470348	452.367	4.6897E-05
n-Undecane		0	0	0	0	0
Water		886.581	0.315607	2.45838	889.04	12998.2
Triethylene Glycol		0	0	0	0	0
Oxygen		0	0	0	0	0
Argon Carbon Monoxide		0	0	0	0	0
Cyclopentane		0	0	0	0	0
Isohexane		200.283	12.5941	0.750571	201.034	0.001831
3-Methylpentane		0	0	0	0	0
2.3-Dimethylbutan	9	0	0	0	0	0
Methylcyclohexane	9	0	0	0	0	0
Isooctane		1.65652	0.276086	0.00445166	1.66097	4.29135E-06
Decane, 2-Methyl-		36 8355	6 80201	0 100644	36 9362	0 0595982
m-Xylene		41.262	17.8129	0.0811278	41.3431	0.0296192
Ethylbenzene		4.40335	1.77251	0.00882478	4.41218	0.00391599
Volumetric Flow		HPG to Compressor ft^3/h	LPT Condensate gpm	LPT Gas to VRU ft^3/h	Pipeline ft^3/h	Produced Water In gpm
Volumetric Flow Nitrogen		HPG to Compressor ft^3/h 248.78	LPT Condensate gpm 1.53757E-05	LPT Gas to VRU ft^3/h 1.32579	Pipeline ft^3/h 249.123	Produced Water In gpm 3.47021E-06
Volumetric Flow Nitrogen Methane		HPG to Compressor ft^3/h 248.78 27659.2	LPT Condensate gpm 1.53757E-05 0.0112929	LPT Gas to VRU ft^3/h 1.32579 316.916	Pipeline ft^3/h 249.123 27716.5	Produced Water In gpm 3.47021E-06 0.00169625
Volumetric Flow Nitrogen Methane CO2 Ethane		HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616	Pipeline ft^3/h 249.123 27716.5 49.4373 3947 95	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.0010974
Volumetric Flow Nitrogen Methane CO2 Ethane Propane		HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.0010974 0.000514528
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane		HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.00010974 0.000514528 8.63941E-05
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane		HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 107.641	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 190.040	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 0.20230E 05
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane		HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.0001974 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane		HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.99049E-05
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclobexane	e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7392 14.7831 20.1641 0 0.0491659 0	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane	e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0.099747 0.000156393 0 0.286058	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 3.80521E-06
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Octane	e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 0 28.3044 17.1559	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.286058 0.528872	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 2.00161	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Nonane	e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044 17.1559 3.89369 2.82340	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.286058 0.528872 0.424063 1.04271	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513 0.260434 0.290946	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 2.02064	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.09228E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 0 9.2762E-08
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Octane n-Decane n-Undecane	e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044 17.1559 3.89369 3.83349 0	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.0286058 0.528872 0.424063 1.91371 0 0	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513 0.260434 0.380946 0 0	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 0 28.513 17.3022 3.94181 3.92964 0	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Octane n-Octane n-Decane n-Undecane Dodecane	e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044 17.1559 3.89369 0 0	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.286058 0.528872 0.424063 1.91371 0 0	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513 0.260434 0.380946 0 0	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 0	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water	e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044 17.1559 3.89369 3.83349 0 0 0	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.286058 0.528872 0.424063 1.91371 0 0 0 -0.000521787	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513 0.260434 0.380946 0 0 18.593	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 0 0 0 0 0	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.09228E-05 5.09228E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 0 0 26.2142
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Decane n-Doctane n-Decane n-Undecane Dodecane Water Tritethylene Glycol Oxygen	e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044 17.1559 3.89369 0 0 0 0 0 0 0 0 0 0 0	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0 0.00156393 0 0.286058 0.528872 0.424063 1.91371 0 0 -0.000521787 0 0 0	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513 0.260434 0.380946 0 0 18.593 0 0	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 0 623.124 0 0	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.0003514528 8.63941E-05 5.09228E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 0 26.2142 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon	e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044 17.1559 3.89369 0	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.00156393 0 0.286058 0.528872 0.424063 1.91371 0 0 0 0.000521787 0 0 0 0 0 0 0	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513 0.260434 0.380946 0 0 18.593 0 0	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 0 0 0 0 0 0 0	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.99049E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 0 0 0 0 0 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide	e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044 17.1559 3.89369 3.83349 0	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.0286058 0.528872 0.424063 1.91371 0 0 0.02521787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513 0.260434 0.380946 0 0 18.593 0 0	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 0 0 0 0 0 0 0	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 0 0 26.2142 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane	e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044 17.1559 3.89369 3.83349 0 0 0 0 0 0 0 17.1559 3.89369 0 <t< td=""><td>LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0 0.00156393 0 0 0.0286058 0.528872 0.424063 1.91371 0 0 0 -0.000521787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 0 1.79886 1.03513 0.260434 0.380946 0 0 18.593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 <t< td=""><td>Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 0 0 26.2142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<></td></t<>	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0 0.00156393 0 0 0.0286058 0.528872 0.424063 1.91371 0 0 0 -0.000521787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 0 1.79886 1.03513 0.260434 0.380946 0 0 18.593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 <t< td=""><td>Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 0 0 26.2142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<>	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 0 0 26.2142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Octane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane	e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044 17.1559 3.89369 3.83349 0	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.286058 0.528872 0.424063 1.91371 0 0 0.026058 0.528872 0.424063 1.91371 0 0 0 0.000521787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513 0.260434 0.380946 0 0 1.8593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 0 623.124 0 0 0 0 0 0 0 0	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.09228E-05 5.09228E-05 0 4.31906E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 0 0 26.2142 0 0 0 0 4.27842E-06 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Butane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Decane n-Decane n-Decane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane	e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044 17.1559 3.89369 3.83349 0 620.761 0 0 0 0 0 17.1559 3.89369 0	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0 0.00156393 0 0.00156393 0 0.286058 0.528872 0.424063 1.91371 0 0 0.424063 1.91371 0 0 0.000521787 0 0 0 0.000521787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513 0.260434 0.380946 0 0 1.79886 1.03513 0.260434 0.380946 0 0 0 18.593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 0 623.124 0	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.09228E-05 5.09228E-05 0 4.31906E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 0 26.2142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane Nonane n-Decane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane	e e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044 17.1559 3.89369 3.83349 0 0 0 0 0 0 0 17.1559 3.89369 0 <t< td=""><td>LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.00156393 0 0.0286058 0.528872 0.424063 1.91371 0 0 0.0286058 0.528872 0.424063 1.91371 0 0 0 0.000521787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513 0.260434 0.380946 0 0 18.593 0 0 0 0 1.09051 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 <t< td=""><td>Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 0 26.2142 0 0 0 0 4.27842E-06 0 0 0</td></t<></td></t<>	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.00156393 0 0.0286058 0.528872 0.424063 1.91371 0 0 0.0286058 0.528872 0.424063 1.91371 0 0 0 0.000521787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513 0.260434 0.380946 0 0 18.593 0 0 0 0 1.09051 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 <t< td=""><td>Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 0 26.2142 0 0 0 0 4.27842E-06 0 0 0</td></t<>	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 4.31906E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 0 26.2142 0 0 0 0 4.27842E-06 0 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Heptane n-Doceane Dodecane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane	e e e e e e e e e e e e e e	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044 17.1559 3.89369 3.83349 0 0 0 0 0 0 0 17.1559 3.89369 0 <t< td=""><td>LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.00156393 0 0.00156393 0 0.0286058 0.528872 0.424063 1.91371 0 0 0.0286058 0.528872 0.424063 1.91371 0 0 0 0.000521787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513 0.260434 0.380946 0 0 18.593 0 0 0 1.09051 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 <t< td=""><td>Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.99049E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 <</td></t<></td></t<>	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.00156393 0 0.00156393 0 0.0286058 0.528872 0.424063 1.91371 0 0 0.0286058 0.528872 0.424063 1.91371 0 0 0 0.000521787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 1.79886 1.03513 0.260434 0.380946 0 0 18.593 0 0 0 1.09051 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 <t< td=""><td>Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.99049E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 <</td></t<>	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.99049E-05 0 3.80521E-06 9.88402E-07 1.85135E-07 9.83763E-08 0 <
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentan Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane	e 	HPG to Compressor ft^3/h 248.78 27659.2 49.2503 3932.31 1252.78 230.206 531.173 197.641 201.179 298.609 0 0.731681 0 28.3044 17.1559 3.89369 3.83349 0 0 0 0 0 0 15.3418 0 <td>LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.00156393 0 0.0286058 0.528872 0.424063 1.91371 0 0.0286058 0.528872 0.424063 1.91371 0 0 0.000521787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 0.0491659 0 0.1.79886 1.03513 0.260434 0.380946 0 0 0 18.593 0 0 0 0 1.09051 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 0 623.124 0</td> <td>Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 3.80521E-06 9.83763E-08 0 <</td>	LPT Condensate gpm 1.53757E-05 0.0112929 7.00616E-05 0.0286932 0.0706114 0.0457361 0.151162 0.161047 0.199149 0.999747 0 0.00156393 0 0.00156393 0 0.0286058 0.528872 0.424063 1.91371 0 0.0286058 0.528872 0.424063 1.91371 0 0 0.000521787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LPT Gas to VRU ft^3/h 1.32579 316.916 1.43286 122.616 68.2634 15.6267 37.9187 14.7392 14.7831 20.1641 0 0.0491659 0 0.0491659 0 0.1.79886 1.03513 0.260434 0.380946 0 0 0 18.593 0 0 0 0 1.09051 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pipeline ft^3/h 249.123 27716.5 49.4373 3947.95 1260.14 231.766 534.881 199.049 202.598 300.668 0 0.7365 0 28.513 17.3022 3.94181 3.92964 0 0 623.124 0	Produced Water In gpm 3.47021E-06 0.00169625 0.000111407 0.000514528 8.63941E-05 0.000350108 9.20329E-05 5.09228E-05 5.99049E-05 0 4.31906E-05 0 3.80521E-06 9.83763E-08 0 <

* User Specified Values ? Extrapolated or Approximate Values ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

			Process Str All St Tabulated b	reams Report Treams by Total Phase				
Client Name:	EQT Production	i i			Job: V1.0	.0		
Location:	OXF 155 Wellpa	ad						
Flowsheet:	OXF-155							
	-				÷			
Volumetric Flow			HPG to Compressor ft^3/h	LPT Condensate gpm	LPT Gas to VRU ft^3/h	Pipeline ft^3/h	Produced Water In gpm	
m-Xylene			1.68451	0.0414032	0.0929297	1.69692	5.51097E-05	
Ethylbenzene			0.184879	0.00411351	0.010128	0.186217	7.24702E-06	
Stream Properties								
Property		Units	HPG to Compressor	LPT Condensate	LPT Gas to VRU	Pipeline	Produced Water In	
Temperature		°F	184.305	110 *	110	184.847	110	
Pressure		psig	500 *	30 *	30	500	30	
Mole Fraction Vapor		· •	1	0	1	1	0	
Mole Fraction Light L	iquid		0	1	0	0	1	
Mole Fraction Heavy	Liquid		0	0	0	0	0	
Molecular Weight		lb/lbmol	23.1842	104.706	31.4805	23.1981	18.016	
Mass Density		lb/ft^3	1.8568	42.1993	0.234668	1.8561	61.8155	
Mass Flow		lb/h	65536.4	1666.33	149.539	65685.9	12999.5	
Vapor Volumetric Flo	W	ft^3/h	35295.3	39.4872	637.238	35389.3	210.294	
Liquid Volumetric Flo	W	gpm	4400.45	4.92308	79.4478	4412.17	26.2185	
Std Vapor Volumetric	c Flow	MMSCFD	25.7451	0.144943	0.0432631	25.7884	6.57161	
Specific Gravity			0.800488	0.676607	1.08694	0.800968	0.991125	
API Gravity				70.3744			10.004	
Net Ideal Gas Heatin	ig Value	Btu/ft^3	1236.6	5314.68	1644.24	1237.28	0.0886407	
Net Liquid Heating V	alue	Btu/lb	20153.7	19103.3	19688.1	20152.6	-1057.8	
Std Liquid Volumetric	c Flow	sgpm	352.784	4.80342	0.688807	353.473	25.9903	

Remarks

F

Client Name:	EQT Production	duction Job: V1.0							
Location:	OXF 155 Wellpad								
Flowsheet.	071-100								
Connections									
		BW Tank	Bosorvoir Gas	Rosonvoir Oil	Bosorvoir	Salos Oil			
		FW Tallk Flash	Reservoir Gas	Reservoir On	Water	Sales Oli			
From Block		Water Tanks				Oil Tanks			
To Block		MIX-100	MIX-102	MIX-102	MIX-102				
		Stream C	omposition			,			
Mole Freetien		PW Tank Flash	Reservoir Gas	Reservoir Oil	Reservoir Water	Sales Oil			
Nitrogen		0.00151119	0.00641 *	0 *	0 *	7 07613E-07			
Methane		0.538001	0.760618 *	0.0917647 *	0 *	0.00150506			
CO2		0.00390243	0.001427 *	0.000677966 *	0 *	3.31283E-05			
Ethane		0.219352	0.122859 *	0.0855633 *	0 *	0.00893921			
Propane		0.10073	0.043357 *	0.0835095 *	0 *	0.0233153			
n-Butane		0.0156114	0.021003 *	0.0657926 *	0 *	0.0457526			
Isopentane		0.0153973	0.008605 *	0.0467099 *	0 *	0.0425857			
n-Pentane		0.0110815	0.009101 *	0.0466002 *	0 *	0.0533089			
n-Hexane		0.0116963	0.017919 *	0.041655 *	0 *	0.237636			
Methylcyclopentar	ne	0	0 *	0 *	0 *	0			
Cyclohexane		0.000107768	0 *	0.00217348	0 *	0.000560003			
n-Heptane		0.000701243	0 *	0.125204 *	0 *	0.0606001			
n-Octane		0.000183017	0 *	0.114477 *	0 *	0.101831			
n-Nonane		3.10512E-05	0 *	0.0515454 *	0 *	0.0747117			
n-Decane		1.57849E-05	0 *	0.150678 *	0 *	0.309383			
n-Undecane		0	0 *	0 *	0 *	0			
Water		0.0244602	0 *	0 *	1 *	0.000645821			
Triethylene Glycol		0	0 *	0 *	0 *	0			
Oxygen		0	0 *	0 *	0 *	0			
Argon		0	0 *	0 *	0 *	0			
Carbon Monoxide		0	0 *	0 *	0 *	0			
Isohexane		0.000795472	0 *	0.0466401 *	0 *	0.00931867			
3-Methylpentane		0	0 *	0 *	0 *	0			
Neohexane		0	0 *	0 *	0 *	0			
2,3-Dimethylbutan	e	0	0 *	0 *	0 *	0			
Methylcyclohexan	e	1 48635E 06	0 *	0 ^ 0	0 *	0 000154673			
Decane. 2-Methvl-		0	0 *	0.000313043	0 *	0.00010+073			
Toluene		0.000286418	0 *	0.00894317 *	0 *	0.0047248			
m-Xylene		0.000198268	0 *	0.0104885 *	0 *	0.0107461			
Ethylbenzene		1.88795E-05	0 *	0.00109671 *	0 *	0.00106929			
		PW Tank Flash	Reservoir Gas	Reservoir Oil	Reservoir Water	Sales Oil			
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h			
Nitrogen		0.000868241	492.9 *	0 *	0 *	0.000309422			
Methane		0.177015	33494.5 *	78.2468 *	0 *	0.376889			
CO2 Ethana		0.0035224	172.387 *	1.58589 *	0 *	0.0227581			
Propane		0.135275	5247 95 *	195 727 *	0 *	4.19574			
Isobutane		0.0188481	1388.18 *	80.8211 *	0 *	11.9562			
n-Butane		0.0664183	3350.88 *	203.254 *	0 *	41.5096			
Isopentane		0.022784	1704.18 *	179.126 *	0 *	47.9604			
n-Pentane		0.0163978	1802.41 *	178.705 *	0 *	60.0369			
n-Hexane Methylovolopoptor		0.0206723	4238.7 *	190.797 *	0 *	319.658			
Benzene		0.000172645	0 *	9.02386 *	0 *	0.682806			
Cyclohexane		0	0 *	0 *	0 *	0			
* User Specified Values		ProMay	4 0 16071 0	• •	Licensed to Trinity Cons	ultants Inc. and Affiliates			

? Extrapolated or Approximate Values

Copyright © 2002-2016 BRE Group, Ltd.

censed to rinity Consultants, Inc. a ſ

	Process St All S Tabulated				
Client Name: EQT Production			Job: V1.0		
Location: OXF 155 Wellpa	ad				
CXF-155					
	PW Tank Flash	Reservoir Gas	Reservoir Oil	Reservoir Water	Sales Oil
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h
n-Heptane	0.00144112	0 *	666.831 *	0 *	94.7851
n-Octane n-Nonane	0.000428769 8 16789E-05	0 *	351 386 *	0 *	181.571
n-Decane	4.60625E-05	0 *	1139.51 *	0 *	687.125
n-Undecane	0	0 *	0 *	0 *	0
Dodecane	0	0 *	0 *	0 *	0
Water Triothylopo Glycol	0.00903768	0 *	0 *	13887.5 ^	0.181611
Oxygen	0	0 *	0 *	0 *	0
Argon	0	0 *	0 *	0 *	0
Carbon Monoxide	0	0 *	0 *	0 *	0
Cyclopentane	0	0 *	0 *	0 *	0
Isohexane	0.00140593	0 *	213.63 *	0 *	12.5351
Neohexane		0 *	0 *	0 *	0
2,3-Dimethylbutane	0	0 *	0 *	0 *	0
Methylcyclohexane	0	0 *	0 *	0 *	0
Decane 2-Methyl-	3.48219E-06	0 *	1.93706	0 *	0.27579
Toluene	0.000541249	0 *	43.7978 *	0 *	6.79539
m-Xylene	0.000431707	0 *	59.1856 *	0 *	17.8083
Ethylbenzene	4.11082E-05	0 *	6.18861 *	0 *	1.77202
		Description	December 01	Deservation	0.1
	PWTank	Reservoir Gas	Reservoir Oli	Reservoir	Sales Oli
	Flash			Water	
Volumetric Flow	Flash ft^3/h	ft^3/h	gpm	Water gpm	gpm
Volumetric Flow Nitrogen	Flash ft^3/h 0.0118229	ft^3/h 147.786	gpm 0	Water gpm 0	gpm 9.71618E-07
Volumetric Flow Nitrogen Methane	Flash ft^3/h 0.0118229 4.19356	ft^3/h 147.786 14531.5	gpm 0 0.484655	Water gpm 0 0	gpm 9.71618E-07 0.00215444
Volumetric Flow Nitrogen Methane CO2 Ethane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1 69733	ft^3/h 147.786 14531.5 22.0938 1397.88	gpm 0 0.484655 0.00228169 0.573246	Water gpm 0 0 0 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906
Volumetric Flow Nitrogen Methane CO2 Ethane Propane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817	gpm 0 0.484655 0.00228169 0.573246 0.719236	Water gpm 0 0 0 0 0 0 0 0 0 0 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522	Water gpm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076	Water gpm 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.201001	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.552251	Water gpm 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane N-Pe	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0841881 0.0892725	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564701	Water gpm 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0882785 0 0	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0	Water gpm 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0882785 0 0 0.000817391	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136	Water gpm 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0 0.00151729
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0882785 0 0 0.000817391 0	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0 0 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.556651 0.556651 0.0564791 0 0.0198136 0	Water gpm 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0882785 0 0 0.000817391 0 0.00526052 0.000107177	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0 0 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.90793	Water gpm 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.545405
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane p Nenape	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0882785 0 0 0.000817391 0 0.00136477 0.0022002	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0 0 0 0 0 0 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.045622	Water gpm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.412984
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0841881 0.0882785 0 0 0.000817391 0 0.00526052 0.00136477 0.000116157	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0 0 0 0 0 0 0 0 0 0 0 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291	Water gpm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.00151729 0 0.2777757 0.515185 0.413984 1.87114
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0841881 0.0882785 0 0 0.000817391 0 0.00526052 0.00136477 0.00022993 0.000116157 0 0	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.00198136 0 1.90793 1.92084 0.945633 3.01291 0	Water gpm 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane Dodecane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0841881 0.0882785 0 0 0.000817391 0.00526052 0.00136477 0.00022993 0.000116157 0 0	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.00198136 0 1.90793 1.92084 0.945633 3.01291 0 0	Water gpm 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane Dodecane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0841881 0.0882785 0 0 0.000817391 0 0.00526052 0.00136477 0.00022993 0.000116157 0 0 0 0 0	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.00198136 0 1.90793 1.92084 0.945633 3.01291 0 0	Water gpm 0 </td <td>gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 -3.13386E-05</td>	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 -3.13386E-05
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Operation	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0841881 0.0882785 0 0 0.000817391 0 0.00136477 0.00022993 0.000116157 0 0 0	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.556651 0.556651 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 0	Water gpm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 -3.13386E-05 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0841881 0.0882785 0 0 0.000817391 0.00022993 0.000116157 0 0 0 0.000116157 0 0 0 0.190374 0 0	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.556651 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 0 0 0	Water gpm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 -3.13386E-05 0 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0841881 0.0882785 0 0 0.000817391 0 0.00022993 0.000116157 0 0 0.190374 0 0	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 0 0 0 0 0 0 0 0 0 0 0 0	Water gpm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 -3.13386E-05 0 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane Nethylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0841881 0.0882785 0 0 0.000817391 0 0.00022993 0.000116157 0 0 0.190374 0 0 0	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.556651 0.501764 0.556651 0.504791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0<	Water gpm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 -3.13386E-05 0 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane Nethylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0882785 0 0 0.000817391 0 0.00136477 0.00022993 0.000116157 0 0 0 0.190374 0 0 0 0 0.100526052 0.00136477 0.00022993 0.190374 0	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 <t< td=""><td>Water gpm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 -3.13386E-05 0 0 0 0 0 0 0 0 0.277757 0.515185 0.413984 1.87114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<>	Water gpm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 -3.13386E-05 0 0 0 0 0 0 0 0 0.277757 0.515185 0.413984 1.87114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Decane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0882785 0 0 0.000817391 0 0.00136477 0.00022993 0.000116157 0 0 0 0.190374 0 0 0 0 0.190374 0 <td< td=""><td>ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0</td><td>gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 0 0 0 0 0 0 0 0 0.045633 0.01291 0</td><td>Water gpm 0</td><td>gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 0.3.13386E-05 0 0 0 0 0 0</td></td<>	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 0 0 0 0 0 0 0 0 0.045633 0.01291 0	Water gpm 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 0.3.13386E-05 0 0 0 0 0 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0882785 0 0 0.000817391 0 0.00136477 0.00022993 0.000116157 0 0 0 0.190374 0	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 0	Water gpm 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 0 0.3.13386E-05 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0882785 0 0 0.000817391 0 0.00136477 0.00022993 0.000116157 0 0 0 0.190374 0 0 0 0 0 0 0 0.000116157 0	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 <t< td=""><td>Water gpm 0 0</td><td>gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 0.13386E-05 0 0 0 0 0 0 0 0 0 0.313386E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""></t<></td></t<>	Water gpm 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 0.13386E-05 0 0 0 0 0 0 0 0 0 0.313386E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""></t<>
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Deccane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0882785 0 0 0.00526052 0.00136477 0.00022993 0.000116157 0 0 0 0.190374 0 0 0 0 0 0.0006013 0 0 <tr< td=""><td>ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0</td><td>gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 <t< td=""><td>Water gpm 0 0</td><td>gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 0.313386E-05 0 0 0 0 0 0 0 0 0 0.313386E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <</td></t<></td></tr<>	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 <t< td=""><td>Water gpm 0 0</td><td>gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 0.313386E-05 0 0 0 0 0 0 0 0 0 0.313386E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <</td></t<>	Water gpm 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 0.313386E-05 0 0 0 0 0 0 0 0 0 0.313386E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.0882785 0 0 0.000817391 0 0.00526052 0.00136477 0.00022993 0.000116157 0 0 0 0 0 0 0.000136477 0.00022993 0.000136477 0 </td <td>ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0</td> <td>gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 <t< td=""><td>Water gpm 0 0</td><td>gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 0 0.313386E-05 0</td></t<></td>	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 <t< td=""><td>Water gpm 0 0</td><td>gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 0 0.313386E-05 0</td></t<>	Water gpm 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 0 0.313386E-05 0
Volumetric Flow Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Deccane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane	Flash ft^3/h 0.0118229 4.19356 0.0303261 1.69733 0.774722 0.12101 0.425845 0.1171 0.082785 0 0 0.000817391 0 0.00526052 0.00136477 0.00022993 0.000116157 0 0 0 0 0 0 0.190374 0 <t< td=""><td>ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0</td><td>gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 0</td><td>Water gpm 0 0</td><td>gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 0.313386E-05 0 0 0 0.0382674 0</td></t<>	ft^3/h 147.786 14531.5 22.0938 1397.88 262.817 29.8801 56.2056 18.2148 20.1156 63.0267 0	gpm 0 0.484655 0.00228169 0.573246 0.719236 0.277522 0.678076 0.561764 0.556651 0.564791 0 0.0198136 0 1.90793 1.92084 0.945633 3.01291 0 0	Water gpm 0 0	gpm 9.71618E-07 0.00215444 2.63069E-05 0.016906 0.0583002 0.0413022 0.139147 0.152763 0.18968 0.965222 0 0 0.00151729 0 0.277757 0.515185 0.413984 1.87114 0 0 0.313386E-05 0 0 0 0.0382674 0

* User Specified Values ? Extrapolated or Approximate Values

			Process St All S Tabulated I						
Client Name:	EQT Production	ì			Job: V1.0	(1.0			
Location:	OXF 155 Wellp	ad							
Flowsheet:	OXF-155								
Volumetrie Flow			PW Tank Flash	Reservoir Gas	Reservoir Oil	Reservoir Water	Sales Oil		
			nt**3/n	nt 3 /n	90107100	gpm	gpm		
Ethyldenzene			0.000141482	0	0.0137136	0	0.00403118		
			Stream	Properties	1				
Property		Units	PW Tank	Reservoir Gas	Reservoir Oil	Reservoir	Sales Oil		
Tomporatura		٥E			EE *	water	70 *		
Proceuro		Г реја	70	55 700 *	55 700 *	50 700 *	0.25		
Mole Fraction Vapor		psig	0.23	0.012070	700	700	0.23		
Mole Fraction Light I	iquid		0	0.912979	1	1	0 999756		
Mole Fraction Heavy	Liquid		0	0.0070200	0	0	0.000244204		
Molecular Weight	Elquid	lb/lbmol	27.6228	22,5988	83.3749	18.0153	106.017		
Mass Density		lb/ft^3	0.0730804	3.74831	42.1381	62.4461	43.4902		
Mass Flow		lb/h	0.566531	62032.6	4431.54	13887.5	1654.87		
Vapor Volumetric Flo	W	ft^3/h	7.75216	16549.5	105.167	222.392	38.0516		
Liquid Volumetric Flo	W	gpm	0.966503	2063.31	13.1117	27.7269	4.74409		
Std Vapor Volumetrie	c Flow	MMSCFD	0.000186793	25 *	0.484088	7.02084	0.142166		
Specific Gravity			0.95374		0.675626	1.00124	0.697304		
API Gravity					78.7567	9.91415	70.048		
Net Ideal Gas Heatin	ng Value	Btu/ft^3	1453.47	1224.81	4251.27	0	5380.28		
Net Liquid Heating V	alue	Btu/lb	19846.6	20497	19194.1	-1059.76	19099.9		
Std Liquid Volumetrie	c Flow	sgpm	0.00282105	342.841	13.6633 *	27.7622 *	4.75417		

Remarks

			Process St All S Tabulated I				
Client Name:	EQT Production				Job: V	1.0	
Location:	OXF 155 Wellpa	d					
Flowsneet:	0XF-155						
			Conn	actions			
			Separator Oil	Water Out	1	2	9
From Block			High Pressure Separator	Water Tanks	Preheat	MIX-103	Choke
To Block			MIX-103		Choke	Low Pressure Separator	High Pressure Separator
			Stream C	omposition	1		-
Molo Eraction			Separator Oil	Water Out	1	2	8
Nitrogen			0.000411803	1 90395E-08	0.0049300	2 1.31741E-05	0.00493002
Methane			0.106431	1.37459E-05	0.58636	9 0.00329544	0.586369
CO2			0.000356539	2.06815E-06	0.0011076	2 1.79509E-05	0.00110762
Ethane			0.054212	8.51601E-06	0.095766	9 0.00154285	0.0957669
Propane			0.0458182	2.66552E-06	0.034590	2 0.00126563	0.0345902
Isobutane			0.0166408	3.21861E-07	0.0070816	8 0.000456201	0.00708168
n-Butane			0.0509465	1.5831E-06	0.017133	5 0.0013987 7 0.00106599	0.0171335
n-Pentane			0.0303373	8.32542E-08	0.0075130	1 0.00100399	0.00769371
n-Hexane			0.191276	8.05192E-08	0.014402	1 0.00523215	0.0144021
Methylcyclopentar	ne		0	0		0 0	0
Benzene			0.000447648	4.01056E-07	3.23691E-0	5 1.27342E-05	3.23691E-05
Cyclohexane			0	0	0.0040040	0 0	0
n-Heptane			0.04/3/	3.39867E-09	0.0018646	4 0.00129559	0.00186464
n-Octane			0.0787537	2.00043E-10 5.58321E-11	0.0017048	<u>7 0.00215388</u> 3 0.00157439	0.00170487
n-Decane			0.238079	8.12826E-12	0.0022440	0.00651127	0.00224401
n-Undecane			0	0	010022110	0 0	0
Dodecane			0	0		0 0	0
Water	-		0.00501528	0.999969	0.21599	3 0.972308	0.215993
Triethylene Glyco			0	0		0 0	0
Oxygen			0	0		0 0	0
Carbon Monoxide			0	0		0 0	0
Cvclopentane			0	0		0 0	0
Isohexane			0.00762745	6.83635E-09	0.000694	6 0.000208667	0.0006946
3-Methylpentane			0	0		0 0	0
Neohexane			0	0		0 0	0
2,3-Dimethylbutar	ne		0	0		0 0	0
Isooctane	e		0 000120985	0 9.81769E-12	4 75143E-0	0 0 6 3 30808E-06	U 4 75143E-06
Decane. 2-Methyl	-		0.000120300	0		0 0	0
Toluene			0.00367578	8.88333E-07	0.00013318	9 0.000101807	0.000133189
m-Xylene			0.00829048	3.81031E-07	0.00015620	3 0.000227465	0.000156203
Ethylbenzene			0.000825506	5.0585E-08	1.6333E-0	5 2.26563E-05	1.6333E-05
			0		-		
Mass Flow			Separator Oil	Water Out	1 lb/b	2 b/b	8 lb/b
Nitrogen			0 23417	0.000384837	492	9 0 273915	492.9
Methane			34.6589	0.15911	33572.	7 39.2386	33572.7
CO2			0.318515	0.0656725	173.97	3 0.58636	173.973
Ethane			33.0895	0.184761	10277.	3 34.4328	10277.3
Propane			41.0118	0.0848072	5443.6	8 41.4221	5443.68
Isobutane			19.6333	0.0134979	146	9 19.6801	1469
II-BUIANE			60.1079 57.0256	0.0663902	3554.1	3 60.3388 3 57.0925	3554.13
n-Pentane			69.1249	0.00433401	1981 1	1 69.1744	1981.11
n-Hexane			334.594	0.00500654	4429.4	9 334.652	4429.49
Methylcyclopentar	ne		0	0		0 0	0
Benzene			0.709788	0.0226035	9.0238	6 0.738278	9.02386
Cyclohexane			0	0		0 0	0
n-Heptane			96.3508	0.00024572	666.83	1 96.3548	666.831

* User Specified Values ? Extrapolated or Approximate Values ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

		Process Str All St Tabulated b	reams Report reams y Total Phase			
Client Name:	EQT Production			Job: V1.0	•	
Location:	OXF 155 Wellpad					
Flowsheet:	OXF-155					
		Soparator Oil	Water Out	1	2	9
Mass Flow		Ib/h	lb/h	lb/h	Lb/h	o lb/h
n-Octane		182.609	2.38062E-05	695.042	182.61	695.042
n-Nonane		149.871	5.1667E-06	351.386	149.871	351.386
n-Decane		687.615	8.34453E-07	1139.51	687.615	1139.51
n-Undecane		0	0	0	0	0
Dodecane		0	0	12007.5	0	12007 5
Triethylene Clycol		1.83405	12998.2	13887.5	13001	13887.5
Oxvgen		0	0	0	0	0
Argon		0	0	0	0	0
Carbon Monoxide		0	0	0	0	0
Cyclopentane		0	0	0	0	0
Isohexane		13.3425	0.000425072	213.63	13.3465	213.63
3-Methylpentane		0	0	0	0	0
Neohexane	<u></u>	0	0	0	0	0
2,3-Dimethylpulane		0	0	0	0	0
Isooctane	•	0.280532	8.09168E-07	1.93706	0.280542	1.93706
Decane, 2-Methyl-		0	0	0	0	0
Toluene		6.87489	0.059057	43.7978	6.96226	43.7978
m-Xylene		17.8664	0.0291875	59.1856	17.9236	59.1856
Ethylbenzene		1.77901	0.00387488	6.18861	1.78525	6.18861
					1	
Valum atria Elaur		Separator Oil	Water Out	1	2	8
Nitrogon		gpm		149.070	gpm	140 222
Methane		0.00120129	0.000777593	146.979	0.00132005	149.000
CO2		0.000642366	0.000102721	22.6475	0.00110079	22.7256
Ethane		0.175951	0.000617577	1470.81	0.18082	1477.07
Propane		0.181305	0.000242545	297.429	0.182567	299.191
Isobutane		0.0788858	3.53007E-05	37.9736	0.0790171	38.2367
n-Butane		0.232915	0.000171451	75.0527	0.233553	75.6016
Isopentane		0.203747	3.54638E-05	27.6623	0.203896	27.829
n-Penlane n-Hexane		0.244308	1.04408E-05	29.5425	0.244495	29.0907
Methylcyclopentane	9	0	0	0	0	0
Benzene	-	0.00168734	4.21512E-05	0.109694	0.00174348	0.110067
Cyclohexane		0	0	0	0	0
n-Heptane		0.303837	5.44345E-07	12.4917	0.303846	12.5072
n-Octane		0.551011	5.10758E-08	13.6003	0.551015	13.6098
n-Nonane		0.437152	1.08227E-08	0.93279	0.437153	0.9359
n-Undecane		1.3338	0	0	1.3530	22.5550
Dodecane		0	0	0	0	0
Water		-0.00221822	26.0197	229.923	26.7728	229.941
Triathy large Oliver		-0.00221022			-	0
methylene Glycol		0.00221022	0	0	0	0
Oxygen		0	0	0	0	0
Argon		0 0 0 0	0 0 0	0 0 0	0 0 0	0
Argon Carbon Monoxide		0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0
Argon Carbon Monoxide Cyclopentane			0 0 0 0 0 9 74716E-07	0 0 0 0 0 3 50305	0 0 0 0 0 0 0 0	0 0 0 0 3 51272
Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 9.74716E-07 0	0 0 0 0 3.50305 0	0 0 0 0 0 0 0.0446916 0	0 0 0 0 3.51272 0
Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane		0.00221022 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 9.74716E-07 0 0	0 0 0 0 3.50305 0 0	0 0 0 0 0 0.0446916 0 0	0 0 0 3.51272 0 0
Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane)	0.00221022 0 0 0 0 0 0 0.0446819 0 0 0 0 0	0 0 0 0 9.74716E-07 0 0 0	0 0 0 0 3.50305 0 0 0	0 0 0 0 0 0 0.0446916 0 0 0	0 0 0 3.51272 0 0
Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane	9	-0.00221022 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 9.74716E-07 0 0 0 0 0 0	0 0 0 0 3.50305 0 0 0 0 0	0 0 0 0 0 0.0446916 0 0 0 0	0 0 0 0 3.51272 0 0 0 0
Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane	9	-0.00221022 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 9.74716E-07 0 0 0 0 0 0 0 0 0 1.71819E-09	0 0 0 0 3.50305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 3.51272 0 0 0 0 0 0 0 0 0.0355338
Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl- Talwae)	0.00221022 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 9.74716E-07 0 0 0 1.71819E-09 0 0	0 0 0 0 3.50305 0 0 0 0 0.0354919 0 0	0 0 0 0 0 0 0.0446916 0 0 0 0 0 0 0 0 0 0 0.000863869 0 0	0 0 0 0 3.51272 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl- Toluene m-Yuleno)	0.00221022 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 9.74716E-07 0 0 0 0 1.71819E-09 0 0.000109019 5.34422E.0E	0 0 0 0 3.50305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0.0446916 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 3.51272 0 0 0 0 0.0355338 0 0.606618 0.894404
Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl- Toluene m-Xylene Ethylbenzene	3	0.00221022 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 9.74716E-07 0 0 0 0 0 1.71819E-09 0 0.000109019 5.34433E-05 7.05732E-06	0 0 0 0 3.50305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0.0446916 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 3.51272 0 0 0 0 0 0.0355338 0 0.0355338 0 0.606618 0.894494 0.0926916

			Process Str All St Tabulated b	reams Report Teams by Total Phase			
Client Name:	EQT Production	Ì		Job: V1.0	·		
Location:	OXF 155 Wellpa	ad					
Flowsheet:	OXF-155						
					·		
			Stream F	Properties			
Property		Units	Separator Oil	Water Out	1	2	8
Temperature		°F	184.305	70	61.5703	184.305	61.4852
Pressure		psig	500	0.25	698	500	696
Mole Fraction Vapor			0	0	0.699519	0	0.699597
Mole Fraction Light L	iquid		1	1	0.0845817	0.0273492	0.0845039
Mole Fraction Heavy	Liquid		0	0	0.215899	0.972651	0.215899
Molecular Weight		lb/lbmol	89.1141	18.0157	22.5139	19.9609	22.5139
Mass Density		lb/ft^3	38.3295	62.2798	4.65663	56.5002	4.64263
Mass Flow		lb/h	1808.93	12998.9	80351.7	14815.3	80351.7
Vapor Volumetric Flo	W	ft^3/h	47.1942	208.717	17255.3	262.217	17307.3
Liquid Volumetric Flo	W	gpm	5.88395	26.0219	2151.31	32.692	2157.8
Std Vapor Volumetric	Flow	MMSCFD	0.184876	6.57142	32.5049	6.75982	32.5049
Specific Gravity			0.61456	0.99857		0.905902	
API Gravity			75.6806	10.0031		18.5819	
Net Ideal Gas Heatin	g Value	Btu/ft^3	4535.67	0.0473282	1005.33	124.566	1005.33
Net Liquid Heating Va	alue	Btu/lb	19158.3	-1058.71	16699.4	1419.19	16699.4
Std Liquid Volumetric	Flow	sgpm	5.45401	25.9875	384.267	31.4825	384.267

Warnings

ProMax:ProMax!Project!Flowsheets!OXF-155!PStreams!1 Warning: The temperature of 61.5703 °F is within 10 °F of hydrate formation.

ProMax:ProMax!Project!Flowsheets!OXF-155!PStreams!8

Warning: The temperature of 61.4852 °F is within 10 °F of hydrate formation.

Remarks

		F	lowsheet SRK Enי	Environment vironment			
Client Name:	EQT Production				Job: V1.0		
Location:	OXF 155 Wellpad						
Flowsheet:	OXF-155						
		1	Environm	ent Settings			
Number of Poyntir	ng Intervals	0		Phase Tolerance		0.01	
Gibbs Excess Mor	del	77 °F		Emulsion Enabled		False	
Evaluation Tempe	erature						
Freeze Out Temp	erature	10 °F		Emulsion Enabled		False	
Threshold Differer	nce						
			Comr	oonents			
Component Name		Henry's Law Component	Phase Initiator	Component Name		Henry's Law Component	Phase Initiator
Nitrogen		False	False	Dodecane		False	False
Methane		False	False	Water		False	True
CO2		False	False	Triethylene Glycol		False	True
Ethane		False	False	Oxygen		False	False
Propane		False	False	Argon		False	False
Isobutane		False	False	Carbon Monoxide		False	False
n-Butane		False	False	Cyclopentane		False	False
Isopentane		False	False	Isohexane		False	False
n-Pentane		False	False	3-Methylpentane		False	False
n-Hexane		False	False	Neohexane		False	False
Methylcyclopentane		False	False	2,3-Dimethylbutane		False	False
Benzene		False	False	Methylcyclohexane		False	False
Cyclohexane		False	False	Isooctane		False	False
n-Heptane		False	Faise	Decane, 2-Methyl-		False	False
n-Octane		Faise		I oluene		Faise	Faise
n-Nonane		Faise	Faise	M-Xyiene		Faise	Faise
n-Decane		Faise	Faise	Ethyldenzene		Faise	Faise
n-Undecane		Faise	Faise				
		Bhyg	ical Bran	arty Mathed Sate			
Liquid Molor Volume		COSTAL		SITY WELLIOU SELS		SDK	
Elquid initial volume	<u>;</u>		,				
Light Liquid Package				Uppy Liquid Package		SIN	
LIYIII LIYUU Fachaya	3	JAN		Heavy Liquiu Fackaye		JIN	
Demerke							
Remarks							

		Eı	nvironm	ents Report					
Client Name:	EQT Production				Job: V1.0				
Location:	OXF 155 Wellpa	ad							
	•								
		D	roject-Wi	de Constants					
Ates contrario Deces		F				44.0050			
Atmospheric Pressu		14.6959	psia	Ideal Gas Reference Pre	essure	14.6959	psia		
Ideal Gas Reference	e Temperature	60	°F	Ideal Gas Reference Vol	ume	379.484	it/3/IDMOI		
Liquid Reference 16	emperature	60	°F						
		Enviro	onment [S	RK Environment]					
			Environm	ent Settings					
Number of Poynting Intervals 0			Phase Tolerance		0.01				
Gibbs Excess Mo	del	77 °F		Emulsion Enabled		False			
Evaluation Tempe	erature								
Freeze Out Temp	erature	10 °F		Emulsion Enabled		False			
Threshold Differen	nce								
	Components								
Component Name		Henry's Law	Phase	Component Name		Henry's Law	Phase		
Component Name		Component	Initiator	Component Name		Component	Initiator		
Nitrogen		False	Falso	Dodecane		False	False		
Methane		False	False	Water		False	True		
CO2		False	False	Triethylene Glycol		False	True		
Ethane		False	False			False	False		
Propane		False	False	Argon		False	False		
Isobutane		False	False	Carbon Monoxide		False	False		
n-Butane		False	False			False	False		
Isopentane		False	False	Isohexane		False	False		
n-Pentane		False	False	3-Methylpentane		False	False		
n-Hexane		False	False	Neohexane		False	False		
Methylcyclopentane	1	False	False	2.3-Dimethylbutane		False	False		
Benzene		False	False	Methylcyclohexane		False	False		
Cvclohexane		False	False	Isooctane		False	False		
n-Heptane		False	False	Decane, 2-Methyl-		False	False		
n-Octane		False	False	Toluene		False	False		
n-Nonane		False	False	m-Xvlene		False	False		
n-Decane		False	False	Ethylbenzene		False	False		
n-Undecane		False	False	· · · · · ·					
		Phys	ical Brond	orty Mothod Sote					
Liquid Molor Volum	<u></u>	COSTAL				SDK			
Stability Calculation	5	SPK	,	Vapor Packago		SRK			
Light Liquid Packag	0					SRK			
LIGHT LIQUIU I ACKAG	C	JAK		Theavy Elquid Tackage		JIN			
Demonster									
Remarks									

			Calculato	or Report				
Client Name:	EQT Production	4			Job: V1.0			
		u						
			Condonacto					
Source Code								
Residual Error (for C	Residual Error (for CV1) = 1-Cond/163							
Source Moniker Value Unit	ProMax:ProMa 468.456	x!Project!Flowshee	Calculated V ts!OXF-155!PStrea	ariable [CV1] Ims!Reservoir Oil!Phases!	!Total!Proper	rties!Std Liquid Volumetric Flow		
			Measured Va	riable [Cond]				
Source Moniker Value Unit	ProMax:ProMa 163	x!Project!Flowshee	ts!OXF-155!PStrea	ams!Sales Oil!Phases!Tota	al!Properties	Std Liquid Volumetric Flow		
			Solver P	roperties		Status: Solved		
Error		-7.8604E-07		Iterations		2		
Calculated Value Lower Bound Upper Bound Step Size Is Minimizer		13.6633 False	sgpm sgpm sgpm sgpm	Max Iterations Weighting Priority Solver Active Group		20 1 0 Active		
Algorithm		Default		Skip Dependency Che	CK	False		
Remarks	_							
			Simple	Solver 2				
			Source	e Code				
Residual Error (for W	/ater_Flow_Rate)	= 1-Water/891						
		Colou	lated Variable	Water Flow Petel	1			
Source Moniker Value Unit	ProMax:ProMa 951.847	x!Project!Flowsheet	ts!OXF-155!PStrea	water_riow_rate	ses!Total!Pro	perties!Std Liquid Volumetric Flow		
			Measured Va	riable [Water]				
Source Moniker	ProMax:ProMa	x!Project!Flowsheet	ts!OXF-155!PStrea	ms!Water Out!Phases!To	tal!Propertie	s!Std Liquid Volumetric Flow		
Value Unit	891							
			Solver P	roperties		Status: Solved		
Error		5.22993E-09		Iterations		2		
Lower Bound		27.7622	sapm	Weighting		20		
Upper Bound			sgpm	Priority		0		
Step Size			sgpm	Solver Active		Active		
Is Minimizer Algorithm		False Default		Group Skip Dependency Cher	ck	False		
					-			
Remarks								

			User V	alue Sets Report			
Client Name: Location:	EQT Production OXF 155 Wellpa	d			Job: V1.0		
		-					
			т	ank Leases 52			
			llser V	alue [Shell] ength]			
* Parameter		20	ft	Upper Bound			ft
* Lower Bound		0	ft	* Enforce Bounds		False	
			llsor	Value [ShellDiam]			
* Parameter		12	ft	Upper Bound			ft
* Lower Bound		0	ft	* Enforce Bounds		False	
			llsor V	/alue [Breather\/P]			
* Parameter		0.3	psig	Upper Bound			psig
Lower Bound			psig	* Enforce Bounds		False	
			Hear Va	luo [Broothor]/ocB]			
* Parameter		-0.7	psig	Upper Bound			psig
Lower Bound			psig	* Enforce Bounds		False	
			11	alua (Dama Dadiua)			
Parameter			User Va	Upper Bound			ft
Lower Bound			ft	* Enforce Bounds		False	
* Parameter		0	User	Value [OpPress]			neia
Lower Bound		0	psig	* Enforce Bounds		False	psig
* Doromotor		E0	User Va	lue [AvgPercentLiq]			0/
Lower Bound		50	%	* Enforce Bounds		False	%
* Dana sa stan			User Va	lue [MaxPercentLiq]			0/
Lower Bound		90	%	* Enforce Bounds		False	%
			User	Value [AnnNetTP]			
* Parameter * Lower Bound		168.791	bbl/day	Upper Bound * Enforce Bounds		Falso	bbl/day
Lower Dound		<u> </u>	bbi/day	Enforce Bounds		1 4150	
			Use	er Value [OREff]			
* Parameter		0	%	Upper Bound		Falsa	%
Lower Bound			/0	Efforce Boulds		T alse	
			User Va	alue [AtmPressure]			
* Parameter		14.2535	psia	Upper Bound		Falsa	psia
Lower Bound			psia	Enforce Bounds		Faise	
		L	Jser Val	ue [MaxLiqSurfaceT]			
* Parameter		61.4758	°F	Upper Bound			°F
Lower Bound			°F	* Enforce Bounds		False	
			User V	alue [Totall osses]			
* Parameter		6.62229	ton/yr	Upper Bound			ton/yr
Lower Bound			ton/yr	* Enforce Bounds		False	
				ue [Working] occord			
* Parameter		2.08637	ton/yr	Upper Bound			ton/yr
Lower Bound			ton/yr	* Enforce Bounds		False	

* User Specified Values ? Extrapolated or Approximate Values

ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

		User Valu	e Sets Report		
			•		
Client Name:	EQT Production			Job: V1.0	
Location:	OXF 155 Wellpa	<u>a</u>			
	-		Ļ		
		User Value [StandingLosses]		
* Parameter		0.121058 ton/yr	Upper Bound * Enforce Bounds	ton/yr False	
Lower Bound			Enloree Dounds	1 4150	
		User Value	RimSealLosses]		
* Parameter		0 ton/yr	Upper Bound	ton/yr	
Lower Bound		ton/yr	* Enforce Bounds	False	
			A/*/L. I		
* Deremeter				tophyr	
Lower Bound		ton/vr	* Enforce Bounds	False	
				. citor	
		User Value	[LoadingLosses]		
* Parameter		26.9575 ton/yr	Upper Bound	ton/yr	
Lower Bound		ton/yr	* Enforce Bounds	False	
* Deve meter		User Value [D	eckFittingLosses]	terelur	
Lower Bound		U ton/yr	* Enforce Bounds	ton/yr False	
Lower Board			Enforce Bounde	1 4100	
		User Value [[DeckSeamLosses1		
* Parameter		0 ton/yr	Upper Bound	ton/yr	
Lower Bound		ton/yr	* Enforce Bounds	False	
* Deve meter			FlashingLosses]	terelur	
Parameter Lower Bound		25.84_ton/yr	* Enforce Bounds	Ealse	
		User Value [GasMoleWeight]		
* Parameter		0.056166 kg/mol	Upper Bound	kg/mol	
Lower Bound		kg/mol	* Enforce Bounds	False	
Remarks This User Value Set	t was programmat	cally generated. GUID={5524AB8	3C-40B1-4354-9DD7-EED6577	70BF87}	
		Tank I	Losses.331		
		User Value	e [ShellLength]		
* Parameter		20_ft	Upper Bound	ft	
" Lower Bound		0 π	* Enforce Bounds	False	
		Llear Valu	le [ShellDiam]		
* Parameter		12 ft		ft	
* Lower Bound		0 ft	* Enforce Bounds	False	
		User Valu	e [BreatherVP]		
* Parameter		0.3 psig	Upper Bound	psig	
Lower Bound		psig	* Enforce Bounds	False	
* Doromotor		User Value			
Lower Bound		<u>-0.7 psig</u> psig	* Enforce Bounds	psig False	
Lonor Bound		poig	Enioree Boundo	1 000	

		User Value	Sets Report		
Client Name:	EQT Production			Job: V1.0	
Location:	OXF 155 Wellpa	ld			
	1				
		User Value	[DomeRadius]		
Parameter		ft	Upper Bound		ft
Lower Bound		ft	* Enforce Bounds		False
		User Valu	e [OpPress]		
* Parameter		0 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds		Faise
		Liser Value [/	VaPercentLial		
* Parameter			Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
		User Value [N	MaxPercentLiq]		
* Parameter		90 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
		Lleen Melve			
* Paramotor			Lippor Bound		bbl/day
* Lower Bound		0 bbl/day	* Enforce Bounds		False
Lonor Dound		0 <i>56</i> , 64	Emoroo Boundo		
		User Val	ue [OREff]		
* Parameter		0 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
		User Value	AtmPressure]		
* Parameter		14.2535 psia	Upper Bound		psia
Lower Bound		psia	* Enforce Bounds		Faise
		Lisor Value IM	lavl igSurfacoTl		
* Parameter		75 9425 °F			°F
Lower Bound		°F	* Enforce Bounds		False
		User Value	[TotalLosses]		
* Parameter		2.1876 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
* Doromotor					toolur
l ower Bound		0.729201 ton/yr	* Enforce Bounds		ton/yr False
Lower Dound		tonyy	Enlorce Bounds		1 4/30
		User Value (S	tandingl osses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value [F	RimSealLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	Enforce Bounds		False
* Doromotor					toolur
Lower Bound		ton/vr	* Enforce Bounds		False
		Liser Value []	oadingl osses]		
* Parameter		5.22187 ton/vr	Upper Bound		ton/vr
Lower Bound		ton/yr	* Enforce Bounds		False

Client Name:	EQT Production	User Valu	ue Sets Report	Job: V1.0		
Location:	OXF 155 Wellpa	ıd				
			DookEittingLoccocl			
* Paramotor						ton/ur
Lower Bound			* Enforce Bounds		Falsa	1011/ yi
Lower Dound		1017 91	Enloree Bounds		1 4150	
		User Value [DeckSeamLosses]			
* Parameter		0 ton/yr	Upper Bound		1	ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False	•
		User Value	[FlashingLosses]			
* Parameter		1.15878 ton/yr	Upper Bound			ton/yr
Lower Bound		ton/yr	 * Enforce Bounds 		False	
		User Value	[GasMoleWeight]			
* Parameter		0.0466606 kg/mol	Upper Bound			kg/mol
Lower Bound		kg/mol	 * Enforce Bounds 		False	
Remarks This User Value Set	was programmat	ically generated. GUID={2341707	19-6BCF-4B6A-8C2C-C51E3F	F9510A8}		

Report Date: Aug 3, 2016 6:24a

Gas Analytical

Client:	EQT PRODUCTION	Date Sampled:	Jul 25, 2016
Client Code:	0555	Analysis Date:	Aug 1, 2016 12:00a
Site:	OXF 134 PAD 512432	Collected By:	D HITT
Field No:	520	Date Effective:	Aug 1, 2016 12:00a
Meter:	512432	Sample Pressure (PSI):	40.0
Source Laboratory	Stonewood, WV	Sample Temp (°F):	75
Lab File No:	516559116	Field H2O (lb/MMSCFD):	<mdl< td=""></mdl<>
Cylinder No:	562	Field H2S (PPM):	<mdl< td=""></mdl<>
Sample Type:	Spot		
Reviewed By:	ashters Free		

Analysis Status: good

Component	Mol %	Gal/MSCF		
Methane	76.0618	0.0000		
Ethane	12.2859	3.2994		
Propane	4.3357	1.1994		
I-Butane	0.8701	0.2859		
N-Butane	2.1003	0.6649		
I-Pentane	0.8605	0.3160		
N-Pentane	0.9101	0.3313		
Nitrogen	0.6410	0.0000		
Oxygen	<mdl< td=""><td></td></mdl<>			
Carbon Dioxide	0.1427	0.0000		
Hexanes+	1.7919	0.7808		
TOTAL	100.0000	6.8777		

Analytical Results at Base Conditions (Real)							
BTU/SCF (Dry):	1,360.3376 BTU/ft ³						
BTU/SCF (Saturated):	1,337.1866 BTU/ft ³						
PSIA:	14.696 PSI						
Temperature (°F):	60.0 °F						
Z Factor (Dry):	0.99562						
Z Factor (Saturated):	0.99525						

Analytical Results at Contract Conditions (Real)							
BTU/SCF (Dry):	1,363.4987 BTU/ft ³						
BTU/SCF (Saturated):	1,340.3488 BTU/ft ³						
PSIA:	14.730 PSI						
Temperature (°F):	60.0 °F						
Z Factor (Dry):	0.99572						
Z Factor (Saturated):	0.99525						

Calculated Specific Gravities						
Ideal Gravity:	0.7846	Real Gravity:	0.7877			
Molecular Wt:	22.7245 ll	o/lbmol				

Gross Heating Values are Based on: GPA 2145-09, 2172 Compressibility is Calculated using AGA-8.

Source	Date	Notes
AGAS	Aug 1, 2016	BOB GUM

Company:

Sample of:

Conditions:

Sampled by:

Sample date:

Remarks:

Remarks:

Well:

Field:

-

Certificate of Analysis :

Gas Analytical Services

Oxford 136 Pad

EQT Production

03/10/2013 @ 11:00

Cylinder No.: GAS

333 @ N.G.

GR - GAS

Liquid

2013040067-002A

For: Gas Analytical Services Chuck Honaker PO Box 1028

Bridgeport, WV, 26330

Report Date:

4/26/2013

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	9.204	16.043	1.609	0.3000	3.655
Carbon Dioxide	0.068	44.010	0.033	0.8180	0.027
Ethane	8.582	30.070	2.813	0.3562	5.374
Propane	8.376	44.097	4.026	0.5070	5.403
lso-butane	2.624	58.123	1.662	0.5629	2.011
N-butane	6.599	58.123	4.180	0.5840	4.874
lso-pentane	4.385	72.150	3.448	0.6244	3.759
N-pentane	4.674	72.150	3.676	0.6311	3.966
i-Hexanes	4.678	86.177	4.335	0.6795	4.446
n-Hexane	4.178	85.604	3.928	0.6640	4.007
2,2,4 trimethylpentane	0.032	114.231	0.040	0.6967	0.039
Benzene	0.218	78.114	0.149	0.8846	0.143
Heptanes	12.558	97.552	13.429	0.7046	12.978
Toluene	0.897	92.141	0.723	0.8719	0.707
Octanes	11.482	107.133	13.731	0.7528	12.367
E-benzene	0.110	106.167	0.058	0.8718	0.100
M-,O-,P-xylene	1.052	106.167	1.216	0.8731	0.957
Nonanes	5.170	121.642	7.121	0.7646	6.419
Decanes Plus	15.113	205.338	33.823	0.8007	28.768
-	100.000	-	100.000		100.000
Calculated Values		Tota	I Sample		Deca

Calculated values	l otal Sample	Decanes Plus
Specific Gravity at 60 °F	0.6809	0.8007
Api Gravity at 60 °F	76.303	45.218
Molecular Weight	91.750	205.338
Pounds per Gallon (in Vacuum)	5.677	6.676
Pounds per Gallon (in Air)	5.671	6.668
Cu. Ft. Vapor per Gallon @ 14.73 psia	23.536	12.309

Southern Petroleum Laboratories, Inc.

ATTACHMENT U

Emission Summary Sheet

EQT Production, LLC | OXF-155 Pad Trinity Consultants

ATTACHMENT U – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET																
List all sources of emissions in this table. Use extra pages if necessary.																
	N	O _x	С	0	VC)C	SO ₂		PN	A ₁₀	PM _{2.5}		CH ₄		GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001 (S001-S006, S017)	1.15	5.03	0.96	4.22	1.07	1.12	0.01	0.03	0.09	0.38	0.09	0.38	0.14	0.63	1,374. 69	6,021.1 4
C002 (S001-S006, S017)	1.89	8.28	1.59	6.95	1.07	1.12	0.01	0.05	0.14	0.63	0.14	0.63	0.14	0.63	2,259. 68	9,897.4 2
E007 (S007)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.36	789.99
E008 (S008)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.36	789.99
E009 (S009)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.36	789.99
E010 (S010)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.36	789.99
E011 (S011)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.36	789.99
E012 (S012)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E- 04	3.9E-03	0.01	0.05	0.01	0.05	0.00	0.01	180.36	789.99
E013 (S013)	0.22	0.96	0.18	0.81	0.01	0.05	1.3E- 03	5.8E-03	0.02	0.07	0.02	0.07	0.01	0.02	270.27	1,183.7 9
E014 (S014)					0.19	0.83							0.02	0.09	0.50	2.18
E015 (S015)	2.14	9.39	2.23	9.78	0.17	0.74	0.00	0.01	0.06	0.28	0.06	0.28	0.01	0.03	391.72	1,715.7 5
E016 (S016)	0.24	1.06	0.49	2.12	0.18	0.81	0.00	0.00	0.01	0.06	0.01	0.06	0.00	0.01	83.85	367.28
E017 (S017)					37.13	9.65										
Fugitives						36.30								44.1 2		1,103.1 1
Haul Roads										1.76		0.18				
Facility Total	6.52	28.57	6.19	27.12	39.88	50.84	0.03	0.12	0.39	3.48	0.39	1.90	0.34	45.6 1	5,462. 89	25,030. 58
Facility Total (excl. fugitives)	6.52	28.57	6.19	27.12	39.88	14.54	0.03	0.12	0.39	1.72	0.39	1.72	0.34	1.50	5,462. 89	23,927. 47

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

						-								
Emission Point ID#	Formal	rmaldehyde Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs		
Emission Form ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001 (S001- S006, S017)			5.9E-04	5.2E-04	7.7E-04	9.3E-04	4.3E-05	6.0E-05	3.7E-04	5.4E-04	1.1E-01	1.3E-01	1.1E-01	1.3E-01
C002 (S001- S006, S017)			5.9E-04	5.2E-04	7.7E-04	9.3E-04	4.3E-05	6.0E-05	3.7E-04	5.4E-04	1.1E-01	1.3E-01	1.1E-01	1.3E-01
E007 (S007)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	0.00	0.00
E008 (S008)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	0.00	0.00
E009 (S009)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	0.00	0.00
E010 (S010)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	0.00	0.00
E011 (S011)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	0.00	0.00
E012 (S012)	1.1E- 04	4.8E- 04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	0.00	0.00
E013 (S013)	1.6E- 04	7.2E- 04	4.6E-06	2.0E-05	7.5E-06	3.3E-05					4.0E-03	0.02	0.00	0.00
E014 (S014)			<0.01	1.0E-03	<0.01	1.0E-03	<0.01	<0.01	<0.01	<0.01	4.0E-03	<0.01	4.0E-03	0.02
E015 (S015)	0.07	0.31	5.3E-03	2.3E-02	1.9E-03	8.2E-03	8.3E-05	3.6E-04	6.5E-04	2.9E-03			0.11	0.49
E016 (S016)	0.01	0.06	1.1E-03	5.0E-03	4.0E-04	1.8E-03	1.8E-05	7.8E-05	1.4E-04	6.1E-04			0.02	0.10
E017 (S017)			0.02	0.01	0.03	0.01	1.3E-03	3.4E-04	1.1E-02	3.0E-03	3.61	0.94	0.06	0.02
Fugitives				<0.01		<0.01		<0.01		< 0.01		4.70		4.88
Haul Roads														
Facility Total	0.09	0.38	0.03	0.04	0.03	0.02	1.5E-03	9.0E-04	0.01	0.01	3.85	5.98	4.05	6.79
Facility Total (excl. fugitives)	0.09	0.38	2.9E-02	0.04	2.9E-02	2.0E-02	1.5E-03	9.0E-04	1.3E-02	7.5E-03	3.85	1.28	4.05	1.91

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V

Class I Legal Advertisement

EQT Production, LLC | OXF-155 Pad Trinity Consultants

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit Registration for a new natural gas production facility, OXF-155, located 4 miles north of Summers in Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.20952N, -80.80576 W.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions in tpy (tons per year)
NOx	28.57
СО	27.12
VOC	14.54
SO ₂	0.12
РМ	1.72
Formaldehyde	0.38
Benzene	0.04
Toluene	0.02
Ethylbenzene	9.0E-04
Xylene	0.01
n-Hexane	5.98
Total HAPs	6.79
Carbon Dioxide Equivalents (CO ₂ e)	25,030.58

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the <u>(Day)</u> day of <u>(Month)</u>, 2017.

By: EQT Production Company Mike Gavin, Vice President 625 Liberty Ave Suite 1700 Pittsburgh, PA 15222

ATTACHMENT W

General Permit Registration Application Fee