625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699 FAX: (412) 395-2156

R. Alex Bosiljevac Environmental Coordinator

August 17, 2016

CERTIFIED MAIL # 7015 1660 0000 9339 6437

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

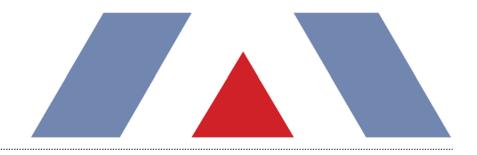
RE: G70A Permit Application

EQT Production Company

Permit No: G70-A188

GLO-76 Natural Gas Production Site

Dear Mr. Durham,


Enclosed are two electronic copies and one original hard copy of a proposed G70-C General Air Permit for the GLO-76 Natural Gas Production Well Site. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

R. Alex Bosiljevac EQT Corporation

Enclosures

PROJECT REPORT

EQT Production GLO-76 Pad

G70-C Permit Application

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

August 2016

Environmental solutions delivered uncommonly well

TABLE OF CONTENTS

1. INTRODUCTION	4
1.1. FACILITY AND PROJECT DESCRIPTION	4
1.2. SOURCE STATUS	5
1.3. G70-C APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	8
3.1. Prevention of Significant Deterioration (PSD) Source Classification	8
3.2. Title V Operating Permit Program	8
3.3. New Source Performance Standards	8
3.3.1. NSPS Subparts D, Da, Db, and Dc 3.3.2. NSPS Subparts K, Ka, and Kb	9
3.3.3. NSPS Subpart 0000—Crude Oil and Natural Gas Production, Transmission, and Distribution3.3.4. NSPS Subpart 0000a—Crude Oil and Natural Gas Facilities3.3.5. Non-Applicability of All Other NSPS	9 9 10
3.4. National Emission Standards for Hazardous Air Pollutants (NESHAP)	10
3.4.1. 40 CFR 63 Subpart HH – Oil and Natural Gas Production Facilities	10
3.4.2. 40 CFR 63 Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers	10
3.5. West Virginia SIP Regulations	10
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers	11
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributo an Objectionable Odor	utes 11
3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse	11
3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources	11
3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparati Storage and Other Sources of Fugitive Particulate Matter	ion, 11
3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	12
3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	12
3.5.8. Non-Applicability of Other SIP Rules	12
4. G70-C APPLICATION FORMS	13

ATTACHMENT A: SINGLE SOURCE DETERMINATION

ATTACHMENT B: SITING CRITERIA WAIVER (NOT APPLICABLE)

ATTACHMENT C: BUSINESS CERTIFICATE
ATTACHMENT D: PROCESS FLOW DIAGRAM
ATTACHMENT E: PROCESS DESCRIPTION

ATTACHMENT F: PLOT PLAN

ATTACHMENT G: AREA MAP

ATTACHMENT H: APPLICABILITY FORM
ATTACHMENT I: EMISSION UNITS TABLE

ATTACHMENT J: FUGITIVE EMISSIONS SUMMARY SHEET

ATTACHMENT K: GAS WELL DATA SHEET

ATTACHMENT L: STORAGE VESSEL DATA SHEET

ATTACHMENT M: HEATERS DATA SHEET

ATTACHMENT N: ENGINES DATA SHEET (NOT APPLICABLE)

ATTACHMENT O: TRUCK LOADING DATA SHEET

ATTACHMENT P: GLYCOL DEHYDRATOR DATA SHEET

ATTACHMENT Q: PNEUMATIC CONTROLLER DATA SHEET (NOT APPLICABLE)

ATTACHMENT R: AIR POLLUTION CONTROL DEVICE DATA SHEET

ATTACHMENT S: EMISSION CALCULATIONS
ATTACHMENT T: EMISSION SUMMARY SHEET

ATTACHMENT U: CLASS I LEGAL ADVERTISEMENT

ATTACHMENT V: GENERAL PERMIT REGISTRATION APPLICATION FEE

EQT Production Company (EQT) is submitting this Class II General Permit (G70-C) application to the West Virginia Department of Environmental Protection (WVDEP) for the GLO-76 pad, an existing production well pad, located in Marion County, West Virginia. The GLO-76 is currently operating under G70-A permit number G70-A188. This general permit application is to convert the permit to a G70-C and for the replacement of combustor C001, which has a maximum design capacity of 93 scf/min, for a combustor that has a maximum design capacity of 3.33 MMBtu/hr.

1.1. FACILITY AND PROJECT DESCRIPTION

The GLO-76 pad is a natural gas production facility consists of nine (9) natural gas wells. Natural gas and produced water are extracted from deposits underneath the surface. Natural gas is transported from the well to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels. The facility does not produce condensate.

This application seeks to continue authorization for the following existing equipment at the GLO-76 pad under the G70-C permit:

- > Ten (10) 400 barrel (bbl) storage tanks for produced fluids,
- > One (1) 140 bbl storage tank for sand and produced fluids from the sand separator;
- > Nine (9) line heaters, each rated at 1.54 MMBtu/hr (heat input),
- > Three (3) thermoelectric generators (TEG), each rated at 0.013 MMBtu/hr,
- > One (1) 65 million standard cubic feet per day (MMscfd) triethylene glycol dehydration unit with associate reboiler (rated at 0.75 MMBtu/hr heat input), and enclosed combustor (rated 8.33 MMBtu/hr). The dehy is equipped with a BTEX condenser; however, no emission reduction credit is being claimed for the condenser,
- > One (1) 100 bbl dehy drip fluids tank,
- > Produced fluid truck loading, and
- > Associated piping and components.

This application seeks to authorize the following new equipment at the GLO-76 pad:

> Once (1) enclosed combustor rated at 3.33 MMBtu/hr for control of the dehydration unit. This unit will replace the existing combustor

EQT would also like to note that, although included in the original permit application, the dehy drip fluid tank (S-026) was not included in the current G70-A permit. EQT is requesting that this tank be listed in the issued G70-C permit.

A process flow diagram is included as Attachment D. A comparison of the potential emissions of the proposed and existing equipment at the wellpad in comparison with G70-C emission limits is provided in Table 1. Facility emissions are well below the permit limits. Note that in accordance with condition 1.1.1. of the G70-C permit, fugitive emissions are not considered in determining eligibility of the permit.

Table 1 - Comparison of Wellpad Potential Emissions to G70-C Permit Emission Limits

Pollutant	Wellpad Potential Annual Emissions (tpy)	G70-C Maximum Annual Emission Limits (tpy)		
Nitrogen Oxides	7.15	50		
Carbon Monoxide	6.01	80		
Volatile Organic Compounds	16.09	80		
Particulate Matter - 10/2.5	1.07	20		
Sulfur Dioxide	0.04	20		
Individual HAP (n-hexane)1	0.21	8		
Total HAP ¹	0.49	20		

1. Includes fugitive emissions

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the proposed GLO-76 Pad for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled.

There are no Marcellus facilities within a one-mile radius of the GLO-76 Pad. The nearest wellpad, BIG-182, is located approximately 1.7 miles west of GLO-76. Therefore, the GLO-76 pad should be considered a separate stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V permitting.

1.3. G70-C APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) G70-C permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: Regulatory Discussion;
- > Section 4: G70-C Application Forms;
- > Attachment A: Single Source Determination;
- > Attachment B: Siting Criteria Waiver (Not Applicable);
- > Attachment C: Business Certificate;
- > Attachment D: Process Flow Diagram;
- > Attachment E: Process Description;
- > Attachment F: Plot Plan:
- > Attachment G: Area Map;
- > Attachment H: Applicability Form;
- > Attachment I: Emission Units Table;
- > Attachment J: Fugitive Emissions Summary Sheet;
- > Attachment K: Gas Well Data Sheet;
- Attachment L: Storage Vessel Data Sheet;
- > Attachment M: Heaters Data Sheet;
- > Attachment N: Engines Data Sheet (Not Applicable);
- > Attachment 0: Truck Loading Data Sheet;
- > Attachment P: Glycol Dehydrator Data Sheet;
- > Attachment Q: Pneumatic Controller Data Sheet (Not Applicable);
- > Attachment R: Air Pollution Control Device Data Sheet;
- Attachment S: Emission Calculations;
- > Attachment T: Emission Summary Sheet;
- > Attachment U: Class I Legal Advertisement; and
- > Attachment V: General Permit Registration Application Fee.

2. SAMPLE EMISSION SOURCE CALCULATIONS

The characteristics of air emissions from the existing natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment S of this application.

Emissions from this project will result from natural gas combustion in the line heaters, TEGs, and reboiler, dehydration enclosed combustor. In addition, emissions will also result from the storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. Fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types, as well as the existing source types, are calculated are summarized below.

- > **Reboiler, Line Heaters and TEGs:** Potential emissions of criteria pollutants and hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for natural gas external combustion.¹ These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.² Please note that potential emissions of NOx, CO, PM, SO₂ and GHGs from the combustor are also calculated according to the aforementioned methodologies.
- > **Fugitive Equipment Leaks:** Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with *Table 2-4: Oil & Gas Production Operations Average Emission Factors, Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995. Emission factors used are based on average measured TOC from component types indicated in gas service at O&G Production Operations. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.³ Pneumatic devices at the wellpad are intermittent bleed and are assumed to be in operation 1/3 of the year.*
- > **Storage Tanks:** Working, breathing and flashing emissions of VOC and HAPs from the produced fluid stored in the tanks at the facility are calculated using API E&P TANK v2.0. The site is not expected to produce condensate, so the estimate condensate throughput is zero. The site's maximum expected produced water throughput is 9,831,213 gallons per year (which is approximately 8 times the maximum monthly throughput at the BIG-192 wellpad, annualized). The E&P Tank throughput takes into account that produced water is conservatively assumed to contain 1% condensate in accordance with guidance from the Texas Commission on Environmental Quality on estimating emissions from produced water.^{4,5} This results in a total of 98,312 gallons/year of condensate for all tanks, and approximately 1 bbl/day per tank. This throughput is used in E&P Tank calculations. Below is an example calculation for the total throughput used as an input to E&P Tank on a bbl/day per tank basis.

16**********************************

$$Throughput \ per \ Tank \ \left(\frac{bbl}{day}\right) \\ = \frac{\left(\textit{Condensate Throughput } \left(\frac{bbl}{month}\right) + \left(\textit{Produced Water Throughput } \left(\frac{bbl}{month}\right) * 1\% \ (\textit{Condensate in Produced Water}\right)\right) * \frac{12 \left(\frac{months}{year}\right)}{365 \left(\frac{days}{year}\right)}\right)}{Number \ of \ tanks \ at \ wellpad}$$

- > **Tank Truck Loading:** Emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using U.S. EPA's AP-42 Chapter 5 Section 2 factors.⁶
- > **Haul Roads:** Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁷
- > **Triethylene Glycol Dehydration Unit:** Potential emissions of HAPs, VOC, and methane from the dehy are calculated using GRI-GLYCalc. Controlled emissions assume a total control efficiency of 98% (100% capture, 98% destruction) from the combustor.

EQT Production, LLC | GLO-76 Pad Trinity Consultants This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-C permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides non-applicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpad. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). PSD regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad is not a major source with respect to the PSD program since its potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this permitting activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP and 100 tpy of all other regulated pollutants. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards (NSPS), located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable

provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpad.

3.3.1. NSPS Subparts D, Da, Db, and Dc

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m 3 (\sim 19,813 gallons). All of the tanks at the wellpad will have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpad.

3.3.3. NSPS Subpart OOOO—Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart 0000, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 and on or before September 18, 2015. The GLO-76 wellpad does not include any equipment which falls into this date range; therefore, this subpart is not applicable to this permitting activity.

3.3.4. NSPS Subpart OOOOa—Crude Oil and Natural Gas Facilities

Subpart 0000a, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, applies to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

- > Hydraulically fractured wells;
- > Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- > Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- > Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production and processing segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

There are ten (10) produced fluid storage vessels, one (1) sand separator storage vessel, and one (1) dehydrator drip fluid storage vessel at the wellpad. The storage vessels at the facility will each have uncontrolled potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the G70-C permit. As such, per 60.5365a(e), the tanks are not storage vessel affected facilities under the rule.

As the collection of fugitive emissions components at the well site commenced construction after September 18, 2015, the well site will be subject to the leak detection and repair (LDAR) requirements of the rule. This includes developing an emissions monitoring plan, conducting leak surveys (on a semi-annual basis) and associated repair activities, and maintaining records and submitting annual reports in accordance with the requirements of the rule.

The pneumatic controllers will potentially subject to NSPS 0000a. Per 60.5365a(d)(1), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000a.

3.3.5. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000) and associated equipment (Subparts D-Dc and K-Kb), the applicability of a particular NSPS to the wellpad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP)

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpad:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart [J[J]] Industrial, Commercial, and Institutional Boilers

The applicability of these NESHAP Subparts is discussed in the following sections.

3.4.1. 40 CFR 63 Subpart HH - Oil and Natural Gas Production Facilities

Glycol dehydration units are potentially subject to Subpart HH, NESHAP from Natural Gas Production Facilities. This standard applies to such units at natural gas production facilities that are major or area sources of HAP emissions. The GLO-76 wellpad will be an area source of HAP emissions. Even though the dehydration unit at the wellpad is considered an affected area source, it is exempt from the requirements of \S 63.764(d)(2) since the actual average benzene emissions from the glycol dehydration unit process vent to the atmosphere is less than 0.90 Mg (1.0 TPY), as determined by the procedures specified in \S 63.772(b)(2). However, the facility must maintain records as required in \S 63.774(d)(1).

3.4.2. 40 CFR 63 Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. All proposed units are natural gas fired; therefore the requirements of this subpart do not apply.

3.5. WEST VIRGINIA SIP REGULATIONS

The wellpad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are

generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The reboiler, TEGs, and line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent. Per 45 CSR 2-4, PM emissions from the units will not exceed a level of 0.09 multiplied by the heat design input in MMBtu/hr of the unit.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpad is generally subject to this requirement. However, due to the nature of the process at the wellpad, production of objectionable odor from the wellpad during normal operation is unlikely.

3.5.3. 45 CSR 6: Control of Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustor is an incinerator and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1

3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpad, EQT will be complying with 45 CSR 16.

3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should such emissions occur.

3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank proposed for the wellpad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at this wellpad.

3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the wellpad, EQT will be complying with 45 CSR 34. Note that there are no applicable requirements under 40 CFR Parts 61 and 63 for the wellpad.

3.5.8. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpad.

4. G70-C APPLICATION FORMS

The WVDEP permit application forms contained in this application include all applicable G70-C application forms including the required attachments.

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-C GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

MATURAL GAS I	RODUCTION TACIBITI	ES ECCRIED AT THE WE	ALL GILL				
□CONSTRUCTION □MODIFICATION □RELOCATION	□ MODIFICATION						
	SECTION 1. GENERAL	INFORMATION					
Name of Applicant (as registered with	the WV Secretary of State	's Office): EQT Production	Company				
Federal Employer ID No. (FEIN): 25-0	724685						
Applicant's Mailing Address: 625 Libe	erty Avenue, Suite 1700						
City: Pittsburgh	State: PA ZIP Code: 15222						
Facility Name: GLO-76 Wellpad							
Operating Site Physical Address: If none available, list road, city or town	n and zip of facility. Manr	nington, Marion County					
City: Mannington	Zip Code:		County: Marion				
Latitude & Longitude Coordinates (NA Latitude: 39.56398 N Longitude: -80.48958 W	D83, Decimal Degrees to	5 digits):					
SIC Code: 1311		AQ Facility ID No. (For exis	ting facilities)				
NAICS Code: 211111	CERTIFICATION OF	INFORMATION					
This G70-C General Permit Registr	CERTIFICATION OF						
Official is a President, Vice President Directors, or Owner, depending on bus authority to bind the Corporatio: Proprietorship. Required records o compliance certifications and all r Representative. If a business wishes to off and the appropriate names and unsigned G70-C Registration Applica utilized, the application w	iness structure. A business in, Partnership, Limited List daily throughput, hours of equired notifications must certify an Authorized Registratures entered. Any a stion will be returned to	s may certify an Authorized I ability Company, Association of operation and maintenance be signed by a Responsible presentative, the official agre dministratively incomplete	Representative who shall have a, Joint Venture or Sole a, general correspondence, Official or an Authorized ement below shall be checked or improperly signed or a, if the G70-C forms are not				
I hereby certify that Kenneth Kirk of the business (e.g., Corporation, Part Proprietorship) and may obligate and le Responsible Official shall notify the D I hereby certify that all information co documents appended hereto is, to the b have been made to provide the most co	nership, Limited Liability egally bind the business. I irector of the Division of ntained in this G70-C Gen est of my knowledge, true	Company, Association Joint f the business changes its Au Air Quality immediately. eral Permit Registration App, accurate and complete, and	thorized Representative, a				
Responsible Official Signature: Name and Title: Kenneth Kirk, Executive Email: KKirk@eqt.com	ive Vice President Date:	4125539 115/16	5700 Fax:				
If applicable: Authorized Representative Signature:_ Name and Title: Email:	Date:	Phone:	Fax				
If applicable: Environmental Contact Name and Title: Alex Bosiljevac, Envi Email: ABosiljevac@eqt.com	ronmental Coordinator Date:	Phone: 412-395-3699	Fax: 412-395-7027				

General permit application for an existing natural gas production well pad. This application seeks to replace current combustor with a smaller one.					
Directions to the facility: Head North on I-79 to exit 136. At the bottom of the ramp make a left onto Fairmont Gateway Connector, then go 1.2 miles going straight through two traffic circles. Continue straight onto Jefferson St. crossing the bridge, for 0.4 miles. Turn left onto Jackson St. and continue 0.1 miles to U.S. Rt. 250 North. Turn right and go 13.4 miles to Market Street, then turn left. Travel 0.1 miles, continue on Buffalo St. Continue 5.9 miles, then turn left onto Brink Road (Co Rt. 1). Travel 4.5 miles to access road on right.					
ATTACHMENTS AND SU	PPORTING DOCUMENTS				
I have enclosed the following required documen	ts:				
Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).				
□ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (☑ I wish to pay by credit card. Contact for payment (incl. na □\$500 (Construction, Modification, and Relocation) □\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or O □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or F	ame and email address): R. Alex Bosiljevac, abosiljevac@eqt.com ⊠\$300 (Class II Administrative Update)				
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESI requirements by complying with NSPS, Subparts IIII and/or J NSPS and NESHAP fees apply to new construction or if the see	JJJ.				
☐ Responsible Official or Authorized Representative Signatu	re (if applicable)				
⊠ Single Source Determination Form (must be completed in	its entirety) - Attachment A				
☐ Siting Criteria Waiver (if applicable) – Attachment B	☐ Current Business Certificate – Attachment C				
⊠ Process Flow Diagram - Attachment D	□ Process Description – Attachment E				
☑ Plot Plan – Attachment F	☐ Area Map – Attachment G				
☐ G70-C Section Applicability Form – Attachment H	☐ Emission Units/ERD Table – Attachment I				
☐ Fugitive Emissions Summary Sheet – Attachment J					
☐ Gas Well Affected Facility Data Sheet (if applicable) – At	tachment K				
 ⊠ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L 					
 ⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M 					
☐ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N					
☐ Tanker Truck Loading Data Sheet (if applicable) – Attachment O					
☐ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P					
☐ Pneumatic Controllers Data Sheet – Attachment Q					
⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R					
☐ Emission Calculations (please be specific and include all c	alculation methodologies used) - Attachment S				
□ Facility-wide Emission Summary Sheet(s) – Attachment T					
☐ Class I Legal Advertisement – Attachment U					
☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments					

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility:

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A

Single Source Determination

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).
Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \square No \boxtimes
If Yes, please complete the questionnaire on the following page (Attachment A).
Please provide a source aggregation analysis for the proposed facility below:
Please see discussion in the Application Report.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM – $\frac{NOT}{APPLICABLE}$

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydration facilities, etc.) which are under common control and those facilities that are not under common control but are support facilities. Please indicate the SIC code, permit number (if applicable), and the distance between facilities in question on the map.

indicate the Sie code, permit number (if appreadic), and the distance between racinities in question (on the map.	
Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility.	Yes 🗆	No 🗆
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes 🗆	No 🗆
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain.	Yes 🗆	No 🗆
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes 🗆	No □
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities?	Yes 🗆	No □
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain.	Yes 🗆	No 🗆
Does one (1) facility operation support the operation of the other facility?	Yes □	No □
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes 🗆	No 🗆
Are there any financial arrangements between the two (2) entities?	Yes 🗆	No □
Are there any legal or lease agreements between the two (2) facilities?	Yes □	No □
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain.	Yes 🗆	No 🗆
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes.	Yes 🗆	No 🗆
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🗆	No 🗆
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes □	No 🗆
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain.	Yes □	No 🗆

ATTACHMENT A: SINGLE SOURCE DETERMINATION MAP

Note – red ring is a 1-mile radius from GLO-76

ATTACHMENT B

Siting Criteria Waiver (Not Applicable)

ATTACHMENT B - SITING CRITERIA WAIVER - NOT APPLICABLE

If applicable, please complete this form and it must be notarized.

G70-C General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

	IPrint Name	hereby
a	cknowledge and agree that	W111
	construct an emission unit(s) at a natural gas product that will be located within 300' of my dwelling and	
	r this waiver of siting criteria to the West Virginia Departments of Air Quality as permission to construct, install and o	
	Signed:	
	Signature	Date
	Signature	Date
	Taken, subscribed and sworn before me this	-
	My commission expires:	
	Notary Public	

ATTACHMENT C

Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

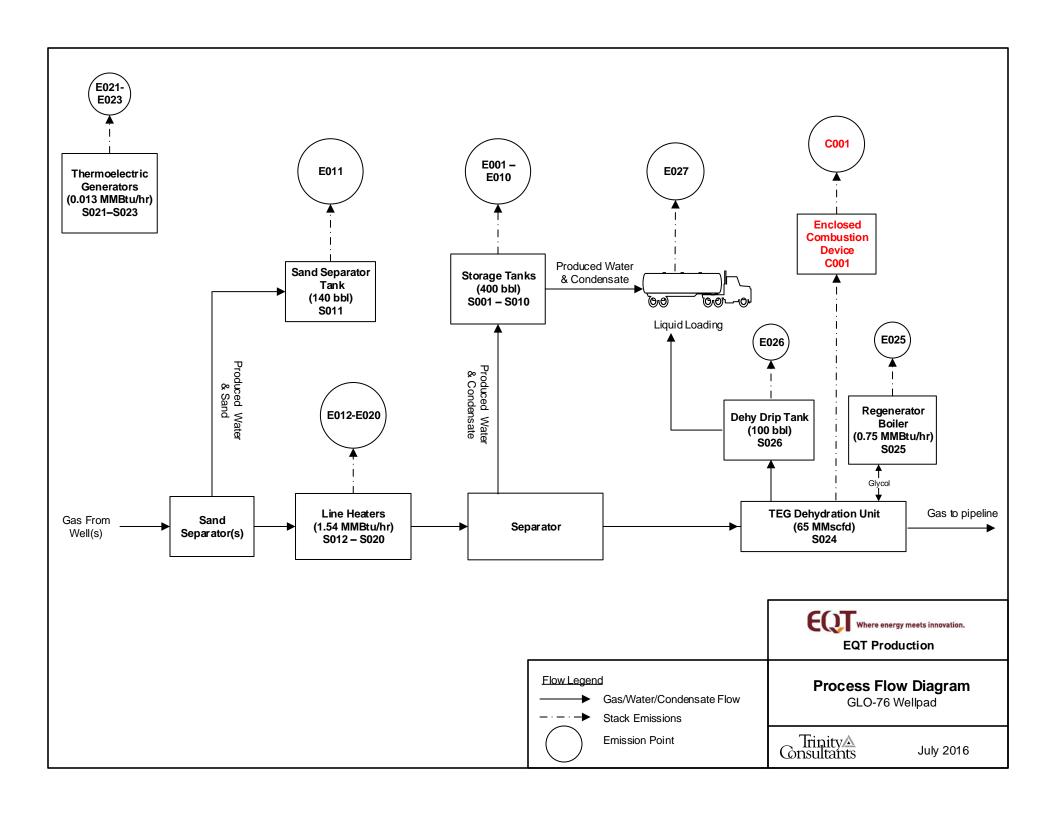
This certificate is issued on:

08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.


Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

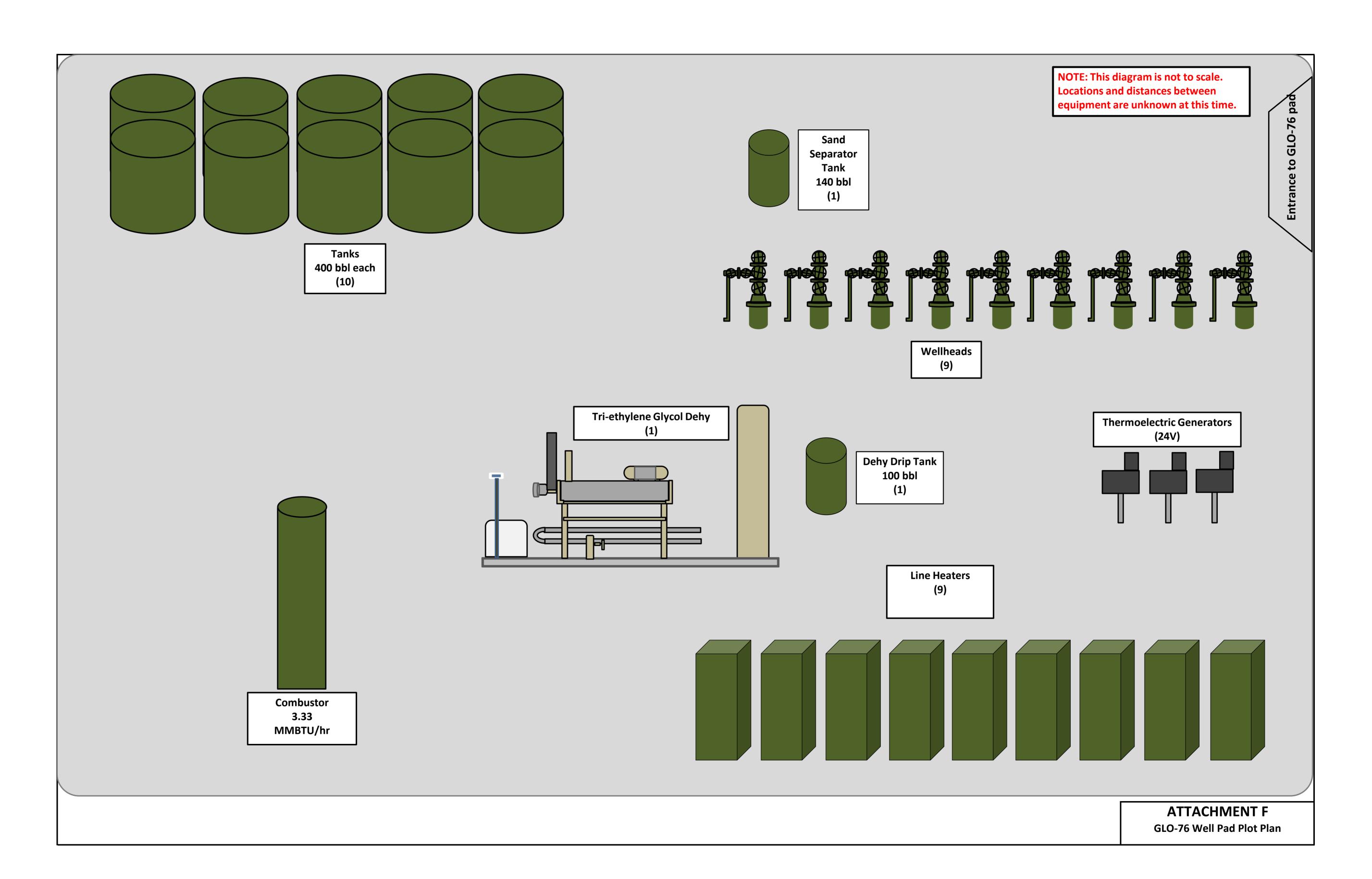
ATTACHMENT D

Process Flow Diagram

ATTACHMENT E

Process Description

ATTACHMENT E: PROCESS DESCRIPTION


EQT is submitting the application to replace the existing 36" combustor associated with the triethylene glycol (TEG) dehydration unit at the wellpad with a 24" combustor. Additionally, this application seeks to convert the current General Permit G70-A188 to the G-70C.

The GLO-76 wellpad will consist of nine (9) wells, each with the same basic operation. The incoming gas stream from the underground wells will pass through a sand separator, where sand, water, and residual solids are displaced and transferred to the sand separator tank. The gas will then flow into a separator which separates produced fluids from the gas stream. The produced fluid will be transferred to the storage tanks. Once the tanks are filled, the contents will be loaded into trucks for transport. The wet gas stream from the separator will pass through the TEG dehydration unit to remove excess water from the gas stream. Emissions from the dehydrator will be controlled by an enclosed combustor. Excess produced fluids separated from the dehydrator will be stored at the dehydrator drip tank. At the wellpad, heat will be provided by line heaters and electricity will be provided by thermoelectric generators.

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

ATTACHMENT G

Area Map

ATTACHMENT G: AREA MAP

Figure 1 - Map of GLO-76 Location

UTM Northing (KM): 4,337.873 UTM Easting (KM): 515.746 Elevation: ~1,114 ft

ATTACHMENT H

Applicability Form

ATTACHMENT H - G70-C SECTION APPLICABILITY FORM

General Permit G70-C Registration Section Applicability Form

General Permit G70-C was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-C allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-C APPLICABLE SECTIONS				
⊠ Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)			
⊠ Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹			
□ Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)			
⊠ Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH			
⊠ Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc			
☐ Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)			
□ Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²			
☐ Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²			
□ Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines			
⊠ Section 14.0	Tanker Truck Loading ³			
⊠ Section 15.0	Glycol Dehydration Units ⁴			

- 1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.
- 2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.
- 3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emission Units Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	E001	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S002	E002	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S003	E003	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S004	E004	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S005	E005	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S006	E006	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S007	E007	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S008	E008	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S009	E009	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S010	E010	Produced Fluid Storage Tank	2016	2016	400 bbl	Existing; No change	None	
S011	E011	Sand Separator Tank	2016	2016	140 bbl	Existing; No change	None	
S012	E012	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S013	E013	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S014	E014	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S015	E015	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S016	E016	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S017	E017	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S018	E018	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S019	E019	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	

S020	E020	Line Heater	2016	2016	1.54 MMBtu/hr	Existing; No change	None	
S021	E021	Thermoelectric Generator	2016	2016	0.013 MMBtu/hr	Existing; No change	None	
S022	E022	Thermoelectric Generator	2016	2016	0.013 MMBtu/hr	Existing; No change	None	
S023	E023	Thermoelectric Generator	2016	2016	0.013 MMBtu/hr	Existing; No change	None	
S024	C001	Dehydration Unit	2016	2016	65 MMSCFD	Existing; No change	C001	
S025	E025	Reboiler	2016	2016	0.75 MMBtu/hr	Existing; No change	None	
S026	E026	Dehy Drip Tank	2016	2016	100 bbl	Existing; No change	None	
S027	E027	Liquid Loading	2016	2016	9,972,333 Gal	Existing; No change	None	
C001	C001	Combustor	TBD	TBD	3.33 MMBTU/hr	New (Replacement)	N/A	

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing
⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.
⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emissions Summary Sheet

ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary. Source/Equipment: Fugitive Emissions ☑ Other (please describe) Leak Detection ☐ Audible, visual, and ☐ Infrared (FLIR) cameras ☐ None required Method Used olfactory (AVO) inspections Will satisfy condition 4.1.4. of the G70-C Closed Stream type Estimated Emissions (tpy) Component Source of Leak Factors Vent Count (gas, liquid, Type (EPA, other (specify)) VOC HAP GHG (CO₂e) System etc.) ☐ Gas U.S. EPA. Office of Air Quality Planning and Standards. ☐ Yes Pumps Protocol for Equipment Leak Emission Estimates. Table 2-1. □ Liquid 0.01 1.4E-04 ---⊠ No (EPA-453/R-95-017, 1995). □ Both ⊠ Gas U.S. EPA. Office of Air Quality Planning and Standards. □ Yes Valves 485 Protocol for Equipment Leak Emission Estimates. Table 2-1. ☐ Liquid 0.02 2.03 54.48 ⊠ No (EPA-453/R-95-017, 1995). □ Both ⊠ Gas U.S. EPA. Office of Air Quality Planning and Standards. Safety Relief ☐ Yes 51 Protocol for Equipment Leak Emission Estimates. Table 2-1. ☐ Liquid 3.73 0.04 8.49 ⊠ No Valves (EPA-453/R-95-017, 1995). □ Both ☐ Gas U.S. EPA. Office of Air Quality Planning and Standards. Open Ended ☐ Yes 25 Protocol for Equipment Leak Emission Estimates. Table 2-1. ☐ Liquid 2.9E-4 0.03 6.34 Lines ⊠ No (EPA-453/R-95-017, 1995). ⊠ Both ☐ Gas □ Yes Sampling N/A ☐ Liquid Connections □ No □ Both ☐ Gas U.S. EPA. Office of Air Quality Planning and Standards. □ Yes Connections 2.028 Protocol for Equipment Leak Emission Estimates. Table 2-1. ☐ Liquid 2.61 0.03 25.31 (Not sampling) ⊠ No (EPA-453/R-95-017, 1995). ⊠ Both ☐ Gas ☐ Yes N/A ☐ Liquid Compressors ---□ No □ Both ☐ Gas ☐ Yes (included in connections) Flanges ☐ Liquid ------□ No □ Both ⊠ Gas ☐ Yes Other1 45 40 CFR 98 Subpart W ☐ Liquid 3.03 0.03 842.45 ⊠ No □ Both ¹ Other equipment types may include compressor seals, relief valves, diaphragms, drains, meters, etc. Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): Pneumatic Controller count is 'Other' category. An estimate of Miscellaneous Gas Venting emissions are included in the Emission Calculations and serve to include such sources as compressor venting, pigging, vessel blowdowns and other sources. Please indicate if there are any closed vent bypasses (include component): N/A

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) N/A

ATTACHMENT K

Gas Well Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback ¹	Date of Well Completion ²	Green Completion and/or Combustion Device
47-049-02346	04/21/2016	03/16/2016	Green
47-049-02329	04/26/2016	03/27/2016	Green
47-049-02347	04/30/2016	03/25/2016	Green
47-049-02401	04/30/2016	03/30/2016	Green
47-049-02334	04/22/2016	03/21/2016	Green
47-049-02332	04/26/2016	04/02/2016	Green

Note: If future wells are planned and no API number is available please list as PLANNED.

If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 = State code. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001

(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

¹ Start date of well fluid flowback

² Start date of frac plug drill out

ATTACHMENT L

Storage Vessel Data Sheet

ATTACHMENT L - STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

The following information is REQUIRED:

- ☑ Composition of the representative sample used for the simulation
- - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
- ☑ Resulting flash emission factor or flashing emissions from simulation
- ⊠ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

Bulk Storage Area Name	2. Tank Name				
GLO-76 Wellpad	Produced Liquid Tanks				
3. Emission Unit ID number	4. Emission Point ID number				
S001-S010	E001-E010				
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change: none				
Was the tank manufactured after August 23, 2011?	☐ New construction ☐ New stored material				
⊠ Yes □ No	☐ Other (Low Pressure Tower) ☐ Relocation				
7A. Description of Tank Modification (if applicable) N/A					
7B. Will more than one material be stored in this tank? If so, a s	reparate form must be completed for each material.				
☐ Yes ⊠ No					
7C. Was USEPA Tanks simulation software utilized?					
☐ Yes					
${\it If Yes, please provide the appropriate documentation and items}$	8-42 below are not required.				

TANK INFORMATION

	8. Design Capacity (specify 400 bbls		O	.,		C1033 3CCL			,	
	9A. Tank Internal Diameter (ft.) ~12 9B. Tank Internal Height (ft.) ~20									
	10A. Maximum Liquid Height (ft.) ~20 10B. Average Liquid Height (ft.) ~10									
	11A. Maximum Vapor Space)~10
	11A. Maximum Vapor Space Height (ft.) ~20									
	13A. Maximum annual throughput (gal/yr) See attached 13B. Maximum daily throughput (gal/day) See attached									
	emissions calculations for	· .	•					-	-	hput values
	14. Number of tank turnove									ee attached emissions
	emissions calculations for	all throu	ughput v	alues		calculation	ons for al	l through	put value	s
İ	16. Tank fill method ☐ S	ubmerge	d D	Splash		Bottom	Loading			
	17. Is the tank system a vari	iable vap	or space s	system? [□ Yes	⊠ No				
	If yes, (A) What is the volur	-	-	-		gal)?				
	(B) What are the num	-	-	-	-	_				
	18. Type of tank (check all				1 3					
			horizo	ntal 🗆	flat roof	⊠ cone	roof \square	dome roo	f □ oth	ner (describe)
										(
	☐ External Floating Roof		pontoon	roof \square	double d	eck roof				
	☐ Domed External (or Cov		-							
	· ·		_	column su	mmout [□ aalf aum	montin a			
	☐ Internal Floating Roof					☐ self-sup	porting			
	☐ Variable Vapor Space		lifter roo		phragm					
	☐ Pressurized		spherica	l ∟ cyli	indrical					
	☐ Other (describe)									
PR	RESSURE/VACUUM CO	NTRO	L DATA	PRESSURE/VACUUM CONTROL DATA						
	19. Check as many as apply	/:								
	19. Check as many as apply☐ Does Not Apply	/ :			☐ Ruptu	re Disc (ps	sig)			
				[-	re Disc (ps	-			
	□ Does Not Apply□ Inert Gas Blanket of			[□ Carbo	n Adsorpti	ion ¹	enclosed c	ombustors	s)
	□ Does Not Apply□ Inert Gas Blanket of□ Vent to Vapor Combusti	ion Devic	ce ¹ (vapor	[☐ Carbo	n Adsorpti	ion ¹ oxidizers, e	enclosed c	ombustors	;)
	 □ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⋈ Conservation Vent (psig 	ion Devic	ce ¹ (vapoi do Valve	[combusto	☐ Carbo	n Adsorpti	ion ¹ oxidizers, e	enclosed c	ombustors	s)
	 □ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ☑ Conservation Vent (psig 0.5 oz Vacuum Setting 	ion Devic 3) – Enarc 12.5 oz	ce ¹ (vapor	[combusto	☐ Carbo	n Adsorpti	ion ¹ oxidizers, e	enclosed c	ombustors	5)
	 □ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⋈ Conservation Vent (psig 0.5 oz Vacuum Setting ⋈ Emergency Relief Valve 	ion Device) – Enarce 12.5 oz	ce ¹ (vapor do Valve Pressure	combusto e Setting	☐ Carbo	n Adsorpti	ion ¹ oxidizers, e	enclosed c	ombustors	;)
	 □ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⋈ Conservation Vent (psig 0.5 oz Vacuum Setting ⋈ Emergency Relief Valve Vacuum Setting 	ion Device) – Enarce 12.5 oz e (psig) 14.4 Pre	ce ¹ (vapor do Valve Pressure	combustone Setting	☐ Carbo ors, flares, ☐ (n Adsorpti , thermal c	ion ¹ oxidizers, e	enclosed c	ombustors	s)
	 □ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⋈ Conservation Vent (psig 0.5 oz Vacuum Setting ⋈ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted 	ion Device 12.5 oz () (psig) 14.4 Pre	ce ¹ (vapor do Valve Pressure essure Seti	c combustone Setting ting ashco Lock	□ Carbo ors, flares, □ 0 cdown Ha	n Adsorpti , thermal c	ion ¹ oxidizers, e	enclosed c	ombustors	s)
	 □ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⋈ Conservation Vent (psig 0.5 oz Vacuum Setting ⋈ Emergency Relief Valve Vacuum Setting 	ion Device 12.5 oz () (psig) 14.4 Pre	ce ¹ (vapor do Valve Pressure essure Seti	c combustone Setting ting ashco Lock	□ Carbo ors, flares, □ 0 cdown Ha	n Adsorpti , thermal c	ion ¹ oxidizers, e	enclosed c	ombustors	s)
	□ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti □ Conservation Vent (psig 0.5 oz Vacuum Setting □ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ ¹ Complete appropriate Air ¹	ion Device) – Enarce 12.5 oz e (psig) 14.4 Pre Yes ⊠ Pollution	ce ¹ (vapor do Valve Pressure essure Sett No – Ca Control	e Setting ting ashco Lock Device Sh	☐ Carbo ors, flares, ☐ (cdown Ha eet	n Adsorpti , thermal of Condenser	ion ¹ exidizers, 6			;)
	□ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⊠ Conservation Vent (psig 0.5 oz Vacuum Setting ⊠ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ ¹ Complete appropriate Air ¹ 20. Expected Emission Rate	ion Device (submit	ce ¹ (vapor do Valve Pressure essure Set No – Ca Control	r combusto e Setting ting ishco Lock Device Sh	☐ Carbo ors, flares, ☐ (cdown Ha eet	n Adsorpti , thermal of Condenser ttch	ion ¹ xidizers, o 1	ne applicat		
	□ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti □ Conservation Vent (psig 0.5 oz Vacuum Setting □ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ ¹ Complete appropriate Air ¹	ion Device) – Enarce 12.5 oz e (psig) 14.4 Pre Yes ⊠ Pollution	ce ¹ (vapor do Valve Pressure essure Set No – Ca Control	e Setting ting ashco Lock Device Sh	☐ Carbo ors, flares, ☐ (cdown Ha eet	n Adsorpti , thermal of Condenser	ion ¹ xidizers, o 1	ne applicat Total	ion).	Estimation Method ¹
	□ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⊠ Conservation Vent (psig 0.5 oz Vacuum Setting ⊠ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ ¹ Complete appropriate Air ¹ 20. Expected Emission Rate	ion Device 12.5 oz 2 (psig) 14.4 Pre ☐ Yes ⊠ Pollution e (submit	ce ¹ (vapor do Valve Pressure essure Sett No – Ca Control I	r combusto e Setting ting ashco Lock Device Sh a or Calcu Breathin	Carbo ors, flares, dadown Ha eet clations he ng Loss	n Adsorption thermal of Condenser the tree or elsev	oxidizers, o	ne applicat Total Emissio	ion).	
	□ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⊠ Conservation Vent (psig 0.5 oz Vacuum Setting ⊠ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ ¹ Complete appropriate Air ¹ 20. Expected Emission Rate	ion Device (submit	ce ¹ (vapor do Valve Pressure essure Set No – Ca Control	r combusto e Setting ting ishco Lock Device Sh	☐ Carbo ors, flares, ☐ (cdown Ha eet	n Adsorpti , thermal of Condenser ttch	ion ¹ xidizers, o 1	ne applicat Total	ion).	
	□ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⊠ Conservation Vent (psig 0.5 oz Vacuum Setting ⊠ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ ¹ Complete appropriate Air ¹ 20. Expected Emission Rate	ion Device 12.5 oz 2 (psig) 14.4 Pre ☐ Yes ⊠ Pollution e (submit	ce¹ (vapor do Valve Pressure essure Sett No – Ca Control I	r combustor e Setting ting ashco Lock Device Shara or Calcu Breathin	Carbo	n Adsorption thermal of Condenser the tree or elsev	where in the g Loss	ne applicat Total Emissio lb/hr	ion).	
	□ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⊠ Conservation Vent (psig 0.5 oz Vacuum Setting ⊠ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ ¹ Complete appropriate Air ¹ 20. Expected Emission Rate	ion Device 12.5 oz 2 (psig) 14.4 Pre ☐ Yes ⊠ Pollution e (submit	ce¹ (vapor do Valve Pressure essure Sett No – Ca Control I	r combustor e Setting ting ashco Lock Device Shara or Calcu Breathin	Carbo	n Adsorption thermal of Condenser of the Condense of the	where in the g Loss	ne applicat Total Emissio lb/hr	ion).	
	□ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⊠ Conservation Vent (psig 0.5 oz Vacuum Setting ⊠ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ ¹ Complete appropriate Air ¹ 20. Expected Emission Rate	ion Device 12.5 oz 2 (psig) 14.4 Pre ☐ Yes ⊠ Pollution e (submit	ce¹ (vapor do Valve Pressure essure Sett No – Ca Control I	r combustor e Setting ting ashco Lock Device Shara or Calcu Breathin	Carbo	n Adsorption thermal of Condenser of the Condense of the	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss	
	□ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⊠ Conservation Vent (psig 0.5 oz Vacuum Setting ⊠ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ ¹ Complete appropriate Air ¹ 20. Expected Emission Rate	ion Device 12.5 oz 2 (psig) 14.4 Pre ☐ Yes ⊠ Pollution e (submit	ce¹ (vapor do Valve Pressure essure Sett No – Ca Control I	r combustor e Setting ting ashco Lock Device Shara or Calcu Breathin	Carbo	n Adsorption thermal of Condenser of the Condense of the	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss	
	□ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⊠ Conservation Vent (psig 0.5 oz Vacuum Setting ⊠ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ ¹ Complete appropriate Air ¹ 20. Expected Emission Rate	ion Device 12.5 oz 2 (psig) 14.4 Pre ☐ Yes ⊠ Pollution e (submit	ce¹ (vapor do Valve Pressure essure Sett No – Ca Control I	r combustor e Setting ting ashco Lock Device Shara or Calcu Breathin	Carbo	n Adsorption thermal of Condenser of the Condense of the	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss	
	□ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⊠ Conservation Vent (psig 0.5 oz Vacuum Setting ⊠ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ ¹ Complete appropriate Air ¹ 20. Expected Emission Rate	ion Device 12.5 oz 2 (psig) 14.4 Pre ☐ Yes ⊠ Pollution e (submit	ce¹ (vapor do Valve Pressure essure Sett No – Ca Control I	r combustor e Setting ting ashco Lock Device Shara or Calcu Breathin	Carbo	n Adsorption thermal of Condenser of the Condense of the	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss	
	□ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⊠ Conservation Vent (psig 0.5 oz Vacuum Setting ⊠ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ ¹ Complete appropriate Air ¹ 20. Expected Emission Rate	ion Device 12.5 oz 2 (psig) 14.4 Pre ☐ Yes ⊠ Pollution e (submit	ce¹ (vapor do Valve Pressure essure Sett No – Ca Control I	r combustor e Setting ting ashco Lock Device Shara or Calcu Breathin	Carbo	n Adsorption thermal of Condenser of the Condense of the	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss	
	□ Does Not Apply □ Inert Gas Blanket of □ Vent to Vapor Combusti ⊠ Conservation Vent (psig 0.5 oz Vacuum Setting ⊠ Emergency Relief Valve Vacuum Setting □ Thief Hatch Weighted □ ¹ Complete appropriate Air ¹ 20. Expected Emission Rate	ion Device 12.5 oz 2 (psig) 14.4 Pre ☐ Yes ⊠ Pollution e (submit	ce¹ (vapor do Valve Pressure essure Sett No – Ca Control I	r combustor e Setting ting ashco Lock Device Shara or Calcu Breathin	Carbo	n Adsorption thermal of Condenser of the Condense of the	where in the g Loss	ne applicat Total Emissio lb/hr	ion). ns Loss	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

TANK CONSTRUCTION AND OPERATION	ON INFORMATION					
21. Tank Shell Construction:						
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☐ Other (describe) Welded or riveted						
21A. Shell Color: Gray 22. Shell Condition (if metal and unlined):	21B. Roof Color: Gra	У		21C. Year L	ast Painted: New	
No Rust □ Light Rust □ Dense	Rust \square Not applic	able				
22A. Is the tank heated? ☐ Yes ☒ No	22B. If yes, operating t		ure:	22C. If yes	how is heat provided to tank?	
22A. Is the talk heated? Tes NO	22B. If yes, operating t	cinperat	are.	220. 11 903,	now is near provided to tank.	
23. Operating Pressure Range (psig):	•					
Must be listed for tanks using VRUs wi			.1 1. (6)	24D IC	C	
24. Is the tank a Vertical Fixed Roof Tank ? ⊠ Yes □ No	24A. If yes, for dome	roof pro	vide radius (ft):	24B. If yes, 0.06	for cone roof, provide slop (ft/ft):	
25. Complete item 25 for Floating Roof Tanks	s Does not apply	\boxtimes				
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal	☐ Liquid mo	unted resilier	nt seal	
□ Va _I	oor mounted resilient s	eal	☐ Other (des	scribe):		
25C. Is the Floating Roof equipped with a seco	ndary seal? Yes	□ No				
25D. If yes, how is the secondary seal mounted	l? (check one) 🗆 Sho	e 🗆	Rim 🗆 Otl	ner (describe)):	
25E. Is the floating roof equipped with a weath	er shield?	□ N	lo			
25F. Describe deck fittings:						
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes	Does not apply	y		
1 0	Velded		For bolted decks,	<u> </u>	construction:	
26C. Deck seam. Continuous sheet construction	on:					
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wid	e □ 5 x 7.5 ft. wide	□ 5 x	12 ft. wide	other (desc	eribe)	
•	a of deck (ft ²):		For column support		26G. For column supported	
		tanks,	# of columns:	1	tanks, diameter of column:	
27. Closed Vent System with VRU? ☐ Yes	⊠ No					
28. Closed Vent System with Enclosed Combu	stor? □ Yes ⊠ No					
SITE INFORMATION - Not Applicable:			d using E&P	TANK softw	are	
29. Provide the city and state on which the data	in this section are based:					
30. Daily Avg. Ambient Temperature (°F):			nnual Avg. Maxi		ture (°F):	
32. Annual Avg. Minimum Temperature (°F):34. Annual Avg. Solar Insulation Factor (BTU/	/ft² doy);		vg. Wind Speed of tmospheric Press			
LIQUID INFORMATION - Not Applicable					'twore	
36. Avg. daily temperature range of bulk	36A. Minimum (°F):	perior	incu using Ex	36B. Maxim		
liquid (°F):					(- /-	
37. Avg. operating pressure range of tank	37A. Minimum (psig):			37B. Maxim	num (psig):	
(psig):						
38A. Minimum liquid surface temperature (°F)	:		Corresponding va		=	
39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F)	\.		Corresponding va		_	
41. Provide the following for each liquid or gas			Corresponding validational pages if r		psia):	
41A. Material name and composition:	s to be stored in the tank.	Auu au	ntional pages ii i	iecessary.		
41B. CAS number:						
41C. Liquid density (lb/gal):						
41D. Liquid molecular weight (lb/lb-mole):						
41E. Vapor molecular weight (lb/lb-mole):						
41F. Maximum true vapor pressure (psia):						
41G. Maximum Reid vapor pressure (psia):						
41H. Months Storage per year. From: To:						
42. Final maximum gauge pressure and						
temperature prior to transfer into tank used as						
inputs into flashing emission calculations.						

GENERAL INFORM	ATION (REQUIRED)				
Bulk Storage Area Name	2. Tank Name				
GLO-76 Wellpad	Sand Separator Tank				
3. Emission Unit ID number	4. Emission Point ID number				
S011	E011				
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:				
Was the tank manufactured after August 23, 2011?	☐ New construction ☐ New stored material				
⊠ Yes □ No	☐ Other (Low Pressure Tower) ☐ Relocation				
7A. Description of Tank Modification (if applicable) N/A					
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.				
☐ Yes					
7C. Was USEPA Tanks simulation software utilized?					
☐ Yes ☐ No					
If Yes, please provide the appropriate documentation and items	8 42 holow are not required				
If Ies, pieuse provide the appropriate documentation and tiems	6-42 below are not required.				
TANK INFO	ORMATION				
8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.				
140 bbls	1 , 5				
9A. Tank Internal Diameter (ft.) ~10	9B. Tank Internal Height (ft.) ~10				
10A. Maximum Liquid Height (ft.) ~10	10B. Average Liquid Height (ft.) ~5				
11A. Maximum Vapor Space Height (ft.) ~10	11B. Average Vapor Space Height (ft.) ~5				
12. Nominal Capacity (specify barrels or gallons). This is also					
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached				
emissions calculations for all throughput values	emissions calculations for all throughput values				
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions				
emissions calculations for all throughput values	calculations for all throughput values				
	☐ Bottom Loading				
17. Is the tank system a variable vapor space system? ☐ Yes	⊠ No				
If yes, (A) What is the volume expansion capacity of the system					
(B) What are the number of transfers into the system per y	(ear :				
18. Type of tank (check all that apply):					
☐ Fixed Roof ☐ vertical ☐ horizontal ☐ flat roof	\square cone roof \square dome roof \square other (describe)				
\square External Floating Roof \square pontoon roof \square double	deck roof				
☐ Domed External (or Covered) Floating Roof					
☐ Internal Floating Roof ☐ vertical column support	\square self-supporting				
☐ Variable Vapor Space ☐ lifter roof ☐ diaphragm					
☐ Pressurized ☐ spherical ☐ cylindrical					
	M CONTROL DATA				
19. Check as many as apply:					
☐ Does Not Apply ☐ Rupt	ure Disc (psig)				
☐ Inert Gas Blanket of ☐ Carb	on Adsorption ¹				
☐ Vent to Vapor Combustion Device¹ (vapor combustors, flare	s, thermal oxidizers, enclosed combustors)				
☐ Conservation Vent (psig) ☐ Cond					
Vacuum Setting Pressure Setting					
☐ Emergency Relief Valve (psig)					
2 2					
Vacuum Setting Pressure Setting					
☐ Thief Hatch Weighted ☐ Yes ☐ No					

¹ Complete appropriate Ai	r Pollutio	n Control	Device Sh	ieet					
20. Expected Emission Ra	te (subm	it Test Da	ta or Calcı	ılations he	ere or elsev	where in t	he applicat	ion).	
Material Name	Flashi	ng Loss	Breathi	ng Loss	Workin	g Loss	Total Emissio	ns Loss	Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
	See attached Emissions Calculation for all values								

TANK CONSTRUCTION AND OPERATION INFORMATION							
21. Tank Shell Construction:							
\square Riveted \square Gunite lined \square Epoxy-coated rivets \boxtimes Other (describe) Welded							
21A. Shell Color: Gray 21B. Roof Color: Gray 21C. Year Last Painted: New							
22. Shell Condition (if metal and unl	lined):						
⊠ No Rust □ Light Rust □	☐ Dense	Rust	able				
22A. Is the tank heated? ☐ Yes ☒ No							
23. Operating Pressure Range (psig)	:			•			
Must be listed for tanks using		<u>`</u>					
24. Is the tank a Vertical Fixed Roo	of Tank?	24A. If yes, for dome	roof provide radius (ft):	24B. If ye	s, for cone roof, provide slop (ft/ft):		
☐ Yes ⊠ No							
25. Complete item 25 for Floating R	Roof Tanks	□ Does not apply	\boxtimes				
25A. Year Internal Floaters Installed	l:						
25B. Primary Seal Type (check one)	: Met	allic (mechanical) sho	e seal 🔲 Liquid mo	unted resili	ent seal		
	□ Vap	or mounted resilient s	eal	scribe):			
25C. Is the Floating Roof equipped v	with a secon	ndary seal?	□ No				
25D. If yes, how is the secondary sea	al mounted	? (check one) \square Sho	e 🗆 Rim 🗆 Otl	her (describ	e):		
25E. Is the floating roof equipped wi	ith a weath	er shield?	□ No				
25F. Describe deck fittings:							
26. Complete the following section f			□ Does not apply				
26A. Deck Type: ☐ Bolted		⁷ elded	26B. For bolted decks.	, provide dec	k construction:		
26C. Deck seam. Continuous sheet	constructio	n:					
\square 5 ft. wide \square 6 ft. wide \square	7 ft. wide	e \Box 5 x 7.5 ft. wide	☐ 5 x 12 ft. wide ☐	other (de	scribe)		
26D. Deck seam length (ft.):	26E. Area	of deck (ft ²):	26F. For column supp	orted	26G. For column supported		
			tanks, # of columns:		tanks, diameter of column:		
27. Closed Vent System with VRU?	☐ Yes □	⊠ No					
28. Closed Vent System with Enclosed Combustor? ☐ Yes ☒ No							
SITE INFORMATION - Not Applicable: Tank calculations performed using E&P Tank software							
	29. Provide the city and state on which the data in this section are based:						
30. Daily Avg. Ambient Temperatur			31. Annual Avg. Maxi		rature (°F):		
32. Annual Avg. Minimum Tempera		-	33. Avg. Wind Speed				
34. Annual Avg. Solar Insulation Fac			35. Atmospheric Press				
LIQUID INFORMATION - Not Applicable: Tank calculations performed using E&P Tank software							

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

36. Avg. daily temperature range of bulk liquid (°F):	36A. Minimum (°F):			36B. Maximum (°F):			
37. Avg. operating pressure range of tank	37A. Minimum (psig):		37B. Maximur	n (psig):			
(psig):							
38A. Minimum liquid surface temperature (°F)	:	38B. Corresponding vapor pressure (psia):					
39A. Avg. liquid surface temperature (°F):	OA. Maximum liquid surface temperature (°F):			39B. Corresponding vapor pressure (psia): 40B. Corresponding vapor pressure (psia):			
40A. Waximum riquid surface temperature (P): 41. Provide the following for each liquid or gas to be stored in the tank.					14).		
41A. Material name and composition:	to be stored in the tank.	7 Idd dd	ntional pages if i	iceessary.			
41B. CAS number:							
41C. Liquid density (lb/gal):							
41D. Liquid molecular weight (lb/lb-mole):							
41E. Vapor molecular weight (lb/lb-mole):							
41F. Maximum true vapor pressure (psia):							
41G. Maximum Reid vapor pressure (psia):							
41H. Months Storage per year. From: To:							
From: To: 42. Final maximum gauge pressure and							
temperature prior to transfer into tank used as							
inputs into flashing emission calculations.							
			I.				
GF	NERAL INFORM	ΔΤΙΩΙ	N (REOLIIRI	ED)			
Bulk Storage Area Name	TERRIE II VI ORVI		nk Name				
GLO-76 Wellpad			Drip Fluid Tar	nk			
3. Emission Unit ID number			nission Point II				
S026		E026					
5. Date Installed, Modified or Relocated	(for existing tanks)	6. Type of change:					
Was the tank manufactured after August 2	-	☐ New construction ☐ New stored material					
⊠ Yes □ No	,				☐ Relocation		
2 10		☐ Other (Low Pressure Tower) ☐ Relocation					
7A. Description of Tank Modification (if	applicable) N/A	<u></u>					
7B. Will more than one material be stored		senarati	e form must be	completed for a	each material		
☐ Yes ☐ No	in this tank. If so, a	раган	e joini musi oc	completed for c	auch marchar.		
7C. Was USEPA Tanks simulation softwa	are utilized?						
☐ Yes ☐ No	ire dunized:						
If Yes, please provide the appropriate doc	umantation and itams	2 12 h	alow are not re	auirad			
If Ies, pieuse provide the appropriate doc	umentation and tiems	0-42 0	eiow are noi re	динеи.			
	TO A NUZ TNUE	\D\	TION				
	TANK INFO						
8. Design Capacity (specify barrels or gal	<i>llons</i>). Use the internal	l cross-	sectional area n	nultiplied by in	ternal height.		
100 bbls		00 7		: 1, (6,) 11			
9A. Tank Internal Diameter (ft.) ~8		9B. Tank Internal Height (ft.) ~11					
10A. Maximum Liquid Height (ft.) ~11		10B. Average Liquid Height (ft.) ~5.5					
11A. Maximum Vapor Space Height (ft.)		11B. Average Vapor Space Height (ft.) ~5.5					
12. Nominal Capacity (specify barrels or							
13A. Maximum annual throughput (gal/yı					gal/day) See attached		
emissions calculations for all throughpu					oughput values		
14. Number of tank turnovers per year Section 14.				· -	n) See attached emissions		
emissions calculations for all throughpu				throughput va	arues		
16. Tank fill method ☐ Submerged			tom Loading				
17. Is the tank system a variable vapor spa	-	⊠ No)				
If yes, (A) What is the volume expansion of		-					
(B) What are the number of transfer	rs into the system per y	ear?					
18. Type of tank (check all that apply):							
☐ Fixed Roof ☐ vertical ☐ ho	rizontal 🗵 flat roof	□ c	one roof \Box	lome roof	other (describe)		
☐ External Floating Roof ☐ pont	oon roof	deck ro	of				

☐ Domed External (or Co	vered) Flo	oating Ro	oof						
☐ Internal Floating Roof		vertical	column su	pport [☐ self-sup	porting			
☐ Variable Vapor Space ☐ lifter roof ☐ diaphragm									
☐ Pressurized ☐ spherical ☐ cylindrical									
		PRES	SURE/V	ACUUN	1 CONT	ROL DA	TA		
19. Check as many as apply	y:								
□ Does Not Apply				☐ Ruptu	re Disc (ps	sig)			
☐ Inert Gas Blanket of				☐ Carbo	n Adsorpti	on ¹			
☐ Vent to Vapor Combust	tion Devic	ce ¹ (vapo	r combusto	ors, flares,	thermal o	xidizers, e	nclosed c	ombustors	s)
☐ Conservation Vent (psig	g)		I	☐ Conde	nser ¹				
	sure Settir	19							
☐ Emergency Relief Valve		8							
- ·	ssure Setti	ing							
☐ Thief Hatch Weighted [-							
¹ Complete appropriate Air			Device Sh	eet					
Complete appropriate 7th	Tonucion	Control	Device Sii	cci					
20. Expected Emission Rat	te (submit	Test Da	ta or Calcu	lations he	re or elsev	vhere in th	e applicat	tion).	
Material Name	Flashing		Breathi		Workin		Total		Estimation Method ¹
White Ital Pallic		S 11033	Dicum	ing 12033	VV OT KIII	S 11033	Emissio	ns Loss	Estimation Wethou
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
	127111		I		<u> </u>			·PJ	
		See att	ached Em	issions C	alculation	for all va	alues	T	.
	<u> </u>				.	l l			
PA = EPA Emission Factor, MB	= Material	Balance,	SS = Simila	ar Source, S	ST = Similar	r Source Te	st, Through	hput Data, (O = Other (specify)
nember to attach emissions calci	ulations, in	cluding T	ANKS Sumn	nary Sheets	and other i	modeling su	ımmary she	eets if appli	cable.
THE NAME OF THE PARTY OF THE PA	VD OPER								
21. Tank Shell Construction:	ND OPER	ATION	NFORMA	HON					
☐ Riveted ☐ Gunite li	ined 🗆	Enovy c	onted rivet	c ⊠ Otl	or (descri	ba) Walda	d		
21A. Shell Color: Gray	illed 🗆 .		1B. Roof C			be) werder		ear Last Pai	ntod: Now
22. Shell Condition (if metal a	nd unlined		1 D . K 001 C	olor. Gray			210. 1	cai Last I ai	inted. New
 ☑ No Rust ☐ Light Ru). Dense Ru	ıst □ N	ot applical	hle				
22A. Is the tank heated?			2B. If yes, o				22C If	ves how is	heat provided to tank?
22A. Is the tank heated? \square	es 🖾 No) 2	2D. II yes, 0	perating te	imperature.		22C. II	yes, now is	near provided to tank:
23. Operating Pressure Range	(psig):								
Must be listed for tanks u		Js with d	closed ven	t system.					
24. Is the tank a Vertical Fixe	d Roof Ta	nk? 2	4A. If yes,	for dome ro	oof provide	radius (ft):	24B. If	yes, for cor	ne roof, provide slop (ft/ft):
☐ Yes ⊠ No									
25. Complete item 25 for Floa	ting Roof	Tanks	Does n	ot apply	\boxtimes				
25A. Year Internal Floaters In									
25B. Primary Seal Type (check one): Metallic (mechanical) shoe seal Liquid mounted resilient seal									
25B. Primary Seal Type (check			c (mechan mounted re			Liquid mo		silient seal	

☐ Rim ☐ Other (describe):

☐ Shoe

25D. If yes, how is the secondary seal mounted? (check one)

25E. Is the floating roof equipped with a weather s	shield?	□N	0		
25F. Describe deck fittings:					
26. Complete the following section for Internal F	loating Roof Tanks	\boxtimes	Does not apply	y	
26A. Deck Type: ☐ Bolted ☐ Weld	ded	26B. I	For bolted decks,	provide deck	construction:
26C. Deck seam. Continuous sheet construction:					
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wide	\Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide □	other (des	cribe)
26D. Deck seam length (ft.): 26E. Area of	f deck (ft ²):	26F. I	For column suppo	orted	26G. For column supported
		tanks,	# of columns:		tanks, diameter of column:
27. Closed Vent System with VRU? ☐ Yes ⊠	No				
28. Closed Vent System with Enclosed Combuston	r? □ Yes ⊠ No				
SITE INFORMATION - Not Applicable: Ta	ank calculations pe	rforme	d using E&P	Tank softw	are
29. Provide the city and state on which the data in	this section are based:				
30. Daily Avg. Ambient Temperature (°F):			nnual Avg. Maxi	_	ature (°F):
32. Annual Avg. Minimum Temperature (°F):		33. A	vg. Wind Speed	(mph):	
34. Annual Avg. Solar Insulation Factor (BTU/ft²-			mospheric Press		
LIQUID INFORMATION - Not Applicable:	Tank calculations	perfori	ned using E&	P Tank soft	ware
36. Avg. daily temperature range of bulk 3	36A. Minimum (°F):			36B. Maxii	num (°F):
liquid (°F):					
37. Avg. operating pressure range of tank 3	37A. Minimum (psig):			37B. Maxii	num (psig):
(psig):					
38A. Minimum liquid surface temperature (°F):			Corresponding va		
39A. Avg. liquid surface temperature (°F):			Corresponding va		=
40A. Maximum liquid surface temperature (°F):			Corresponding va		(psia):
41. Provide the following for each liquid or gas to	be stored in the tank.	Add add	litional pages if r	necessary.	
41A. Material name and composition:					
41B. CAS number:					
41C. Liquid density (lb/gal):					
41D. Liquid molecular weight (lb/lb-mole):					
41E. Vapor molecular weight (lb/lb-mole):					
41F. Maximum true vapor pressure (psia):					
41G. Maximum Reid vapor pressure (psia):					
41H. Months Storage per year.					
From: To:					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as					
inputs into flashing emission calculations.					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID #1	Status ²	Content ³	Volume ⁴
		Not Applicable	
			·

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. Enter storage tank Status using the following:
- 2.

EXIST

Existing Equipment
Installation of New Equipment NEW

Equipment Removed REM

- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.
- 4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT M

Heaters Data Sheet

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S012	E012	Line Heater	2016	Existing; No change	1.54	~1,102
S013	E013	Line Heater	2016	Existing; No change	1.54	~1,102
S014	E014	Line Heater	2016	Existing; No change	1.54	~1,102
S015	E015	Line Heater	2016	Existing; No change	1.54	~1,102
S016	E016	Line Heater	2016	Existing; No change	1.54	~1,102
S017	E017	Line Heater	2016	Existing; No change	1.54	~1,102
S018	E018	Line Heater	2016	Existing; No change	1.54	~1,102
S019	E019	Line Heater	2016	Existing; No change	1.54	~1,102
S020	E020	Line Heater	2016	Existing; No change	1.54	~1,102
S021	E021	Thermoelectric Generator	2016	Existing; No change	0.013	~1,102
S022	E022	Thermoelectric Generator	2016	Existing; No change	0.013	~1,102
S023	E023	Thermoelectric Generator	2016	Existing; No change	0.013	~1,102

Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

- New, modification, removal
- Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

ATTACHMENT N

Engines Data Sheet (Not Applicable)

$\begin{array}{c} \textbf{ATTACHMENT N-INTERNAL COMBUSTION ENGINE DATA SHEET} \\ \textbf{NOT APPLICABLE} \end{array}$

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

5	ise titts je i iit	•						
Emission Unit I	D#1							
Engine Manufac	turer/Model							
Manufacturers R	Rated bhp/rpm							
Source Status ²								
Date Installed/ Modified/Remov	ved/Relocated ³							
Engine Manufac /Reconstruction								
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		□ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□ NESHAP 2 JJJJ Window	ed? Subpart IIII ed? Subpart ZZZZ	□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		
Engine Type ⁶								
APCD Type ⁷								
Fuel Type ⁸								
H ₂ S (gr/100 scf)	1							
Operating bhp/r	pm							
BSFC (BTU/bhp	o-hr)							
Hourly Fuel Thr	oughput	ft³/hr gal/hr		ft³/hr gal/hr		ft³/hr gal/hr		
Annual Fuel Thi (Must use 8,760 emergency gene	hrs/yr unless	MMft³/yr gal/yr		MMft³/yr gal/yr		MMft³/yr gal/yr		
Fuel Usage or H Operation Meter	ours of ed	Yes □	No □	Yes □ No □		Yes □	No 🗆	
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) 11	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	
Manufacturer	NO _x							
Manufacturer	СО							
Manufacturer	VOC							
AP-42	SO ₂							
AP-42	PM_{10}							
AP-42	Formaldehyde							
AP-42	Total HAPs							
40 CFR Part 98 Subpart C	GHG (CO ₂ e)							

2	Enter	the	Source	Status	using	the	follov	ving	codes:

 NS
 Construction of New Source (installation)
 ES
 Existing Source

 MS
 Modification of Existing Source
 RS
 Relocated Source

¹ Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn

4SLB Four Stroke Lean Burn

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

A/F Air/Fuel Ratio IR Ignition Retard

HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers
PSC Prestratified Charge LEC Low Emission Combustion

NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst

SCR Lean Burn & Selective Catalytic Reduction

8 Enter the Fuel Type using the following codes:

PQ Pipeline Quality Natural Gas RG Raw Natural Gas / Production Gas D Diesel

9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used.

MD Manufacturer's Data AP AP-42

 $\hspace{1cm} GR \hspace{1cm} GRI\text{-}HAPCalc^{TM} \hspace{1cm} OT \hspace{1cm} Other \hspace{1cm} (please \ list)$

- 10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device – NOT APPLICABLE (Emission Unit ID# S030-S031, use extra pages as necessary)

(Emission Unit ID# S030-S031, use extra pages as necessary) Air Pollution Control Device Manufacturer's Data Sheet included? Yes \square No □ See attached certification \square SCR \square NSCR ☐ Oxidation Catalyst Provide details of process control used for proper mixing/control of reducing agent with gas stream: Manufacturer: Model #: Design Operating Temperature: Design gas volume: scfm Service life of catalyst: Provide manufacturer data? □Yes \square No Volume of gas handled: Operating temperature range for NSCR/Ox Cat: °F to From Reducing agent used, if any: Ammonia slip (ppm): Pressure drop against catalyst bed (delta P): Provide description of warning/alarm system that protects unit when operation is not meeting design conditions: Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? ☐ Yes ☐ No How often is catalyst recommended or required to be replaced (hours of operation)? How often is performance test required? Initial Annual Every 8,760 hours of operation ☐ Field Testing Required No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT, Per 40 CFR §60.4243(a)(1), EQT must maintain the certified engine and control device according to the manufacturer's emission related written instructions and keep records of conducted maintenance to demonstrate compliance, but no performance testing is required.

ATTACHMENT O

Truck Loading Data Sheet

ATTACHMENT O - TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

			Emission Point ID#: E027			Year Installed/Modified: 2015		
Emission Unit Descripti	on: Uncaptured	losses fr	om loading o	of produced f	uids into	tanker trucks		
			Loading A	Area Data				
Number of Pumps: 1		Numbe	r of Liquids	Loaded: 1		Max number (1) time: 1	of trucks loading	at one
Are tanker trucks pressu If Yes, Please describe:	ire tested for leak	s at this	or any other	location?	□ Yes	⊠ No ∣	☐ Not Required	
Provide description of c No vapor balancing requ		n and any	y bypasses.					
☐ Closed System to tai ☐ Closed System to tai	Are any of the following truck loadout systems utilized? Closed System to tanker truck passing a MACT level annual leak test? Closed System to tanker truck passing a NSPS level annual leak test? Closed System to tanker truck not passing an annual leak test and has vapor return?							
Pro	jected Maximun	Operat	ing Schedul	e (for rack o	r transf	er point as a	whole)	
Time	Jan – Ma	r	Apr	- Jun	J	ul – Sept	Oct - De	ec
Hours/day	Varies		Varies			Varies	Varies	
Days/week	7		,	7		7	7	
	Bull	k Liquid	Data (use e	xtra pages a	necessa	ary)		
Liquid Name	Pro	duced F	eed Fluids					
Max. Daily Throughput (1000 gal/day)	calc	tached en ulations ughput v	for all					
Max. Annual Throughpu (1000 gal/yr)	calc	ttached emissions culations for all roughput values						
Loading Method ¹		SP						
Max. Fill Rate (gal/min))	Varies						
Average Fill Time (min/loading)								
Max. Bulk Liquid Temperature (°F) See E&P		&P TANI	X results					
True Vapor Pressure ²	See E&	&P TANI	X results					
Cargo Vessel Condition	3	U						
Control Equipment or Method ⁴		None						

Max. Collection Efficiency (%)		0	
Max. Control Efficiency (%)		0	
Max.VOC Loading (lb/hr)		See attached emission calculations for breakdown	
Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Max.HAP Emission	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Estimation Method ⁵		AP-42 Section 5.2 Methodology	

1	BF	Bottom Fill	SP	Splash Fil	11		SUB	Submerged Fill
2	At maxir	num bulk liquid temperature						
3	В	Ballasted Vessel	C	Cleaned			U	Uncleaned (dedicated service)
	O	Other (describe)						
4	List as a	many as apply (complete and s	submit app	propriate A	Air Polluti	on Contr	ol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicate	d Vapor	Balance (c	closed system)
	ECD	Enclosed Combustion Device	e	F	Flare	•		•
	TO	Thermal Oxidization or Inci	neration					
5	EPA	EPA Emission Factor in AP	-42			MB	Material	Balance
	TM	Test Measurement based un	on test dat	a submitte	a1	0	Other (de	scribe)

ATTACHMENT P

Glycol Dehydrator Data Sheet

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalcTM input and aggregate report. Use extra pages if necessary.

r	- 5 and 1 - p o 1 ti	0 5 0 11111 th P th 8 0	5 11 11 000 55 01 1) .				
Manufacturer: Valer	rus (or similar)		Model:				
Max. Dry Gas Flow	Rate: 65		Reboiler Design Heat Input: 0.75 MMBtu/hr				
Design Type: ⊠ TE	G □ DEG	□ EG	Source Status ¹ : ES				
Date Installed/Modi	fied/Removed ² : 2015		Regenerator Still Vent APCD/ERD ³ : FL (enclosed)				
Control Device/ERI	O ID# ³ : C001		Fuel HV (BTU/scf): ~1,102				
H ₂ S Content (gr/100	scf): neg.		Operation (hours/ye	ear): 8,760			
Pump Rate (gpm): 7	.5 (max)						
Water Content (wt 9	%) in: Wet Gas: Satu	urated Dry Gas: 7.0	#/MMSCF				
Is the glycol dehydr	ration unit exempt fro	om 40CFR63 Section	764(d)? ⊠ Yes	☐ No: If Yes, answ	er the following:		
meters per day, as d	verage flowrate of nate letermined by the pro-	cedures specified in §	\$63.772(b)(1) of this	subpart. Yes	⊠ No		
$\begin{array}{c} megagram \ per \ year \\ \square \ No \end{array}$	(1 ton per year), as de	etermined by the proc	cedures specified in §	63.772(b)(2) of this s	subpart. 🗵 Yes		
Is the glycol dehydr	ation unit located wit	thin an Urbanized Are	ea (UA) or Urban Clu	ster (UC)? Yes	□ No N/A		
Is a lean glycol pur	np optimization plan b	peing utilized? Ye	s 🗆 No N/A				
Recycling the glyco ☐ Yes ⊠ No	l dehydration unit ba	ck to the flame zone	of the reboiler.				
Recycling the glyco ☐ Yes ⊠ No	l dehydration unit ba	ck to the flame zone	of the reboiler and m	ixed with fuel.			
☐ Still vent emissic☐ Sti	temperature controll ons to the atmosphere ons stopped with valv ons to glow plug. ve: Still vent emission	e. re.		r			
🛛 Flash Tank	e following equipment ent system that continue	-	nser or flash tank vap	ors			
		Control Device	Technical Data				
	Pollutants Controlled		Manufacturer's	Guaranteed Control	Efficiency (%)		
	VOC		Manufacturer's Guaranteed Control Efficiency (%) 98				
	HAP			98			
	Benzene			98			
	Delizerie			90			
		Emissio	ns Data				
		Zimissio	III Data	Controlled			
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)		
		AP	NOx	0.07	0.30		
		AP	СО	0.06	0.25		
S025/E025	Reboiler Vent	AP	VOC	< 0.01	0.02		
		AP	SO ₂	<0.01	<0.01		
		AP	PM ₁₀	0.01	0.02		

		GRI-GLYCalc™	VOC	0.24	1.07
5024 / 5001		GRI-GLYCalc™	Benzene	0.01	0.02
	Glycol Regenerator Still Vent	GRI-GLYCalc™	Ethylbenzene	0.01	0.06
S024 / C001		GRI-GLYCalc™	Toluene	0.02	0.08
		GRI-GLYCalc™	Xylenes	0.02	0.08
		GRI-GLYCalc™	n-Hexane	2.2E-03	0.01

1	Enter the	Source Status using the following cod	es:						
	NS	Construction of New Source	ES	Existing Source					
	MS	Modification of Existing Source		-					
2	Enter the	e date (or anticipated date) of the glyco	l dehydrat	ion unit's installation (const	truction of	f source), modi	fication or		
	removal.								
3	Enter the	e Air Pollution Control Device (APCD).	/Emission	Reduction Device (ERD) ty	pe design	ation using the	following codes		
	and the d	levice ID number:							
	NA	None	CD	Condenser	FL	Flare			
	CC	Condenser/Combustion Combination	TO	Thermal Oxidizer	О	Other	(please list)		
4	Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent								
	and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be								
	designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol								
	Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3								
_	and RSV	*							
5		Potential Emissions Data Reference de	_	e e					
	MD	Manufacturer's Data	AP	AP-42					
	GR	GRI-GLYCalc TM	OT	Other (please list	,				
6		Reboiler Vent and Glycol Regenerator		` '		<i>U</i>			
		and tons per year. The Glycol Regener							
		of the thermodynamic software model G		*			,		
		enced Potential Emissions Data (or ca		•	00 0		• '		
	include	emissions reports, equipment reports	, and stre	am reports) to this Glycol	Dehydrat	ion Emission l	Unit Data		

Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be

incorporated in the Emissions Summary Sheet.

ATTACHMENT Q

Pneumatic Controller Data Sheet (Not Applicable)

ATTACHMENT Q - PNEUMATIC CONTROLLERS **DATA SHEET** Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011? ☐ Yes No No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011? ☐ Yes No No Please list approximate number.

ATTACHMENT R

Air Pollution Control Device Data Sheet

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

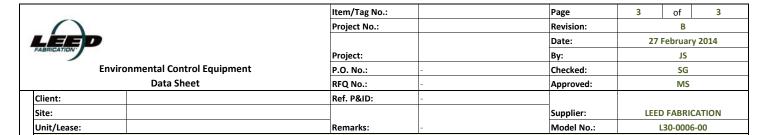
The following five (5) rows are only to be completed if registering an alternative air pollution control device.					
Emission Unit ID: Not Applicable	Make/Model:				
Primary Control Device ID:	Make/Model:				
Control Efficiency (%):	APCD/ERD Data Sheet Completed: ☐ Yes ☐ No				
Secondary Control Device ID:	Make/Model:				
Control Efficiency (%):	APCD/ERD Data Sheet Completed: ☐ Yes ☐ No				

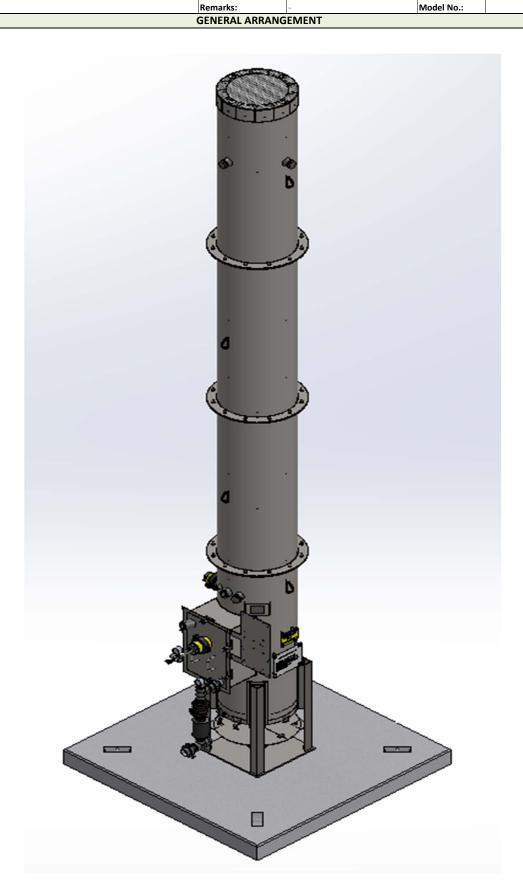
VAPOR COMBUSTION							
(Including Enclosed Combustors)							
			General In	formation			
Control Device ID#: C0	01			Installation Date: ☑ New ☐ Modified ☐ Relocated			
Maximum Rated Total F ~2,243 scfh ~5			Maximum Design Heat Input (from mfg. spec sheet) 3.33 MMBTU/hr	leat Input (from hfg. spec sheet) Design Heat Content 1,500 BTU/scf			
			Control Devic	e Information			
☑ Enclosed Combustio☐ Thermal Oxidizer	n Device		Type of Vapor Co	mbustion Control? ed Flare		Ground Flare	
Manufacturer: LEED Fa Model: Enclosed Combu				Hours of operation	per year? 8	3,760	
List the emission units v	whose emis	sions	are controlled by this	vapor control device	(Emission	Point ID# S024)	
Emission Unit ID#	Emission Source Description			Emission Unit ID#	Emissi	on Source Description	
S024	Dehydration Unit						
If this vapor comb	ustor contro	ols em	nissions from more the	an six (6) emission un	its, please	attach additional pages.	
Assist Type (Flares only	7)		Flare Height	Tip Diameter Was the design per §60.18			
Steam Pressure	Air Non		24 feet	~2 feet		☐ Yes ☐ No ☒ N/A Provide determination.	
			Waste Gas 1	Information			
Maximum Waste Ga 38 (scfm)		e		Vaste Gas Stream Exit Velocity of the Emissions Stream BTU/ft ³ Varies (ft/s)			
Prov	ide an atta	chmer	nt with the characteri	stics of the waste gas	stream to	be burned.	
			Pilot Gas I	nformation			
Number of Pilot Ligh 1	ts 1		Flow Rate to Pilot ame per Pilot ~24 scfh	Heat Input per 0.03 MMBTU		Will automatic re-ignition be used? ☐ Yes ⊠ No	
If automatic re-ignition	is used, ple	ease d	escribe the method.				
Is pilot flame equipped with a monitor to detect the presence of the flame? ⊠ Yes □ No				If Yes, what type? ⊠ Thermocouple ☐ Infrared ☐ Ultraviolet ☐ Camera ☐ Other:			
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). See attached information on unit							
Additional information attached? ⊠ Yes □ No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing							

CONDENSER – Not Applicable						
General Information						
Control Device ID#: Installation Date: New Modified Relocate						
Manufacturer:	Model:	Control Device Name:				
Control Efficiency (%):						
Manufacturer's required temperature range for control efficie	ncy. °F					
Describe the warning and/or alarm system that protects against	st operation when uni	t is not meeting the design requirements:				
Describe all operating ranges and maintenance procedures rec	uired by the manufac	turer to maintain the warranty.				
Additional information attached? Yes No Please attach copies of manufacturer's data sheets.						
Is condenser routed to a secondary APCD or ERD? ☐ Yes ☐ No						

ADSORPTION SYSTEM – Not Applicable						
General Information						
Control Device ID#:	Installation Date: ☐ New ☐ Modified ☐ Relocated					
Manufacturer:	Model: Control Device Name:					
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:					
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter: ft Adsorber area: ft ²					
Adsorbent type and physical properties:	Overall Control Efficiency (%):					
Working Capacity of Adsorbent (%):						
Operating 2	Parameters					
Inlet volume: scfm @ °F						
Adsorption time per adsorption bed (life expectancy): Breakthrough Capacity (lbs of VOC/100 lbs of adsorbent):						
Temperature range of carbon bed adsorber. ${}^{\circ}F$ - ${}^{\circ}F$						
Control Device	Technical Data					
Pollutants Controlled Manufacturer's Guaranteed Control Efficiency (%						
Describe the warning and/or alarm system that protects against operation when unit is not meeting the design requirements:						
Has the control device been tested by the manufacturer and ce	rtified?					
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.						
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, and performance testing.						

VAPOR RECOVERY UNIT - Not Applicable								
General Information								
Emission Unit ID#: Installation Date: New Modified Relocated				Relocated				
	Device In	formation						
Manufactu Model:	rer:							
List the emission units whose emissions are controlled by this vapor recovery unit (Emission Point ID# NA)								
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Des	scription				
If this	vapor recovery unit controls emissions from more t	han six (6) e	mission units, please d	uttach additional pages.				
	information attached? ☐ Yes ☐ No ch copies of manufacturer's data sheets, drawings,	and perform	ance testing.					
The registr	ant may claim a capture and control efficiency of 9 nit.	5 % (which	accounts for 5% down	time) for the vapor				
The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.								
The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.								


Battery Pack


Item/Tag No.:		Page	1	of	3	
Project No.:		Revision:		В		
		Date:	27	Februar	3 ry 2014	
Project:		Ву:	JS			
P.O. No.:	-	Checked:		SG		
DEO No :		Approved:		NAC		

Project:				Project:	Ву:			JS			
Enviromental Control Equipment		P.O. No.:	-		Checked:		SG				
Data Sheet		RFQ No.:			Approved:		MS				
	Client:		Ref. P&ID:	1		- дррго			1113		
				Rei. Paid.						LEED EARRICATION	
	Site:							Supplier			
	Unit/Lease:							Model N	ю.:	L30-0006-00	
	Destruction Control			GE	NERAL	1				SED Fold double - Chandrada	
	Design Code:						DE:		Li	EED Fabrication Standards	
2	Service:					Cı	ustomer Specs:			Yes	
3	Description:	Standard Single	e Stage 24 High	Efficiency Combu						✓ No	
				PROCI	ESS DAT	ГА					
	Gas Composition:			mol %	Process	Process Conditions:					
	das Composition.			11101 /6	Variable Value			ue	Units		
4	Methane					Flow Rate	Up to	40	Mscfd		
5	Ethane					Pressure	Up to	12	oz/in2		
6	Propane				-	Temperature	-		°F		
7	I-Butane					olecular Weigh	t				
8	n-Butane					ess/Waste Stre				Liquid	
9	I-Pentane						ription / Process	Notes:	Liquid		
							•		oneratin	g rate indicated above.	
.0	n-Pentane						g at design condi		operauli	b rate maleated above.	
1	n-Hexane						p: Min. 0.10 oz/i				
2	CO2										
.3	N2				4						
4	Helium				1						
5	H ₂ O				4						
6	C7]						
7	C8										
8	С9										
9	C10										
0	C11+										
1		TOTAL									
	Other Components:			PPMV	Availabl	le Utilities:					
2	H2S				F	uel / Pilot Gas		Min	. 30psig I	Natural Gas /Propane 40-50 SCFH	
3	Benzene				lr	nstrument Air		NA		-	
4	Toluene					Power 120 V / 60 Hz or Solar Power					
:5	E-Benzene				1	Steam	NA				
6	Xylene					Purge Gas					
	жүнене			DESIG	SN DAT						
7	Ambient Temperatures		1	DESIG	1	erformance Re	auiroments:			Under 85 dBA	
	Ambient Temperatures	Low, ^o F		-20	-	al Design Code	•			Olider 03 dDA	
8		High, °F		120		esign Code:	•			ASCE	
9				120	Willa De	esign Code:				ASCE	
	Design Conditions:	Pressure/Temperature		00	1		(6)			400	
	Max. Relative Humidity	/ , 70	90		1	Pressure/Speed			100 mph		
	Elevation (ASL), ft			. 10' 0	Category						
	Area Classification:			s I Div 2	Seismic	Design Code:					
4	Electrical Design Code:			NEC	Location						
					T SPECIFICATION						
5	Туре:		Enclosed		Equipme	ent Design:		-			
6		Above Ground			<u> </u>	Con	nponent		Ma	terial / Size / Rating / Other	
7			Multiple Stack		Burner						
8		Portable / Trailer			Burner Tip / Assist Gas Burner 304 SS					304 SS	
9						Burr	ner Body			Carbon Steel	
0	Smokeless By:	Steam	Assist Air		Pilot						
1		Gas Assist 🗸 S	Staging			Pil	lot Tip			304 SS	
2						Pilo	t Line(s)			Carbon Steel	
Stack: Self Supporting				Firebox / Stack							
Flare Burner: Non-Smokeless Smokeless Gas Assist				Shell					Carbon Steel		
Pilot: Intermittent Continuous			Piping			Carbon Steel					
Pilot Air Inspirator:			Nozzles				Carbon Steel				
Pilot Flame Control: No Yes (Thermocouple)				Flanges				Carbon Steel			
8		<u> </u>			1				Blanket		
	Pilot Ignition:	Flamefront Generator	Inspirating In	ınitor	1	Insulation					
0				Insulation Pins					304 SS		
		Flectronic				Refractory Anghors			NA NA		
1			Automatic [Manual							
1		With Pilot Flame Control		Manual		Refract	ory Anchors			NA	
2				Manual_		Refracti Ladders a	ory Anchors and Platforms			NA NA	
3	Pilot Ignition Backup:	With Pilot Flame Control		Manual		Refracto Ladders a Stack Samp	ory Anchors			NA	

Other

				Item/Tag No	.:		Page		2 of 3
				Project No.:			Revision	1:	В
	LEED						Date:		27 February 2014
	FABRICATION -			Project:			Ву:		JS
	Environn	nental	Control Equipment	P.O. No.:		-	Checked	d:	SG
			ta Sheet	RFQ No.:		-	Approve		MS
	Client:			Ref. P&ID:		_	7.66.000		
	Site:			1.0			Supplier	··	LEED FABRICATION
	Unit/Lease:			Remarks:		_	Model N		L30-0006-00
	Omey Lease.			EQUIPMENT	SPECI	FICATION	Wiodeli	10	230-0000-00
56	Flame Detection:	□ Th	ermocouple		1	ry Equipment			
57	riaille Detection.		Scanner		Auxilia	Valves			NA
58	General Configuration:	0v	Scarner						
	deneral configuration.					Blowers		<u> </u>	NA
59						Dampers		<u> </u>	NA
60						Inlet KO / Liquid Seal			NA
61			6			Flame / Detonation Arrestor			Yes
62					Instrun	mentation & Controls		<u> </u>	
63						Solenoids / Shut-Off Valves		Check	with Sales for available config.
64			4			Flow Meters			NA
65						Calorimeter			NA
66						Pressure Switches/Transmitters			NA
67			4			Thermocouples		Check	with Sales for available config.
68						Temperature Switches/Transmitte	rs	<u> </u>	NA
69			a b			BMS		Check	with Sales for available config.
70						CEMS			NA
71						Other			NA
72									
73									
74			0						
75									
				FABRICATION	AND II	NSPECTION			
76	Special requirements		Skid Mounted			Eq	uipment	Info	
77			Other			Component			Weight / Dimensions
78					Burner	•			
79	Inspection	✓	Vendor Standard			Burner Assembly			
80			Other. Specify:		Stack				
81	Material Certification	✓	Vendor Standard			Stack Assembly			24 " OD x 24 ' H
82			MTR			Pilot Tip			
83			Certificate of Compliance			Pilot Line(s)			
84			Other (Specify):			Stack Assembly			
85	NDE		Vendor Standard		Auxilia	ry Equipment			
86			Radiography. Specify:			Blowers			
87			Ultrasonic. Specify:			Inlet KO / Liquid Seal			
88		一百	Liquid Penetrant.			Flame / Detonation Arrestor			
89		П	Magnetic Particles.			Skid			
90			PMI. Specify:		Instrun	nentation & Controls			
91		ᆸ	Other. Specify:			BMS			
92	Surface Preparation		Vendor Standard			Control Panel			
93		_ <u> </u>	Other. Specify:			Control runer			
94	Paint System		Vendor Standard						
95	,		Other. Specify:						
96	Finished Color	_ [7]	Vendor Standard						
97		ᆸ	Other. Specify:						
98			стол сросту.						
99									
	Additional Notes:							<u> </u>	

§ MMBTU/hr values are calculated based on 1500 BTU/scf gas

		Pressure			
Flare Size	# of Orifices (N)	(OZ/in²)	m³/s	mSCFD	MMBTU/hr
18	2	1	0.0021	6.34	0.39
18	2	2	0.0029	8.97	0.56
18	2	3	0.0036	10.99	0.68
18	2	4	0.0042	12.69	0.78
18	2	5	0.0046	14.18	0.88
18	2	6	0.0051	15.54	0.96
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0075	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

Enclosed (Passive Swirl) Flare Flow Rates

 $Q = \left[C_d \mathbf{A} \cdot \sqrt{\frac{2\left(\frac{P}{16}\right)R}{\rho}} \right] \mathbf{N}$

Convert to mSCFD $(Q \cdot M \cdot 24) / 1000$

3/8" Orifice: Dia =
Area =

0.00635 m 3.16692E-05 m²

6894.757 Conversion from PSI to Pa (R) $127132.8 \text{ m}^3/\text{s to ft}^3/\text{hr (M)}$

Cd = Density =

0.8 kg/m³

 m^3/s Flare Size Pressure (OZ/in²) # of Orifices (N) mSCFD 99% Combustion Efficiency 18 2 1 0.00207892 6.34316015 6.28 8.97058312 18 2 2 0.00294003 8.88 2 3 18 0.00360079 10.98667566 10.88 18 2 4 0.00415783 12.56 12.68632031 2 5 18 0.00464860 14.18373729 14.04 2 6 18 0.00509228 15.53750573 15.38 2 7 18 0.00550029 16.78242429 16.61 18 2 8 17.94116623 0.00588006 17.76 18 2 9 0.00623675 19.02948046 18.84 18 2 10 0.00657411 20.05883365 19.86 18 2 11 0.00689498 21.03788221 20.83 18 2 12 0.00720157 21.97335133 21.75 0.00749564 22.87058918 18 2 13 22.64 2 18 14 23.73393204 23.50 0.00777859 2 18 15 0.00805160 24.56695363 24.32 2 18 16 0.00831566 25.37264061 25.12 2 18 17 0.00857159 26.15351931 25.89 18 2 18 0.00882009 26.91174935 26.64 24 4 1 0.00415783 12.68632031 12.56 2 24 4 0.00588006 17.94116623 17.76 24 4 3 0.00720157 21.97335133 21.75 4 24 4 0.00831566 25.37264061 25.12 24 4 5 0.00929719 28.36747459 28.08 24 6 31.07501146 30.76 4 0.01018456 24 4 7 0.01100059 33.56484858 33.23 8 24 4 0.01176012 35.88233246 35.52 9 24 4 0.01247349 38.05896092 37.68 24 4 10 0.01314822 40.11766729 39.72 24 4 42.07576442 11 0.01378996 41.66 24 4 12 43.94670266 43.51 0.01440315 24 4 45.74117836 13 45.28 0.01499127 24 4 14 0.01555718 47.46786408 46.99 24 4 15 0.01610321 49.13390727 48.64 16 24 4 0.01663132 50.74528122 50.24 4 24 17 0.01714318 52.30703862 51.78 24 4 18 0.01764018 53.82349870 53.29 10 36 1 0.01039458 31.71580076 31.40 2 36 10 0.01470015 44.85291558 44.40 36 10 3 0.01800394 54.93337832 54.38 10 4 62.80 36 0.02078915 63.43160153 36 10 5 70.91868647 70.21 0.02324298 36 6 10 77.68752865 76.91 0.02546141 36 10 7 0.02750147 83.91212145 83.07

36	10	8	0.02940030	89.70583116	88.81
36	10	9	0.03118373	95.14740229	94.20
36	10	10	0.03287054	100.29416823	99.29
36	10	11	0.03447491	105.18941106	104.14
36	10	12	0.03600787	109.86675665	108.77
36	10	13	0.03747818	114.35294589	113.21
36	10	14	0.03889295	118.66966020	117.48
36	10	15	0.04025802	122.83476817	121.61
36	10	16	0.04157831	126.86320305	125.59
36	10	17	0.04285794	130.76759655	129.46
36	10	18	0.04410046	134.55874674	133.21
48	14	1	0.01455241	44.40212107	43.96
48	14	2	0.02058021	62.79408181	62.17
48	14	3	0.02520551	76.90672965	76.14
48	14	4	0.02910482	88.80424214	87.92
48	14	5	0.03254017	99.28616105	98.29
48	14	6	0.03564597	108.76254012	107.67
48	14	7	0.03850205	117.47697003	116.30
48	14	8	0.04116043	125.58816363	124.33
48	14	9	0.04365722	133.20636321	131.87
48	14	10	0.04601875	140.41183552	139.01
48	14	11	0.04826488	147.26517548	145.79
48	14	12	0.05041102	153.81345931	152.28
48	14	13	0.05246945	160.09412425	158.49
48	14	14	0.05445012	166.13752428	164.48
48	14	15	0.05636123	171.96867543	170.25
48	14	16	0.05820963	177.60848427	175.83
48	14	17	0.06000112	183.07463517	181.24
48	14	18	0.06174064	188.38224544	186.50

ATTACHMENT S

Emission Calculations

Company Name: EOT Production, LLC
Facility Name: GLO 76 Wellpad
Project Description: G70C Application

Site Wide Summary

Emission Source	Value	Units	Emission Unit ID(s)	Emission Point ID(s)	Control Device
Well(s)	9	per pad			
Storage Tank(s) (400 bbl)	10	per pad	S001 - S010	E001 - E010	None
Sand Separator Tank	1	per pad	S011	E011	None
Line Heater(s) (1.54 MMBtu/hr)	9	per pad	S012 - S020	E012 - E020	None
Thermoelectric Generator(s) (TEGs)	3	per pad	S021 - S023	E021 - E023	None
Dehydrator(s)	1	per pad	S024	C001	C001
Reboiler(s)	1	per pad	S025	E025	
Dehy Drip Tank	1	per pad	S026	E026	
Tank Combustor(s)	0	per pad			
Dehy Combustor(s)	1	per pad	C001	C001	N/A
Length of lease road	1,000	feet			

Emission	Emission	Emission	N	O_X	C	0	VO	OC	S	O_2	PN	M ₁₀	PN	M _{2.5}	C	O ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001	S024	Dehydrator					0.24	1.07							46.68	204.46
C001	C001	Dehy Combustor	0.30	1.34	0.26	1.12	0.02	0.07	0.00	0.01	0.02	0.10	0.02	0.10	393.52	1,723.60
C001	S024, C001		0.30	1.34	0.26	1.12	0.26	1.14	0.00	0.01	0.02	0.10	0.02	0.10	440.20	1,928.06
E001	S001	Storage Tank					0.05	0.20							0.13	0.53
E002	S002	Storage Tank					0.05	0.20							0.13	0.53
E003	S003	Storage Tank					0.05	0.20							0.13	0.53
E004	S004	Storage Tank					0.05	0.20							0.13	0.53
E005	S005	Storage Tank					0.05	0.20							0.13	0.53
E006	S006	Storage Tank					0.05	0.20							0.13	0.53
E007	S007	Storage Tank					0.05	0.20							0.13	0.53
E008	S008	Storage Tank					0.05	0.20							0.13	0.53
E009	S009	Storage Tank					0.05	0.20							0.13	0.53
E010	S010	Storage Tank					0.05	0.20							0.13	0.53
E011	S011	Sand Separator Tank					0.01	0.02							1.1E-02	0.05
E012	S012	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E013	S013	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E014	S014	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E015	S015	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E016	S016	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E017	S017	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E018	S018	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E019	S019	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E020	S020	Line Heater	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	180.18	789.20
E021	S021	Thermoelectric Generator	1.2E-03	0.01	9.9E-04	4.3E-03	6.5E-05	2.8E-04	7.1E-06	3.1E-05	8.9E-05	3.9E-04	8.9E-05	3.9E-04	1.52	6.65
E022	S022	Thermoelectric Generator	1.2E-03	0.01	9.9E-04	4.3E-03	6.5E-05	2.8E-04	7.1E-06	3.1E-05	8.9E-05	3.9E-04	8.9E-05	3.9E-04	1.52	6.65
E023	S023	Thermoelectric Generator	1.2E-03	0.01	9.9E-04	4.3E-03	6.5E-05	2.8E-04	7.1E-06	3.1E-05	8.9E-05	3.9E-04	8.9E-05	3.9E-04	1.52	6.65
E025	S025	Reboiler	0.07	0.30	0.06	0.25	3.7E-03	0.02	4.1E-04	1.8E-03	0.01	0.02	0.01	0.02	87.84	384.73
E026	S026	Dehy Drip Tank					0.05	0.20							0.13	0.53
E027	S027	Liquid Loading					3.71	0.96								
		Fugitives						11.44								937.07
		Haul Roads										0.53		0.05		
Facility Total	<u> </u>	<u> </u>	1.63	7.15	1.37	6.01	4.55	16.09	0.01	0.04	0.12	1.07	0.12	0.60	2,155.61	10,378.39
Facility Total (excluding fug	gitive emissions)		1.63	7.15	1.37	6.01	0.85	3.68	0.01	0.04	0.12	0.54	0.12	0.54	2,155.61	9,441.33

^{1.} Hourly emissions for liquid loading assume two hours of loading per day, five days per week. Emissions from the dehy drip tank are conservatively assumed equal to one produced fluid storage tank.

Company Name: EOT Production, LLC
Facility Name: GLO 76 Wellpad
Project Description: G70C Application

Site Wide Summary

Emission Source	Value	Units	Emission Unit ID(s)	Emission Point ID(s)	Control Device
Well(s)	9	per pad			
Storage Tank(s) (400 bbl)	10	per pad	S001 - S010	E001 - E010	None
Sand Separator Tank	1	per pad	S011	E011	None
Line Heater(s) (1.54 MMBtu/hr)	9	per pad	S012 - S020	E012 - E020	None
Thermoelectric Generator(s) (TEGs)	3	per pad	S021 - S023	E021 - E023	None
Dehydrator(s)	1	per pad	S024	C001	C001
Reboiler(s)	1	per pad	S025	E025	
Dehy Drip Tank	1	per pad	S026	E026	
Tank Combustor(s)	0	per pad			
Dehy Combustor(s)	1	per pad	C001	C001	N/A
Length of lease road	1,000	feet			

Emission	Emission	Emission	Forma	ldehyde	Ben	zene	Tol	uene	Ethyll	benzene	Xy	lenes	n-H	exane	Tota	l HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy												
C001	S024	Dehydrator			0.01	0.02	0.02	0.08	0.01	0.06	0.02	0.08	0.00	0.01	0.06	0.25
C001	C001	Dehy Combustor														
C001	S024, C001	·	< 0.01	< 0.01	0.01	0.02	0.02	0.08	0.01	0.06	0.02	0.08	0.00	0.01	0.06	0.25
E001	S001	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E002	S002	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E003	S003	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E004	S004	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E005	S005	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E006	S006	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E007	S007	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E008	S008	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E009	S009	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E010	S010	Storage Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01
E011	S011	Sand Separator Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
E012	S012	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E013	S013	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E014	S014	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E015	S015	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E016	S016	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E017	S017	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E018	S018	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E019	S019	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E020	S020	Line Heater	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.7E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
E021	S021	Thermoelectric Generator	8.8E-07	3.9E-06	2.5E-08	1.1E-07	4.0E-08	1.8E-07					2.1E-05	9.3E-05	2.2E-05	9.7E-05
E022	S022	Thermoelectric Generator	8.8E-07	3.9E-06	2.5E-08	1.1E-07	4.0E-08	1.8E-07					2.1E-05	9.3E-05	2.2E-05	9.7E-05
E023	S023	Thermoelectric Generator	8.8E-07	3.9E-06	2.5E-08	1.1E-07	4.0E-08	1.8E-07					2.1E-05	9.3E-05	2.2E-05	9.7E-05
E025	S025	Reboiler	5.1E-05	2.2E-04	1.4E-06	6.3E-06	2.3E-06	1.0E-05					1.2E-03	0.01	1.3E-03	0.01
E026	S026	Dehy Drip Tank					< 0.01	< 0.01							< 0.01	< 0.01
E027	S027	Liquid Loading			1.9E-03	4.8E-04	3.5E-03	9.1E-04	2.0E-04	5.1E-05	2.6E-03	6.9E-04	0.08	0.02	0.09	0.02
		Fugitives				< 0.01		0.01		< 0.01		< 0.01		0.07		0.11
		Haul Roads														
Facility Total			1.0E-03	4.4E-03	0.01	0.02	0.02	0.09	0.01	0.06	0.02	0.09	0.10	0.21	0.17	0.49
Facility Total (excluding fu	gitive emissions)		1.0E-03	4.4E-03	0.01	0.02	0.02	0.08	0.01	0.06	0.02	0.09	0.03	0.12	0.08	0.36

^{1.} Hourly emissions for liquid loading assume two hours of loading per day, five days per week. Emissions from the dehy drip tank are conservatively assumed equal to one produced fluid storage tank.

Company Name:
Facility Name:
Project Description:

EQT Production, LLC
GLO 76 Wellpad
G70C Application

Produced Fluid Storage Tanks and Dehy Drip Tank

Throughput Parameter	Value	Units		
Operational Hours	8,760	hrs/yr		
Total Produced Fluid Throughput for E&P 1	1.00	bbl/day (per tank) bbl/month		
Total Condensate Throughput	0	bbl/month		
Total Produced Water Throughput	19,506	bbl/month		

Description	Potential Throughput ^{2, 3} (gal/yr)
Produced Water and Condensate	9,831,213

¹ This pad is not expected to produce condensate. For the purposes of establishing PTE, produced water is conservatively assumed to contain 1% condensate. E&P Tank throughput is on a per-tank basis.

Storage Tanks (400 bbl, each) - Uncontrolled (Per tank)

	Total Emissions ¹				
Constituent	lb/hr	tpy			
Methane	0.005	0.021			
Ethane	0.007	0.031			
Propane	0.015	0.065			
Isobutane	0.009	0.039			
n-Butane	0.016	0.068			
Isopentane	0.003	0.011			
n-Pentane	0.001	0.005			
n-Hexane	< 0.001	0.001			
Cyclohexane	< 0.001	< 0.001			
Other Hexanes	< 0.001	0.002			
Heptanes	0.001	0.004			
Benzene	< 0.001	< 0.001			
Toluene	< 0.001	< 0.001			
Ethylbenzene	< 0.001	< 0.001			
Xylenes	< 0.001	0.001			
2,2,4-Trimethylpentane	< 0.001	< 0.001			
C8+ Heavies	0.001	0.004			
Total Emissions:	0.058	0.253			
Total VOC Emissions:	0.046	0.200			
Total HAP Emissions:	< 0.001	< 0.001			

 $^{^{\}rm 1}$ E&P TANK v2.0 calculates working, breathing and flashing losses and reports the sum as one total.

² Based on maximum historical produced water and condensate throughput for BIG-182 wellpad.

³ Potential liquid throughput is representative of liquid produced from each well, and liquid accumulated in the dehydrator drip tank.

² E&P TANK v2.0 emission calculations are based on 9/12/2014 condensate sample from BIG 192 wellpad (located within 5 miles of GLO-76 and best estimate for condensate composition as none is expected).

 Company Name:
 EQT Production, LLC

 Facility Name:
 GLO 76 Wellpad

 Project Description:
 G70C Application

Produced Fluid Storage Tanks and Dehy Drip Tank

Storage Tanks (400 bbl, each) - Controlled (Per tank)

	Total I	Emissions
Constituent	lb/hr	tpy
Methane	0.005	0.021
Ethane	0.007	0.031
Propane	0.015	0.065
Isobutane	0.009	0.039
n-Butane	0.016	0.068
Isopentane	0.003	0.011
n-Pentane	0.001	0.005
n-Hexane	< 0.001	0.001
Cyclohexane	< 0.001	< 0.001
Other Hexanes	< 0.001	0.002
Heptanes	0.001	0.004
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	0.001
2,2,4-Trimethylpentane	< 0.001	< 0.001
C8+ Heavies	0.001	0.004
Total Emissions:	0.058	0.253
Total VOC Emissions:	0.046	0.200
Total HAP Emissions:	< 0.001	< 0.001

Sand Separator Tank

Throughput Parameter	Value	Units
Tank Capacity	5,880	gallons
Operational Hours	8,760	hrs/yr
Total Produced Water and Sand Throughput	280	bbl/month
Percent Produced Water	50%	
Total Produced Water Throughput	140	bbl/month

¹ Conservatively assumes 2 turnovers/month of sand and produced water.

Description	Potential Throughput (gal/yr)
Produced Water and Sand	141,120

Sand Separator Tank (140 bbl) - Uncontrolled (Per tank)

Constituent	Total Er lb/hr	Total Emissions ¹ lb/hr tpy		
Methane	<0.001	0.002		
Ethane	0.001	0.002		
Propane	0.002	0.003		
Isobutane	0.002	0.004		
n-Butane	0.002	0.007		
Isopentane	< 0.001	0.001		
n-Pentane	< 0.001	0.001		
n-Hexane	< 0.001	< 0.001		
Cyclohexane	< 0.001	< 0.001		
Other Hexanes	< 0.001	< 0.001		
Heptanes	< 0.001	< 0.001		
Benzene	< 0.001	< 0.001		
Toluene	< 0.001	< 0.001		
Ethylbenzene	< 0.001	< 0.001		
Xylenes	< 0.001	< 0.001		
2,2,4-Trimethylpentane	< 0.001	< 0.001		
C8+ Heavies	< 0.001	< 0.001		
Total Emissions:	0.006	0.025		
Total VOC Emissions:	0.005	0.020		
Total HAP Emissions:	< 0.001	< 0.001		

 $^{^{1}}$ E&P TANK 2.0 calculates working, breathing and flashing losses and reports the sum as one total.

² E&P TANK v2.0 emission calculations are based on 9/12/2014 condensate sample from BIG 192 wellpad.

 Company Name:
 EQT Production, LLC

 Facility Name:
 GLO 76 Wellpad

 Project Description:
 G70C Application

Sand Separator Tank

Sand Separator Tank (140 bbl) - Controlled (Per tank)

	Total F	Total Emissions	
Constituent	lb/hr	tpy	
Methane	< 0.001	0.002	
Ethane	0.001	0.003	
Propane	0.002	0.007	
Isobutane	0.001	0.004	
n-Butane	0.002	0.007	
Isopentane	< 0.001	0.001	
n-Pentane	< 0.001	0.001	
n-Hexane	< 0.001	< 0.001	
Cyclohexane	< 0.001	< 0.001	
Other Hexanes	< 0.001	< 0.001	
Heptanes	< 0.001	< 0.001	
Benzene	< 0.001	< 0.001	
Toluene	< 0.001	< 0.001	
Ethylbenzene	< 0.001	< 0.001	
Xylenes	< 0.001	< 0.001	
2,2,4-Trimethylpentane	< 0.001	< 0.001	
C8+ Heavies	< 0.001	< 0.001	
Total Emissions:	0.006	0.025	
Total VOC Emissions:	0.005	0.020	
Total HAP Emissions:	0.000	0.000	

Company Name: Facility Name: Project Description: EQT Production, LLC
GLO 76 Wellpad
G70C Application

Line Heaters

Parameter	Value	Units
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,102	BTU/scf
Heat Input	1.54	MMBtu/hr (each)
Fuel Consumption	1.40E-03	MMscf/hr (each)
Potential Annual Hours of Operation	8,760	hr/yr

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions	
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
NO_x	100	1.4E-01	6.1E-01
CO	84	1.2E-01	5.1E-01
SO_2	0.6	8.4E-04	3.7E-03
PM Total	7.6	1.1E-02	4.6E-02
PM Condensable	5.7	8.0E-03	3.5E-02
PM ₁₀ (Filterable)	1.9	2.7E-03	1.2E-02
PM _{2.5} (Filterable)	1.9	2.7E-03	1.2E-02
VOC	5.5	7.7E-03	3.4E-02
Lead	5.0E-04	7.0E-07	3.1E-06
CO ₂ (Natural Gas Firing) ⁴	128,931	180	788
CH ₄ (Natural Gas Firing) ⁴	2.4	3.4E-03	1.5E-02
N ₂ O (Natural Gas Firing) ⁴	0.24	3.4E-04	1.5E-03

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions	
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
Methylnaphthalene (2-)	2.4E-05	3.4E-08	1.5E-07
3-Methylchloranthrene	1.8E-06	2.5E-09	1.1E-08
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.2E-08	9.8E-08
Acenaphthene	1.8E-06	2.5E-09	1.1E-08
Acenaphthylene	1.8E-06	2.5E-09	1.1E-08
Anthracene	2.4E-06	3.4E-09	1.5E-08
Benz(a)anthracene	1.8E-06	2.5E-09	1.1E-08
Benzene	2.1E-03	2.9E-06	1.3E-05
Benzo(a)pyrene	1.2E-06	1.7E-09	7.3E-09
Benzo(b)fluoranthene	1.8E-06	2.5E-09	1.1E-08
Benzo(g,h,i)perylene	1.2E-06	1.7E-09	7.3E-09
Benzo(k)fluoranthene	1.8E-06	2.5E-09	1.1E-08
Chrysene	1.8E-06	2.5E-09	1.1E-08
Dibenzo(a,h) anthracene	1.2E-06	1.7E-09	7.3E-09
Dichlorobenzene	1.2E-03	1.7E-06	7.3E-06
Fluoranthene	3.0E-06	4.2E-09	1.8E-08
Fluorene	2.8E-06	3.9E-09	1.7E-08
Formaldehyde	7.5E-02	1.0E-04	4.6E-04
Hexane	1.8E+00	2.5E-03	1.1E-02
Indo(1,2,3-cd)pyrene	1.8E-06	2.5E-09	1.1E-08
Naphthalene	6.1E-04	8.5E-07	3.7E-06
Phenanthrene	1.7E-05	2.4E-08	1.0E-07
Pyrene	5.0E-06	7.0E-09	3.1E-08
Toluene	3.4E-03	4.7E-06	2.1E-05
Arsenic	2.0E-04	2.8E-07	1.2E-06
Beryllium	1.2E-05	1.7E-08	7.3E-08
Cadmium	1.1E-03	1.5E-06	6.7E-06
Chromium	1.4E-03	2.0E-06	8.6E-06
Cobalt	8.4E-05	1.2E-07	5.1E-07
Manganese	3.8E-04	5.3E-07	2.3E-06
Mercury	2.6E-04	3.6E-07	1.6E-06
Nickel	2.1E-03	2.9E-06	1.3E-05
Selenium	2.4E-05	3.4E-08	1.5E-07
Total HAP		2.6E-03	1.2E-02

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf)

³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).

 $^{^{\}rm 4}$ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Thermoelectric Generators (TEGs)

Parameter	Value	Units
Manufacturer	Global Thermoelectric	
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,102	BTU/scf
Heat Input	0.013	MMBtu/hr (each)
Fuel Consumption ¹	1.18E-05	MMscf/hr (each)
Potential Annual Hours of Operation	8,760	hr/yr

 $^{^{1}}$ Global Themoelectric specification sheet states 311 f^{3} /day at 1000 BTU/ft 3 .

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions	
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
NO_x	100	1.2E-03	5.2E-03
со	84	9.9E-04	4.3E-03
SO_2	0.6	7.1E-06	3.1E-05
PM Total	7.6	8.9E-05	3.9E-04
PM Condensable	5.7	6.7E-05	2.9E-04
PM ₁₀ (Filterable)	1.9	2.2E-05	9.8E-05
PM _{2.5} (Filterable)	1.9	2.2E-05	9.8E-05
VOC	5.5	6.5E-05	2.8E-04
Lead	5.00E-04	5.9E-09	2.6E-08
CO ₂ (Natural Gas Firing) ⁴	128,931	2	7
CH ₄ (Natural Gas Firing) ⁴	2.4	2.9E-05	1.3E-04
N ₂ O (Natural Gas Firing) ⁴	0.24	2.9E-06	1.3E-05

Thermoelectric Generators (TEGs)

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential Emissions	
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
Methylnaphthalene (2-)	2.4E-05	2.8E-10	1.2E-09
3-Methylchloranthrene	1.8E-06	2.1E-11	9.3E-11
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.9E-10	8.2E-10
Acenaphthene	1.8E-06	2.1E-11	9.3E-11
Acenaphthylene	1.8E-06	2.1E-11	9.3E-11
Anthracene	2.4E-06	2.8E-11	1.2E-10
Benz(a)anthracene	1.8E-06	2.1E-11	9.3E-11
Benzene	2.1E-03	2.5E-08	1.1E-07
Benzo(a)pyrene	1.2E-06	1.4E-11	6.2E-11
Benzo(b)fluoranthene	1.8E-06	2.1E-11	9.3E-11
Benzo(g,h,i)perylene	1.2E-06	1.4E-11	6.2E-11
Benzo(k)fluoranthene	1.8E-06	2.1E-11	9.3E-11
Chrysene	1.8E-06	2.1E-11	9.3E-11
Dibenzo(a,h) anthracene	1.2E-06	1.4E-11	6.2E-11
Dichlorobenzene	1.2E-03	1.4E-08	6.2E-08
Fluoranthene	3.0E-06	3.5E-11	1.5E-10
Fluorene	2.8E-06	3.3E-11	1.4E-10
Formaldehyde	7.5E-02	8.8E-07	3.9E-06
Hexane	1.8E+00	2.1E-05	9.3E-05
Indo(1,2,3-cd)pyrene	1.8E-06	2.1E-11	9.3E-11
Naphthalene	6.1E-04	7.2E-09	3.1E-08
Phenanthrene	1.7E-05	2.0E-10	8.8E-10
Pyrene	5.0E-06	5.9E-11	2.6E-10
Toluene	3.4E-03	4.0E-08	1.8E-07
Arsenic	2.0E-04	2.4E-09	1.0E-08
Beryllium	1.2E-05	1.4E-10	6.2E-10
Cadmium	1.1E-03	1.3E-08	5.7E-08
Chromium	1.4E-03	1.6E-08	7.2E-08
Cobalt	8.4E-05	9.9E-10	4.3E-09
Manganese	3.8E-04	4.5E-09	2.0E-08
Mercury	2.6E-04	3.1E-09	1.3E-08
Nickel	2.1E-03	2.5E-08	1.1E-07
Selenium	2.4E-05	2.8E-10	1.2E-09
Total HAP		2.2E-05	9.7E-05

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf)

³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).

⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Triethylene Glycol Dehydrator

Uncontrolled Regenerator Emissions			
Pollutant	(lbs/hr)	(lbs/day)	(tons/yr)
Carbon Dioxide	0.22	5.30	0.97
Methane	1.1264	27.0340	4.9336
Ethane	0.9511	22.8260	4.1658
Propane	0.6191	14.8590	2.7118
Isobutane	0.1933	4.6390	0.8465
n-Butane	0.3154	7.5700	1.3815
Isopentane	0.1261	3.0270	0.5525
n-Pentane	0.0876	2.1010	0.3835
Cyclopentane	0.0216	0.5190	0.0948
n-Hexane*	0.0584	1.4020	0.2558
Cyclohexane	0.0521	1.2500	0.2281
Other Hexanes	0.1347	3.2340	0.5902
Heptanes	0.2286	5.4870	1.0014
Methylcyclohexane	0.0708	1.7000	0.3103
2,2,4-Trimethylpentane*	0.0056	0.1340	0.0245
Benzene*	0.2478	5.9460	1.0852
Toluene*	0.8560	20.5430	3.7491
Ethylbenzene*	0.6544	15.7050	2.8661
Xylenes*	0.9003	21.6080	3.9434
C8 + Heavier Hydrocarbons	0.3203	7.6870	1.4029
Total Emissions	6.9696	167.2710	30.5270
Total Hydrocarbon Emissions	6.9696	167.271	30.5270
Total VOC Emissions	4.8921	117.412	21.4276
Total HAP Emissions	2.7224	65.338	11.9241

Pollutant	(lbs/hr)	(lbs/day)	(tons/yr)
Carbon Dioxide	0.96	23.09	4.21
Methane	89.8666	2156.7980	393.6156
Ethane	18.3011	439.2260	80.1588
Propane	4.6333	111.2000	20.2940
Isobutane	0.8396	20.1520	3.6777
n-Butane	0.9808	23.5400	4.2960
Isopentane	0.3135	7.5240	1.3730
n-Pentane	0.1642	3.9420	0.7194
Cyclopentane	0.0107	0.2570	0.0470
n-Hexane*	0.0528	1.2670	0.2312
Cyclohexane	0.0120	0.2880	0.0526
Other Hexanes	0.1700	4.0810	0.7447
Heptanes	0.0878	2.1070	0.3845
Methylcyclohexane	0.0114	0.2730	0.0498
2,2,4-Trimethylpentane*	0.0047	0.1130	0.0206
Benzene*	0.0056	0.1340	0.0245
Toluene*	0.0109	0.2600	0.0475
Ethylbenzene*	0.0042	0.1020	0.0185
Xylenes*	0.0038	0.0900	0.0165
C8 + Heavier Hydrocarbons	0.0187	0.4480	0.0817
Total Emissions	115.4917	2771.8010	505.8537
Total Hydrocarbon Emissions	115.4917	2771.8010	505.8537
Total VOC Emissions	7.3240	175.7770	32.0793
Total HAP Emissions	0.0819	1.9670	0.3589

GRI-GLYCalc Version 4.0 - EMIS	SIONS SUMMAR	Y ⁱ			
Controlled Combined Regenerator and Flash Tank Off Gas Emissions					
Pollutant	(lbs/hr)	(lbs/day)	(tons/yr)		
Carbon Dioxide	1.18	28.39	5.18		
Methane	1.8199	43.6770	7.9710		
Ethane	0.3850	9.2410	1.6865		
Propane	0.1050	2.5210	0.4601		
Isobutane	0.0207	0.4960	0.0905		
n-Butane	0.0259	0.6220	0.1136		
Isopentane	0.0088	0.2110	0.0385		
n-Pentane	0.0050	0.1210	0.0221		
Cyclopentane	0.0006	0.0160	0.0028		
n-Hexane*	0.0022	0.0530	0.0097		
Cyclohexane	0.0013	0.0310	0.0056		
Other Hexanes	0.0061	0.1460	0.0267		
Heptanes	0.0063	0.1520	0.0277		
Methylcyclohexane	0.0016	0.0390	0.0072		
2,2,4-Trimethylpentane*	0.0002	0.0050	0.0009		
Benzene*	0.0051	0.1220	0.0222		
Toluene*	0.0173	0.4160	0.0759		
Ethylbenzene*	0.0132	0.3160	0.0577		
Xylenes*	0.0181	0.4340	0.0792		
C8 + Heavier Hydrocarbons	0.0068	0.1630	0.0297		
Total Emissions	2.4492	58.7810	10.7276		
Total Hydrocarbon Emissions	2.4492	58.7810	10.7276		
Total VOC Emissions	0.2443	5.8640	1.0701		
Total HAP Emissions	0.0561	1.3460	0.2457		

Enclosed Combustor Emissions						
Pollutant	Emission Factors (lb/MMBtu)	Combustor Potential Emissions (lb/hr) (tpy)		Pil Potential (lb/hr)	Emissions (tpy)	
NO _x	9.1E-02	0.30	1.32	< 0.01	0.01	
со	7.6E-02	0.25	1.11	< 0.01	0.01	
PM/PM ₁₀	6.9E-03	0.02	0.10	< 0.01	< 0.01	
SO ₂	5.4E-04	< 0.01	0.01	< 0.01	< 0.01	
VOC	5.0E-03	0.02	0.07	< 0.01	< 0.01	
CO ₂ (Natural Gas Firing)	116.997	389.60	1,706.45	3.51	15.37	
CH ₄ (Natural Gas Firing)	2.2E-03	0.01	0.03	< 0.01	< 0.01	
N ₂ O (Natural Gas Firing)	2.2E-04	< 0.01	< 0.01	< 0.01	< 0.01	

Emission factors for criteria pollutants are from AP-42 Section 1.4. Emission factors for GHG's are from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Combustor Specifications:

Combustor Rating	3.33 MMBtu/hr	Maximum rating for LEED 24" enclosed combustor
Pilot Rating	0.03 MMBtu/hr	
Capture Efficiency:	100 %	
Destruction Efficiency:	98 %	
Total Control Efficiency:	98 %	

^{*} HAPs

¹ Based on GRI GLYCalc 4.0 run at dry gas flowrate of 65 MMscf/day, tower temperature of 90 °F and tower pressure of 800 psig. The flash tank operating parameters are 75 °F and 70 psig. Emissions from both the flash tank and regenerator are routed to the combustor with 98% total control efficiency.

² All constituents that were below the detection limit were conservatively represented in the GRI GLYCalc run as half of the detection limit.

Company Name: Facility Name: Project Description: EQT Production, LLC GLO 76 Wellpad G70C Application

Reboiler

Parameter	Value	Units
Fuel Used	Natural Gas	
Higher Heating Value (HHV)	1,102	BTU/scf
Heat Input	0.75	MMBtu/hr
Fuel Consumption	6.81E-04	MMscf/hr
Potential Annual Hours of Operation	8,760	hr/yr

<u>Criteria and Manufacturer Specific Pollutant Emission Rates:</u>

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
NO_x	100	6.8E-02	3.0E-01
СО	84	5.7E-02	2.5E-01
SO_2	0.6	4.1E-04	1.8E-03
PM Total	7.6	5.2E-03	2.3E-02
PM Condensable	5.7	3.9E-03	1.7E-02
PM ₁₀ (Filterable)	1.9	1.3E-03	5.7E-03
PM _{2.5} (Filterable)	1.9	1.3E-03	5.7E-03
VOC	5.5	3.7E-03	1.6E-02
Lead	5.00E-04	3.4E-07	1.5E-06
CO ₂ (Natural Gas Firing) ⁴	128,931	88	384
CH ₄ (Natural Gas Firing) ⁴	2.4	1.7E-03	7.2E-03
N ₂ O (Natural Gas Firing) ⁴	0.24	1.7E-04	7.2E-04

Reboiler

<u>Hazardous Air Pollutant (HAP) Potential Emissions:</u>

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
Methylnaphthalene (2-)	2.4E-05	1.6E-08	7.2E-08
3-Methylchloranthrene	1.8E-06	1.2E-09	5.4E-09
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.1E-08	4.8E-08
Acenaphthene	1.8E-06	1.2E-09	5.4E-09
Acenaphthylene	1.8E-06	1.2E-09	5.4E-09
Anthracene	2.4E-06	1.6E-09	7.2E-09
Benz(a)anthracene	1.8E-06	1.2E-09	5.4E-09
Benzene	2.1E-03	1.4E-06	6.3E-06
Benzo(a)pyrene	1.2E-06	8.2E-10	3.6E-09
Benzo(b)fluoranthene	1.8E-06	1.2E-09	5.4E-09
Benzo(g,h,i)perylene	1.2E-06	8.2E-10	3.6E-09
Benzo(k)fluoranthene	1.8E-06	1.2E-09	5.4E-09
Chrysene	1.8E-06	1.2E-09	5.4E-09
Dibenzo(a,h) anthracene	1.2E-06	8.2E-10	3.6E-09
Dichlorobenzene	1.2E-03	8.2E-07	3.6E-06
Fluoranthene	3.0E-06	2.0E-09	8.9E-09
Fluorene	2.8E-06	1.9E-09	8.3E-09
Formaldehyde	7.5E-02	5.1E-05	2.2E-04
Hexane	1.8E+00	1.2E-03	5.4E-03
Indo(1,2,3-cd)pyrene	1.8E-06	1.2E-09	5.4E-09
Naphthalene	6.1E-04	4.2E-07	1.8E-06
Phenanthrene	1.7E-05	1.2E-08	5.1E-08
Pyrene	5.0E-06	3.4E-09	1.5E-08
Toluene	3.4E-03	2.3E-06	1.0E-05
Arsenic	2.0E-04	1.4E-07	6.0E-07
Beryllium	1.2E-05	8.2E-09	3.6E-08
Cadmium	1.1E-03	7.5E-07	3.3E-06
Chromium	1.4E-03	9.5E-07	4.2E-06
Cobalt	8.4E-05	5.7E-08	2.5E-07
Manganese	3.8E-04	2.6E-07	1.1E-06
Mercury	2.6E-04	1.8E-07	7.8E-07
Nickel	2.1E-03	1.4E-06	6.3E-06
Selenium	2.4E-05	1.6E-08	7.2E-08
Total HAP		1.3E-03	5.6E-03

 $^{^{\}rm 1}$ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, 1.4-3, & 1.4-4.

 $^{^2\} Emission\ Rate\ (lb/hr) = Rated\ Capacity\ (MMscf/hr) \times Emission\ Factor\ (lb/MMscf).$

³ Annual Emissions $(tons/yr)_{Potential} = (lb/hr)_{Emissions} \times (Maximum Allowable Operating Hours, 8760 hr/yr) \times (1 ton/2000 lb).$

 $^{^{\}rm 4}$ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Fugitive Components

Component Counts

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 — Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Total Fugitive Emissions (lb/hr)	TOC Annual Fugitive Emissions (tpy)
Valves	Gas	5.97E-03	485	6.38	27.96
Intermittent Pneumatic Devices	Gas	2.88E-01	45	28.56	41.70
Pump Seals	Light Liquid	1.99E-02	1	0.04	0.19
Pressure Relief Valves	Gas	1.04E-01	51	11.69	51.22
Connectors	All	1.83E-03	2,028	8.18	35.84
Open-Ended Lines	All	1.70E-03	25	0.09	0.41
			Emission Totals:	54.96	157.32

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic device emission factors are converted from Subpart W factors using the molecular weight of the gas and assuming 379 scf/lb-mol. Assumes intermittent pneumatic operation 1/3 of the year.

VOC and HAP Weight Fractions 1

Service	Weight Fraction VOC	Weight Fraction Hexane	Weight Fraction Benzene	Weight Fraction Toluene	Weight Fraction Ethylbenzene	Weight Fraction 2,2,4- trimethylpentane	Weight Fraction Xylene
Gas	0.047	2.9E-04	<0.001	5.2E-05	<0.001	1.3E-04	<0.001
Light Liquid	1.000	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
All	0.047	2.9E-04	<0.001	5.2E-05	<0.001	1.3E-04	<0.001

² Assumes one pump for liquid loading, no compressors, and one meter per wellhead. Pressure relief valves count includes an Enardo valve and Emergency Pressure Relief valve for each storage tank.

Company Name: EQT Production, LLC GLO 76 Wellpad Facility Name: **Project Description: G70C Application**

Fugitive Components

VOC and HAP Fugitive Emissions

Hourly Fugitive Emissions (lb/hr)	Annual Fugitive Emissions (tpy)
2.61	11.44
1.6E-02	7.0E-02
< 0.001	< 0.001
2.8E-03	0.01
< 0.001	< 0.001
7.0E-03	3.1E-02
< 0.001	< 0.001
2.6E-02	0.11
	Emissions (lb/hr) 2.61 1.6E-02 <0.001 2.8E-03 <0.001 7.0E-03 <0.001

GHG Fugitive Emissions from Component Leaks

Component	Component Count ¹	GHG Emission Factor ² (scf/hr/component)	CH ₄ Emissions ^{3,4} (tpy)	CO ₂ Emissions ^{3,4} (tpy)	CO ₂ e Emissions ⁵ (tpy)
Connectors	2,028	3.0E-03	1.0E+00	5.2E-03	25.31
Open-Ended Lines	25	6.1E-02	2.5E-01	1.3E-03	6.34
Pressure Relief Devices	51	4.0E-02	3.4E-01	1.7E-03	8.49
Pneumatic Devices	45	13.5	3.4E+01	1.7E-01	842.45
Valves	485	2.7E-02	2.2E+00	1.1E-02	54.48
Т	otal		37.5	0.192	937

25

CH₄. 89.74% CO₂: 0.17%

Carbon Dioxide (CO₂): Methane (CH₄):

¹ All weight fractions are based on a representative gas analysis.

The component count for pneumatics assumes 5 pneumatics per well.

Population emission factors for gas service in the Eastern U.S. from Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production, 40 CFR 98, Subpart W. The pneumatic controller value is equal to Subpart W value for intermittent controlled (scf/hr). Intermittent devices assume operation 1/3 of the time.

³ Calculated in accordance with Equations W-31, W-35 and W-36 in Subpart W of 40 CFR 98.

⁴ Mole fractions of CH₄ and CO₂ based on gas analysis:

⁵ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

Company Name: EQT Production, LLC
Facility Name: GLO 76 Wellpad
Project Description: G70C Application

Liquid Loading

Liquid Loading Losses:

Uncontrolled Loading Losses: $L_L (lb/10^3 gal) = 12.46 (SPM)/T$

Controlled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T * (1 - collection efficiency * control efficiency)

Parameter	Value	Description
S	1.45	saturation factor for splash loading (AP-42 Table 5.2-1)
Collection Efficiency	0%	
Control Efficiency	0%	
P	0.29	max true vapor pressure of liquid loaded (psia) - EPA TANKS Data
M	18.77	molecular weight of vapors (lb/lb-mol) - EPA TANKS Data
T	511.0	temperature of liquids loaded (deg R) - EPA TANKS Data

Description	Loading	Maximum	VOC Emissions
	Losses	Throughput ¹	Total Uncontrolled
	(lb/10³ gal)	(gal)	(tpy)
Liquids Hauling	0.2	9,972,333	0.96

¹ Sum of the annual throughput from each well at the pad including the sand separator tank.

Speciated HAP Emission Potential:

Constituent	mol% ¹	True Vapor Pressure of Organic Compounds in liquid (psia) ²	Partial Vapor Pressure (psia)	Mole Fraction	Molecular Weight	VOC Vapor Weight	Speciated Weight Fraction	Uncontrolled Speciated Liquid Loading Emissions (tpy) ³
Methane	0.095							
Ethane	0.602							
Propane	1.646	127.310	2.1E+00	3.2E-01	4.4E+01	1.4E+01	2.0E-01	1.9E-01
Isobutane	0.867	46.110	4.0E-01	6.1E-02	5.8E+01	3.6E+00	4.9E-02	4.7E-02
n-Butane	2.986	32.045	9.6E-01	1.5E-01	5.8E+01	8.5E+00	1.2E-01	1.1E-01
Isopentane	3.103	12.530	3.9E-01	5.9E-02	7.2E+01	4.3E+00	5.9E-02	5.7E-02
n-Pentane	3.943	8.433	3.3E-01	5.1E-02	7.2E+01	3.7E+00	5.1E-02	4.9E-02
n-Hexane	4.692	2.436	1.1E-01	1.7E-02	8.6E+01	1.5E+00	2.1E-02	2.0E-02
Other Hexanes	4.939	2.436	1.2E-01	1.8E-02	8.6E+01	1.6E+00	2.2E-02	2.1E-02
Heptanes	14.686	0.735	1.1E-01	1.7E-02	9.8E+01	1.6E+00	2.2E-02	2.2E-02
Benzene	0.200	1.508	3.0E-03	4.6E-04	7.8E+01	3.6E-02	5.0E-04	4.8E-04
Toluene	1.138	0.425	4.8E-03	7.4E-04	9.2E+01	6.8E-02	9.4E-04	9.1E-04
Ethylbenzene	0.155	0.151	2.3E-04	3.6E-05	1.1E+02	3.8E-03	5.3E-05	5.1E-05
Xylenes	1.763	0.180	3.2E-03	4.8E-04	1.1E+02	5.1E-02	7.1E-04	6.9E-04
2,2,4-Trimethylpentane	0.031	0.596	1.8E-04	2.8E-05	1.1E+02	3.2E-03	4.5E-05	4.3E-05
C8+ Heavies	59.154	3.400	2.0E+00	3.1E-01	1.1E+02	3.3E+01	4.6E-01	4.4E-01
	100.0		6.54			72.15	1.00	
Total Emissions: Total HAP Emissions:								0.96 0.02

¹ An atmospheric analysis of a representative condensate sample (from wellpad OXF-131, Well #512441) is utilized to estimate the composition.

² Emission factors from AP-42 Section 7.1 "Liquid Storage Tanks" Tables 7.1-2, 7.1-3 and 7.1-5 (at 70 deg F or ~21 deg C) and Handbook of Chemistry and Physics: 84th Edition (at 295 K)

³ Speciated emissions (tpy) = Speciated Weight Fraction x Calculated Controlled Liquid Loading Emissions (tpy). As methane and ethane will flash off prior to loading, the emissions from these constituents are not included in the speciation.

Company Name: EQT Production, LLC
Facility Name: GLO 76 Wellpad
Project Description: G70C Application

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

Unpaved Roads: E (lb/VMT) = $k(s/12)^a(W/3)^b$)*[(365-p)/365]

	PM	PM_{10}	$PM_{2.5}$	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
a	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile/trip)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy)) PM _{2.5}
Liquids Hauling	20	40	30	0.38	2,493	944	0	2.02	0.52	0.052
Employee Vehicles	3	3	3	0.38	200	76	0	0.06	0.01	0.001
Total Potential Emissions								2.08	0.53	0.05

Company Name: EQT Production, LLC
Facility Name: GLO 76 Wellpad
Project Description: G70C Application

Combustor Flow Rate Calculations

Component	lb/hr	lb-mol/hr	mol%	MW lb/lb-mol	MW in Mixture
Carbon Dioxide	1.183	0.027	0.004	44.01	0.18
Nitrogen	0.557	0.020	0.003	28.00	0.08
Methane	91.030	5.675	0.864	16.04	13.85
Ethane	19.251	0.640	0.097	30.07	2.93
Propane	5.249	0.119	0.018	44.10	0.80
sobutane	1.033	0.018	0.003	58.12	0.16
n-Butane	1.296	0.022	0.003	58.12	0.20
sopentane	0.439	0.006	0.001	72.15	0.07
n-Pentane	0.252	0.003	0.001	72.15	0.04
n-Hexane	0.111	0.001	< 0.001	85.67	0.02
Cyclohexane	0.064	0.001	< 0.001	84.16	0.01
Other Hexanes	0.305	0.004	0.001	86.18	0.05
Heptanes	0.317	0.003	< 0.001	97.88	0.05
2,2,4-Trimethylpentane	0.010	< 0.001	< 0.001	114.23	0.00
Benzene	0.254	0.003	< 0.001	78.11	0.04
Γoluene	0.867	0.009	0.001	92.14	0.13
Ethylbenzene	0.658	0.006	0.001	106.17	0.10
Xylenes	0.904	0.009	0.001	106.17	0.14
C8 + Heavies	0.339	0.003	< 0.001	107.73	0.052
Total	124.12	6.57			18.89

Total 124.12 0.57

1. Representative gas stream from the dehydration unit regenerator and flash tank flowing to the combustor.

	30	n	1
•	νU	v	1

0001		
Combustor Rating	3.33 MMBtu/hr	Max. input from Leed Enclosed Combustor Operations Manual
Pilot Rating	0.03 MMBtu/hr	Max. pilot fuel usage for Leed Enclosed Combustor
Pilot Rating	26,335 btu/hr	
Pilot Fuel Usage	24 scf/hr	
Combustor Flow Capacity	53.82 MSCFD	Max. flowrate from LEED Combustor Operations Manual
	2,243 scf/hr	
	37 scf/min	

Enclosed Combustor Mass Flow Rate (C001)

_	2,243	scf	*	1 lbmole	*	18.89 lb	=	112 lb	
		hr		379 scf		lbmole		hr	

 $\label{eq:mass_mass_flow} Mass \ flow \ rate \ (lb/hr) = \underbrace{Maximum \ Rated \ total \ flow \ capacity \ (scf/hr) \ * \ Vapor \ Molecular \ Weight \ (lb/lbmole)}_{Molar \ Gas \ Volume \ (scf/lbmole)}$

 Company Name:
 EQT Production, LLC

 Facility Name:
 GLO 76 Wellpad

 Project Description:
 G70C Application

Gas Analysis

Sample Location:Big 57 Deby InletSample Date:11/20/2014HHV (Btu/scf):1,102

Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.168	44.01	7.4E-02	4.1E-03	4.1E-01
Nitrogen	0.311	28.01	8.7E-02	4.9E-03	4.9E-01
Methane	89.740	16.04	1.4E+01	8.1E-01	8.1E+01
Ethane	8.085	30.07	2.4E+00	1.4E-01	1.4E+01
Propane	1.252	44.10	5.5E-01	3.1E-02	3.1E+00
Isobutane	0.160	58.12	9.3E-02	5.2E-03	5.2E-01
n-Butane	0.173	58.12	1.0E-01	5.6E-03	5.6E-01
Isopentane	0.047	72.15	3.4E-02	1.9E-03	1.9E-01
n-Pentane	0.023	72.15	1.7E-02	9.3E-04	9.3E-02
n-Hexane	0.006	86.18	5.2E-03	2.9E-04	2.9E-02
Cyclohexane	0.001	84.16	8.4E-04	4.7E-05	4.7E-03
Other Hexanes	0.021	86.18	1.8E-02	1.0E-03	1.0E-01
Heptanes	0.009	100.21	9.0E-03	5.1E-04	5.1E-02
2,2,4-Trimethylpentane	0.002	114.23	2.3E-03	1.3E-04	1.3E-02
Benzene*	< 0.001	78.11	0.0E+00	0.0E+00	0.0E+00
Toluene*	0.001	92.14	9.2E-04	5.2E-05	5.2E-03
Ethylbenzene*	< 0.001	106.17	< 0.001	< 0.001	< 0.001
Xylenes*	< 0.001	106.16	0.0E+00	0.0E+00	0.0E+00
C8 + Heavies	0.001	114.23	1.1E-03	6.4E-05	6.4E-03
Totals	100		17.82	1.00	100

TOC (Total)	99.52	99.10
VOC (Total)	1.70	4.68
HAP (Total)	0.01	0.05

Company Name: <u>EQT Production, LLC</u>
Facility Name: <u>GLO 76 Wellpad</u>
Project Description: <u>G70C Application</u>

Produced Water Throughput Sample Calculations

Throughput Parameter	Value	Units
Operational Hours Total Condensate Throughput Total Produced Water Throughput	8,760 0 19,506	hrs/yr bbl/month bbl/month
Produced Water % Condensate	1%	Conservativ e Estimate

Total Produced Fluid Throughput for E&P Tank is calculated according to the following:

Throughput per Tank
$$\left(\frac{bbl}{day}\right) = \frac{\left(\frac{bbl}{month} + \left(\frac{bbl}{month}\right) + \left(\frac{bb$$

(bbl +	19,506 bbl	* Condensate % * in PW	12 months	* 1 year	
	month	month		year	365 days 10	# of Tanks at Wellpad

Total Produced Fluid Throughput for E&P = 1 bbl day -tank

20150727_GLO-76_Sand Separator Tank. txt

```
*************************
      Project Setup Information
*************************
Project File : \t Client\EQT Corporation\West Virginia\WV Production Wells\153901.0056 WV Wellpads 2015\GLO 76\02
Draft\2015-0727_EQT_GLO-76_G70 Application\Attach I - Emission Calcs\E&P Tank\20150727_GLO-76_Sand Separator Tank.ept
Flowsheet Selection : 0il Tank with Separator Calculation Method : RVP Distillation
Control Efficiency : 100.0%
Known Separator Stream : Low Pressure 0il
Entering Air Composition : No
                               : EQT - GLO 76 Sand Separator Tank
: PTE for G70A Application
Filed Name
Well Name
Well ID
                               : Condensate Analysis from BIG-192 Wellpad (Sample date
9/12/2014)
Date
                               : 2015.07.27
     Data Input
********************
Separator Pressure : 1000.00[psig]
Separator Temperature : 60.00[F]
Ambient Tressure : 14.70[psi a]
Ambient Pressure
Ambient Temperature
                           : 55.00[F]
: 0.7861
C10+ SG
C10+ MW
                              : 168.15
-- Low Pressure Oil
            Component mol %
   No.
                                      0.0000
   1
            H2S
                                      0.0000
   2
            02
   3
            C02
                                      0.0060
   4
            N2
                                      0.0000
   5
            C1
                                      0.4330
            C2
                                      0.3350
   6
    7
            C3
                                      0.4850
   8
            i -C4
                                      0.2770
   9
            n-C4
                                      0.6680
   10
            i -C5
                                      0.6310
            n-C5
                                      0.5480
    11
    12
            C6
                                      1. 1670
                                      7. 7640
   13
            C7
                                     17.5600
    14
            C8
                                     14. 4830
47. 7340
0. 0370
    15
            C9
    16
            C10+
    17
            Benzene
   18
                                      0.9610
            Tol uene
   19
            E-Benzene
                                      0.2690
            Xyl enes
                                      5.8420
    20
    21
            n-C6
                                      0.7890
            224Tri methyl p
    22
                                      0.0110
```

Page 1

20150727_GL0-76_Sand Separator Tank. txt

Sal es Oi l						
Production Rate : 0.1[bbl/day] Days of Annual Operation : 365 [days/year] API Gravity : 59.11 Reid Vapor Pressure : 1.00[psia]						
****		*****	**********	*****		
*	Calculation R	esul ts				
* * * * * * * *		******	***********	*****		
E	mission Summary					
ltem		Uncontrolled	Uncontrolled			
Page	1		[lb/hr]	- E&P TANK		
	I HAPs I HC	0. 000 0. 026	0. 000 0. 006			
	, C2+ , C3+	0. 023 0. 020	0. 005 0. 005			
Unco	ntrolled Recove	ry Info.				
	Vapor HC Vapor GOR	1. 2600 x1E-3 1. 2600 x1E-3 12. 60	[MSCFD] [MSCFD] [SCF/bbl]			
E	mission Composi	ti on				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Component H2S 02 C02 N2 C1 C2 C3 i -C4 n-C4 i -C5 n-C5 C6 C7 C8 C9 C10+ Benzene Tol uene E-Benzene Xyl enes n-C6 224Tri methyl p Total	Uncontrolled [ton/yr] 0.000 0.000 0.000 0.000 0.002 0.003 0.007 0.004 0.007 0.001 0.001 0.000	Uncontrolled [lb/hr] 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.001 0.002 0.000			
Stream Data						

No. Component	0150727_GL0 MW	0-76_Sand S LP 0il	Separator 7 Flash Oil	Γank.txt Sale Oil	Flash Gas	W&S Gas
Total Emissions		mol %	mol %	mol %	mol %	mol %
mol % 1 H2S	34.80	0.0000	0.0000	0.0000	0.0000	0. 0000
0. 0000 2 02	32. 00	0. 0000	0.0000	0.0000	0.0000	0. 0000
0. 0000 3 C02	44. 01	0. 0060	0. 0059	0. 0000	0. 3678	0. 3046
0. 3052 4 N2	28. 01	0. 0000	0. 0000	0. 0000	0. 0000	0. 0000
0. 0000 5 C1	16. 04	0. 4330	0. 4186	0. 0000	79. 9252	21. 4832
22. 0208 6 C2	30. 07	0. 3350	0. 3331	0. 0001	10. 7360	17. 0907
17. 0323 7 C3	44. 10	0. 4850	0. 4843	0. 0068	4. 3275	24. 5099
24. 3242 8 i -C4	58. 12	0. 2770	0. 2769	0. 0598	0. 9311	11. 2021
11. 1077 9 n-C4	58. 12	0. 6680	0. 6678	0. 2967	1. 5436	19. 3414
19. 1777 10 i -C5	72. 15	0. 6310	0. 6310	0. 5921	0. 5384	2. 5906
2. 5717 11 n-C5	72. 15	0. 5480	0. 5480	0. 5349	0. 3400	1. 2104
1. 2024 12 C6	86. 16	1. 1670	1. 1672	1. 1827	0. 2138	0. 3846
0. 3830 13 C7	100. 20	7. 7640	7. 7653	7. 9044	0. 4571	0. 7648
0. 7619 14 C8	114. 23	17. 5600	17. 5631	17. 9012	0. 3151	0. 5529
0. 5507 15 C9	128. 28	14. 4830	14. 4856	14. 7700	0. 0868	0. 1725
0. 1717 16 C10+	168. 15	47. 7340	47. 7426	48. 6908	0. 0126	0. 0309
0. 0308 17 Benzene	78. 11	0. 0370	0. 0370	0. 0376	0. 0046	0. 0079
0. 0078 18 Tol uene	92. 13	0. 9610	0. 9612	0. 9792	0. 0321	0. 0548
0. 0546 19 E-Benzene	106. 17	0. 2690	0. 2690	0. 2743	0. 0029	0. 0052
0. 0051 20 Xyl enes	106. 17	5. 8420	5. 8430	5. 9572	0. 0536	0. 0982
0. 0978 21 n-C6	86. 18	0. 7890	0. 7891	0. 8009	0. 1113	0. 1945
	114. 24	0. 0110	0. 0110	0. 0112	0. 0005	0. 0009
0.0009						
MW		135. 89	135. 91	137. 77	21. 48	42. 30
42.11 Stream Mole Ratio		1. 0000	0. 9998	0. 9803	0. 0002	0. 0195
0.0197 Heating Value	[BTU/SCF]				1292. 84	2408. 79
2398.53 Gas Gravity	[Gas/Air]				0. 74	1. 46
1.45 Bubble Pt. @ 100F	[psi a]	18. 49	18. 01	1. 00		
Page 2					E&	P TANK
RVP @ 100F	[psi a]	5. 07 Page	5. 02 3	0. 96		

20150727_GLO-76_Sand Separator Tank.txt

Spec. Gravity @ 100F

0. 726 0. 726

0. 728

20151029_GL0-76_Produced Water Tank

```
*******************
      Project Setup Information
*************************
Project File : Z: \Client\EQT Corporation\West Virginia\WV Wells \163901.0058 WV Wells 2016\GLO 76\02 Draft\2016-0511 Class II AA (G70B App)\Att
S Emission Calcs\E&P Tank\20151029_GLO-76_Produced Water Tank.ept
Flowsheet Selection : Oil Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 100.0% Known Separator Stream : Low Pressure Oil Entering Air Composition : No
                            EQT - GLO 76 Produced Fluid Tanks
Filed Name
Well Name
Well ID
                              PTE for G70A Application
                            : Condensate Analysis from BIG-192 Wellpad (Sample date
9/12/2014)
                            : 2015. 10. 29
Date
*************************
      Data Input
*******************
Separator Pressure : 80.00[psig]
Separator Temperature : 60.00[F]
Ambi ent Pressure : 14.70[psia]
Ambi ent Temperature : 55.00[F]
C10+ SG : 0.7861
C10+ SG
C10+ MW
                           : 168.15
-- Low Pressure Oil
          Component mol %
                                  0.0000
          H2S
   1
                                  0.0000
   2
          02
   3
           C02
                                  0.0060
   4
           N2
                                  0.0000
   5
           C1
                                  0.4330
           C2
                                  0.3350
   6
   7
           C3
                                  0.4850
                                  0.2770
   8
           i -C4
   9
           n-C4
                                  0.6680
   10
           i -C5
                                  0.6310
                                  0.5480
   11
          n-C5
   12
           C6
                                  1. 1670
   13
           C7
                                  7.7640
   14
           C8
                                 17. 5600
                                 14. 4830
47. 7340
   15
           C9
           C10+
   16
   17
           Benzene
                                  0.0370
                                  0. 9610
   18
           Tol uene
   19
                                  0. 2690
           E-Benzene
          Xyl enes
   20
                                  5.8420
                                  0. 7890
   21
           n-C6
           224Trimethylp
                                  0.0110
```

Page 1

20151029 GLO-76 Produced Water Tank

20151029_GLO-76_Produced Water Tank Sales Oil							
Production Rate : 1[bbl/day] Days of Annual Operation : 365 [days/year] API Gravity : 59.11 Reid Vapor Pressure : 1.00[psia]							

* Calculation Results ***********************************							
Emission Summary							
	Uncontrolled	Uncontrol I ed					
Total HAPs	0. 000 0. 253 0. 231 0. 200	0. 000 0. 058 0. 053 0. 046					
	12. 5700 x1E-3 12. 5300 x1E-3 12. 57	[MSCFD] [MSCFD] [SCF/bbl]					
Emission Composi	ti on						
No Component 1 H2S 2 02 3 C02 4 N2 5 C1 6 C2 7 C3 8 i -C4 9 n-C4 10 i -C5 11 n-C5 12 C6 13 C7 14 C8 15 C9 16 C10+ 17 Benzene 18 Tol uene 19 E-Benzene 20 Xyl enes 21 n-C6 22 224Tri methyl p Total	Uncontrolled [ton/yr] 0.000 0.000 0.001 0.001 0.001 0.031 0.065 0.039 0.068 0.011 0.005 0.002 0.004 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.253						
Stream Data No. Component	 MW	LP Oil Flash Oil Sale Oil Flash Gas W&S Gas					
Page 2							

Tabal Fuirations	20151029_GL0-76_Produced Water Tank					
Total Emissions		mol %	mol %	mol %	mol %	mol %
mol % 1 H2S	34. 80	0.0000	0.0000	0.0000	0.0000	0.0000
0. 0000 2 02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000
0. 0000 3 C02	44. 01	0.0060	0.0060	0.0000	0.0000	0. 3065
0. 3065 4 N2	28. 01	0.0000	0.0000	0.0000	0.0000	0.0000
0. 0000 5 C1	16. 04	0. 4330	0. 4330	0.0000	0.0000	22. 1152
22. 1152 6 C2	30. 07	0. 3350	0. 3350	0. 0001	0.0000	17. 1058
17. 1058 7 C3	44. 10	0. 4850	0. 4850	0. 0067	0.0000	24. 4356
24. 4356 8 i - C4	58. 12	0. 2770	0. 2770	0. 0594	0.0000	11. 1733
11. 1733 9 n-C4	58. 12	0. 6680	0. 6680	0. 2975	0.0000	19. 2242
19. 2242 10 i - C5	72. 15	0. 6310	0. 6310	0. 5939	0.0000	2. 4885
2. 4885 11 n-C5	72. 15	0. 5480	0. 5480	0. 5361	0.0000	1. 1447
1. 1447 12 C6	86. 16	1. 1670	1. 1670	1. 1834	0.0000	0. 3483
0. 3483 13 C7	100. 20	7. 7640	7. 7640	7. 9055	0.0000	0. 6787
0. 6787 14 C8	114. 23	17. 5600	17. 5600	17. 9010	0.0000	0. 4832
0. 4832 15 C9	128. 28	14. 4830	14. 4830	14. 7692	0.0000	0. 1489
0. 1489 16 C10+	168. 15	47. 7340	47. 7340	48. 6867	0.0000	0. 0258
0. 0258 17 Benzene	78. 11	0. 0370	0. 0370	0. 0376	0.0000	0. 0071
0. 0071 18 Tol uene	92. 13	0. 9610	0. 9610	0. 9792	0.0000	0. 0484
0. 0484 19 E-Benzene	106. 17	0. 2690	0. 2690	0. 2743	0.0000	0. 0045
0. 0045 20 Xyl enes	106. 17	5. 8420	5. 8420	5. 9570	0.0000	0. 0854
0. 0854 21 n-C6	86. 18	0. 7890	0. 7890	0. 8013	0.0000	0. 1750
	114. 24	0. 0110	0. 0110	0. 0112	0.0000	0. 0008
0.0008						
MW		135. 89	135. 89	137. 77	0.00	41. 90
41.90 Stream Mole Ratio		1.0000	1. 0000	0. 9804	0.0000	0. 0196
	[BTU/SCF]				0.00	2387. 71
2387.71 Gas Gravi ty	[Gas/Air]				0.00	1. 45
1.45 Bubble Pt. @ 100F	[psi a]	18. 49	18. 49	1. 00		
Page 2					E8	&P TANK
RVP @ 100F	[psi a]	5. 07	5. 07	0. 96		

TANKS 4.0.9d

Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification:

GLO-76 Liquid Loading

City: State:

Company: Type of Tank: Description:

Vertical Fixed Roof Tank

Liquid Loading parameters for GLO-76 wellpad using OXF-131 atmospheric condensate analysis.

Tank Dimensions Shell Height (ft):

20.00 Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers: 12.00 20.00 10.00 16,800.00 593.59 Net Throughput(gal/yr): Is Tank Heated (y/n): 9,972,333.00

Ν

Paint Characteristics

Shell Color/Shade: Shell Condition Gray/Light Good Gray/Light Roof Color/Shade: Roof Condition: Good

Roof Characteristics

Cone Type: Height (ft)

0.00 Slope (ft/ft) (Cone Roof) 0.00

Breather Vent Settings

Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.70

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0 Report Page 2 of 6

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

GLO-76 Liquid Loading - Vertical Fixed Roof Tank

		Ten	aily Liquid Sinperature (de	eg F)	Liquid Bulk Temp		r Pressure		Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Produced Fluid	All	55.41	46.54	64.27	51.30	0.2195	0.1638	0.2912	18.7659			18.17	
Benzene						1.0267	0.7943	1.3132	78.1100	0.0000	0.0000	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						0.4614	0.3889	0.5438	58.1200	0.0002	0.0004	58.12	Option 2: A=5.09536, B=935.86, C=238.73
Decane (-n)						0.0301	0.0245	0.0369	142.2900	0.0044	0.0006	142.29	Option 1: VP50 = .026411 VP60 = .033211
Ethylbenzene						0.0923	0.0669	0.1257	106.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.5323	0.4043	0.6943	100.2000	0.0012	0.0029	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						1.6957	1.3330	2.1360	86.1700	0.0007	0.0052	86.17	Option 2: A=6.876, B=1171.17, C=224.41
sopentane						9.0329	7.1932	11.0836	72.1500	0.0002	0.0076	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Nonane (-n)						0.0588	0.0475	0.0729	128.2600	0.0014	0.0004	128.26	Option 1: VP50 = .051285 VP60 = .065278
Octane (-n)						0.1303	0.1035	0.1637	114.2300	0.0013	0.0008	114.23	Option 1: VP50 = .112388 VP60 = .145444
Pentane (-n)						6.1673	5.0301	7.5097	72.1500	0.0002	0.0065	72.15	Option 3: A=27691, B=7.558
Propane (-n)						100.7917	87.8791	115.0985	44.0956	0.0001	0.0356	44.10	Option 2: A=7.340862493, B=1104.2267744 C=291.70993941
Toluene						0.2857	0.2141	0.3766	92.1300	0.0001	0.0001	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						0.2153	0.1602	0.2863	18.0150	0.9900	0.9399	18.02	Option 1: VP50 = .178 VP60 = .247
Xylene (-o)						0.0601	0.0431	0.0827	106.1700	0.0002	0.0000	106.17	Option 2: A=6.998, B=1474.679, C=213.69

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

GLO-76 Liquid Loading - Vertical Fixed Roof Tank

Standing Losses (Ib):	Annual Emission Calcaulations	
Vapor Space Volume (cu ft):		6.6848
Vapor Space Expansion Factor: 0.0245	Vapor Space Volume (cu ft):	1,130.9734
Vented Vapor Saturation Factor: Tank Vapor Space Volume: Vapor Space Volume (cu ft): 1,130.9734 Tank Diameter (ft): 1,20000 Vapor Space Cutage (ft): 1,00000 Tank Shell Height (ft): 20,0000 Roof Outage (Cone Roof) Roof Outage (Cone Roof) Roof Outage (Cone Roof) Roof Outage (It): 0,0000 Roof Height (ft): 0,0000 Roof Height (ft): 0,0000 Roof Height (ft): 0,0000 Roof Height (ft): 0,0000 Shell Radius (ft): 0,0000 Shell Radius (ft): 0,0000 Vapor Density Vapor Density Vapor Density (blou ft): Vapor Density (blou ft): Vapor Molecular Weight (Ib/Ib-mole): Vapor Pensity (Ib/Ib-mole): Vapor Space Expansion Temp. (deg. R): 10,131 Vapor Pensity (Ib/Ib-mole): Vapor Space Expansion Factor Vapor Space Expansion Factor: Vapor Space Expansion Factor: Vapor Space Expansion Factor: Vapor Space Expansion Factor: Vapor Pensure Range (ges, R): 35.4636 Daily Vapor Pensure Range (ges): Vapor Pensure Range (spai): Vapor Pensure Range Value (Ib/Ib-mole): Vapor Pensure Range (Ib/Ib-mole): Vapor Pensure Range (Ib/Ib-mole): Vapor Pensure Range (Ib/Ib-mole): Vapor Pensure at Daily Musmum Liquid Surface Temperature (Ispai): 0,2195 Vapor Molecular Weight (Ib/Ib-mole): 1,214 Vapor Molecular Weight (Ib/Ib-mole): 2,214 Daily May. Liquid Surface Temp. (deg R): Daily Miniculuid Surface Temp	Vapor Density (lb/cu ft):	0.0007
Tank Vapor Space Volume: Vapor Space Volume (cu ft): 1,130.9734 Tank Diameter (ft): 1,20000 Vapor Space Outage (ft): 1,00000 Tank Shell Height (ft): 2,00000 Average Liquid Height (ft): 0,00000 Average Liquid Height (ft): 0,00000 Roof Outage (th): 0,00000 Roof Outage (Cone Roof) Roof Outage (Cone Roof) Roof Outage (Cone Roof) Roof Outage (th): 0,00000 Roof Slope (ft/ft): 0,000000 Roof Slope (ft/ft): 0,000000 Roof Slope (ft/ft): 0,000000 Roof Slope (ft/ft): 0,0000000 Roof Slope (ft/ft): 0,00000000000000000000000000000000000		
Vapor Space Volume (cu ft):	Vented Vapor Saturation Factor:	0.8958
Vapor Space Volume (cu ft):	Tank Vapor Space Volume:	
Tank Diameter (ft): 12,0000 Yapor Space Outage (ft): 10,0000 Tank Shell Height (ft): 20,0000 Roof Outage (cone Roof) Roof Outage (ft): 0,0000 Roof Outage (ft): 0,0000 Roof Height (ft): 0,0000 Shell Radius (ft): 0,0000 Shell Radius (ft): 0,0000 Shell Radius (ft): 0,0000 Yapor Density Vapor Density (blou ft): 0,0000 Yapor Molecular Weight (ft/blb-mole): 18,7659 Vapor Pressity (blou ft): 0,0000 Yapor Molecular Weight (ft/blb-mole): 18,7659 Vapor Pressure at Daily Average Liquid Sufface Temperature (psia): 0,2195 Daily Average Ambient Temp. (deg. R): 515,0759 Daily Average Ambient Temp. (deg. R): 515,0759 Daily Average Ambient Temp. (deg. R): 10,731 Liquid Bulk Temperature (deg. R): 10,731 Liquid Bulk Temperature (deg. R): 10,4000 Tank Paint Solar Absorptance (Roof): 0,5400 Tank Paint Solar Absorptance (Roof): 0,5400 Tank Paint Solar Absorptance (Roof): 0,5400 Daily Total Solar Insulation Factor (Vapor Space Expansion Factor: 0,0243 Daily Vapor Temperature Range (deg. R): 35,4636 Daily Vapor Temperature Range (deg. R): 35,4636 Daily Vapor Temperature Range (deg. R): 0,7300 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 0,1274 Breather Vent Press. Setting Range(psia): 0,1274 Breather Vent Press. Setting Range (psia): 0,2195 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 0,2195 Daily May. Liquid Surface Temp. (deg. R): 550,62100 Daily Max. Liquid Surface Temp. (deg. R): 550,62100 Daily Max. Liquid Surface Temp. (deg. R): 523,9417 Daily Ambient Temperature (psia): 0,2912 Daily Max. Liquid Surface Temp. (deg. R): 523,9417 Daily Ambient Temperature (psia): 0,2912 Daily Max. Liquid Surface Temp. (deg. R): 523,9417 Daily Max. Liquid Surface Temp. (deg. R): 523,9417 Daily Max. Liquid Surface Temp. (deg. R): 523,9417 Daily Ambient Temperature (psia): 0,2912 Daily Max. Liquid Surface Temp. (deg. R): 523,9417 Daily Ambient Temperature (psia):		1,130.9734
Vapor Space Outage (ft):		
Average Liquid Height (ft): 10.0000 Roof Outage (tc): 0.0000 Roof Outage (Cone Roof) Roof Outage (tt): 0.0000 Roof Outage (tt): 0.0000 Roof Slope (trth): 0.0000 Shell Radius (tt): 0.0000 Vapor Density (blout tt): 0.0007 Vapor Molecular Weight (lb/lb-mole): 18.7659 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 0.2195 Daily Avg. Liquid Surface Temp. (deg. R): 515.0759 Daily Avg. Liquid Surface Temp. (deg. R): 49.0583 Ideal Gas Constant R (psia cult / (lb-mol-deg R)): 10.731 Liquid Bulk Temperature (deg. R): 51.09883 Tank Paint Solar Absorptance (Roof): 0.5400 Daily Tank Paint Solar Insulation Factor (Btu/sqft day): 1.193.8870 Vapor Space Expansion Factor Vapor Space Expansion Factor: 0.0243 Daily Vapor Temperature (range (psia): 0.1274 Breather Vent Press. Setting Range(psia): 0.7300 Vapor Pressure at Daily Average Liquid Surface Temperature (rsia): 0.1274 Surface Temperature (rsia): 0.1638 Vapor Pressure at Daily Average Liquid Surface Temperature (rsia): 0.1638 Vapor Pressure at Daily Average Liquid Surface Temperature (rsia): 0.2912 Daily Ang. Liquid Surface Temp. (deg R): 515.0759 Daily Max. Liquid Surface Temp. (deg R): 523.9417 Daily Amp Incluid Surface Temp. (deg R): 5329417 Daily Amp Incluid Surface Temp. (deg R): 5329417 Daily Amp Incluid Surface Temp. (deg R): 5329417 Daily Amp Incluid Surface Temp. (deg R): 5339417 Daily Ampient Temp Range (deg. R): 5339417 Daily Ampient Temp Range (deg. R): 5339417 Daily Ampient Temperature (rsia): 0.293330000	Vapor Space Outage (ft):	10.0000
Roof Outage (Cone Roof)	Tank Shell Height (ft):	
Roof Outage (Cone Roof) Roof Outage (It):		
Roof Outage (ft):	Roof Outage (ft):	0.0000
Noof Height (ft):		
Roof Slope (ft/ft): 0.0000 Shell Radius (ft): 0.0000 Vapor Density (bl/cu ft): 0.0007 Vapor Density (bl/cu ft): 0.0007 Vapor Obensity (bl/cu ft): 18.7659 Vapor Obensity (bl/cu ft): 18.7659 Vapor Pressure at Daily Average Liquid 0.2195 Surface Temperature (psie): 9.515,0759 Daily Average Arnbient Temp. (deg. F): 49.0583 Ideal Gas Constant R (gsia cut ft (bt-mol-deg Rt): 510,9883 Tank Paint Solar Absorptance (Rof): 0.5400 Daily Total Solar Insulation 510,9883 Tank Paint Solar Absorptance (Rof): 0.5400 Daily Total Solar Insulation 5400 Factor (Btu/sqft day): 1,193.8870 Vapor Space Expansion Factor Vapor Space Expansion Factor: Vapor Space Expansion Factor: 0.0243 Daily Vapor Temperature (psia): 0.1274 Breather Vern Press. Setting Range(gba): 0.1274 Surface Temperature (psia): 0.1295 Vapor Pressure and Paily Maximum Liquid 0.1638 Supor Pressure at a Daily Maximum Liquid <		
Vapor Density Vapor Molecular Weight (Ib/Ib-mole):		
Vapor Density (bb/cu ft): Vapor Density (bb/cu ft): Vapor Molecular Weight (lb/lb-mole): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg. R): Daily Avg. Liquid Surface Temp. (deg. R): John (bb-mol-deg R)): Ideal Gas Constant R (psia cut ft (bb-mol-deg R)): Liquid Bulk Temperature (deg. R): Jank Paint Solar Absorptance (Rof): Daily Total Solar Absorptance (Rof): Daily Total Solar Insulation Factor (Btu/sqft day): Vapor Space Expansion Factor Vapor Pressure Range (psia): Daily Vapor Temperature (Range (psia): Surface Temperature (psia): John Vapor Pressure at Daily Warden (ball) Surface Temperature (psia): Daily May Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R): Vapor Psessure at Daily Warage Liquid: Surface Temperature (psia): Daily Max. Liquid Surface Temp. (deg R): Da		
Vapor Density (Ib/Cu ft): 0.0007 Vapor Molecular Weight (Ib/Ib-mole): 18,7659 Vapor Pressure at Daily Average Liquid 18,7659 Surface Temperature (psisa): 0.2195 Daily Avg. Liquid Surface Temp. (deg. R): 49,0583 Daily Average Ambient Temp. (deg. F): 49,0583 Ideal Gas Constant R (psia cut ft (Ib-mol-deg R)): 10,731 Liquid Bulk Temperature (deg. R): 510,9683 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Total Solar Insulation 5400 Factor (Btu/sqft day): 1,193,8870 Vapor Space Expansion Factor Vapor Space Expansion Factor Vapor Space Expansion Factor 0.0243 Daily Vapor Temperature Range (deg. R): 35,4656 Daily Vapor Temperature (psia): 0.1274 Surface Temperature (psia): 0.1274 Surface Temperature (psia): 0.1274 Supor Pressure at Daily Warder (psia): 0.1274 Supor Pressure at Daily Warder (psia): 0.1274 Surface Temperature (psia): 0.2912 Sulface Temperature (psia): 0.2195 Supor Pre	Shell Radius (ft):	6.0000
Vapor Molecular Weight (Ib/Ib-mole): 18,7659 Vapor Pressure at Daily Average Liquid 5,7659 Vapor Pressure at Daily Average Liquid 5,15,0759 Daily Avg. Liquid Surface Temp. (deg. R): 515,0759 Daily Average Ambient Temp. (deg. R): 49,0583 Ideal Gas Constant R (psia culf. (Ib-mol-edg R)): 10,731 Liquid Bulk Temperature (deg. R): 510,9683 Tank Paint Solar Absorptance (Rofb): 0,5400 Tank Paint Solar Absorptance (Rofb): 0,5400 Daily Total Solar Insulation Factor (Btu/sqft day): Factor (Btu/sqft day): 1,193,8870 Vapor Space Expansion Factor 0,0243 Vapor Space Expansion Factor 0,0243 Vapor Space Expansion Factor 0,0243 Daily Vapor Temperature Range (deg. R): 35,4636 Daily Vapor Pressure Range (psia): 0,1274 Breather Vent Press. Setting Range(psia): 0,7300 Vapor Pressure at Daily Average Liquid 0,1638 Vapor Pressure at Daily Minimum Liquid 0,1638 Vapor Pressure at Daily Maximum Liquid 0,2912 Daily And, Liquid Surface Temp. (deg R):		
Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg. R): Daily Avg. Liquid Surface Temp. (deg. R): Separate Sepa		
Surface Temperature (psia): 0.2195		18.7659
Daily Avg. Liquid Surface Temp. (deg. R): 515.0759 Daily Average Ambient Temp. (deg. F): 49.0583 Ideal Gas Constant R (psia cut /t (lb-mol-deg R)): 10.731 Liquid Bulk Temperature (deg. R): 510.9883 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Total Solar Insulation 0.5400 Tank Paint Solar Absorptance (Roof): 0.5400 Daily Total Solar Insulation 1,193.8870 Vapor Space Expansion Factor Vapor Space Expansion Factor Vapor Space Expansion Factor 0.0243 Daily Vapor Tersesure Range (deg. R): 35.4636 Daily Vapor Tersesure Range (psia): 0.1274 Breather Vent Press. Setting Range(psia): 0.7300 Vapor Pressure at Daily Minmum Liquid 0.1274 Surface Temperature (psia): 0.1638 Vapor Pressure at Daily Maximum Liquid 0.2912 Surface Temperature (psia): 0.2912 Daily Alwa, Liquid Surface Temp. (deg R): 515.0759 Daily Min. Liquid Surface Temp. (deg R): 506.2100 Daily Min. Liquid Surface Temp. (deg R): 523.3417 Daily Alwa, Liquid Surface Temp. (deg R		0.2405
Daily Average Ambient Temp. (deg. F): 49.0583 Ideal Gas Constant R (psia outf / (lb-mol-edg R)): 10.731 Liquid Bulk Temperature (deg. R): 510.9683 Tank Paint Solar Absorptance (Shell): 0.5400 Tank Paint Solar Absorptance (Rofo): 0.5400 Daily Total Solar Insulation Factor (Buksqft day): Factor (Buksqft day): 1,193.8870 Vapor Space Expansion Factor 0.0243 Vapor Space Expansion Factor: 0.0243 Daily Vapor Temperature Range (deg. R): 35.4636 Daily Vapor Pressure Range (psia): 0.1274 Breather Vent Press. Setting Range(psia): 0.2195 Vapor Pressure at Daily Average Liquid 3.0490 Surface Temperature (psia): 0.2195 Vapor Pressure at Daily Minimum Liquid 3.0490 Surface Temperature (psia): 0.1638 Vapor Pressure at Daily Maximum Liquid 3.02912 Daily And, Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 505.2100 Daily Max. Liquid Surface Temp. (deg R): 523.9417 Daily Ambient Temp. Range (deg. R): 24		
Ideal Gas Constant R (psia cut / (lb-mol-deg R)): 10.731 Liquid Bulk Temperature (deg, R): 510.9883 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Total Solar Insulation Factor (Btu/sqt day): 1,193.8870 Vapor Space Expansion Factor Vapor Space Expansion Factor Vapor Space Expansion Factor Daily Yotal Solar Insulation Factor (Btu/sqt day): 0.0243 Daily Vapor Temperature Range (deg, R): 35.4636 Daily Vapor Pressure Range (psia): 0.1274 Breather Vent Press. Setting Range(psia): 0.1274 Breather Vent Press. Setting Range(psia): 0.1274 Starter Vent Press. Setting Range(psia): 0.1275 Daily Audit Liquid Surface Temperature (psia): 0.2912 Daily Audit Liquid Surface Temp. (deg R): 515.0759 Daily Min. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 52.3417 Daily Ambient Temp. Range (deg. R): 24.1833 Vented Vapor Saturation Factor Vented Vapor Saturation Factor Vented Vapor Saturation Factor Vented Vapor Saturation Factor Vented Vapor Saturation Factor: 0.8958 Vapor Pressure at Daily Varcage Liquid: Surface Temperature (psia): 0.2195 Vapor Molecular Weight (lb/lb-mole): 0.2195 Vapor Molecular Weight (lb/lb-mole): 0.2195 Vapor Molecular Weight (lb/lb-mole): 0.2195 Vapor Pressure at Daily Varcage Liquid Surface Temperature (psia): 0.2195 Vapor Molecular Weight (lb/lb-mole): 0.2195 Vapor Molecular Weight (lb/lb-mole): 0.2195 Vapor Molecular Weight (lb/lb-mole): 0.2195 Vapor Pressure at Daily Varcage Liquid Surface Temperature (psia): 0		
(psia culf / (lb-mol-edg R)): 10.731 Liquid Bulk Temperature (deg. R): 510.9863 Tank Paint Solar Absorptance (Shell): 0.5400 Tank Paint Solar Absorptance (Rofo): 0.5400 Tank Paint Solar Absorptance (Rofo): 0.5400 Tank Paint Solar Absorptance (Rofo): 0.5400 Tank Paint Solar Insulation 1,193.8870 Vapor Space Expansion Factor 0.0243 Vapor Space Expansion Factor: 0.0243 Daily Vapor Temperature Range (deg. R): 3.54636 Daily Vapor Pressure Range (psia): 0.1274 Breather Vent Press. Setting Range(psia): 0.7300 Vapor Pressure at Daily Average Liquid 0.2195 Vapor Pressure at Daily Minimum Liquid 0.2195 Vapor Pressure at Daily Maximum Liquid 0.2912 Daily Arg. Liquid Surface Temp. (deg R): 0.2912 Daily Mn. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 523.9417 Daily Ambient Temp. Range (deg. R): 24.1833 Vented Vapor Saturation Factor 0.8958 Vented Vapor Saturation Factor 0.2195 <		43.0303
Liquid Bulk Temperature (deg. R): 510.9683 Tank Paint Solar Absorptance (Shell): 0.5400 Tank Paint Solar Absorptance (Roof): 0.5400 Daily Total Solar Insulation Factor (Btu/sqt day): 1,193.8870 Vapor Space Expansion Factor Vapor Space Expansion Factor: 0.0243 Daily Vapor Temperature Range (deg. R): 35.4636 Daily Vapor Pressure Range (pisa): 0.1274 Breather Vent Press. Setting Range(psia): 0.7300 Vapor Pressure at Daily Varage Liquid Surface Temperature (psia): 0.1274 Supor Pressure at Daily Minimum Liquid Surface Temperature (psia): 0.1638 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 0.1638 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 0.2912 Daily Min. Liquid Surface Temp. (deg R): 515.0759 Daily Min. Liquid Surface Temp. (deg R): 502.2101 Daily Amblent Temp. Range (deg. R): 24.1833 Vented Vapor Saturation Factor 0.8958 Vapor Pressure at Daily Varage Liquid: Surface Temperature (psia): 0.2195 Vapor Molecular Weight (In/Ib-mole): 0.2195 Vapor Molecular Weight (In/Ib-mole): 0.2195 Vapor Molecular Weight (In/Ib-mole): 0.2195 Vapor Pressure at Daily Varage Liquid Surface Temperature (psia): 0.2195 Vapor Molecular Weight (In/Ib-mole): 0.2195 Vapor Pressure at Daily Varage Liquid Surface Temperature (psia): 0.2195 Vapor Molecular Weight (In/Ib-mole): 0.2195 Vapor Molecula		10.731
Tank Paint Solar Absorptance (Shell): 0.5400 Tank Paint Solar Absorptance (Roof): 0.5400 Tank Paint Solar Insulation 1,193.8870 Vapor Space Expansion Factor 0.0243 Vapor Space Expansion Factor: 0.0243 Daily Vapor Temperature Range (deg. R): 35.4636 Daily Vapor Temperature Range (psia): 0.1274 Breather Vent Press. Setting Range(psia): 0.7300 Vapor Pressure at Daily Average Liquid 0.2195 Surface Temperature (psia): 0.2195 Vapor Pressure at Daily Minimum Liquid 0.1638 Vapor Pressure at Daily Maximum Liquid 0.1638 Vapor Pressure at Daily Maximum Liquid 0.2912 Daily Avg. Liquid Surface Temp. (deg R): 0.2912 Daily Avg. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 523.9417 Daily Amb. Liquid Surface Temp. (deg R): 24.1833 Vented Vapor Saturation Factor Vented Vapor Saturation Factor Vented Vapor Saturation Factor 0.8958 Vapor Pressure at Daily Average Liquid: 0.2195 Supor Pressure at Daily Average Liquid:		510.9683
Tank Paint Solar Absorptance (Roof): Daily Total Solar Insulation Factor (Btu/sqft day): 1,193.8870 Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Daily Vapor Pressure at Daily Vareage Liquid Sufface Temperature (psia): Dapor Pressure at Daily Vamium Liquid Sufface Temperature (psia): Dapor Pressure at Daily Vamium Liquid Sufface Temperature (psia): Dapor Pressure at Daily Vamium Liquid Sufface Temperature (psia): Daily Mapor Pressure at Daily Mamium Liquid Sufface Temperature (psia): Daily Mapor Pressure at Daily Mamium Liquid Sufface Temperature (psia): Daily Man Liquid Surface Temp. (deg R): Daily Man Liquid Surface Temp. (deg R): Daily Man. Liquid Sur		
Factor (Btu/sqft day): 1,193.8870 Vapor Space Expansion Factor Vapor Space Expansion Factor: 0.0243 Daily Vapor Temperature Range (deg. R): 35.4636 Daily Vapor Pressure Range (psia): 0.1274 Breather Vent Press. Setting Range(psia): 0.7300 Vapor Pressure at Daily Vareage Liquid Sufface Temperature (psia): 0.2195 Vapor Pressure at Daily Natwigne Liquid Sufface Temperature (psia): 0.2195 Vapor Pressure at Daily Natwimum Liquid Sufface Temperature (psia): 0.1638 Vapor Pressure at Daily Natwimum Liquid Sufface Temperature (psia): 0.2912 Daily Ang. Liquid Sufface Temp. (deg R): 550.2100 Daily Max. Liquid Sufface Temp. (deg R): 506.2100 Daily Max. Liquid Sufface Temp. (deg R): 506.2100 Daily Max. Liquid Sufface Temp. (deg R): 24.1833 Vented Vapor Saturation Factor Vented Vapor Saturation Factor Vented Vapor Saturation Factor Vented Vapor Saturation Factor: 0.8958 Vapor Pressure at Daily Average Liquid: Sufface Temperature (psia): 0.2195 Vapor Molecular Weight (ib/Ib-mole): 10.0000 Working Losses (ib): 212.4802 Vapor Pacse ure at Daily Average Liquid Sufface Temperature (psia): 9.972.333.0000 Annual Net Throughput (gallyr.): 9.972.333.0001 Annual Net Throughput (gallyr.): 9.972.333.0000 Annual Turnovers: 935.913 Turnover Factor: 0.2172 Maximum Liquid Volume (gal): 16.800.0000 Maximum Liquid Height (ft): 20.0000 Working Loss Product Factor: 1.0000		0.5400
Vapor Space Expansion Factor 0.0243 Vapor Space Expansion Factor 0.0243 Daily Vapor Temperature Range (deg. R): 35.4636 Daily Vapor Temperature Range (psia): 0.1274 Breather Vent Press. Setting Range(psia): 0.7300 Vapor Pressure at Daily Average Liquid 0.2195 Surface Temperature (psia): 0.2195 Vapor Pressure at Daily Minimum Liquid 0.1638 Vapor Pressure at Daily Maximum Liquid 0.2912 Daily Avg. Liquid Surface Temp. (deg R): 0.2912 Daily May. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 505.2100 Daily Max. Liquid Surface Temp. (deg R): 223.9417 Daily Ambern Temp. Range (deg. R): 24.1833 Vented Vapor Saturation Factor 0.8958 Vapor Fasce Outage (ff): 0.2195 Vapor Molecular Weight (fib*lb-mole): 0.2195 Vapor Molecular Weight (fib*lb-mole): 18.7659 Vapor Pressure at Daily Average Liquid 0.2195 Vapor Pressure at Daily Average Liquid 0.2195 Vapor Fasce Outage (ff): 0.2195 <	Daily Total Solar Insulation	
Vapor Space Expansion Factor: 0.0243 Daily Vapor Temperature Range (deg. R): 35.4636 Daily Vapor Temperature Range (gisa): 0.1274 Breather Vent Press. Setting Range(psia): 0.7300 Vapor Pressure at Daily Average Liquid 0.2195 Surface Temperature (psia): 0.2195 Vapor Pressure at Daily Minimum Liquid 0.1638 Vapor Pressure at Daily Maximum Liquid 0.2912 Daily Avg. Liquid Surface Temp. (deg R): 0.2912 Daily Avg. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 505.2100 Daily Max. Liquid Surface Temp. (deg R): 223.9417 Daily Ambern Temp. Range (deg. R): 24.1833 Vented Vapor Saturation Factor Vented Vapor Saturation Factor Vented Vapor Saturation Factor: 0.8958 Vapor Pressure at Daily Average Liquid: 0.2195 Supor Pressure at Daily Average Liquid: 11.0000 Working Losses (lb): 212.4802 Vapor Molecular Weight (lb/lb-mole): 212.4802 Vapor Pressure at Daily Average Liquid 0.2195 Vapor Pressure at Daily Average Liquid	Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor: 0.0243 Daily Vapor Temperature Range (deg. R): 35.4636 Daily Vapor Temperature Range (gisa): 0.1274 Breather Vent Press. Setting Range(psia): 0.7300 Vapor Pressure at Daily Average Liquid 0.2195 Surface Temperature (psia): 0.2195 Vapor Pressure at Daily Minimum Liquid 0.1638 Vapor Pressure at Daily Maximum Liquid 0.2912 Daily Avg. Liquid Surface Temp. (deg R): 0.2912 Daily Avg. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 505.2100 Daily Max. Liquid Surface Temp. (deg R): 223.9417 Daily Ambern Temp. Range (deg. R): 24.1833 Vented Vapor Saturation Factor Vented Vapor Saturation Factor Vented Vapor Saturation Factor: 0.8958 Vapor Pressure at Daily Average Liquid: 0.2195 Supor Pressure at Daily Average Liquid: 11.0000 Working Losses (lb): 212.4802 Vapor Molecular Weight (lb/lb-mole): 212.4802 Vapor Pressure at Daily Average Liquid 0.2195 Vapor Pressure at Daily Average Liquid	Vapor Space Expansion Factor	
Daily Vapor Pressure Range (psia): 0.1274 Breather Vent Press. Setting Range(psia): 0.7300 Vapor Pressure at Daily Average Liquid 0.2195 Surface Temperature (psia): 0.2195 Vapor Pressure at Daily Minimum Liquid 0.1638 Vapor Pressure at Daily Maximum Liquid 0.2912 Surface Temperature (psia): 0.2912 Daily Avg. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 505.2100 Daily Max. Liquid Surface Temp. (deg R): 223.9417 Daily Ambern Temp. Range (deg. R): 24.1833 Vented Vapor Saturation Factor 4.8858 Vented Vapor Saturation Factor 0.8958 Vapor Pressure at Daily Average Liquid: 0.2195 Surface Temperature (psia): 0.2195 Vapor Molecular Weight (Ib/Ib-mole): 1.0000 Working Losses (Ib): 212.4802 Vapor Pressure at Daily Average Liquid 0.2195 Vapor Prescure at Daily Average Liquid 0.2195 Vapor Throughget (Igallyr.): 9.972,333.000 Annual Net Throughput (gallyr.): 9.972,333.000 Annu		0.0243
Breather Vent Press. Setting Range(psia): 0.7300 Vapor Pressure at Daily Average Liquid 0.2195 Vapor Pressure at Daily Minimum Liquid 0.2195 Vapor Pressure at Daily Minimum Liquid 0.638 Vapor Pressure at Daily Maximum Liquid 0.2912 Sufface Temperature (psia): 0.2912 Daily May Liquid Surface Temp. (deg R): 506.2100 Daily Min. Liquid Surface Temp. (deg R): 508.2100 Daily May Liquid Surface Temp. (deg R): 523.9417 Daily Ambient Temp. Range (deg. R): 24.1833 Vented Vapor Saturation Factor 0.8958 Vapor Space Outage (ft): 0.2195 Vapor Space Outage (ft): 10.0000 Working Losses (lb): 212.4802 Vapor Molecular Weight (bilb-mole): 18.7659 Vapor Pressure at Daily Average Liquid 0.2195 Vapor Molecular Weight (bilb-mole): 9.972.333.0000 Annual Net Throughput (gailyr.): 9,972.333.0000 Annual Net Throughput (gailyr.): 9,972.333.0000 Annual Net Throughput (gailyr.): 9,972.333.0000 Annual Net Throughput (gailyr.): 9,972.333.0000 <t< td=""><td></td><td></td></t<>		
Vapor Pressure at Daily Average Liquid Surface Temperature (psis): 0.2195 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psis): 0.1638 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psis): 0.2912 Daily Avg. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 523.9417 Daily Ambient Temp. Range (deg R): 523.9417 Daily Ambient Temp. Range (deg R): 24.1833 Vented Vapor Saturation Factor Vented Vapor Saturation Factor 0.8958 Vapor Pressure at Daily Average Liquid: Surface Temperature (psis): 0.2195 Vapor Molecular Weight (light)-mole): 212.4802 Vapor Molecular Weight (light)-mole): 212.4802 Vapor Molecular Weight (light)-mole): 0.2195 Vapor Pressure at Daily Average Liquid Surface Temperature (psis): 0.2195 Vapor Pressure at Daily Average Liquid Surface Temperature (psis): 0.2195 Vapor Pressure at Daily Average Liquid Surface Temperature (psis): 0.2195 Vapor Pressure at Daily Average Liquid Vapor Vapor Pressure at Daily Average Liquid Vapor		
Surface Temperature (psisi): 0.2195		0.7300
Vapor Pressure at Daily Minimum Liquids 0.1638 Surface Temperature (psish): 0.1638 Vapor Pressure at Daily Maximum Liquid 0.2912 Daily Avg. Liquid Surface Temp. (deg R): 515.0759 Daily Min. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 523.9417 Daily Ambient Temp. Range (deg. R): 24.1833 Vented Vapor Saturation Factor 0.8958 Vapor Forscure at Daily Average Liquid: 0.2195 Surface Temperature (psia): 0.2195 Vapor Space Outage (ff): 10.0000 Working Losses (ib): 212.4802 Vapor Molecular Weight (Ib/Ib-mole): 18.7659 Vapor Pressure at Daily Average Liquid 0.195 Supor Pressure at Daily Average Liquid 0.2195 Annual Net Throughput (gallyr.): 9.972,333.000 Annual Net Throughput (gallyr.): 9.972,333.000 <tr< td=""><td></td><td></td></tr<>		
Surface Temperature (psia): 0.1638	Surface Temperature (psia):	0.2195
Vapor Pressure at Daily Maximum Liquid 0.2912 Surface Temperature (psis): 0.2912 Daily Avg., Liquid Surface Temp. (deg R): 515.0759 Daily Min., Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 23.9417 Daily Ambient Temp. Range (deg. R): 24.1833 Vented Vapor Saturation Factor 0.8958 Vapor Forscure at Daily Average Liquid: 0.2195 Suprace Temperature (psia): 0.2195 Vapor Space Outage (ft): 10.0000 Working Losses (lb): 212.4802 Vapor Molecular Weight (lb/lb-mole): 18.7659 Vapor Pressure at Daily Average Liquid 0.195 Surface Temperature (psia): 0.2195 Annual Net Throughput (gall/r.): 9.972,333.0000 Annual Net Throughput (gall/r.): 9.972,333.0000 Annual Net Throughput (gall/r): 9.972,333.0000 Annual Net Throughput (gall/r): 0.2172 Maximum Liquid Height (ft): 0.20000 Maximum Liquid Height (ft): 20.0000 Maximum Liquid Height (gall/r): 1.0000 Working Loss Product Factor:		0.1639
Surface Temperature (psia): 0.2912 Daily Aya, Liquid Surface Temp. (deg R): 515.0759 Daily Min. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 523.9417 Daily Ambient Temp. Range (deg. R): 224.1833 Vented Vapor Saturation Factor Vented Vapor Saturation Factor: 0.8958 Vapor Pressure at Daily Average Liquid: 0.2195 Vapor Space Outage (ft): 10,0000 Working Losses (lb): 212.4802 Vapor Molecular Weight (lb/lb-mole): 18,7659 Vapor Molecular Weight (lb/lb-mole): 0.2195 Vapor Annual Net Throughput (gailyr.): 9,972.333.0000 Annual Net Throughput (gailyr.): 9,972.333.0000 Annual Turnovers: 933.5913 Turnover Factor: 0.2172 Maximum Liquid Volume (gal): 16,800.0000 Maximum Liquid Height (lb): 20,0000 Tank Diameter (lt): 12,0000 Working Loss Product Factor: 1,0000		0.1636
Daily Avg. Liquid Surface Temp. (deg R): 515.0759 Daily Min. Liquid Surface Temp. (deg R): 506.2100 Daily Max. Liquid Surface Temp. (deg R): 523.9417 Daily Ambient Temp. Range (deg. R): 22.41833 Vented Vapor Saturation Factor 0.8958 Vapor Pressure at Daily Average Liquid: 0.2195 Surface Temperature (psia): 0.2195 Vapor Space Outage (ft): 10.0000 Working Losses (ib): 212.4802 Vapor Molecular Weight (Ib/Ib-mole): 18.7659 Vapor Pressure at Daily Average Liquid 0.195 Surface Temperature (psia): 0.2195 Annual Net Throughput (gallyr.): 9.972,333.0000 Annual Net Throughput (gallyr.): 9.972,333.0000 Annual Turnovers: 593.5913 Turnover Factor: 0.2172 Maximum Liquid Height (ft): 20.0000 Maximum Liquid Height (ft): 20.0000 Working Loss Product Factor: 1.0000		0.2912
Daily Min. Liquid Surface Temp. (deg R): 506,2100 Daily Max. Liquid Surface Temp. (deg R): 523,9417 Daily Max. Liquid Surface Temp. (deg R): 24,1833 Vented Vapor Saturation Factor 0,8958 Vapor Pressure at Daily Average Liquid: 0,2195 Vapor Space Outage (ft): 10,0000 Working Losses (lb): 212,4802 Vapor Molecular Weight (lb/lb-mole): 18,7659 Vapor Molecular Weight (lb/lb-mole): 9,972,333,0000 Annual Net Throughput (gailyr.): 9,972,333,0000 Annual Net Throughput (gailyr.): 9,972,333,0000 Annual Turnovers: 593,5913 Turnover Factor: 0,2175 Maximum Liquid Volume (gal): 16,800,0000 Maximum Liquid Height (ft): 20,0000 Maximum Liquid Height (ft): 12,0000 Working Loss Product Factor: 1,0000		
Daily Max. Liquid Surface Temp. (deg R): 523,9417 Daily Ambient Temp. Range (deg. R): 24,1833 Vented Vapor Saturation Factor 0.8958 Vapor Pressure at Daily Average Liquid: 0.2195 Vapor Space Outage (ft): 0.10000 Working Losses (lb): 212.4802 Vapor Molecular Weight (lb/lb-mole): 18,7659 Vapor Pressure at Daily Average Liquid 0.2195 Support Throughput (gallyr.): 9,972,333.0000 Annual Net Throughput (gallyr.): 9,972,333.0000 Annual Turnovers: 593,5913 Turnover Factor: 0.2172 Maximum Liquid Volume (gal): 16,800.0000 Maximum Liquid Height (ft): 20,0000 Tank Diameter (ft): 12,0000 Working Loss Product Factor: 1,0000		
Daliy Ambient Temp, Range (deg. R): 24.1833 Vented Vapor Saturation Factor 0.8958 Vapor Pressure at Daily Average Liquid: 0.2195 Vapor Pressure at Daily Average Liquid: 0.2195 Vapor Space Outage (ft): 10,0000 Working Losses (lb): 212,4802 Vapor Melecular Weight (lb/lb-mole): 18,7659 Vapor Melecular Weight (lb/lb-mole): 0.2195 Annual Net Throughput (gailyr): 9,972,333,0000 Annual Net Throughput (gailyr): 9,972,333,0000 Annual Turnovers: 93,5913 Turnover Factor: 0.2172 Maximum Liquid Volume (gal): 16,800,0000 Maximum Liquid Height (ft): 20,0000 Tank Diameter (ft): 12,0000 Working Loss Product Factor: 1,0000		
Vented Vapor Saturation Factor: 0.8958 Vapor Pressure at Daily Average Liquid: 0.2195 Sufface Temperature (psia): 0.2195 Vapor Space Outage (ft): 10.0000 Working Losses (lb): 212.4802 Vapor Molecular Weight (lb/lb-mole): 18.7659 Vapor Pressure at Daily Average Liquid 0.2195 Annual Net Throughput (gall/r.): 9.972,333.0000 Annual Turnovers: 593.5913 Turnover Factor: 0.2172 Maximum Liquid Volume (gal): 16,800.0000 Maximum Liquid Height (ft): 20.0000 Tank Diameter (ft): 12.0000 Working Loss Product Factor: 1.0000		24.1833
Vented Vapor Saturation Factor: 0.8958 Vapor Pressure at Daily Average Liquid: 0.2195 Sufface Temperature (psia): 0.2195 Vapor Space Outage (ft): 10.0000 Working Losses (lb): 212.4802 Vapor Molecular Weight (lb/lb-mole): 18.7659 Vapor Pressure at Daily Average Liquid 0.2195 Annual Net Throughput (gall/r.): 9.972,333.0000 Annual Turnovers: 593.5913 Turnover Factor: 0.2172 Maximum Liquid Volume (gal): 16,800.0000 Maximum Liquid Height (ft): 20.0000 Tank Diameter (ft): 12.0000 Working Loss Product Factor: 1.0000	Vented Vapor Saturation Factor	
Vapor Pressure at Daily Average Liquid: 0.2195 Surface Temperature (psia): 10.0000 Working Losses (lb): 212.4802 Vapor Molecular Weight (lb/lb-mole): 18.7659 Vapor Molecular Weight (lb/lb-mole): 0.2195 Vapor Pressure at Daily Average Liquid 0.2195 Surface Temperature (psia): 9.972.333.0000 Annual Net Throughput (gallyr.): 9.972.333.0000 Annual Tumovers: 593.5913 Tumover Faculty Orlume (gal): 16.800.0000 Maximum Liquid Velume (gal): 2.2172 Maximum Liquid Height (tb): 20.0000 Tank Diameter (tb): 12.0000 Working Loss Product Factor: 1.0000		0.8958
Surface Temperature (psia): 0.2195 Vapor Space Outage (ft): 10.0000 Working Losses (fb): 212.4802 Vapor Molecular Weight (Ib/Ib-mole): 18.7659 Vapor Pressure at Daily Average Liquid 0.2195 Annual Net Throughput (gall/r.): 9.972,333.0000 Annual Turnovers: 593.5913 Turnover Factor: 0.2172 Maximum Liquid Volume (gal): 16,800.0000 Maximum Liquid Height (ft): 20.0000 Tank Diameter (ft): 1.0000 Working Loss Product Factor: 1.0000		0.0000
Vapor Space Outage (ft): 10.0000 Working Losses (lb): 212.4802 Vapor Molecular Weight (lb/lb-mole): 18.7659 Vapor Pressure at Daily Average Liquid 0.2195 Surface Temperature (psi): 0.2195 Annual Net Throughput (gal/yr.): 9.972.333.0000 Annual Tumovers: 593.5913 Tumover Face: 0.2172 Maximum Liquid Volume (gal): 16.800.0000 Maximum Liquid Height (ft): 20.0000 Tank Diameter (ft): 1.0000 Working Loss Product Factor: 1.0000	Surface Temperature (psia):	0.2195
Vapor Molecular Weight (Ib/Ib-mole): 18,7659 Vapor Pressure at Daily Average Liquid 0.2195 Annual Net Throughput (gall/r.): 9,972,333,0000 Annual Turnovers: 593,5913 Turnover Factor: 0.2172 Maximum Liquid Volume (gal): 16,800,0000 Maximum Liquid Height (ft): 20,0000 Vorking Loss Product Factor: 1,0000		
Vapor Molecular Weight (Ib/Ib-mole): 18,7659 Vapor Pressure at Daily Average Liquid 0.2195 Annual Net Throughput (gall/r.): 9,972,333,0000 Annual Turnovers: 593,5913 Turnover Factor: 0.2172 Maximum Liquid Volume (gal): 16,800,0000 Maximum Liquid Height (ft): 20,0000 Vorking Loss Product Factor: 1,0000	Working Losses (lh):	212 4802
Vapor Pressure at Daily Average Liquid 0.2195 Surface Temperature (psics): 9.972,333.0000 Annual Net Throughput (gal/yr.): 9.972,333.0000 Annual Turnovers: 503,5913 Turnover Factor: 0.2172 Maximum Liquid Volume (gal): 16,800,0000 Maximum Liquid Height (ft): 20,0000 Tank Diameter (ft): 12,0000 Working Loss Product Factor: 1,0000	Vapor Molecular Weight (lb/lb-mole):	
Surface Temperature (psia): 0.2195 Annual Net Throughput (gall/r.): 9,972,333.0000 Annual Turnovers: 593.5913 Turnover Factor: 0.2172 Maximum Liquid Volume (gal): 16,800.0000 Maximum Liquid Height (ft): 20.0000 Tank Diameter (ft): 12,000 Working Loss Product Factor: 1,0000		
Annual Turnovers: 993.5913 Turnover Factor: 0.2172 Maximum Liquid Volume (gal): 16,800.0000 Maximum Liquid Height (th): 20.0000 Tank Diameter (th): 12.0000 Working Loss Product Factor: 1.0000		0.2195
Annual Turnovers: 593.5913 Turnover Factor: 0.2172 Maximum Liquid Volume (gal): 16,800.0000 Maximum Liquid Height (ft): 20.0000 Tank Diameter (ft): 12.0000 Working Loss Product Factor: 1.0000	Annual Net Throughput (gal/yr.):	9,972,333.0000
Maximum Liquid Volume (gal): 16,800.0000 Maximum Liquid Height (th): 20,0000 Tank Diameter (th): 12,0000 Working Loss Product Factor: 1,0000	Annual Turnovers:	
Maximum Liquid Height (ft): 20,0000 Tank Diameter (ft): 12,0000 Working Loss Product Factor: 1,0000		
Tank Diameter (ft): 12.0000 Working Loss Product Factor: 1.0000		
Working Loss Product Factor: 1.0000		
	Tank Diameter (tt):	
Total Losses (lb): 219.1650	working Loss Product Factor:	1.0000
Total Losses (ID): 219.1650	Tatall access (Ib):	040 4***
	TOTAL LUSSES (ID):	219.1650

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

GLO-76 Liquid Loading - Vertical Fixed Roof Tank

		Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions				
Produced Fluid	212.48	6.68	219.17				
Propane (-n)	7.56	0.24	7.79				
Butane (-n)	0.08	0.00	0.08				
Isopentane	1.61	0.05	1.66				
Pentane (-n)	1.39	0.04	1.43				
Hexane (-n)	1.11	0.03	1.15				
Benzene	0.01	0.00	0.01				
Heptane (-n)	0.61	0.02	0.63				
Toluene	0.03	0.00	0.03				
Octane (-n)	0.16	0.01	0.17				
Ethylbenzene	0.00	0.00	0.00				
Xylene (-o)	0.01	0.00	0.01				
Nonane (-n)	0.08	0.00	0.08				
Decane (-n)	0.12	0.00	0.13				
Water	199.71	6.28	206.00				

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: GLO-76

File Name: Z:\Client\EQT Corporation\West Virginia\WV Wells\153901.0056 WV Wells 2015\GLO

76\02 Draft\2015-1030 EQT GLO-76 G70 Ap Revised\Attach I - Emission

Calcs\GLYCalc\20160223 GLO 76 Dehy PTE_v2.0.ddf

Date: February 23, 2016

DESCRIPTION:

Description: DEHY 65 MMSCFD

Max Pump Rate: 7.5 GPM

BIG57 Gas Analysis Sample: 11/20/14

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0225	0.541	0.0987
Ethane	0.0190	0.457	0.0833
Propane	0.0124	0.297	0.0542
Isobutane	0.0039	0.093	0.0169
n-Butane	0.0063	0.151	0.0276
Isopentane	0.0025	0.061	0.0110
n-Pentane	0.0018	0.042	0.0077
Cyclopentane	0.0004	0.010	0.0019
n-Hexane	0.0012	0.028	0.0051
Cyclohexane	0.0010	0.025	0.0046
Other Hexanes	0.0027	0.065	0.0118
Heptanes	0.0046	0.110	0.0200
Methylcyclohexane	0.0014	0.034	0.0062
2,2,4-Trimethylpentane	0.0001	0.003	0.0005
Benzene	0.0050	0.119	0.0217
Toluene	0.0171	0.411	0.0750
Ethylbenzene	0.0131	0.314	0.0573
Xylenes	0.0180	0.432	0.0789
C8+ Heavies	0.0064	0.154	0.0281
Total Emissions Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	0.1394	3.345	0.6105
	0.1394	3.345	0.6105
	0.0978	2.348	0.4286
	0.0544	1.307	0.2385
	0.0532	1.276	0.2329

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane Ethane Propane Isobutane	1.1264 0.9511 0.6191 0.1933	27.034 22.826 14.859 4.639	4.9336 4.1658 2.7118
n-Butane	0.3154	7.570	1.3815
Propane Isobutane	0.6191 0.1933	14.859 4.639	2.7118 0.8465

			Page: 2
n-Pentane	0.0876	2.101	0.3835
Cyclopentane	0.0216	0.519	0.0948
n-Hexane	0.0584	1.402	0.2558
Cyclohexane	0.0521	1.250	0.2281
Other Hexanes	0.1347	3.234	0.5902
Heptanes	0.2286	5.487	1.0014
Methylcyclohexane	0.0708	1.700	0.3103
2,2,4-Trimethylpentane	0.0056	0.134	0.0245
Benzene	0.2478	5.946	1.0852
Toluene	0.8560	20.543	3.7491
Ethylbenzene	0.6544	15.705	2.8661
Xylenes	0.9003	21.608	3.9434
C8+ Heavies	0.3203	7.687	1.4029
Total Emissions	6.9696	167.271	30.5270
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions	6.9696 4.8921 2.7224	167.271 117.412 65.338	30.5270 21.4276 11.9241
Total BTEX Emissions	2.6584	63.802	11.6438

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.7973	43.136	7.8723
Ethane	0.3660	8.785	1.6032
Propane	0.0927	2.224	0.4059
Isobutane	0.0168	0.403	0.0736
n-Butane	0.0196	0.471	0.0859
Isopentane	0.0063	0.150	0.0275
n-Pentane	0.0033	0.079	0.0144
Cyclopentane	0.0002	0.005	0.0009
n-Hexane	0.0011	0.025	0.0046
Cyclohexane	0.0002	0.006	0.0011
Other Hexanes	0.0034	0.082	0.0149
Heptanes	0.0018	0.042	0.0077
Methylcyclohexane	0.0002	0.005	0.0010
2,2,4-Trimethylpentane	0.0001	0.002	0.0004
Benzene	0.0001	0.003	0.0005
Toluene	0.0002	0.005	0.0010
Ethylbenzene	0.0001	0.002	0.0004
Xylenes	0.0001	0.002	0.0003
C8+ Heavies	0.0004	0.009	0.0016
Total Emissions Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	2.3098	55.436	10.1171
	2.3098	55.436	10.1171
	0.1465	3.516	0.6416
	0.0016	0.039	0.0072
	0.0005	0.012	0.0021

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	89.8666	2156.798	393.6156
Ethane	18.3011	439.226	80.1588
Propane	4.6333	111.200	20.2940
Isobutane	0.8396	20.152	3.6777
n-Butane	0.9808	23.540	4.2960

			Page: 3
Isopentane	0.3135	7.524	1.3730
n-Pentane	0.1642	3.942	0.7194
Cyclopentane	0.0107	0.257	0.0470
n-Hexane	0.0528	1.267	0.2312
Cyclohexane	0.0120	0.288	0.0526
Other Hexanes	0.1700	4.081	0.7447
Heptanes	0.0878	2.107	0.3845
Methylcyclohexane	0.0114	0.273	0.0498
2,2,4-Trimethylpentane	0.0047	0.113	0.0206
Benzene	0.0056	0.134	0.0245
Toluene	0.0109	0.260	0.0475
Ethylbenzene	0.0042	0.102	0.0185
Xylenes	0.0038	0.090	0.0165
C8+ Heavies	0.0187	0.448	0.0817
Total Emissions	115.4917	2771.801	505.8537
Total Hydrocarbon Emissions	115.4917	2771.801	505.8537
Total VOC Emissions	7.3240	175.777	32.0793
Total HAP Emissions	0.0819	1.967	0.3589
Total BTEX Emissions	0.0244	0.587	0.1071

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.8199	43.677	7.9710
Ethane	0.3850	9.241	1.6865
Propane	0.1050	2.521	0.4601
Isobutane	0.0207	0.496	0.0905
n-Butane	0.0259	0.622	0.1136
Isopentane	0.0088	0.211	0.0385
n-Pentane	0.0050	0.121	0.0221
Cyclopentane	0.0006	0.016	0.0028
n-Hexane	0.0022	0.053	0.0097
Cyclohexane	0.0013	0.031	0.0056
Other Hexanes Heptanes Methylcyclohexane 2,2,4-Trimethylpentane Benzene	0.0061	0.146	0.0267
	0.0063	0.152	0.0277
	0.0016	0.039	0.0072
	0.0002	0.005	0.0009
	0.0051	0.122	0.0222
Toluene	0.0173	0.416	0.0759
Ethylbenzene	0.0132	0.316	0.0577
Xylenes	0.0181	0.434	0.0792
C8+ Heavies	0.0068	0.163	0.0297
Total Emissions	2.4492	58.781	10.7276
Total Hydrocarbon Emissions	2.4492	58.781	10.7276
Total VOC Emissions	0.2443	5.864	1.0701
Total HAP Emissions	0.0561	1.346	0.2457
Total BTEX Emissions	0.0537	1.288	0.2350

COMBINED	REGENERATOR	VENT/	FLASH	GAS	EMISSION	CONTROL	REPORT:
----------	-------------	-------	-------	-----	----------	---------	---------

Component	Uncontrolled	Controlled	% Reduction
	tons/yr	tons/yr	

			Page: 4
Methane	398.5492	7.9710	98.00
Ethane	84.3246	1.6865	98.00
Propane	23.0058	0.4601	98.00
Isobutane		0.0905	
n-Butane	5.6775	0.1136	98.00
Isopentane	1.9255	0.0385	98.00
n-Pentane	1.1029	0.0221	98.00
Cyclopentane	0.1417	0.0028	
n-Hexane	0.4870	0.0097	
Cyclohexane	0.2808	0.0056	98.00
Other Hexanes	1.3349		
Heptanes	1.3858		
Methylcyclohexane	0.3601		
2,2,4-Trimethylpentane	0.0451		
Benzene	1.1097	0.0222	98.00
Toluene	3.7967		98.00
Ethylbenzene	2.8847	0.0577	98.00
		0.0792	98.00
C8+ Heavies	1.4846	0.0297	98.00
Total Emissions	536.3807	10.7276	98.00
Total Hydrocarbon Emissions	536.3807	10.7276	98.00
Total VOC Emissions	53.5069	1.0701	98.00
Total HAP Emissions	12.2830	0.2457	98.00
Total BTEX Emissions	11.7509	0.2350	98.00

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature: 60.00 deg. F
Excess Oxygen: 5.00 %
Combustion Efficiency: 98.00 %
Supplemental Fuel Requirement: 7.82e-002 MM BTU/hr

Component	Emitted	Destroyed					
Methane	2.00%	98.00%					
Ethane	2.00%	98.00%					
Propane	2.00%	98.00%					
Isobutane	2.00%	98.00%					
n-Butane	2.00%	98.00%					
Isopentane	2.00%	98.00%					
n-Pentane	2.00%	98.00%					
Cyclopentane	2.00%	98.00%					
n-Hexane	2.00%	98.00%					
Cyclohexane	2.00%	98.00%					
Other Hexanes Heptanes Methylcyclohexane 2,2,4-Trimethylpentane Benzene	2.00% 2.00% 2.00% 2.00% 2.00%	98.00% 98.00% 98.00% 98.00% 98.00%					
Toluene	2.00%	98.00%					
Ethylbenzene	2.00%	98.00%					
Xylenes	2.00%	98.00%					
C8+ Heavies	2.00%	98.00%					

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:

Calculated Dry Gas Dew Point: 3.33 lbs. H2O/MMSCF

Temperature: 90.0 deg. F
Pressure: 800.0 psig
Dry Gas Flow Rate: 65.0000 MMSCF/day
psses with Dry Gas: 0.4325 lb/hr

Glycol Losses with Dry Gas: 0.4325
Wet Gas Water Content: Saturated
Calculated Wet Gas Water Content: 51.12 51.12 lbs. H2O/MMSCF 3.48 gal/lb H2O Calculated Lean Glycol Recirc. Ratio:

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	6.50%	93.50%
Carbon Dioxide	99.85%	0.15%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.97%	0.03%
Propane	99.95%	0.05%
Isobutane	99.92%	0.08%
n-Butane	99.90%	0.10%
Isopentane	99.90%	0.10%
n-Pentane	99.87%	0.13%
Cyclopentane	99.43%	0.57%
n-Hexane	99.78%	0.22%
Cyclohexane	99.01%	0.99%
Other Hexanes	99.83%	0.17%
Heptanes	99.59%	0.41%
Methylcyclohexane	98.91%	1.09%
2,2,4-Trimethylpentane	99.83%	0.17%
Benzene	90.99%	9.01%
Toluene	86.90%	13.10%
Ethylbenzene	82.70%	17.30%
Xylenes	76.21%	23.79%
C8+ Heavies	98.68%	1.32%

FLASH TANK

Flash Control: Combustion device Flash Control Efficiency: 98.00 % Flash Temperature: 75.0 deg. F 75.0 deg. F 70.0 psig Flash Pressure:

Component	Left in Glycol	Removed in Flash Gas
Water	99.97%	0.03%
Carbon Dioxide	18.67%	81.33%
Nitrogen	1.18%	98.82%
Methane	1.24%	98.76%
Ethane	4.94%	95.06%

Page: 6

Propane	11.79%	88.21%
Isobutane	18.71%	81.29%
n-Butane	24.33%	75.67%
Isopentane	28.89%	71.11%
n-Pentane	34.98%	65.02%
Cyclopentane	67.02%	32.98%
n-Hexane	52.70%	47.30%
Cyclohexane	81.81%	18.19%
Other Hexanes	44.59%	55.41%
Heptanes	72.37%	27.63%
Methylcyclohexane	86.69%	13.31%
2,2,4-Trimethylpentane	54.76%	45.24%
Benzene	97.90%	2.10%
Toluene	98.85%	1.15%
Ethylbenzene	99.42%	0.58%
Xylenes	99.64%	0.36%
C8+ Heavies	95.12%	4.88%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead					
Water Carbon Dioxide Nitrogen Methane Ethane	32.82% 0.00% 0.00% 0.00% 0.00%						
Propane	0.00%	100.00%					
Isobutane	0.00%	100.00%					
n-Butane	0.00%	100.00%					
Isopentane	0.98%	99.02%					
n-Pentane	0.90%	99.10%					
Cyclopentane	0.66%	99.34%					
n-Hexane	0.70%	99.30%					
Cyclohexane	3.63%	96.37%					
Other Hexanes	1.53%	98.47%					
Heptanes	0.58%	99.42%					
Methylcyclohexane	4.32%	95.68%					
2,2,4-Trimethylpentane	1.90%	98.10%					
Benzene	5.07%	94.93%					
Toluene	7.95%	92.05%					
Ethylbenzene	10.43%	89.57%					
Xylenes	12.94%	87.06%					
C8+ Heavies	12.02%	87.98%					

STREAM	REPOR'	TS:													

WET GAS STREAM

Temperature: 90.00 deg. F

Pressure: 814.70 psia Flow Rate: 2.71e+006 scfh

Component	Conc. (vol%)	Loading (lb/hr)				
Carbon Dioxide Nitrogen Methane	1.08e-001 1.68e-001 3.11e-001 8.96e+001 8.08e+000	5.28e+002 6.22e+002 1.03e+005				
Isobutane n-Butane Isopentane	1.25e+000 1.60e-001 1.73e-001 4.69e-002 2.30e-002	6.64e+002 7.18e+002 2.42e+002				
Cyclohexane Other Hexanes	5.99e-003 9.99e-004	3.69e+001 6.01e+000 1.23e+002				
	4.99e-004 4.99e-004 9.99e-004	4.08e+000 2.79e+000 6.58e+000				
Xylenes C8+ Heavies	4.99e-004 2.00e-003					
Total Components	100.00	1.27e+005				

DRY GAS STREAM

Temperature: 90.00 deg. F Pressure: 814.70 psia Flow Rate: 2.71e+006 scfh

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	7.01e-003 1.68e-001 3.11e-001 8.97e+001 8.08e+000	5.27e+002 6.22e+002 1.03e+005
Isobutane n-Butane Isopentane	1.25e+000 1.60e-001 1.73e-001 4.70e-002 2.30e-002	6.63e+002 7.17e+002 2.42e+002
Cyclohexane Other Hexanes	5.99e-003 9.90e-004	3.68e+001 5.95e+000 1.23e+002
	4.99e-004 4.55e-004 8.69e-004	4.07e+000 2.54e+000 5.72e+000

Page: 8 Xylenes 3.81e-004 2.89e+000

C8+ Heavies 1.97e-003 2.40e+001

Total Components 100.00 1.27e+005

LEAN GLYCOL STREAM

Temperature: 90.00 deg. F Flow Rate: 7.50e+000 gpm

Component Conc. Loading (wt%) (lb/hr) TEG 9.85e+001 4.16e+003 Water 1.50e+000 6.33e+001 Carbon Dioxide 1.82e-012 7.67e-011 Nitrogen 1.60e-013 6.77e-012 Methane 8.06e-018 3.40e-016 Ethane 6.25e-008 2.64e-006 Propane 2.07e-009 8.75e-008 Isobutane 3.63e-010 1.53e-008 n-Butane 4.30e-010 1.81e-008 Isopentane 2.96e-005 1.25e-003 n-Pentane 1.89e-005 7.97e-004 Cyclopentane 3.38e-006 1.43e-004 n-Hexane 9.78e-006 4.13e-004 Cyclohexane 4.65e-005 1.96e-003 Other Hexanes 4.97e-005 2.10e-003 Heptanes 3.16e-005 1.34e-003 Methylcyclohexane 7.57e-005 3.20e-003 2,2,4-Trimethylpentane 2.56e-006 1.08e-004 Benzene 3.13e-004 1.32e-002 Toluene 1.75e-003 7.40e-002 Ethylbenzene 1.80e-003 7.62e-002 Xylenes 3.17e-003 1.34e-001 C8+ Heavies 1.04e-003 4.38e-002 _____ ______ Total Components 100.00 4.22e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 90.00 deg. F Pressure: 814.70 psia Flow Rate: 8.03e+000 gpm

NOTE: Stream has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.29e+001 4.31e+000 2.64e-002 1.24e-002 2.03e+000	1.93e+002 1.18e+000 5.57e-001
Propane Isobutane	4.30e-001 1.17e-001 2.31e-002 2.90e-002 9.85e-003	5.25e+000 1.03e+000 1.30e+000
n-Pentane	5.64e-003	2.53e-001

Cyclopentane 7.26e-004 3.25e-002
n-Hexane 2.49e-003 1.12e-001
Cyclohexane 1.48e-003 6.61e-002
Other Hexanes 6.86e-003 3.07e-001

Heptanes 7.10e-003 3.18e-001
Methylcyclohexane 1.91e-003 8.54e-002
2,2,4-Trimethylpentane 2.33e-004 1.04e-002
Benzene 5.96e-003 2.67e-001
Toluene 2.10e-002 9.41e-001

Ethylbenzene 1.64e-002 7.35e-001
Xylenes 2.32e-002 1.04e+000
C8+ Heavies 8.55e-003 3.83e-001

Total Components 100.00 4.47e+003

FLASH TANK OFF GAS STREAM

Temperature: 75.00 deg. F Pressure: 84.70 psia Flow Rate: 2.43e+003 scfh

Component Conc. Loading (vol%) (lb/hr) Water 5.05e-002 5.82e-002 Carbon Dioxide 3.41e-001 9.62e-001 Nitrogen 3.07e-001 5.50e-001 Methane 8.75e+001 8.99e+001 Ethane 9.50e+000 1.83e+001 Propane 1.64e+000 4.63e+000 Isobutane 2.26e-001 8.40e-001 n-Butane 2.64e-001 9.81e-001 Isopentane 6.79e-002 3.13e-001 n-Pentane 3.56e-002 1.64e-001 Cyclopentane 2.39e-003 1.07e-002 n-Hexane 9.57e-003 5.28e-002 Cyclohexane 2.23e-003 1.20e-002 Other Hexanes 3.08e-002 1.70e-001 Heptanes 1.37e-002 8.78e-002 Methylcyclohexane 1.81e-003 1.14e-002 2,2,4-Trimethylpentane 6.44e-004 4.71e-003 Benzene 1.12e-003 5.60e-003 Toluene 1.84e-003 1.09e-002 Ethylbenzene 6.23e-004 4.23e-003 Xylenes 5.53e-004 3.76e-003 C8+ Heavies 1.71e-003 1.87e-002 ------ -----Total Components 100.00 1.17e+002

FLASH TANK GLYCOL STREAM

Temperature: 75.00 deg. F Flow Rate: 7.77e+000 gpm

Component Conc. Loading (wt%) (lb/hr)

TEG 9.54e+001 4.16e+003
Water 4.43e+000 1.93e+002
Carbon Dioxide 5.07e-003 2.21e-001

Nitrogen 1.50e-004 6.55e-003 Methane 2.58e-002 1.13e+000 Ethane 2.18e-002 9.51e-001 Propane 1.42e-002 6.19e-001 Isobutane 4.44e-003 1.93e-001 n-Butane 7.24e-003 3.15e-001 Isopentane 2.92e-003 1.27e-001 n-Pentane 2.03e-003 8.84e-002 Cyclopentane 5.00e-004 2.18e-002 n-Hexane 1.35e-003 5.88e-002 Cyclohexane 1.24e-003 5.41e-002 Other Hexanes 3.14e-003 1.37e-001 Heptanes 5.28e-003 2.30e-001 Methylcyclohexane 1.70e-003 7.40e-002 2,2,4-Trimethylpentane 1.31e-004 5.70e-003 Benzene 5.99e-003 2.61e-001 Toluene 2.13e-002 9.30e-001 Ethylbenzene 1.68e-002 7.31e-001 Xylenes 2.37e-002 1.03e+000 C8+ Heavies 8.35e-003 3.64e-001 -----Total Components 100.00 4.36e+003

FLASH GAS EMISSIONS

Flow Rate: 7.87e+003 scfh

Control Method: Combustion Device

Control Efficiency: 98.00

Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	6.46e+001 3.47e+001 9.47e-002 5.40e-001 5.87e-002	3.17e+002 5.50e-001 1.80e+000
Isobutane n-Butane Isopentane	1.01e-002 1.39e-003 1.63e-003 4.19e-004 2.19e-004	1.68e-002 1.96e-002 6.27e-003
Cyclohexane Other Hexanes	5.90e-005 1.38e-005	1.06e-003 2.40e-004 3.40e-003
	3.97e-006 6.91e-006 1.14e-005	9.42e-005 1.12e-004 2.17e-004
Xylenes C8+ Heavies	3.41e-006 1.06e-005	7.52e-005 3.73e-004
Total Components	100.00	5.61e+002

Page: 11

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 2.80e+003 scfh

Component Conc. Loading (vol%) (lb/hr) Water 9.77e+001 1.30e+002 Carbon Dioxide 6.81e-002 2.21e-001 Nitrogen 3.17e-003 6.55e-003 Methane 9.53e-001 1.13e+000 Ethane 4.29e-001 9.51e-001 Propane 1.91e-001 6.19e-001 Isobutane 4.51e-002 1.93e-001 n-Butane 7.37e-002 3.15e-001 Isopentane 2.37e-002 1.26e-001 n-Pentane 1.65e-002 8.76e-002 Cyclopentane 4.19e-003 2.16e-002 n-Hexane 9.20e-003 5.84e-002 Cyclohexane 8.40e-003 5.21e-002 Other Hexanes 2.12e-002 1.35e-001 Heptanes 3.10e-002 2.29e-001 Methylcyclohexane 9.79e-003 7.08e-002 2,2,4-Trimethylpentane 6.65e-004 5.59e-003 Benzene 4.31e-002 2.48e-001 Toluene 1.26e-001 8.56e-001 Ethylbenzene 8.37e-002 6.54e-001 Xylenes 1.15e-001 9.00e-001 C8+ Heavies 2.55e-002 3.20e-001 Total Components 100.00 1.37e+002

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 1.24e+000 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Ethane Propane Isobutane	4.31e+001 1.94e+001 8.62e+000 2.04e+000 3.33e+000	1.90e-002 1.24e-002 3.87e-003
Cyclopentane	7.45e-001 1.90e-001 4.16e-001	1.75e-003 4.33e-004 1.17e-003
Methylcyclohexane 2,2,4-Trimethylpentane	1.40e+000 4.43e-001	4.57e-003 1.42e-003 1.12e-004
Ethylbenzene	5.21e+000	1.31e-002 1.80e-002

Page: 12 Total Components 100.00 1.39e-001

Page: 1

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES

Case Name: GLO-76

File Name: C:\Users\dtedesco\Desktop\2016-0519 Class I AA (G70B App)\Att S Emission

Calcs\GLYCalc\20160223 GLO 76 Dehy PTE v2.0.ddf

Date: May 19, 2016

DESCRIPTION:

Description: DEHY 65 MMSCFD

Max Pump Rate: 7.5 GPM

BIG57 Gas Analysis Sample: 11/20/14

Annual Hours of Operation: 8760.0 hours/yr

WET GAS:

Temperature: 90.00 deg. 800.00 psig 90.00 deg. F

Wet Gas Water Content: Saturated

Component	Conc. (vol %)
Carbon Dioxide	0.1680
Nitrogen	0.3110
Methane	89.7400
Ethane	8.0850
Propane	1.2520
Isobutane	0.1600
n-Butane	0.1730
Isopentane	0.0470
n-Pentane	0.0230
Cyclopentane	0.0010
n-Hexane	0.0060
Cyclohexane	0.0010
Other Hexanes	0.0200
Heptanes	0.0090
Methylcyclohexane	0.0010
2,2,4-Trimethylpentane	0.0005
Benzene	0.0005
Toluene	0.0010
Ethylbenzene	0.0005
Xylenes	0.0005
C8+ Heavies	0.0020

DRY GAS:

Flow Rate: 65.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF

LEAN GLYCOL:

Glycol Type: TEG
Water Content: 1.5 wt% H2O
Flow Rate: 7.5 gpm

Page: 2

PUMP:

Glycol Pump Type: Gas Injection

Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

FLASH TANK:

Flash Control: Combustion device

Flash Control Efficiency: 98.00 % Temperature: 75.0 deg. F Pressure: 70.0 psig

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device

Destruction Efficiency: 98.0 %
Excess Oxygen: 5.0 %
Ambient Air Temperature: 60.0 deg. F

Certificate of Analysis Number: 2030-14120043-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Extended Gas **Analysis**

Dec. 08, 2014

Field:

EQT

Station Name: Big 57 Dehy Inlet

Sample Point: Wellhead Cylinder No: 0421

Analyzed:

12/03/2014 06:53:38 by GR2

Sampled By: Sample Of:

CD-GAS

Gas Spot

Sample Date:

11/20/2014 10:30

Sample Conditions: 60 psig Method:

GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.311	0.489		GPM TOTAL C2+	2.662	
Methane	89.740	80.772				
Carbon Dioxide	0.168	0.415				
Ethane	8.085	13.640	2.167			
Propane	1.252	3.097	0.346			
Iso-Butane	0.160	0.522	0.052			
n-Butane	0.173	0.564	0.055			
Iso-Pentane	0.047	0.190	0.017			
n-Pentane	0.023	0.093	0.008			
i-Hexanes	0.021	0.086	0.007			
n-Hexane	0.006	0.024	0.002			
Benzene	NIL	0.001	NIL			
Cyclohexane	0.001	0.004	NIL			
i-Heptanes	0.008	0.041	0.003			
n-Heptane	0.001	0.007	0.001			
Toluene	0.001	0.003	NIL			
i-Octanes	0.002	0.023	0.002			
n-Octane	NIL	0.002	NIL			
Ethylbenzene	NIL	NIL	NIL			
Xylenes	NIL	0.004	NIL			
i-Nonanes	NIL	0.007	0.001			
n-Nonane	NIL	0.002	NIL			
i-Decanes	0.001	0.009	0.001			
n-Decane	NIL	NIL	NIL			
Undecanes	NIL	0.005	NIL			
Dodecanes	NIL	NIL	NIL			
Tridecanes	NIL	NIL	NIL			
Tetradecanes Plus	NIL	NIL	NIL			
	100.000	100.000	2.662			

Physical Properties Total Calculated Molecular Weight 17.824 GPA 2172-09 Calculation: Calculated Gross BTU per ft3 @ 14.73 psia & 60°F

Real Gas Dry BTU 1102.0 Water Sat. Gas Base BTU 1082.8 Relative Density Real Gas 0.6167 Compressibility Factor 0.9975

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 2030-14090265-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Spot

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Pressurized Condensate **Analysis**

Sep. 30, 2014

Field:

EQT Station Name: 513876

Station Number:

Sample Point: Wellhead

Analyzed:

09/30/2014 11:32:18 by CC

Sampled By:

GR-GAS

Sample Of: Sample Date: Condensate

09/12/2014 10:30

Sample Conditions: 80 psig Method:

GPA-2186M/GPA-2103

Cylinder No:

GAS

Analytical Data

Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	NIL	28.013	NIL	0.807	NIL	
Methane	0.433	16.043	0.051	0.300	0.131	
Carbon Dioxide	0.006	44.010	0.002	0.817	0.002	
Ethane	0.335	30.069	0.074	0.356	0.159	
Propane	0.485	44.096	0.157	0.507	0.237	
Iso-Butane	0.277	58.122	0.118	0.563	0.160	
n-Butane	0.668	58.122	0.285	0.584	0.373	
Iso-Pentane	0.631	72.149	0.334	0.625	0.409	
n-Pentane	0.548	72.149	0.290	0.631	0.352	
i-Hexanes	1.167	85.215	0.730	0.667	0.837	
n-Hexane	0.789	86.175	0.499	0.664	0.575	
2,2,4-Trimethylpentane	0.011	114.231	0.009	0.697	0.010	
Benzene	0.037	78.114	0.021	0.885	0.018	
Heptanes	7.764	98.897	5.637	0.699	6.170	
Toluene	0.961	92.141	0.650	0.872	0.570	
Octanes	17.560	110.849	14.291	0.729	14.992	
Ethylbenzene	0.269	106.167	0.210	0.872	0.184	
Xylenes	5.842	106.167	4.553	0.869	4.006	
Nonanes	14.483	123.813	13.165	0.747	13.475	
Decanes Plus	47.734	168.149	58.924	0.786	57.340	
	100.000		100.000		100.000	
Physical Properties			Total	C10+		
Specific Gravity at 60°F		0.	7649	0.7861		
API Gravity at 60°F	53	3.487	48.503			
Molecular Weight		136	3.216	168.149		
Pounds per Gallon (in Vacuu	um)	6	5.377	6.554		
Pounds per Gallon (in Air)	•	6	3.370	6.547		
Cu. Ft. Vapor per Gallon @	14.73 psia	17	7.725	14.757		

Fatti L. Perro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Atmospheric Condensate Analysis

LAFAYETTE AREA LABORATORY

4790 N.E. EVANGELINE THRUWAY CARENCRO, LA 70520 PHONE (337) 896-3055 FAX (337) 896-3077

Certificate of Analysis: 2012120125-001A

Company:

Gas Analytical Services

For:

Gas Analytical Services

Well:

512441

Chuck Honaker

Field:

EQT Production

PO Box 1028

Sample of: **Conditions:** Condensate N.G. @ N.G.

Bridgeport, WV, 26330

Sampled by:

GR-GAS

Report Date:

12/17/2012

Sample date: Remarks:

12/05/2012 @ 16:00 Cylinder No.: GAS

Remarks:

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	0.095	16.043	0.013	0.3000	0.032
Carbon Dioxide	0.000	44.010	0.000	0.8180	0.000
Ethane	0.602	30.070	0.154	0.3562	0.321
Propane	1.646	44.097	0.618	0.5070	0.905
Iso-butane	0.867	58.123	0.429	0.5629	0.566
N-butane	2.986	58.123	1.478	0.5840	1.879
lso-pentane	3.103	72.150	1.907	0.6244	2.267
N-pentane	3.943	72.150	2.424	0.6311	2.851
i-Hexanes	4.939	86.177	3.584	0.6795	4.019
n-Hexane	4.692	85.671	3.445	0.6640	3.823
2,2,4 trimethylpentane	0.031	114.231	0.030	0.6967	0.032
Benzene	0.200	78.114	0.143	0.8846	0.113
Heptanes	14.686	97.881	12.265	0.7024	13.001
Toluene	1.138	92.141	0.967	0.8719	0.766
Octanes	14.442	107.726	13.331	0.7406	13.565
E-benzene	0.155	106.167	0.080	0.8718	0.120
M-,O-,P-xylene	1.763	106.167	1.595	0.8731	1.370
Nonanes	12.747	123.607	13.767	0.7557	13.680
Decanes Plus	31.965	160.734	43.770	0.7985	40.690
		-			
	100.000		100.000		100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.7423	0.7985
Api Gravity at 60 °F	59.115	45.704
Molecular Weight	117.386	160.734
Pounds per Gallon (in Vacuum)	6.189	6.658
Pounds per Gallon (in Air)	6.182	6.650
Cu. Ft. Vapor per Gallon @ 14.73 psia	20.054	15.682

Southern Petroleum Laboratories, Inc.

ATTACHMENT T

Emission Summary Sheet

ATTACHMENT T – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point ID#	N	O_x	C	О	V	OC	sc)2	Pl	M_{10}	PM	1 _{2.5}	GHG	(CO_2e)
(Emission Source ID)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001 (S024, C001)	0.30	1.34	0.26	1.12	0.26	1.14	0.00	0.01	0.02	0.10	0.020	0.10	440.20	1,928.06
E001					0.05	0.20							0.13	0.53
E002					0.05	0.20							0.13	0.53
E003					0.05	0.20							0.13	0.53
E004					0.05	0.20							0.13	0.53
E005					0.05	0.20							0.13	0.53
E006					0.05	0.20							0.13	0.53
E007					0.05	0.20							0.13	0.53
E008					0.05	0.20							0.13	0.53
E009					0.05	0.20							0.13	0.53
E010					0.05	0.20							0.13	0.53
E011					0.01	0.02							1.1E-02	0.05
E012	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E013	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E014	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E015	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E016	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20

			I	1		1		I .		l	1		l	
E017	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E018	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E019	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E020	0.14	0.61	0.12	0.51	0.01	0.03	8.4 E-04	3.7 E-03	0.01	0.05	0.01	0.05	180.18	789.20
E021	1.2 E-03	0.01	9.9 E-04	4.3 E-03	6.5 E-05	2.8 E-04	7.1 E-06	3.1 E-05	8.9 E-05	3.9 E-04	8.9 E-05	3.9 E-04	1.52	6.65
E022	1.2 E-03	0.01	9.9 E-04	4.3 E-03	6.5 E-05	2.8 E-04	7.1 E-06	3.1 E-05	8.9 E-05	3.9 E-04	8.9 E-05	3.9 E-04	1.52	6.65
E023	1.2 E-03	0.01	9.9 E-04	4.3 E-03	6.5 E-05	2.8 E-04	7.1 E-06	3.1 E-05	8.9 E-05	3.9 E-04	8.9 E-05	3.9 E-04	1.52	6.65
E025	0.07	0.30	0.06	0.25	3.7 E-03	0.02	4.1 E-04	1.8 E-03	0.01	0.02	0.01	0.02	87.84	384.73
E026					0.05	0.20							0.13	0.53
E027					3.71	0.96								
Fugitives						11.44								937.07
Haul Roads										0.53		0.05		
Facility Total	1.63	7.15	1.37	6.01	4.55	16.09	0.01	0.04	0.12	1.07	0.12	0.60	2,155.61	10,378.39
Facility Total (excl. fugitives)	1.63	7.15	1.37	6.01	0.85	3.68	0.01	0.04	0.12	0.54	0.12	0.54	2,155.61	9,441.33

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT T – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point ID#	Forma	ldehyde	Ben	zene	Tol	uene	Ethylb	enzene	Xyl	enes	Нех	kane	Total	HAPs
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001 (S024, C001)	0.00	0.00	0.01	0.02	0.02	0.08	0.01	0.06	0.02	0.08	0.00	0.01	0.06	0.25
E001			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E002			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E003			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	1.0 E-03	< 0.01	1.0 E-03	<0.01	<0.01
E004			< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	1.0 E-03	<0.01	1.0 E-03	<0.01	<0.01
E005			<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	1.0 E-03	< 0.01	1.0 E-03	<0.01	<0.01
E006			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	1.0 E-03	< 0.01	1.0 E-03	<0.01	<0.01
E007			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E008			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E009			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E010			<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	1.0 E-03	< 0.01	1.0 E-03	< 0.01	< 0.01
E011			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
E012	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E013	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E014	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E015	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E016	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01

E017	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E018	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E019	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E020	1.0 E-04	4.6 E-04	2.9 E-06	1.3 E-05	4.7 E-06	2.1 E-05					2.5 E-03	0.01	2.6 E-03	0.01
E021	8.8 E-07	3.9 E-06	2.5 E-08	1.1 E-07	4.0 E-08	1.8 E-07					2.1 E-05	9.3 E-05	2.2 E-05	9.7 E-05
E022	8.8 E-07	3.9 E-06	2.5 E-08	1.1 E-07	4.0 E-08	1.8 E-07					2.1 E-05	9.3 E-05	2.2 E-05	9.7 E-05
E023	8.8 E-07	3.9 E-06	2.5 E-08	1.1 E-07	4.0 E-08	1.8 E-07					2.1 E-05	9.3 E-05	2.2 E-05	9.7 E-05
E025	5.1 E-05	2.2 E-04	1.4 E-06	6.3 E-06	2.3 E-06	1.0 E-05					1.2 E-03	0.01	1.3 E-03	0.01
E026					< 0.01	< 0.01							< 0.01	< 0.01
E027			1.9 E-03	4.8 E-04	3.5 E-03	9.1 E-04	2.0 E-04	5.1 E-05	2.6 E-03	6.9 E-04	0.08	0.02	0.09	0.02
Fugitives				< 0.01		0.01		< 0.01		< 0.01		0.07		0.11
Haul Roads														
Facility Total	1.0 E-03	4.4 E-03	0.01	0.02	0.02	0.09	0.01	0.06	0.02	0.09	0.10	0.21	0.17	0.49
Facility Total (excl. fugitives)	1.0 E-03	4.4 E-03	0.01	0.02	0.02	0.08	0.01	0.06	0.02	0.09	0.03	0.12	0.08	0.36

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U

Class I Legal Advertisement

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Class II Administrative Update to convert the current G-70A General Permit Registration into a G70-C for the natural gas production facility GLO-76 located approximately 1.0 miles north of Brink in Marion County, West Virginia. The latitude and longitude coordinates are: 39.18999 N, -80.81767 W.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions in tpy (tons per year)
NOx	7.15
СО	6.01
VOC	16.09
SO ₂	0.04
PM	1.07
Total HAPs	0.49
Carbon Dioxide Equivalents (CO ₂ e)	9,441.33

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the <u>(Day)</u> day of <u>(Month)</u>, 2016.

By: EQT Production Company
Kenneth Kirk, Executive Vice President
625 Liberty Ave Suite 1700
Pittsburgh, PA 15222

ATTACHMENT V

General Permit Registration Application Fee