625 Liberty Ave, Suite 1700 Pittsburgh PA t5222 www.eqt.com

TEL: (412) 395-3699 FAX: (412) 395-2156

Alex Bosiljevac Environmental Coordinator

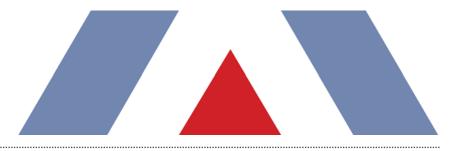
April 26, 2016

CERTIFIED MAIL # 7015 1660 0000 9399 6086

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: R13 Permit Application EQT Production Company OXF-149/150 Natural Gas Production Site Facility ID No. 017-00040

Dear Mr. Durham,


Enclosed are two electronic copies and one original hard copy of a proposed application for an R13 Air Permit for the OXF-149/150 Natural Gas Production Well Site. The site currently operates under a G70-A General Air Permit (G70-A013A). Please note that this application satisfies a requirement in Consent Order CO-R13-E-2016-04, in which EQT Production Company is required to submit an application with the equipment specified in the consent order. A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

Alex Bosiljevac EQT Corporation

Enclosures

PROJECT REPORT

EQT Production OXF 149-150 Wellpad

R-13 Permit Application

Where energy meets innovation.

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

April 2016

Environmental solutions delivered uncommonly well

3
;
;
ŀ
)

EQT Production Company (EQT) is submitting this construction permit application (R-13) to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of new equipment at existing natural gas production well pads, OXF 149 and OXF-150, located in Doddridge County, West Virginia. The wellpads are currently permitted under General Permit G70-A031A.

1.1. FACILITY AND PROJECT DESCRIPTION

The OXF-149 and OXF-150 wellpads are existing natural gas production facilities. Natural gas and liquids (including water and condensate) are extracted from deposits underneath the surface. Natural gas is transported from the wells to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels:

The OXF-149 and OXF 150 pads currently consist of the following equipment

- > Twelve (12) 400 barrel (bbl) storage tanks for condensate/water(produced fluids) controlled by two(2) combustors, each rated at 11.66 MMBtu/hr;
- > One (1) line heater, rated at 0.77 MMbtu/hr heat input;
- > Nine (9) line heaters, each rated at 1.54 MMbtu/hr heat input;
- > Four (4) thermoelectric generators (TEGs), each rated at 0.013 MMBtu/hr heat input;
- > Two (2) 140 bbl storage tanks for sand and produced fluids from the sand separator (vapors from these tanks may be controlled by combustors but are not represented as controlled in this application);
- > Produced fluid truck loading; and
- > Associated piping and components.

As part of this application, EQT seeks to permit the following equipment at the OXF-149 and OXF-150 pad: > Two (2) new combustors rated at 11.66 MMbtu/hr each.

Additionally, EQT requests that the department consolidate all existing equipment and their requirements under the current G70-A137A permit in the proposed R-13 permit. The facility will not qualify for the current issued G-70B permit due to the total combustor size that exceed the G70-B permit requirements.

A process flow diagram is included as Attachment F.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

OXF 149 and 150 are separate wellpads that are functionally independent of each other. The pads are separated by approximately 0.5 miles and the production of each wellpad is independent of the other. WVDEP had previously determined that the OXF149 and OXF 150 wellpad should be aggregated as a single stationary source since both sites share a common loading battery area. Although the loading battery storage tanks have been removed, both wellpads will continue to be considered a single stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V Permitting.

1.3. R-13 APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) R-13 permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: R-13 and Permission to Commence Construction Application Forms;
- > Attachment A: Business Certificate;
- > Attachment B: Map;
- > Attachment C: Installation and Start Up Schedule;
- > Attachment D: Regulatory Discussion;
- > Attachment E: Plot Plan;
- > Attachment F: Detailed Process Flow Diagram;
- > Attachment G: Process Description;
- > Attachment I: Emission Units Table;
- > Attachment J: Emission Points Data Summary Sheet;
- > Attachment K: Fugitive Emissions Data Summary Sheet;
- > Attachment L: Emissions Unit Data Sheets;
- > Attachment M: Air Pollution Control Device Sheets:
- > Attachment N: Supporting Emission Calculations;
- > Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans
- > Attachment P: Legal Ad

The characteristics of air emissions from the natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment N of this application.

Emissions from this project will result from natural gas combustion in the line heaters, combustors and TEGs, as well as storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types, as well as the existing source types, are calculated are summarized below.

- Line Heaters, Enclosed Combustors and TEGs: Potential emissions of criteria pollutants and hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for natural gas external combustion.¹ These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.²
- Fugitive Equipment Leaks: Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with emission factors from the *Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995.* Emission factors used are based on average measured TOC from component types indicated. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.³ Pneumatic devices at the wellpads are intermittent bleed and are assumed to be in operation 1/3 of the year.
- Storage Tanks: Working, breathing and flashing emissions of VOC and HAPs from the storage tanks at the facility are calculated using Bryan Research & Engineering ProMax® Software. Controlled calculations assume an overall control efficiency (capture and destruction) of 98%. The throughput for the produced fluids tanks are based on the maximum annualized monthly condensate and produced water at the OXF 149-150 well pad (i.e., the maximum monthly throughput for the pad times 12), and includes a safety factor of 1.3. The composition for the analysis was from a sample taken at OXF-150. Emissions of VOC and HAPs from the sand separator tank are calculated using E&P TANK v2.0. The produced fluids throughput is calculated as follows:

Throughput
$$\binom{bbl}{day} = \left(Condensate Throughput \left(\frac{bbl}{month}\right) + \left(Produced Water Throughput \left(\frac{bbl}{month}\right)\right)\right) * \frac{12\left(\frac{months}{year}\right)}{365\left(\frac{days}{year}\right)} \times 1.3$$

- Tank Truck Loading: Uncontrolled emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using Bryan Research Engineering ProMax® Software. Truck loading is controlled by the enclosed combustors. U.S. EPA's AP-42 Chapter 5 Section 2 factors were used for capture efficiency.⁴
- > Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁵

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

³ 40 CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

⁴ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 5.2, Transportation And Marketing Of Petroleum Liquids, June 2008.

⁵ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

The WVDEP permit application forms contained in this application include all applicable R-13 application forms including the required attachments.

WEST VIDCINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag		APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)							
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KN CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-F		 PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT IMINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION 							
FOR TITLE V FACILITIES ONLY: Please refer to "Title V (Appendix A, "Title V Permit Revision Flowchart") and									
Sec	tion I. Gener	al							
 Name of applicant (as registered with the WV Secreta EQT Production Company 	ry of State's Office): 2. Federal	Employer ID No. (FEIN): 25-0724685						
3. Name of facility (if different from above):		4. The applicant is the:							
OXF 149-150 Wellpad		OWNER OPERATOR BOTH							
5A. Applicant's mailing address: 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222	5B. Facility' Co Rte 11/4 West Union								
 6. West Virginia Business Registration. Is the applicant If YES, provide a copy of the Certificate of Incorporchange amendments or other Business Registration (If NO, provide a copy of the Certificate of Authority/amendments or other Business Certificate as Attach 	ation/Organizatio Certificate as Attac /Authority of L.L.(n/Limited Partners hment A.	hip (one page) including any name						
7. If applicant is a subsidiary corporation, please provide	the name of paren	corporation: EQ	Γ Corporation						
	 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? XES NO If YES, please explain: Applicant owns the site 								
 Type of plant or facility (stationary source) to be cons administratively updated or temporarily permitted crusher, etc.): Natural Gas Production Wellsite 			 10. North American Industry Classification System (NAICS) code for the facility: 213111 						
11A. DAQ Plant ID No. (for existing facilities only): 017-00040		List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only):							

12A. For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the _ present location of the facility from the nearest state road; For **Construction** or **Relocation permits**, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B. OXF-149: From Charleston take 1-77 north to exit 176. Go east on US Route 50 approximately 40.6 miles. Take a right on Arnolds Creek Road (Co. Rt. 11). Go approximately 0.7 miles and turn left on Punkin Center Road (Co. Rt. 11/4) (Note that Google maps calls this "Left Fork Run Rd" but signage says "Punkin Center Road"). Continue for approximately 3.3 miles (road turns to dirt after 3.1 miles) and veer left to an access gate. After going through gate go 0.4 miles on the access road. At that point the road turns hard to the left with a split going up a steep hill on the right. Take the steep hill and go approximately 0.3 miles to the well pad. OXF-150: From Charleston take 1-77 north to exit 176. Go east on US Route 50 approximately 40.6 miles. Take a right on Arnolds Creek Road (Co. Rt. 11). Go approximately 0.7 miles and turn left on Punkin Center Road (Co. Rt. 11/4) (Note google maps calls this "Left Fork Run Rd" but signage says "Punkin Center Road"). Continue for approximately 3.3 miles (road turns to dirt after 3.1 miles) and veer left to an access gate. After going through gate go 0.5 miles and cross a stream on the access road. After crossing the stream continue approximately 1.1 miles to the well pad. 12C. Nearest city or town: 12D. County: 12.B. New site address (if applicable): West Union Doddridge 12.E. UTM Northing (KM): 12F. UTM Easting (KM): 12G. UTM Zone: 17 OXF-149: OXF-149: Easting (KM): 517.205 Northing (KM): 4,341.348 OXF-150: OXF-150: Easting (KM): 518.021 Northing (KM): 4,341.558 13. Briefly describe the proposed change(s) at the facility: EQT is proposing to install two (2) additional enclosed combustors at the wellpads. 14A. Provide the date of anticipated installation or change: Upon permit issuance 14B. Date of anticipated Start-Up If this is an After-The-Fact permit application, provide the date upon which the proposed if a permit is granted: change did happen: 14C. Provide a Schedule of the planned Installation of/Change to and Start-Up of each of the units proposed in this permit application as Attachment C (if more than one unit is involved). 15. Provide maximum projected **Operating Schedule** of activity/activities outlined in this application: Hours Per Day 24 Days Per Week 7 Weeks Per Year 52 16. Is demolition or physical renovation at an existing facility involved? YES 17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III. 18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application (Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this information as Attachment D.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

	Section II. Additional attachments and supporting documents.
19.	Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and
4	45CSR13).
20.	Include a Table of Contents as the first page of your application package.
	Provide a Plot Plan , e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance).
- 1	ndicate the location of the nearest occupied structure (e.g. church, school, business, residence).
22.	Provide a Detailed Process Flow Diagram(s) showing each proposed or modified emissions unit, emission point and control device as Attachment F.
23.	Provide a Process Description as Attachment G.
	- Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).
All	of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.
24.	Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.
-	For chemical processes, provide a MSDS for each compound emitted to the air.
25.	Fill out the Emission Units Table and provide it as Attachment I.
26.	Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.
27.	Fill out the Fugitive Emissions Data Summary Sheet and provide it as Attachment K.
28.	Check all applicable Emissions Unit Data Sheets listed below:
\square	Bulk Liquid Transfer Operations
	Chemical Processes I Hot Mix Asphalt Plant Solid Materials Sizing, Handling and Storage
	Concrete Batch Plant Incinerator Facilities
	Grey Iron and Steel Foundry 🛛 🖾 Indirect Heat Exchanger
\square	General Emission Unit, specify: Thermoelectric Generator
Fill	out and provide the Emissions Unit Data Sheet(s) as Attachment L.
29.	Check all applicable Air Pollution Control Device Sheets listed below:
	Absorption Systems 🗌 Baghouse 🗌 Flare
	Adsorption Systems Condenser Mechanical Collector
	Afterburner Electrostatic Precipitator Wet Collecting System
\square	Other Collectors, specify Enclosed Combustors
Fill	out and provide the Air Pollution Control Device Sheet(s) as Attachment M.
30.	Provide all Supporting Emissions Calculations as Attachment N , or attach the calculations directly to the forms listed in Items 28 through 31.
31.	Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O .
4	Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.
32.	Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general
	circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal
	Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.
33.	Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?
А	If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's " <i>Precautionary Notice – Claims of Confidentiality</i> " guidance found in the <i>General Instructions</i> as Attachment Q.

Section III. Certification of Information

34. Authority/Delegation of Authority. Onl Check applicable Authority Form below:	y required when someone o	other than the responsible official signs the application							
Authority of Corporation or Other Business		Authority of Partnership							
Authority of Governmental Agency		Authority of Limited Partnership							
Submit completed and signed Authority Form as Attachment R.									
All of the required forms and additional informa	tion can be found under the	Permitting Section of DAQ's website, or requested by phone.							
35A. Certification of Information. To certify 2.28) or Authorized Representative shall check	this permit application, a R k the appropriate box and s	Responsible Official (per 45CSR§13-2.22 and 45CSR§30- sign below.							
Certification of Truth, Accuracy, and Comp	leteness								
I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.									
Compliance Certification Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements. SIGNATURE DATE: (Please use blue ink) DATE: 35B. Printed name of signee: Kenneth Kirk									
35D. E-mail: kkirk@eqt.com	36E. Phone:	36F. FAX:							
36A. Printed name of contact person (if differe	nt from above): Alex Bosilj	evac 36B. Title: Environmental Coordinator							
36C. E-mail: abosiljevac@eqt.com	36D. Phone: 412-395-369	99 36E. FAX: 412-395-3699							
PLEASE CHECK ALL APPLICABLE ATTACHMEN Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schell Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram Attachment G: Process Description Attachment H: Material Safety Data Sheets (N Attachment I: Emission Units Table Attachment J: Emission Points Data Summar	⊠ Attachmo ⊠ Attachmo ⊠ Attachmo ⊠ Attachmo Attachmo n(s) ⊠ Attachmo SDS) □ Attachmo □ Attachmo □ Attachmo	ent K: Fugitive Emissions Data Summary Sheet ent L: Emissions Unit Data Sheet(s) ent M: Air Pollution Control Device Sheet(s) ent N: Supporting Emissions Calculations ent O: Monitoring/Recordkeeping/Reporting/Testing Plans ent P: Public Notice ent Q: Business Confidential Claims ent R: Authority Forms ent S: Title V Permit Revision Information							

Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.

FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:
Forward 1 copy of the application to the Title V Permitting Group and:
For Title V Administrative Amendments:
□ NSR permit writer should notify Title V permit writer of draft permit,
For Title V Minor Modifications:
☐ Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
□ NSR permit writer should notify Title V permit writer of draft permit.
For Title V Significant Modifications processed in parallel with NSR Permit revision:
□ NSR permit writer should notify a Title V permit writer of draft permit,
Public notice should reference both 45CSR13 and Title V permits,
EPA has 45 day review period of a draft permit.
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A

Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT B

Мар

ATTACHMENT B

Figure 1 - Map of OXF-149 and OXF-150 Locations

OXF-149

UTM Northing (KM):	4,341.348
UTM Easting (KM):	517.205
Elevation:	~1,250 ft

OXF-150

UTM Northing (KM):	4,341.558
UTM Easting (KM):	518.021
Elevation:	~1,270 ft

ATTACHMENT C

Installation and Start Up Schedule

ATTACHMENT C

Schedule of Planned Installation and Start-Up

Proposed Unit	Date of Installation
Enclosed Combustor – Rated at 11.66	2016
MMBtu/hr - <mark>C003</mark>	
Enclosed Combustor – Rated at 11.66	2016
MMBtu/hr - <mark>C004</mark>	

ATTACHMENT D

Regulatory Discussion

ATTACHMENT D - REGULATORY APPLICABILITY

This section documents the applicability determinations made for Federal and State air quality regulations. The monitoring, recordkeeping, reporting, and testing plan is presented in Attachment O. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP R13 permit application forms, which fulfill the requirement to include citations and descriptions of applicable statutory and administrative code requirements.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpads. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpads. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

Prevention of Significant Deterioration (PSD) Source Classification

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD) and new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). PSD and NNSR regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpads will remain a minor source with respect to the NSR program after the project since potential emissions are below all the NNSR/PSD thresholds. As such, NNSR/PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the NSR/PSD thresholds to ensure these activities will not trigger this program.

Title V Operating Permit Program

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants.¹. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpads are not a major source for Title V purposes.

New Source Performance Standards

New Source Performance Standards (NSPS), located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable

¹ On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for GHGs under the PSD and Title V programs.

provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpads. The following NSPS could potentially apply to the wellpad:

- > 40 CFR Part 60 Subparts D/Da/Db/Dc Steam Generating Units
- > 40 CFR Part 60 Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMbtu/hr, therefore the requirements of these subparts do not apply.

NSPS Subpart K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All of the tanks at the wellpads have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpads.

NSPS Subpart OOOO—Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart 0000, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 (see clarification below regarding dates). This NSPS was published in the Federal Register on August 16, 2012, and subsequently amended. Although there are sources proposed to be installed that could potentially be subject to this regulation, due to the anticipated installation dates, they will not be subject to the rule. This is due to the most recent proposed developments related to the rule, which are the inclusion of an end date for applicability to Subpart 0000 (September 18, 2015) and the promulgation of 40 CFR 60 Subpart 0000a.² The potential applicability of Subpart 0000a is discussed in the following section.

NSPS Subpart OOOOa–Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, will apply to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. This regulation has yet to be finalized. The currently proposed version of the rule includes provisions for the following facilities:

> Hydraulically fractured wells;

> Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;

> Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;

> Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);

> Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;

² September 18, 2015 publication in Federal Register: <u>https://www.federalregister.gov/articles/2015/09/18/2015-21023/oiland-natural-gas-sector-emission-standards-for-new-and-modified-sources</u>

- > Pneumatic pumps located in the production, gathering, processing, or transmission and storage segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

There are twelve (12) produced fluid storage vessels and two (2) sand separator storage vessels at the wellpads. These tanks were installed prior to the applicability date of 0000a. Furthermore, the storage vessels at both facilities will each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the R-13 permit. As such, per 60.5365a(e), the tanks will not be storage vessel affected facilities under the rule.

Note that the proposed changes to the well pad do not meet the definition of modification under 60.5365a(i)(3)(i). Therefore, EQT will be not be subject to the leak detection and repair program under 0000a.

The pneumatic controllers will potentially subject to NSPS 0000a. Per 60.5365a(d)(1), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000a.

Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subpart 0000) and the applicability of a particular NSPS to the wellpads can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

National Emission Standards for Hazardous Air Pollutants (NESHAP)

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpads are an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpads:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

NESHAP Subpart HH – Oil and Natural Gas Production Facilities

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpads do not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

NESHAP Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The line heaters at the wellpads are natural gas-fired and is specifically exempt from this subpart. Therefore, no sources at the wellpads are subject to any requirements under this subpart.

West Virginia SIP Regulations

The wellpads are potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The TEGs and line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent.

45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpads are generally subject to this requirement. However, due to the nature of the process at the wellpads, production of objectionable odor from the wellpads during normal operation are unlikely.

45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustors are incinerators and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpads, EQT will be complying with 45 CSR 16.

45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

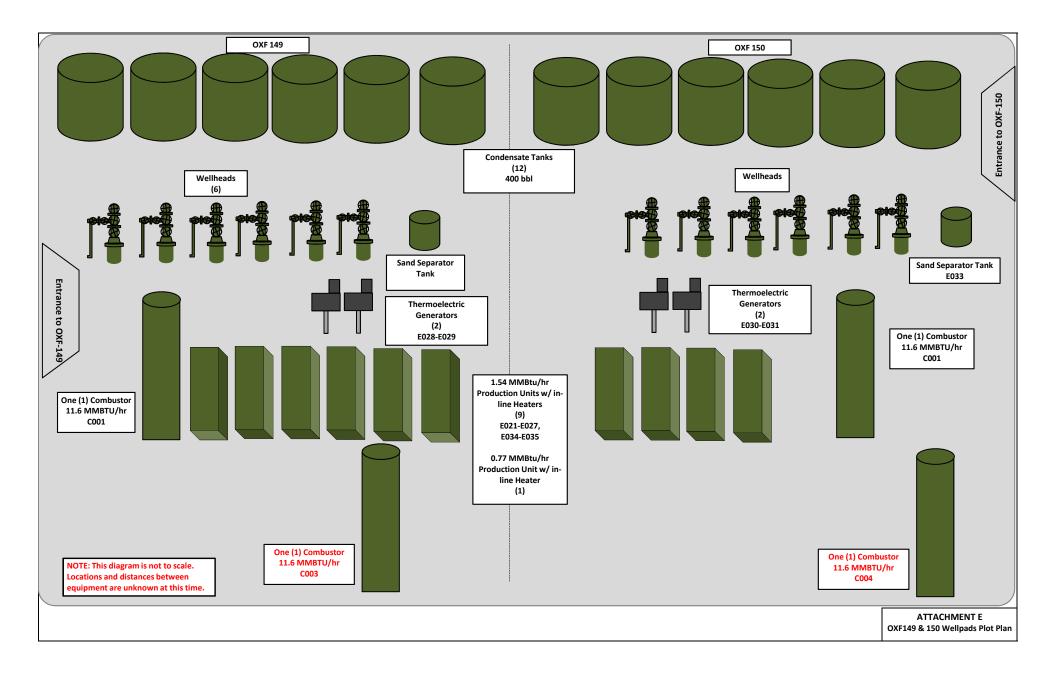
No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpads, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

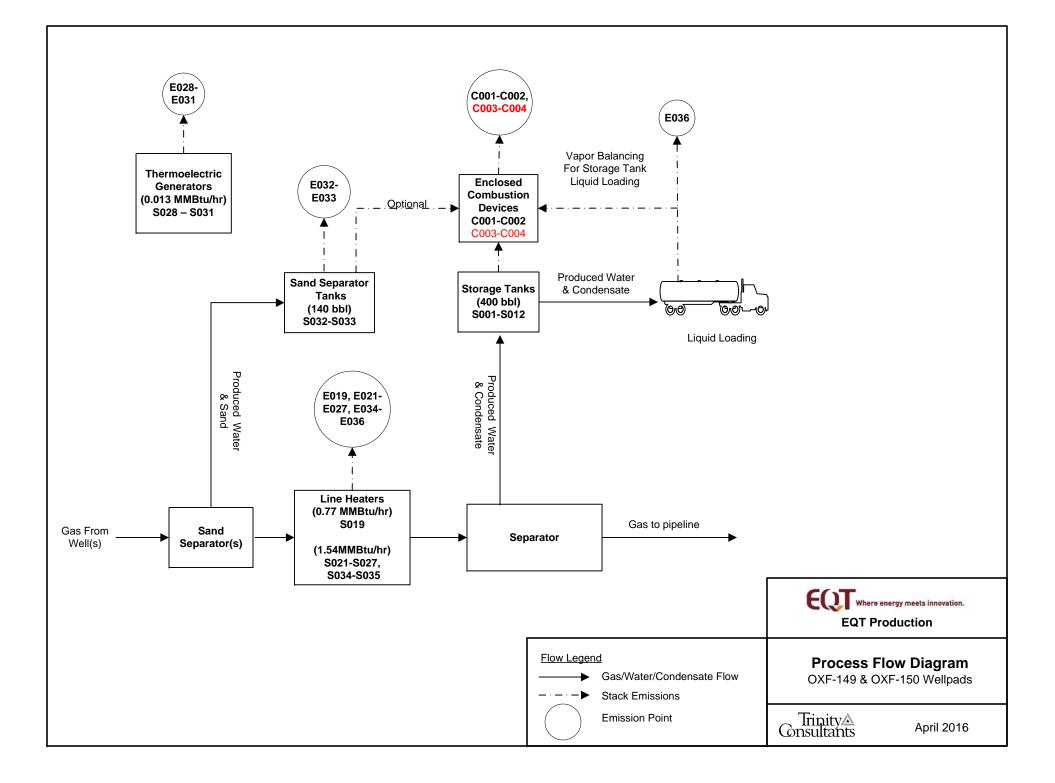
45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank at the wellpads are less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at the wellpads.

45 CSR 34: Emissions Standards for Hazardous Air Pollutants


45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As noted above, no NESHAP are applicable.

Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpads reveal many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpads.


ATTACHMENT E

Plot Plan

ATTACHMENT F

Detailed Process Flow Diagram

ATTACHMENT G

Process Description

ATTACHMENT G: PROCESS DESCRIPTION

This R-13 permit application involves the permitting of two (2) combustors (C003-C004) at an existing natural gas production wellpads (OXF 149-150). OXF-149 and 150 are currently authorized under general permit G70-A031A.

The wellpads consist of twelve wells (12) each with the same basic operation. The incoming gas/liquid stream from the underground well will pass through a sand separator, where sand, water, and residual solids are displaced and transferred to the sand separator tanks (S032-S033). The gas stream will then pass through a line heater (S019, S021-S027, S034-S035) to raise/maintain temperature. The stream will then pass through a high pressure (3 phase) separator, which will separate gas (natural gas from the separator is sent to the sales line) from liquids (condensate and produced water). The produced water and condensate will be sent to the produced fluids tanks (S001-S012).

Emissions from the storage vessels are controlled by an enclosed combustor (C001-C004). Once the tanks are filled, the contents are loaded into trucks for transport. EQT utilizes vapor balancing in the truck loading operations, which means the vapors displaced by the filling of tanker trucks (S036) are routed back into the battery of tanks and ultimately to the combustor. Facility electricity is provided by thermoelectric generators (S028-S031)

A process flow diagram is included as Attachment F.

ATTACHMENT I

Emission Units Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emissio Emission Point ID ² n Unit ID ¹		Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
S001	C001, C002, <mark>C003</mark> , C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S002	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S003	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S004	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S005	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S006	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S007	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S008	C001, C002, <mark>C003</mark> , C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S009	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S010	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S011	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S012	C001, C002, C003, C004	Produced Liquid Tank	2015	400 BBL	Existing, No Change	C001-C004
S019	E019 Line Heater		2011	0.77 MMBtu/hr	Existing, No Change	None
S021	E021	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S022	E022 Line Heater		2014	1.54 MMBtu/hr	Existing, No Change	None
S023	E023	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None

Page _____ of _____

S024	E024	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S025	E025	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S026	E026	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S027	E027	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S028	E028	Thermoelectric Generators	2011-2014	0.013 MMBtu/hr	Existing, No Change	None
S029 E029		Thermoelectric Generators	2011-2014	0.013 MMBtu/hr	Existing, No Change	None
S030	E030	E030 Thermoelectric Generators			Existing, No Change	None
S031	E031	Thermoelectric Generators	2011-2014	0.013 MMBtu/hr	Existing, No Change	None
S032	E032	Sand Separator Tank	2015	140 bbl	Existing, No Change	None
S033	E033	Sand Separator Tank	2015	140 bbl	Existing, No Change	None
S034	E034	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S035	E035	Line Heater	2014	1.54 MMBtu/hr	Existing, No Change	None
S036	E036 (Uncaptured) C001-C004 (Controlled, Captured)	Liquid Loading	2015	21,324,030 gal/yr	Modified; Increased throughput	C001-C004
C001	C001	Enclosed Combustor	2015	11.66 MMBtu/hr	Existing, No Change	None
C002	C002	Enclosed Combustor 20		11.66 MMBtu/hr	Existing, No Change	None
C003	C003			11.66 MMBtu/hr	New	None
C004	C004	Enclosed Combustor	TBD	11.66 MMBtu/hr	New	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal

⁴ For <u>Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.</u>

ATTACHMENT J

Emission Points Data Summary Sheet

Attachment J EMISSION POINTS DATA SUMMARY SHEET

						Т	able 1:	Emissions Da	ita							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹		Ve Through (Must ma Units T	sion Unit ented This Point tch Emission able & Plot Plan)	Conti (Mu Emis Tat	Pollution rol Device ist match ision Units ole & Plot Plan)	Emissi <i>(che</i>	ime for on Unit mical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Pote	trolled	Pot Con	kimum tential trolled ssions ⁵	Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	`´& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)			
C001	Vert Stack	S001- S012, S036	Condensate tanks, liquid loading	C001	Enclosed Combustor			$\begin{array}{c} \text{NO}_{\text{x}}\\ \text{CO}\\ \text{VOC}\\ \text{SO}_{2}\\ \text{PM}_{10}\\ \text{PM}_{2.5}\\ \text{CO}_{2e}\\ \text{HAP}\\ \text{Toluene}\\ \text{n-hexane} \end{array}$	$\begin{array}{c} 1.15\\ 0.96\\ 40.35\\ 0.01\\ 0.09\\ 0.09\\ 1.574\\ 1.57\\ 0.08\\ 1.20\\ \end{array}$	5.03 4.22 130.48 0.03 0.38 0.38 6,896 5.28 0.31 3.99	$\begin{array}{c} 1.15\\ 0.96\\ 0.81\\ 0.01\\ 0.09\\ 0.09\\ 1,375\\ 0.03\\ <\!0.01\\ 0.02\\ \end{array}$	$5.03 \\ 4.22 \\ 2.61 \\ 0.03 \\ 0.38 \\ 0.38 \\ 6,023 \\ 0.11 \\ 0.01 \\ 0.08 \\ $	Gas	BRE ProMax		
C002	Vert Stack	S001- S012, S036	Condensate tanks, liquid loading	C002	Enclosed Combustor			$\begin{array}{c} \text{NO}_{\text{x}}\\ \text{CO}\\ \text{VOC}\\ \text{SO}_2\\ \text{PM}_{10}\\ \text{PM}_{2.5}\\ \text{CO}_{2}e\\ \text{HAP}\\ \text{Toluene}\\ \text{n-hexane} \end{array}$	$\begin{array}{c} 1.20\\ 1.15\\ 0.96\\ 40.35\\ 0.01\\ 0.09\\ 0.09\\ 1.574\\ 1.57\\ 0.08\\ 1.20\\ \end{array}$	$\begin{array}{c} 5.03\\ 4.22\\ 130.48\\ 0.03\\ 0.38\\ 6.896\\ 5.28\\ 0.31\\ 3.99\end{array}$	$\begin{array}{c} 0.02\\ \hline 1.15\\ 0.96\\ 0.81\\ 0.01\\ 0.09\\ 0.09\\ 1.375\\ 0.03\\ < 0.01\\ 0.02 \end{array}$	5.03 4.22 2.61 0.03 0.38 0.38 6,023 0.11 0.01 0.08	Gas	BRE ProMax		
C003	Vert Stack	S001- S012, S036	Condensate tanks, liquid loading	C003	Enclosed Combustor			$\begin{array}{c} \text{NO}_{x}\\ \text{CO}\\ \text{VOC}\\ \text{SO}_{2}\\ \text{PM}_{10}\\ \text{PM}_{2.5}\\ \text{CO}_{2}e\\ \text{HAP}\\ \text{Toluene}\\ \text{n-hexane} \end{array}$	$\begin{array}{c} 1.15\\ 0.96\\ 40.35\\ 0.01\\ 0.09\\ 0.09\\ 1.574\\ 1.57\\ 0.08\\ 1.20\\ \end{array}$	5.03 4.22 130.48 0.03 0.38 0.38 6,896 5.28 0.31 3.99	$\begin{array}{c} 0.02\\ \hline 1.15\\ 0.96\\ 0.81\\ 0.01\\ 0.09\\ 0.09\\ 1.375\\ 0.03\\ < 0.01\\ 0.02 \end{array}$	5.03 4.22 2.61 0.03 0.38 6,023 0.11 0.01 0.08	Gas	BRE ProMax		
C004	Vert Stack	S001- S012, S036	Condensate tanks, liquid loading	C004	Enclosed Combustor			$\begin{array}{c} NO_{X}\\ CO\\ VOC\\ SO_{2}\\ PM_{10}\\ PM_{2.5}\\ CO_{2}e\\ HAP\\ Toluene\\ n-hexane \end{array}$	$\begin{array}{c} 1.15\\ 0.96\\ 40.35\\ 0.01\\ 0.09\\ 0.09\\ 1,574\\ 1.57\\ 0.08\\ 1.20\\ \end{array}$	$5.03 \\ 4.22 \\ 130.48 \\ 0.03 \\ 0.38 \\ 0.38 \\ 6.896 \\ 5.28 \\ 0.31 \\ 3.99$	$\begin{array}{c} 1.15\\ 0.96\\ 0.81\\ 0.09\\ 0.09\\ 1.375\\ 0.03\\ <\!0.01\\ 0.02 \end{array}$	5.03 4.22 2.61 0.03 0.38 0.38 6,023 0.11 0.01 0.08	Gas	BRE ProMax		

E021-E035 (each)	Vert Stack	\$021- \$035	Line Heaters	N/A	N/A	NO _X CO VOC SO ₂ PM ₁₀ PM _{2.5} CO ₂ e HAP	$\begin{array}{c} 0.15\\ 0.12\\ 0.01\\ <0.01\\ 0.01\\ 0.01\\ 180\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.64 \\ 0.54 \\ 0.04 \\ < 0.01 \\ 0.05 \\ 0.05 \\ 789 \\ 0.01 \end{array}$	$\begin{array}{c} 0.15 \\ 0.12 \\ 0.01 \\ < 0.01 \\ 0.01 \\ 0.01 \\ 180 \\ < 0.01 \end{array}$	$\begin{array}{c} 0.64\\ 0.54\\ 0.04\\ <0.01\\ 0.05\\ 0.05\\ 789\\ 0.01\\ \end{array}$	Gas	AP-42	
E019	Vert Stack	S019	Line Heater	N/A	N/A	NO _x CO VOC SO ₂ PM ₁₀ PM _{2.5} CO ₂ e HAP	0.07 0.06 <0.01 <0.01 0.01 90 <0.01	$\begin{array}{c} 0.32\\ 0.27\\ 0.02\\ <0.01\\ 0.02\\ 0.02\\ 395\\ 0.01 \end{array}$	0.07 0.06 <0.01 <0.01 0.01 90 <0.01	$\begin{array}{c} 0.32\\ 0.27\\ 0.02\\ <0.01\\ 0.02\\ 0.02\\ 395\\ 0.01\\ \end{array}$	Gas	AP-42	
E028-E031 (each)	Vert Stack	S029- S031	TEG	N/A	N/A	NO _X CO ₂ e	<0.01 1.52	0.01 6.64	<0.01 1.52	0.01 6.64	Gas	AP-42	
E032-E033 (each)	Vert Stack	\$032- \$033	Sand Trap tank	N/A	N/A	VOC CO ₂ e HAP	0.07 0.50 <0.01	0.32 2.20 0.01	0.07 0.50 <0.01	0.32 2.20 0.01	Gas	E&P Tank	
E036	Fug	S036	Uncaptured liquid loading	N/A	N/A	VOC HAP	19.24 0.03	5.00 0.01	19.24 0.03	5.00 0.01	Gas	BRE ProMax	

*Note – Only pollutants with controlled emissions > 0.01 tpy are presented in this table.

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J **EMISSION POINTS DATA SUMMARY SHEET**

Table 2: Release Parameter Data									
Emission	Inner		Exit Gas	Exit Gas Emission Point El		evation (ft)	UTM Coordina	UTM Coordinates (km)	
Point ID No. (Must match Emission Units Table)	h (ft.) Temp. Volumetric Flow ¹ (°F) (acfm) <i>at operating conditions</i>		Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting		

¹Give at operating conditions. Include inerts. ²Release height of emissions above ground level.

ATTACHMENT K

Fugitive Emissions Data Summary Sheet

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS							
1.)	Will there be haul road activities?							
	Yes Xo (no change to existing)							
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.							
2.)	Will there be Storage Piles?							
	🗌 Yes 🛛 🖂 No							
	If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.							
3.)	Will there be Liquid Loading/Unloading Operations?							
	🛛 Yes 🔹 🗋 No							
	☐ IF YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.							
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?							
	🗌 Yes 🛛 No							
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.							
5.)) Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?							
	🛛 Yes 🗌 No							
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.							
6.)	Will there be General Clean-up VOC Operations?							
	🗌 Yes 🛛 🖂 No							
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.							
7.)	Will there be any other activities that generate fugitive emissions?							
	🗌 Yes 🛛 No							
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.							
	u answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions imary."							

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
	onemical Name/OAO	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	NA					
Unpaved Haul Roads	PM PM ₁₀ PM _{2.5}		23.71 6.04 0.60		23.71 6.04 0.60	С
Storage Pile Emissions	NA					
Loading/Unloading Operations (Uncaptured Emissions)	VOC HAP Benzene Toluene Ethylbenzene Xylene n-hexane	19.24 0.67 0.01 0.03 <0.01 0.01 0.53	5.00 0.18 <0.01 0.01 <0.01 <0.01 0.14			В
Wastewater Treatment Evaporation & Operations	NA					
Equipment Leaks	VOC HAP CO2e Benzene Toluene Ethylbenzene Xylene n-hexane	N/A	35.06 1.09 541.51 0.01 0.03 <0.01 0.04 0.59	N/A	35.06 1.09 541.51 0.01 0.03 <0.01 0.04 0.59	A
General Clean-up VOC Emissions	NA					
Other	NA					

A –*Protocol for Equipment Leak Emission Estimates*, EPA 453/R-95-017, Table 2-1, November 1995. 40 CFR 98 Subpart W. B- Bryan Research Engineering ProMax Software C – AP-42 Chapter 13

- ¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.
- ² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L

Emissions Unit Data Sheet

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name					
OXF 149 -150 Wellpad	Produced Fluid Tanks (Water and Condensate)					
 Tank Equipment Identification No. (as assigned on Equipment List Form) S001 – S012 	 Emission Point Identification No. (as assigned on Equipment List Form) C001-C004 					
5. Date of Commencement of Construction (for existing	tanks) 2015					
6. Type of change	New Stored Material Other Tank Modification					
7. Description of Tank Modification (if applicable)						
Not Applicable						
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan						
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must completed for each mode).						
70 Duriter linitation (1.11)						
7C. Provide any limitations on source operation affecting variation, etc.):	emissions, any work practice standards (e.g. production					
None						
II. TANK INFORMATION (required)						
 Design Capacity (specify barrels or gallons). Use height. 	the internal cross-sectional area multiplied by internal					
	00 bbls					
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)					
12	20					
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)					
20	10					
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)					
10	10					
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights.						

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)							
See attached emissions calculations for all throughput								
values 14 Number of Turnovers per year (appual net throughout)	values							
	14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume) See attached emissions calculations for all throughput values							
15. Maximum tank fill rate (gal/min) See attached emis								
16. Tank fill method Submerged	Splash 🔲 Bottom Loading							
17. Complete 17A and 17B for Variable Vapor Space Tai	nk Systems 🛛 Does Not Apply							
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year							
18. Type of tank (check all that apply): ∑ Fixed Roof <u>x</u> verticalflat roof <u>x</u> cone roofdome roof other (describe)								
External Floating Roof pontoon roof Domed External (or Covered) Floating Roof	double deck roof							
☐ Internal Floating Roof	pport self-supporting							
☐ Variable Vapor Space lifter roof								
Pressurized spherical cylindrical	l							
Other (describe)								
	ATION (optional if providing TANKS Summary Sheets)							
19. Tank Shell Construction:	d rivets							
20A. Shell Color Green 20B. Roof Colo								
21. Shell Condition (if metal and unlined):								
🛛 No Rust 🔄 Light Rust 🗌 Dense R	ust 🗌 Not applicable							
22A. Is the tank heated? \Box YES \boxtimes NO								
22B. If YES, provide the operating temperature (°F)								
22C. If YES, please describe how heat is provided to t	ank.							
23. Operating Pressure Range (psig):								
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply							
24A. For dome roof, provide roof radius (ft)								
24B. For cone roof, provide slope (ft/ft) 0.06	. For cone roof, provide slope (ft/ft) 0.06							
25. Complete the following section for Floating Roof Tanks 🛛 Does Not Apply								
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type: Metallic (Mechanical) (check one) Vapor Mounted Resil								
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO							
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):							
25E. Is the Floating Roof equipped with a weather shie	eld?							

25F. Describe deck fittings; indicate the number of each type of fitting:						
	ACCESS	S НАТСН				
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:			
		JGE FLOAT WELL				
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:			
	COLUM	N WELL	1			
BUILT-UP COLUMN - SLIDING			PIPE COLUMN – FLEXIBLE			
COVER, GASKETED:	COVER, UNGASH		FABRIC SLEEVE SEAL:			
	•					
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:			
FIF COLUMIN – SLIDING COVER, G	ASKETED.		SLIDING COVER, UNGASKETED.			
	GAUGE-HATCH	SAMPLE PORT				
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:			
		HANGER WELL				
			SAMPLE WELL-SLIT FABRIC SEAL			
ACTUATION, GASKETED:	ACTUATION, UNC	JASKETED.	(10% OPEN AREA)			
	- - 					
	VACUUM	BREAKER				
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:			
		·				
		VENT				
WEIGHTED MECHANICAL ACTUAT	ION GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:			
	DECK DRAIN (3-I	INCH DIAMETER)				
OPEN:	22010010101010	90% CLOSED:				
	STUB	DRAIN				
1-INCH DIAMETER:						
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)						

26. Complete the following section for Internal Floating	Roof Tanks 🛛 Does Not Apply
26A. Deck Type: Bolted Welded	
26B. For Bolted decks, provide deck construction:	
 26C. Deck seam: Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide Continuous sheet construction 7 feet wide Continuous sheet construction 5 × 7.5 feet wide Continuous sheet construction 5 × 12 feet wide Other (describe) 	
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	
	Il if providing TANKS Summary Sheets) s performed using ProMax Software
27. Provide the city and state on which the data in this	section are based.
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(ft2.da	ay))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (optiona	al if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for <u>each</u> liquid or gas to be sto	ored in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press 39F. True (psia)	sure						
39F. True (psia) 39G. Reid (psia)							
Months Storage per Y	ear						
39H. From							
39I. To							
	VI. EMISSIONS AN		OL DEVICE	E DATA (required)			
	Devices (check as many	as apply):[Does No	t Apply			
Carbon Adsorp	otion ¹						
Condenser ¹							
Conservation V							
Vacuum S	-		Pressure Se	etting 14.4 oz			
• •	lief Valve (psig) 14.4 c	oz (Vacuum s	setting)				
Inert Gas Blank							
Insulation of Ta							
Liquid Absorpti	· ,						
Refrigeration of							
Rupture Disc (p	Combustion Device ¹						
Other ¹ (describ							
Cashco Lockdo							
	priate Air Pollution Contr	ol Device SI	heet				
	n Rate (submit Test Dat			or elsewhere in the an	lication)		
Material Name &	Breathing Loss	Working	1	Annual Loss			
CAS No.	(lb/hr)	Amount	Units	(lb/yr)	Estimation Method ¹		
See attached							
Emissions Calculation							

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

S019

Control Device ID No. (must match List Form): None

	Equipment Information						
1.	Manufacturer:	2. Model No.					
		Serial No.					
3.	Number of units: 1	4. Use					
		Produces heat					
5.	Rated Boiler Horsepower: NA hp	6. Boiler Serial No.:					
7.	Date constructed: 2011	8. Date of last modification and explain: NA					
9.	Maximum design heat input per unit:	10. Peak heat input per unit:					
	0.77 ×10 ⁶ BTU/hr	0.77 ×10 ⁶ BTU/hr					
11	Steam produced at maximum design output:	12. Projected Operating Schedule:					
		Hours/Day 24					
	NA - no steam LB/hr	Days/Week 7					
	psig	Weeks/Year 52					
13.	Type of firing equipment to be used:	14. Proposed type of burners and orientation:					
	Pulverized coal	Vertical					
	☐ Spreader stoker ☐ Oil burners	Front Wall Opposed					
	⊠ Natural Gas Burner	Tangential					
	☐ Others, specify	Others, specify					
15.	Type of draft: Forced Induced	16. Percent of ash retained in furnace: NA %					
17.	Will flash be reinjected? Yes No	18. Percent of carbon in flash: NA %					
·	Stack or	Vent Data					
19.	Inside diameter or dimensions: ft.	20. Gas exit temperature: °F					
21.	Height: ft.	22. Stack serves:					
		This equipment only					
23.	Gas flow rate: ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this					
24.	Estimated percent of moisture: %	stack or vent)					

	Fuel Requirements						
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:	
	Quantity(atOutput)	@60°F	732 ft ³ /hr	ft ³ /hr	ТРН		
	Annually	×10³ gal	6.42 ×10 ⁶ ft ³ /yr	×10 ⁶ ft ³ /hr	tons		
	Sulfur	Maximum: wt. % Average: wt. %	neg gr/100 ft ³	gr/100 ft ³	Maximum: wt. %		
	Ash (%)			T	Maximum		
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1,216 BTU/ft ³	BTU/ft ³	BTU/lb		
	Source						
	Supplier			<u> </u>			
	Halogens (Yes/No)		No				
	List and Identify Metals		NA				
26.	Gas burner mode o		comatic hi-low	27. Gas burner mar	nufacture:		
	Automatic full n			28. Oil burner manu	ufacture:		
29.	If fuel oil is used, h	ow is it atomized?	 Oil Pressur Compresse Other, spece 	ed Air 🗍 Rotary Cu			
	Fuel oil preheated:			31. If yes, indicate t	•	°F	
		ated theoretical air		or combustion of th	e fuel or mixture o	of fuels described	
	@	°F,	PSIA,	% m	oisture		
33.	Emission rate at ra	ated capacity:	TBD lb/hr				
34.	Percent excess air	r actually required for			%		
25	<u>Coomo</u>		Coal Charac	cteristics			
30.	Seams:						
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		% of Sulfur: % of Volatile Matter:	:	

Emissions Stream

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
со	0.06			
Hydrocarbons	<0.01			
NOx	0.07			
Ър	<0.01			
PM ₁₀	0.01			
SO ₂	<0.01			
/OCs	<0.01			
Other (specify) CO ₂ e	90.09			
What quantities of polluta Pollutant	ants will be emitted from t Pounds per Hour Ib/hr	he boiler after contr grain/ACF	ols? @ °F	PSIA
0	0.06			
Hydrocarbons	<0.01			
NOx	0.07			
Ър	<0.01			
PM 10	0.01			
SO ₂	<0.01			
/OCs	<0.01			
Other (specify) CO ₂ e	90.09			
How will waste material t N/A	from the process and cont	trol equipment be d	isposed of?	

41. Have you included the *air pollution rates* on the Emissions Points Data Summary Sheet?

42. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device.

Monitor fuel usage throughput (scf/yr)

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. None

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.

Maintain records of fuel throughput (scf/yr)

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping.

None

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

N/A

Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

S021-S027, S034-S035

Control Device ID No. (must match List Form): None

	Equipment Information						
1.	Manufacturer:	2. Model No.					
		Serial No.					
3.	Number of units: 9	4. Use					
		Produces heat					
5.	Rated Boiler Horsepower: NA hp	6. Boiler Serial No.:					
7.	Date constructed: 2014-2015	8. Date of last modification and explain: NA					
<i>′</i> .	Date constructed. 2014-2015						
9.	Maximum design heat input per unit:	10. Peak heat input per unit:					
5.	1.54 ×10 ⁶ BTU/hr	1.54 ×10 ⁶ BTU/hr					
11.	Steam produced at maximum design output:	12. Projected Operating Schedule:					
	NA - no steam LB/hr	Hours/Day 24					
	psig	Days/Week 7 Weeks/Year 52					
13	Type of firing equipment to be used:	14. Proposed type of burners and orientation:					
	Pulverized coal						
	Spreader stoker	 □ Front Wall					
	⊠ Natural Gas Burner	Tangential					
	Others, specify	Others, specify					
15.	Type of draft: Forced Induced	16. Percent of ash retained in furnace: NA %					
17.	Will flash be reinjected?	18. Percent of carbon in flash: NA %					
	Stack or	Vent Data					
19.	Inside diameter or dimensions: ft.	20. Gas exit temperature: °F					
21.	Height: ft.	22. Stack serves:					
		This equipment only					
23.	Gas flow rate: ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this					
24.	Estimated percent of moisture: %	stack or vent)					

	Fuel Requirements						
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:	
	Quantity (at Design Output)	@60°F	1465 ft ³ /hr	ft ³ /hr	TPH		
	Annually	×10 ³ gal	12.84 ×10 ⁶ ft ³ /yr	×10 ⁶ ft ³ /hr	tons		
	Sulfur	Maximum: wt. % Average: wt. %	neg gr/100 ft ³	gr/100 ft ³	Maximum: wt. %		
	Ash (%)				Maximum		
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1,216 BTU/ft ³	BTU/ft ³	BTU/lb		
	Source						
	Supplier						
	Halogens (Yes/No)		No				
	List and Identify Metals		NA				
26.	Gas burner mode o		omatic hi-low	27. Gas burner mar	nufacture:		
	Automatic full n			28. Oil burner manu	ufacture:		
29.	If fuel oil is used, h	ow is it atomized?	Oil Pressu	ed Air 🗍 Rotary Cu			
	Fuel oil preheated:			31. If yes, indicate t	•	°F	
		lated theoretical air c feet (ACF) per unit		or combustion of th	e fuel or mixture o	of fuels described	
	@	°F,	PSIA,	, % m	oisture		
33.	Emission rate at ra	ated capacity:	TBD lb/hr				
34.	Percent excess air	r actually required for			%		
			Coal Chara	cteristics			
35.	Seams:						
36.	36. Proximate analysis (dry basis): % of Fixed Carbon: % of Sulfur: % of Moisture: % of Volatile Matter: % of Ash:						

Emissions Stream

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
со	0.12			
Hydrocarbons	0.01			
NOx	0.15			
Pb	<0.01			
PM ₁₀	0.01			
SO ₂	<0.01			
VOCs	0.01			
Other (specify) CO ₂ e	180.18			
What quantities of polluta Pollutant	ants will be emitted from t Pounds per Hour Ib/hr	he boiler after conti grain/ACF	rols? @ °F	PSIA
СО	0.12			
Hydrocarbons	0.01			
riyulucarboris				
-	0.15			
NO _x				
NO _x Pb	0.15			
NO _x Pb PM ₁₀	0.15 <0.01			
NO _x Pb PM ₁₀ SO ₂ VOCs	0.15 <0.01 0.01			
NOx Pb PM10 SO2 VOCs	0.15 <0.01 0.01 <0.01			
NO _x Pb PM ₁₀ SO ₂ VOCs Other (specify) CO ₂ e	0.15 <0.01 0.01 <0.01 0.01	trol equipment be d	isposed of?	

42. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device.

Monitor fuel usage throughput (scf/yr)

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. None

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.

Maintain records of fuel throughput (scf/yr)

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping.

None

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

N/A

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name				
OXF 149 -150 Wellpad	Sand Separator Tanks				
 Tank Equipment Identification No. (as assigned on Equipment List Form) S032-S033 	 Emission Point Identification No. (as assigned on Equipment List Form) E032-E033 				
5. Date of Commencement of Construction (for existing	tanks) 2015				
6. Type of change	New Stored Material				
 Description of Tank Modification (if applicable) Not Applicable 					
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan					
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).					
7C. Provide any limitations on source operation affecting	emissions, any work practice standards (e.g. production				
variation, etc.):					
None					
II. TANK INFORMATION (required)					
 Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. 140 bbls 					
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)				
10	10				
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)				
10	5				
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)				
10	6				
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers des liquid levels and overflow valve heights.					

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
See attached emissions calculations for all throughput	See attached emissions calculations for all throughput			
values				
14. Number of Turnovers per year (annual net throughpu				
~ See attached emissions cal	culations for all throughput values			
15. Maximum tank fill rate (gal/min) See attached emis	ssions calculations for all throughput values			
16. Tank fill method Submerged	Splash Dottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Ta	Ink Systems 🛛 Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply):				
Fixed Roof vertical <u>x</u> horizontal	flat roofcone roofdome roof			
other (describe)	the late at the first second			
External Floating Roof pontoon roof Domed External (or Covered) Floating Roof	double deck root			
☐ Internal Floating Roof vertical column su	inport self-supporting			
□ Variable Vapor Space lifter roof				
Pressurizedsphericalcylindrica				
Underground				
Other (describe)				
III. TANK CONSTRUCTION & OPERATION INFORM	IATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:				
Riveted Gunite lined Epoxy-coate	d rivets 🛛 Other (describe) Welded			
20A. Shell Color Gray 20B. Roof Colo	or Gray 20C. Year Last Painted Gray			
21. Shell Condition (if metal and unlined):				
🗌 No Rust 🔤 Light Rust 🔤 Dense R	Rust 🗌 Not applicable			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to	tank.			
23. Operating Pressure Range (psig):				
24. Complete the following section for Vertical Fixed Ro	Does Not Apply			
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Ta	nks 🛛 Does Not Apply			
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type:	· •			
25C. Is the Floating Roof equipped with a Secondary				
25D. If YES, how is the secondary seal mounted? (ch	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather shi	eld?			

25F. Describe deck fittings; indicate the number of each type of fitting:						
	ACCESS HATCH					
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:			
		JGE FLOAT WELL				
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:			
	COLUM	N WELL	1			
BUILT-UP COLUMN - SLIDING			PIPE COLUMN – FLEXIBLE			
COVER, GASKETED:	COVER, UNGASH		FABRIC SLEEVE SEAL:			
	•					
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:			
FIF COLUMIN – SLIDING COVER, G	ASKETED.		SLIDING COVER, UNGASKETED.			
	GAUGE-HATCH	SAMPLE PORT				
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:			
		HANGER WELL				
			SAMPLE WELL-SLIT FABRIC SEAL			
ACTUATION, GASKETED:	ACTUATION, UNC	JASKETED.	(10% OPEN AREA)			
	- - 					
	VACUUM	BREAKER				
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:			
		·				
		VENT				
WEIGHTED MECHANICAL ACTUAT	ION GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:			
	DECK DRAIN (3-I	INCH DIAMETER)				
OPEN:	22010010101010	90% CLOSED:				
	STUB	DRAIN				
1-INCH DIAMETER:						
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)						
UTHER (DESCH	NDE, ATTACH ADL	JITIONAL PAGES I	F NECESSARI)			

26. Complete the following section for Internal Floating	Roof Tanks 🛛 Does Not Apply
26A. Deck Type: 🗌 Bolted 🗌 Welded	
26B. For Bolted decks, provide deck construction:	
 26C. Deck seam: Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide Continuous sheet construction 7 feet wide Continuous sheet construction 5 × 7.5 feet wide Continuous sheet construction 5 × 12 feet wide Other (describe) 	
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	
	I if providing TANKS Summary Sheets) performed using E&P Tanks Software
27. Provide the city and state on which the data in this	section are based.
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(ft2.da	ay))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (optiona	l if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be sto	pred in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press	sure							
39F. True (psia)								
39G. Reid (psia)								
Months Storage per Yo 39H. From	ear							
39I. To	VI. EMISSIONS A							
					1			
	40. Emission Control Devices (check as many as apply): 🖾 Does Not Apply							
	Carbon Adsorption ¹							
Condenser ¹								
Conservation \	/ent (psig)							
Vacuum S	Setting	F	Pressure Se	etting				
Emergency Re	lief Valve (psig)							
🗌 Inert Gas Blan	ket of							
Insulation of Ta	ank with							
🗌 Liquid Absorpti	ion (scrubber) ¹							
Refrigeration o	· · ·							
Rupture Disc (
	Combustion Device ¹							
Other ¹ (describ								
	,							
	priate Air Pollution Cont	rol Device SI	heet					
				and the state of the second	P ('			
-	n Rate (submit Test Dat I				Dilcation).			
Material Name &	Breathing Loss	Working		Annual Loss	Estimation Method ¹			
CAS No.	(lb/hr)	Amount	Units	(lb/yr)				
See attached								
Emissions Calculation								
Calculation								

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): S028-S031

1. Name or type and model of proposed affected source:
Thermoelectric generators – 0.013 MMBtu/hr (consists of 4 identical units)
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
NA
4. Name(s) and maximum amount of proposed material(s) produced per hour:
 Name(s) and maximum amount of proposed material(s) produced per hour:
Does not produce any materials. Electrical generation from natural gas.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Combustion of natural gas

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if applic	cable):					
(a) Type and amount in ap	opropriate units of f	uel(s) to be bu	irned:			
Natural gas – 12.3 scf/hr						
(b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulfur and ash:						
Natural gas						
(c) Theoretical combustion	n air requirement (A	ACF/unit of fue	el):			
Unknown @		°F and		psia.		
(d) Percent excess air: Unknown						
(e) Type and BTU/hr of bu	irners and all other	firing equipme	ent planned to	be used:		
One (1) 0.013 MMBtu/hr natural gas fired burner per unit						
(f) If coal is proposed as a coal as it will be fired:	a source of fuel, ide	ntify supplier a	and seams and	give sizing of the		
NA						
(g) Proposed maximum design heat input: 0.013 (each) × 10 ⁶ BTU/hr.						
7. Projected operating sched	ule:					
Hours/Day 24	Days/Week	7	Weeks/Year	52		

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
@	@ °F and ps					
a.	NOx	1.2E-3	lb/hr	grains/ACF		
b.	SO ₂	7.4E-6	lb/hr	grains/ACF		
c.	СО	1.0E-3	lb/hr	grains/ACF		
d.	PM ₁₀	2.3E-5	lb/hr	grains/ACF		
e.	Hydrocarbons	6.8E-5	lb/hr	grains/ACF		
f.	VOCs	6.8E-5	lb/hr	grains/ACF		
g.	Pb	6.2E-9	lb/hr	grains/ACF		
h.	Specify other(s)		I			
	CO ₂ e	1.51	lb/hr	grains/ACF		
	НАР	2.3E-5	lb/hr	grains/ACF		
	Formaldehyde	9.3E-7	lb/hr	grains/ACF		
			lb/hr	grains/ACF		

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING RECORDKEEPING 					
Fuel throughput (scf/yr)	Fuel Throughput (scf/yr)				
REPORTING	TESTING				
None	None				
	I E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.				
RECORDKEEPING. PLEASE DESCRIBE THE PROP MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE				
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE				
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.					
	nance procedures required by Manufacturer to				
maintain warranty See attached manufacturer's specification sheet					
see addened manufacturer's specification sheet					

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on *Equipment List Form*):

1. Loading Area Name: Produced Liquids (Condensate and Produced Water) - \$036

				at this rack or transfer point (check as many		
as apply): □ Drums	Marine Vessel	S	□ Rai	il Tank Cars	🗴 Tank Trucks	
3. Loading Rack or Transfer Point Data:						
Number of pu	mps	1				
Number of liqu	uids loaded		l			
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time						
 Does ballastin □ Yes 	 4. Does ballasting of marine vessels occur at this loading area? □ Yes □ No ☑ Does not apply 					
5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point:						
 6. Are cargo vessels pressure tested for leaks at this or any other location? □ Yes ☑ No If YES, describe: 						
7. Projected Ma	ximum Operating	Schedule	(for rac	k or transfer po	oint as a whole):	
Maximum	Jan Mar.	Apr J	une	July - Sept.	Oct Dec.	
hours/day	Varies	Varies	8	Varies	Varies	
days/week	7	7		7	7	

page __ of __ WVDEP-OAQ Revision 03-2007

weeks/quarte	er	13	13		13		13	
8. Bulk Liquid Data (add pages as necessary):								
Pump ID No.			NA	y).				
			Produced	Liquids ((Condensat	e and Pr	oduced V	Water)
	ouah	nput (1000 gal/dav)		_	nission cal			
Max. daily throughput (1000 gal/day) Max. annual throughput (1000 gal/yr)			See att	ached em	ission calcu	lations	for all va	lues
Loading Metho		<u></u>	SP					
Max. Fill Rate		l/min)	Varies					
Average Fill T			Varies					
Max. Bulk Liqu	uid 1	Femperature (°F)	See Pr	oMax res	ults			
True Vapor Pr	ess	ure ²	See Pr	oMax resu	ılts			
Cargo Vessel	Cor	ndition ³	Unkno	wn				
Control Equipment or Method ⁴		VB, E	CD -(Cap	tured loadi	ng losse	8)		
Minimum control efficiency (%)		70% (Capture/ 9	8% control	lefficier	су		
Maximum	Lo	ading (lb/hr)	See att	ached em	issions cale	ulations	for brea	kdown
Emission Rate	An	nual (lb/yr)	See atta	ched emis	ssions calcu	lations	for break	down
Estimation Method ⁵			Bryan	Research	Engineerir	ng Proma	x Softwa	are
¹ BF = Bottom	¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill							
² At maximum bulk liquid temperature								
3 B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)								
 ⁴ List as many as apply (complete and submit appropriate <i>Air Pollution Control Device</i> <i>Sheets</i>):CA = Carbon Adsorption LOA = Lean Oil AdsorptionCO = Condensation SC = Scrubber (Absorption)CRA = Compressor- Refrigeration-Absorption TO = Thermal Oxidation or Incineration CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system) O = other (descibe) ⁵ EPA = EPA Emission Factor as stated in AP-42 								
MB = Material Balance								

TM = Test Measurement based upon test data submittal O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING Throughput of loaded liquids at site (gal/yr) on a monthly and rolling twelve month total.	RECORDKEEPING Throughput of loaded liquids at site (gal/yr) on a monthly and rolling twelve month total.
REPORTING	TESTING
None	None

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

page __ of __ WVDEP-OAQ Revision 03-2007

ATTACHMENT M

Air Pollution Control Devices

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): C001(2014), C002 (2015)

Equipment Information				
1. Manufacturer: LEED Fabrication	2. Method: Elevated flare			
Model No. Enclosed Combustor 48"	☐ Ground flare ⊠ Other			
	Describe Enclosed Combustion			
	Device			
 Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state 	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.			
4. Method of system used:				
Steam-assisted	Pressure-assisted Non-assisted			
5. Maximum capacity of flare:	6. Dimensions of stack:			
~ 130 scf/min	Diameter ft.			
~ 7,850 scf/hr	Height ft.			
7. Estimated combustion efficiency:	8. Fuel used in burners:			
(Waste gas destruction efficiency)	🛛 Natural Gas			
Estimated: 98 %	🗌 Fuel Oil, Number			
Minimum guaranteed: 98 %	Other, Specify:			
	11. Describe method of controlling flame:			
9. Number of burners:				
Rating: 11.66 MMBTU/hr				
10. Will preheat be used? Yes No				
12. Flare height: 25 ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min			
13. Flare tip inside diameter: 4 ft	~50 scf/hr			
15. Number of pilot lights: One (1)	16. Will automatic re-ignition be used?			
Total 0.05 MMBTU/hr	🗌 Yes 🛛 No			
17. If automatic re-ignition will be used, describe the method:				
· · · · ·	8. Is pilot flame equipped with a monitor?			
	If yes, what type? 🛛 Thermocouple 🔤 Infra-Red			
Ultra Violet Camera with monitoring control room				
Other, Describe:				
19. Hours of unit operation per year: 8760				

Steam Injection				
20. Will steam injection be used? Yes	🛛 No	21. Steam pressure Minimum Expected: Design Maximum:	PSIG	
22. Total Steam flow rate:	LB/hr	23. Temperature:	°F	
24. Velocity	ft/sec	25. Number of jet streams		
26. Diameter of steam jets:	in	27. Design basis for steam injected: LB steam/LB hydroc	arbon	
28. How will steam flow be controlled if steam injection is used?				

Characteristics of the Waste Gas Stream to be Burned

29.	Name	Quantity Grains of H ₂ S/100 ft ³	Quantity (LB/hr, ft ³ /hr, etc)	Source of Material	
See attached emissions calculations					
	-				
30.	Estimate total combustible	to flare: 422	LB/hr		
	(Maximum mass flow rate of	f waste gas) 130	scfm		
31.	. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.:				
32	Give composition of carrier	VOC ~ 422			
		9			
33. Temperature of emission stream: 34. Identify and describe a			34. Identify and describe all a	auxiliary fuels to be burned.	
00.	>70	°F		BTU/scf	
	Heating value of emission s			BTU/scf	
	Varies Mean molecular weight of e	BTU/ft ³		BTU/scf	
	MW = Varies lb/lb-m			BTU/scf	
				BTU/scf	
35.	Temperature of flare gas:	°F	36. Flare gas flow rate:	scf/min	
37.	Flare gas heat content:	BTU/ft ³	38. Flare gas exit velocity:	scf/min	
39.	Maximum rate during emergency for one major piece of equipment or process unit: scf/min				
	0. Maximum rate during emergency for one major piece of equipment or process unit: BTU/min				
41.	 Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): 				
42.	2. Describe the collection material disposal system:				
43.	3. Have you included Flare Control Device in the Emissions Points Data Summary Sheet?				

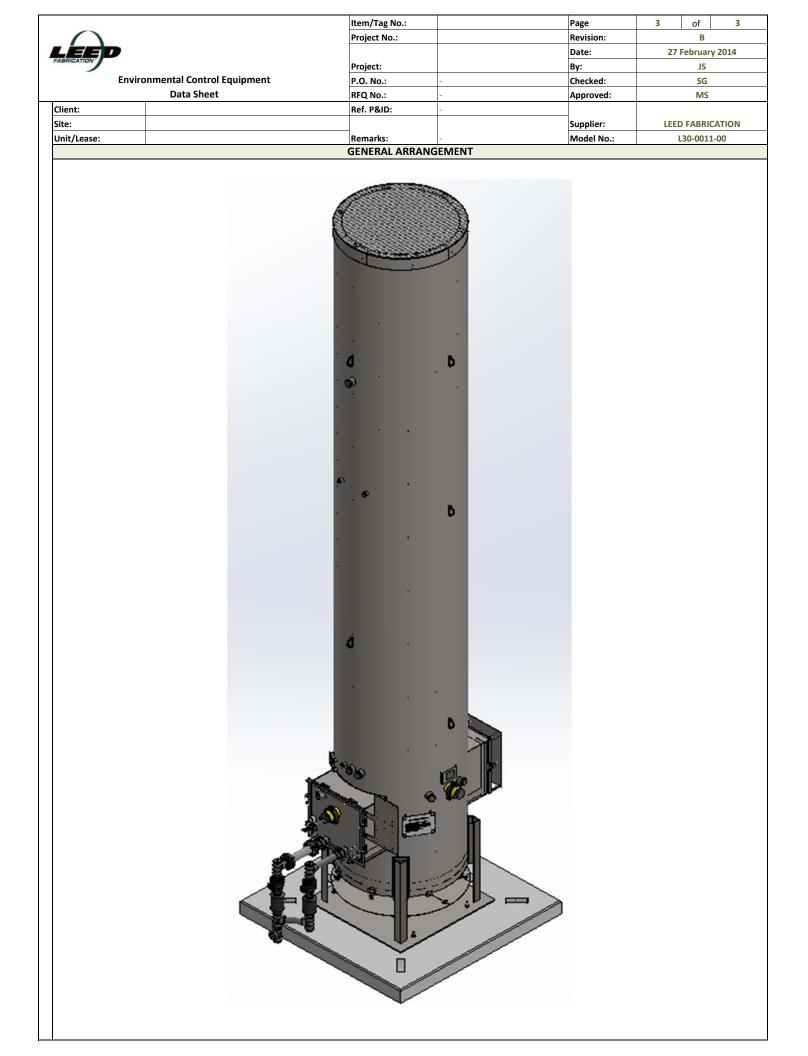
 44. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING: 			
	of pilot flame (temperature)	NEGORDREET ING.	
using a thermocouple		Maintain records of the times and duration of all periods where the pilot flame was absent Maintain records of visible emission opacity tests	
REPORTING:		TESTING:	
None		Conduct a Method 22 opacity test as required	
MONITORING:		ocess parameters and ranges that are proposed to be e compliance with the operation of this process equipment	
RECORDKEEPING: REPORTING:	or air control device. Please describe the proposed recordkeeping that will accompany the monitoring. Please describe any proposed emissions testing for this process equipment on air pollution control device.		
TESTING:			
VOC – 100% HAP – 100%	aranteed Capture Efficiency for ea		
46. Manufacturer's Guaranteed Control Efficiency for each air pollutant. VOC – 98% HAP – 98%			
47. Describe all operati	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.	

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): C003-C004 (New)

Equipment Information					
1.	Manufacturer: LEED Fabrication Model No. Enclosed Combustor 48"	 Method: ☐ Elevated flare ☐ Ground flare ☑ Other Describe Enclosed Combustion Device 			
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	m with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.			
4.	Method of system used:	Pressure-assisted Non-assisted			
5.	Maximum capacity of flare:	6. Dimensions of stack:			
	~ 130 scf/min	Diameter ft.			
	~ 7,850 scf/hr	Height ft.			
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: 98 % Minimum guaranteed: 98 %	 8. Fuel used in burners: Natural Gas Fuel Oil, Number Other, Specify: 			
9.	Number of burners: Rating: 11.66 MMBTU/hr	11. Describe method of controlling flame:			
10.	Will preheat be used? Yes No				
12.	Flare height: 25 ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min			
13.	Flare tip inside diameter: 4 ft	~50 scf/hr			
15.	Number of pilot lights: One (1)	16. Will automatic re-ignition be used?			
	Total 0.05 MMBTU/hr	🗌 Yes 🛛 🖾 No			
17.	17. If automatic re-ignition will be used, describe the method:				
18.	18. Is pilot flame equipped with a monitor? Xes INO				
	If yes, what type? Thermocouple Infra-Red Ultra Violet Camera with monitoring control room Other, Describe:				
19.	19. Hours of unit operation per year: 8760				

	Steam I	njection	
20. Will steam injection be used? Yes	🛛 No	21. Steam pressure Minimum Expected: Design Maximum:	PSIG
22. Total Steam flow rate:	LB/hr	23. Temperature:	°F
24. Velocity	ft/sec	25. Number of jet streams	
26. Diameter of steam jets:	in	27. Design basis for steam injected: LB steam/LB hydroc	arbon
28. How will steam flow be controlled if steam i	njection is	s used?	


Characteristics of the Waste Gas Stream to be Burned

29.	Name	Quantity Grains of H ₂ S/100 ft ³	Quantity (LB/hr, ft ³ /hr, etc)	Source of Material
			missions calculations	
	-			
30.	Estimate total combustible	o flare: 422	LB/hr	
	(Maximum mass flow rate o	f waste gas) 130	scfm	
31.	Estimated total flow rate to	-	be burned, carrier gases, aux	kiliary fuel, etc.:
32	Give composition of carrier	VOC ~ 422		
52.	Give composition of camer	yases.		
33.	Temperature of emission st	ream:	34. Identify and describe all a	-
	>70	°F		BTU/scf
	Heating value of emission s	tream: BTU/ft ³		BTU/scf
	Mean molecular weight of e			BTU/scf BTU/scf
	MW = Varies lb/lb-m			BTU/scf
		~=		
	Temperature of flare gas:	°F	36. Flare gas flow rate:	scf/min
-	Flare gas heat content:	BTU/ft ³	38. Flare gas exit velocity:	scf/min
			of equipment or process unit:	scf/min
	<u> </u>		of equipment or process unit:	BTU/min
41.	Describe any air pollution or reheating, gas humidification		outlet gas conditioning process	ses (e.g., gas cooling, gas
42.	Describe the collection mate	erial disposal system:		
43.	Have you included Flare Co	ontrol Device in the Emis	sions Points Data Summary S	heet?

Please propose mo		and Testing ting in order to demonstrate compliance with the proposed r to demonstrate compliance with the proposed emissions RECORDKEEPING:
	of pilot flame (temperature)	NEGORDREET ING.
using a thermocouple		Maintain records of the times and duration of all periods where the pilot flame was absent Maintain records of visible emission opacity tests
REPORTING:		TESTING:
None		Conduct a Method 22 opacity test as required
MONITORING:		ocess parameters and ranges that are proposed to be e compliance with the operation of this process equipment
RECORDKEEPING: REPORTING:	Please describe the proposed re-	cordkeeping that will accompany the monitoring. nissions testing for this process equipment on air pollution
TESTING:		nissions testing for this process equipment on air pollution
VOC – 100% HAP – 100%	aranteed Capture Efficiency for ea	
46. Manufacturer's Gua VOC – 98% HAP – 98%	aranteed Control Efficiency for eac	h air pollutant.
47. Describe all operati	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.

												1	
				Item/Tag No	.:				Page		1	of	2
1	\cap			Project No.:		<u></u>			Revision:			В	-
				FIOJECT NO.									
1	LEED								Date:		27	February	y 2014
1	FABRICATION			Project:					By:			JS	
	Envire	omental Control Equipment		P.O. No.:		-			Checked:			SG	
		Data Sheet		RFQ No.:		_			Approved	٩٠		MS	
-		2414 0.1001							Approved	u.		1415	
	Client:			Ref. P&ID:		-							
	Site:								Supplier:		LEEL	D FABRIC	ΔΤΙΟΝ
	Unit/Lease:			Remarks:		-			Model No	0.:		L30-0011	00
				GE	NERAL								
	Design Code:						NDE:				ED Fabrica	tion Sto	ndordo
1	-						NDE:			LC	ED Fabrica	ation Sta	nuarus
2	Service:						Custom	er Specs:			Yes		
3	Description:	Standard Dual	Stage // High	Efficiency Combus	stor						✓ No		
5	Description.	Standard Duar	Stage 40 mgm				I						
				PROC	ESS DAT	ГА							
					Process	Conditions:							
	Gas Composition:			mol %									
						Variable		Valu	e	Units			
4	Methane					Flow Rate		Up to	140	Mscfo	1		
5	Ethono					Pressure		Up to	12	oz/in2			
	Ethane					Flessule		0010	12				
6	Propane				-	Temperature	e			°F			
7	I-Butane				M	olecular Wei	ght		1				
							-						
8	n-Butane					ess/Waste St		✓ Gas			Liquid		
9	I-Pentane				Detailed	d Process De	scriptio	n / Process N	otes:				
10	n-Pentane							an expected		neratio	rate india	ated ab	ove
										perating	, rate mult	area abi	
11	n-Hexane						-	esign conditi					
12	CO2				3. Burne	er Pressure [Drop: Mi	n. 0.10 oz/in	2				
					-								
13	N2				_								
14	Helium												
15	H ₂ O				_								
16	C7												
17	C8												
					_								
18	C9												
19	C10												
					-								
20	C11+												
21		TOTAL											
	Other Components:			PPMV	Availab	le Utilities:							
				111010									
22	H2S				F	uel / Pilot G	as		Min.	30psig I	Vatural Ga	s /Propa	ne 40-50 SCFH
23	Benzene				li li	nstrument A	ir		NA				
						Darrea							
24	Toluene					Power			120 \	V / 60 Hz	or Solar P	ower	
25	E-Benzene					Steam			NA				
26	Xylene					Purge Gas							
	Apienie			DECK	GN DAT	-							
			•	DESIG		A							
27	Ambient Temperatures	5:			Noise P	erformance	Require	ments:			Unde	r 85 dBA	1
28		Low, °F		-20	Structur	ral Design Co	nde:						
					-	•	Juc.						
29	L	High, °F	-	120	Wind D	esign Code:					ASCE		
30	Design Conditions:	Pressure/Temperature							Г				
31			1	90	1		Process	e/Speed			100 mp	h	
		,,,,,									700 mb		
32	Elevation (ASL), ft						Catego	ry					
33	Area Classification:		Clas	s I Div 2	Seismic	Design Code	e:						
				NEC	1	0		n					
54	Electrical Design Code:				1		Locatio			_			
1				EQUIPMENT	SPECIF	ICATION							
35	Type:	Elevated 🗸 E	Inclosed		Equinm	ent Design:							
	-					-	· · · ·		1			10.11	
36	-	Above Ground				C	ompone	Int		IVIat	erial / Size	e / Katin	g / Other
37		✓ Stack	/lultiple Stack		Burner								
38		Portable / Trailer				Burner Tir	Assist	Gas Burner			21	04 SS	
					1								
39	-					В	urner Bo	dy			Carb	on Steel	
40	Smokeless By:	Steam A	Assist Air		Pilot								
41			Staging		1		Pilot Tip				24	04 SS	
	-		aging		+								
42						P	ilot Line	(s)			Carb	on Steel	
43	Stack:	✓ Self Supporting			Firebox	/ Stack			1				
			mokeless		1		CL - 11				A 1	on Charl	
44			-	Gas Assist			Shell					on Steel	
45	Pilot:	✓ Intermittent	Continuous				Piping				Carb	on Steel	
46	Pilot Air Inspirator:	✓ Local	Remote				Nozzles				Carb	on Steel	
			-		+								
47	Pilot Flame Control:	No	Yes (Thermo	coupie)	1		Flanges				Carb	on Steel	
48							Insulatio	n			Bla	anket	
49	-	Flamefront Generator	Inspirating Ig	nitor	1		sulation					04 SS	
				_	+								
50	L	Electronic 🗸	Automatic	Manual			Refracto	ry				NA	
51		With Pilot Flame Control				Refra	actory Ar	nchors	Г			NA	
52	-	With Auto Pilot Re-Ignition			1								
					+		rs and Pl					NA	
53						Stack Sa	mple Co	nnections			Per EPA r	equirem	ents
54	Pilot Ignition Backup:	Manual Specify: i.e F	iezo-Flectric				Sight Gla					2	
			ICLO-LICULIIL		+		-	JJ				4	
55	1	Battery Pack			1		Other						

		Item/Tag No.:	Page	2 of 3
\cap		Project No.:	Revision:	В
LEED			Date:	27 February 2014
FABRICATION		Project:	By:	JS
Enviro	nmental Control Equipment	P.O. No.:	Checked:	
	Data Sheet	RFQ No.:	Approved	
Client:	Butu bheet	Ref. P&ID: -	Approved	
Site:				
			Supplier:	LEED FABRICATION
Unit/Lease:		Remarks:	Model No	D.: L30-0011-00
Flame Detection:		EQUIPMENT SPECIFICATIO		
	Thermocouple / Ionizati	on Rod Auxiliary Equip		
	UV Scanner		Valves	NA
General Configuration:			Blowers	NA
			Dampers	NA
		lr	nlet KO / Liquid Seal	NA
		Flam	e / Detonation Arrestor	Yes
		Instrumentatio	n & Controls	
		Sole	noids / Shut-Off Valves	Check with Sales for available co
			Flow Meters	NA
	•		Calorimeter	NA
		Pressu	re Switches/Transmitters	NA
			Thermocouples	Check with Sales for available co
	4	Tempera	ture Switches/Transmitters	NA
			BMS	Check with Sales for available co
	The second se		CEMS	NA
			Other	NA
			otici	110
	AL .			
5	ŭ			
	*	FABRICATION AND INSPECT	ION	
Special requirements	Skid Mounted 🗸 Concrete P			
special requirements	Other		Equipment Ir	
			Component	Weight / Dimensions
		Burner		
Inspection	Vendor Standard		Burner Assembly	
	Other. Specify:	Stack		
Material Certification	Vendor Standard		Stack Assembly	48 " OD x 25 ' H
			Pilot Tip	
	Certificate of Compliance		Pilot Line(s)	
	Other (Specify):		Stack Assembly	
NDE	✓ Vendor Standard	Auxiliary Equip	ment	
	Radiography. Specify:		Blowers	
	Ultrasonic. Specify:	Ir	nlet KO / Liquid Seal	
		Flam	e / Detonation Arrestor	
	Liquid Penetrant.		Cl.:d	
	Liquid Penetrant. Magnetic Particles.		Skid	
		Instrumentatio		
	Magnetic Particles.			
	Magnetic Particles. PMI. Specify:		n & Controls	
Surface Preparation	Magnetic Particles. PMI. Specify: Other. Specify:		n & Controls BMS	
Surface Preparation	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard		n & Controls BMS	
Surface Preparation Paint System	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Vendor Standard		n & Controls BMS	
Surface Preparation	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify:		n & Controls BMS	
3 2 2 Surface Preparation 3 4 Paint System 5 5	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard		n & Controls BMS	
Surface Preparation Paint System	Magnetic Particles. MI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify:		n & Controls BMS	
Surface Preparation Paint System Finished Color	Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard		n & Controls BMS	

		Pressure			
Flare Size	# of Orifices (N)	(OZ/in^2)	m³/s	mSCFD	MMBTU/hr
18	2	1	0.0021	6.34	0.39
18	2	2	0.0029	8.97	0.56
18	2	3	0.0036	10.99	0.68
18	2	4	0.0042	12.69	0.78
18	2	5	0.0046	14.18	0.88
18	2	6	0.0051	15.54	0.96
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0075	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

§ MMBTU/hr values are calculated based on 1500 BTU/scf gas

 $P_{age} 15$

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

 $\frac{1}{2}$

ATTACHMENT N

Supporting Emission Calculations

EOT Production, LLC OXF 149-150 Pad Company Name: Facility Name: Project Description: R13 Application

Facility-Wide Emission Summary - Controlled

Wells	12	
Storage Tanks	12	
Sand Separator Tank	2	
Line Heaters	10	
TEGs	4	
Dehy Reboiler	0	
Glycol Dehy	0	
Dehy Drip Tank	0	
Dehy Combustor	0	
Compressor	0	
High Pressure Separator	12	
Low Pressure Separator	0	
Vapor Recovery Unit	0	
Tank Combustor	4	
Length of lease road	5,410	feet

Carbon equivalent emissions (CO2e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

CO2	1	
CH_4	25	
N_2O	298	

Emission	Emission	Emission	N	0 _x	C	0	V	C	S	02	PI	M ₁₀	PM	A _{2.5}	C	0 ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001-C002, C003-C004	S001-S012	Storage Vessels					2.33	10.20							16.26	71.23
C001-C002, C003-C004	S036	Captured Liquid Loading					0.90	0.23								
C001	C001	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005.43
C002	C002	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005.43
C003	C003	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005.43
C004	C004	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005.43
C001	S001-S012, S036, C001		1.15	5.03	0.96	4.22	0.81	2.61	0.01	0.03	0.09	0.38	0.09	0.38	1,375.17	6,023.24
C002	S001-S012, S036, C002		1.15	5.03	0.96	4.22	0.81	2.61	0.01	0.03	0.09	0.38	0.09	0.38	1,375.17	6,023.24
C003	S001-S012, S036, C003		1.15	5.03	0.96	4.22	0.81	2.61	0.01	0.03	0.09	0.38	0.09	0.38	1,375.17	6,023.24
C004	S001-S012, S036, C004		1.15	5.03	0.96	4.22	0.81	2.61	0.01	0.03	0.09	0.38	0.09	0.38	1,375.17	6,023.24
E021	S021	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E022	S022	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E023	S023	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E024	S024	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E025	S025	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E026	S026	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E027	S027	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E034	S034	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E035	S035	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.20
E019	S019	Line Heater	0.07	0.32	0.06	0.27	4.0E-03	0.02	4.4E-04	1.9E-03	0.01	0.02	0.01	0.02	90.09	394.60
E028	S028	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E029	S029	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E030	S030	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E031	S031	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.64
E032	S032	Sand Separator Tank					0.07	0.32							0.50	2.20
E033	S033	Sand Separator Tank					0.07	0.32							0.50	2.20
E036	S036	Uncaptured Liquid Loading					19.24	5.00								
		Fugitives						35.06								541.51
		Haul Roads										6.04		0.60		
Facility Total			5.99	26.24	5.03	22.04	22.70	51.49	0.04	0.16	0.46	8.04	0.46	2.60	7,219.47	32,162.81
Facility Total (excluding fugit	tive emissions)		5.99	26.24	5.03	22.04	3.45	11.43	0.04	0.16	0.46	1.99	0.46	1.99	7,219.47	31,621.30

1. Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

Company Name: EQT Production, LLC Facility Name: OXF 149-150 Pad Project Description: R13 Application

Emission	Emission	Emission	Formal	ldehyde	Ben	zene	Tolı	iene	Ethylb	enzene	Xyle	enes	n-He	xane	Tota	l HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy										
C001-C002, C003-C004	S001-S012	Storage Vessels			2.6E-03	1.1E-02	5.5E-03	2.4E-02	2.5E-04	1.1E-03	2.3E-03	9.9E-03	0.07	0.31	0.09	0.41
C001-C002, C003-C004	S036	Captured Liquid Loading			6.2E-04	1.6E-04	1.2E-03	3.2E-04	6.0E-05	1.6E-05	5.4E-04	1.4E-04	0.02	0.01	0.03	0.01
C001	C001	Tank Combustor														
C002	C002	Tank Combustor														
C003	C003	Tank Combustor														
C004	C004	Tank Combustor														
C001	S001-S012, S036, C001				8.0E-04	2.9E-03	1.7E-03	6.1E-03	7.7E-05	2.8E-04	7.0E-04	2.5E-03	0.02	0.08	0.03	0.11
C002	S001-S012, S036, C002				8.0E-04	2.9E-03	1.7E-03	6.1E-03	7.7E-05	2.8E-04	7.0E-04	2.5E-03	0.02	0.08	0.03	0.11
C003	S001-S012, S036, C003				8.0E-04	2.9E-03	1.7E-03	6.1E-03	7.7E-05	2.8E-04	7.0E-04	2.5E-03	0.02	0.08	0.03	0.11
C004	S001-S012, S036, C004				8.0E-04	2.9E-03	1.7E-03	6.1E-03	7.7E-05	2.8E-04	7.0E-04	2.5E-03	0.02	0.08	0.03	0.11
E021	S021	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E022	S022	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E023	S023	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E024	S024	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E025	S025	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E026	S026	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E027	S027	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E034	S034	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E035	S035	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
E019	S019	Line Heater	5.5E-05	2.4E-04	1.5E-06	6.7E-06	2.5E-06	1.1E-05					1.3E-03	0.01	1.4E-03	0.01
E028	S028	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-0
E029	S029	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-0
E030	S030	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-0
E031	S031	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-0
E032	S032	Sand Separator Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E-0
E033	S033	Sand Separator Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E-0
E036	S036	Uncaptured Liquid Loading			0.01	3.5E-03	0.03	0.01	1.3E-03	3.3E-04	1.2E-02	3.0E-03	0.53	0.14	0.67	0.17
		Fugitives				0.01		0.03		< 0.01		0.02		0.59		1.09
		Haul Roads														
Facility Total			1.0E-03	4.6E-03	0.02	0.03	0.03	0.07	1.6E-03	1.4E-03	0.01	0.03	0.66	1.16	0.83	1.83
Facility Total (excluding fugi	tive emissions)		1.0E-03	4.6E-03	3.2E-03	0.01	6.8E-03	2.5E-02	3.1E-04	1.1E-03	2.8E-03	1.0E-02	0.12	0.43	0.16	0.56

1. Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

EOT Production, LLC OXF 149-150 Pad R13 Application

Produced Fluids Storage Vessels <u>Potential Throughput</u> Operational Hours 8,760 hrs/yr Maximum Condensate Throughput¹ 3,772 bbl/month Maximum Produced Water Throughput¹ 38,538 bbl/month

¹ Based on the highest monthly throughput recorded at the site (July 2015). Includes a safety factor of 30%.

98%

Overall Control Efficiency of Combustor

Storage Tanks - Uncontrolled

	Brea	thing	Wo	rking	Flas	hing	Total Emissions		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Methane	< 0.001	< 0.001	< 0.001	< 0.001	32.526	142.465	32.526	142.465	
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	37.878	165.907	37.878	165.907	
Propane	0.340	1.489	0.497	2.175	42.055	184.200	42.891	187.864	
Isobutane	0.081	0.357	0.119	0.521	11.100	48.620	11.301	49.498	
n-Butane	0.184	0.804	0.268	1.175	25.457	111.500	25.909	113.479	
Isopentane	0.070	0.306	0.102	0.447	9.870	43.230	10.042	43.983	
n-Pentane	0.067	0.291	0.097	0.426	9.539	41.780	9.702	42.497	
n-Hexane	0.023	0.103	0.034	0.150	3.516	15.400	3.574	15.653	
Cyclohexane	0.001	0.007	0.002	0.010	0.262	1.146	0.265	1.162	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	0.026	0.113	0.038	0.165	4.164	18.240	4.228	18.518	
n-Octane	0.008	0.036	0.012	0.052	1.363	5.971	1.383	6.059	
n-Nonane	0.002	0.007	0.002	0.011	0.293	1.282	0.297	1.300	
n-Decane	0.002	0.009	0.003	0.013	0.356	1.560	0.361	1.581	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Isohexane	0.036	0.158	0.053	0.230	5.299	23.210	5.388	23.598	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	0.001	0.003	0.001	0.004	0.128	0.559	0.129	0.565	
Toluene	0.001	0.005	0.002	0.007	0.273	1.195	0.276	1.207	
Ethylbenzene	5.7E-05	2.5E-04	8.3E-05	3.6E-04	0.012	0.054	0.012	0.054	
m-Xylene	0.001	0.002	0.001	0.003	0.111	0.488	0.113	0.494	
Isooctane	0.004	0.017	0.006	0.024	0.612	2.680	0.621	2.721	
Total VOC Emissions:	0.85	3.71	1.24	5.41	114.41	501.11	116.49	510.23	
Total HAP Emissions:	3.0E-02	0.13	0.04	0.19	4.65	20.38	4.72	20.69	

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). Non-methane emissions are taken from the tank emissions stencil. Methane emissions are taken from the flash stream composition. ² Composition of condensate from 0XF-149 sample from 04/29/2013.

EOT Production, LLC OXF 149-150 Pad R13 Application

Storage Tanks - Controlled

	Brea	Breathing		Working		Flashing		Total Emissions	
	lb/hr	tpy		-	lb/hr	tpy	lb/hr	tpy	
Methane	<0.001	< 0.001	<0.001	< 0.001	0.651	2.849	0.651	2.849	
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	0.758	3.318	0.758	3.318	
Propane	0.007	0.030	0.010	0.044	0.841	3.684	0.858	3.757	
sobutane	0.002	0.007	0.002	0.010	0.222	0.972	0.226	0.990	
n-Butane	0.004	0.016	0.005	0.024	0.509	2.230	0.518	2.270	
sopentane	0.001	0.006	0.002	0.009	0.197	0.865	0.201	0.880	
n-Pentane	0.001	0.006	0.002	0.009	0.191	0.836	0.194	0.850	
n-Hexane	4.7E-04	0.002	0.001	0.003	0.070	0.308	0.071	0.313	
Cyclohexane	3.0E-05	1.3E-04	4.4E-05	1.9E-04	0.005	0.023	0.005	0.023	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	0.001	0.002	0.001	0.003	0.083	0.365	0.085	0.370	
n-Octane	1.6E-04	0.001	2.4E-04	0.001	0.027	0.119	0.028	0.121	
n-Nonane	3.4E-05	1.5E-04	4.9E-05	2.2E-04	0.006	0.026	0.006	0.026	
n-Decane	3.9E-05	1.7E-04	5.7E-05	2.5E-04	0.007	0.031	0.007	0.032	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Friethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
sohexane	0.001	0.003	0.001	0.005	0.106	0.464	0.108	0.472	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	1.2E-05	5.1E-05	1.7E-05	7.5E-05	0.003	0.011	0.003	0.011	
Гoluene	2.3E-05	1.0E-04	3.4E-05	1.5E-04	0.005	0.024	0.006	0.024	
Ethylbenzene	1.1E-06	5.0E-06	1.7E-06	7.2E-06	2.5E-04	0.001	2.5E-04	0.001	
m-Xylene	1.0E-05	4.4E-05	1.5E-05	6.5E-05	0.002	0.010	0.002	0.010	
sooctane	7.6E-05	3.3E-04	1.1E-04	4.9E-04	0.012	0.054	0.012	0.054	
Fotal VOC Emissions:	1.7E-02	0.07	0.02	0.11	2.29	10.02	2.33	10.20	
Fotal HAP Emissions:	5.9E-04	2.6E-03	8.6E-04	3.8E-03	9.3E-02	0.41	0.09	0.41	

Produced Fluids Storage Vessels

EQT Production, LLC OXF 149-150 Pad **R13** Application

Sand Separator Tank

Throughput Parameter	Value	Units
Tank Capacity	5,880	gallons
Operational Hours	8,760	hrs/yr
Throughput	280	bbl/month
Percent Produced Water	50%	
Total Produced Water Throughput	140	bbl/month

¹ Conservatively assumes 2 turnovers/month of sand and produced water.

Description	Potential Throughput (gal/yr)
Produced Water and Sand	141,120

Sand Separator Tank (140 bbl) - Uncontrolled (Per tank)^{2,3}

Constituent	Total Em lb/hr	iissions ¹ tpy
Methane	0.020	0.088
Ethane	0.032	0.140
Propane	0.033	0.143
Isobutane	0.008	0.035
n-Butane	0.017	0.073
Isopentane	0.006	0.026
n-Pentane	0.005	0.022
Hexanes	0.002	0.007
Heptanes	0.002	0.007
Octane	< 0.001	0.002
Nonane	< 0.001	< 0.001
Decane	< 0.001	< 0.001
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
n-Hexane	0.001	0.005
2,2,4-Trimethylpentane	< 0.001	< 0.001
Total HC Emissions:	0.126	0.552
Total VOC Emissions:	0.074	0.323
Total HAP Emissions:	0.002	0.010

² E&P TANK 2.0 calculates working, breathing and flashing losses and reports the sum as one total.
 ³ E&P TANK v2.0 emission calculations are based on 4/29/2013 condensate sample from 0XF-149 wellpad

EQT Production, LLC OXF 149-150 Pad R13 Application

Sand Separator Tank

Sand Separator Tank (140 bbl) - Controlled (Per tank)

	Total Emissions			
Constituent	lb/hr	tpy		
Methane	0.020	0.088		
Ethane	0.032	0.140		
Propane	0.033	0.143		
Isobutane	0.008	0.035		
n-Butane	0.017	0.073		
Isopentane	0.006	0.026		
n-Pentane	0.005	0.022		
Hexanes	0.002	0.007		
Heptanes	0.002	0.007		
Octane	< 0.001	0.002		
Nonane	< 0.001	< 0.001		
Decane	< 0.001	< 0.001		
Benzene	< 0.001	< 0.001		
Toluene	< 0.001	< 0.001		
Ethylbenzene	< 0.001	< 0.001		
Xylenes	< 0.001	< 0.001		
n-Hexane	0.001	0.005		
2,2,4-Trimethylpentane	< 0.001	< 0.001		
Total Emissions:	0.126	0.550		
Total VOC Emissions:	0.074	0.323		
Total HAP Emissions:	0.002	0.010		

Company Name:	EQT Production, LLC
Facility Name:	OXF 149-150 Pad
Project Description:	R13 Application

Tank Combustor

Source Designation:	C001 & C002, C003 &C004
Pilot Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Pilot Rating (MMBtu/hr)	0.05
Combustor Rating (MMBtu/hr) ¹	11.66
Combustor Rating (Mscfd) ¹	188.38
Combustor Rating (scf/hr)	7849.17
Pilot Fuel Consumption (scf/hr):	50.00
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Maximum heat input for 48" model from Leed Enclosed Combustor Operations Manual

Enclosed Combustor Emissions

	Emission Factors ²	Combustor		Pilot		Total	
Pollutant	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO _x	0.10	1.14	5.01	5.1E-03	0.02	1.15	5.03
CO	0.08	0.96	4.21	4.3E-03	0.02	0.96	4.22
VOC	5.4E-03			2.8E-04	1.2E-03	0.00	0.00
SO ₂	5.9E-04	0.01	0.03	3.1E-05	1.4E-04	0.01	0.03
PM/PM ₁₀	0.01	0.09	0.38	3.9E-04	1.7E-03	0.09	0.38
CO ₂	117.00	1364.189	5975.146	6.14	26.90	1370.33	6002.05
CH ₄	2.2E-03			1.2E-04	5.1E-04	0.00	0.00
N ₂ 0	2.2E-04	2.6E-03	0.01	1.2E-05	5.1E-05	2.6E-03	0.01

² Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at the wellpad. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

Combustor Maximum Loading:

504045		20 (2)		400 (F II (I
7849.17 scf	lb-mol	20.43 lb	=	422.65 lb/hr
hr	379.5 scf	lb-mol		

EQT Production, LLC OXF 149-150 Pad R13 Application	
Line Heaters	
S021-S027, S034-S035	
	OXF 149-150 Pad R13 Application Line Heaters S021-S027,

Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr)	1.54
Fuel Consumption (MMscf/hr):	1.47E-03
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions		
Pollutant (lb/MMscf) ^{1, 4}		(lb/hr) ²	(tons/yr) ³	
NO _x	100	0.15	0.64	
со	84	0.12	0.54	
VOC	5.5	0.01	0.04	
SO ₂	0.6	8.8E-04	3.9E-03	
PM Total	7.6	0.01	0.05	
PM Condensable	5.7	0.01	0.04	
PM ₁₀ (Filterable)	1.9	2.8E-03	0.01	
PM _{2.5} (Filterable)	1.9	2.8E-03	0.01	
Lead	5.00E-04	7.3E-07	3.2E-06	
CO ₂	117.0	180.00	788.38	
CH ₄	2.21E-03	3.4E-03	1.5E-02	
N ₂ O	2.21E-04	3.4E-04	1.5E-03	

EQT Production, LLC OXF 149-150 Pad **R13** Application

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential E	missions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
2-Methylnaphthalene	2.4E-05	3.5E-08	1.5E-07
3-Methylchloranthrene	1.8E-06	2.6E-09	1.2E-08
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.3E-08	1.0E-07
Acenaphthene	1.8E-06	2.6E-09	1.2E-08
Acenaphthylene	1.8E-06	2.6E-09	1.2E-08
Anthracene	2.4E-06	3.5E-09	1.5E-08
Benz(a)anthracene	1.8E-06	2.6E-09	1.2E-08
Benzene	2.1E-03	3.1E-06	1.3E-05
Benzo(a)pyrene	1.2E-06	1.8E-09	7.7E-09
Benzo(b)fluoranthene	1.8E-06	2.6E-09	1.2E-08
Benzo(g,h,i)perylene	1.2E-06	1.8E-09	7.7E-09
Benzo(k)fluoranthene	1.8E-06	2.6E-09	1.2E-08
Chrysene	1.8E-06	2.6E-09	1.2E-08
Dibenzo(a,h) anthracene	1.2E-06	1.8E-09	7.7E-09
Dichlorobenzene	1.2E-03	1.8E-06	7.7E-06
Fluoranthene	3.0E-06	4.4E-09	1.9E-08
Fluorene	2.8E-06	4.1E-09	1.8E-08
Formaldehyde	7.5E-02	1.1E-04	4.8E-04
Hexane	1.8E+00	2.6E-03	1.2E-02
Indo(1,2,3-cd)pyrene	1.8E-06	2.6E-09	1.2E-08
Naphthalene	6.1E-04	8.9E-07	3.9E-06
Phenanthrene	1.7E-05	2.5E-08	1.1E-07
Pyrene	5.0E-06	7.3E-09	3.2E-08
Toluene	3.4E-03	5.0E-06	2.2E-05
Arsenic	2.0E-04	2.9E-07	1.3E-06
Beryllium	1.2E-05	1.8E-08	7.7E-08
Cadmium	1.1E-03	1.6E-06	7.1E-06
Chromium	1.4E-03	2.1E-06	9.0E-06
Cobalt	8.4E-05	1.2E-07	5.4E-07
Manganese	3.8E-04	5.6E-07	2.4E-06
Mercury	2.6E-04	3.8E-07	1.7E-06
Nickel	2.1E-03	3.1E-06	1.3E-05
Selenium	2.4E-05	3.5E-08	1.5E-07
Total HAP		2.8E-03	1.2E-02

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emission factor sprong (bh/rr)_{Potential} = (lb/hr)_{Emission} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
 ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Facility Name: Project Description:	OXF 149-150 Pad R13 Application	
	Line Heater	

Source Designation:	S019
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr)	0.77
Fuel Consumption (MMscf/hr):	7.33E-04
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates;

	Emission Factor	Potential Emissions			
Pollutant	(lb/MMscf) ^{1,4}	(lb/hr) ²	(tons/yr) ³		
NO _x	100	0.07	0.32		
со	84	0.06	0.27		
VOC	5.5	4.0E-03	0.02		
SO ₂	0.6	4.4E-04	1.9E-03		
PM Total	7.6	0.01	0.02		
PM Condensable	5.7	4.2E-03	0.02		
PM ₁₀ (Filterable)	1.9	1.4E-03	0.01		
PM _{2.5} (Filterable)	1.9	1.4E-03	0.01		
Lead	5.00E-04	3.7E-07	1.6E-06		
CO ₂	117.0	90.00	394.19		
CH ₄	2.21E-03	1.7E-03	7.4E-03		
N ₂ O	2.21E-04	1.7E-04	7.4E-04		

EQT Production, LLC OXF 149-150 Pad **R13** Application

Line Heater

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
2-Methylnaphthalene	2.4E-05	1.8E-08	7.7E-08
3-Methylchloranthrene	1.8E-06	1.3E-09	5.8E-09
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.2E-08	5.1E-08
Acenaphthene	1.8E-06	1.3E-09	5.8E-09
Acenaphthylene	1.8E-06	1.3E-09	5.8E-09
Anthracene	2.4E-06	1.8E-09	7.7E-09
Benz(a)anthracene	1.8E-06	1.3E-09	5.8E-09
Benzene	2.1E-03	1.5E-06	6.7E-06
Benzo(a)pyrene	1.2E-06	8.8E-10	3.9E-09
Benzo(b)fluoranthene	1.8E-06	1.3E-09	5.8E-09
Benzo(g,h,i)pervlene	1.2E-06	8.8E-10	3.9E-09
Benzo(k)fluoranthene	1.8E-06	1.3E-09	5.8E-09
Chrysene	1.8E-06	1.3E-09	5.8E-09
Dibenzo(a,h) anthracene	1.2E-06	8.8E-10	3.9E-09
Dichlorobenzene	1.2E-03	8.8E-07	3.9E-06
Fluoranthene	3.0E-06	2.2E-09	9.6E-09
Fluorene	2.8E-06	2.1E-09	9.0E-09
Formaldehyde	7.5E-02	5.5E-05	2.4E-04
Hexane	1.8E+00	1.3E-03	5.8E-03
Indo(1,2,3-cd)pyrene	1.8E-06	1.3E-09	5.8E-09
Naphthalene	6.1E-04	4.5E-07	2.0E-06
Phenanthrene	1.7E-05	1.2E-08	5.5E-08
Pyrene	5.0E-06	3.7E-09	1.6E-08
Toluene	3.4E-03	2.5E-06	1.1E-05
Arsenic	2.0E-04	1.5E-07	6.4E-07
Beryllium	1.2E-05	8.8E-09	3.9E-08
Cadmium	1.1E-03	8.1E-07	3.5E-06
Chromium	1.4E-03	1.0E-06	4.5E-06
Cobalt	8.4E-05	6.2E-08	2.7E-07
Manganese	3.8E-04	2.8E-07	1.2E-06
Mercury	2.6E-04	1.9E-07	8.3E-07
Nickel	2.1E-03	1.5E-06	6.7E-06
Selenium	2.4E-05	1.8E-08	7.7E-08
Total HAP		1.4E-03	6.1E-03

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emission factor sprong (bh/rr)_{Potential} = (lb/hr)_{Emission} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
 ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

EQT Production, LLC OXF 149-150 Pad R13 Application

Thermoelectric Generators

Source Designation:	S028-S031
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr) ¹	0.013
Fuel Consumption (MMscf/hr):	1.23E-05
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Global Themorelectric specification sheet states 311 ft³/day at 1000 BTU/ft³.

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential Emissions			
Pollutant	(lb/MMscf) ^{2, 5}	(lb/hr) ³	(tons/yr) ⁴		
NO _x	100	1.2E-03	0.01		
со	84	1.0E-03	4.5E-03		
VOC	5.5	6.8E-05	3.0E-04		
SO ₂	0.6	7.4E-06	3.2E-05		
PM Total	7.6	9.4E-05	4.1E-04		
PM Condensable	5.7	7.0E-05	3.1E-04		
PM ₁₀ (Filterable)	1.9	2.3E-05	1.0E-04		
PM _{2.5} (Filterable)	1.9	2.3E-05	1.0E-04		
Lead	5.00E-04	6.2E-09	2.7E-08		
CO ₂	116.9	1.51	6.64		
CH ₄	2.21E-03	2.9E-05	1.3E-04		
N ₂ O	2.21E-04	2.9E-06	1.3E-05		

EQT Production, LLC OXF 149-150 Pad **R13** Application

Thermoelectric Generators

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ²	(lb/hr) ³	(tons/yr) ⁴
HAPs:			
2-Methylnaphthalene	2.4E-05	3.0E-10	1.3E-09
3-Methylchloranthrene	1.8E-06	2.2E-11	9.7E-11
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.0E-10	8.6E-10
Acenaphthene	1.8E-06	2.2E-11	9.7E-11
Acenaphthylene	1.8E-06	2.2E-11	9.7E-11
Anthracene	2.4E-06	3.0E-11	1.3E-10
Benz(a)anthracene	1.8E-06	2.2E-11	9.7E-11
Benzene	2.1E-03	2.6E-08	1.1E-07
Benzo(a)pyrene	1.2E-06	1.5E-11	6.5E-11
Benzo(b)fluoranthene	1.8E-06	2.2E-11	9.7E-11
Benzo(g,h,i)perylene	1.2E-06	1.5E-11	6.5E-11
Benzo(k)fluoranthene	1.8E-06	2.2E-11	9.7E-11
Chrysene	1.8E-06	2.2E-11	9.7E-11
Dibenzo(a,h) anthracene	1.2E-06	1.5E-11	6.5E-11
Dichlorobenzene	1.2E-03	1.5E-08	6.5E-08
Fluoranthene	3.0E-06	3.7E-11	1.6E-10
Fluorene	2.8E-06	3.5E-11	1.5E-10
Formaldehyde	7.5E-02	9.3E-07	4.1E-06
Hexane	1.8E+00	2.2E-05	9.7E-05
Indo(1,2,3-cd)pyrene	1.8E-06	2.2E-11	9.7E-11
Naphthalene	6.1E-04	7.5E-09	3.3E-08
Phenanthrene	1.7E-05	2.1E-10	9.2E-10
Pyrene	5.0E-06	6.2E-11	2.7E-10
Toluene	3.4E-03	4.2E-08	1.8E-07
Arsenic	2.0E-04	2.5E-09	1.1E-08
Beryllium	1.2E-05	1.5E-10	6.5E-10
Cadmium	1.1E-03	1.4E-08	5.9E-08
Chromium	1.4E-03	1.7E-08	7.6E-08
Cobalt	8.4E-05	1.0E-09	4.5E-09
Manganese	3.8E-04	4.7E-09	2.1E-08
Mercury	2.6E-04	3.2E-09	1.4E-08
Nickel	2.1E-03	2.6E-08	1.1E-07
Selenium	2.4E-05	3.0E-10	1.3E-09
Total HAP		2.3E-05	1.0E-04

² Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

³ Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

⁴ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
⁵ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

EQT Production, LLC OXF 149-150 Pad **R13** Application

Liquid Loading

Throughput Capture Efficiency Control Efficiency

21,324,030 gal/yr 70% non-tested tanker trucks 98% Combustor destruction efficiency

Liquid Loading Emissions

		ed Emissions		d Emissions	Controlled Emissions		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Propane	25.773	6.701	7.732	2.010	0.361	0.094	
Isobutane	6.173	1.605	1.852	0.482	0.086	0.022	
n-Butane	13.919	3.619	4.176	1.086	0.195	0.051	
Isopentane	5.300	1.378	1.590	0.413	0.074	0.019	
n-Pentane	5.042	1.311	1.513	0.393	0.071	0.018	
n-Hexane	1.780	0.463	0.534	0.139	0.025	0.006	
Cyclohexane	0.113	0.029	0.034	0.009	0.002	4.1E-04	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	1.955	0.508	0.587	0.153	0.027	0.007	
n-Octane	0.618	0.161	0.186	0.048	0.009	0.002	
n-Nonane	0.128	0.033	0.038	0.010	0.002	4.7E-04	
n-Decane	0.148	0.039	0.045	0.012	0.002	0.001	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Isohexane	2.725	0.709	0.818	0.213	0.038	0.010	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	0.044	0.012	0.013	0.003	0.001	1.6E-04	
Toluene	0.087	0.023	0.026	0.007	0.001	3.2E-04	
Ethylbenzene	0.004	0.001	0.001	3.3E-04	6.0E-05	1.6E-05	
m-Xylene	0.038	0.010	0.012	0.003	0.001	1.4E-04	
Isooctane	0.289	0.075	0.087	0.023	0.004	0.001	
Total VOC Emissions:	64.139	16.676	19.242	5.003	0.898	0.233	
Total HAP Emissions:	2.243	0.583	0.673	0.175	0.031	0.008	

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate).
² Hourly emissions assume two hours of loading per day, five days per week.

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Valves Connectors Open-Ended Lines		Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 —Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP	VOC Emissions ³ (tpy)	HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	21	4.04	1.00	0.03	4.04	0.13
Compressor	Gas	0.22800	0		0.17	0.01		
Valves	Gas	0.00597	588	33.90	0.17	0.01	5.62	0.18
Pressure Relief Valves	Gas	0.10400	43	43.18	0.17	0.01	7.16	0.22
Open-Ended Lines	All	0.00170	39	0.64	0.17	0.01	0.11	3.3E-03
Connectors	All	0.00183	2,577	45.54	0.17	0.01	7.55	0.24
Intermittent Pneumatic Devices ⁴	Gas	13.5	60				10.58	0.33
			Emission Totals:	127.29			35.06	1.09

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	21	4.04	3.1E-04	7.3E-04	< 0.01	4.2E-04	0.01
Compressor	Gas	0.22800	0				< 0.01		
Valves	Gas	0.00597	588	33.90	2.6E-03	0.01	< 0.01	3.5E-03	0.10
Pressure Relief Valves	Gas	0.10400	43	43.18	3.3E-03	0.01	< 0.01	4.5E-03	0.13
Open-Ended Lines	All	0.00170	39	0.64	4.9E-05	1.2E-04	< 0.01	6.7E-05	2.0E-03
Connectors	All	0.00183	2,577	45.54	3.5E-03	0.01	< 0.01	4.7E-03	0.14
Intermittent Pneumatic Devices ⁴	Gas	13.5	60		4.9E-03	0.01	< 0.01	0.01	0.20
			Emission Totals:	127.29	0.01	0.03	<0.01	0.02	0.59

¹ U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAPx 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

GHG Fugitive Emissions from Component Leaks

		GHG Emission			
		Factor ¹	CH ₄ Emissions ^{2,3}	CO ₂ Emissions ^{2,3}	CO ₂ e Emissions ⁴
Component	Component Count	(scf/hr/component)	(tpy)	(tpy)	(tpy)
Pumps	21	0.01	0.03	2.1E-04	0.77
Compressor	0	4.17			
Valves	588	0.027	2.32	0.02	58.12
Pressure Relief Devices	43	0.04	0.25	1.7E-03	6.30
Open-Ended Lines	39	0.061	0.35	2.4E-03	8.71
Connectors	2,577	0.003	1.13	0.01	28.30
Intermittent Pneumatic Devices	60	6	17.57	0.12	439.31
	Total		21.65	0.15	541.51

¹ Population emission factors for gas service in the Eastern U.S. from Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production, 40 CFR 98, Subpart W (Table W-6 for compressor). Pneumatic assumes operation 1/3 of the year.

² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

Mole fractions of CH₄ and CO₂ based on gas analysis: $CH_{4:}$

79% CO₂: 0.20%

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

Carbon Dioxide (CO2): 1 25

Methane (CH₄):

 Company Name:
 EQT Production, LLC

 Facility Name:
 OXF 149-150 Pad

 Project Description:
 R13 Application

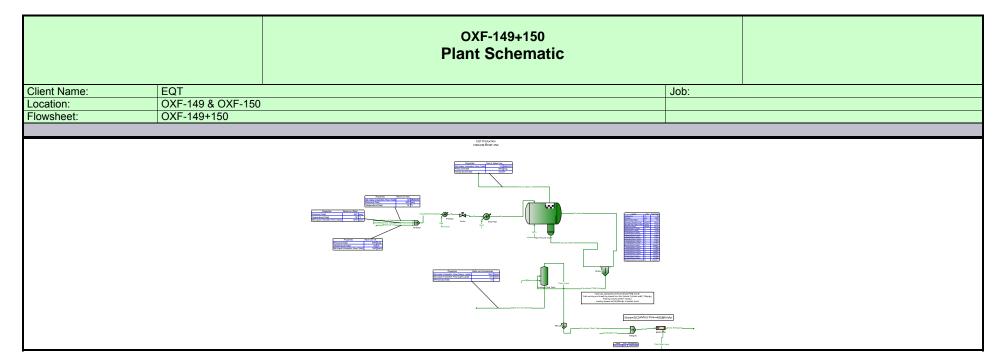
Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

Unpaved Road	s: E (lb/VMT)	$= k(s/12)^{a}(W/3)^{b})^{*}$	[(365-p)/365]	
	PM	PM_{10}	PM _{2.5}	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
a	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)


Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy) PM ₁₀	PM 2.5
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	1.02 1.02	5,331 200	10,925 410	0 0	23.40 0.31	5.96 0.08	0.60 0.01
Total Potential Emissions								23.71	6.04	0.60


EQT Production, LLC OXF 149-150 Pad Company Name: Facility Name: Project Description: **R13 Application**

Gas Analysis

Sample Location: Sample Date: HHV (Btu/scf):	OXF 121 Gas Analysis 5/29/2013 1,216								
Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)				
Carbon Dioxide	0.195	44.01	0.09	0.00	0.420				
Nitrogen	0.532	28.01	0.15	0.01	0.729				
Methane	78.965	16.04	12.67	0.62	61.983				
Ethane	13.780	30.07	4.14	0.20	20.278				
Propane	4.195	44.10	1.85	0.09	9.053				
Isobutane	0.507	58.12	0.29	0.01	1.442				
n-Butane	1.013	58.12	0.59	0.03	2.881				
Isopentane	0.249	72.15	0.18	0.01	0.879				
n-Pentane	0.239	72.15	0.17	0.01	0.844				
Cyclopentane	< 0.001	70.1	0.0	0.0	0.000				
n-Hexane	0.073	86.18	0.06	0.00	0.308				
Cyclohexane	0.011	84.16	0.01	0.00	0.045				
Other Hexanes	0.113	86.18	0.10	0.00	0.477				
Heptanes	0.079	100.21	0.08	0.00	0.387				
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000				
2,2,4-Trimethylpentane	0.031	114.23	0.04	0.00	0.173				
Benzene*	0.002	78.11	0.00	0.00	0.008				
Toluene*	0.004	92.14	0.00	0.00	0.018				
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000				
Xylenes*	0.002	106.16	0.00	0.00	0.010				
C8 + Heavies	0.010	130.80	0.01	0.00	0.064				
Totals	100.000		20.43	1.00	100				

TOC (Total)	99.27	98.85
VOC (Total)	6.53	16.59
HAP (Total)	0.11	0.52

		Ρ	All S	treams Report Streams by Total Phase			
Client Name:	EQT				Job:	4	
Location:	OXF-149 & OXF	-150					
Flowsheet:	OXF-149+150						
			Con	nections			
		Co	ombined	Combined PW	Gas to Sales	Produced	Reservoir Gas
			sh Vapor	& Cond	Line	Water	Reservoir Gas
From Block			1IX-100	MIX-101	High Pressure	High Pressure	
					Tower	Tower	
To Block		IV	1IX-105	Produced Fluid Tanks		MIX-101	MIX-102
				T di ilito			
			Stream (Composition			
		Co	ombined	Combined PW	Gas to Sales	Produced	Reservoir Gas
			sh Vapor	& Cond	Line	Water	
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen			0.152553	0.153424	163.48	0.0437854	163.633 *
Methane			32.5263	33.0585	13907	6.88403	13909.1 *
CO2 Ethane			1.04138 37.8784	1.18231 40.809	93.8014 4558.55	0.776139 2.13904	94.2271 *
Propane			41.3963	53.0927	2043.17	0.812763	2031.06 *
Isobutane			10.7898	18.6058	329.84	0.0454229	323.552 *
n-Butane			24.6107	50.2999	660.691	0.213556	646.467 *
Isopentane			9.4248	36.2826	210.894	0.0364354	197.253 *
n-Pentane			9.08972	43.9108	200.737	0.03524	189.331 *
n-Hexane			3.33864	47.6195	78.0221	0.00514269	69.0718 *
Methylcyclopenta	ne		0	0	0	0	0 *
Benzene			0.121077	1.87341	2.73195	0.0811374	1.71531 *
Cyclohexane n-Heptane			0.248089 3.96462	4.45968 173.744	5.70493 111.909	0.00521384 0.00454275	10.1646 * 86.9156 *
n-Octane			1.3034	188.772	45.261	0.00151923	3.76262 *
n-Nonane			0.281205	131.285	11.9371	0.00101834	5.63286 *
n-Decane			0.344018	519.113	18.6465	0.000975721	4.68668 *
n-Undecane			0	0	0	0	0 *
Dodecane			0	0	0	0	0 *
Water			2.31798	18478.2	51.2454	18477.9	0 *
Triethylene Glycol			0	0	0	0	0 *
Oxygen Argon			0	0	0	0	0 *
Carbon Monoxide	<u> </u>		0	0	0	0	0 *
Cyclopentane			0	0	0	0	0 *
Isohexane			5.03049	52.6222	113.25	0.00859367	106.919 *
3-Methylpentane			0	0	0	0	0 *
Neohexane			0	0	0	0	0 *
2,3-Dimethylbutar			0	0	0	0	0 *
Methylcyclohexan Isooctane			0.581602	0 23.4826	0 15.9741	0.000135761	0 *
Decane, 2-Methyl	-		0.561602	23.4626	15.9741	0.000135761	<u> </u>
Toluene			0.259387	12.9971	6.95827	0.151714	4.04665 *
m-Xylene			0.106653	20.8996	3.65058	0.0633808	2.33134 *
Ethylbenzene			0.0117361	1.91424	0.387001	0.00630266	0 *
Volumetric Floor		Flas	ombined sh Vapor	Combined PW & Cond	Gas to Sales Line	Produced Water	Reservoir Gas
Volumetric Flow Nitrogen			ft^3/h 2.032	gpm 0.000550142	ft^3/h 89.7741	gpm 0.000120041	ft^3/h 41.4668
Methane			752.986	0.213923	12434.2	0.000120041	5015.35
CO2			8.75572	0.00187466	28.7302	0.00123958	9.95737
Ethane			463.501	0.181578	1869.76	0.00728171	500.335
Propane			342.765	0.206089	498.07	0.00236202	64.538
Isobutane			67.3515	0.0672811	54.4977	0.000120584	0.384116
n-Butane			153.358	0.176183	103.362	0.000559622	-6.54661
1 1			47.0104	0.11901	22.8535	8.88298E-05	-5.72225
Isopentane							0.04000
Isopentane n-Pentane n-Hexane			45.2779 13.8043	0.142853	21.1235 5.44757	8.60696E-05 1.19317E-05	-6.21306 -3.39274

* User Specified Values ? Extrapolated or Approximate Values

Г

Client Name:	EQT				Job:	•	
Location:	OXF-149 & OXF	-150					
Flowsheet:	OXF-149+150						
			Combined	Combined PW	Gas to Sales	Produced	Reservoir Gas
Volumetric Flow			Flash Vapor ft^3/h	& Cond gpm	Line ft^3/h	Water gpm	ft^3/h
Benzene			0.555959	0.00420267	0.242947	0.000153102	-0.0722475
Cyclohexane			1.05399	0.0115215	0.434112	1.06606E-05	-0.467609
n-Heptane n-Octane			13.9908 4.00171	0.515307 0.539428	4.94501 1.20684	1.01931E-05 3.30057E-06	-5.29476 -0.252608
n-Nonane			0.761948	0.364595	0.130439	2.15964E-06	-0.252008
n-Decane			0.833476	1.41436	-0.0183503	2.03626E-06	-0.364296
n-Undecane			0	0	0	0	0
Dodecane			0	0	0	0	0
Water			47.6824	37.1761	39.1537	37.1763	0
Triethylene Glycol			0	0	0	0	0
Oxygen Argon			0	0	0	0	0
Carbon Monoxide			0	0	0	0	0
Cyclopentane			0	0	0	0	0
Isohexane			20.8352	0.163825	8.38099	1.99699E-05	-4.70031
3-Methylpentane			0	0	0	0	0
Neohexane			0	0	0	0	0
2,3-Dimethylbutane Methylcyclohexane			0	0	0	0	0
Isooctane			1.79806	0.0681145	0.617486	2.91991E-07	-2.04722
Decane, 2-Methyl-			0	0	0	0	0
Toluene			1.00095	0.0295161	0.402543	0.000283282	-0.227243
m-Xylene			0.354253	0.0475582	0.134626	0.000117366	-0.149181
Ethylbenzene			0.0390252	0.00434397	0.0149868	1.16085E-05	0
			Combined	Combined BW	Gas to Salos	Producod	Posorvoir Gas
			Combined Flash Vapor	Combined PW & Cond	Gas to Sales Line	Produced Water	Reservoir Gas
Mole Fraction			Flash Vapor	& Cond	Line	Water	
Nitrogen			Flash Vapor 0.00100554	& Cond 5.25351E-06	Line 0.00529227	Water 1.52307E-06	0.00532 *
Nitrogen Methane			Flash Vapor 0.00100554 0.374377	& Cond 5.25351E-06 0.00197667	Line 0.00529227 0.786152	Water 1.52307E-06 0.000418146	0.00532 * 0.78965 *
Nitrogen Methane CO2			Flash Vapor 0.00100554	& Cond 5.25351E-06 0.00197667 2.57696E-05	Line 0.00529227 0.786152 0.00193288	Water 1.52307E-06 0.000418146 1.7185E-05	0.00532 *
Nitrogen Methane			Flash Vapor 0.00100554 0.374377 0.00436925	& Cond 5.25351E-06 0.00197667	Line 0.00529227 0.786152	Water 1.52307E-06 0.000418146	0.00532 * 0.78965 * 0.00195 *
Nitrogen Methane CO2 Ethane Propane Isobutane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.00115494 0.000307063	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.00115494 0.000307063 0.00083013	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.00115494 0.000307063 0.00083013 0.000482381	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.0232631	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.00115494 0.000307063 0.00083013 0.000482381 0.000583799	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.00252313	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.00115494 0.000307063 0.00083013 0.000482381	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.0232631 0.00715371	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.00252313 0.000821064	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.00232631 0.00715371 0 0.000286213 0.000544314	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.0005330957 0 2.30058E-05 5.08302E-05	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.0026508 0.00252313 0.000821064 0 3.17174E-05 6.14738E-05	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08	0.00532 * 0.78965 * 0.0195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.000239 * 0.00073 * 0.00073 * 0.00073 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.0232631 0.00715371 0 0.000286213 0.000544314 0.00730584	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.0026508 0.00252313 0.000821064 0 3.17174E-05 6.14738E-05 0.00101282	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00075 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.0232631 0.00715371 0 0.000286213 0.000544314 0.00730584 0.00210692	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0026508 0.0026508 0.0026508 0.00252313 0.000821064 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.001013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00011 * 0.00011 * 0.00079 * 3E-05 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.0232631 0.00715371 0 0 0.000286213 0.000544314 0.00730584 0.00210692 0.000404849	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.00115494 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.000981888	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.00252313 0.000821064 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00249 * 0.00239 * 0.00239 * 0.00239 * 0.00239 * 0.00073 * 0.00071 * 0.00011 * 0.00079 * 3E-05 * 4E-05 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.0232631 0.00715371 0 0.000286213 0.000544314 0.00730584 0.00210692	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0026508 0.0026508 0.0026508 0.00252313 0.000821064 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.001013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00011 * 0.00011 * 0.00079 * 3E-05 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Detane n-Doctane n-Decane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.0232631 0.00715371 0 0.000286213 0.000544314 0.00730584 0.00210692 0.000446455 0	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530799 0.00053079 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.000981888 0.00349972 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.00252313 0.000821064 0 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00011 * 0.00079 * 3E-05 * 4E-05 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane Dodecane Water			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.0232631 0.00715371 0 0 0.000286213 0.000544314 0.00730584 0.00210692 0.000404849 0.000404849 0.000404849 0.000446455 0 0 0 0 0 0.0237582	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.00053079 0.00053079 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.000981888 0.00349972 0 0 0 0 0.983874	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.0026508 0.00252313 0.000821064 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0.00257963	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0 0 0.999467	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.00249 * 0.00239 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00071 * 0.00071 * 0.00071 * 0.00079 * 3E-05 * 4E-05 * 3E-05 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane Dodecane Water Triethylene Glycol			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0232631 0.00715371 0 0.000286213 0.000544314 0.00730584 0.00210692 0.000404849 0.000404855 0 0 0.00237582 0	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.00115494 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.000981888 0.00349972 0 0 0 0 0 0 0 0.983874 0 0	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.0026508 0.00252313 0.000821064 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0.00257963 0 0	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0 0 0 0 0 0 0.999467 0	0.00532 * 0.78965 * 0.0195 * 0.1378 * 0.04195 * 0.00507 * 0.00507 * 0.000249 * 0.000239 * 0.00073 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 0
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Doceane n-Doceane Dodecane Water Triethylene Glycol Oxygen			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0232631 0.00715371 0 0.000286213 0.000544314 0.00730584 0.00210692 0.000446455 0 0 0.000404849 0.00237582 0 0	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.00115494 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00156324 0.0015852 0.0015852 0.000981888 0.00349972 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.0026508 0.00252313 0.000821064 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0 0 0 0	0.00532 * 0.78965 * 0.0195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00079 * 3E-05 * 4E-05 * 3E-05 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Heptane n-Decane n-Doceane Dodecane Water Triethylene Glycol Oxygen Argon			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0232631 0.00232631 0.000286213 0.000286213 0.000210692 0.000446455 0 0 0.000446455 0 0 0.00237582 0 0	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.000981888 0.00349972 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.0026508 0.0026508 0.0026508 0.00252313 0.000821064 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.0195 * 0.0378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00071 * 0.00079 * 3E-05 * 4E-05 * 3E-05 * 0.8E-05 * 0.8E
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Decane n-Decane n-Dodecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0232631 0.00715371 0 0.000286213 0.000544314 0.00730584 0.00210692 0.000446455 0 0 0.000404849 0.00237582 0 0	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.00115494 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00156324 0.0015852 0.0015852 0.000981888 0.00349972 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.0026508 0.00252313 0.000821064 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0.00257963 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0 0 0 0	0.00532 * 0.78965 * 0.0195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00079 * 3E-05 * 4E-05 * 3E-05 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Heptane n-Decane n-Doceane Dodecane Water Triethylene Glycol Oxygen Argon			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0232631 0.00241206 0.00286213 0.000286213 0.000246213 0.000246213 0.000544314 0.00210692 0.000404849 0.000446455 0 0 0.0237582 0 0 0	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.0015852 0.000981888 0.00349972 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.0026508 0.0026508 0.0026508 0.00252313 0.000821064 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.0195 * 0.0195 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00071 * 0.00079 * 3E-05 * 4E-05 * 3E-05 * 3E-05 * 0
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.0023631 0.000286213 0.000544314 0.000544314 0.00210692 0.000446455 0 0 0.00237582 0 0 0 0.0237582 0 <td>& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.000981888 0.00349972 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.00252313 0.000821064 0 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00239 * 0.00239 * 0.00073 * 0.00071 * 0.00071 * 0.00079 * 3E-05 * 4E-05 * 3E-05 * 0 * 0 0 0 * 0 0 0 * 0 0 0 * 0 0 * 0 0 0 * 0 0 0 * 0 0 0 * 0 0 * 0 0 0 * 0 0 0 * 0 0 0 0 * 0 0 0 * 0 0 0 * 0 0 0 0 * 0 0 * 0 0 * 0 0 0 * 0 0 *</td>	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.000981888 0.00349972 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.00252313 0.000821064 0 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00239 * 0.00239 * 0.00073 * 0.00071 * 0.00071 * 0.00079 * 3E-05 * 4E-05 * 3E-05 * 0 * 0 0 0 * 0 0 0 * 0 0 0 * 0 0 * 0 0 0 * 0 0 0 * 0 0 0 * 0 0 * 0 0 0 * 0 0 0 * 0 0 0 0 * 0 0 0 * 0 0 0 * 0 0 0 0 * 0 0 * 0 0 * 0 0 0 * 0 0 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.0023631 0.000286213 0.000544314 0.000544314 0.00010692 0.000446455 0 0 0.00237582 0 0 0.0237582 0 0 0.0107788 0 0	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.00050057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.000981888 0.00349972 0 0 0 0.0038874 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.0026508 0.00252313 0.000821064 0 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00239 * 0.00239 * 0.00239 * 0.00073 * 0.00071 * 0.00011 * 0.00079 * 3E-05 * 4E-05 * 3E-05 * 0 * 0 0 0 * 0 0 0 * 0 0 * 0 0 * 0 0 * 0 0 0 0 * 0 0 0 * 0 0 0 0 * 0 0 0 0 * 0 0 0 0 * 0 0 0 0 0 * 0 0 0 0 * 0 0 0 0 0 * 0 0 0 0 0 * 0 0 0 0 * 0 0 0 0 * 0 0 0 0 0 * 0 0 0 0 0 * 0 0 0 0 * 0 0 0 0 0 * 0 0 0 0 * 0 0 * 0 0 0 0 * 0 0 0 0 * 0 0 0 * 0 0 0 0 * 0 0 0 * 0 0 0 * 0 0 * 0 0 0 0 * 0 0 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.0023631 0.000286213 0.000544314 0.000544314 0.000210692 0.000446455 0 0 0.00237582 0 0 0 0.0107788 0 </td <td>& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.0015852 0.000981888 0.00349972 0 0 0 0 0.0038374 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.00252313 0.000821064 0 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0</td> <td>0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00249 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00079 * 3E-05 * 0.00079 * 0.00000 * 0.0000 * 0.0000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.000000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.00000000 * 0.0000000000 * 0.00000000000000000000000000000000000</td>	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.0015852 0.000981888 0.00349972 0 0 0 0 0.0038374 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.00252313 0.000821064 0 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00249 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00079 * 3E-05 * 0.00079 * 0.00000 * 0.0000 * 0.0000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.000000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.00000000 * 0.0000000000 * 0.00000000000000000000000000000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Decane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.0023631 0.000286213 0.000286213 0.000544314 0.000544314 0.00210692 0.000446455 0 0 0.00237582 0 0 0 0.0107788 0 <td>& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.000981888 0.00349972 0 0 0 0.0038874 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.0026508 0.00252313 0.000821064 0 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0</td> <td>0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00249 * 0.00239 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00079 * 3E-05 * 4E-05 * 0.00011 * 0.00079 * 3E-05 * 0.00079 * 0.000079 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.000000000 * 0.00000000 * 0.00000000000000000000000000000000000</td>	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.000981888 0.00349972 0 0 0 0.0038874 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.0026508 0.00252313 0.000821064 0 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00249 * 0.00239 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00079 * 3E-05 * 4E-05 * 0.00011 * 0.00079 * 3E-05 * 0.00079 * 0.000079 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.000000000 * 0.00000000 * 0.00000000000000000000000000000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			Flash Vapor 0.00100554 0.374377 0.00436925 0.232604 0.173345 0.0342782 0.0781856 0.0241206 0.0023631 0.000286213 0.000544314 0.000544314 0.000210692 0.000446455 0 0 0.00237582 0 0 0 0.0107788 0 </td <td>& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.0015852 0.000981888 0.00349972 0 0 0 0 0.0038374 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.00252313 0.000821064 0 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0</td> <td>0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00249 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00079 * 3E-05 * 0.00079 * 0.00000 * 0.0000 * 0.0000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.000000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.00000000 * 0.0000000000 * 0.00000000000000000000000000000000000</td>	& Cond 5.25351E-06 0.00197667 2.57696E-05 0.00130184 0.000307063 0.00083013 0.000482381 0.000583799 0.000530057 0 2.30058E-05 5.08302E-05 0.00166324 0.0015852 0.0015852 0.000981888 0.00349972 0 0 0 0 0.0038374 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00529227 0.786152 0.00193288 0.137483 0.0420195 0.0051464 0.0103086 0.0026508 0.00252313 0.000821064 0 0 3.17174E-05 6.14738E-05 0.00101282 0.000359329 8.4405E-05 0.000118848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 1.52307E-06 0.000418146 1.7185E-05 6.93195E-05 1.79608E-05 7.61533E-07 3.58035E-06 4.92097E-07 4.75951E-07 5.81518E-08 0 1.01219E-06 6.03686E-08 4.41773E-08 1.296E-08 7.73706E-09 6.6824E-09 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00249 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00079 * 3E-05 * 0.00079 * 0.00000 * 0.0000 * 0.0000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.000000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.00000 * 0.000000 * 0.000000 * 0.000000 * 0.000000 * 0.0000000 * 0.0000000 * 0.00000000 * 0.00000000 * 0.0000000000 * 0.00000000000000000000000000000000000

* User Specified Values ? Extrapolated or Approximate Values ProMax 3.2.15289.0 Copyright © 2002-2015 BRE Group, Ltd.

			All S	reams Report treams by Total Phase			
Client Name:	EQT				Job:	Į	
Location:	OXF-149 &	OXF-150					
Flowsheet:	OXF-149+1	50					
	·						
Mole Fraction			Combined Flash Vapor	Combined PW & Cond	Gas to Sales Line	Produced Water	Reservoir Gas
Toluene			0.00051982	0.000135309	6.84862E-05	1.6045E-06	4E-05
m-Xylene			0.000185498	0.000188833	3.11834E-05	5.81745E-07	2E-05
Ethylbenzene			2.0412E-05	1.72956E-05	3.30577E-06	5.78494E-08	0
				Properties	<u> </u>		1
Property		Units	Stream Combined Flash Vapor	Properties Combined PW & Cond	Gas to Sales Line	Produced Water	Reservoir Gas
		Units °F	Combined	Combined PW			Reservoir Gas
Temperature			Combined Flash Vapor	Combined PW & Cond	Line	Water	
Temperature Pressure	DOL	°F	Combined Flash Vapor 70	Combined PW & Cond 100 390 0	Line 100 *	Water 100	75 900 0.999974
Property Temperature Pressure Mole Fraction Vap Mole Fraction Ligh		°F	Combined Flash Vapor 70	Combined PW & Cond 100 390	Line 100 * 390 *	Water 100 390	75
Temperature Pressure Mole Fraction Vap Mole Fraction Ligh	ht Liquid	°F psig	Combined Flash Vapor 0.625 1 0 0 0	Combined PW & Cond 100 390 0 0.0156144 0.984386	Line 100 * 390 * 1 0 0	Water 100 390 0 1 0	75 900 0.999974 2.61384E-05 0
Temperature Pressure Mole Fraction Vap Mole Fraction Ligh Mole Fraction Hea Molecular Weight	ht Liquid avy Liquid	°F psig lb/lbmol	Combined Flash Vapor 0.625 1 0 0 0 34.1265	Combined PW & Cond 100 390 0 0.0156144 0.984386 19.1216	Line 100 * 390 * 1 0 0 20.5259	Water 100 390 0 1 0 18.0167	75 900 0.999974 2.61384E-05 0 20.436
Temperature Pressure Mole Fraction Vap Mole Fraction Ligh Mole Fraction Hea Molecular Weight Mass Density	ht Liquid avy Liquid	°F psig lb/lbmol lb/ft^3	Combined Flash Vapor 70 0.625 1 0 0 34.1265 0.0928855	Combined PW & Cond 100 390 0 0.0156144 0.984386 19.1216 59.7508	Line 100 * 390 * 1 0 0 20.5259 1.49069	Water 100 390 0 1 0 18.0167 61.9279	75 900 0.999974 2.61384E-05 0 20.436 4.00958
Temperature Pressure Mole Fraction Vap Mole Fraction Ligh Mole Fraction Hea Molecular Weight Mass Density Mass Flow	ht Liquid avy Liquid	°F psig lb/lbmol lb/ft^3 lb/h	Combined Flash Vapor 0.625 1 0 0 0 34.1265 0.0928855 184.819	Combined PW & Cond 100 390 0 0.0156144 0.984386 19.1216 59.7508 19934.4	Line 100 * 390 * 1 0 0 20.5259 1.49069 22633.9	Water 100 390 0 1 0 18.0167 61.9279 18489.3	75 900 0.999974 2.61384E-05 0 20.436 4.00958 22438.3
Temperature Pressure Mole Fraction Vap Mole Fraction Ligh Mole Fraction Hea Molecular Weight Mass Density Mass Flow Vapor Volumetric	ht Liquid avy Liquid Flow	°F psig lb/lbmol lb/ft^3 lb/h ft^3/h	Combined Flash Vapor 70 0.625 1 0 0 34.1265 0.0928855 184.819 1989.75	Combined PW & Cond 100 390 0 0.0156144 0.984386 19.1216 59.7508 19934.4 333.625	Line 100 * 390 * 1 0 20.5259 1.49069 22633.9 15183.5	Water 100 390 0 1 0 18.0167 61.9279 18489.3 298.561	75 900 0.999974 2.61384E-05 0 20.436 4.00958 22438.3 5596.17
Temperature Pressure Mole Fraction Vap Mole Fraction Ligh Mole Fraction Hea Molecular Weight Mass Density Mass Flow Vapor Volumetric Liquid Volumetric	ht Liquid avy Liquid Flow Flow	°F psig lb/lbmol lb/ft^3 lb/h ft^3/h gpm	Combined Flash Vapor 70 0.625 1 0 0 34.1265 0.0928855 184.819 1989.75 248.073	Combined PW & Cond 100 390 0 0.0156144 0.984386 19.1216 59.7508 19934.4 333.625 41.5948	Line 100 * 390 * 1 0 20.5259 1.49069 22633.9 15183.5 1893	Water 100 390 0 1 0 18.0167 61.9279 18489.3 298.561 37.2232	75 900 0.999974 2.61384E-05 0 20.436 4.00958 22438.3 5596.17 697.704
Temperature Pressure Mole Fraction Vap Mole Fraction Ligh Mole Fraction Hea Molecular Weight Mass Density Mass Flow Vapor Volumetric Liquid Volumetric Std Vapor Volume	nt Liquid avy Liquid Flow Flow etric Flow	°F psig lb/lbmol lb/ft^3 lb/h ft^3/h gpm MMSCFD	Combined Flash Vapor 70 0.625 1 0 0 34.1265 0.0928855 184.819 1989.75 248.073 0.0493242	Combined PW & Cond 100 390 0 0.0156144 0.984386 19.1216 59.7508 19934.4 333.625 41.5948 9.49476	Line 100 * 390 * 1 0 20.5259 1.49069 22633.9 15183.5 1893 10.043	Water 100 390 0 1 0 18.0167 61.9279 18489.3 298.561 37.2232 9.34651	75 900 0.999974 2.61384E-05 0 20.436 4.00958 22438.3 5596.17 697.704 10
Temperature Pressure Mole Fraction Vap Mole Fraction Ligh Mole Fraction Hea Molecular Weight Mass Density Mass Flow Vapor Volumetric Liquid Volumetric Std Vapor Volume Std Liquid Volumet	nt Liquid avy Liquid Flow Flow etric Flow	°F psig lb/lbmol lb/ft^3 lb/h ft^3/h gpm	Combined Flash Vapor 70 0.625 1 0 0 34.1265 0.0928855 184.819 1989.75 248.073 0.0493242 0.827281	Combined PW & Cond 100 390 0 0.0156144 0.984386 19.1216 59.7508 19934.4 333.625 41.5948 9.49476 41.3779	Line 100 * 390 * 1 0 0 20.5259 1.49069 22633.9 15183.5 1893 10.043 133.032	Water 100 390 0 1 0 18.0167 61.9279 18489.3 298.561 37.2232 9.34651 37.0037	75 900 0.999974 2.61384E-05 0
Temperature Pressure Mole Fraction Vap Mole Fraction Ligh Mole Fraction Hea Mole Fraction Hea Mole Fraction Hea Mass Density Mass Flow Vapor Volumetric Liquid Volumetric Std Vapor Volume Std Liquid Volume Specific Gravity	nt Liquid avy Liquid Flow Flow etric Flow	°F psig lb/lbmol lb/ft^3 lb/h ft^3/h gpm MMSCFD	Combined Flash Vapor 70 0.625 1 0 0 34.1265 0.0928855 184.819 1989.75 248.073 0.0493242	Combined PW & Cond 100 390 0 0.0156144 0.984386 19.1216 59.7508 19934.4 333.625 41.5948 9.49476 41.3779 0.958021	Line 100 * 390 * 1 0 20.5259 1.49069 22633.9 15183.5 1893 10.043	Water 100 390 0 1 0 18.0167 61.9279 18489.3 298.561 37.2232 9.34651 37.0037 0.992927	75 900 0.999974 2.61384E-05 0 20.436 4.00958 22438.3 5596.17 697.704 10
Temperature Pressure Mole Fraction Vap Mole Fraction Ligh Mole Fraction Hea Mole Clar Weight Mass Density Mass Flow Vapor Volumetric Liquid Volumetric Std Vapor Volumetric Std Liquid Volume Specific Gravity API Gravity	nt Liquid avy Liquid Flow Flow etric Flow etric Flow	°F psig lb/lbmol lb/ft^3 lb/h ft^3/h gpm MMSCFD sgpm	Combined Flash Vapor 70 0.625 1 0 34.1265 0.0928855 184.819 1989.75 248.073 0.0493242 0.827281 1.1783	Combined PW & Cond 100 390 0 0.0156144 0.984386 19.1216 59.7508 19934.4 333.625 41.5948 9.49476 41.3779 0.958021 14.9402	Line 100 * 390 * 1 0 0 20.5259 1.49069 22633.9 15183.5 1893 10.043 13.032 0.708703	Water 100 390 0 1 0 18.0167 61.9279 18489.3 298.561 37.2232 9.34651 37.0037 0.992927 10.0523	75 900 0.999974 2.61384E-05 0 20.436 4.00958 22438.3 5596.17 697.704 10 132.468
Temperature Pressure Mole Fraction Vap Mole Fraction Ligh Mole Fraction Hea Mole Fraction Hea Mole Fraction Hea Mass Density Mass Flow Vapor Volumetric Liquid Volumetric Std Vapor Volume Std Liquid Volume Specific Gravity	nt Liquid avy Liquid Flow Flow etric Flow etric Flow ating Value	°F psig lb/lbmol lb/ft^3 lb/h ft^3/h gpm MMSCFD	Combined Flash Vapor 70 0.625 1 0 0 34.1265 0.0928855 184.819 1989.75 248.073 0.0493242 0.827281	Combined PW & Cond 100 390 0 0.0156144 0.984386 19.1216 59.7508 19934.4 333.625 41.5948 9.49476 41.3779 0.958021	Line 100 * 390 * 1 0 0 20.5259 1.49069 22633.9 15183.5 1893 10.043 133.032	Water 100 390 0 1 0 18.0167 61.9279 18489.3 298.561 37.2232 9.34651 37.0037 0.992927	75 900 0.999974 2.61384E-05 0 20.436 4.00958 22438.3 5596.17 697.704 10

Remarks

		All St	eams Report reams y Total Phase				
Client Name:	EQT	L		Job:			
Location:	OXF-149 & OXF						
Flowsheet:	OXF-149+150						
				¥			
		Conn	ections				
		Reservoir Oil					
From Block							
To Block		MIX-102					
		Stream Co	omposition				
		Reservoir Oil	•				
Mass Flow		lb/h					
Nitrogen		0 *					
Methane		30.9666 *					
CO2		0.756584 *					
Ethane		49.8611 *					
Propane		65.2018 *					
Isobutane		24.8931 *					
n-Butane		64.5245 *					
Isopentane		49.9236 *					
n-Pentane		55.3163 *					
n-Hexane		56.5697 *					
Methylcyclopenta	ne	0 *					
Benzene		2.89005 *					
Cyclohexane		0 *					
n-Heptane		198.737 *					
n-Octane		230.27 *					
n-Nonane		137.589 *					
n-Decane		533.072 *					
n-Undecane		0 *					
Dodecane		0 *					
Water		0 *					
Triethylene Glyco	l	0 *					
Oxygen		0 *					
Argon		0 *					
Carbon Monoxide	9	0 *					
Cyclopentane		0 *					
Isohexane		58.953 *					
3-Methylpentane		0 *					
Neohexane		0 *					
2,3-Dimethylbutar	ne	0 *					
Methylcyclohexar		0 *					
Isooctane		0.576317 *					
Decane, 2-Methy	-	0 *					
Toluene		15.9087 *					
m-Xylene		22.2189 *					
Ethylbenzene		2.30124 *					
Volumetric Flow		Reservoir Oil gpm					
Nitrogen		0					
Methane		0.197346					
CO2		0.0011232					
Ethane		0.213586					
Propane		0.243926					
Isobutane		0.0868506					
n-Butane		0.218623					
Isopentane		0.158777					
n-Pentane		0.174707					
n-Hexane		0.169579					
Methylcyclopenta	ne	0					
Benzene		0.00641442					
Cyclohexane		0					
n-Heptane		0.575298					
n-Octane		0.643396					
n-Nonane		0.374138					
* User Specified Values	3	ProMax 3	3.2.15289.0	Lice	nsed to Trinity Consultants, Inc. and Affiliates		

* User Specified Values ? Extrapolated or Approximate Values

Client Name:	EQT	F		reams Report treams oy Total Phase	Job:		
Location:	OXF-149 & OXF	150			JOD.		
Flowsheet:	OXF-149 & OXI OXF-149+150	-150					
T IOWSHEEL.	0/1-149-150						
		Ba	servoir Oil				
Volumetric Flow		NC.	gpm				
n-Decane			1.4235				
n-Undecane			0				
Dodecane			0				
Water			0				
Triethylene Glycol			0				
Oxygen			0				
Argon			0				
Carbon Monoxide			0				
Cyclopentane			0				
Isohexane			0.178501				
3-Methylpentane			0				
Neohexane			0				
2,3-Dimethylbutane			0				
Methylcyclohexane			0				
Isooctane			0.00162932				
Decane, 2-Methyl-			0				
Toluene			0.0356234				
m-Xylene			0.0498409				
Ethylbenzene			0.00514668				
				· · ·		r ·	· ·
 . .		Re	servoir Oil				
Mole Fraction							
Nitrogen			* 0				
Methane CO2			0.1033 *				
Ethane			0.08874 *				
Propane			0.07913 *				
Isobutane			0.02292 *				
n-Butane			0.05941 *	:			
Isopentane			0.03703 *	-			
n-Pentane			0.04103 *				
n-Hexane			0.03513 *				
Methylcyclopentane			0 *				
Benzene			0.00198 *				
Cyclohexane			0 *	r			
n-Heptane			0.10614 *				
n-Octane			0.10788 *				
n-Nonane			0.05741 *				
n-Decane			0.2005 *				
n-Undecane			0 *				
Dodecane			0 *	-			
Water			0 *	-			
			0 *				
Triethylene Glycol			0				
Oxygen			^ *				
Oxygen Argon			0 *				
Oxygen Argon Carbon Monoxide			0 *				
Oxygen Argon Carbon Monoxide Cyclopentane			0 *				
Oxygen Argon Carbon Monoxide Cyclopentane Isohexane			0 *				
Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane			0 * 0 * 0.03661 *				
Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane			0 * 0 * 0.03661 * 0 *				
Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane			0 * 0.03661 * 0 * 0 * 0 * 0 *				
Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane			0 * 0.03661 * 0 * 0 * 0 * 0 * 0 *				
Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl-			0 * 0.03661 * 0 * 0 * 0 * 0 * 0 * 0.00027 *				
Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl- Toluene			0 * 0.03661 * 0 * 0 * 0 * 0 * 0.00027 * 0 * 0.00027 *	Image: Constraint of the second sec			
Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane Decane, 2-Methyl-			0 * 0.03661 * 0 * 0 * 0 * 0 * 0 * 0.00027 *	Image: Constraint of the second sec			

			All St	eams Report reams y Total Phase				
Client Name:	EQT	-•			J	ob:	•	
Location:	OXF-149 & OX	(F-150						
Flowsheet:	OXF-149+150							
	•							
			Stream P	Properties				
Property		Units	Reservoir Oil	· · ·		· ·		•
Temperature		°F	75 *					
Pressure		psig	900 *					
Mole Fraction Vap	or		0					
Mole Fraction Ligh	nt Liquid		1					
Mole Fraction Hea	ivy Liquid		0					
Molecular Weight	• •	lb/lbmol	85.6527					
Mass Density		lb/ft^3	41.9391					
Mass Flow		lb/h	1600.53					
Vapor Volumetric I	Flow	ft^3/h	38.1632					
Liquid Volumetric I		gpm	4.75801					
Std Vapor Volume		MMSCFD	0.170188					
Std Liquid Volume	tric Flow	sgpm	4.9 *					
Specific Gravity			0.672435					
API Gravity			76.5036					
Net Ideal Gas Hea		Btu/ft^3	4363.51					
Net Liquid Heating	y Value	Btu/lb	19177.2					
Remarks								

Simulation Initiated on 3/14/2016 9:28:50 AM 20160208_EQT_OXF 149+150 Wellpad Calculation.pmx							
Energy Stream Report							
Client Name:	EQT		Job:				
Location:	OXF-149 & OXF						
Flowsheet:	OXF-149+150						
			Energy Streams				
Energy Stream		Energy Rate	Power	From Block	To Block		
Pilot Heat Input	3.65	5455E+06 * Btu/h	1436.29 * hp		REAC-100		
Remarks							

Client Name:	EQT		User Va	alue Sets Report	Job:
Location:	OXF-149 & OXF-1	50			
			Та	nk Losses.53	
				alue [ShellLength]	
* Parameter		20		Upper Bound	ft
* Lower Bound		0		* Enforce Bounds	False
			<u>.</u>		
* Parameter		12		Alue [ShellDiam] Upper Bound	4
* Lower Bound		0		* Enforce Bounds	ft False
Lower Bound					
			User V	alue [BreatherVP]	
* Parameter		0.875	psig	Upper Bound	psig
Lower Bound			psig	* Enforce Bounds	False
t Damana tan		0.0075	User Va	lue [BreatherVacP]	a da
* Parameter Lower Bound		-0.0375	psig psig	Upper Bound * Enforce Bounds	psig False
Lower Dound			psig	Enlorce Bounds	i disc
			User Va	lue [DomeRadius]	
Parameter			ft	Upper Bound	ft
Lower Bound			ft	* Enforce Bounds	False
				Value [OpPress]	
* Parameter Lower Bound		0	psig	Upper Bound * Enforce Bounds	psig False
Lower Bound			psig	Enlorce Bounds	Faise
			lleor Val	ue [AvgPercentLiq]	
* Parameter		50		Upper Bound	%
Lower Bound			%	* Enforce Bounds	False
				ue [MaxPercentLiq]	
* Parameter Lower Bound		90	%	Upper Bound * Enforce Bounds	% False
Lower Bound			%	Enforce Bounds	Faise
			llsor \	/alue [AnnNetTP]	
* Parameter		1426.11		Upper Bound	bbl/day
Lower Bound			bbl/day	* Enforce Bounds	False
				r Value [OREff]	
Parameter		0	%	Upper Bound	%
Lower Bound			%	* Enforce Bounds	False
* Parameter		14.2535	DSer Va psia	Ilue [AtmPressure] Upper Bound	psia
Lower Bound		17.2000	psia	* Enforce Bounds	False
		l	Jser Valu	ue [MaxLiqSurfaceT]	
Parameter			°F	Upper Bound	°F
Lower Bound			°F	* Enforce Bounds	False
t. Deners sta		0.44075		alue [TotalLosses]	. ,
* Parameter Lower Bound		9.11877	ton/yr ton/yr	Upper Bound * Enforce Bounds	ton/yr False
			torn yr		
			Jser Valu	ue [WorkingLosses]	
* Parameter		0.451098	ton/yr	Upper Bound	ton/yr
Lower Bound			ton/yr	* Enforce Bounds	False
User Specified Values				ProMax 3 2 15289 0	Licensed to Trinity Consultants Inc. and Affil

* User Specified Values ? Extrapolated or Approximate Values

ProMax 3.2.15289.0 Copyright © 2002-2015 BRE Group, Ltd.

Licensed to Trinity Consultants, Inc. and Affiliates

		User Val	ue Sets Report		
Client Name:	EQT			Job:	
Location:	OXF-149 & OXF	-150			
			[StandingLosses]		
* Parameter		0.3088 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[RimSealLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[LoadingLosses]		
* Parameter		16.6766 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
Lower Board		con yi			1 4100
		User Value [DeckFittingLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[FlashingLosses]		
* Parameter		501.071 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds		False
		User Value	[GasMoleWeight]		
* Parameter		0.0553619 kg/mol	Upper Bound		kg/mol
Lower Bound		kg/mol	* Enforce Bounds		False
Remarks					
This User Value Se	t was programmat	tically generated. GUID={5524AE	38C-40B1-4354-9DD7-EED65	770BF87}	

* * **Project Setup Information** : \\tsclient\Z\Client\EQT Corporation\West Virginia\WV Wells\163901.0058 WV Wells 2016\OXF Project File 149-150\02 Draft\2016-0307 OXF 149-150 Wellpad Application\Attachment N - Emission Calculations\20160310_DRAFT_EQT_OXF14-150_Sand Sep Tank.ept Flowsheet Selection : Oil Tank with Separator Calculation Method : RVP Distillation Control Efficiency : 0.0% Known Separator Stream : Low Pressure Oil Entering Air Composition : No Filed Name : OXF 149 & OXF 150 Well Name : Sand Separator Tank Well ID : OXF-149 Condensate Sample Date : 2016.03.10 * * Data Input Separator Pressure : 320.00[psig] Separator Temperature : 60.00[F] Ambient Pressure : 14.70[psia] Ambient Temperature : 70.00[F] C10+ SG : 0.8024 C10+ MW : 210.576 -- Low Pressure Oil ------No. Component mol % H₂S 1 0.0000 2 02 0.0000 3 CO₂ 0.0920 N2 4 0.0000 5 C1 10.3300 6 C2 8.8740 7 C3 7.9130 8 i-C4 2.2920 9 n-C4 5.9410 10 i-C5 3.7030 11 n-C5 4.1030 12 C6 3.6610 13 C7 10.6140 C8 14 10.7880 15 C9 5.7410 C10+16 20.0500 17 Benzene 0.1980 18 Toluene 0.9240 19 E-Benzene 0.1160 20 Xylenes 1.1200

Production F Days of Ann API Gravity Reid Vapor I ********** * Calculat	Rate : (ual Operatio : 56 Pressure ********* ion Results).1[bbl/day] on : 365 [day 5.11 : 10.60[psia] ******	ys/year]] ********	****	*************
******	* * * * * * * * * * * *	* * * * * * * * * * * *	****	*****	********************
Emission					
Item				trolled Con	
Daga 1	[ton/yr] [[lb/hr] [t	on/yr] [l	b/hr]	E&P TANK
Total HAPs	0.010	0.002	0.010	0.002	E&P TAINK
Total HAPs Total HC	0.510	0.002	0.552	0.002	
VOCs, C2+	0.352	0.120	0.552	0.120	
VOCs, C2+					
, 005, 051	0.525	0.071	0.525	0.071	
HC Vap	l Recovery I 33.7500 x or 33.6500 337.50	(1E-3 [MSC (1E-3 [M	SCFD]		
		-	-		
Emission	Composition				
				Controlled	
_	[ton/yr] [[lb/hr] [t	on/yr] [l	b/hr]	
1 H2S	0.000	0.000	0.000	0.000	
2 O2	0.000	0.000	0.000	0.000	
3 CO2	0.002	0.000	0.002	0.000	
4 N2	0.000	0.000	0.000	0.000	
5 C1	0.088	0.020	0.088	0.020	
6 C2	0.140	0.032	0.140	0.032	
7 C3	0.143	0.033	0.143	0.033	
8 i-C4	0.035	0.008	0.035	0.008	
9 n-C4	0.073	0.017	0.073	0.017	
10 i-C5	0.026	0.006	0.026	0.006	
11 n-C5	0.022	0.005	0.022	0.005	
12 C6	0.007	0.002	0.007	0.002	
13 C7	0.007	0.002	0.007	0.002	
14 C8	0.002	0.000	0.002	0.000	
15 C9	0.000	0.000	0.000	0.000	
16 C10+	0.000	0.000	0.000	0.000	
17 Benzene	0.000	0.000	0.000	0.000	
18 Toluene	0.000	0.000	0.000	0.000	
19 E-Benzer			0.000	0.000	
20 Xylenes	0.000	0.000	0.000	0.000	
21 n-C6	0.005	0.001	0.005	0.001	
22 224Trim	• •				
Total	0.550	0.126	0.550	0.126	

Stream Data -	
No. Component	MW LP Oil Flash Oil Sale Oil Flash Gas W&S Gas Total Emissions
	mol % mol % mol % mol % mol %
1 H2S	34.80 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 O2	32.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 CO2	44.01 0.0920 0.0060 0.0001 0.3030 0.2695 0.3013
4 N2	28.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 C1	16.04 10.3300 0.2188 0.0000 35.1483 9.8854 33.8466
6 C2	30.07 8.8740 1.1428 0.1436 27.8504 45.2926 28.7492
7 C3	44.10 7.9130 3.1683 2.6468 19.5591 26.2078 19.9017
8 i-C4	58.12 2.2920 1.7024 1.6483 3.7393 4.0924 3.7575
9 n-C4	58.12 5.9410 5.2118 5.1424 7.7308 8.2786 7.7590
10 i-C5	72.15 3.7030 4.3039 4.3484 2.2280 2.3393 2.2337
11 n-C5	72.15 4.1030 5.0206 5.0902 1.8508 1.9436 1.8556
12 C6	86.16 3.6610 4.9381 5.0373 0.5262 0.5556 0.5277
13 C7	100.20 10.6140 14.7477 15.0702 0.4677 0.4983 0.4692
14 C8	114.23 10.7880 15.1282 15.4674 0.1347 0.1451 0.1353
15 C9	128.28 5.7410 8.0709 8.2530 0.0222 0.0259 0.0224
16 C10+	210.58 20.0500 28.2185 28.8572 0.0001 0.0001 0.0001
	78.11 0.1980 0.2703 0.2759 0.0206 0.0219 0.0207
18 Toluene	92.13 0.9240 1.2905 1.3191 0.0244 0.0261 0.0245
	106.17 0.1160 0.1629 0.1666 0.0009 0.0010 0.0009
20 Xylenes	106.17 1.1200 1.5732 1.6087 0.0075 0.0081 0.0075
21 n-C6	86.18 3.5130 4.7873 4.8865 0.3851 0.4077 0.3862
22 224Trimethy	lp 114.24 0.0270 0.0376 0.0384 0.0009 0.0010 0.0009
MW	98.36 124.65 126.60 33.83 38.71 34.09
Stream Mole I	
Heating Value	
Gas Gravity	[Gas/Air] 1.17 1.34 1.18
Bubble Pt. @	100F [psia] 412.67 26.87 13.10
	E&P TANK
RVP @ 100F	
Spec. Gravity	@ 100F 0.659 0.690 0.691

Certificate of Analysis :

13050027-001A

Company:	Gas Analytical Services
Well:	Oxford 149 Pad
Field:	EQT Midstream
Sample of:	Condensate
Conditions:	320 @ N.G.
Sampled by:	RM-GAS
Sample date:	4/29/2013
Remarks:	Cylinder No.: GAS
Remarks:	Well 512480

For: Gas Analytical Services Alan Ball PO Box 1028

Bridgeport, WV, 26330

Report Date:

5/13/2013

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	10.330	16.043	1.686	0.3000	3.891
Carbon Dioxide	0.092	44.010	0.041	0.8180	0.035
Ethane	8.874	30.070	2.715	0.3562	5.271
Propane	7.913	44.097	3.551	0.5070	4.842
lso-butane	2.292	58.123	1.356	0.5629	1.666
N-butane	5.941	58.123	3.514	0.5840	4.162
Iso-pentane	3.703	72.150	2.719	0.6244	3.011
N-pentane	4.103	72.150	3.013	0.6311	3.302
i-Hexanes	3.661	86.177	3.170	0.6795	3.308
n-Hexane	3.513	85.648	3.083	0.6640	3.191
2,2,4 trimethylpentane	0.027	114.231	0.030	0.6967	0.031
Benzene	0.198	78.114	0.144	0.8846	0.123
Heptanes	10.614	97.459	10.576	0.7048	10.397
Toluene	0.924	92.141	0.795	0.8719	0.690
Octanes	10.788	107.237	11.986	0.7433	11.205
E-benzene	0.116	106.167	0.054	0.8718	0.100
M-,O-,P-xylene	1.120	106.167	1.207	0.8731	0.966
Nonanes	5.741	121.906	7.394	0.7646	6.765
Decanes Plus	20.050	210.576	42.966	0.8024	37.044
	100.000	-	100.000		100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.6917	0.8024
Api Gravity at 60 °F	73.054	44.854
Molecular Weight	98.266	210.576
Pounds per Gallon (in Vacuum)	5.767	6.690
Pounds per Gallon (in Air)	5.761	6.682
Cu. Ft. Vapor per Gallon @ 14.73 psia	22.324	12.028

Southern Petroleum Laboratories, Inc.

Certificate of Analysis : 13050027-001A

Company: Well: Field: Sample of: Conditions: Sampled by:	Gas Analytica Oxford 149 Pa EQT Midstrea Condensate 320 @ N.G. RM-GAS	ad		For:	Gas Analytical Alan Ball PO Box 1028 Bridgeport, W	
Sample date: Remarks: Remarks:	4/29/2013 Cylinder No.: 0 Well 512480	GAS		Report Da	te: 5	5/13/2013
Analysis: (GPA	2103M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen		0.000	28.013	0.000	0.8094	0.000
Methane		10.330	16.043	1.686	0.3000	3.891
Carbon Dioxide		0.092	44.010	0.041	0.8180	0.035
Ethane		8.874	30.070	2.715	0.3562	5.271
Propane		7.913	44.097	3.551	0.5070	4.842
lso-butane		2.292	58.123	1.356	0.5629	1.666
N-butane		5.941	58.123	3.514	0.5840	4.162
lso-pentane		3.703	72.150	2.719	0.6244	3.011

Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	10.330	16.043	1.686	0.3000	3.891
Carbon Dioxide	0.092	44.010	0.041	0.8180	0.035
Ethane	8.874	30.070	2.715	0.3562	5.271
Propane	7.913	44.097	3.551	0.5070	4.842
lso-butane	2.292	58.123	1.356	0.5629	1.666
N-butane	5.941	58.123	3.514	0.5840	4.162
Iso-pentane	3.703	72.150	2.719	0.6244	3.011
N-pentane	4.103	72.150	3.013	0.6311	3.302
Hexanes	7.174	85.648	6.253	0.6655	6.499
Heptanes Plus	49.578	97.459	75.152	0.7048	67.321
		3			
	100.000		100.000		100.000

Calculated Values	Total Sample	Heptanes Plus
Specific Gravity at 60 °F	0.6917	0.7740
Api Gravity at 60 °F	73.054	51.311
Molecular Weight	98.266	148.955
Pounds per Gallon (in Vacuum)	5.767	6.453
Pounds per Gallon (in Air)	5.761	6.446
Cu. Ft. Vapor per Gallon @ 14.73 psia	22.324	16.479
Standing-Katz Density (lb. / ft ³)		

Pai a

Southern Petroleum Laboratories, Inc.

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Station Name: Oxford 149 Pad Station Location: EQT Midstream Cylinder No: GAS Certificate of Analysis

Number: 2030-13050027-001A

May 07, 2013

Sampled By:RM-GASSample Of:CondensateSpotSample Date:04/29/2013 12:30Sample Conditions: 320 psig

Analytical Data

Test	Method	Result	Units	Detection L Limit Te	ab Analys ch. Date	
Color-Visual	Proprietary	STRAW	1000000	Α	AR 05/07/20	013
API Gravity @ 60° F	ASTM D-5002	60.09	ō	A	R 05/07/20	013
Specific Gravity @ 60/60° F	ASTM D-5002	0.7386		٨	R 05/07/20	013
Density @ 60° F	ASTM D-5002	0.7378	g/ml	Α	R 05/07/20	013
Shrinkage Factor	Proprietary	0.8679	•	Δ	R 05/07/20	013
Flash Factor	Proprietary	263.1562	Cu. Ft./S.T. Bbl	A	AR 05/07/20	013

Patti L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

Certificate of Analysis :

13050027-002A

Company:	Gas Analytical Services
Well:	Pad 150
Field:	EQT Midstream
Sample of:	Condensate
Conditions:	316 @ N.G.
Sampled by:	RM-GAS
Sample date:	4/29/2013
Remarks:	Cylinder No.: GAS
Remarks:	Well 512475

For:	Gas Analytical Services
	Alan Ball
	PO Box 1028

Bridgeport, WV, 26330

Report Date:

5/13/2013

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	14.611	16.043	2.591	0.3000	5.857
Carbon Dioxide	0.104	44.010	0.051	0.8180	0.042
Ethane	8.607	30.070	2.861	0.3562	5.441
Propane	7.492	44.097	3.652	0.5070	4.879
iso-butane	2.107	58.123	1.354	0.5629	1.630
N-butane	5.523	58.123	3.549	0.5840	4.118
lso-pentane	3.340	72.150	2.664	0.6244	2.891
N-pentane	3.833	72.150	3.057	0.6311	3.283
i-Hexanes	3.582	86.177	3.371	0.6795	3.447
n-Hexane	3.376	85.668	3.218	0.6640	3.265
2,2,4 trimethylpentane	0.023	114.231	0.030	0.6967	0.029
Benzene	0.148	78.114	0.103	0.8846	0.099
Heptanes	10.220	97.761	11.096	0.7032	10.696
Toluene	0.780	92.141	0.635	0.8719	0.620
Octanes	11.958	108.185	14.599	0.7465	13.211
E-benzene	0.106	106.167	0.055	0.8718	0.097
M-,O-,P-xylene	1.104	106.167	1.296	0.8731	1.014
Nonanes	6.903	122.870	9.668	0.7602	8.714
Decanes Plus	16.183	202.077	36.150	0.7990	30.667
	100.000		100.000		100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.6778	0.7990
Api Gravity at 60 °F	77.272	45.591
Molecular Weight	90.462	202.077
Pounds per Gallon (in Vacuum)	5.651	6.662
Pounds per Gallon (in Air)	5.645	6.654
Cu. Ft. Vapor per Gallon @ 14.73 psia	23.760	12.481

Southern Petroleum Laboratories, Inc.

Company:

Sample of:

Conditions:

Sampled by:

Sample date:

Remarks:

Remarks:

Well:

Field:

Certificate of Analysis :

Gas Analytical Services

Pad 150

EQT Midstream

Cylinder No.: GAS

Condensate

316 @ N.G.

RM-GAS

4/29/2013

Well 512475

13050027-002A

For:	Gas Analytical Services
	Alan Ball
	PO Box 1028

Bridgeport, WV, 26330

Report Date: 5/

5/13/2013

Analysis: (GPA 2103M)	Mo!. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	14.611	16.043	2.591	0.3000	5.857
Carbon Dioxide	0.104	44.010	0.051	0.8180	0.042
Ethane	8.607	30.070	2.861	0.3562	5.441
Propane	7.492	44.097	3.652	0.5070	4.879
lso-butane	2.107	58.123	1.354	0.5629	1.630
N-butane	5.523	58.123	3.549	0.5840	4.118
lso-pentane	3.340	72.150	2.664	0.6244	2.891
N-pentane	3.833	72.150	3.057	0.6311	3.283
Hexanes	6.958	85.668	6.589	0.6654	6.712
Heptanes Plus	47.425	97.761	73.632	0.7032	65.147
		-			
	100.000		100.000		100.000

Calculated Values	Total Sample	Heptanes Plus
Specific Gravity at 60 °F	0.6778	0.7677
Api Gravity at 60 °F	77.272	52.809
Molecular Weight	90.462	140.452
Pounds per Gallon (in Vacuum)	5.651	6.401
Pounds per Gallon (in Air)	5.645	6.394
Cu. Ft. Vapor per Gallon @ 14.73 psia	23.760	17.334
Standing-Katz Density (lb. / ft ³)		

Southern Petroleum Laboratories, Inc.

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Station Name: Pad 150 Station Location: EQT Midstream Cylinder No: GAS Certificate of Analysis Number: 2030-13050027-002A Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

May 07, 2013

Sampled By:RM-GASSample Of:CondensateSpotSample Date:04/29/2013 11:30Sample Conditions: 316 psig

Analytical Data

Test	Method	Result	Units	Detection Limit	Lab Tech.	Analysis Date
Color-Visual	Proprietary	STRAW			AR	05/07/2013
API Gravity @ 60° F	ASTM D-5002	61.86	0		AR	05/07/2013
Specific Gravity @ 60/60° F	ASTM D-5002	0.8713			AR	05/07/2013
Density @ 60° F	ASTM D-5002	0.8705	g/ml		AR	05/07/2013
Shrinkage Factor	Proprietary	0.8281	0		AR	05/07/2013
Flash Factor	Proprietary	255.8535 C	u. Ft./S.T. Bbl		AR	05/07/2013

Patti L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

Station Name: 512425

Cylinder No:

Analyzed:

Sample Point: Submeter

Certificate of Analysis Number: 2030-13050229-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

May 29, 2013

Alan Ball

GAS

Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Sampled By: RM-GAS Station Location: EQT Production Sample Of: Gas 05/20/2013 13:15 Sample Date: Sample Conditions: 379 psig Method: GPA 2286 05/29/2013 13:24:38 by CC

Analytical Data						
Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.532	0.729		GPM TOTAL C2+	5.661	
Carbon Dioxide	0.195	0.420				
Methane	78.965	61.996				
Ethane	13.780	20.278	3.697			
Propane	4.195	9.053	1.159			
Iso-Butane	0.507	1.442	0.166			
n-Butane	1.013	2.881	0.320			
lso-Pentane	0.249	0.879	0.091			
n-Pentane	0.239	0.844	0.087			
i-Hexanes	0.113	0.461	0.045			
n-Hexane	0.073	0.304	0.030			
Benzene	0.002	0.008	0.001			
Cyclohexane	0.011	0.044	0.004			
i-Heptanes	0.057	0.266	0.025			
n-Heptane	0.022	0.106	0.010			
Toluene	0.004	0.017	0.001			
i-Octanes	0.031	0.168	0.015			
n-Octane	0.003	0.017	0.002			
Ethylbenzene	NIL	NIL	NIL			
Xylenes	0.002	0.007	0.001			
i-Nonanes	0.003	0.027	0.002			
n-Nonane	0.001	0.006	0.001			
Decane Plus	0.003	0.047	0.004			
	100.000	100.000	5.661			

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330 Station Name: 512425 Sampler Station Location: EQT Production Sample Sample Point: Submeter Cylinder No: GAS Analyzed: 05/29/2013 13:24:38 by CC	Of: Gas Date: 05/20/2013 13:15 Conditions: 379 psig
Station Location: EQT ProductionSampleSample Point:SubmeterSampleCylinder No:GASSample	Of: Gas Date: 05/20/2013 13:15 Conditions: 379 psig
Cylinder No: GAS Sample	Conditions: 379 psig
Physical Properties Total C10+	
Calculated Molecular Weight 20.43 163.67	

5.6511

0.7077

0.9966

Pater L. Perro

Hydrocarbon Laboratory Manager

Quality Assurance:

Relative Density Real Gas

Compressibility Factor

	Certificate of Analysis Number: 2030-13050229-003A	Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520
Alan Ball		May 29, 2013

Sampled By:

Sample Date:

Sample Of:

RM-GAS

05/20/2013 13:15

Gas

Sample Conditions: 379 psig Method: GPA 2286

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Station Name:512425Station Location:EQT ProductionSample Point:SubmeterCylinder No:GASAnalyzed:05/29/2013 13:24:38 by CC

			Analy	tical Data		
Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.532	0.729		GPM TOTAL C2+	5.661	
Carbon Dioxide	0.195	0.420		GPM TOTAL C3+	1.964	
Methane	78.965	61.996		GPM TOTAL iC5+	0.319	
Ethane	13.780	20.278	3.697			
Propane	4.195	9.053	1.159			
Iso-butane	0.507	1.442	0.166			
n-Butane	1.013	2.881	0.320			
Iso-pentane	0.249	0.879	0.091			
n-Pentane	0.239	0.844	0.087			
Hexanes Plus	0.325	1.478	0.141			
	100.000	100.000	5.661			
Physical Properties			Total	C6+		
Relative Density Rea	l Gas		0.7077	3.2076		
Calculated Molecular Weight			20.43	92.90		
Compressibility Factor			0.9966			
GPA 2172-09 Calcu	lation:					
Calculated Gross B	TU per ft ³ @) 14.73 psia	a & 60°F			
Real Gas Dry BTU			1239.6	5071.5		
Water Sat. Gas Base	BTU		1218.5	4983.2		

Patter L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

	Certificate of Analysis Number: 2030-13050229-003A	Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520
Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330		May 29, 2013

Sampled By: Sample Of: Sample Date:

Sample Conditions: 379 psig Method: GPA 2286

RM-GAS Gas

05/20/2013 13:15

Station Name:	512425	
Station Location	n:EQT Production	
Sample Point:	Submeter	
Cylinder No:	GAS	
Analyzed:	05/29/2013 13:24:38 by CC	

Analytical Data						
Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen Carbon Dioxide Methane Ethane Propane Iso-Butane n-Butane Iso-Pentane n-Pentane Hexanes Heptanes Plus	0.532 0.195 78.965 13.780 4.195 0.507 1.013 0.249 0.239 0.186 0.139 100.000	0.729 0.420 61.995 20.278 9.053 1.442 2.882 0.879 0.844 0.765 0.713 100.000	3.697 1.159 0.166 0.320 0.091 0.087 0.075 0.066 5.661	GPM TOTAL C2+ GPM TOTAL C3+ GPM TOTAL iC5+	5.661 1.964 0.319	
Physical Properties Relative Density Real Gas Calculated Molecular Weight Compressibility Factor GPA 2172-09 Calculation: Calculated Gross BTU per ft ³ @ 14.7 Real Gas Dry BTU Water Sat. Gas Base BTU) 14.73 psia	Total 0.7077 20.43 0.9966 & 60°F 1239.6 1218.5	C7+ 3.5343 102.36 5520.5 5424.5		

Pate L. Perro

Hydrocarbon Laboratory Manager

Quality Assurance:

ATTACHMENT O

Monitoring/Recordkeeping/Reporting/Testing Plans

ATTACHMENT O: MONITORING, RECORDING, REPORTING, AND TESTING PLANS

EQT requests that the currently applicable G70-A permit conditions be transferred to the R13 permit, as no changes are being proposed that would add new conditions.

ATTACHMENT P

Legal Ad

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a modification permit (R-13) for an existing natural gas production wellpad operation (OXF-149 and OXF-1450 wellpads), currently permitted under G70-A031A. The facility is located off of County Route 11/4 in Doddridge County, West Virginia approximately 5 miles Southwest of West Union, WV at 39.221247, -80.800687 (OXF-149) and 39.223119, -80.791219 (OXF-150).

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Particulate Matter (PM) = 1.99 tpy Sulfur Dioxide (SO2) = 0.16 tpy Volatile Organic Compounds (VOC) = 11.43 tpy Carbon Monoxide (CO) = 22.04 tpy Nitrogen Oxides (NOx) = 26.24 tpy Hazardous Air Pollutants (HAPs) = 1.83 tpy Greenhouse Gases (CO2e) = 31,621.30 tpy

This facility is currently in operation and seeks to add two (2) enclosed combustors at the wellpad. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this XX day of XX, 2016.

By: EQT Production Company Kenneth Kirk, Executive Vice President 625 Liberty Avenue Suite 1700 Pittsburgh, PA 15222