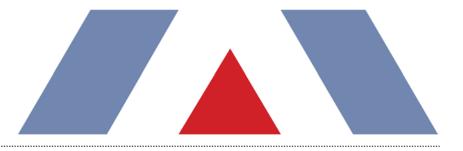
625 Liberty Ave, Suite1700 Pittsburgh PA 15222 www.eqt.com

CERTIFIED MAIL # 7015 1660 0000 9399 6376

August 25, 2016

Mr. William Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: EQT Production Company, OXF-149 & OXF-150 Well Pads Doddridge County, WV G70C Permit Application G70-A013A; Plant ID No. 017-00040


Dear Mr. Durham:

On May 5, 2016, after discussions with the Jerry Williams, EQT Production Company (EQT) withdrew a permit application for a G70C permit for the OXF-149/150 wellpads. EQT is submitting two separate G70C permit applications for the wellpads covered under G70-A013A. Please note that the original permit application satisfied the deadline requirement under the Consent Order CO-R13-E-2016-04 (Consent Order). EQT will continue to operate under the current permit until the new permits are issued.

Enclosed are two electronic copies and one hardcopy of the OXF-149 G70C application and two electronic copies and one hardcopy OXF-150 G70C application. If possible, we request that Jerry Williams work with EQT on this proposed G70C application to facilitate the permitting process. If you have any questions concerning this permitting action, please contact Alex Bosiljevac at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

R. Alex Bos(Ijevac EQT Production

PROJECT REPORT

EQT Production OXF 150 Wellpad

G70-C Permit Application

Where energy meets innovation.

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

July 2016

Environmental solutions delivered uncommonly well

1. INTRODUCTION	4
1.1. Facility and Project Description	4
1.2. Source Status	5
1.3. G70-C APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	7
3.1. Prevention of Significant Deterioration (PSD) Source Classification	7
3.2. Title V Operating Permit Program	7
3.3. New Source Performance Standards	8
3.3.1. NSPS Subparts D, Da, Db, and Dc – Steam Generating Units 3.3.2. NSPS Subpart K, Ka, and Kb – Storage Vessels for Petroleum Liquids/Volatile Organic Liquids 3.3.3. NSPS Subpart 0000—Crude Oil and Natural Gas Production, Transmission, and Distribution 3.3.4. NSPS Subpart 0000a—Crude Oil and Natural Gas Production, Transmission, and Distribution 3.3.5. Non-Applicability of All Other NSPS	8 8 8 8 9
3.4. National Emission Standards for Hazardous Air Pollutants (NESHAP)	9
3.4.1. NESHAP Subpart HH — Oil and Natural Gas Production Facilities 3.4.2. NESHAP Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers	9 10
3.5. West Virginia SIP Regulations	10
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers 3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contribu	10 Ites
to an Objectionable Odor	10
3.5.3. 45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse	10
3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources 3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparatio	10
Storage and Other Sources of Fugitive Particulate Matter	10 10
3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	11
3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	11
3.5.8. Non-Applicability of Other SIP Rules	11
4. G70-C APPLICATION FORMS	12
ATTACHMENT A: SINGLE SOURCE DETERMINATION	
ATTACHMENT B: SITING CRITERIA WAIVER (NOT APPLICABLE)	
ATTACHMENT C: BUSINESS CERTIFICATE	
ATTACHMENT D: PROCESS FLOW DIAGRAM	
ATTACHMENT E: PROCESS DESCRIPTION	
ATTACHMENT F: PLOT PLAN	
ATTACHMENT G: AREA MAP	

ATTACHMENT H: APPLICABILITY FORM

- ATTACHMENT I: EMISSION UNITS TABLE
- ATTACHMENT J: FUGITIVE EMISSIONS SUMMARY SHEET
- ATTACHMENT K: GAS WELL DATA SHEET
- ATTACHMENT L: STORAGE VESSEL DATA SHEET
- ATTACHMENT M: HEATERS DATA SHEET
- ATTACHMENT N: ENGINES DATA SHEET (NOT APPLICABLE)
- ATTACHMENT O: TRUCK LOADING DATA SHEET
- ATTACHMENT P: GLYCOL DEHYDRATOR DATA SHEET (NOT APPLICABLE)
- ATTACHMENT Q: PNEUMATIC CONTROLLER DATA SHEET (NOT APPLICABLE)
- ATTACHMENT R: AIR POLLUTION CONTROL DEVICE DATA SHEET
- ATTACHMENT S: EMISSION CALCULATIONS
- ATTACHMENT T: EMISSION SUMMARY SHEET
- ATTACHMENT U: CLASS I LEGAL ADVERTISEMENT
- ATTACHMENT V: GENERAL PERMIT REGISTRATION APPLICATION FEE

EQT Production Company (EQT) is submitting this Class II General Permit (G70-C) to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of new equipment at an existing natural gas production well pad, OXF-150, located in Doddridge County, West Virginia. The wellpad is currently permitted under General Permit G70-A031A with nearby wellpad OXF-149. The two pads were previously aggregated due to a shared tank battery located in close proximity to both wellpads. Since the initial aggregation determination, the tank battery has been removed. As such, WVDEP has determined that the wellpads will no longer be considered a single stationary source, and has requested that individual permit applications be submitted for all future permitting actions.

1.1. FACILITY AND PROJECT DESCRIPTION

The OXF-150 wellpad is an existing natural gas production facility. Natural gas and liquids (including water and condensate) are extracted from deposits underneath the surface. Natural gas is transported from the wells to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels.

The OXF 150 pads currently consists of the following equipment

- > Six (6) 400 barrel (bbl) storage tanks for condensate/water(produced fluids) controlled by one (1) combustor, rated at 11.66 MMBtu/hr;
- > Five (5) line heaters, each rated at 1.54 MMbtu/hr heat input;
- > Two (2) thermoelectric generators (TEGs), each rated at 0.013 MMBtu/hr heat input;
- > One (1) 140 bbl storage tanks for sand and produced fluids from the sand separator (vapors from these tanks may be controlled by combustors but are not represented as controlled in this application);
- > Produced fluid truck loading; and
- > Associated piping and components.

As part of this application, EQT seeks to permit the following equipment at the OXF-150 pad:

> One (1) new combustor rated at 11.66 MMbtu/hr.

Additionally, EQT requests that the department consolidate all existing equipment associated with this wellpad and their requirements under the current G70-A031A permit in the proposed G70-C permit.

A process flow diagram is included as Attachment D. A comparison of the potential emissions of the proposed and existing equipment at the wellpad in comparison with G70-C emission limits is provided in Table 1. Facility emissions are well below the permit limits. Note that in accordance with condition 1.1.1. of the G70-C permit, fugitive emissions are not considered in determining eligibility of the permit.

Pollutant	Wellpad Potential Annual Emissions (tpy)	G70-C Maximum Annual Emission Limits (tpy)		
Nitrogen Oxides	13.28	50		
Carbon Monoxide	11.15	80		
Volatile Organic Compounds	10.37	80		
Particulate Matter – 10/2.5	1.01	20		
Sulfur Dioxide	0.08	20		
Individual HAP (n-hexane) ¹	0.96	8		
Total HAP ¹	1.42	20		

Table 1 - Comparison of Wellpad Potential Emissions to G70-C Permit Emission Limits

1. Includes fugitive emissions

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

OXF 149 and 150 are separate wellpads that are functionally independent of each other. The pads are separated by approximately 0.5 miles and the production of each wellpad is independent of the other. WVDEP had previously determined that the OXF-149 and OXF-150 wellpads should be aggregated as a single stationary source since both sites shared a common loading battery area. Since the loading battery storage tanks have been removed, WVDEP has determined that the wellpads will no longer be considered a single stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V Permitting.

1.3. G70-C APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) G70-C permit application is organized as follows:

- > Attachment A: Single Source Determination;
- > Attachment B: Siting Criteria Waiver (Not Applicable);
- > Attachment C: Business Certificate;
- > Attachment D: Process Flow Diagram;
- > Attachment E: Process Description;
- > Attachment F: Plot Plan;
- > Attachment G: Area Map;
- > Attachment H: Applicability Form;
- > Attachment I: Emission Units Table;
- > Attachment J: Fugitive Emissions Summary Sheet;
- > Attachment K: Gas Well Data Sheet;
- > Attachment L: Storage Vessel Data Sheet;
- > Attachment M: Heaters Data Sheet;
- > Attachment N: Engines Data Sheet (Not Applicable);
- > Attachment O: Truck Loading Data Sheet;
- > Attachment P: Glycol Dehydrator Data Sheet (Not Applicable);
- > Attachment Q: Pneumatic Controller Data Sheet (Not Applicable);
- > Attachment R: Air Pollution Control Device Data Sheet;
- > Attachment S: Emission Calculations;
- > Attachment T: Emission Summary Sheet;
- > Attachment U: Class I Legal Advertisement; and
- > Attachment V: General Permit Registration Application Fee.

The characteristics of air emissions from the natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment S of this application.

Emissions from this project will result from natural gas combustion in the line heaters, combustors and TEGs, as well as storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types, as well as the existing source types, are calculated are summarized below.

- Line Heaters, Enclosed Combustors and TEGs: Potential emissions of criteria pollutants and hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for natural gas external combustion.¹ These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.²
- Fugitive Equipment Leaks: Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with emission factors from the *Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995.* Emission factors used are based on average measured TOC from component types indicated. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.³ Pneumatic devices at the wellpad are intermittent bleed and are assumed to be in operation 1/3 of the year.
- Storage Tanks: Working, breathing and flashing emissions of VOC and HAPs from the storage tanks at the facility are calculated using Bryan Research & Engineering ProMax® Software. Controlled calculations assume an overall control efficiency (capture and destruction) of 98%. The throughput for the produced fluids tanks are based on the maximum annualized monthly condensate and produced water at the OXF-150 well pad (i.e., the maximum monthly throughput for the pad times 12), and includes a safety factor of 1.09. The composition for the analysis was from a sample taken at OXF-150. Emissions of VOC and HAPs from the sand separator tank are calculated using E&P TANK v2.0. The produced fluids throughput is calculated as follows:

Throughput
$$\binom{bbl}{day} = \left(Condensate Throughput \left(\frac{bbl}{month}\right) + \left(Produced Water Throughput \left(\frac{bbl}{month}\right)\right) \right) * \frac{12\left(\frac{months}{year}\right)}{365\left(\frac{dy}{year}\right)} \times 1.09$$

- Tank Truck Loading: Uncontrolled emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using Bryan Research Engineering ProMax® Software. Truck loading is controlled by the enclosed combustors. U.S. EPA's AP-42 Chapter 5 Section 2 factors were used for capture efficiency.⁴
- > Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁵

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

³ 40 CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

⁴ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 5.2, Transportation And Marketing Of Petroleum Liquids, June 2008.

⁵ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-C permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpad. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD) and new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). PSD and NNSR regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad will remain a minor source with respect to the NSR program after the project since potential emissions are below all the NNSR/PSD thresholds. As such, NNSR/PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the NSR/PSD thresholds to ensure these activities will not trigger this program.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants.⁶. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

⁶ On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for GHGs under the PSD and Title V programs.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards (NSPS), located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpad. The following NSPS could potentially apply to the wellpad:

- > 40 CFR Part 60 Subparts D/Da/Db/Dc Steam Generating Units
- > 40 CFR Part 60 Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

3.3.1. NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMbtu/hr, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subpart K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All of the tanks at the wellpad have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the wellpad.

3.3.3. NSPS Subpart OOOO–Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 (see clarification below regarding dates). This NSPS was published in the Federal Register on August 16, 2012, and subsequently amended. The proposed project does not include any source categories under NSPS Subpart OOOO or change any prior determinations related to NSPS Subpart OOOO. Therefore, this subpart is not applicable to the proposed project.

3.3.4. NSPS Subpart OOOOa–Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, will apply to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

> Hydraulically fractured wells;

> Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;

> Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;

> Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);

- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production and processing segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

There are six (6) produced fluid storage vessels and one (1) sand separator storage vessels at the wellpad. These tanks were installed prior to the applicability date of OOOOa. Furthermore, the storage vessels will each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the G70-C permit. As such, per 60.5365a(e), the tanks will not be storage vessel affected facilities under the rule.

Note that the proposed changes to the well pad do not meet the definition of modification under 60.5365a(i)(3)(i). Therefore, EQT will be not be subject to the leak detection and repair program under 0000a.

The pneumatic controllers will potentially subject to NSPS 0000a. Per 60.5365a(d)(1), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000a.

3.3.5. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subpart 0000) and the applicability of a particular NSPS to the wellpad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP)

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpad:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

3.4.1. NESHAP Subpart HH – Oil and Natural Gas Production Facilities

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad does not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

3.4.2. NESHAP Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The line heaters at the wellpad are natural gas-fired and is specifically exempt from this subpart. Therefore, no sources at the wellpad are subject to any requirements under this subpart.

3.5. WEST VIRGINIA SIP REGULATIONS

The wellpad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The TEGs and line heaters are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpad is generally subject to this requirement. However, due to the nature of the process at the wellpad, production of objectionable odor from the wellpad during normal operation is unlikely.

3.5.3. 45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustors are incinerators and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpad, EQT will be complying with 45 CSR 16.

3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank at the wellpad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the petroleum liquid storage tanks at the wellpad.

3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As noted above, no NESHAP are applicable.

3.5.8. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpad.

The WVDEP permit application forms contained in this application include all applicable G70-C application forms including the required attachments.

dep	west virginia	a department of e	Division of Air Quality 601 57 th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov	
PREVENTION AND	CONTROL OF AIR RELOCATION, A	R POLLUTION IN ADMINISTRATIV	GISTRATION A REGARD TO THE CONSTR E UPDATE AND OPERATIO THES LOCATED AT THE W	UCTION, MODIFICATION, N OF
□CONSTR ⊠MODIFIC □RELOCA	CATION		□CLASS I ADMINISTRATI □CLASS II ADMINISTRATI	
	SE	ECTION 1. GENER	AL INFORMATION	
Name of Applicant (a	s registered with the	WV Secretary of St	ate's Office): EQT Production	n Company
Federal Employer ID	No. (FEIN): 25-0724	4685		
Applicant's Mailing A	Address: 625 Liberty	Avenue, Suite 17	00	
City: Pittsburgh		State: PA		ZIP Code: 15222
Facility Name: OXF-	150 Wellpad			
Operating Site Physic If none available, list		ıd zip of facility. Co	o Rte 11/4, West Union	
City: West Union		Zip Code:		County: Doddridge
Latitude & Longitude Latitude: 39.223119 Longitude: -80.79121	° N	3, Decimal Degrees	to 5 digits):	
SIC Code: 1311 NAICS Code: 21111	1		DAQ Facility ID No. (For exi 017-00040	sting facilities)
		CERTIFICATION C	OF INFORMATION	
Official is a Presider Directors, or Owner, authority to bir Proprietorship. R compliance certi Representative. If a b off and the appro unsigned G70-C Reg	nt, Vice President, Se depending on busines and the Corporation, P equired records of da fications and all requ business wishes to cer opriate names and sigu istration Application	cretary, Treasurer, I ss structure. A busir artnership, Limited aily throughput, hou ired notifications m tify an Authorized I natures entered. An n will be returned	be signed below by a Responsi General Partner, General Manay ess may certify an Authorized Liability Company, Associatio rs of operation and maintenanc ust be signed by a Responsible Representative, the official agri y administratively incomplete to the applicant. Furthermor applicant. No substitution of	ger, a member of the Board of Representative who shall have n, Joint Venture or Sole e, general correspondence, Official or an Authorized eement below shall be checked or improperly signed or e, if the G70-C forms are not
of the business (e.g., Proprietorship) and n Responsible Official	Corporation, Partners hay obligate and legal shall notify the Direc	ship, Limited Liabil lly bind the busines: tor of the Division	epresentative and in that capac ity Company, Association Join s. If the business changes its Au of Air Quality immediately.	t Venture or Sole athorized Representative, a
	hereto is, to the best	of my knowledge, t	General Permit Registration App rue, accurate and complete, and an possible.	
Responsible Official Name and Title: Ken	neth Kirk, Executive '	Vice President Date:	- AMA 25,201	Fax:
Email: KKirk@eqt.co			Phone:	Fax:
Email: KKirk@eqt.cc If applicable: Authorized Represen Name and Title: Email:	tative Signature:	Date:		

Briefly describe the proposed new operation and/or any change(s) to the facility: General permit application for an existing natural gas production well pad for the installation of one (1) enclosed combustor. From Charleston take 1-77 morth to exit 176. Go east on US Roate 50 approximately 40.6 miles. Take a right on Arrolds Creek Road (Co, Rt. 1114). Go approximately 0.7 miles and turn left on Pankin Centre Road (Co, Rt. 1114). (Note google maps calls this "Left Fork Run Rd" but signage says "Pankin Centre Road"). Continue for approximately 3.3 miles road turns to for after 3.1 miles and vece left to an access gate. After going through gate go 0.5 miles and cross a stream on the access road. After crossing the stream continue approximately 1.1 miles to the well pad. ATTACHMENTS AND SUPPORTING DOCUMENTS Thave enclosed the following required documents: Check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). □ Check attached to front of application. □ Hwish to pay by electronic transfer. Contact for payment (incl. name and email address): B 1 wish to pay by electronic transfer. Contact for payment (incl. name and email address): B 1 wish to pay by electronic transfer. Contact for payment (incl. name and email address): B 1 wish to pay by electronic transfer. Contact for Payment (incl. name and email address): B 1 wish to pay by electronic the Subpart III. JIII and/or ODOO 1 B 2.300 NESHAP fee of 10 CFR6. Subpart III JIII and/or ODOO 1 B 2.300 NESHAP fee for 40 CFR6.3, Subparts IIII and/or JJJJ. NSPS and MZSHAP fees apply to new construction or if the source is being modified. B Responsible Official or Authorized Representative Signature (if applicable) B Single Source Determination Form (must be completed in its entirety) – Attachment A B Stinge The Autachment F B Plot Plan – Attachment F B Area Map – Attachment I B Plot Plan – Attachment F B Area Map – Attachment I B Area Map –	OPERATING SITE INFORMATION					
combustor. Control of the second of the	Briefly describe the proposed new operation and/or any change(s) to the facility:					
From Charleston take 1-77 north to exit 176. Go east on US Route 50 approximately 0.0 miles. Take a right on Arnolds Creek Road (Co. Rt. 11). Go approximately 0.7 miles and ture 1ft on Pankin Center Road (Co. Rt. 11/4) (Note google maps calls this "Left Fork Rn Rd" but signage says "Punkin Center Road"). Continue for approximately 0.3 miles and ture 161 to an access gate. After going through gate go 0.5 miles and cross a stream on the access road. After crossing the stream continue approximately 1.1 miles to the well pad. ATTACHMENTS AND SUPPORTING DOCUMENTS I have enclosed the following required documents: Check attached to front of application. □ wish to pay by celectronic transfer. Contact for payment (incl. name and email address): 2 I wish to pay by crefit card. Contact for payment (incl. name and email address): 2 I wish to pay by crefit card. Contact for payment (incl. name and email address): 2 I wish to pay by crefit card. Contact for payment (incl. name and email address): 2 I wish to pay by crefit card. Contact for payment (incl. name and email address): 2 I wish to pay by crefit card. Contact for payment (incl. name and email address): 2 I wish to pay by crefit card. Contact for payment (incl. name and email address): 2 I wish to pay by crefit card. Contact for Payment (Incl. name and email address): 2 I wish to pay by crefit card. Contact for Payment (Incl. name and email address): 2 I wish to pay by crefit card. Contact for Payment (Incl. name and email address):						
I have enclosed the following required documents: Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). □ Check attached to front of application. □ wish to pay by electronic transfer. Contact for payment (incl. name and email address): □ wish to pay by redictard. Contact for payment (incl. name and email address): 0 wish to pay by credic tard. Contact for payment (incl. name and email address): 0 wish to pay by credic tard. Contact for payment (incl. name and email address): 0 wish to pay by credic tard. Contact for payment (incl. name and email address): 0 stop to pay by credic tard. Contact for payment (incl. name and email address): 0 wish to pay by credic tard. Contact for payment (incl. name and email address): 0 stop to pay by credic tard. Contact for payment (incl. name and email address): 0 stop on NSPS fee will apply. 2 only one Chereforal O address target ta	From Charleston take 1-77 north to exit 176. Go east on US Route 50 approximately 40.6 miles. Take a right on Arnolds Creek Road (Co. Rt. 11). Go approximately 0.7 miles and turn left on Punkin Center Road (Co. Rt. 11/4) (Note google maps calls this "Left Fork Run Rd" but signage says "Punkin Center Road"). Continue for approximately 3.3 miles (road turns to dirt after 3.1 miles) and veer left to an access gate. After going through gate go 0.5 miles and cross a stream					
Check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). Check attached to front of application. I wish to pay by electronic transfer. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for payment (incl. name and email address): I wish to pay by credit card. Contact for paym	ATTACHMENTS AND SU	PPORTING DOCUMENTS				
□ Check attached to front of application. □ I wish to pay by credit card. Contact for payment (incl. name and email address): □ I wish to pay by credit card. Contact for payment (incl. name and email address): □ Attack Bosiljevac@eqt.com □ S500 (Construction, Modification, and Relocation) □ S300 (Class II Administrative Update) □ S1.000 NSPS fee for 40 CFR63, Subpart IIII, JUI and/or OOOO 1 □ S200 (Class II Administrative Update) □ S2,500 NESHAP fee will apply. □ Only one NSPS fee or 40 CFR63, Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fee will apply. □ Only one NCSPS fee or 40 CFR63, Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fee will apply. □ Only one NCSPS fee or 40 CFR63, Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fee will apply. □ Only one work construction or if the source is being modified. □ Sting Criteria Waiver (if applicable) – Attachment B □ Current Business Certificate – Attachment C □ Process Flow Diagram – Attachment D □ Process Description – Attachment I □ Storage Vessel(s) Data Sheet (if applicable) – Attachment K □ Storage Vessel(s) Data Sheet (if applicable) – Attachment K □ Storage Vessel(s) Data Sheet (if applicable) – At	I have enclosed the following required documen	ts:				
□ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): aboiljevac@eqt.com □ I wish to pay by credit card. Contact for payment (incl. name and email address): R. Alex Bosiljevac@eqt.com □ S500 (Construction, Modification, and Relocation) □ S500 (Class II Administrative Update) □ S1,000 NSPS fee for 40 CFR63, Subpart IIII, JJJ and/or OOOO ¹ □ S2,500 NESHAP fee will apply. ² Only one NSPS fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified. □ Single Source Determination Form (must be completed in its entirety) – Attachment A □ Sting Criteria Waiver (if applicable) – Attachment B □ Process Flow Diagram – Attachment D □ Process Flow Diagram – Attachment H □ Gav Well Affected Facility Data Sheet (if applicable) – Attachment K □ Storage Vessel(s) Data Sheet (if applicable) – Attachment L □ Storage Vessel(s) Data Sheet (if applicable) – Attachment L □ Storage Vessel(s) Data Sheet (if applicable) – Attachment L □ Storage Vessel(s) Data Sheet (if applicable) – Attachment M □ </td <td>Check payable to WVDEP – Division of Air Quality with the</td> <td>appropriate application fee (per 45CSR13 and 45CSR22).</td>	Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).				
2 Only one NESHAP fee will apply. The Subpart ZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified. ⊠ Responsible Official or Authorized Representative Signature (if applicable) ⊠ Single Source Determination Form (must be completed in its entirety) – Attachment A □ Siting Criteria Waiver (if applicable) – Attachment B ⊠ Current Business Certificate – Attachment C ⊠ Process Flow Diagram – Attachment D ⊠ Process Description – Attachment E ⊠ Plot Plan – Attachment F ⊠ Area Map – Attachment G ⊠ G70-C Section Applicability Form – Attachment H ⊠ Emission Units/ERD Table – Attachment I ⊠ Fugitive Emissions Summary Sheet – Attachment J ⊠ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K ⊠ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc., where applicable) – Attachment L ⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M □ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ⊠ Tanker Truck Loading Data Sheet (if applicable) – Attachment P □ Pneumatic Controllers Data Sheet (si (include wet gas analysis, GRI-GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment	 □ I wish to pay by electronic transfer. Contact for payment (⊠ I wish to pay by credit card. Contact for payment (incl. na ⊠\$500 (Construction, Modification, and Relocation) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or O 	ame and email address): R. Alex Bosiljevac, abosiljevac@eqt.com □\$300 (Class II Administrative Update) OOO ¹				
⊠ Single Source Determination Form (must be completed in its entirety) – Attachment A □ Siting Criteria Waiver (if applicable) – Attachment B ⊠ Current Business Certificate – Attachment C ⊠ Process Flow Diagram – Attachment D ⊠ Process Description – Attachment E ⊠ Plot Plan – Attachment F ⊠ Area Map – Attachment G ⊠ G70-C Section Applicability Form – Attachment H ⊠ Emission Units/ERD Table – Attachment I ⊠ Fugitive Emissions Summary Sheet – Attachment J ⊠ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K ⊠ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L ⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M □ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ⊠ Tanker Truck Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P □ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R ⊠ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S <tr< td=""><td>² Only one NESHAP fee will apply. The Subpart ZZZZ NESI requirements by complying with NSPS, Subparts IIII and/or J</td><td>JJJ.</td></tr<>	² Only one NESHAP fee will apply. The Subpart ZZZZ NESI requirements by complying with NSPS, Subparts IIII and/or J	JJJ.				
□ Siting Criteria Waiver (if applicable) – Attachment B ⊠ Current Business Certificate – Attachment C □ Siting Criteria Waiver (if applicable) – Attachment D ⊠ Process Description – Attachment E □ Plot Plan – Attachment F ⊠ Area Map – Attachment G □ G70-C Section Applicability Form – Attachment H ⊠ Emission Units/ERD Table – Attachment I □ Fugitive Emissions Summary Sheet – Attachment J □ □ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K □ □ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L □ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M □ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N □ Internal Combustion Engine Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P □ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R □ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S □ Facility-wide Emission Summary Sheet(s) – Attachment T □ Class I Legal Advertisement – Attachment	Responsible Official or Authorized Representative Signatu	re (if applicable)				
☑ Process Flow Diagram – Attachment D ☑ Process Description – Attachment E ☑ Plot Plan – Attachment F ☑ Area Map – Attachment G ☑ G70-C Section Applicability Form – Attachment H ☑ Emission Units/ERD Table – Attachment I ☑ Fugitive Emissions Summary Sheet – Attachment J ☑ Emission Units/ERD Table – Attachment I ☑ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K ☑ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L ☑ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M ☐ Internal Combustion Engine Data Sheet(is) (include manufacturer performance data sheet(s) if applicable) – Attachment N ☑ Tanker Truck Loading Data Sheet (if applicable) – Attachment O ☐ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P ☐ Pneumatic Controllers Data Sheet – Attachment Q ☑ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R ☑ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S ☑ Facility-wide Emission Summary Sheet(s) – Attachment T ☑ Class I Legal Advertisement – Attachment U	Single Source Determination Form (must be completed in	its entirety) – Attachment A				
☑ Plot Plan – Attachment F ☑ Area Map – Attachment G ☑ G70-C Section Applicability Form – Attachment H ☑ Emission Units/ERD Table – Attachment I ☑ Fugitive Emissions Summary Sheet – Attachment J ☑ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K ☑ Gas Well Affected Facility Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L ☑ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M □ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ☑ Tanker Truck Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P □ Pneumatic Controllers Data Sheet - Attachment Q ☑ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R ☑ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S ☑ Facility-wide Emission Summary Sheet(s) – Attachment T ☑ Class I Legal Advertisement – Attachment U	□ Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C				
☑ G70-C Section Applicability Form – Attachment H ☑ Emission Units/ERD Table – Attachment I ☑ Fugitive Emissions Summary Sheet – Attachment J ☑ Emission Units/ERD Table – Attachment I ☑ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K ☑ ☑ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L ☑ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M □ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ☑ Tanker Truck Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P □ Pneumatic Controllers Data Sheet – Attachment Q ☑ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R ☑ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S ☑ Facility-wide Emission Summary Sheet(s) – Attachment T ☑ Class I Legal Advertisement – Attachment U	Process Flow Diagram – Attachment D	Process Description – Attachment E				
 □ Fugitive Emissions Summary Sheet – Attachment J □ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K □ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L □ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M □ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N □ Tanker Truck Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P □ Pneumatic Controllers Data Sheet – Attachment Q □ Aitachment R □ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S □ Facility-wide Emission Summary Sheet(s) – Attachment T □ Class I Legal Advertisement – Attachment U 	🖾 Plot Plan – Attachment F	🖾 Area Map – Attachment G				
 ☑ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K ☑ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L ☑ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M □ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ☑ Tanker Truck Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P □ Pneumatic Controllers Data Sheet – Attachment Q ☑ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R ☑ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S ☑ Facility-wide Emission Summary Sheet(s) – Attachment T 	G70-C Section Applicability Form – Attachment H	🖾 Emission Units/ERD Table – Attachment I				
 Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N Tanker Truck Loading Data Sheet (if applicable) – Attachment O Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment Q Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S Facility-wide Emission Summary Sheet(s) – Attachment T 	I Fugitive Emissions Summary Sheet – Attachment J					
HYSYS, etc.), etc. where applicable) – Attachment L	Gas Well Affected Facility Data Sheet (if applicable) – At	tachment K				
M □ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N ⊠ Tanker Truck Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P □ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R ⊠ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S ⊠ Facility-wide Emission Summary Sheet(s) – Attachment T ⊠ Class I Legal Advertisement – Attachment U						
N ⊠ Tanker Truck Loading Data Sheet (if applicable) – Attachment O □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P □ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R ⊠ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S ⊠ Facility-wide Emission Summary Sheet(s) – Attachment T ⊠ Class I Legal Advertisement – Attachment U						
 □ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P □ Pneumatic Controllers Data Sheet – Attachment Q □ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R □ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S □ Facility-wide Emission Summary Sheet(s) – Attachment T □ Class I Legal Advertisement – Attachment U 						
information on reboiler if applicable) – Attachment P □ Pneumatic Controllers Data Sheet – Attachment Q ⊠ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R ⊠ Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S ⊠ Facility-wide Emission Summary Sheet(s) – Attachment T ⊠ Class I Legal Advertisement – Attachment U	Inter Truck Loading Data Sheet (if applicable) – Attachment O					
 Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment R Emission Calculations (please be specific and include all calculation methodologies used) – Attachment S Facility-wide Emission Summary Sheet(s) – Attachment T Class I Legal Advertisement – Attachment U 						
applicable) – Attachment R Image: Second S	Pneumatic Controllers Data Sheet – Attachment Q					
 ☑ Facility-wide Emission Summary Sheet(s) – Attachment T ☑ Class I Legal Advertisement – Attachment U 						
⊠ Class I Legal Advertisement – Attachment U						
	⊠ Facility-wide Emission Summary Sheet(s) – Attachment T					
	🖾 Class I Legal Advertisement – Attachment U					
One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments	Sone (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments					

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A

Single Source Determination

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

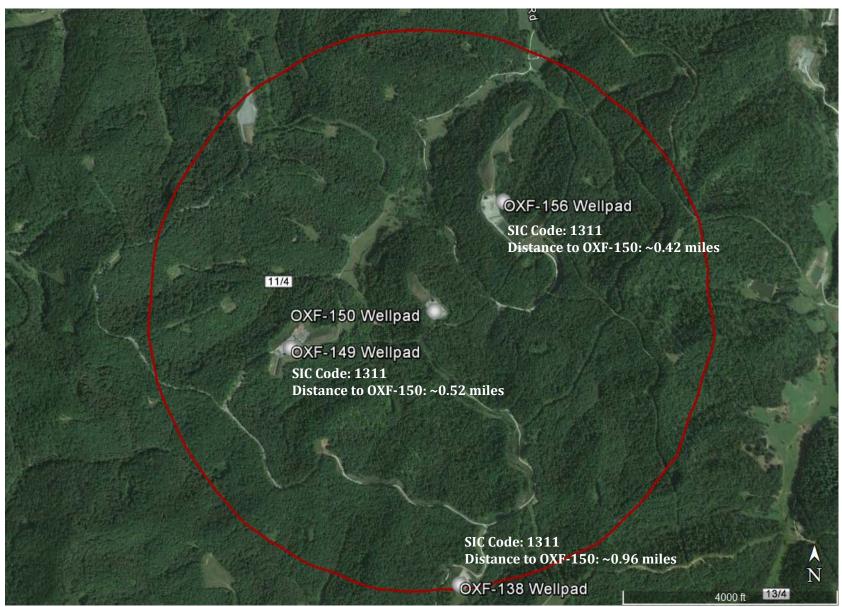
Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \boxtimes No \square

If Yes, please complete the questionnaire on the following page (Attachment A).

Please provide a source aggregation analysis for the proposed facility below:


Please see discussion in the Application Report.

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

1 5		
Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydr which are under common control and those facilities that are not under common control but are supp indicate the SIC code, permit number (if applicable), and the distance between facilities in question	ort facilities	s. Please
Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility. OXF-149, OXF-156, and OXF-138 are wholely owned by EQT Production Company.	Yes 🗵	No 🗆
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes □ N/A	No 🗆
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain.	Yes □ N/A	No 🗆
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives?	Yes 🖂	No 🗆
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities?	Yes 🖂	No 🗆
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain.	Yes 🖂	No 🗆
Does one (1) facility operation support the operation of the other facility?	Yes 🗆	No 🖂
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes 🗆	No 🛛
Are there any financial arrangements between the two (2) entities?	Yes 🗆 N/A	No 🗆
Are there any legal or lease agreements between the two (2) facilities?	Yes 🗆	No 🖂
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain.	Yes 🗆	No 🗵
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes.	Yes 🗵	No 🗆
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🗆	No 🛛
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🗆	No 🛛
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain.	Yes 🗆	No 🛛
	<u> </u>	

ATTACHMENT A: SINGLE SOURCE DETERMINATION MAP

ATTACHMENT B

Siting Criteria Waiver (Not Applicable)

ATTACHMENT B - SITING CRITERIA WAIVER – NOT APPLICABLE

If applicable, please complete this form and it must be notarized.

G70-C General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

I ______ hereby Print Name ______ hereby acknowledge and agree that ______ will General Permit Applicant's Name

construct an emission unit(s) at a natural gas production facility that will be located within 300' of my dwelling and/or business.

I hereby offer this waiver of siting criteria to the West Virginia Department of Environmental Protection Division of Air Quality as permission to construct, install and operate in such location.

.

Signed:

Signature	Date
<u>a:</u>	
Signature	Date
Taken, subscribed and sworn before me this	_day of
, 20	_•
, 20	_
	_

ATTACHMENT C

Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.


Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT D

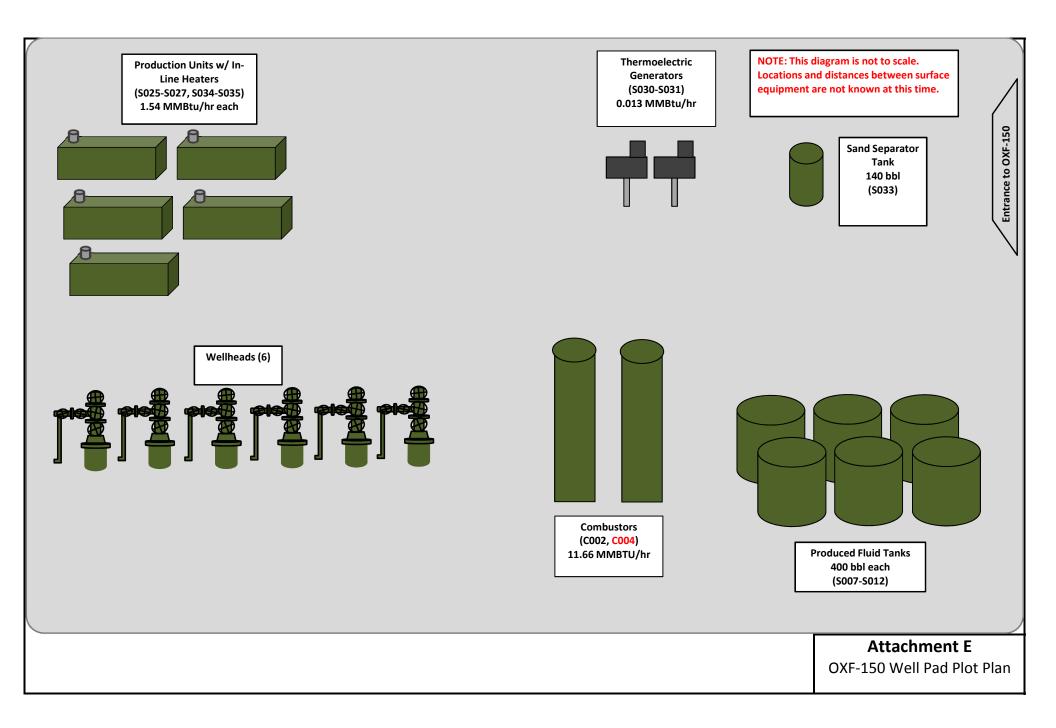
Process Flow Diagram

ATTACHMENT E

Process Description

ATTACHMENT E: PROCESS DESCRIPTION

EQT is submitting this application to permit the installation and operation of one (1) enclosed combustor (C004) at the wellpad. Also, per correspondence from WVDEP, this application seeks to permit the OXF-150 wellpad, currently authorized under G70-A031A, as a separate facility under the G70-C


The OXF-150 wellpad consists of six (6) wells, each with the same basic operation. The incoming gas/liquid stream from the underground well will pass through a sand separator, where sand, water, and residual solids are displaced and transferred to the sand separator tank (S033). The gas stream will then pass through a line heater (S025-S027, S034-S035) to raise/maintain temperature of the stream and prevent hydrate formation. The stream will then pass through a high pressure separator, which will separate gas (natural gas from the separator is sent to the sales line) from liquids (condensate and produced water). The liquids are then transferred to the produced fluids tanks (S007-S012).

Emissions from the storage vessels are controlled by enclosed combustors (C002, C004). Once the tanks are filled, the contents are loaded into trucks for transport (S037). EQT utilizes vapor balancing in the truck loading operations, which means the vapors displaced by the filling of tanker trucks are routed back into the battery of tanks and ultimately to the combustor. Facility electricity is provided by thermoelectric generators (S030-S031).

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

ATTACHMENT G

Area Map

ATTACHMENT G: AREA MAP

Figure 1 - Map of OXF-150 Location

Note – Ring represents 300 ft radius around wellpad equipment.

UTM Northing (KM)	4,341.558
UTM Easting (KM)	518.021
Elevation (m)	387

ATTACHMENT H

Applicability Form

ATTACHMENT H – G70-C SECTION APPLICABILITY FORM

General Permit G70-C Registration Section Applicability Form

General Permit G70-C was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-C allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-C APPLICABLE SECTIONS				
⊠ Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)			
Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹			
□ Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)			
Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH			
Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc			
□ Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)			
□ Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²			
□ Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²			
□ Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines			
Section 14.0	Tanker Truck Loading ³			
□ Section 15.0	Glycol Dehydration Units ⁴			

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.

3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emission Units Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S007	C002, <mark>C004</mark>	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C002, <mark>C004</mark>	
S008	C002, <mark>C004</mark>	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C002, <mark>C004</mark>	
S009	C002, <mark>C004</mark>	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C002, <mark>C004</mark>	
S010	C002, <mark>C004</mark>	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C002, <mark>C004</mark>	
S011	C002, <mark>C004</mark>	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C002, <mark>C004</mark>	
S012	C002, <mark>C004</mark>	Produced Fluid Storage Tank	2015	2015	400 bbl	Existing; No change	C002, <mark>C004</mark>	
S025	E025	Line Heater	2014	2014	1.54 MMBtu/hr	Existing; No change	None	
S026	E026	Line Heater	2014	2014	1.54 MMBtu/hr	Existing; No change	None	
S027	E027	Line Heater	2014	2014	1.54 MMBtu/hr	Existing; No change	None	
S034	E034	Line Heater	2015	2015	1.54 MMBtu/hr	Existing; No change	None	
S035	E035	Line Heater	2015	2015	1.54 MMBtu/hr	Existing; No change	None	
S030	E030	Thermoelectric Generator	2011- 2014	2011-2014	0.013 MMBtu/hr	Existing; No change	None	
S031	E031	Thermoelectric Generator	2011- 2014	2011-2014	0.013 MMBtu/hr	Existing; No change	None	
S033	E033	Sand Separator Storage Tank	2015	2015	140 bbl	Existing; No change	C002, <mark>C004</mark> (Optional)	
S037	E037 (Uncaptured) C002, C004 (Controlled, Captured)	Liquid Loading	2015	2015	17,859,450 gal/yr	Modified – Increased Throughput	C002, <mark>C004</mark>	
C002	C002	Combustor	2015	2015	11.66 MMBtu/hr	Existing; No change	NA	
C004	C004	Combustor	TBD	TBD	11.66 MMBtu/hr	New	NA	

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

- ² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.
- ³ When required by rule
 ⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation. ⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emissions Summary Sheet

			ATTACHMEN	T J – FUGITIVE EMIS	SIONS SUMN	ARY SHEET	-	
		Sources	of fugitive emissions ma Use extra pages	y include loading operations for each associated sour	· · ·			, etc.
	Source/Equipm	ent: Fugit	ive Emissions					
	Leak Detection Method Used		□ Audible, visual, and olfactory (AVO) inspections	□ Infrared (FLIR) cameras	⊠ Other (pleas Will satisfy cor	e describe) adition 4.1.4. of the	e G70-C	□ None required
Component Closed			Source of	Leak Factors	Stream type	Es	timated Emission	s (tpy)
Туре	Vent System	Count		er (specify))	(gas, liquid, etc.)	VOC	НАР	GHG (CO ₂ e)
Pumps	□ Yes ⊠ No	11	Protocol for Equipment Leak	ality Planning and Standards. Emission Estimates. Table 2-1. 95-017, 1995).	□ Gas ⊠ Liquid □ Both	2.02	0.06	0.38
Valves	□ Yes ⊠ No	294	U.S. EPA. Office of Air Qu Protocol for Equipment Leak (EPA-453/R-	⊠ Gas □ Liquid □ Both	2.81	0.09	29.06	
Safety Relie Valves	ef □ Yes ⊠ No	22	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).		⊠ Gas □ Liquid □ Both	3.58	0.11	3.15
Open Endec Lines	l □ Yes ⊠ No	20	Protocol for Equipment Leak	ality Planning and Standards. Emission Estimates. Table 2-1. 95-017, 1995).	□ Gas □ Liquid ⊠ Both	0.05	<0.01	4.35
Sampling Connections	□ Yes s □ No			N/A	☐ Gas □ Liquid □ Both			
Connections (Not samplin		1,289	Protocol for Equipment Leak	ality Planning and Standards. Emission Estimates. Table 2-1. 95-017, 1995).	□ Gas □ Liquid ⊠ Both	3.78	0.12	14.15
Compressor	s S Yes No			N/A				
Flanges	□ Yes □ No		(included ir	n connections)	□ Gas □ Liquid □ Both			
Other ¹	□ Yes ⊠ No	30	40 CFR 9	8 Subpart W	⊠ Gas □ Liquid □ Both	5.29	0.16	219.66

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.):

Pneumatic Controller count is 'Other' category. An estimate of Miscellaneous Gas Venting emissions are included in the Emission Calculations and serve to include such sources as compressor venting, pigging, vessel blowdowns and other sources.

Please indicate if there are any closed vent bypasses (include component): N/A

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) N/A

ATTACHMENT K

Gas Well Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback ¹	Date of Well Completion ²	Green Completion and/or Combustion Device
047-017-06390	01/03/2015	12/20/2014	Green
047-017-05889	01/30/2011	01/16/2011	Green
047-017-05892	01/20/2011	01/11/2011	Green
047-017-05893	01/24/2011	01/14/2011	Green
047-017-06388	01/03/2015	12/27/2014	Green
047-017-06389	01/04/2014	12/20/2014	Green

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,	
047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

¹ Corresponds to the start date of flowback.

² Corresponds to the start date of the well completion process as defined in 40 CFR 60.5430.

ATTACHMENT L

Storage Vessel Data Sheet

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water . (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name				
OXF-150 Wellpad	Produced Fluid Tanks (water and condensate)				
3. Emission Unit ID number	4. Emission Point ID number				
S007-S012	C002, C004				
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change: none				
Was the tank manufactured after August 23, 2011?	\Box New construction \Box New stored material				
\boxtimes Yes \square No	\Box Other (Low Pressure Tower) \Box Relocation				
7A. Description of Tank Modification (if applicable) N/A					
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.				
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
\Box Yes \boxtimes No					
If Yes, please provide the appropriate documentation and items	8-42 below are not required.				

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal	cross-sectional area multiplied by internal height.					
400 bbls						
9A. Tank Internal Diameter (ft.) ~12	9B. Tank Internal Height (ft.) ~20					
10A. Maximum Liquid Height (ft.) ~20	10B. Average Liquid Height (ft.) ~10					
11A. Maximum Vapor Space Height (ft.) ~20	11B. Average Vapor Space Height (ft.) ~10					
12. Nominal Capacity (specify barrels or gallons). This is also k	nown as "working volume". 400 bbls					
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached					
emissions calculations for all throughput values	emissions calculations for all throughput values					
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions					
emissions calculations for all throughput values	calculations for all throughput values					
16. Tank fill method \Box Submerged \boxtimes Splash	□ Bottom Loading					
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No					
If yes, (A) What is the volume expansion capacity of the system ((gal)?					
(B) What are the number of transfers into the system per year	ear?					
18. Type of tank (check all that apply):						
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat roof	\boxtimes cone roof \square dome roof \square other (describe)					
□ External Floating Roof □ pontoon roof □ double deck roof						
Domed External (or Covered) Floating Roof						
□ Internal Floating Roof □ vertical column support □	□ self-supporting					
□ Variable Vapor Space □ lifter roof □ diaphragm						
□ Pressurized □ spherical □ cylindrical						
\Box Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as app	oly:								
□ Does Not Apply				🗆 Ruptu	re Disc (p	osig)			
□ Inert Gas Blanket of _				□ Carbo	on Adsorp	tion ¹			
☑ Vent to Vapor Combu	stion Dev	ice ¹ (vapo	or combus	tors, flares	, thermal	oxidizers,	enclosed of	combustors	5)
Conservation Vent (ps	Conservation Vent (psig) \Box Condenser ¹								
0.5 oz Vacuum Setting	0.5 oz Vacuum Setting 12.5 oz Pressure Setting								
Emergency Relief Val	ve (psig)								
Vacuum Setting	14.4 o	z Pressur	e Setting	(one per ta	nk)				
□ Thief Hatch Weighted	□ Yes □	⊠ No – C	ashco Loc	kdown Ha	atch				
¹ Complete appropriate Ai	ir Pollutio	n Control	Device S	heet					
20. Expected Emission R	ate (subm	it Test Da	ta or Calc	ulations h	ere or else	where in t	he applica	tion)	
	(· · · ·		and or our	ululions in		where m	ne appnea	uon).	
Material Name		ng Loss	-	ing Loss		ng Loss	Total		Estimation Method ¹
-			-				Total	ons Loss	Estimation Method ¹
-			-				Total		Estimation Method ¹
-	Flashi	ng Loss tpy	Breath lb/hr	ing Loss	Workin lb/hr	ng Loss	Total Emissio lb/hr	ons Loss	Estimation Method ¹
-	Flashi	ng Loss tpy	Breath lb/hr	ing Loss	Workin lb/hr	ng Loss	Total Emissio lb/hr	ons Loss	Estimation Method ¹
-	Flashi	ng Loss tpy	Breath lb/hr	ing Loss	Workin lb/hr	ng Loss	Total Emissio lb/hr	ons Loss	Estimation Method ¹
-	Flashi	ng Loss tpy	Breath lb/hr	ing Loss	Workin lb/hr	ng Loss	Total Emissio lb/hr	ons Loss	Estimation Method ¹
-	Flashi	ng Loss tpy	Breath lb/hr	ing Loss	Workin lb/hr	ng Loss	Total Emissio lb/hr	ons Loss	Estimation Method ¹

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATIO	N INFORMATION							
21. Tank Shell Construction:								
□ Riveted □ Gunite lined □ Epoxy-coated rivets ⊠ Other (describe) Welded or riveted								
21A. Shell Color: Green	21B. Roof Color: Gre			st Painted: New				
22. Shell Condition (if metal and unlined):								
🛛 No Rust 🛛 Light Rust 🔲 Dense Rust 🗌 Not applicable								
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t		22C. If yes, h	ow is heat provided to tank?				
23. Operating Pressure Range (psig):								
Must be listed for tanks using VRUs with closed vent system.								
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome n	coof provide radius (ft):	24B. If yes, fe	or cone roof, provide slop (ft/ft):				
\boxtimes Yes \square No 0.06								
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply	\boxtimes						
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (<i>check one</i>): □ Met	allic (machanical) sho	e seal 🛛 Liquid mo	unted resilient	seel				
		-		seal				
-	or mounted resilient s	eal 🗌 Other (des	scribe):					
25C. Is the Floating Roof equipped with a seco	ndary seal? 🛛 Yes	□ No						
25D. If yes, how is the secondary seal mounted	? (check one) 🛛 Sho	e 🗆 Rim 🗆 Oth	ner (describe):					
25E. Is the floating roof equipped with a weath	er shield? 🗌 Yes	□ No						
25F. Describe deck fittings:		<u> </u>						
251. Describe deck indigs.								
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes Does not apply	J					
	5	26B. For bolted decks,		onstruction:				
26A. Deck Type: \Box Bolted \Box W	/elded	20D. For bolled decks,	provide deck of	onstruction:				
26C. Deck seam. Continuous sheet constructio	n.							
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wid		\Box 5 x 12 ft wide \Box	other (descr	iba)				
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column support		6G. For column supported				
		tanks, # of columns:	ta	inks, diameter of column:				
27. Closed Vent System with VRU? \Box Yes								
28. Closed Vent System with Enclosed Combu								
SITE INFORMATION - Not Applicable:	Tank calculations pe	rformed using ProM	ax software					
29. Provide the city and state on which the data	in this section are based:							
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Maxi		ure (°F):				
32. Annual Avg. Minimum Temperature (°F):	2	33. Avg. Wind Speed	-					
34. Annual Avg. Solar Insulation Factor (BTU/	-	35. Atmospheric Press	<u> </u>					
LIQUID INFORMATION - Not Applicabl		performed using Pro						
36. Avg. daily temperature range of bulk	36A. Minimum (°F):		36B. Maximu	ım (°F):				
liquid (°F):	27.4							
37. Avg. operating pressure range of tank	37A. Minimum (psig):		37B. Maximu	(psig):				
/ · · >			<i>072</i> , mainin	1 8/				
(psig):								
38A. Minimum liquid surface temperature (°F)		38B. Corresponding va	apor pressure (p	sia):				
38A. Minimum liquid surface temperature (°F)39A. Avg. liquid surface temperature (°F):		38B. Corresponding va39B. Corresponding va	apor pressure (p apor pressure (p	sia): sia):				
 38A. Minimum liquid surface temperature (°F) 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F) 	:	38B. Corresponding va39B. Corresponding va40B. Corresponding va	apor pressure (p apor pressure (p apor pressure (p	sia): sia):				
 38A. Minimum liquid surface temperature (°F) 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F) 41. Provide the following for each liquid or gas 	:	38B. Corresponding va39B. Corresponding va40B. Corresponding va	apor pressure (p apor pressure (p apor pressure (p	sia): sia):				
 38A. Minimum liquid surface temperature (°F) 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F) 41. Provide the following for each liquid or gas 41A. Material name and composition: 	:	38B. Corresponding va39B. Corresponding va40B. Corresponding va	apor pressure (p apor pressure (p apor pressure (p	sia): sia):				
 38A. Minimum liquid surface temperature (°F) 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F) 41. Provide the following for each liquid or gas 41A. Material name and composition: 41B. CAS number: 	:	38B. Corresponding va39B. Corresponding va40B. Corresponding va	apor pressure (p apor pressure (p apor pressure (p	sia): sia):				
 38A. Minimum liquid surface temperature (°F) 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F) 41. Provide the following for each liquid or gas 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 	:	38B. Corresponding va39B. Corresponding va40B. Corresponding va	apor pressure (p apor pressure (p apor pressure (p	sia): sia):				
 38A. Minimum liquid surface temperature (°F) 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F) 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 	:	38B. Corresponding va39B. Corresponding va40B. Corresponding va	apor pressure (p apor pressure (p apor pressure (p	sia): sia):				
 38A. Minimum liquid surface temperature (°F) 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F) 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 	:	38B. Corresponding va39B. Corresponding va40B. Corresponding va	apor pressure (p apor pressure (p apor pressure (p	sia): sia):				
 38A. Minimum liquid surface temperature (°F) 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F) 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 	:	38B. Corresponding va39B. Corresponding va40B. Corresponding va	apor pressure (p apor pressure (p apor pressure (p	sia): sia):				
 38A. Minimum liquid surface temperature (°F) 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F) 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 	:	38B. Corresponding va39B. Corresponding va40B. Corresponding va	apor pressure (p apor pressure (p apor pressure (p	sia): sia):				
 38A. Minimum liquid surface temperature (°F) 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F) 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. 	:	38B. Corresponding va39B. Corresponding va40B. Corresponding va	apor pressure (p apor pressure (p apor pressure (p	sia): sia):				
 38A. Minimum liquid surface temperature (°F) 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F): 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. From: To: 	:	38B. Corresponding va39B. Corresponding va40B. Corresponding va	apor pressure (p apor pressure (p apor pressure (p	sia): sia):				
 38A. Minimum liquid surface temperature (°F) 39A. Avg. liquid surface temperature (°F): 40A. Maximum liquid surface temperature (°F) 41A. Material name and composition: 41B. CAS number: 41C. Liquid density (lb/gal): 41D. Liquid molecular weight (lb/lb-mole): 41F. Maximum true vapor pressure (psia): 41G. Maximum Reid vapor pressure (psia): 41H. Months Storage per year. 	:	38B. Corresponding va39B. Corresponding va40B. Corresponding va	apor pressure (p apor pressure (p apor pressure (p	sia): sia):				

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name				
6					
OXF-150 Wellpad	Sand Separator Tank				
3. Emission Unit ID number	4. Emission Point ID number				
S033	E033				
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:				
Was the tank manufactured after August 23, 2011?	\Box New construction \Box New stored material				
\boxtimes Yes \Box No	\Box Other (Low Pressure Tower) \Box Relocation				
7A. Description of Tank Modification (<i>if applicable</i>) N/A					
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.					
\Box Yes \boxtimes No					
7C. Was USEPA Tanks simulation software utilized?					
\Box Yes \boxtimes No					
If Yes, please provide the appropriate documentation and items	8-42 below are not required.				

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the inter-	nal cross-sectional area multiplied by internal height.						
140 bbls							
9A. Tank Internal Diameter (ft.) ~10	9B. Tank Internal Height (ft.) ~10						
10A. Maximum Liquid Height (ft.) ~10	10B. Average Liquid Height (ft.) ~5						
11A. Maximum Vapor Space Height (ft.) ~10	11B. Average Vapor Space Height (ft.) ~5						
12. Nominal Capacity (specify barrels or gallons). This is als	o known as "working volume". 140 bbls						
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached						
emissions calculations for all throughput values	emissions calculations for all throughput values						
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions						
emissions calculations for all throughput values	calculations for all throughput values						
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading						
17. Is the tank system a variable vapor space system? \Box Ye	s 🛛 No						
If yes, (A) What is the volume expansion capacity of the system	m (gal)?						
(B) What are the number of transfers into the system pe	r year?						
18. Type of tank (check all that apply):							
\boxtimes Fixed Roof \square vertical \boxtimes horizontal \square flat roof \square cone roof \square dome roof \square other (describe)							
□ External Floating Roof □ pontoon roof □ doub	\Box External Floating Roof \Box pontoon roof \Box double deck roof						
Domed External (or Covered) Floating Roof							
□ Internal Floating Roof □ vertical column support	□ self-supporting						
□ Variable Vapor Space □ lifter roof □ diaphragm	n						
□ Pressurized □ spherical □ cylindrica	d						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:	
☑ Does Not Apply	□ Rupture Disc (psig)
□ Inert Gas Blanket of	\Box Carbon Adsorption ¹
□ Vent to Vapor Combustion Device	¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)
□ Conservation Vent (psig)	\Box Condenser ¹
Vacuum Setting Pressure Setting	g 5
□ Emergency Relief Valve (psig)	
Vacuum Setting Pressure Settir	g
\Box Thief Hatch Weighted \Box Yes \Box	No
¹ Complete appropriate Air Pollution 0	Control Device Sheet

Material Name	Flashing Loss		Breathing Loss		Working Loss		Total Emissions Loss		Estimation Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
		See att	ached En	nissions C	alculatio	n for all	values		
		1	1		T		T	T	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION							
21. Tank Shell Construction:								
\Box Riveted \Box Gunite lined \Box Epox	y-coated rivets 🛛 🛛 O	ther (describe) Welded	I					
21A. Shell Color: Gray21B. Roof Color: Gray21C. Year Last Painted: New								
22. Shell Condition (if metal and unlined):								
🖾 No Rust 🛛 Light Rust 🖓 Dense Rust 🖓 Not applicable								
22A. Is the tank heated? \Box Yes \boxtimes No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?								
23. Operating Pressure Range (psig):								
Must be listed for tanks using VRUs wi	th closed vent system	ı .						
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provide radius (ft):	24B. If ye	s, for cone roof, provide slop (ft/ft):				
\Box Yes \boxtimes No								
25. Complete item 25 for Floating Roof Tanks	\square Does not apply	\boxtimes						
25A. Year Internal Floaters Installed:								
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal 🛛 🗆 Liquid mo	unted resili	ent seal				
🗆 Vap	or mounted resilient s	eal \Box Other (des	scribe):					
25C. Is the Floating Roof equipped with a seco	ndary seal? 🗌 Yes	□ No						
25D. If yes, how is the secondary seal mounted	? (check one) 🗌 Sho	e 🗆 Rim 🗆 Oth	her (describ	be):				
25E. Is the floating roof equipped with a weath	25E. Is the floating roof equipped with a weather shield? \Box Yes \Box No							
25F. Describe deck fittings:								
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes Does not apply	у					
26A. Deck Type: Bolted W	/elded	26B. For bolted decks,	, provide dec	k construction:				
26C. Deck seam. Continuous sheet construction	n:							
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide \Box	other (de	escribe)				
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column suppo	orted	26G. For column supported				
		tanks, # of columns:		tanks, diameter of column:				
27. Closed Vent System with VRU? \Box Yes	⊠ No							
28. Closed Vent System with Enclosed Combu	stor? 🗆 Yes 🖾 No							
SITE INFORMATION - Not Applicable:	Tank calculations pe	erformed using E&P	Tank softv	vare				
29. Provide the city and state on which the data	in this section are based							
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Maxi	-	erature (°F):				
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed	-					
34. Annual Avg. Solar Insulation Factor (BTU/		35. Atmospheric Press	<u>.</u>					
LIQUID INFORMATION - Not Applicabl		performed using E&						
36. Avg. daily temperature range of bulk	36A. Minimum (°F):		36B. Max	imum (°F):				
liquid (°F):								

37. Avg. operating pressure range of tank	37A. Minimum (psig):			37B. Maximun	n (psig):	
(psig):						
38A. Minimum liquid surface temperature (°F)		38B. (Corresponding va	apor pressure (psi	a):	
39A. Avg. liquid surface temperature (°F):		39B. (Corresponding va	apor pressure (psi	a):	
40A. Maximum liquid surface temperature (°F)	:	40B. (Corresponding va	apor pressure (psi	a):	
41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.						
41A. Material name and composition:						
41B. CAS number:						
41C. Liquid density (lb/gal):						
41D. Liquid molecular weight (lb/lb-mole):						
41E. Vapor molecular weight (lb/lb-mole):						
41F. Maximum true vapor pressure (psia):						
41G. Maximum Reid vapor pressure (psia):						
41H. Months Storage per year.						
From: To:						
42. Final maximum gauge pressure and						
temperature prior to transfer into tank used as						
inputs into flashing emission calculations.						

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴							
	Not Applicable									

Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. Enter storage tank Status using the following: 1. 2.

EXIST

3.

Existing Equipment Installation of New Equipment NEW

Equipment Removed REM

- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.
- 4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT M

Heaters Data Sheet

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S025	E025	Line Heater	2014	Existing; No change	1.54	1,050
S026	E026	Line Heater	2014	Existing; No change	1.54	1,050
S027	E027	Line Heater	2014	Existing; No change	1.54	1,050
S034	E034	Line Heater	2015	Existing; No change	1.54	1,050
S035	E035	Line Heater	2015	Existing; No change	1.54	1,050
S030	E030	Thermoelectric Generator	2011-2014	Existing; No change	0.013	1,050
S031	E031	Thermoelectric Generator	2011-2014	Existing; No change	0.013	1,050

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

Engines Data Sheet (Not Applicable)

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET NOT APPLICABLE

manufactur applicable.	his data shee er performa Use extra p use this form	nce data sh ages if nec	neet(s) or a	ny other su	pporting d	ocument if	
Emission Unit I	D#1						
Engine Manufac	cturer/Model						
Manufacturers F	Rated bhp/rpm						
Source Status ²							
Date Installed/ Modified/Remov	ved/Relocated ³						
Engine Manufac /Reconstruction							
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□ 40CFR60 S □ JJJJ Certifi □ 40CFR60 S □ IIII Certifi □ 40CFR63 S □ NESHAP 2 JJJJ Window □ NESHAP 2 Sources	ed? Subpart IIII ed? Subpart ZZZZ	□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶							
APCD Type ⁷							
Fuel Type ⁸							
H ₂ S (gr/100 scf))						
Operating bhp/r	pm						
BSFC (BTU/bhp	p-hr)						
Hourly Fuel Th	oughput	ft ³ /hr gal/hr		ft³/hr gal/hr		ft ³ /hr gal/hr	
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	MMft ³ /yr gal/yr		MMft ³ /y gal/yr	r	MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🗆	No 🗆	Yes 🗆	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
Manufacturer	NO _x						
Manufacturer	СО						
Manufacturer	VOC						
AP-42	SO ₂						
AP-42	PM ₁₀						
AP-42	Formaldehyde						
AP-42	Total HAPs						
40 CFR Part 98 Subpart C	GHG (CO ₂ e)						

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

Modification of Existing Source

Construction of New Source (installation)

NS

MS

Existing Source

RS Relocated Source

ES

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- Enter the Engine Type designation(s) using the following codes: 6 2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn 4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: 7 Air/Fuel Ratio Ignition Retard A/F IR HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers PSC Prestratified Charge LEC Low Emission Combustion NSCR Rich Burn & Non-Selective Catalytic Reduction OxCat Oxidation Catalyst SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: 8 Pipeline Quality Natural Gas RG Raw Natural Gas /Production Gas D Diesel PQ 9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used. MD Manufacturer's Data AP AP-42 GRI-HAPCalcTM OT GR Other (please list)
- 10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device – NOT APPLICABLE (Emission Unit ID#, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included?

Yes 🗆 No 🗆

See attached certification

□ Oxidation Catalyst

□ SCR

Provide details of process control used for proper mixing/control of reducing agent with gas stream:

Manufacturer:	Model #:				
Design Operating Temperature:	Design gas volume: scfm				
Service life of catalyst:	Provide manufacturer data? Ves No				
Volume of gas handled:	Operating temperature range for NSCR/Ox Cat: From °F to °F				
Reducing agent used, if any: Ammonia slip (ppm):					
Pressure drop against catalyst bed (delta P):					
Provide description of warning/alarm system that protects unit when operation is not meeting design conditions:					

Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZZ? \Box Yes \Box No

How often is catalyst recommended or required to be replaced (hours of operation)?

How often is performance test required?

□ NSCR

Initial 🗌 Annual

Every 8,760 hours of operation Field Testing Required

No performance test required. If so, why (please list any maintenance required and the applicable sections in NSPS/GACT, Per 40 CFR §60.4243(a)(1), EQT must maintain the certified engine and control device according to the manufacturer's emission related written instructions and keep records of conducted maintenance to demonstrate compliance, but no performance testing is required.

ATTACHMENT O

Truck Loading Data Sheet

ATTACHMENT O – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: S037 E037 E037 (Unc			on Point ID# Uncaptured) C004 (Contro	elled, Capture	ed)	Year Installed/Modified: 2015			
Emission Unit Descripti	on: Uncaptured	losses fr	om loading o	of produced f	uids int	o tanker trucks	5		
Loading Area Data									
Number of Pumps: 1 Number of Liquids Loaded: 1 Max number of trucks loading a (1) time: 1							loading at one		
Are tanker trucks pressure tested for leaks at this or any other location? \Box Yes \boxtimes No \Box Not Required If Yes, Please describe:									
Provide description of closed vent system and any bypasses. Trucks utilize vapor recovery lines to route displaced vapors back into battery of tanks.									
Are any of the following truck loadout systems utilized? □ Closed System to tanker truck passing a MACT level annual leak test? □ Closed System to tanker truck passing a NSPS level annual leak test? ⊠ Closed System to tanker truck not passing an annual leak test and has vapor return?									
Pro	jected Maximur	n Operat	ing Schedul	e (for rack o	r transf	er point as a	whole)		
Time	Jan – Ma	r	Apr	- Jun	Jul – Sept			Oct - Dec	
Hours/day	Varies		Va	ries		Varies		Varies	
Days/week	7			7		7		7	
	Bul	k Liquid	Data (use e	xtra pages a	s necess	ary)			
Liquid Name	Pr	oduced F	luids						
Max. Daily Throughput (1000 gal/day)	calc	tached estudations	for all						
Max. Annual Throughpu (1000 gal/yr)	calc	tached e ulations oughput	for all						
Loading Method ¹		SP							
Max. Fill Rate (gal/min) Varies									
Average Fill Time (min/loading)									
Max. Bulk Liquid Temperature (°F)	See	ProMax	results						
True Vapor Pressure ²	See	ProMax	results						
Cargo Vessel Condition	3	U							

Control Equipment or Method ⁴		VB, ECD (captured loading losses)	
Max. Collection Efficiency (%)		70	
Max. Control Efficiency (%)		98	
Max.VOC Emission	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Max.HAP Loading (lb/hr)		See attached emission calculations for breakdown	
Emission Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Estimation Method ⁵		AP-42 Section 5.2 Methodology (via ProMax)	

1	BF	Bottom Fill	SP	Splash Fi	i11		SUB	Submerged Fill
2	At maxi	mum bulk liquid temperature						
3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated service)
	0	Other (describe)						
4	List as	many as apply (complete and	l submit ap	propriate	Air Polluti	ion Contr	rol Device	Sheets)
	CA	Carbon Adsorption	-	VB	Dedicate	ed Vapor	Balance (closed system)
	ECD	Enclosed Combustion Dev	ice	F	Flare	-		•
	ТО	Thermal Oxidization or In	cineration					
5	EPA	EPA Emission Factor in A	P-42			MB	Materia	l Balance
						-		

TM Test Measurement based upon test data submittal O Other (describe)

ATTACHMENT P

Glycol Dehydrator Data Sheet (Not Applicable)

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET – NOT APPLICABLE

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalcTM input and aggregate report. Use extra pages if necessary. Manufacturer: Model: Max. Dry Gas Flow Rate: Reboiler Design Heat Input Design Type: □ TEG \Box DEG \Box EG Source Status1: Date Installed/Modified/Removed2: Regenerator Still Vent APCD/ERD³: Control Device/ERD ID#3: Fuel HV (BTU/scf): H₂S Content (gr/100 scf): Operation (hours/year): Pump Rate (gpm): Water Content (wt %) in: Wet Gas: Dry Gas: Is the glycol dehydration unit exempt from 40CFR63 Section 764(d)? \Box Yes \Box No: If Yes, answer the following: The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in (33.772(b)(1)) of this subpart. \Box Yes □ No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in §63.772(b)(2) of this subpart. \Box Yes 🗆 No Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? 🗆 No Is a lean glycol pump optimization plan being utilized? \Box Yes 🗆 No Recycling the glycol dehydration unit back to the flame zone of the reboiler. □ Yes 🗆 No Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. □ Yes \square No What happens when temperature controller shuts off fuel to the reboiler? ☐ Still vent emissions to the atmosphere. Still vent emissions stopped with valve. ☐ Still vent emissions to glow plug. None of the above: Still vent emissions are controlled by an enclosed combustor Please indicate if the following equipment is present. Flash Tank Burner management system that continuously burns condenser or flash tank vapors **Control Device Technical Data** Pollutants Controlled Manufacturer's Guaranteed Control Efficiency (%) **Emissions** Data Controlled Controlled **Emission Unit** Maximum Calculation Maximum ID / Emission Description PTE⁶ Hourly Methodology⁵ Annual Point ID⁴ Emissions **Emissions** (tpy) (lb/hr)

1 Enter the Source Status using the following codes: ES

Existing Source

(please list)

- NS Construction of New Source MS Modification of Existing Source
- 2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.
- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:
 - NA None CD Condenser FL Flare Condenser/Combustion Combination TO Thermal Oxidizer 0 Other
- CC (please list) Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc. 5
 - Enter the Potential Emissions Data Reference designation using the following codes:
 - AP-42 MD Manufacturer's Data AP
 - **GRI-GLYCalc**TM OT GR Other
- Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalc[™] (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q

Pneumatic Controller Data Sheet (Not Applicable)

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?						
\Box Yes \boxtimes No						
Please list approximate number.						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011? □ Yes ○ No						
Please list approximate number.						

ATTACHMENT R

Air Pollution Control Device Data Sheet

ATTACHMENT R – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

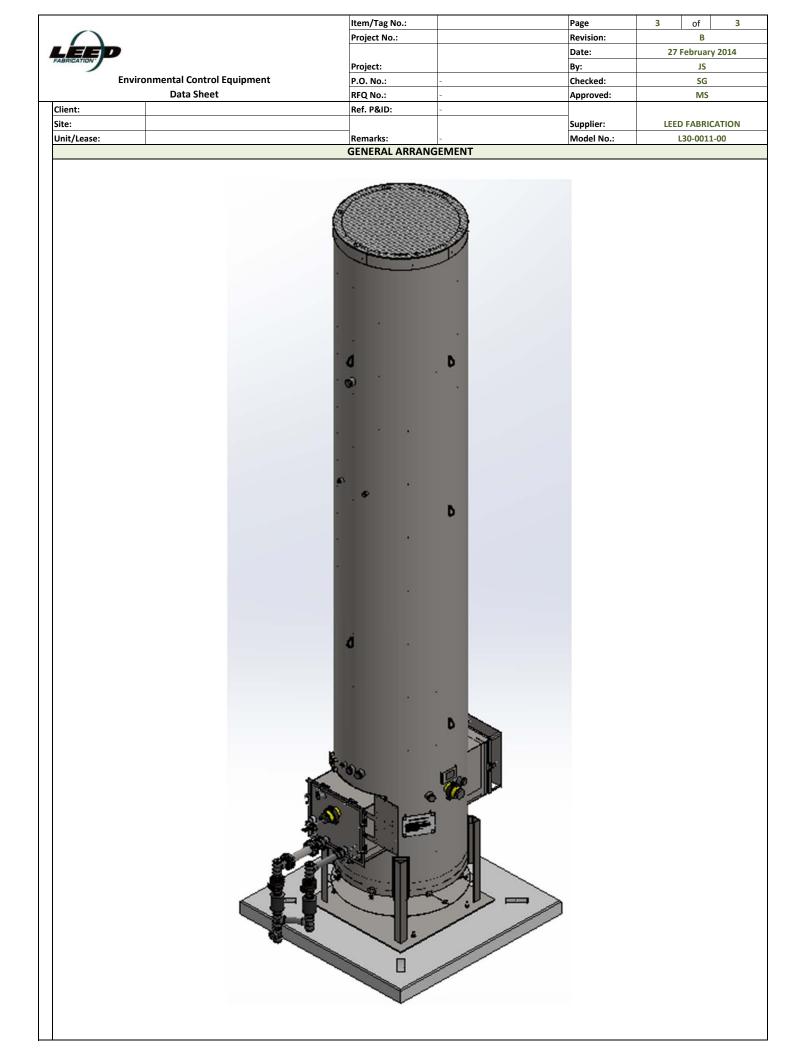
Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.					
Emission Unit ID: Not Applicable Make/Model:					
Primary Control Device ID:	Make/Model:				
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No				
Secondary Control Device ID:	Make/Model:				
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No				

VAPOR COMBUSTION (Including Enclosed Combustors)							
General Information							
Control Device ID#: C0	02, <mark>C004</mark>			Installation Date: New (C004)	C002 ins	stalled 2015 ified	
Maximum Rated Total F ~7,860 scfh ~1	Flow Capa 88,380 sc	-		Maximum Design Heat Input (from mfg. spec sheet) 11.66 MMBTU/hr	Design Heat Content 1,500 BTU/scf		
			Control Devic	e Information			
Enclosed Combustic	on Device		Type of Vapor Co Elevate			Ground Flare	
Manufacturer: LEED Fa Model: Enclosed Combu				Hours of operation	per year? 8	3,760	
List the emission units	whose emi	ssions	are controlled by this	vapor control device	(Emission	n Point ID# S007-S012, S037)	
Emission Unit ID#	Emission	1 Sour	ce Description	Emission Unit ID#	Emissi	on Source Description	
S007-S012	Produce	d Fluid	Tanks				
S037	Liquid L	oading	5				
If this vapor combi	ustor cont	rols em	issions from more the	an six (6) emission un	its, please	attach additional pages.	
Assist Type (Flares only	()		Flare Height	Tip DiameterWas the design per \$60.18			
Steam Pressure	Air Non		~25 feet	~4 feet		□ Yes □ No ⊠ N/A Provide determination.	
			Waste Gas 1	Information			
Maximum Waste Gas I (scfm)	Flow Rate	130		Vaste Gas Stream Exit Velo BTU/ft ³		elocity of the Emissions Stream Varies (ft/s)	
Prov	ide an att	achmer	nt with the characteri	stics of the waste gas	stream to	be burned.	
			Pilot Gas I	nformation			
Number of Pilot LightsFuel Flow Rate to Pilot1Flame per Pilot50 scfh			Heat Input per Pilot 0.05 MMBTU/hr		Will automatic re-ignition be used? □ Yes ⊠ No		
If automatic re-ignition is used, please describe the method.							
Is pilot flame equipped with a monitor to detect the presence of the flame?If Yes, what type? ⊠ Thermocouple□ Infrared□ Ultraviolet□ Camera□ Other:							
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). See attached information on unit							
Additional information attached? 🛛 Yes 🔅 No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.							

CONDENSER – Not Applicable							
General Information							
Control Device ID#:	Installation Date:	Modified 🗌 Relocated					
Manufacturer:	Model:	Control Device Name:					
Control Efficiency (%):							
Manufacturer's required temperature range for control efficiency. °F							
Describe the warning and/or alarm system that protects against operation when unit is not meeting the design requirements:							
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.							
Additional information attached? Yes No Please attach copies of manufacturer's data sheets.							
Is condenser routed to a secondary APCD or ERD?							

ADSORPTION SYS	STEM – <mark>Not Applicable</mark>				
General	Information				
Control Device ID#: Installation Date: New Modified Relocated					
Manufacturer:	Model: Control Device Name:				
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:				
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter:ftAdsorber area: ft^2				
Adsorbent type and physical properties:	Overall Control Efficiency (%):				
Working Capacity of Adsorbent (%):					
Operatii	ng Parameters				
Inlet volume: scfm @ °F					
Adsorption time per adsorption bed (life expectancy):	Breakthrough Capacity (lbs of VOC/100 lbs of adsorbent):				
Temperature range of carbon bed adsorber. °F - °F					
Control Devi	ice Technical Data				
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)				
Describe the warning and/or alarm system that protects aga	ninst operation when unit is not meeting the design requirements:				
Has the control device been tested by the manufacturer and	l certified?				
Describe all operating ranges and maintenance procedures	required by the manufacturer to maintain the warranty.				
Additional information attached?	gs, and performance testing.				


VAPOR RECOVERY UNIT – Not Applicable								
General Information								
Emission U	Jnit ID#:	Installation Date:						
	Device Information							
Manufactu Model:	rer:							
List the emission units whose emissions are controlled by this vapor recovery unit (Emission Point ID# NA)								
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Description					
If this vapor recovery unit controls emissions from more than six (6) emission units, please attach additional pages.								
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, and performance testing. The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor recovery unit.								

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.

						1						1	
				Item/Tag No	.:				Page		1	of	2
1	\cap			Project No.:	-				Revision:			В	
				Project No									
1	LEED								Date:		27	February	/ 2014
1	FABRICATION			Project:					By:			JS	
	Enviro	omental Control Equipment		P.O. No.:		-			Checked:			SG	
		Data Sheet		RFQ No.:		_			Approved	d.		MS	-
	T	Data Sheet				-			Approved	u.		1013	
	Client:			Ref. P&ID:		-							
	Site:								Supplier:		LEEL	D FABRIC	ΔΤΙΟΝ
	Unit/Lease:			Remarks:		-			Model No	0.:		L30-0011	00
				GE	NERAL								
	Design Code:			-			NDE:				ED Fabrica	tion Sto	ndordo
1	-						NDE:			LC	ED Fabrica	ation Sta	nuarus
2	Service:						Custom	er Specs:			Yes		
3	Description:	Standard Dual	Stage /8 High F	fficiency Combu	stor						✓ No		
5	Description.	Standard Duar	Stage 40 High L	-			I						
				PROC	ESS DAT	ΓΑ							
					Process	Conditions:							
	Gas Composition:			mol %									
						Variable		Valu	e	Units			
4	Methane					Flow Rate		Up to	140	Mscfo	1		
5	Ethono					Pressure		Up to	12	oz/in2			
	Ethane					Flessule		0010	12				
6	Propane				1	Temperatur	e			°F			
7	I-Butane		<u> </u>		Molecular Weight			1	+				
			 										
8	n-Butane					-		✓ Gas			Liquid		
9	I-Pentane				Detailed	d Process De	scriptio	n / Process N	otes:				
10	n-Pentane							an expected		neratio	rate india	ated ab	ove
										perating	, rate mult	area abi	
11	n-Hexane						-	esign conditi					
12	CO2		<u> </u>		3. Burne	er Pressure [Drop: Mi	n. 0.10 oz/in	2				
					-								
13	N2												
14	Helium												
15	H ₂ O				_								
16	C7												
17	C8												
					_								
18	C9												
19	C10												
					-								
20	C11+												
21		TOTAL											
	Other Components:			PPMV	Availab	le Utilities:							
22	H2S				F	uel / Pilot G	as		Min.	30psig I	Vatural Ga	s /Propa	ne 40-50 SCFH
23	Benzene				l l	nstrument A	ir		NA				
						Davisar							
24	Toluene					Power			120 \	V / 60 Hz	or Solar P	ower	
25	E-Benzene					Steam			NA				
26	Xylene					Purge Gas							
	Agreene			DECK	GN DAT	-							
				DESIG		A							
27	Ambient Temperatures	5:			Noise P	erformance	Require	ments:			Unde	r 85 dBA	1
28		Low, °F	_	-20	Structu	ral Design Co	nde:						
					-	-	Juc.						
29	L	High, °F	1	120	Wind D	esign Code:					ASCE		
30	Design Conditions:	Pressure/Temperature											
31	Max. Relative Humidity			90	1		Pressur	e/Speed			100 mp	h	
		<i>,,</i>			+						200 mp		
32	Elevation (ASL), ft				Category								
33	Area Classification:		Class	s I Div 2	Seismic	Design Code	e:		Г				
	Electrical Design Code:			NEC	1	-	Locatio	n					
54	Licentical Design Code:		· · ·		00000		Locatio						
1				EQUIPMENT	SPECIF	ICATION							
35	Туре:	Elevated 🗸 E	Inclosed		Equipm	ent Design:							
36	-	Above Ground				-	omner	nt		Mark	orial / ci-) / Patin	a / Othor
	-				-	C	ompone	int.		IVIA	erial / Size	, nating	57 Other
37		Stack	/lultiple Stack		Burner								
38		Portable / Trailer				Burner Tir	/ Assist	Gas Burner			3(04 SS	
39					1								
	-				-	В	urner Bo	uy			Carb	on Steel	
40	Smokeless By:	Steam A	Assist Air		Pilot								
41		Gas Assist 🗸 S	Staging				Pilot Tip				21	04 SS	
	-				1								
42	L					Р	ilot Line	(S)			Carb	on Steel	
43	Stack:	✓ Self Supporting			Firebox	/ Stack			Г				
44			mokeless [Cae Acciet	1		Ch - II				C	on Stort	
				Gas Assist	+		Shell					on Steel	
45	Pilot:	✓ Intermittent	Continuous				Piping				Carb	on Steel	
46	Pilot Air Inspirator:	✓ Local	Remote				Nozzles		Г		Carb	on Steel	
		No V		(alguo	1								
47	Pilot Flame Control:		Yes (Thermoo	ouhie)			Flanges)			Carb	on Steel	
48							Insulatio	n			Bla	anket	
49	Pilot Ignition:	Flamefront Generator	Inspirating Ig	nitor			sulation				21	04 SS	
				_	1								
50	L	Electronic 🗸	Automatic	Manual	1		Refracto	ry				NA	
51		With Pilot Flame Control				Refra	actory Ar	nchors		NA			
52		With Auto Pilot Re-Ignition			Refractory Anchors Ladders and Platforms				NA				
					+								
53						Stack Sa	mple Co	nnections			Per EPA r	equirem	ents
54	Pilot Ignition Backup:	Manual Specify: i.e F	Piezo-Electric				Sight Gla	ss	1			2	
55		Battery Pack			1		-						
100	1				1		Other						

		Item/Tag No.:	Page	2	of	3
\cap		Project No.:	Revision	n:	В	-
LEED			Date:		7 February 20)14
FABRICATION		Project:	By:		JS	
Enviro	onmental Control Equipment	P.O. No.: -	Checked	d.	SG	
	Data Sheet	RFQ No.:	Approv		MS	
Client:	Butu bheet	Ref. P&ID:		cu.	1415	
Site:						
			Supplie		ED FABRICAT	
Unit/Lease:		Remarks:	Model I	NO.:	L30-0011-00	1
Flame Detection:						
	Thermocouple Ionizatio	on Rod Auxiliary Ec				
	UV Scanner		Valves		NA	
General Configuration			Blowers		NA	
	and the second s		Dampers		NA	
			Inlet KO / Liquid Seal		NA	
		F	lame / Detonation Arrestor		Yes	
	ö	Instrument	ation & Controls	<u> </u>		
			Solenoids / Shut-Off Valves	Check with Sale	s for availabl	e conf
			Flow Meters		NA	
	٥		Calorimeter		NA	
		Pre	essure Switches/Transmitters		NA	
			Thermocouples	Check with Sale	s for availabl	e conf
	a	Tem	perature Switches/Transmitters		NA	
	and the second		BMS	Check with Sale	s for availabl	e conf
	F		CEMS		NA	
			Other		NA	
			otilei			
5	ň					
	*	FABRICATION AND INSP	ECTION	1		
Special requirements	Skid Mounted 🗸 Concrete Pa			Info		
special requirements	Other		Equipment		/ Dim	
	Other		Component	Weight	/ Dimension	;
		Burner				
Inspection	Vendor Standard		Burner Assembly			
	Other. Specify:	Stack				
Material Certification	Vendor Standard		Stack Assembly	48 "	OD x 25 ' H	
			Pilot Tip	l		
	Certificate of Compliance		Pilot Line(s)			
	Other (Specify):		Stack Assembly			
			uipment	<u> </u>		
NDE	✓ Vendor Standard	Auxiliary Ec		1		
	Vendor Standard Radiography. Specify:	Auxiliary Ec	Blowers			
		Auxiliary Ec				
	Radiography. Specify:		Blowers			
	Radiography. Specify: Ultrasonic. Specify:		Blowers Inlet KO / Liquid Seal			
	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant.	F	Blowers Inlet KO / Liquid Seal lame / Detonation Arrestor			
	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles.	F	Blowers Inlet KO / Liquid Seal lame / Detonation Arrestor Skid			
	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify:	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls			
Surface Preparation	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify:	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			
Surface Preparation	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			
Surface Preparation Paint System	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Other. Specify: Vendor Standard Vendor Standard Vendor Standard	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			
Surface Preparation	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify:	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			
Surface Preparation Paint System Finished Color	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			
Surface Preparation	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Other. Specify: Other. Specify:	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			
Surface Preparation Paint System Finished Color	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			

		Pressure			
Flare Size	# of Orifices (N)	(OZ/in^2)	m³/s	mSCFD	MMBTU/hr
18	2	1	0.0021	6.34	0.39
18	2	2	0.0029	8.97	0.56
18	2	3	0.0036	10.99	0.68
18	2	4	0.0042	12.69	0.78
18	2	5	0.0046	14.18	0.88
18	2	6	0.0051	15.54	0.96
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0075	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

§ MMBTU/hr values are calculated based on 1500 BTU/scf gas

 $P_{age} 15$

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

 $\frac{1}{2}$

Enclosed (Passive Swirl) Flare Flow Rates

 $Q = \begin{bmatrix} C_d \mathbf{A} \cdot \sqrt{\frac{2\left(\frac{P}{16}\right)R}{\rho}} \end{bmatrix} \mathbf{N}$

Convert to mSCFD $(Q \cdot M \cdot 24) / 1000$

	3/8" Orifice: Dia =		0.00635 m			
	Area =		3.16692E-05 m ²		6894.757 (Conversion from PSI to Pa (R)
	Cd =		1			m^3/s to ft ³ /hr (M)
	Density =		0.8 kg/m ³			,
	,					
Flare Size	# of Orifices (N)	P	ressure (OZ/in ²)	m³/s	mSCFD	99% Combustion Efficiency
	18	2	1	0.00207892	6.34316015	6.28
	18	2	2	0.00294003	8.97058312	8.88
	18	2	3	0.00360079	10.98667566	10.88
	18	2	4	0.00415783	12.68632031	12.56
	18	2	5	0.00464860	14.18373729	14.04
	18	2	6	0.00509228	15.53750573	15.38
	18	2	7	0.00550029	16.78242429	16.61
	18	2	8	0.00588006	17.94116623	17.76
	18	2	9	0.00623675	19.02948046	18.84
	18	2	10	0.00657411	20.05883365	19.86
	18	2	11	0.00689498	21.03788221	20.83
	18	2	12	0.00720157	21.97335133	21.75
	18	2	13	0.00749564	22.87058918	22.64
	18	2	14	0.00777859	23.73393204	23.50
	18	2	15	0.00805160	24.56695363	24.32
	18	2	16	0.00831566	25.37264061	25.12
	18	2	17	0.00857159	26.15351931	25.89
	18	2	18	0.00882009	26.91174935	26.64
:	24	4	1	0.00415783	12.68632031	12.56
:	24	4	2	0.00588006	17.94116623	17.76
:	24	4	3	0.00720157	21.97335133	21.75
:	24	4	4	0.00831566	25.37264061	25.12
:	24	4	5	0.00929719	28.36747459	28.08
:	24	4	6	0.01018456	31.07501146	30.76
:	24	4	7	0.01100059	33.56484858	33.23
:	24	4	8	0.01176012	35.88233246	35.52
:	24	4	9	0.01247349	38.05896092	37.68
:	24	4	10	0.01314822	40.11766729	39.72
:	24	4	11	0.01378996	42.07576442	41.66
:	24	4	12	0.01440315	43.94670266	43.51
:	24	4	13	0.01499127	45.74117836	45.28
:	24	4	14	0.01555718	47.46786408	46.99
	24	4	15	0.01610321	49.13390727	48.64
	24	4	16	0.01663132	50.74528122	50.24
	24	4	17	0.01714318	52.30703862	51.78
	24	4	18	0.01764018	53.82349870	53.29
		10	1	0.01039458	31.71580076	31.40
		10	2	0.01470015	44.85291558	44.40
		10	3	0.01800394	54.93337832	54.38
		10	4	0.02078915	63.43160153	62.80
		10	5	0.02324298	70.91868647	70.21
		10	6 7	0.02546141	77.68752865	76.91
	36	10		0.02750147	83.91212145	83.07

36	10	8	0.02940030	89.70583116	88.81
36	10	9	0.03118373	95.14740229	94.20
36	10	10	0.03287054	100.29416823	99.29
36	10	11	0.03447491	105.18941106	104.14
36	10	12	0.03600787	109.86675665	108.77
36	10	13	0.03747818	114.35294589	113.21
36	10	14	0.03889295	118.66966020	117.48
36	10	15	0.04025802	122.83476817	121.61
36	10	16	0.04157831	126.86320305	125.59
36	10	17	0.04285794	130.76759655	129.46
36	10	18	0.04410046	134.55874674	133.21
48	14	1	0.01455241	44.40212107	43.96
48	14	2	0.02058021	62.79408181	62.17
48	14	3	0.02520551	76.90672965	76.14
48	14	4	0.02910482	88.80424214	87.92
48	14	5	0.03254017	99.28616105	98.29
48	14	6	0.03564597	108.76254012	107.67
48	14	7	0.03850205	117.47697003	116.30
48	14	8	0.04116043	125.58816363	124.33
48	14	9	0.04365722	133.20636321	131.87
48	14	10	0.04601875	140.41183552	139.01
48	14	11	0.04826488	147.26517548	145.79
48	14	12	0.05041102	153.81345931	152.28
48	14	13	0.05246945	160.09412425	158.49
48	14	14	0.05445012	166.13752428	164.48
48	14	15	0.05636123	171.96867543	170.25
48	14	16	0.05820963	177.60848427	175.83
48	14	17	0.06000112	183.07463517	181.24
48	14	18	0.06174064	188.38224544	186.50

ATTACHMENT S

Emission Calculations

Company Name: Facility Name:

Project Description:

EQT Production, LLC OXF 150 Pad G70-C Application

Facility-Wide Emission Summary - Controlled

1 25 298

Wells	6	per pad	Carbon
Storage Tanks	6	per pad	CO ₂
Sand Separator Tank	1	per pad	CH ₄
Line Heaters	5	per pad	N ₂ O
TEGs	2	per pad	-
Dehy Reboiler	0	per pad	
Glycol Dehy	0	per pad	
Dehy Drip Tank	0	per pad	
Dehy Combustor	0	per pad	
Compressor	0	per pad	
High Pressure Separator	6	per pad	
Low Pressure Separator	0	per pad	
Vapor Recovery Unit	0	per pad	
Tank Combustor	2	per pad	
Length of lease road	5,410	feet	

Carbon equivalent emissions (COe) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

Emission	Emission	Emission	N	0 _x	C	0	v	OC	S	02	PI	A ₁₀	PM	1 _{2.5}	C	0 ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C002, C004	S007-S012	Storage Vessels					2.16	9.47							13.41	58.7
C002, C004	S037	Captured Liquid Loading					1.53	0.40								
C002	C002	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005
C004	C004	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1,371.10	6,005
C002	S007-S012, S037, C002		1.15	5.03	0.96	4.22	1.85	4.93	0.01	0.03	0.09	0.38	0.09	0.38	1,377.81	6,034
C004	S007-S012, S037, C004		1.15	5.03	0.96	4.22	1.85	4.93	0.01	0.03	0.09	0.38	0.09	0.38	1,377.81	6,034
E025	S025	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.
E026	S026	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.
E027	S027	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.
E034	S034	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.
E035	S035	Line Heater	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E-03	0.01	0.05	0.01	0.05	180.18	789.3
E030	S030	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.6
E031	S031	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	1.52	6.6
E033	S033	Sand Separator Tank					0.07	0.32							0.50	2.2
E037	S037	Uncaptured Liquid Loading					32.82	8.53								
		Fugitives						17.53								270.
		Haul Roads										5.07		0.51		
Facility Total			3.03	13.28	2.55	11.15	36.63	36.43	0.02	0.08	0.23	6.08	0.23	1.52	3,660.06	16,301
Facility Total (excludin	o fugitive emissions)		3.03	13.28	2.55	11.15	3.81	10.37	0.02	0.08	0.23	1.01	0.23	1.01	3,660.06	16,031

Company Name: EOT Production, LLC Facility Name: OXF 150 Pad Project Description: G70-C Application

Г

oint ID # 002, C004	Source ID#s		Torma	ldehyde	Ben	zene	1 011	iene	Ethylb	enzene	Xyi	enes	п-пе	exane	101a	al HAP
002, C004		Source Description	lb/hr	tpy												
	S007-S012	Storage Vessels			2.6E-03	1.1E-02	5.8E-03	2.5E-02	2.7E-04	1.2E-03	2.5E-03	1.1E-02	0.07	0.32	0.10	0.44
002, C004	S037	Captured Liquid Loading			1.1E-03	3.0E-04	2.4E-03	6.4E-04	1.2E-04	3.2E-05	1.6E-03	4.2E-04	0.05	0.01	0.06	0.02
002	C002	Tank Combustor														
004	C004	Tank Combustor														
002	S007-S012, S037, C002				1.9E-03	5.8E-03	4.1E-03	1.3E-02	2.0E-04	6.1E-04	2.1E-03	5.8E-03	0.06	0.17	0.08	0.23
004	S007-S012, S037, C004				1.9E-03	5.8E-03	4.1E-03	1.3E-02	2.0E-04	6.1E-04	2.1E-03	5.8E-03	0.06	0.17	0.08	0.23
025	S025	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
026	S026	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
027	S027	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
034	S034	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
035	S035	Line Heater	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01
030	S030	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
031	S031	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
033	S033	Sand Separator Tank			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E-02
037	S037	Uncaptured Liquid Loading			0.02	0.01	0.05	0.01	2.6E-03	6.8E-04	3.5E-02	9.1E-03	1.02	0.27	1.33	0.35
		Fugitives				0.01		0.02		< 0.01		0.01		0.29		0.55
-		Haul Roads														

٦

1. Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

 Company Name:
 EOT Production, LLC

 Facility Name:
 OXF 150 Pad

 Project Description:
 G70-C Application

Produced Fluids Storage Vessels Potential Throughput Operational Hours 8,760 hrs/yr Maximum Condensate Throughput¹ 3,103 bbl/month Maximum Produced Water Throughput¹ 32,333 bbl/month

¹ Based on the highest monthly throughput recorded at the site (July 2015). Includes a safety factor of 9%.

98%

Overall Control Efficiency of Combustor

Storage Tanks - Uncontrolled

	Brea	thing	Wor	king	Flas	hing	Total E	nissions
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Methane	< 0.001	< 0.001	< 0.001	< 0.001	26.814	117.447	26.814	117.447
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	31.111	136.264	31.111	136.264
Propane	0.263	1.151	1.585	6.943	35.525	155.600	37.373	163.694
Isobutane	0.065	0.285	0.393	1.720	9.699	42.480	10.156	44.485
n-Butane	0.149	0.651	0.897	3.929	22.669	99.290	23.715	103.870
Isopentane	0.060	0.261	0.360	1.576	9.253	40.530	9.673	42.367
n-Pentane	0.058	0.253	0.349	1.528	9.114	39.920	9.521	41.701
n-Hexane	0.022	0.094	0.130	0.570	3.553	15.560	3.704	16.224
Cyclohexane	0.001	0.006	0.009	0.038	0.289	1.267	0.299	1.311
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
n-Heptane	0.024	0.106	0.146	0.638	4.368	19.130	4.537	19.873
n-Octane	0.008	0.034	0.047	0.206	1.453	6.366	1.508	6.606
n-Nonane	0.002	0.007	0.010	0.044	0.330	1.446	0.342	1.497
n-Decane	0.002	0.009	0.012	0.052	0.414	1.812	0.428	1.873
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Isohexane	0.033	0.144	0.198	0.866	5.304	23.230	5.534	24.240
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	0.002	0.003	0.014	0.125	0.547	0.128	0.563
Toluene	0.001	0.005	0.007	0.029	0.283	1.238	0.290	1.272
Ethylbenzene	5.5E-05	2.4E-04	3.3E-04	0.001	0.013	0.057	0.013	0.059
m-Xylene	0.001	0.003	0.004	0.019	0.122	0.536	0.127	0.558
Isooctane	0.004	0.018	0.024	0.106	0.716	3.138	0.745	3.262
Total VOC Emissions:	0.69	3.03	4.17	18.28	103.23	452.15	108.10	473.46
Total HAP Emissions:	2.8E-02	0.12	0.17	0.74	4.81	21.08	5.01	21.94

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). Non-methane emissions are taken from the tank emissions stencil. Methane emissions are taken from the flash stream composition.

² Composition of condensate from OXF-149 sample from 04/29/2013.

Toluene

m-Xylene

Isooctane

Ethylbenzene

Total VOC Emissions:

Total HAP Emissions:

EQT Production, LLC OXF 150 Pad G70-C Application

2.2E-05

1.1E-06

1.5E-05

8.1E-05

1.4E-02

5.6E-04

9.7E-05

4.9E-06

6.5E-05

3.5E-04

0.06

2.5E-03

Produced Fluids Storage Vessels Storage Tanks - Controlled Breathing Flashing Working **Total Emissions** lb/hr tpy lb/hr tpy lb/hr Methane < 0.001 < 0.001 < 0.001 < 0.001 0.536 2.349 0.536 Ethane < 0.001 < 0.001 < 0.001 < 0.001 0.622 2.725 0.622 Propane 0.005 0.023 0.032 0.139 0.711 3.112 0.747 0.001 0.006 0.008 Isobutane 0.034 0.194 0.850 0.203 n-Butane 0.003 0.013 0.018 0.079 0.453 1.986 0.474 0.001 0.007 0.032 Isopentane 0.005 0.185 0.811 0.193 n-Pentane 0.001 0.005 0.007 0.031 0.182 0.798 0.190 n-Hexane 4.3E-04 0.002 0.003 0.011 0.071 0.311 0.074 Cyclohexane 2.9E-05 1.7E-04 0.006 0.006 1.3E-04 0.001 0.025 Methylcyclopentane < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 4.8E-04 0.002 0.003 0.087 0.383 n-Heptane 0.013 0.091 n-Octane 1.6E-04 0.001 0.001 0.004 0.029 0.127 0.030 n-Nonane 3.3E-05 1.5E-04 2.0E-04 0.001 0.007 0.029 0.007 n-Decane 3.9E-05 1.7E-04 2.4E-04 0.001 0.008 0.036 0.009 n-Undecane < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Dodecane < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Triethylene Glycol < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Cyclopentane < 0.001 < 0.001 < 0.001 < 0.001 Isohexane 0.001 0.003 0.004 0.017 0.106 0.465 0.111 3-Methylpentane < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Neohexane < 0.001 < 0.001 < 0.001 2,3-Dimethylbutane < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Methylcyclohexane < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Decane, 2-Methyl-< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Benzene 1.0E-05 4.5E-05 2.7E-04

6.2E-05

1.3E-04

6.7E-06

8.9E-05

4.9E-04

0.08

3.4E-03

0.001

2.9E-05

3.9E-04

0.002

0.37

1.5E-02

0.002

0.006

2.6E-04

0.002

0.014

2.06

9.6E-02

0.011

0.025

0.001

0.011

0.063

9.04

0.42

0.003

0.006

2.7E-04

0.003

0.015

2.16

0.10

tpy

2.349

2.725

3.274

0.890

2.077

0.847

0.834

0.324

0.026

< 0.001

0.397

0.132 0.030

0.037

< 0.001

< 0.001

< 0.001

< 0.001

0.485

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.011

0.025

0.001

0.011

0.065

9.47

0.44

EQT Production, LLC OXF 150 Pad G70-C Application

Sand Separator Tank

Throughput Parameter	Value	Units
Tank Capacity	5,880	gallons
Operational Hours	8,760	hrs/yr
Throughput	280	bbl/month
Percent Produced Water	50%	
Total Produced Water Throughput	140	bbl/month

¹ Conservatively assumes 2 turnovers/month of sand and produced water.

Description	Potential Throughput (gal/yr)
Produced Water and Sand	141,120

Sand Separator Tank (140 bbl) - Uncontrolled (Per tank)^{2,3}

Constituent	Total Em lb/hr	iissions ¹ tpy
Methane	0.020	0.088
Ethane	0.032	0.140
Propane	0.033	0.143
Isobutane	0.008	0.035
n-Butane	0.017	0.073
Isopentane	0.006	0.026
n-Pentane	0.005	0.022
Hexanes	0.002	0.007
Heptanes	0.002	0.007
Octane	< 0.001	0.002
Nonane	< 0.001	< 0.001
Decane	< 0.001	< 0.001
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
n-Hexane	0.001	0.005
2,2,4-Trimethylpentane	< 0.001	<0.001
Total HC Emissions:	0.126	0.552
Total VOC Emissions:	0.074	0.323
Total HAP Emissions:	0.002	0.010

² E&P TANK 2.0 calculates working, breathing and flashing losses and reports the sum as one total.
 ³ E&P TANK v2.0 emission calculations are based on 4/29/2013 condensate sample from 0XF-149 wellpad

EQT Production, LLC OXF 150 Pad G70-C Application

Sand Separator Tank

Sand Separator Tank (140 bbl) - Controlled (Per tank)

	Total Er	nissions
Constituent	lb/hr	tpy
Methane	0.020	0.088
Ethane	0.032	0.140
Propane	0.033	0.143
Isobutane	0.008	0.035
n-Butane	0.017	0.073
Isopentane	0.006	0.026
n-Pentane	0.005	0.022
Hexanes	0.002	0.007
Heptanes	0.002	0.007
Octane	< 0.001	0.002
Nonane	< 0.001	< 0.001
Decane	< 0.001	< 0.001
Benzene	< 0.001	< 0.001
Toluene	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Xylenes	< 0.001	< 0.001
n-Hexane	0.001	0.005
2,2,4-Trimethylpentane	< 0.001	< 0.001
Total Emissions:	0.126	0.550
Total VOC Emissions:	0.074	0.323
Total HAP Emissions:	0.002	0.010

Company Name:	EQT Production, LLC
Facility Name:	OXF 150 Pad
Project Description:	G70-C Application

Tank Combustor

Source Designation:	C002 & C004
Pilot Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Pilot Rating (MMBtu/hr)	0.05
Combustor Rating (MMBtu/hr) ¹	11.66
Combustor Rating (Mscfd) ¹	188.38
Combustor Rating (scf/hr)	7849.17
Pilot Fuel Consumption (scf/hr):	50.00
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Maximum heat input for 48" model from Leed Enclosed Combustor Operations Manual

Enclosed Combustor Emissions

	Emission Factors ²	Comb	oustor	Pi	ot	To	otal
Pollutant	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO _x	0.10	1.14	5.01	5.1E-03	0.02	1.15	5.03
CO	0.08	0.96	4.21	4.3E-03	0.02	0.96	4.22
VOC	5.4E-03			2.8E-04	1.2E-03	0.00	0.00
SO ₂	5.9E-04	0.01	0.03	3.1E-05	1.4E-04	0.01	0.03
PM/PM ₁₀	0.01	0.09	0.38	3.9E-04	1.7E-03	0.09	0.38
CO ₂	117.00	1364.189	5975.146	6.14	26.90	1370.33	6002.05
CH ₄	2.2E-03			1.2E-04	5.1E-04	0.00	0.00
N ₂ 0	2.2E-04	2.6E-03	0.01	1.2E-05	5.1E-05	2.6E-03	0.01

² Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at the wellpad. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

Combustor Maximum Loading:

	1			
7849.17 scf	lb-mol	20.43 lb	=	422.65 lb/hr
hr	379.5 scf	lb-mol		

	Line Heaters	
Project Description:	G70-C Application	
Facility Name:	OXF 150 Pad	
Company Name:	EQT Production, LLC	

Source Designation:	\$025-\$027 \$034-\$035
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr)	1.54
Fuel Consumption (MMscf/hr):	1.47E-03
Potential Annual Hours of Operation (hr/yr):	8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ^{1,4}	(lb/hr) ²	(tons/yr) ³
NO _x	100	0.15	0.64
со	84	0.12	0.54
VOC	5.5	0.01	0.04
SO ₂	0.6	8.8E-04	3.9E-03
PM Total	7.6	0.01	0.05
PM Condensable	5.7	0.01	0.04
PM ₁₀ (Filterable)	1.9	2.8E-03	0.01
PM _{2.5} (Filterable)	1.9	2.8E-03	0.01
Lead	5.00E-04	7.3E-07	3.2E-06
CO ₂	117.0	180.00	788.38
CH ₄	2.21E-03	3.4E-03	1.5E-02
N ₂ O	2.21E-04	3.4E-04	1.5E-03

EQT Production, LLC OXF 150 Pad G70-C Application

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
2-Methylnaphthalene	2.4E-05	3.5E-08	1.5E-07
3-Methylchloranthrene	1.8E-06	2.6E-09	1.2E-08
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.3E-08	1.0E-07
Acenaphthene	1.8E-06	2.6E-09	1.2E-08
Acenaphthylene	1.8E-06	2.6E-09	1.2E-08
Anthracene	2.4E-06	3.5E-09	1.5E-08
Benz(a)anthracene	1.8E-06	2.6E-09	1.2E-08
Benzene	2.1E-03	3.1E-06	1.3E-05
Benzo(a)pyrene	1.2E-06	1.8E-09	7.7E-09
Benzo(b)fluoranthene	1.8E-06	2.6E-09	1.2E-08
Benzo(g,h,i)perylene	1.2E-06	1.8E-09	7.7E-09
Benzo(k)fluoranthene	1.8E-06	2.6E-09	1.2E-08
Chrysene	1.8E-06	2.6E-09	1.2E-08
Dibenzo(a,h) anthracene	1.2E-06	1.8E-09	7.7E-09
Dichlorobenzene	1.2E-03	1.8E-06	7.7E-06
Fluoranthene	3.0E-06	4.4E-09	1.9E-08
Fluorene	2.8E-06	4.1E-09	1.8E-08
Formaldehyde	7.5E-02	1.1E-04	4.8E-04
Hexane	1.8E+00	2.6E-03	1.2E-02
Indo(1,2,3-cd)pyrene	1.8E-06	2.6E-09	1.2E-08
Naphthalene	6.1E-04	8.9E-07	3.9E-06
Phenanthrene	1.7E-05	2.5E-08	1.1E-07
Pyrene	5.0E-06	7.3E-09	3.2E-08
Toluene	3.4E-03	5.0E-06	2.2E-05
Arsenic	2.0E-04	2.9E-07	1.3E-06
Beryllium	1.2E-05	1.8E-08	7.7E-08
Cadmium	1.1E-03	1.6E-06	7.1E-06
Chromium	1.4E-03	2.1E-06	9.0E-06
Cobalt	8.4E-05	1.2E-07	5.4E-07
Manganese	3.8E-04	5.6E-07	2.4E-06
Mercury	2.6E-04	3.8E-07	1.7E-06
Nickel	2.1E-03	3.1E-06	1.3E-05
Selenium	2.4E-05	3.5E-08	1.5E-07
Total HAP		2.8E-03	1.2E-02

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emission factor sprong (bh/rr)_{Potential} = (lb/hr)_{Emission} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
 ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Company Name:	EQT Production, LLC
Facility Name:	OXF 150 Pad
Project Description:	G70-C Application

Thermoelectric Generators				
		7		

Source Designation:	S030-S031
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr) ¹	0.013
Fuel Consumption (MMscf/hr):	1.23E-05
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Global Themorelectric specification sheet states 311 ft³/day at 1000 BTU/ft³.

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ^{2, 5}	(lb/hr) ³	(tons/yr) ⁴
NO _x	100	1.2E-03	0.01
со	84	1.0E-03	4.5E-03
VOC	5.5	6.8E-05	3.0E-04
SO ₂	0.6	7.4E-06	3.2E-05
PM Total	7.6	9.4E-05	4.1E-04
PM Condensable	5.7	7.0E-05	3.1E-04
PM ₁₀ (Filterable)	1.9	2.3E-05	1.0E-04
PM _{2.5} (Filterable)	1.9	2.3E-05	1.0E-04
Lead	5.00E-04	6.2E-09	2.7E-08
CO ₂	116.9	1.51	6.64
CH ₄	2.21E-03	2.9E-05	1.3E-04
N ₂ O	2.21E-04	2.9E-06	1.3E-05

EQT Production, LLC OXF 150 Pad G70-C Application

Thermoelectric Generators

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ²	(lb/hr) ³	(tons/yr) ⁴
HAPs:			
2-Methylnaphthalene	2.4E-05	3.0E-10	1.3E-09
3-Methylchloranthrene	1.8E-06	2.2E-11	9.7E-11
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.0E-10	8.6E-10
Acenaphthene	1.8E-06	2.2E-11	9.7E-11
Acenaphthylene	1.8E-06	2.2E-11	9.7E-11
Anthracene	2.4E-06	3.0E-11	1.3E-10
Benz(a)anthracene	1.8E-06	2.2E-11	9.7E-11
Benzene	2.1E-03	2.6E-08	1.1E-07
Benzo(a)pyrene	1.2E-06	1.5E-11	6.5E-11
Benzo(b)fluoranthene	1.8E-06	2.2E-11	9.7E-11
Benzo(g,h,i)pervlene	1.2E-06	1.5E-11	6.5E-11
Benzo(k)fluoranthene	1.8E-06	2.2E-11	9.7E-11
Chrysene	1.8E-06	2.2E-11	9.7E-11
Dibenzo(a,h) anthracene	1.2E-06	1.5E-11	6.5E-11
Dichlorobenzene	1.2E-03	1.5E-08	6.5E-08
Fluoranthene	3.0E-06	3.7E-11	1.6E-10
Fluorene	2.8E-06	3.5E-11	1.5E-10
Formaldehyde	7.5E-02	9.3E-07	4.1E-06
Hexane	1.8E+00	2.2E-05	9.7E-05
Indo(1,2,3-cd)pyrene	1.8E-06	2.2E-11	9.7E-11
Naphthalene	6.1E-04	7.5E-09	3.3E-08
Phenanthrene	1.7E-05	2.1E-10	9.2E-10
Pyrene	5.0E-06	6.2E-11	2.7E-10
Toluene	3.4E-03	4.2E-08	1.8E-07
Arsenic	2.0E-04	2.5E-09	1.1E-08
Beryllium	1.2E-05	1.5E-10	6.5E-10
Cadmium	1.1E-03	1.4E-08	5.9E-08
Chromium	1.4E-03	1.7E-08	7.6E-08
Cobalt	8.4E-05	1.0E-09	4.5E-09
Manganese	3.8E-04	4.7E-09	2.1E-08
Mercury	2.6E-04	3.2E-09	1.4E-08
Nickel	2.1E-03	2.6E-08	1.1E-07
Selenium	2.4E-05	3.0E-10	1.3E-09
Total HAP		2.3E-05	1.0E-04

² Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

³ Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

⁴ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
⁵ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

EQT Production, LLC OXF 150 Pad G70-C Application

Liquid Loading

Throughput Capture Efficiency Control Efficiency

17,859,450 gal/yr 70% non-tested tanker trucks 98% Combustor destruction efficiency

Liquid Loading Emissions

	Uncontrolle	d Emissions		l Emissions	Controlled Emissions		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Propane	41.538	10.800	12.462	3.240	0.582	0.151	
Isobutane	10.292	2.676	3.088	0.803	0.144	0.037	
n-Butane	23.515	6.114	7.055	1.834	0.329	0.086	
Isopentane	9.435	2.453	2.830	0.736	0.132	0.034	
n-Pentane	9.146	2.378	2.744	0.713	0.128	0.033	
n-Hexane	3.411	0.887	1.023	0.266	0.048	0.012	
Cyclohexane	0.227	0.059	0.068	0.018	0.003	0.001	
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
n-Heptane	3.816	0.992	1.145	0.298	0.053	0.014	
n-Octane	1.232	0.320	0.370	0.096	0.017	0.004	
n-Nonane	0.263	0.068	0.079	0.020	0.004	0.001	
n-Decane	0.312	0.081	0.094	0.024	0.004	0.001	
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Isohexane	5.185	1.348	1.555	0.404	0.073	0.019	
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Benzene	0.081	0.021	0.024	0.006	0.001	3.0E-04	
Toluene	0.175	0.045	0.052	0.014	0.002	0.001	
Ethylbenzene	0.009	0.002	0.003	0.001	1.2E-04	3.2E-05	
m-Xylene	0.117	0.030	0.035	0.009	0.002	4.2E-04	
Isooctane	0.637	0.166	0.191	0.050	0.009	0.002	
Total VOC Emissions:	109.390	28.441	32.817	8.532	1.531	0.398	
Total HAP Emissions:	4.429	1.151	1.329	0.345	0.062	0.016	

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate).
² Hourly emissions assume two hours of loading per day, five days per week.

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 —Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP	VOC Emissions ³ (tpy)	HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	11	2.02	1.00	0.03	2.02	0.06
Compressor	Gas	0.22800	0		0.17	0.01		
Valves	Gas	0.00597	294	16.95	0.17	0.01	2.81	0.09
Pressure Relief Valves	Gas	0.10400	22	21.59	0.17	0.01	3.58	0.11
Open-Ended Lines	All	0.00170	20	0.32	0.17	0.01	0.05	1.7E-03
Connectors	All	0.00183	1,289	22.77	0.17	0.01	3.78	0.12
Intermittent Pneumatic Devices ⁴	Gas	13.5	30				5.29	0.16
			Emission Totals:	63.65			17.53	0.55

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	11	2.02	1.5E-04	3.6E-04	< 0.01	2.1E-04	0.01
Compressor	Gas	0.22800	0				< 0.01		
Valves	Gas	0.00597	294	16.95	1.3E-03	3.1E-03	< 0.01	1.8E-03	0.05
Pressure Relief Valves	Gas	0.10400	22	21.59	1.7E-03	3.9E-03	< 0.01	2.2E-03	0.07
Open-Ended Lines	All	0.00170	20	0.32	2.4E-05	5.8E-05	< 0.01	3.3E-05	9.9E-04
Connectors	All	0.00183	1,289	22.77	1.7E-03	4.1E-03	< 0.01	2.4E-03	0.07
Intermittent Pneumatic Devices ⁴	Gas	13.5	30		2.4E-03	0.01	< 0.01	3.3E-03	0.10
			Emission Totals:	63.65	0.01	0.02	<0.01	0.01	0.29

¹ U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAPx 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

GHG Fugitive Emissions from Component Leaks

		GHG Emission			
		Factor ¹	CH ₄ Emissions ^{2,3}	CO ₂ Emissions ^{2,3}	CO ₂ e Emissions ⁴
Component	Component Count	(scf/hr/component)	(tpy)	(tpy)	(tpy)
Pumps	11	0.01	0.02	1.0E-04	0.38
Compressor	0	4.17			
Valves	294	0.027	1.16	0.01	29.06
Pressure Relief Devices	22	0.04	0.13	8.5E-04	3.15
Open-Ended Lines	20	0.061	0.17	1.2E-03	4.35
Connectors	1,289	0.003	0.57	3.8E-03	14.15
Intermittent Pneumatic Devices	30	6	8.78	0.06	219.66
	Total		10.83	0.07	270.76

¹ Population emission factors for gas service in the Eastern U.S. from Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production, 40 CFR 98, Subpart W (Table W-6 for compressor). Pneumatic assumes operation 1/3 of the year.

² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

1

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

Mole fractions of CH₄ and CO₂ based on gas analysis:

79% CO₂: 0.20%

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

Carbon Dioxide (CO2): 25

 $CH_{4:}$

Methane (CH₄):

 Company Name:
 EQT Production, LLC

 Facility Name:
 OXF 150 Pad

 Project Description:
 G70-C Application

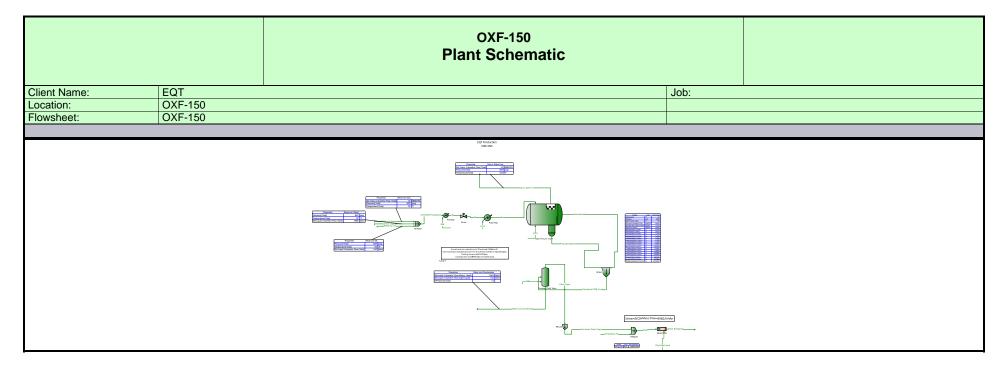
Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

Unpaved Road	s: E (lb/VMT) =	$= k(s/12)^{a}(W/3)^{b})^{*}$	[(365-p)/365]	
	PM	PM_{10}	PM _{2.5}	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
a	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy) PM ₁₀) PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	1.02 1.02	4,465 200	9,150 410	0 0	19.60 0.31	4.99 0.08	0.50 0.01
Total Potential Emissions								19.91	5.07	0.51


EQT Production, LLC OXF 150 Pad Company Name: Facility Name: **Project Description:** G70-C Application

-

Gas Analysis
Gas Analysis

Sample Location: Sample Date: HHV (Btu/scf):	OXF 121 Gas Analysis 5/29/2013 1,216	Note: A conservatively	low BTU content of 1,0	050 was used for calcula	ations.
Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.195	44.01	0.09	0.00	0.420
Nitrogen Methane	0.532 78.965	28.01 16.04	0.15 12.67	0.01 0.62	0.729 61.983
Ethane	13.780	30.07	4.14	0.20	20.278
Propane	4.195	44.10	1.85	0.09	9.053
Isobutane	0.507	58.12	0.29	0.01	1.442
n-Butane	1.013	58.12	0.59	0.03	2.881
Isopentane	0.249	72.15	0.18	0.01	0.879
n-Pentane	0.239	72.15	0.17	0.01	0.844
Cyclopentane	< 0.001	70.1	0.0	0.0	0.000
n-Hexane	0.073	86.18	0.06	0.00	0.308
Cyclohexane	0.011	84.16	0.01	0.00	0.045
Other Hexanes	0.113	86.18	0.10	0.00	0.477
Heptanes	0.079	100.21	0.08	0.00	0.387
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000
2,2,4-Trimethylpentane	0.031	114.23	0.04	0.00	0.173
Benzene*	0.002	78.11	0.00	0.00	0.008
Toluene*	0.004	92.14	0.00	0.00	0.018
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000
Xylenes*	0.002	106.16	0.00	0.00	0.010
C8 + Heavies	0.010	130.80	0.01	0.00	0.064
Totals	100.000		20.43	1.00	100

TOC (Total)	99.27	98.85
VOC (Total)	6.53	16.59
HAP (Total)	0.11	0.52

Client Name:	EQT	Process St All S	reams Report treams by Total Phase			rage i o o
Client Name: Location:	OXF-150			Job:		
Flowsheet:	OXF-150					
		Conn	ections			
		Combined	Combined PW	Gas to Sales	Produced	Reservoir Gas
From Diook		Flash Vapor MIX-100	& Cond MIX-101	Line	Water High Pressure	
From Block		MIX-100	MIX-101	High Pressure Tower	Tower	
To Block		MIX-105	Produced Fluid		MIX-101	MIX-102
			Tanks			
			omposition		Des la se d	December 200
Mole Fraction		Combined Flash Vapor	Combined PW & Cond	Gas to Sales Line	Produced Water	Reservoir Gas
Nitrogen		0.00101085	5.17637E-06	0.00529365	1.52342E-06	0.00532 *
Methane		0.375493	0.00194325	0.786266	0.000418201	0.78965 *
CO2		0.00442145	2.56049E-05	0.00193453	1.71997E-05	0.00195 *
Ethane Propane		0.23243	0.00127498	0.137466 0.0419959	6.93123E-05 1.79516E-05	0.1378 *
Isobutane		0.0341653	0.000299775	0.00513479	7.5987E-05	0.00507 *
n-Butane		0.077928	0.000810271	0.0102842	3.57215E-06	0.01013 *
Isopentane		0.0239283	0.000468511	0.00263106	4.88481E-07	0.00249 *
n-Pentane		0.023123	0.000568077	0.00250902	4.73339E-07	0.00239 *
n-Hexane		0.00709839	0.00051478	0.0008149	5.77231E-08	0.00073 *
Methylcyclopentar	le	0.000276276	0 2.1763E-05	0 3.06232E-05	0 9.77375E-07	0 * 2E-05 *
Benzene Cyclohexane		0.000276276	5.39944E-05	6.67258E-05	6.55344E-08	0.00011 *
n-Heptane		0.00724905	0.00161508	0.00100505	4.38458E-08	0.00079 *
n-Octane		0.00205929	0.00151619	0.000351221	1.267E-08	3E-05 *
n-Nonane		0.000406876	0.000965777	8.48335E-05	7.77809E-09	4E-05 *
n-Decane		0.000450549	0.00345751	0.000119948	6.74595E-09	3E-05 *
n-Undecane Dodecane		0	0	0	0	0 *
Water		0.0237586	0.98421	0.00257964	0.999467	0 *
Triethylene Glycol		0	0.00421	0.00207004	0.000407	0 *
Oxygen		0	0	0	0	0 *
Argon		0	0	0	0	0 *
Carbon Monoxide		0	0	0	0	0 *
Isohexane		0.0107499	0.000571787	0.00118893	0 9.6954E-08	0.00113
3-Methylpentane		0	0.000071707	0.00110000	0.00042.00	0.00110
Neohexane		0	0	0	0	0 *
2,3-Dimethylbutan		0	0	0	0	0 *
Methylcyclohexan	e	0	0	0	0	0 *
Isooctane Decane, 2-Methyl-		0.00104982	0.000215506	0.000141634	1.29364E-09 0	0.00031 *
Toluene		0.000510541	0.00012999	6.72555E-05	1.5759E-06	4E-05 *
m-Xylene		0.000185945	0.000185185	3.12539E-05	5.83162E-07	2E-05 *
Ethylbenzene		1.99968E-05	1.65771E-05	3.2381E-06	5.66748E-08	0 *
		Combined Flash Vapor	Combined PW & Cond	Gas to Sales Line	Produced Water	Reservoir Gas
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen		0.126052	0.126778	163.507	0.0367412	163.633
Methane CO2		<u>26.8144</u> 0.866176	27.2554 0.985197	13907.7 93.8724	5.77595 0.651679	13909.1 *
Ethane		31.1106	33.5178	4557.53	1.79431	4549.5
Propane		33.9761	43.571	2041.82	0.681498	2031.06
Isobutane		8.83941	15.2332	329.064	0.0380232	323.552
n-Butane		20.1619	41.1743	659.063	0.178747	646.467
Isopentane		7.68488	29.5531	209.303	0.030342	197.253
n-Pentane		7.42622	35.8335	199.594	0.0294015	189.331
n-Hexane		2.72294	38.7845	77.4287	0.00428253	69.0718

* User Specified Values ? Extrapolated or Approximate Values

Г

Dotation: OVE-150 Strasheet: OXF-150 Assa Flow Combined Bh/ Bh/ Bh/ Bh/ Bh/ Bh/ Bh/ Bh/ Bh/ Bh/				All St	reams Report treams by Total Phase			
Iowaheet OxF-150 Combined PW Ibh Gas to Sales & Condition Produced Water Reservoir Gas Burk Isea Flow 0.00 8.00 Gas to Sales Burk Produced Water Reservoir Gas Burk Servoirsanc 0.221131 3.37267 6.119774 10.00774331 10.1966 Octane 1.0471 151.419 41.2354 0.00724331 66.1975 -Honsane 0.225291 108.294 11.9966 0.00026341 4.8668 -Honsane 0.225291 150.16 51.2490 150.016 0 0 -Honsane 0.225291 150.016 51.2406 150.016 0	Client Name:					Job:	1	
Combined Flash Sport Combined PW 8 cond Ibh Gas to Sales Line Produced Bh Reservoir Gas Ibh Sarzane 0.0900529 1.48024 2.03744 0.0907722 1.71531 Serzane 0.020133 3.972782 1.01146 1.01471 1.01471 0.0417433 1.01466 Nonane 0.223312 1.00244 11.3966 0.00058444 5.63266 Doctane 0.232211 1008.244 11.3966 0.00058444 5.63266 Doctane 0.232231 100.2441 11.3966 0.00058444 6.6826 Doctane 0.232211 1008.244 11.3966 0.00058444 6.0868 Undecane 0 0 0 0 0 0 0 Status 0.000 0 0 0 0 0 0 0 Status 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Location:							
Fiesh Vapor Fiesh Vapor Sc Ord Line Water Ibh Berzene 0.0960573 1.48624 2.63744 0.065772 1.71531 Sychlexane 0.221333 3.97224 6.19173 0.00172424 8.61166 Ocloanse 0.12231 151.574 4.12524 8.61166 Ocloanse 0.223356 44.30.096 118.8172 0.00022541 4.68868 Undecane 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00022541 4.68868 0.00022541 4.68868 0	Flowsheet:	OXF-150						
Quebnazane 0.221313 3.97287 6.19173 0.0474431 10.1463 Notane 1.0471 151.419 44.2354 0.00124601 3.76282 Notane 0.232291 108.244 11.9666 0.000862341 4.8668 Decane 0.232521 108.244 11.9666 0.000862341 4.8668 Decane 0 0 0 0 0 0 Undecane 0 0 0 0 0 0 0 Undecane 0 0 0 0 0 0.000862341 4.8668 Undecane 0	Mass Flow		Flash	Vapor	& Cond	Line	Water	
sheptane 3.2335 141.49 111.04 0.00372243 86.9156 Nonane 0.232291 108.294 11.9966 0.00378243 468.9156 Nonane 0.232291 108.294 11.9966 0.003985845 5.63286 Undecane 0 <td< td=""><td>Benzene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Benzene							
Ocisane 1.0471 151.419 44.2354 0.00124601 3.76262 Decane 0.28536 430.996 118.8172 0.00026341 4.68688 Decane 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Decane 0.28536 430.086 18.8172 0.000828341 4.66668 Dodecane 0	n-Octane							
Undecane 0<	n-Nonane		0.	.232291			0.000858845	5.63286
Decesane 0<	n-Decane		0.					
Valuer 1.90527 155018 512408 155016 0 Dxygen 0 <				-			-	
Description O <tho< th=""> O</tho<>					-	-	-	-
Daygen 0 0 0 0 0 0 0 Jarbon Monoxide 0								
vigon 0 0 0 0 0 0 0 Jackon Monoidae 0	Oxygen			-	-	-	-	-
Decision 0<	Argon			0		0	0	
sohesane 4.12367 43.0795 112.967 0.0071931 106.919 Veldetylperlane 0	Carbon Monoxide	e			-	-		-
Methylpentane 0 <	Cyclopentane			•	-	•	v	-
solnestrybutane 0			· · · · · · · · · · · · · · · · · · ·					
3-Dimethylputane 0	Neohexane			-	-	-	-	-
dethylogolnexane 0		ine		÷	-		-	
Decane_2-Methyl- 0 0 0 0 0 0 Toluene 0.209395 10.4714 6.83255 0.125007 4.04665 Txylene 0.00945011 1.53866 0.379041 0.00518011 0 Volumetric Flow Flash Vapor & Combined Flash Vapor & Combined Flash Vapor & Combined Flash Vapor & Reservoir Gas ft*3/h Valuence 620.745 0.176102 12434.6 0.0028873 5015.35 CO2 7.28259 0.00156178 28.7521 0.00100729 41.4668 Valuene 380.685 0.147012 12434.6 0.028873 5015.35 Tibhane 380.685 0.149049 1889.4 0.00010081 953737 Tibhane 380.685 0.149049 1889.4 0.00010094 0.38416 vButane 55.1778 0.0550803 54.371 0.00010094 0.38416 vButane 36.3929 0.116573 21.0006 7.18097E-06 -5.27225 Pertane 11.2591 0				0	0	0	0	0
Outene 0.209395 10.4714 6.83255 0.125007 4.04665 Nytene 0.0878741 17.1866 3.65848 0.0533013 2.33144 Ettylenzene 0.00845011 1.53866 0.379041 0.00518011 0 Olumetric Flow ft*3/h gpm gtt<3/st S0.00160817 S0.01805 S0.01303 S0.01303 S0.01317 S0.01805 S0.1317 S0.001805 S0.1317 S0.001805 S0.1317 S0.001805 S0.1317 S0.001805 S0.1317 S0.001805	Isooctane		0.					
n-Xylene 0.0878741 17.1886 3.65848 0.0033013 2.33134 Ethylbenzene 0.00945011 1.53866 0.379041 0.00518011 0 Columetric Flow Flash Vapor ft*3/h Combined PW 8 Cond gpm Gas to Sales ft*3/h Produced Water gpm Reservoir Gas Mitrogen 16.7897 0.00045869 89.7857 0.000100729 41.4668 SO2 7.28259 0.0016178 2.87521 0.0010408 9.96737 Yopane 281.327 0.169049 1869.4 0.0010408 9.96737 Sobutane 55.1778 0.050803 54.3771 0.0001404 0.384116 Fbutane 125.638 0.144206 13.3124 0.0001404 0.384116 Sopentane 36.9928 0.116573 21.0086 7.18097E-05 -6.27225 Pentane 11.2591 0.119399 5.40839 9.3605E-06 -3.39274 Velchwane 0.47122 0.712643 0.471323 9.7087E-06 -5.27255 Pentane 0.629465		/ -		÷	-	-		-
Ethylbenzene 0.00945011 1.53866 0.379041 0.00518011 0 Combined Flash Vapor ft*3/h Combined PW & Cond gpm Gas to Sales Line ft*3/h Produced Water gpm Reservoir Gas Volumetric Flow 1.67897 0.000453689 89.7857 0.00010729 41.4668 dethane 620.745 0.176102 12434.6 0.0288873 5015.35 SO2 7.28259 0.0156178 28.7521 0.0014008 9.95737 Thane 380.685 0.149049 1869.4 0.00190055 64.538 sobutane 55.1778 0.0550803 54.3771 0.000498406 -6.5461 Butane 125.638 0.144206 103.124 0.000488406 -6.5461 Sopentane 11.2591 0.119399 54.0839 9.33050E-06 -3.33274 Hetxane 11.2591 0.119399 54.0839 9.33050E-06 -3.33274 Aethylociopentane 0.43114 0.0033371 0.234612 0.00124024 -0.072475 Dyclohexane 0.441144 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Columetric Flow Combined ft*3/h Combined PW gpm Gas to Sales thing Produced Water Reservoir Gas Volumetric Flow 16.7897 0.000436889 89.7857 0.00010729 14.4668 Methane 620.745 0.176102 12434.6 0.00208373 5015.35 CO2 7.28259 0.0016178 28.7521 0.00100498 9.95737 Stinane 380.6865 0.149049 1869.4 0.000100291 64.538 Yopane 281.527 0.169086 497.785 0.000100291 63.3327 Sobutane 55.1778 0.0550803 54.3771 0.00048406 -6.54661 Bypentane 125.638 0.144206 103.124 0.00010944 0.3384116 Bypentane 125.538 0.14206 103.124 0.00048406 -6.54661 Hexane 11.2591 0.119399 5.40839 9.93605E-06 -5.24276 Herane 0 0 0 0 0 0 0 Hetane 0.6394271 0.11								
Fiash Vapor (dumetric Flow Fiash Vapor (tr3/h) & Cond gpm Line (tr3/h) Water gpm tr3/h Witrogen 1.67897 0.000453689 89.7857 0.000100729 41.4668 Alethane 620.745 0.176102 12434.6 0.028873 5015.35 DO2 7.28259 0.00156178 28.7521 0.0010408 9.95737 Ethane 380.685 0.149049 1869.4 0.00610817 500.355 Propane 281.327 0.169086 497.785 0.001940055 64.538 Sobutane 125.638 0.144206 103.124 0.000468406 -6.54661 Pentane 38.6928 0.116573 21.0086 7.18097E-05 -6.21306 Hethylcyclopentane 0 0 0 0 0 0 0 Voldhexane 0.442105 0.43231 0.7022475 5.2225 0.00124024 -0.0722475 Velopentane 0.940272 0.0102643 0.471323 9.70876E-06 -6.29476 Voldnane <td< th=""><th>Enryibenzene</th><th></th><th>0.00</th><th>040011</th><th>1.00000</th><th>0.010041</th><th>0.00010011</th><th></th></td<>	Enryibenzene		0.00	040011	1.00000	0.010041	0.00010011	
litrogen 1.67897 0.00043689 89.7857 0.00010729 41.4668 Atethane 620.745 0.176102 12434.6 0.0288873 5015.35 CO2 7.28259 0.00156178 28.7521 0.000100408 9.95737 Sthane 380.685 0.149049 1869.4 0.000180055 64.538 Stoppane 281.327 0.169086 497.785 0.000180055 64.538 Sobutane 55.1778 0.0550803 54.3771 0.000468406 -6.54661 Bogentane 125.638 0.144206 103.124 0.000468406 -6.54661 Hetxane 11.2591 0.119399 5.40839 9.93605E-06 -5.339274 dethylcyclopentane 0.9441114 0.0033371 0.234612 0.000124024 -0.0722475 Velohxane 0.944272 0.0102643 0.471733 9.70876E-06 -5.29476 Velohxane 0.441114 0.0033371 0.234612 0.000124024 -0.252608 Velohane 0.321504 0.432717	Volumetric Flow	v	Flash	Vapor	& Cond	Line	Water	
CO2 7.28259 0.00156178 28.7521 0.0010408 9.95737 thane 380.685 0.149049 1869.4 0.00610817 500.335 soppane 281.327 0.169086 497.785 0.00198055 64.538 sobutane 55.1778 0.0550803 54.3711 0.00010094 0.384116 I-Butane 125.638 0.144206 103.124 0.000488406 -6.54861 I-Pentane 38.3329 0.0989346 22.6864 7.3974E-05 -6.21306 I-Pentane 36.9928 0.116573 21.0086 7.18097E-05 -6.21306 I-Hexane 0 0 0 0 0 0 0 Syclopertane 0.940272 0.010633 0.471323 9.70876E-06 -0.247609 I-Heptane 11.4109 0.431963 4.9099 8.48709E-06 -5.29476 I-Octane 3.21504 0.432717 1.18085 2.70698E-06 -0.252608 I-Nonane 0.629465 0.300768 0.131468	Nitrogen							41.4668
Ethane 380.685 0.149049 1669.4 0.00610817 500.335 bropane 281.327 0.169086 497.785 0.00198055 64.538 sobutane 55.1778 0.0550803 54.3711 0.0001094 0.384116 h-Butane 125.638 0.144206 103.124 0.000468406 -6.54661 sopentane 38.3329 0.0969346 22.6864 7.3974E-05 -6.21306 h-Pentane 38.6928 0.116573 21.0086 7.18097E-05 -6.21306 h-Hexane 11.2591 0.119399 5.40339 9.9305E-06 -3.3274 Aethylcyclopentane 0 0 0 0 0 0 benzene 0.441114 0.00333371 0.234612 0.00124024 -0.0722475 Vyclohexane 0.940272 0.0102643 0.471323 9.70876E-06 -5.29476 -Voctane 3.21504 0.432717 1.18085 1.82738E-06 -0.252608 N-Nonane 0.629465 0.300768 0.131468	Methane							5015.35
Propane 281.327 0.169086 497.785 0.00198055 64.538 sobutane 55.1778 0.0550803 54.3771 0.0001094 0.384116 butane 125.638 0.144206 103.124 0.000468406 6-6.54661 sopentane 38.3329 0.0969346 22.6864 7.3974E-05 -5.72225 h-Pentane 36.9928 0.116573 21.0086 7.18097E-05 -6.21306 h-Hexane 11.2591 0.119399 5.40839 9.93805E-06 -3.39274 Aethylcyclopentane 0 0 0 0 0 0 Syclohexane 0.940272 0.0102643 0.471323 9.70876E-06 -0.425608 h-Nonane 0.629465 0.300768 0.131468 1.82138E-06 -0.252608 h-Nonane 0.629465 0.300768 0.131468 1.82138E-06 -0.362409 h-Undecane 0 0 0 0 0 0 0 bodgecane 0 0 0 <					0.00156178	28,7521		
sobutane 55.1778 0.0550803 54.3771 0.0001094 0.384116 HButane 125.638 0.144206 103.124 0.000468406 -6.54661 Sopentane 38.3329 0.0969346 22.6864 7.3974E-05 -5.72225 HPentane 36.9928 0.116573 21.0086 7.18097E-05 -6.21306 Hetnylcyclopentane 0 0 0 0 0 0 dethylcyclopentane 0.441114 0.00333371 0.234612 0.000124024 -0.0722475 Cyclohexane 0.940272 0.0102643 0.471323 9.70876E-06 -0.457609 Helptane 11.4109 0.419663 4.9099 8.48709E-06 -0.252608 Honane 0.629465 0.300768 0.131468 1.82138E-06 -0.417402 Hocane 0 0 0 0 0 0 0 Hocane 0 0.300768 0.131468 1.82138E-06 -0.417402 Hocane 0 0 0					0.4.400.40			
Heatane 125.638 0.144206 103.124 0.000468406 -6.54661 Sopentane 38.3329 0.0969346 22.6864 7.3974E-05 -5.72225 Pentane 36.9928 0.116573 21.0086 7.18097E-05 -6.21306 Hexane 11.2591 0.119399 5.40839 9.93605E-06 -3.39274 dethylcyclopentane 0 0 0 0 0 0 bezzene 0.441114 0.0033371 0.236612 0.000124024 -0.0722475 cyclohexane 0.940272 0.0102643 0.471323 9.70876E-06 -0.252668 -Nonane 3.21504 0.432717 1.18085 2.70698E-06 -0.252668 -Nonane 0.629465 0.300768 0.131468 1.82138E-06 -0.3164296 -Undecane 0 0 0 0 0 0 Ocdeane 0 0 0 0 0 0 0 Vater 39.1921 31.1879 39.1499						1869.4	0.00610817	500.335
sopentane 38.3329 0.0969346 22.6864 7.3974E-05 -5.72225 i-Pentane 36.9928 0.116573 21.0086 7.18097E-05 -6.21306 h-Hexane 11.2591 0.119399 5.40839 9.93605E-06 -3.39274 Aethylcyclopentane 0 0 0 0 0 0 0 Benzene 0.441114 0.00333371 0.234612 0.000124024 -0.0722475 Cyclohexane 0.940272 0.010643 0.471323 9.70876E-06 -5.29476 i-Actane 3.21504 0.432717 1.18085 2.70698E-06 -0.252608 i-Nonane 0.629465 0.300768 0.131468 1.82138E-06 -0.417402 i-Decane 0.691419 1.17193 -0.0179169 1.724518 0 i-Undecane 0 0 0 0 0 0 0 i-Undecane 0 0 0 0 0 0 0 0 i-tedecane 0				281.327	0.169086	1869.4 497.785	0.00610817 0.00198055	500.335 64.538
h-Hexane 11.2591 0.119399 5.40839 9.93605E-06 -3.39274 Methylcyclopentane 0	n-Butane			281.327 55.1778	0.169086 0.0550803	1869.4 497.785 54.3771	0.00610817 0.00198055 0.00010094	500.335 64.538 0.384116
Methylcyclopentane 0				281.327 55.1778 125.638 38.3329	0.169086 0.0550803 0.144206 0.0969346	1869.4 497.785 54.3771 103.124 22.6864	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05	500.335 64.538 0.384116 -6.54661 -5.72225
Benzene 0.441114 0.00333371 0.234612 0.000124024 -0.0722475 Cyclohexane 0.940272 0.0102643 0.471323 9.70876E-06 -0.467609 I-Heptane 11.4109 0.419663 4.9099 8.48709E-06 -5.29476 I-Octane 3.21504 0.432717 1.18085 2.70698E-06 -0.252608 I-Nonane 0.629465 0.300768 0.131468 1.82138E-06 -0.364296 I-Undecane 0 0 0 0 0 0 I-Undecane 0 0 0 0 0 0 Oddecane 0 0 0 0 0 0 0 Vater 39.1921 31.1879 39.1499 31.1881 0 0 Oxygen 0 0 0 0 0 0 0 Oxygen 0 0 0 0 0 0 0 Oxygen 0 0 0 0	n-Butane Isopentane n-Pentane			281.327 55.1778 125.638 38.3329 36.9928	0.169086 0.0550803 0.144206 0.0969346 0.116573	1869.4 497.785 54.3771 103.124 22.6864 21.0086	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306
Cyclohexane 0.940272 0.0102643 0.471323 9.70876E-06 -0.467609 1-Heptane 11.4109 0.419663 4.9099 8.48709E-06 -5.29476 0-Octane 3.21504 0.432717 1.18085 2.70698E-06 -0.252608 Nonane 0.629465 0.300768 0.131468 1.82138E-06 -0.417402 1-Decane 0.691419 1.17193 -0.0179169 1.72451E-06 -0.364296 1-Undecane 0 0 0 0 0 0 0 0-decane 0	Isopentane n-Pentane n-Hexane			281.327 55.1778 125.638 38.3329 36.9928 11.2591	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274
I-Heptane 11.4109 0.419663 4.9099 8.48709E-06 -5.29476 I-Octane 3.21504 0.432717 1.18085 2.70698E-06 -0.252608 I-Nonane 0.629465 0.300768 0.131468 1.82138E-06 -0.417402 I-Decane 0.691419 1.17193 -0.0179169 1.72451E-06 -0.364296 I-Undecane 0 0 0 0 0 0 0 Odecane 0 0 0 0 0 0 0 0 0 Vater 39.1921 31.1879 39.1499 31.1881 0 0 Xrgon 0 0 0 0 0 0 0 Orgon 0 0 0 0 0 0 0 Zathon Monoxide 0 0 0 0 0 0 0 Sohexane 17.0801 0.134119 8.3632 1.67152E-05 -4.70031 Methylpentane	Isopentane n-Pentane n-Hexane Methylcyclopenta	ane		281.327 55.1778 125.638 38.3329 36.9928 11.2591 0	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0
D-Octane 3.21504 0.432717 1.18085 2.70698E-06 -0.252608 I-Nonane 0.629465 0.300768 0.131468 1.82138E-06 -0.417402 I-Decane 0.691419 1.17193 -0.0179169 1.72451E-06 -0.364296 I-Undecane 0 0 0 0 0 0 0 Obdecane 0	Isopentane n-Pentane n-Hexane	ane		281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475
h-Decane 0.691419 1.17193 -0.0179169 1.72451E-06 -0.364296 h-Undecane 0	Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene	ane	0.0	281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609
In-Undecane In-Undecane <thin-undecane< th=""> <thin-undecane< th=""></thin-undecane<></thin-undecane<>	Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane	ane		281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 2.70698E-06	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608
Dodecane 0<	Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane	ane		281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717 0.300768	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085 0.131468	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 2.70698E-06 1.82138E-06	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402
Vater 39.1921 31.1879 39.1499 31.1881 0 Triethylene Glycol 0<	Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane	ane		281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 940272 11.4109 3.21504 .629465 .691419	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085 0.131468 -0.0179169	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 2.70698E-06 1.82138E-06 1.72451E-06	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296
Triethylene Glycol 0	Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane	ane		281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193 0	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085 0.131468 -0.0179169 0	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 2.70698E-06 1.82138E-06 1.72451E-06 0	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.252608 -0.417402 -0.364296 0
Oxygen 0 <td>Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane</td> <td>ane</td> <td></td> <td>281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0 0 0</td> <td>0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193 0 0</td> <td>1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085 0.131468 -0.0179169 0 0</td> <td>0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 2.70698E-06 1.82138E-06 1.72451E-06 0 0 0</td> <td>500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0</td>	Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane	ane		281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0 0 0	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193 0 0	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085 0.131468 -0.0179169 0 0	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 2.70698E-06 1.82138E-06 1.72451E-06 0 0 0	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0
Carbon Monoxide 0	Isopentane n-Pentane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane Dodecane Water			281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0 0 39.1921	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193 0 0 0 0 31.1879	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085 0.131468 -0.0179169 0 0 39.1499	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 2.70698E-06 1.82138E-06 1.72451E-06 0 0 0 31.1881	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0
Cyclopentane 0 <t< td=""><td>Isopentane n-Pentane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane Dodecane Water Triethylene Glyco Oxygen</td><td></td><td></td><td>281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0 0 39.1921 0 0 0</td><td>0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193 0 0 0 31.1879 0 0</td><td>1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085 0.131468 -0.0179169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 1.82138E-06 1.72451E-06 0 0 31.1881 0 0 0</td><td>500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0</td></t<>	Isopentane n-Pentane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane Dodecane Water Triethylene Glyco Oxygen			281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0 0 39.1921 0 0 0	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193 0 0 0 31.1879 0 0	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085 0.131468 -0.0179169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 1.82138E-06 1.72451E-06 0 0 31.1881 0 0 0	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0
Description 17.0801 0.134119 8.3632 1.67152E-05 -4.70031 3-Methylpentane 0	Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Doctane n-Doceane Dodecane Water Triethylene Glycc Oxygen Argon			281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0 0 39.1921 0 0 0 0 0 0 0 0 0 0 0 0 0	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193 0 0 0 31.1879 0 0 0	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085 0.131468 -0.0179169 0 </td <td>0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 1.82138E-06 1.72451E-06 0 0 0 31.1881 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0 0</td>	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 1.82138E-06 1.72451E-06 0 0 0 31.1881 0 0 0 0 0 0 0 0 0 0 0 0 0	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0 0
3-Methylpentane 0	Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Doctane n-Decane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide			281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0 0 39.1921 0 0 0 0 0 0 0 0 0 0 0 0 0	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193 0 0 0 31.1879 0 0 0 0 0 0	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085 0.131468 -0.0179169 0 </td <td>0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 1.82138E-06 1.72451E-06 0 0 0 31.1881 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0 0 0 0 0</td>	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 1.82138E-06 1.72451E-06 0 0 0 31.1881 0 0 0 0 0 0 0 0 0 0 0 0 0	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0 0 0 0 0
Neohexane 0	Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Doctane n-Doceane Dodecane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide Cyclopentane			281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0 0 39.1921 0 0 0 0 0 0 0 0 0 0 0 0 0	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193 0 0 0 31.1879 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085 0.131468 -0.0179169 0 </td <td>0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 1.82138E-06 1.72451E-06 0 0 0 0 31.1881 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 1.82138E-06 1.72451E-06 0 0 0 0 31.1881 0 0 0 0 0 0 0 0 0 0 0 0 0	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Methylcyclohexane 0	Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Docane N-Undecane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide Cyclopentane Isohexane	DI E		281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0 0 39.1921 0 0 0 0 17.0801	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193 0 0 0 31.1879 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085 0.131468 -0.0179169 0 0 39.1499 0 <	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 2.70698E-06 1.82138E-06 1.72451E-06 0 0 0 0 0 0 0 0 0 0 0 0 0	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sooctane 1.6504 0.0624323 0.69003 2.7362E-07 -2.04722 Decane, 2-Methyl- 0 0 0 0 0 0	Isopentane n-Pentane n-Hexane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Dotane n-Doctane n-Docane n-Undecane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane	DI E		281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0 0 39.1921 0 0 0 0 0 0 0 0 0 0 0 0 0	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193 0 0 0 31.1879 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1869.4 497.785 54.3771 103.124 22.6864 21.0086 5.40839 0 0.234612 0.471323 4.9099 1.18085 0.131468 -0.0179169 0 </td <td>0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0 0.000124024 9.70876E-06 8.48709E-06 2.70698E-06 1.82138E-06 1.72451E-06 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0 0.000124024 9.70876E-06 8.48709E-06 2.70698E-06 1.82138E-06 1.72451E-06 0 0 0 0 0 0 0 0 0 0 0 0 0	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decane, 2-Methyl- 0 0 0 0 0 0	Isopentane n-Pentane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbuta	bl e e		281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0 3.9.1921 0 0 0 0 0 0 0 0 0 0 0 0 0	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193 0 0 0 31.1879 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 1869.4\\ 497.785\\ 54.3771\\ 103.124\\ 22.6864\\ 21.0086\\ 5.40839\\ 0\\ 0\\ 0.234612\\ 0.471323\\ 4.9099\\ 1.18085\\ 0.131468\\ -0.0179169\\ 0\\ 0\\ 0\\ 39.1499\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 2.70698E-06 1.82138E-06 1.72451E-06 0 0 0 0 31.1881 0 0 0 0 1.67152E-05 0 0 0 0 0 0 0 0 0 0 0 0 0	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Isopentane n-Pentane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbuta	bl e e		281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0 0 39.1921 0 0 0 0 0 17.0801 0 0 0 0 0 0 0 0 0 0 0 0 0	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.432717 0.300768 1.17193 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 1869.4\\ 497.785\\ 54.3771\\ 103.124\\ 22.6864\\ 21.0086\\ 5.40839\\ 0\\ 0\\ 0.234612\\ 0.471323\\ 4.9099\\ 1.18085\\ 0.131468\\ -0.0179169\\ 0\\ 0\\ 0\\ 39.1499\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 2.70698E-06 1.82138E-06 1.72451E-06 0 0 0 31.1881 0 0 0 1.67152E-05 0 0 0 0 0 0 0 0 0 0 0 0 0	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
User Specified Values ProMax 3.2.15289.0 Licensed to Trinity Consultants, Inc. and Affiliate	Isopentane n-Pentane Methylcyclopenta Benzene Cyclohexane n-Heptane n-Octane n-Octane n-Docane n-Undecane Dodecane Water Triethylene Glycc Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbuta Methylcyclohexai Isooctane	ol e ne ne		281.327 55.1778 125.638 38.3329 36.9928 11.2591 0 .441114 .940272 11.4109 3.21504 .629465 .691419 0 0 39.1921 0 0 0 0 17.0801 0 0 0 17.0801 0 0 0 0 0 0 0 0 0 0 0 0 0	0.169086 0.0550803 0.144206 0.0969346 0.116573 0.119399 0 0.00333371 0.0102643 0.419663 0.419663 0.419663 0.432717 0.300768 1.17193 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 1869.4\\ 497.785\\ 54.3771\\ 103.124\\ 22.6864\\ 21.0086\\ 5.40839\\ 0\\ 0\\ 0.234612\\ 0.471323\\ 4.9099\\ 1.18085\\ 0.131468\\ -0.0179169\\ 0\\ 0\\ 0\\ 39.1499\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0.00610817 0.00198055 0.00010094 0.000468406 7.3974E-05 7.18097E-05 9.93605E-06 0 0.000124024 9.70876E-06 8.48709E-06 2.70698E-06 1.82138E-06 1.72451E-06 0 0 0 31.1881 0 0 0 1.67152E-05 0 0 0 2.7362E-07	500.335 64.538 0.384116 -6.54661 -5.72225 -6.21306 -3.39274 0 -0.0722475 -0.467609 -5.29476 -0.252608 -0.417402 -0.364296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* User Specified Values ? Extrapolated or Approximate Values

Licensed to Trinity Consultants, Inc. and Affiliates

		All S	reams Report treams by Total Phase						
Client Name: EQT	Į			Job:	<u> </u>				
Location: OXF-150									
Flowsheet: OXF-150									
				ł					
Volumetric Flow		Combined Flash Vapor ft^3/h	Combined PW & Cond gpm	Gas to Sales Line ft^3/h	Produced Water gpm	Reservoir Gas ft^3/h			
Toluene		0.808078	0.0237807	0.395467	0.000233416	-0.227243			
m-Xvlene		0.291894	0.0391166	0.135027	9.87012E-05	-0.149181			
Ethylbenzene		0.0314257	0.00349196	0.0146896	9.54094E-06	-0.149101			
Eurybenzene		0.0014201	0.00040100	0.0140030	5.54054L 00	0			
Stream Properties									
Property	Units	Combined Flash Vapor	Combined PW & Cond	Gas to Sales Line	Produced Water	Reservoir Gas			
Temperature	°F	70	100	100 *	100	75			
Pressure	psig	0.625	390	390 *	390	900			
Mole Fraction Vapor		1	0	1	0	0.999974			
Mole Fraction Light Liquid		0	0.0152778	0	1	2.61384E-05			
Mole Fraction Heavy Liquid		0	0.984722	0	0	0			
Mass Density	lb/ft^3	0.0927627	59.7932	1.4903	61.9279	4.00958			
Mass Flow	lb/h	151.714	16698.4	22626.7	15511.1	22438.3			
Vapor Volumetric Flow	ft^3/h	1635.5	279.269	15182.6	250.47	5596.17			
Liquid Volumetric Flow	gpm	203.907	34.818	1892.9	31.2275	697.704			
Std Vapor Volumetric Flow	MMSCFD	0.0405416	7.96267	10.042	7.84102	10			
Std Liquid Volumetric Flow	sgpm	0.679496	34.6361	133.007	31.0434	132.468			
Specific Gravity		1.17677	0.9587	0.708548	0.992927				
			14.8419		10.0523				
API Gravity									
API Gravity Net Ideal Gas Heating Value	Btu/ft^3	1775.88	69.6658	1119.27	0.565458	1117.55			

Remarks

		All St	reams Report reams y Total Phase		
Client Name:	EQT			Job:	
Location: Flowsheet:	OXF-150 OXF-150				
Flowsheet.	0XF-150				
		Comm	ections		
			ections		
From Block		Reservoir Oil			
To Block		 MIX-102			
10 21001					
		Stream C	omposition		
		Reservoir Oil			
Mole Fraction					
Nitrogen		0 *			
Methane		0.1033 *			
CO2		0.00092 *			
Ethane		0.08874 *			
Propane Isobutane		0.07913 * 0.02292 *			
n-Butane		0.02292			
Isopentane		0.03703 *			
n-Pentane		0.04103 *			
n-Hexane		0.03513 *			
Methylcyclopentane		0 *			
Benzene		0.00198 *			
Cyclohexane		0 *			
n-Heptane n-Octane		0.10614 * 0.10788 *			
n-Nonane		0.05741 *			
n-Decane		0.2005 *			
n-Undecane		0 *			
Dodecane		0 *			
Water		0 *			
Triethylene Glycol		0 *			
Oxygen		0 *			
Argon Carbon Monoxide		0 *			
Cyclopentane		0 *			
Isohexane		0.03661 *			
3-Methylpentane		0 *			
Neohexane		0 *			
2,3-Dimethylbutane		0 *			
Methylcyclohexane Isooctane		0.00027 *			
Decane, 2-Methyl-		0.00027			
Toluene		0.00924 *			
m-Xylene		0.0112 *			
Ethylbenzene		0.00116 *			
		Reservoir Oil			
Mass Flow		lb/h			
Nitrogen		0 *			
Methane		25.8055 *			
CO2		0.630487 *			
Ethane		41.5509 * 54.3348 *			
Propane Isobutane		20.7443 *			
n-Butane		53.7704 *			
Isopentane		41.603 *			
n-Pentane		46.0969 *			
n-Hexane		47.1414 *			
Methylcyclopentane		0 *			
Benzene		2.40837 *			
Cyclohexane		0 * 165.614 *			
n-Heptane n-Octane		191.892 *			
n-Nonane		114.658 *			
* User Specified Values			3.2.15289.0	Licens	sed to Trinity Consultants, Inc. and Affiliates

* User Specified Values ? Extrapolated or Approximate Values

		Process Streams All Stream Tabulated by Total P	S hase	
Client Name:	EQT		Job:	
Location:	OXF-150			
Flowsheet:	OXF-150			
Mass Flow		Reservoir Oil Ib/h		
n-Decane		444.227 *		
n-Undecane		0 *		
Dodecane		0 *		
Water	1	0 *		
Triethylene Glyco)	0 *		
Oxygen Argon		0 *		
Carbon Monoxide		0 *		
Cyclopentane	5	0 *		
Isohexane		49.1275 *		
3-Methylpentane		49.1275		
Neohexane		0 *		
2,3-Dimethylbuta	ne	0 *		
Methylcyclohexar		0 *		
Isooctane	-	0.480264 *		
Decane, 2-Methy	-	0 *		
Toluene		13.2573 *		
m-Xylene		18.5157 *		
Ethylbenzene		1.9177 *		
		Reservoir Oil		· [· · · · · · · · · · · · · · · · · ·
Volumetric Flow	1	gpm		
Nitrogen		0		
Methane		0.164455		
CO2		0.000935998		
Ethane		0.177988		
Propane		0.203271 0.0723755		
Isobutane n-Butane		0.0723755		
Isopentane		0.132315		
n-Pentane		0.145589		
n-Hexane		0.141316		
Methylcyclopenta	ine	0		
Benzene		0.00534535		
Cyclohexane		0		
n-Heptane		0.479415		
n-Octane		0.536163		
n-Nonane		0.311782		
n-Decane		1.18625		
n-Undecane		0		
Dodecane		0		
Water		0		
Triethylene Glyco		0		
Oxygen		0		
Argon		0		
Carbon Monoxide	9	0		
Cyclopentane		0		
Isohexane		0.148751		
3-Methylpentane Neohexane		0		
2,3-Dimethylbutar	no	0		
Aethylcyclohexar		0		
Isooctane		0.00135776		
Decane, 2-Methy	I-	0.00133778		
Toluene	1	0.0296862		
m-Xylene		0.0290802		
Ethylbenzene		0.0042889		
		0.0012000		

			All S	reams Report treams by Total Phase				
Client Name:	EQT	•			Jo	ob:		
Location:	OXF-150							
Flowsheet:	OXF-150							
			Stream	Properties				
Property		Units	Reservoir Oil	•			· [
Temperature		°F	75 *				•	· · · · ·
Pressure		psig	900 *					
Mole Fraction Vapor		· •	0					
Mole Fraction Light L			1					
Mole Fraction Heavy	[,] Liquid		0					
Mass Density		lb/ft^3	41.9391					
Mass Flow		lb/h	1333.78					
Vapor Volumetric Flo	w	ft^3/h	31.8027					
Liquid Volumetric Flo		gpm	3.96501					
Std Vapor Volumetri		MMSCFD	0.141823					
Std Liquid Volumetri	c Flow	sgpm	4.08333 *					
Specific Gravity			0.672435					
API Gravity			76.5036					
Net Ideal Gas Heatin	ng Value	Btu/ft^3	4363.51					
Net Liquid Heating V	alue	Btu/lb	19177.2					
Remarks								

Simulation Initiated on 5/24/2016 3:08:55 PM 20160523_EQT_OXF 150 Wellpad Calculation.pmx					Page 1 of 1	
		E	nergy Stream Repo	rt		
Client Name:	EQT			Job:		
Location:	OXF-150					
Flowsheet:	OXF-150					
			Energy Streams			
Energy Stream		Energy Rate	Power	From Block	(To Block
Pilot Heat Input		2.99988E+06 * Btu/h	1179 * hp			REAC-100
	÷					
Remarks						

ent Name: cation:	EQT OXF-150				Job:	
				Taul 4		
				Tank-1		
				ie [TotalLosses]		
Parameter		21.3086		Upper Bound		ton/yr
Lower Bound			ton/yr	* Enforce Bounds		False
			User Value	[WorkingLosses]		
Parameter		3.04645	ton/vr	Upper Bound		ton/yr
Lower Bound		0.01010	ton/yr	* Enforce Bounds		False
201101 200110			ton, ji			
			User Value	[StandingLosses]		
* Parameter		0.50498	ton/yr	Upper Bound		ton/yr
Lower Bound		_	ton/yr	* Enforce Bounds		False
			User Value	[LoadingLosses]		
Parameter		28.4454	ton/vr	Upper Bound		ton/yr
Lower Bound		2001	ton/yr	* Enforce Bounds		False
			·- • J·			
				[FlashingLosses]		
* Parameter		452.155	1	Upper Bound		ton/yr
Lower Bound			ton/yr	* Enforce Bounds		False

```
****
*
   Project Setup Information
*
* * * * * * * * * * * *
Project File : \\tsclient\Z\Client\EQT Corporation\West
Virginia\WV Wells\163901.0058 WV Wells 2016\OXF 149-150\02 Draft\2016-0307 OXF
149-150 Wellpad Application \Attachment N - Emission
Calculations\20160310_DRAFT_EQT_OXF14-150_Sand Sep Tank.ept
Flowsheet Selection : Oil Tank with Separator
Calculation Method : RVP Distillation
Control Efficiency : 0.0%
Known Separator Stream : Low Pressure Oil
Entering Air Composition : No
                    : OXF 150
Filed Name
Well Name
                    : Sand Separator Tank
Well ID
                    : OXF-149 Condensate Sample
Date
                    : 2016.03.10
*****
*
    Data Input
******
Separator Pressure: 320.00[psig]Separator Temperature: 60.00[F]Ambient Pressure: 14.70[psia]Ambient Temperature: 70.00[F]C10+ SG: 0.8024
C10+ SG
                    : 0.8024
                    : 210.576
C10+ MW
-- Low Pressure Oil
_____
  No.
       Component
                        mol %
      H2S
                        0.0000
  1
  2
       02
                        0.0000
  3
4
      CO2
                        0.0920
       N2
                         0.0000
                       10.3300
       C1
  5
    C2
C3
i-C4
                        8.8740
  6
                         7.9130
  7
                         2.2920
  8
      n-C4
                        5.9410
  9
  10
      i-C5
                         3.7030
  11
      n-C5
                        4.1030
       C6
  12
                         3.6610
       C7
  13
                        10.6140
                       10.7880
       C8
  14
       C9
  15
                         5.7410
                       20.0500
  16
       C10+
       Benzene
Toluene
  17
                         0.1980
                         0.9240
  18
      E-Benzene
Xylenes
n-C6
                        0.1160
  19
  20
                         1.1200
  21
                         3.5130
      224Trimethylp
  22
                        0.0270
-- Sales Oil
_____
Production Rate : 0.1[bbl/day]
Days of Annual Operation : 365 [days/year]
```

20160310_DRAFT_EQT_OXF150_Sand Sep Tank.txt 6/2/2016								
API Gravity : 56.11 Reid Vapor Pressure : 10.60[psia]								
**************************************	Results							
Emission Summar	У							
Item Page 1	Uncontrolled [ton/yr]							
TANK Total HAPs Total HC VOCs, C2+ VOCs, C3+	0.010 0.552 0.464 0.323	0.002 0.126 0.106	0.01 0.55 0.46	.0	0.002 0.126 0.106			
Uncontrolled Recov Vapor HC Vapor GOR	33.7500 x1E-3 33.6500 x1E-3	[MSCFD] [MSCFD] [SCF/bbl]						
Emission Compos	ition							
<pre>1 H2S 2 O2 3 CO2 4 N2 5 C1 6 C2 7 C3 8 i-C4 9 n-C4 10 i-C5 11 n-C5 12 C6 13 C7 14 C8 15 C9 16 C10+ 17 Benzene 18 Toluene 19 E-Benzene 20 Xylenes 21 n-C6 22 224Trimethylp Total</pre>	0.140 0.143			/yr] 0 2 0 8 0 3 5 3 6 2 7 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
Stream Data No. Component	 MW	T.D Oil	Flach Oil		Flash Gas W&S			
Gas Total Emissi		mol %	mol %	mol %	mol % mol			
1 H2S	34.80	% mol % mol 0.0000		0.0000	0.0000			
0.0000 0.0000 2 O2 0.0000 0.0000	32.00	0.0000	0.0000	0.0000	0.0000			
0.0000 0.0000 3 CO2 0.2695 0.3013	44.01	0.0920	0.0060	0.0001	0.3030			

20160310_DRAFT_EQT_OXF150_Sand Sep Tank.txt

6/2/2016

4 N2		28.01	0.0000	0.0000	0.0000	0.0000
0.0000 5 Cl	0.0000	16.04	10.3300	0.2188	0.0000	35.1483
9.8854 6 C2	33.8466	30.07	8.8740	1.1428	0.1436	27.8504
45.2926 7 C3	28.7492	44.10	7.9130	3.1683	2.6468	19.5591
26.2078	19.9017					
8 i-C4 4.0924	3.7575	58.12	2.2920	1.7024	1.6483	3.7393
9 n-C4 8.2786	7.7590	58.12	5.9410	5.2118	5.1424	7.7308
10 i-C5		72.15	3.7030	4.3039	4.3484	2.2280
2.3393 11 n-C5	2.2337	72.15	4.1030	5.0206	5.0902	1.8508
1.9436 12 C6	1.8556	86.16	3.6610	4.9381	5.0373	0.5262
0.5556	0.5277					
13 C7 0.4983	0.4692	100.20	10.6140	14.7477	15.0702	0.4677
14 C8 0.1451	0.1353	114.23	10.7880	15.1282	15.4674	0.1347
15 C9 0.0259	0.0224	128.28	5.7410	8.0709	8.2530	0.0222
16 C10+		210.58	20.0500	28.2185	28.8572	0.0001
0.0001 17 Benze		78.11	0.1980	0.2703	0.2759	0.0206
0.0219 18 Tolue		92.13	0.9240	1.2905	1.3191	0.0244
0.0261 19 E-Ben		106.17	0.1160	0.1629	0.1666	0.0009
0.0010 20 Xylen		106.17	1.1200	1.5732	1.6087	0.0075
0.0081 21 n-C6	0.0075	86.18	3.5130	4.7873	4.8865	0.3851
0.4077 22 224Tr	0.3862 imethylp	114.24	0.0270	0.0376	0.0384	0.0009
0.0010	0.0009					
MW 38.71	34.09		98.36	124.65	126.60	33.83
Strea	m Mole Ratio		1.0000	0.7105	0.6948	0.2895
	ng Value	[BTU/SCF]				1957.33
Gas G	01 1970.91 ravity	[Gas/Air]				1.17
	1.18 e Pt. @ 100F	[psia]	412.67	26.87	13.10	
Page 2 TANK						E&P
RVP @	100F Gravity @ 100F	[psia]	105.20 0.659	15.66 0.690	10.93 0.691	
Spec.	CIAVICY & 1001		0.000	0.020	0.001	

Certificate of Analysis :

13050027-001A

Company:	Gas Analytical Services
Well:	Oxford 149 Pad
Field:	EQT Midstream
Sample of:	Condensate
Conditions:	320 @ N.G.
Sampled by:	RM-GAS
Sample date:	4/29/2013
Remarks:	Cylinder No.: GAS
Remarks:	Well 512480

For: Gas Analytical Services Alan Ball PO Box 1028

Bridgeport, WV, 26330

Report Date:

5/13/2013

Analysis: (GPA 2186M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	10.330	16.043	1.686	0.3000	3.891
Carbon Dioxide	0.092	44.010	0.041	0.8180	0.035
Ethane	8.874	30.070	2.715	0.3562	5.271
Propane	7.913	44.097	3.551	0.5070	4.842
lso-butane	2.292	58.123	1.356	0.5629	1.666
N-butane	5.941	58.123	3.514	0.5840	4.162
Iso-pentane	3.703	72.150	2.719	0.6244	3.011
N-pentane	4.103	72.150	3.013	0.6311	3.302
i-Hexanes	3.661	86.177	3.170	0.6795	3.308
n-Hexane	3.513	85.648	3.083	0.6640	3.191
2,2,4 trimethylpentane	0.027	114.231	0.030	0.6967	0.031
Benzene	0.198	78.114	0.144	0.8846	0.123
Heptanes	10.614	97.459	10.576	0.7048	10.397
Toluene	0.924	92.141	0.795	0.8719	0.690
Octanes	10.788	107.237	11.986	0.7433	11.205
E-benzene	0.116	106.167	0.054	0.8718	0.100
M-,O-,P-xylene	1.120	106.167	1.207	0.8731	0.966
Nonanes	5.741	121.906	7.394	0.7646	6.765
Decanes Plus	20.050	210.576	42.966	0.8024	37.044
	100.000	-	100.000		100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.6917	0.8024
Api Gravity at 60 °F	73.054	44.854
Molecular Weight	98.266	210.576
Pounds per Gallon (in Vacuum)	5.767	6.690
Pounds per Gallon (in Air)	5.761	6.682
Cu. Ft. Vapor per Gallon @ 14.73 psia	22.324	12.028

Southern Petroleum Laboratories, Inc.

Certificate of Analysis : 13050027-001A

Company: Well: Field: Sample of: Conditions: Sampled by:	Gas Analytica Oxford 149 Pa EQT Midstrea Condensate 320 @ N.G. RM-GAS	ad		For:	Gas Analytical Alan Ball PO Box 1028 Bridgeport, W	
Sample date: Remarks: Remarks:	4/29/2013 Cylinder No.: 0 Well 512480	GAS		Report Da	te: 5	5/13/2013
Analysis: (GPA	2103M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen		0.000	28.013	0.000	0.8094	0.000
Methane		10.330	16.043	1.686	0.3000	3.891
Carbon Dioxide		0.092	44.010	0.041	0.8180	0.035
Ethane		8.874	30.070	2.715	0.3562	5.271
Propane		7.913	44.097	3.551	0.5070	4.842
lso-butane		2.292	58.123	1.356	0.5629	1.666
N-butane		5.941	58.123	3.514	0.5840	4.162
lso-pentane		3.703	72.150	2.719	0.6244	3.011

Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	10.330	16.043	1.686	0.3000	3.891
Carbon Dioxide	0.092	44.010	0.041	0.8180	0.035
Ethane	8.874	30.070	2.715	0.3562	5.271
Propane	7.913	44.097	3.551	0.5070	4.842
lso-butane	2.292	58.123	1.356	0.5629	1.666
N-butane	5.941	58.123	3.514	0.5840	4.162
Iso-pentane	3.703	72.150	2.719	0.6244	3.011
N-pentane	4.103	72.150	3.013	0.6311	3.302
Hexanes	7.174	85.648	6.253	0.6655	6.499
Heptanes Plus	49.578	97.459	75.152	0.7048	67.321
		3			
	100.000		100.000		100.000

Calculated Values	Total Sample	Heptanes Plus
Specific Gravity at 60 °F	0.6917	0.7740
Api Gravity at 60 °F	73.054	51.311
Molecular Weight	98.266	148.955
Pounds per Gallon (in Vacuum)	5.767	6.453
Pounds per Gallon (in Air)	5.761	6.446
Cu. Ft. Vapor per Gallon @ 14.73 psia	22.324	16.479
Standing-Katz Density (lb. / ft ³)		

Pai a

Southern Petroleum Laboratories, Inc.

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Station Name: Oxford 149 Pad Station Location: EQT Midstream Cylinder No: GAS Certificate of Analysis

Number: 2030-13050027-001A

May 07, 2013

Sampled By:RM-GASSample Of:CondensateSpotSample Date:04/29/2013 12:30Sample Conditions: 320 psig

Analytical Data

Test	Method	Result	Units	Detection L Limit Te	ab Analys ch. Date	
Color-Visual	Proprietary	STRAW	1000000	Α	AR 05/07/20	013
API Gravity @ 60° F	ASTM D-5002	60.09	ō	A	R 05/07/20	013
Specific Gravity @ 60/60° F	ASTM D-5002	0.7386		٨	R 05/07/20	013
Density @ 60° F	ASTM D-5002	0.7378	g/ml	Α	R 05/07/20	013
Shrinkage Factor	Proprietary	0.8679	•	Δ	R 05/07/20	013
Flash Factor	Proprietary	263.1562	Cu. Ft./S.T. Bbl	A	AR 05/07/20	013

Patti L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

Station Name: 512425

Cylinder No:

Analyzed:

Sample Point: Submeter

Certificate of Analysis Number: 2030-13050229-003A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

May 29, 2013

Alan Ball

GAS

Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Sampled By: RM-GAS Station Location: EQT Production Sample Of: Gas 05/20/2013 13:15 Sample Date: Sample Conditions: 379 psig Method: GPA 2286 05/29/2013 13:24:38 by CC

			Analyti	cal Data	×	
Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.532	0.729		GPM TOTAL C2+	5.661	
Carbon Dioxide	0.195	0.420				
Methane	78.965	61.996				
Ethane	13.780	20.278	3.697			
Propane	4.195	9.053	1.159			
Iso-Butane	0.507	1.442	0.166			
n-Butane	1.013	2.881	0.320			
lso-Pentane	0.249	0.879	0.091			
n-Pentane	0.239	0.844	0.087			
i-Hexanes	0.113	0.461	0.045			
n-Hexane	0.073	0.304	0.030			
Benzene	0.002	0.008	0.001			
Cyclohexane	0.011	0.044	0.004			
i-Heptanes	0.057	0.266	0.025			
n-Heptane	0.022	0.106	0.010			
Toluene	0.004	0.017	0.001			
i-Octanes	0.031	0.168	0.015			
n-Octane	0.003	0.017	0.002			
Ethylbenzene	NIL	NIL	NIL			
Xylenes	0.002	0.007	0.001			
i-Nonanes	0.003	0.027	0.002			
n-Nonane	0.001	0.006	0.001			
Decane Plus	0.003	0.047	0.004			
	100.000	100.000	5.661			

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330 Station Name: 512425 Sampler Station Location: EQT Production Sample Sample Point: Submeter Cylinder No: GAS Analyzed: 05/29/2013 13:24:38 by CC	Of: Gas Date: 05/20/2013 13:15 Conditions: 379 psig
Station Location: EQT ProductionSampleSample Point:SubmeterSampleCylinder No:GASSample	Of: Gas Date: 05/20/2013 13:15 Conditions: 379 psig
Cylinder No: GAS Sample	Conditions: 379 psig
Physical Properties Total C10+	
Calculated Molecular Weight 20.43 163.67	

5.6511

0.7077

0.9966

Pater L. Perro

Hydrocarbon Laboratory Manager

Quality Assurance:

Relative Density Real Gas

Compressibility Factor

	Certificate of Analysis Number: 2030-13050229-003A	Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520
Alan Ball		May 29, 2013

Sampled By:

Sample Date:

Sample Of:

RM-GAS

05/20/2013 13:15

Gas

Sample Conditions: 379 psig Method: GPA 2286

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Station Name:512425Station Location:EQT ProductionSample Point:SubmeterCylinder No:GASAnalyzed:05/29/2013 13:24:38 by CC

			Analy	tical Data		
Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen	0.532	0.729		GPM TOTAL C2+	5.661	
Carbon Dioxide	0.195	0.420		GPM TOTAL C3+	1.964	
Methane	78.965	61.996		GPM TOTAL iC5+	0.319	
Ethane	13.780	20.278	3.697			
Propane	4.195	9.053	1.159			
Iso-butane	0.507	1.442	0.166			
n-Butane	1.013	2.881	0.320			
Iso-pentane	0.249	0.879	0.091			
n-Pentane	0.239	0.844	0.087			
Hexanes Plus	0.325	1.478	0.141			
	100.000	100.000	5.661			
Physical Properties			Total	C6+		
Relative Density Rea	l Gas		0.7077	3.2076		
Calculated Molecular	Weight		20.43	92.90		
Compressibility Factor	or		0.9966			
GPA 2172-09 Calcu	lation:					
Calculated Gross B	TU per ft ³ @) 14.73 psia	a & 60°F			
Real Gas Dry BTU			1239.6	5071.5		
Water Sat. Gas Base	BTU		1218.5	4983.2		

Patter L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

	Certificate of Analysis Number: 2030-13050229-003A	Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520
Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330		May 29, 2013

Sampled By: Sample Of: Sample Date:

Sample Conditions: 379 psig Method: GPA 2286

RM-GAS Gas

05/20/2013 13:15

Station Name:	512425	
Station Location	n:EQT Production	
Sample Point:	Submeter	
Cylinder No:	GAS	
Analyzed:	05/29/2013 13:24:38 by CC	

			Analy	tical Data		
Components	Mol. %	Wt. %	GPM at 14.73 psia			
Nitrogen Carbon Dioxide Methane Ethane Propane Iso-Butane n-Butane Iso-Pentane n-Pentane Hexanes Heptanes Plus	0.532 0.195 78.965 13.780 4.195 0.507 1.013 0.249 0.239 0.186 0.139 100.000	0.729 0.420 61.995 20.278 9.053 1.442 2.882 0.879 0.844 0.765 0.713 100.000	3.697 1.159 0.166 0.320 0.091 0.087 0.075 0.066 5.661	GPM TOTAL C2+ GPM TOTAL C3+ GPM TOTAL iC5+	5.661 1.964 0.319	
Physical Properties Relative Density Rea Calculated Molecula Compressibility Fact GPA 2172-09 Calcu Calculated Gross B Real Gas Dry BTU Water Sat. Gas Base	al Gas r Weight or lation: TU per ft³ @) 14.73 psia	Total 0.7077 20.43 0.9966 & 60°F 1239.6 1218.5	C7+ 3.5343 102.36 5520.5 5424.5		

Patte S. Perro

Hydrocarbon Laboratory Manager

Quality Assurance:

ATTACHMENT T

Emission Summary Sheet

List all sources o	femiss	ions in	this tab	le Use	extra na	ges if ne	ressary							
Emission Point ID#		0 _x	r	co		0C	sciences solutions) ₂	P	M ₁₀	PM	A _{2.5}	GHG	(CO ₂ e)
(Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C002 (S007-S012, S037, C002)	1.15	5.03	0.96	4.22	1.85	4.93	0.01	0.03	0.09	0.38	0.09	0.38	1,377.81	6,034.79
C004 (S007-S012, S037, C004)	1.15	5.03	0.96	4.22	1.85	4.93	0.01	0.03	0.09	0.38	0.09	0.38	1,377.81	6,034.79
E025 (8025)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E- 03	0.01	0.05	0.01	0.05	180.18	789.20
E026 (S026)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E- 03	0.01	0.05	0.01	0.05	180.18	789.20
E027 (S027)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E- 03	0.01	0.05	0.01	0.05	180.18	789.20
E034 (S034)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E- 03	0.01	0.05	0.01	0.05	180.18	789.20
E035 (S035)	0.15	0.64	0.12	0.54	0.01	0.04	8.8E-04	3.9E- 03	0.01	0.05	0.01	0.05	180.18	789.20
E030 (S030)	1.2E- 03	5.4E- 03	1.0E- 03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E- 05	9.4E- 05	4.1E-04	9.4E- 05	4.1E-04	1.52	6.64
E031 (S031)	1.2E- 03	5.4E- 03	1.0E- 03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E- 05	9.4E- 05	4.1E-04	9.4E- 05	4.1E-04	1.52	6.64
E033 (S033)					0.07	0.32							0.50	2.20
E037 (S037)					0.07	0.32							0.50	2.20
Fugitives					32.82	8.53								
Haul Roads						17.53								270.76
Facility Total	3.03	13.28	2.55	11.15	36.63	36.43	0.02	0.08	0.23	6.08	0.23	1.52	3,660.06	16,301.81
Facility Total (excl. fugitives)	3.03	13.28	2.55	11.15	3.81	10.37	0.02	0.08	0.23	1.01	0.23	1.01	3,660.06	16,031.05

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

	ATTACHMENT T – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET														
List all sources	List all sources of emissions in this table. Use extra pages if necessary.														
Emission Point ID#	Formal	dehyde	Ben	zene	Tol	uene	Ethylb	enzene	Xyl	enes	Нех	ane	Total	l HAPs	
Emission Form ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
C002 (S007-S012, S037, C002)			1.9E-03	5.8E-03	4.1E-03	1.3E-02	2.0E-04	6.1E-04	2.1E-03	5.8E-03	0.06	0.17	0.08	0.23	
C004 (S007-S012, S037, C004)			1.9E-03	5.8E-03	4.1E-03	1.3E-02	2.0E-04	6.1E-04	2.1E-03	5.8E-03	0.06	0.17	0.08	0.23	
E025 (S025)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01	
E026 (S026)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01	
E027 (S027)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01	
E034 (S034)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01	
E035 (S035)	1.1E-04	4.8E-04	3.1E-06	1.3E-05	5.0E-06	2.2E-05					2.6E-03	0.01	2.8E-03	0.01	
E030 (S030)	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04	
E031 (S031)	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04	
E033 (E033)			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1.0E-03	< 0.01	2.0E-03	1.0E-02	
E037 (S037)			0.02	0.01	0.05	0.01	2.6E-03	6.8E-04	3.5E-02	9.1E-03	1.02	0.27	1.33	0.35	
Fugitives				0.01		0.02		< 0.01		0.01		0.29		0.55	
Haul Roads															
Facility Total	5.5E-04	2.4E-03	0.03	0.03	0.06	0.06	3.0E-03	1.9E-03	0.04	0.03	1.16	0.96	1.51	1.42	
Facility Total (excl. fugitives)	5.5E-04	2.4E-03	3.7E-03	0.01	8.3E-03	2.6E-02	3.9E-04	1.2E-03	4.2E-03	1.2E-02	0.14	0.39	0.18	0.53	

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U

Class I Legal Advertisement

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Class II General Permit to convert the current G70-A General Permit Registration into a G70-C Permit Registration for the natural gas production facility OXF-150 located off of County Route 11/4 in Doddridge County, West Virginia approximately 5 miles Southwest of West Union, WV. The latitude and longitude coordinates are: 39.22312 N, -80.79122 W. The project includes the installation of one (1) enclosed combustor at the site.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant			Emissions in tpy (tons per year)
NOx			13.28
CO			11.15
VOC			10.37
SO ₂			0.08
РМ			1.01
Total HAPs			1.42
Carbon (CO ₂ e)	Dioxide E	Equivalents	16,031.05

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the (Day) day of (Month), 2016.

By: EQT Production Company Kenneth Kirk, Executive Vice President 625 Liberty Ave Suite 1700 Pittsburgh, PA 15222

ATTACHMENT V

General Permit Registration Application Fee