

625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699

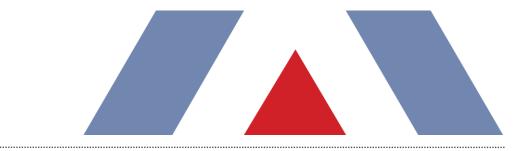
R. Alex Bosiljevac Environmental Coordinator

January 11, 2017

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70-D General Permit Registration Application EQT Production Company OXF-121 Natural Gas Production Site Permit No. R13-3047, Plant ID No. 017-00049

Dear Director Durham:


Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G70-D General Permit Registration Application for the OXF-121 natural gas production site. A legal advertisement will be published in Doddridge Independent the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

R. Alex Bosiljevac EQT Corporation

Enclosures

PROJECT REPORT

EQT Production OXF 121 Wellpad

G70-D Permit Application

Where energy meets innovation.

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

November 2016

Environmental solutions delivered uncommonly well

TABLE OF CONTENTS

1. INTRODUCTION	4
1.1. Facility and Project Description	4
1.2. Source Status	5
1.3. G70-D APPLICATION ORGANIZATION	5
2. SAMPLE EMISSION SOURCE CALCULATIONS	6
3. REGULATORY DISCUSSION	7
3.1. Prevention of Significant Deterioration (PSD) Source Classification	7
3.2. Title V Operating Permit Program	7
3.3. New Source Performance Standards	8
3.3.1. NSPS Subparts D, Da, Db, and Dc – Steam Generating Units 3.3.2. NSPS Subpart K, Ka, and Kb – Storage Vessels for Petroleum Liquids/Volatile Organic Liquids 3.3.3. NSPS Subpart 0000—Crude Oil and Natural Gas Production, Transmission, and Distribution 3.3.4. NSPS Subpart 0000a—Crude Oil and Natural Gas Production, Transmission, and Distribution 3.3.5. Non-Applicability of All Other NSPS	8 8 8 9
3.4. National Emission Standards for Hazardous Air Pollutants (NESHAP)	9
3.4.1. NESHAP Subpart HH — Oil and Natural Gas Production Facilities	9
3.4.2. NESHAP Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers	10
3.5. West Virginia SIP Regulations	10
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers	10
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contribute	
to an Objectionable Odor 3.5.3. 45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse	10 10
3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources	10
3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparatior Storage and Other Sources of Fugitive Particulate Matter	n, 10
3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	11
3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	11
3.5.8. Non-Applicability of Other SIP Rules	11
4. G70-D APPLICATION FORMS	12
ATTACHMENT A: SINGLE SOURCE DETERMINATION	
ATTACHMENT B: SITING CRITERIA WAIVER (NOT APPLICABLE)	
ATTACHMENT C: BUSINESS CERTIFICATE	
ATTACHMENT D: PROCESS FLOW DIAGRAM	
ATTACHMENT E: PROCESS DESCRIPTION	
ATTACHMENT F: PLOT PLAN	
ATTACHMENT G: AREA MAP	

ATTACHMENT H: APPLICABILITY FORM **ATTACHMENT I: EMISSION UNITS TABLE** ATTACHMENT J: FUGITIVE EMISSIONS SUMMARY SHEET ATTACHMENT K: GAS WELL DATA SHEET ATTACHMENT L: STORAGE VESSEL DATA SHEET ATTACHMENT M: HEATERS DATA SHEET ATTACHMENT N: ENGINES DATA SHEET (NOT APPLICABLE) ATTACHMENT O: TRUCK LOADING DATA SHEET ATTACHMENT P: GLYCOL DEHYDRATOR DATA SHEET (NOT APPLICABLE) ATTACHMENT Q: PNEUMATIC CONTROLLER DATA SHEET ATTACHMENT R: PNEUMATIC PUMP DATA SHEET ATTACHMENT S: AIR POLLUTION CONTROL DEVICE ATTACHMENT T: EMISSIONS CALCULATIONS ATTACHMENT U: FACILITY-WIDE CONTROLLED EMISSION SUMMARY SHEET ATTACHMENT V: CLASS I LEGAL ADVERTISEMENT ATTACHMENT W: GENERAL PERMIT REGISTRATION APPLICATION FEE

EQT Production Company (EQT) is submitting this Class II General Permit (G70-D) to the West Virginia Department of Environmental Protection (WVDEP) for the construction and operation of new equipment at an existing natural gas production well pad, OXF-121, located in Doddridge County, West Virginia. The wellpad is currently permitted under R13-3047. This general permit application is to replace the fifteen (15) existing 210 barrel (bbl) storage tanks with six (6) new 400 bbl storage vessels and also convert the existing R13 permit to a G70-D.

1.1. FACILITY AND PROJECT DESCRIPTION

The OXF-121 wellpad is an existing natural gas production facility. Natural gas and liquids (including water and condensate) are extracted from deposits underneath the surface. Natural gas is transported from the wells to a gas line for additional processing and compression, as necessary. The liquids produced are stored in storage vessels.

The OXF 121 wellpad currently consists of the following equipment

- Fifteen (15) 210 barrel (bbl) storage tanks for condensate/water (produced fluids) controlled by one(1) combustor, rated at 11.66 MMbtu/hr;
- > One(1) line heater each rated at 1.15 MMBtu/hr;
- > Two (2) thermoelectric generators (TEGs), each rated at 0.013 MMbtu/hr heat input;
- > Produced fluid truck loading; and
- > Associated piping and components

As part of this application, EQT seeks to permit the following at the OXF-12 pad:

Six (6) 400 barrel (bbl) storage tanks for condensate/water(produced fluids), each controlled by the aforementioned combustor;

Additionally, EQT requests that the department consolidate all existing equipment associated with this wellpad and their requirements under the current R13-3047 permit in the proposed G70-D permit.

A process flow diagram is included as Attachment D. A comparison of the potential emissions of the proposed and existing equipment at the wellpad in comparison with G70-D emission limits is provided in Table 1. Facility emissions are well below the permit limits. Note that in accordance with condition 1.1.1. of the G70-D permit, fugitive emissions are not considered in determining eligibility of the permit.

Pollutant	Wellpad Potential Annual Emissions (tpy)	G70-D Maximum Annual Emission Limits (tpy)
Nitrogen Oxides	5.52	50
Carbon Monoxide	4.64	80
Volatile Organic Compounds	8.12	80
Particulate Matter – 10/2.5	0.42	20
Sulfur Dioxide	0.03	20
Individual HAP (n-hexane) ¹	0.53	8
Total HAP ¹	0.84	20

1. Includes fugitive emissions

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the OXF-121 Pad for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled.

WVDEP determined that the OXF-121 pad is a separate stationary source when the current permit was issued. There are no Marcellus facilities within a quarter-mile radius of the OXF-121 Pad. Therefore, the OXF-121 pad should continue to be considered a separate stationary source with respect to permitting programs, including Title V and Prevention of Significant Deterioration (PSD). As discussed in this application, the facility is a minor source of air emissions with respect to New Source Review (NSR) and Title V Permitting.

1.3. G70-D APPLICATION ORGANIZATION

This West Virginia Code of State Regulations, Title 45 (CSR) Series 13 (45 CSR 13) G70-D permit application is organized as follows:

- > Attachment A: Single Source Determination;
- > Attachment B: Siting Criteria Waiver (Not Applicable);
- > Attachment C: Business Certificate;
- > Attachment D: Process Flow Diagram;
- > Attachment E: Process Description;
- > Attachment F: Plot Plan;
- > Attachment G: Area Map;
- > Attachment H: Applicability Form;
- > Attachment I: Emission Units Table;
- > Attachment J: Fugitive Emissions Summary Sheet;
- > Attachment K: Gas Well Data Sheet;
- > Attachment L: Storage Vessel Data Sheet;
- > Attachment M: Heaters Data Sheet;
- > Attachment N: Engines Data Sheet (Not Applicable);
- > Attachment O: Truck Loading Data Sheet;
- > Attachment P: Glycol Dehydrator Data Sheet (Not Applicable);
- > Attachment Q: Pneumatic Controller Data Sheet;
- > Attachment R: Pneumatic Pump Data Sheet;
- > Attachment S: Air Pollution Control Device Data Sheet;
- > Attachment T: Emission Calculations;
- > Attachment U: Facility Wide Controlled Emissions Summary Sheet;
- > Attachment V: Class I Legal Advertisement; and
- > Attachment W: General Permit Registration Application Fee.

The characteristics of air emissions from the natural gas production operations, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment S of this application.

Emissions from this project will result from natural gas combustion in the line heater, combustors and TEGs, as well as storage of organic liquids in storage tanks and loading of organic liquids into tank trucks. In addition, fugitive emissions will result from component leaks from the operation of the station. The methods by which emissions from each of these source types, as well as the existing source types, are calculated are summarized below.

- Line Heaters, Enclosed Combustors and TEGs: Potential emissions of criteria pollutants and hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for natural gas external combustion.¹ These calculations assume a site-specific heat content of natural gas. Greenhouse gas emissions are calculated according to 40 CFR 98 Subpart C.²
- Fugitive Equipment Leaks: Emissions of VOC and HAPs from leaking equipment components have been estimated using facility estimated component counts and types along with emission factors from the *Protocol for Equipment Leak Emission Estimates, EPA 453/R-95-017, November 1995.* Emission factors used are based on average measured TOC from component types indicated. Greenhouse gas emissions from component leaks are calculated according to the procedures in 40 CFR 98 Subpart W.³ Pneumatic devices at the wellpad are intermittent bleed and are assumed to be in operation 1/3 of the year.
- Storage Tanks: Working, breathing and flashing emissions of VOC and HAPs from the storage tanks at the facility are calculated using Bryan Research & Engineering ProMax® Software. Controlled calculations assume an overall control efficiency (capture and destruction) of 98%. The throughput for the produced fluids tanks are based on the maximum annualized monthly condensate and produced water at the OXF-121 well pad (i.e., the maximum monthly throughput for the pad times 12), and includes a safety factor of 1.80. The composition for the analysis was from a sample taken at OXF-121. The produced fluids throughput is calculated as follows:

$$Throughput \left(\frac{bbl}{day}\right) = \left(Condensate Throughput \left(\frac{bbl}{month}\right) + \left(Produced Water Throughput \left(\frac{bbl}{month}\right)\right)\right) * \frac{12\left(\frac{months}{year}\right)}{365\left(\frac{day}{year}\right)} \times 1.80$$

- Tank Truck Loading: Uncontrolled emissions of VOC and HAPs from the loading of organic liquids from storage tanks to tank truck are calculated using Bryan Research Engineering ProMax® Software. Truck loading is controlled by the enclosed combustors. U.S. EPA's AP-42 Chapter 5 Section 2 factors were used for capture efficiency.⁴
- Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.⁵

¹U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 1.4, Natural Gas Combustion, Supplement D, July 1998.

² 40 CFR 98 Subpart C, General Stationary Fuel combustion Sources, Tables C-1 and C-2.

³ 40 CFR 98 Subpart W, Petroleum and Natural Gas Systems, Section 98.233(r), Population Count and Emission Factors.

⁴ U.S. EPA, AP 42, Fifth Edition, Volume I, Chapter 5.2, Transportation And Marketing Of Petroleum Liquids, June 2008.

⁵ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-D permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the wellpad. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the wellpad. Regulations that are categorically non-applicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD) and new and modified sources of non-attainment pollutants under Non-Attainment New Source Review (NNSR). PSD and NNSR regulations apply when a major source makes a change, such as installing new equipment or modifying existing equipment, and a significant increase in emissions results from the change. The wellpad will remain a minor source with respect to the NSR program after the project since potential emissions are below all the NNSR/PSD thresholds. As such, NNSR/PSD permitting is not triggered by this construction activity. EQT will monitor future construction activities at the site closely and will compare any future increase in emissions with the NSR/PSD thresholds to ensure these activities will not trigger this program.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants.⁶. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the wellpad is not a major source for Title V purposes.

⁶ On June 23, 2014, the U.S Supreme Court decision in the case of *Utility Air Regulatory Group v. EPA* effectively changed the permitting procedures for GHGs under the PSD and Title V programs.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards (NSPS), located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the wellpad. The following NSPS could potentially apply to the wellpad:

- > 40 CFR Part 60 Subparts D/Da/Db/Dc Steam Generating Units
- > 40 CFR Part 60 Subpart K/Ka/Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

3.3.1. NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMbtu/hr, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subpart K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). The proposed tanks at the wellpad will each have a capacity of 16,800 gallons. As such, Subparts K, Ka, and Kb do not apply to the storage tank at the wellpad.

3.3.3. NSPS Subpart OOOO–Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO, Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution, applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 (see clarification below regarding dates). This NSPS was published in the Federal Register on August 16, 2012, and subsequently amended. The proposed project does not include any source categories under NSPS Subpart OOOO or change any prior determinations related to NSPS Subpart OOOO. Therefore, this subpart is not applicable to the proposed project.

3.3.4. NSPS Subpart OOOOa–Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, will apply to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

> Hydraulically fractured wells;

> Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;

> Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;

EQT Production, LLC | OXF-121 Pad Trinity Consultants > Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);

- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production and processing segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

The proposed project will include six (6) produced fluid storage vessels at the wellpad. These tanks will each have potential VOC emissions less than 6 tpy based on the permit application materials and enforceable limits to be included in the G70-D permit. As such, per 60.5365a(e), the tanks will not be storage vessel affected facilities under the rule.

Note that the proposed changes to the well pad do not meet the definition of modification under 60.5365a(i)(3)(i). Therefore, EQT will be not be subject to the leak detection and repair program under 0000a.

The pneumatic controllers will potentially subject to NSPS 0000a. Per 60.5365a(d)(1), a pneumatic controller affected facility is a single continuous bleed natural gas driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh. No pneumatic controllers installed will meet the definition of a pneumatic controller affected facility. Therefore, these units are not subject to the requirements of Subpart 0000a.

3.3.5. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subpart 0000) and the applicability of a particular NSPS to the wellpad can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP)

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad is an Area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the wellpad:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

3.4.1. NESHAP Subpart HH – Oil and Natural Gas Production Facilities

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The wellpad does not include a triethylene glycol dehydration unit; therefore the requirements of this subpart do not apply.

3.4.2. NESHAP Subpart JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The line heater at the wellpad are natural gas-fired and is specifically exempt from this subpart. Therefore, no sources at the wellpad are subject to any requirements under this subpart.

3.5. WEST VIRGINIA SIP REGULATIONS

The wellpad is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories, those regulations that are generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The TEGs and line heater are fuel burning units and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The wellpad is generally subject to this requirement. However, due to the nature of the process at the wellpad, production of objectionable odor from the wellpad during normal operation is unlikely.

3.5.3. 45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." The enclosed combustor is an incinerator and therefore must comply with this regulation. Per 45 CSR 6-4.3, opacity of emissions from this unit shall not exceed 20 percent, except as provided by 4.4. PM emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

3.5.4. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CPR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the wellpad, EQT will be complying with 45 CSR 16.

3.5.5. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the wellpad, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, EQT will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.6. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons. The capacity of each storage tank at the wellpad is less than 40,000 gallons; therefore, 45 CSR 21-28 will not apply to the storage tanks at the wellpad.

3.5.7. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As noted above, no NESHAP are applicable.

3.5.8. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the wellpad reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the wellpad.

The WVDEP permit application forms contained in this application include all applicable G70-D application forms including the required attachments.

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-D GENERAL P	ERMIT RE	GISTRATION A	PPLICATION
	ADMINISTRATIV	REGARD TO THE CONSTR E UPDATE AND OPERATIO ITIES LOCATED AT THE W	N OF
⊠CONSTRUCTION (UPDATE □MODIFICATION □RELOCATION	2)	□CLASS I ADMINISTRATIV □CLASS II ADMINISTRATI	
S	ECTION 1. GENER	RAL INFORMATION	
Name of Applicant (as registered with the	e WV Secretary of S	ate's Office): EQT Production	n Company
Federal Employer ID No. (FEIN): 25-072	4685		
Applicant's Mailing Address: 625 Libert	y Avenue, Suite 17	00	
City: Pittsburgh	State: PA		ZIP Code: 15222
Facility Name: OXF-121 Wellpad			•
Operating Site Physical Address: If none available, list road, city or town a	nd zip of facility.		
City: New Milton	Zip Code: 26411		County: Doddridge
Latitude & Longitude Coordinates (NAD8 Latitude: <u>39.136081</u> Longitude: - <u>80.821946</u>	33, Decimal Degrees	to 5 digits):	
SIC Code: 1311 NAICS Code: 211111		DAQ Facility ID No. (For exi 017-00049	sting facilities)
	CERTIFICATION	OF INFORMATION	
This G70-D General Permit Registrati Official is a President, Vice President, S Directors, or Owner, depending on busine authority to bind the Corporation, Proprietorship. Required records of d compliance certifications and all req Representative. If a business wishes to ce off and the appropriate names and sig unsigned G70-D Registration Applicati utilized, the application will	ecretary, Treasurer, ess structure. A busin Partnership, Limited aily throughput, hou uired notifications m rrtify an Authorized gnatures entered. An on will be returned	General Partner, General Manag ness may certify an Authorized Liability Company, Associatio rs of operation and maintenance ust be signed by a Responsible Representative, the official agre y administratively incomplete	ger, a member of the Board of Representative who shall have n, Joint Venture or Sole e, general correspondence, Official or an Authorized eement below shall be checked or improperly signed or e, if the G70-D forms are not
I hereby certify that <u>Michael Gavin</u> is the business (e.g., Corporation, Partnersh Proprietorship) and may obligate and lega Responsible Official shall notify the Dire I hereby certify that all information conta documents appended hereto is, to the best have been made to provide the most comp	ip, Limited Liability ally bind the busines ctor of the Division ined in this G70-D (of my knowledge, t	Company, Association Joint V s. If the business changes its Au of Air Quality immediately. General Permit Registration App rue, accurate and complete, and	enture or Sole athorized Representative, a plication and any supporting
Responsible Official Signature: Name and Title: Michael Gavin, Vice Pre Email:gavinm@eqt.com	sident Phon Date:	2/20/16 Fax	
If applicable: Authorized Representative Signature: Name and Title: Email:	Phone: Date:	Fax:	
If applicable: Environmental Contact Name and Title: Alex Bosiljevac, Enviror Email: ABosiljevac@eqt.com	nmental Coordinator Date:	Phone: 412-395-3699	Fax: 412-395-7027

OPERATING SIT	E INFORMATION	
Briefly describe the proposed new operation and/or any change(s) to the facility: General permit application for an existing natural gas production well pad and installation of six (6) 400 barrel produced fluids tanks.		
Directions to the facility: From New Milton, WV Head northwest on Meathouse Fork toward Co Rte 25/2 for 1.2 miles. Turn left onto WV-18 S and continue 9.8 miles. Turn right onto Grove Summers Rd and continue for 5.9 miles. Turn left onto Sugar Run and continue straight onto Summers Rd Brushy Fork for 0.7 miles. Turn left onto Co Rd 22/3 for 0.4 miles. Continue onto Elklick Run for 1.1 miles and arrive at the wellpad.		
ATTACHMENTS AND SU	PPORTING DOCUMENTS	
I have enclosed the following required documen	ts:	
Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).	
 □ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (⊠ I wish to pay by credit card. Contact for payment (incl. na ⊠\$500 (Construction, Modification, and Relocation) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO a 	ame and email address): R. Alex Bosiljevac, abosiljevac@eqt.com □\$300 (Class II Administrative Update)	
\square \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or H		
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESI requirements by complying with NSPS, Subparts IIII and/or J NSPS and NESHAP fees apply to new construction or if the se	HAP fee will be waived for new engines that satisfy JJJ.	
Responsible Official or Authorized Representative Signatu	re (if applicable)	
Single Source Determination Form (must be completed) –	Attachment A	
□ Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C	
🖾 Process Flow Diagram – Attachment D	⊠ Process Description – Attachment E	
🖾 Plot Plan – Attachment F	🖾 Area Map – Attachment G	
🖾 G70-D Section Applicability Form – Attachment H	🖾 Emission Units/ERD Table – Attachment I	
🛛 Fugitive Emissions Summary Sheet – Attachment J		
🛛 Gas Well Affected Facility Data Sheet (if applicable) – At	tachment K	
Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment L	EPA Tanks, simulation software (e.g. ProMax, E&P Tanks,	
⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, M	, Heater Treaters, In-Line Heaters if applicable) – Attachment	
☐ Internal Combustion Engine Data Sheet(s) (include manufa	acturer performance data sheet(s) if applicable) – Attachment	
Tanker Truck/Rail Car Loading Data Sheet (if applicable)		
Glycol Dehydration Unit Data Sheet(s) (include wet gas ar information on reboiler if applicable) – Attachment P	nalysis, GRI- GLYCalc TM input and output reports and	
Pneumatic Controllers Data Sheet – Attachment Q		
🗵 Pneumatic Pump Data Sheet – Attachment R		
Air Pollution Control Device/Emission Reduction Device(applicable) – Attachment S	s) Sheet(s) (include manufacturer performance data sheet(s) if	
Emission Calculations (please be specific and include all c	calculation methodologies used) – Attachment T	
⊠ Facility-wide Emission Summary Sheet(s) – Attachment U		
🖾 Class I Legal Advertisement – Attachment V		
\boxtimes One (1) paper copy and two (2) copies of CD or DVD with	pdf copy of application and attachments	

All attachments must be identified by name, divided into sections, and submitted in order.

ATTACHMENT A

Single Source Determination

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment a	nd activities	in the	same	industrial	grouping	(defined
by SIC code)?						

Yes	\boxtimes	No 🗆

Is there equipment and activities under the control of the same person/people?

Yes 🛛 No 🗆

Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes \Box No \boxtimes

ATTACHMENT B

Siting Criteria Waiver (Not Applicable)

ATTACHMENT B - SITING CRITERIA WAIVER - NOT APPLICABLE

If applicable, please complete this form and it must be notarized.

G70-D General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

Ι_____ hereby Print Name acknowledge and agree that ______ General Permit Applicant's Name will construct an emission unit(s) at a natural gas production facility that will be located within 300' of my dwelling and/or business. . I hereby offer this waiver of siting criteria to the West Virginia Department of Environmental Protection Division of Air Quality as permission to construct, install and operate in such location. Signed: Signature Date Signature Date Taken, subscribed and sworn before me this _____ day of _____, 20_____. My commission expires: SEAL____ Notary Public

ATTACHMENT C

Business Certificate

ATTACHMENT C – CURRENT BUSINESS CERTIFICATE

If the applicant is a resident of West Virginia, the applicant should provide a copy of the current Business Registration Certificate issued to them from the West Virginia Secretary of State's Office. If the applicant is not a resident of the State of West Virginia, the registrant should provide a copy of the Certificate of Authority/Authority of LLC/Registration. This information is required for all sources to operate a business in West Virginia regardless of whether it is a construction, modification, or administrative update.

If you are a new business to West Virginia and have applied to the West Virginia Secretary of State's Office for a business license, please include a copy of your application.

Please note: Under the West Virginia Bureau of Employment Programs, 96CSR1, the DAQ may not grant, issue, or renew approval of any permit, general permit registration, or Certificate to Operate to any employing unit whose account is in default with the Bureau of Employment Programs Unemployment Compensation Division.

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

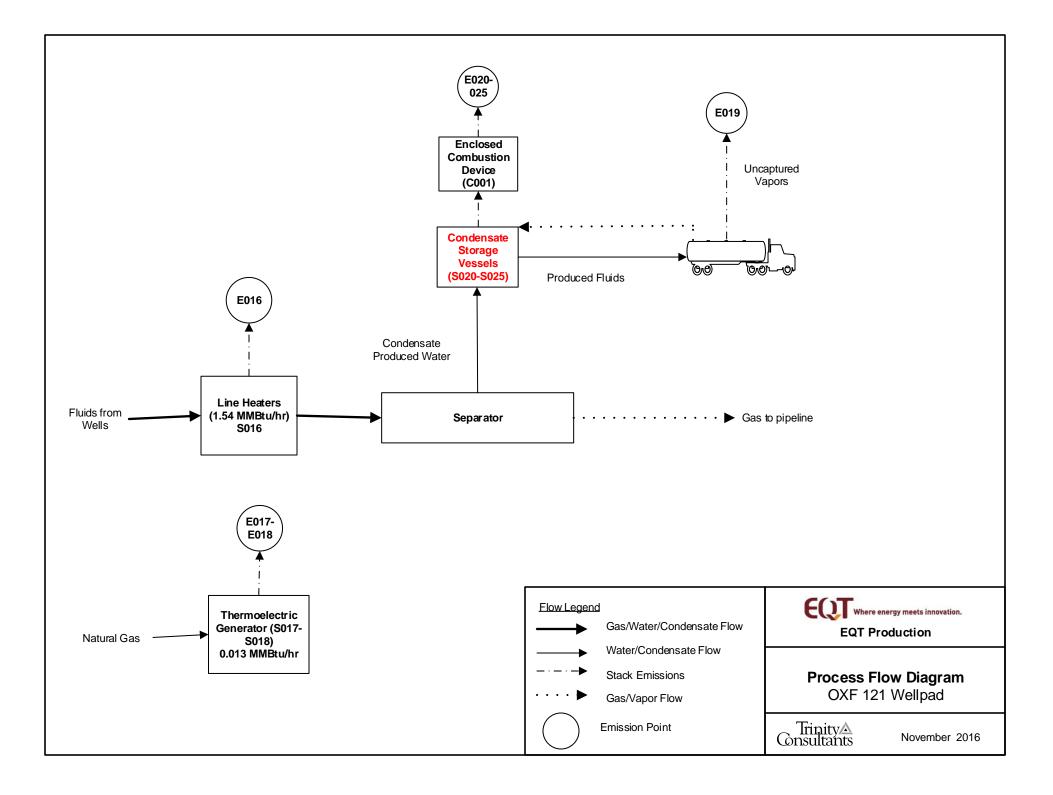
This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

ATTACHMENT D


Process Flow Diagram

ATTACHMENT D – PROCESS FLOW DIAGRAM

Provide a diagram or schematic that supplements the process description of the operation. The process flow diagram must show all sources, components or facets of the operation in an understandable line sequence of operation. The process flow diagram should include the emission unit ID numbers, the pollution control device ID numbers, and the emission point ID numbers consistent with references in other attachments of the application. For a proposed modification, clearly identify the process areas, emission units, emission points, and/or control devices that will be modified, and specify the nature and extent of the modification.

Use the following guidelines to ensure a complete process flow diagram:

- The process flow diagram shall logically follow the entire process from beginning to end.
- Identify each emission source and air pollution control device with proper and consistent emission unit identification numbers, emission point identification numbers, and control device identification numbers.
- The process flow lines may appear different for clarity. For example, dotted lines may be used for vapor flow and solid lines used for liquid flow and arrows for direction of flow.
- The process flow lines may be color coded. For example: new or modified equipment may be red; old or existing equipment may be blue; different stages of preparation such as raw material may be green; and, finished product or refuse, another color.

ATTACHMENT E

Process Description

ATTACHMENT E – PROCESS DESCRIPTION

Provide a detailed written description of the operation for which the applicant is seeking a permit. The process description is used in conjunction with the process flow diagram to provide the reviewing engineer a complete understanding of the activity at the operation. Describe in detail and order the complete process operation.

Use the following guidelines to ensure a complete Process Description:

- The process flow diagram should be prepared first and used as a guide when preparing the process description. The written description shall follow the logical order of the process flow diagram.
- All emission sources, emission points, and air pollution control devices must be included in the process description.
- When modifications are proposed, describe the modifications and the effect the changes will have on the emission sources, emission points, control devices and the potential emissions.
- Proper emission source ID numbers must be used consistently in the process description, the process flow diagram, the emissions calculations, and the emissions summary information provided.
- Include any additional information that may facilitate the reviewers understanding of the process operation.

The process description is required for all sources regardless of whether it is a construction, modification, or administrative update.

ATTACHMENT E - PROCESS DESCRIPTION

EQT is submitting this application to permit the installation of six (6) 400 bbl condensate tanks to replace the existing fifteen (15) 210 bbl storage tanks at the wellpad. The OXF 121 wellpad is currently authorized to operate under R13-3047.

The OXF-121 wellpad consists of five (5) wells, each with the basic operation. The incoming gas/liquid stream from the underground well will pass through a line heater (S016) to raise/maintain temperature of the stream and prevent hydrate formation. The stream will then pass through a high pressure separator, which will separate gas (natural gas from the separator is sent to the sales line) from liquids (condensate and produced water). The liquids are then transferred to the produced fluids tank (S001-S015)

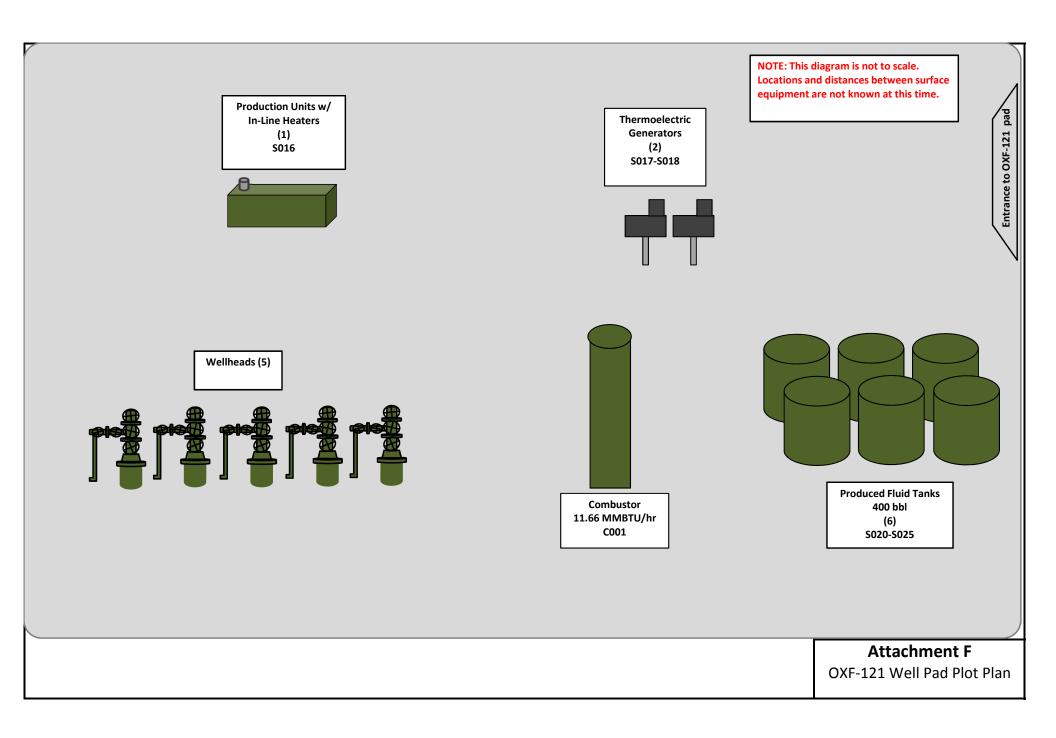
Emissions from the storage vessels are controlled by a single enclosed combustor (C001). Once the tanks are filled, the contents are loaded into trucks for transport (S019). EQT utilizes vapor balancing in the truck loading operations, which means the vapors displaced by the filling of tanker trucks are routed back into the battery of tanks and ultimately to the combustor. Facility electricity is provided a pair of thermoelectric generators (S017-S018), respectively.

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

ATTACHMENT F – PLOT PLAN


Provide an accurately scaled and detailed Plot Plan showing the locations of all emission units, emission points, and air pollution control devices. Show all emission units, affected facilities, enclosures, buildings and plant entrances and exits from the nearest public road(s) as appropriate. Note height, width and length of proposed or existing buildings and structures.

A scale between 1"=10' and 1"=200' should be used with the determining factor being the level of detail necessary to show operation or plant areas, affected facilities, emission unit sources, transfer points, etc. An overall small scale plot plan (e.g., 1"=300') should be submitted in addition to larger scale plot plans for process or activity areas (e.g., 1"=50') if the plant is too large to allow adequate detail on a single plot plan. Process or activity areas may be grouped for the enlargements as long as sufficient detail is shown.

Use the following guidelines to ensure a complete Plot Plan:

- Facility name
- Company name
- Company facility ID number (for existing facilities)
- Plot scale, north arrow, date drawn, and submittal date.
- Facility boundary lines
- Base elevation
- Lat/Long reference coordinates from the area map and corresponding reference point elevation
- Location of all point sources labeled with proper and consistent source identification numbers

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

ATTACHMENT G

Area Map

ATTACHMENT G – AREA MAP

Provide an Area Map showing the current or proposed location of the operation. On this map, identify plant or operation property lines, access roads and any adjacent dwelling, business, public building, school, church, cemetery, community or institutional building or public park within a 300' boundary circle of the collective emission units.

Please provide a 300' boundary circle on the map surrounding the proposed emission units collectively.

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

ATTACHMENT G

Figure 1 - Map of OXF-121 Location

Note – Ring represents 300 ft radius around wellpad equipment.

UTM Northing (KM)	4,331.892
UTM Easting (KM)	515.388
Elevation (m)	261

ATTACHMENT H

Applicability Form

ATTACHMENT H – G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G70-D APPLICABLE SECTIONS		
⊠ Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOOa)	
⊠ Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹	
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)	
Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH	
Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc	
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)	
□Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)	
□Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)	
□ Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines	
Section 14.0	Tanker Truck/Rail Car Loading ²	
□Section 15.0	Glycol Dehydration Units ³	

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.

3 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I

Emission Units Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

	Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S002	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S003	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S004	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S005	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S006	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S007	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S008	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S009	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S010	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S011	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S012	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S013	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S014	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S015	C001	Condensate Storage Tank	2010	2010	210 bbl	Existing – To be removed	C001	
S016	E016	Line Heater	2010	2010	1.15 MMBtu/hr	Existing; No change	Existing; No change	
S017	E017	Thermoelectric Generator	2010	2010	0.013 MMBtu/hr	Existing; No change	None	
S018	E018	Thermoelectric Generator	2010	2010	0.013 MMBtu/hr	Existing; No change	None	
S019	E019 (Uncaptured) C001 (Controlled, Captured)	Uncaptured Liquid Loading	2010/2016	2010/2016	2,111,540	Modified; Increased Throughput	C001	
S020	C001	Produced fluid tank	TBD	TBD	400 bbl	New	C001	
S021	C001	Produced fluid tank	TBD	TBD	400 bbl	New	C001	
S022	C001	Produced fluid tank	TBD	TBD	400 bbl	New	C001	
S023	C001	Produced fluid tank	TBD	TBD	400 bbl	New	C001	
S024	C001	Produced fluid tank	TBD	TBD	400 bbl	New	C001	
S025	C001	Produced fluid tank	TBD	TBD	400 bbl	New	C001	
C001	C001	Combustor	2010	2010	11.66 MMBtu/hr	Existing; No change	N/A	

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points (or sources) use the following numbering system: 15, 25, 35,... or other appropriate designation.
 ³ When required by rule
 ⁴ New, modification, removal, existing

- ⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J

Fugitive Emissions Summary Sheet

		S		may include loading operation ages for each associated source			emissions, etc		
S	ource/Equipm	ent: Fugiti	ve Emissions						
	eak Detection lethod Used		Audible, visual, and Audionary (AVO) inspections	□ Infrared (FLIR) cameras	Other (please condition 12.1.1		satisfy	□ None required	
Component	Closed		Source of	Leak Factors	Stream type		Estimated Emis	sions (tpy)	
Туре	Vent System	Count		er (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (methane, CO ₂ e)	
Pumps	□ Yes ⊠ No	9	Protocol for Equipment Leak	ality Planning and Standards. Emission Estimates. Table 2-1. 95-017, 1995).	□ Gas ⊠ Liquid □ Both	1.73	0.05	0.33	
Valves	□ Yes ⊠ No	179	Protocol for Equipment Leak	U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).			0.05	17.64	
Safety Relief Valves	□ Yes ⊠ No	14	U.S. EPA. Office of Air Qu Protocol for Equipment Leak (EPA-453/R-	⊠ Gas □ Liquid □ Both	2.25	0.07	1.98		
Open Ended Lines	□ Yes ⊠ No	8	U.S. EPA. Office of Air Qu Protocol for Equipment Leak (EPA-453/R-	□ Gas □ Liquid ⊠ Both	0.02	6.4E-04	1.67		
Sampling Connections	□ Yes □ No			N/A					
Connections (Not sampling	☐ Yes ⊠ No	765	Protocol for Equipment Leak	ality Planning and Standards. Emission Estimates. Table 2-1. 95-017, 1995).	□ Gas □ Liquid ⊠ Both	2.24	0.07	8.40	
Compressors	□ Yes □ No		1	N/A					
Flanges	□ Yes □ No		(included ir	n connections)	□ Gas □ Liquid □ Both				
Other ¹	□ Yes ⊠ No	25	40 CFR 9	⊠ Gas □ Liquid □ Both	4.41	0.14	183.05		

Pneumatic Controller count is 'Other' category. An estimate of Miscellaneous Gas Venting emissions are included in the Emission Calculations and serve to include such sources as compressor venting, pigging, vessel blowdowns and other sources.

Please indicate if there are any closed vent bypasses (include component): N/A

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck/rail car loading, etc.) N/A

ATTACHMENT K

Gas Well Data Sheet

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
047-017-05847	1/29/2010	1/25/2010	Green	None
047-017-05791	2/1/2010	1/29/2010	Green	None
047-017-05849	2/22/2010	2/19/2010	Green	None
047-017-05792	3/26/2010	3/24/2010	Green	None
047-017-05848	3/27/2010	3/26/2010	Green	None

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

ATTACHMENT L

Storage Vessel Data Sheet

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - ⊠ Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- $\boxtimes~$ Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name
OXF-121 Wellpad	Produced Fluid Tanks (water and condensate)
3. Emission Unit ID number	4. Emission Point ID number
S020-S025	C001
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:
N/A (new tanks)	\boxtimes New construction \square New stored material \square Other
Was the tank manufactured after August 23, 2011 and on or	□ Relocation
before September 18, 2015?	
\Box Yes \boxtimes No	
Was the tank manufactured after September 18, 2015?	
\Box Yes \boxtimes No	
7A. Description of Tank Modification (<i>if applicable</i>)	
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
\Box Yes \boxtimes No	
If Yes, please provide the appropriate documentation and items	8-42 below are not required.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal	cross-sectional area multiplied by internal height.		
400	bbls		
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20		
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10		
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10		
12. Nominal Capacity (specify barrels or gallons). This is also k	known as "working volume". 400 bbls		
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached		
emissions calculations	emissions calculations		
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions		
emissions calculations	calculations		
16. Tank fill method \Box Submerged \boxtimes Splash	□ Bottom Loading		
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No		
If yes, (A) What is the volume expansion capacity of the system ((gal)?		
(B) What are the number of transfers into the system per y	ear?		
18. Type of tank (check all that apply):			
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat roof	\Box cone roof \Box dome roof \Box other (describe)		
□ External Floating Roof □ pontoon roof □ double of	deck roof		
Domed External (or Covered) Floating Roof			
□ Internal Floating Roof □ vertical column support	□ self-supporting		
□ Variable Vapor Space □ lifter roof □ diaphragm			
□ Pressurized □ spherical □ cylindrical			
□ Other (describe)			

PRESSURE/VACUUM CONTROL DATA

19. Check as many as appl	ly:								
\Box Does Not Apply				🗆 Ruptu	re Disc (p	sig)			
\Box Inert Gas Blanket of \Box Carbon Adsorption ¹									
☑ Vent to Vapor Combus	tion Dev	ice ¹ (vapo	r combus	tors, flares	, thermal	oxidizers,	enclosed o	ombustor	5)
Conservation Vent (psi	g)			□ Conde	enser ¹				
0.5 oz Vacuum Setting 12.5 oz Pressure Setting									
Emergency Relief Valv	e (psig)								
Vacuum Setting	14.4 oz	z Pressu	re Setting	5					
□ Thief Hatch Weighted	🗆 Yes 🛛	⊠ No – Ca	ashco Loc	kdown Ha	tch				
¹ Complete appropriate Air	Pollutio	n Control	Device S	heet					
20. Expected Emission Ra	te (submi	it Test Da	ta or Calc	ulations he	ere or else	where in t	he applica	tion).	
	Flashing Loss B				reathing Loss Working Loss				
Material Name	Flashi	ng Loss	Breath	ing Loss	Workii	ng Loss	Total		Estimation Method ¹
Material Name		ng Loss		ing Loss		ng Loss	Emissio	ons Loss	Estimation Method ¹
Material Name	Flashin lb/hr	ng Loss tpy	Breath lb/hr	ing Loss tpy	Workin lb/hr	ng Loss		ons Loss tpy	Estimation Method ¹
Material Name		tpy	lb/hr		lb/hr	tpy	Emissio lb/hr		Estimation Method ¹
Material Name		tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr		Estimation Method ¹
Material Name		tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr		Estimation Method ¹
Material Name		tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr		Estimation Method ¹
Material Name		tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr		Estimation Method ¹
Material Name		tpy	lb/hr	tpy	lb/hr	tpy	Emissio lb/hr		Estimation Method ¹

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

nember to attach emissions calculations, including T	ANKS Summary Shee	ets and other mode	eling sun	nmary sheet.	s if applicable.	
TANK CONSTRUCTION AND OPERATION	INFORMATION					
21. Tank Shell Construction:						
\Box Riveted \Box Gunite lined \Box Epoxy-c	coated rivets $\boxtimes O$	ther (describe) V	Welded			
21A. Shell Color: Green	21B. Roof Color:	Green		21C. Year	Last Painted: New	
22. Shell Condition (if metal and unlined):						
\boxtimes No Rust \square Light Rust \square Dense Ru	ust 🛛 Not applic	able				
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operati	ng temperature:		22C. If ye	s, how is heat provide	d to tank?
23. Operating Pressure Range (psig):	.1					
Must be listed for tanks using VRUs with						
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for do	me roof provide ra	adius	-	s, for cone roof, provi	de slop (ft/ft)
\boxtimes Yes \Box No	(ft):			0.06		
25. Complete item 25 for Floating Roof Tanks	Does not apply	\boxtimes				
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one): Metalli	ic (mechanical) sho	e seal 🛛 Liqu	uid mou	inted resili	ent seal	
□ Vapor	mounted resilient s	eal 🗌 Oth	ner (des	cribe):		
25C. Is the Floating Roof equipped with a seconda		□ No		,		
25D. If yes, how is the secondary seal mounted? (er (describ	ре).	
					···).	
25E. Is the floating roof equipped with a weather s	shield?					
25F. Describe deck fittings:						
26. Complete the following section for Internal F	-	Does no				
26A. Deck Type: \Box Bolted \Box Weld	ded	26B. For bolted	d decks,	provide dec	k construction:	
26C. Deck seam. Continuous sheet construction:						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	□ 5 x 7.5 ft. wide	□ 5 x 12 ft. w	vide 🗆	other (de	escribe)	
26D. Deck seam length (ft.): 26E. Area of	deck (ft ²):	26F. For colum	nn suppo	rted	26G. For column st	apported
		tanks, # of colu			tanks, diameter of c	
27. Closed Vent System with VRU? \Box Yes \boxtimes	No					
28. Closed Vent System with Enclosed Combuston	a? 🗆 Yes 🖾 No					
SITE INFORMATION - Not Applicable: Tai	ak calculations pe	rformed using	ProMa	x softwar	e	
29. Provide the city and state on which the data in						
30. Daily Avg. Ambient Temperature (°F):		31. Annual Av	g. Maxir	num Tempe	erature (°F):	
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind	Speed (mph):		
34. Annual Avg. Solar Insulation Factor (BTU/ft ² -	day):	35. Atmospher	ic Pressu	ıre (psia):		
LIQUID INFORMATION - Not Applicable: "	Tank calculations	performed usi	ng Pro	Max softw	are	
36. Avg. daily temperature range of bulk liquid	36A. Minimum (°I	F):		36B. Max	imum (°F):	
(°F):						
37. Avg. operating pressure range of tank (psig):	37A. Minimum (ps	e;			imum (psig):	
38A. Minimum liquid surface temperature (°F):		38B. Correspon	•			
39A. Avg. liquid surface temperature (°F):		39B. Correspon	-		-	
40A. Maximum liquid surface temperature (°F):41. Provide the following for each liquid or gas to	he stored in the tentr	40B. Correspon	-		e (psia):	
41. Provide the following for each inquite of gas to 41A. Material name and composition:		Add additional pa	ages II II	ecessary.		
41A. Material name and composition. 41B. CAS number:	+					
41C. Liquid density (lb/gal):	+					
41D. Liquid molecular weight (lb/lb-mole):						
41E. Vapor molecular weight (lb/lb-mole):	1					
41F. Maximum true vapor pressure (psia):	1					
41G. Maximum Reid vapor pressure (psia):	1					
41H. Months Storage per year.	1	1				
From: To:						
42. Final maximum gauge pressure and						
temperature prior to transfer into tank used as						
inputs into flashing emission calculations.	1	1			1	

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID #1	Status ²	Content ³	Volume ⁴					
	Not Applicable							

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following:

- EXIST Existing Equipment NEW Installation of New Equipment
 - Equipment Removed REM

3.

- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.
- Enter the maximum design storage tank volume in gallons. 4.

ATTACHMENT M

Heaters Data Sheet

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S016	E016	Line Heater	2010	Existing; No Change	1.15	1,050
S017	E017	Thermoelectric Generator	2010	Existing; No Change	0.013	1,050
S018	E018	Thermoelectric Generator	2010	Existing; No Change	0.013	1,050

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N

Engines Data Sheet (Not Applicable)

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET NOT APPLICABLE

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit I							
Engine Manufacturer/Model							
Manufacturers F	Rated bhp/rpm						
Source Status ²							
Date Installed/ Modified/Remov	ved/Relocated ³						
Engine Manufac /Reconstruction							
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		□ NESHAP 2 JJJJ Window	ed? Subpart IIII ed? Subpart ZZZZ	□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶							
APCD Type ⁷							
Fuel Type ⁸							
H_2S (gr/100 scf))						
Operating bhp/r	pm						
BSFC (BTU/bhp	p-hr)						
Hourly Fuel Th	roughput	ft ³ /hr gal/hr		ft ³ /hr gal/hr		ft ³ /hr gal/hr	
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	MMft ³ /yr gal/yr		MMft ³ /yr gal/yr		MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🗆	No 🗆	Yes 🗆	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) 11	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) 11
	NO _x						
	СО						
	VOC						
	SO ₂						
	PM10						
	Formaldehyde						
	Total HAPs						
	GHG (CO ₂ e)						

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS Construction of New Source (installation) ES Existing Source

MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.

- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device 5 must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

Enter the Engine Type designation(s) using the following codes: 6

- 2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn Four Stroke Lean Burn 4SLB
- Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: 7

	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Preco Low Emission Oxidation Cata	mbustion Chan Combustion	nbers	ŝ
8	Enter th	e Fuel Type using the following codes:						
	PQ	Pipeline Quality Natural Gas	RG	Raw Natura	al Gas /Production	n Gas	D	Diesel
9	Enter t	he Potential Emissions Data Reference desi	gnation	using the f	following code:	s. Attach all r	efer	ence data used.
	MD GR	Manufacturer's Data GRI-HAPCalc [™]			P-42 her	(please list)		

Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at 10 manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device NOT APPLICABLE (Emission Unit ID# , use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? No 🗆

Yes 🗆

 \Box SCR

 \square Oxidation Catalyst Provide details of process control used for proper mixing/control of reducing agent with gas stream:

Manufacturer:	Model #:
Design Operating Temperature:	Design gas volume: scfm
Service life of catalyst:	Provide manufacturer data? Yes No
Volume of gas handled: acfm at °F	Operating temperature range for NSCR/Ox Cat: From °F to °F
Reducing agent used, if any:	Ammonia slip (ppm):
Pressure drop against catalyst bed (delta P):	1
Provide description of warning/afarm system that prote	ects unit when operation is not meeting design conditions:
Is temperature and pressure drop of catalyst required to	
Is temperature and pressure drop of catalyst required to	b be monitored per 40CFR63 Subpart ZZZZ?

NSPS/GACT,

 \Box NSCR

ATTACHMENT O

Truck Loading Data Sheet

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: S019	Emiss	Emission Point ID#: E019			Year Installed/Modified: 2008/2016				
Emission Unit Description: Uncaptured losses from loading of produced fluids into tanker trucks									
Loading Area Data									
Number of Pumps: 1Number of Liquids Loaded: 1Max number of trucks/rail cars loading at one (1) time: 1									
Are tanker trucks/rail cars If Yes, Please describe:	pressure tested for lea	aks at this or any other	location?	□ Yes	🛛 No	□ Not Required			
Provide description of clos	ed vent system and an	ny bypasses. N/A							
Are any of the following tr Closed System to tanke Closed System to tanke Closed System to tanke Project	r truck/rail car passin r truck/rail car passin r truck/rail car not pa	g a MACT level annua g a NSPS level annual	leak test? st and has y)			
Time	Jan – Mar	Apr - Jun		Jul – Sept		Oct - Dec			
Hours/day	Varies	Varies		Varies		Varies			
Days/week	7	7		7		7			
	Bulk Liquid	d Data (use extra page	s as necess	sary)	I				
Liquid Name	Produced H	Fluids							
Max. Daily Throughput (1000 gal/day)	See attached e calculations throughput	for all							
Max. Annual Throughput (1000 gal/yr)	See attached e calculations throughput	for all							
Loading Method ¹	SP								
Max. Fill Rate (gal/min)	Varie	s							
Average Fill Time (min/loading)	Varie	8							
Max. Bulk Liquid Temperature (°F)	See ProMax	ee ProMax results							
True Vapor Pressure ²	See ProMax	results							
Cargo Vessel Condition ³	U								
Control Equipment or Method ⁴	VB								

Max. Collection Efficiency (%)		0%	
Max. Control Efficiency (%)		0%	
Max.VOC Emission	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Max.HAP Emission	Loading (lb/hr)	See attached emission calculations for breakdown	
Rate	Annual (ton/yr)	See attached emission calculations for breakdown	
Estimation Method ⁵		EPA via ProMax	

1	BF	Bottom Fill	SP	Splash Fi	ill	SUB	Submerged Fill
2	At maximum bulk liquid temperature						
3	В	Ballasted Vessel	С	Cleaned		U	Uncleaned (dedicated service)
	0	Other (describe)					
4	4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets)						
	CA	Carbon Adsorption		VB	Dedicated Vapor	Balance (c	closed system)
	ECD	Enclosed Combustion Devi	ce	F	Flare		

TO EPA 5

Thermal Oxidization or Incineration EPA Emission Factor in AP-42 Test Measurement based upon test data submittal Material Balance MB TM0 Other (describe)

ATTACHMENT P

Glycol Dehydrator Data Sheet (Not Applicable)

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET - NOT APPLICABLE

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI- GLYCalcTM input and aggregate report. Use extra pages if necessary.

Manufacturer:			Model:						
Max. Dry Gas Flow	Rate: mmscf/	/day	Reboiler Design Heat Input: MMBTU/hr						
Design Type: 🗆 TH	EG 🗆 DEG	🗆 EG	Source Status ¹ :						
Date Installed/Mod	ified/Removed ² :		Regenerator Still Vent APCD/ERD ³ :						
Control Device/ER	D ID# ³ :		Fuel HV (BTU/scf)	:					
H ₂ S Content (gr/10	0 scf):		Operation (hours/ye	ear):					
Pump Rate (gpm):									
Water Content (wt	%) in: Wet Gas:	Dry C	Bas:						
Is the glycol dehydration unit exempt from 40CFR63 Section 764(d)? 🗆 Yes 👘 🗇 No: If Yes, answer the following:									
The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in $63.772(b)(1)$ of this subpart. \Box Yes \Box No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in $63.772(b)(2)$ of this subpart. \Box Yes \Box No									
Is the glycol dehydration unit located within an Urbanized Area (UA) or Urban Cluster (UC)? \Box Yes \Box No									
Is a lean glycol pump optimization plan being utilized? \Box Yes \Box No									
Recycling the glycol dehydration unit back to the flame zone of the reboiler.									
Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. Yes No									
What happens when temperature controller shuts off fuel to the reboiler? Still vent emissions to the atmosphere. Still vent emissions stopped with valve. Still vent emissions to glow plug.									
🔲 Flash Tank	ne following equipment system that conti	-	nser or flash tank van	ors					
		-	Technical Data	015					
		Control Device	Technical Data						
	Pollutants Controlled	l	Manufacturer's	Guaranteed Contro	l Efficiency (%)				
		Emissio	ons Data						
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)				
			NO _x						
			СО						
	Reboiler Vent		VOC						
			SO ₂						
			\mathbf{PM}_{10}						

			GHG (CO ₂ e)	
		GRI-GlyCalc TM	VOC	
	-	GRI-GlyCalc TM	Benzene	
	Glycol	GRI-GlyCalc TM	Toluene	
r	Regenerator Still Vent	GRI-GlyCalc TM	Ethylbenzene	
		GRI-GlyCalc TM	Xylenes	
		GRI-GlyCalc TM	n-Hexane	
	Glycol Flash Tank	GRI-GlyCalc TM	VOC	
		GRI-GlyCalc TM	Benzene	
G		GRI-GlyCalc TM	Toluene	
		GRI-GlyCalc TM	Ethylbenzene	
		GRI-GlyCalc TM	Xylenes	
		GRI-GlyCalc TM	n-Hexane	

1 Enter the Source Status using the following codes:

NS Construction of New Source ES Existing Source

MS Modification of Existing Source

2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:
 - NANoneCDCondenserFLFlareCCCondenser/Combustion CombinationTOThermal OxidizerOOther(please list)Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent

4 Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the well site incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

5 Enter the Potential Emissions Data Reference designation using the following codes:

- MD Manufacturer's Data AP AP-42
 - GR GRI-GLYCalcTM OT Other (please list)
- 6 Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q

Pneumatic Controller Data Sheet

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET					
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?					
\Box Yes \boxtimes No					
Please list approximate number.					
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?					
\Box Yes \boxtimes No					
Please list approximate number.					
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?					
\Box Yes \boxtimes No					
Please list approximate number.					
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?					
🗌 Yes 🛛 No					
Please list approximate number.					

ATTACHMENT R

Pneumatic Pump Data Sheet

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

Yes No

Please list.

Source ID #	Date	Pump Make/Model	Pump Size
		l	

ATTACHMENT S

Air Pollution Control Device Data Sheet

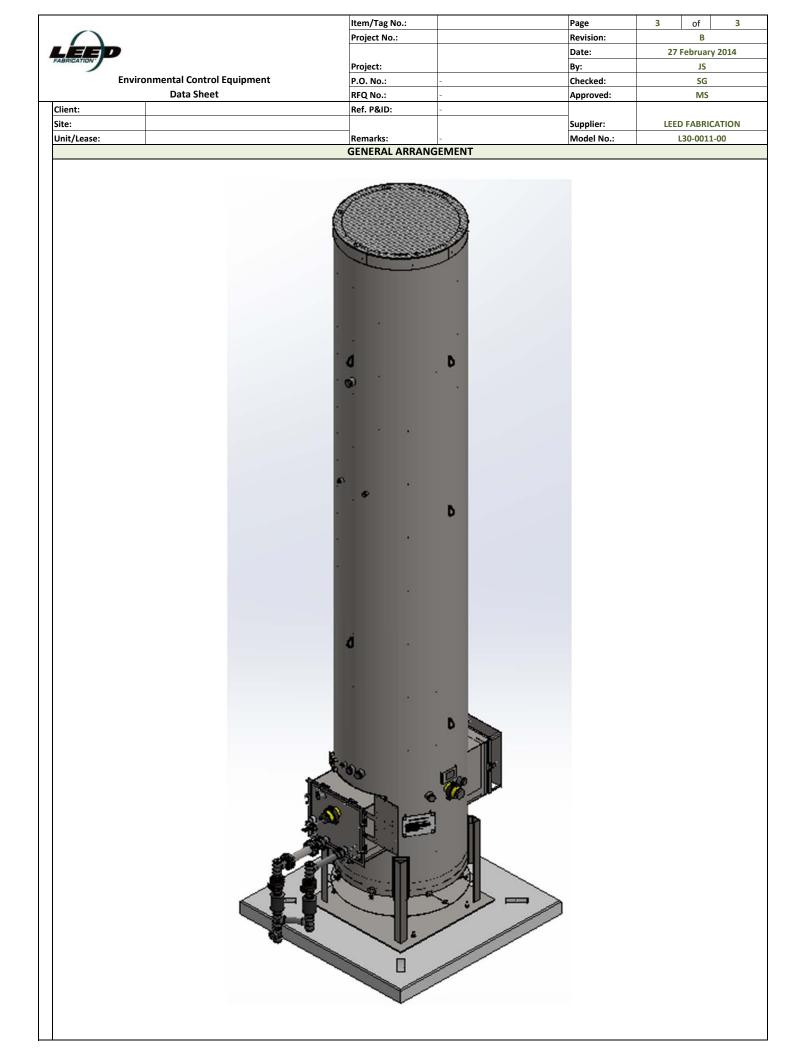
ATTACHMENT S – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.					
Emission Unit ID:	Make/Model:				
Primary Control Device ID:	Make/Model:				
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No				
Secondary Control Device ID:	Make/Model:				
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No				

VAPOR COMBUSTION							
(Including Enclosed Combustors)							
			Genera	al Information			
Control De	evice ID#: C001			Installation Da	ate:2010	Relocated	
Maximum ~7,860 sc:	Rated Total Flow C fh ~188,380 scfd	apacity		Maximum Des (from mfg. spo 11.66 MMBT		Design Heat Content 1,500 BTU/scf	
			Control D	evice Informati	on		
⊠ Enclos □ Therma	ed Combustion Dev l Oxidizer	ce		Combustion Co evated Flare	ontrol?	Ground Flare	
	rer: Leed Fabricatio closed Combustor 4			Hours of opera	ation per year? 87	60	
	nission units whose Point ID# S019, S0		are controlled by	this vapor contr	ol device		
Emission Unit ID#	Emission Source I	Description	n	Emission Unit ID#	Emission Sourc	e Description	
S020- S025							
S019	Liquid Loading						
If this	s vapor combustor c	ontrols en	nissions from mor	e than six (6) en	ission units, plea	se attach additional pages.	
Assist Typ	e (Flares only)		Flare Height	Tip I	Diameter	Was the design per §60.18?	
Steam Pressu	re 🛛 Air		~25 feet	~	4 feet	$\Box Yes \Box No \boxtimes N/A$ Provide determination.	
			Waste G	Gas Information	L	- ·	
Maxim	um Waste Gas Flow 130 (scfm)	Rate	Heat Value	of Waste Gas St BTU/ft ³	ream Varies	Exit Velocity of the Emissions Stream Varies (ft/s)	
	Provide an	attachme	nt with the charac	cteristics of the v	waste gas stream	to be burned.	
			Pilot G	as Information			
Number of Pilot LightsFuel Flow Rate to Pilot1Flame per Pilot50 scfh				out per Pilot BTU/hr	Will automatic re-ignition be used? □ Yes ⊠ No		
If automatic re-ignition is used, please describe the method.							
	me equipped with a f the flame? ⊠		o detect the □ No	If Yes, what type? ⊠ Thermocouple □ Infrared □ Ultraviolet □ Camera □ Other:			
	ll operating ranges : e, please indicate).				manufacturer to	maintain the warranty. (If	
	1			ngs, flame demo	nstration per §60.	18 or §63.11(b) and	


CONDENSER – NOT APPLICABLE						
General In	nformation					
Control Device ID#:	Installation Date:					
Manufacturer:	Model:	Control Device Name:				
Control Efficiency (%):	·					
Manufacturer's required temperature range for control efficie	ncy. °F					
Describe the warning and/or alarm system that protects again	st operation when uni	t is not meeting the design requirements:				
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty.						
Additional information attached? Yes No						
Please attach copies of manufacturer's data sheets.						
Is condenser routed to a secondary APCD or ERD?						
\Box Yes \Box No						

ADSORPTION SYSTE	M – NOT APPLICABLE
General I	nformation
Control Device ID#:	Installation Date:
Manufacturer:	Model: Control Device Name:
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:
Length of Mass Transfer Zone supplied by the manufacturer:	Adsorber diameter: ft Adsorber area: ft ²
Adsorbent type and physical properties:	Overall Control Efficiency (%):
Working Capacity of Adsorbent (%):	
Operating	Parameters
Inlet volume: scfm @ °F	
Adsorption time per adsorption bed (life expectancy):	Breakthrough Capacity (lbs of VOC/100 lbs of adsorbent):
Temperature range of carbon bed adsorber. °F - °F	
Control Device	Technical Data
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)
Describe the warning and/or alarm system that protects again	st operation when unit is not meeting the design requirements:
Has the control device been tested by the manufacturer and co	ertified?
Describe all operating ranges and maintenance procedures red	quired by the manufacturer to maintain the warranty.
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings,	and performance testing.

	VAPOR RECOVERY UN	IT – NC	T APPLICABI	L E						
	General II	nformation								
Emission U	Jnit ID#:	Installation Date:								
Device Information										
Manufactu Model:	rer:									
List the emission units whose emissions are controlled by this vapor recovery unit (Emission Point ID#)										
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Des	cription						
If this	vapor recovery unit controls emissions from more t	han six (6) e	mission units, please a	ttach additional pages.						
	information attached? Yes No No ch copies of manufacturer's data sheets, drawings,	and perform	ance testing.							
The registr recovery u	cant may claim a capture and control efficiency of 9 nit.	95 % (which	accounts for 5% downt	ime) for the vapor						
	cant may claim a capture and control efficiency of 9 8.1.2 of this general permit.	98% if the V	RU has a backup flare t	that meet the requirements						
The registi	cant may claim a capture and control efficiency of 9	98% if the V	RU has a backup VRU.							

						1						1	
				Item/Tag No	.:				Page		1	of	2
1	\cap			Project No.:	-				Revision:			В	
				Project No									
1	LEED								Date:		27	February	/ 2014
1	FABRICATION			Project:					By:			JS	
	Enviro	omental Control Equipment		P.O. No.:		-			Checked:			SG	
		Data Sheet		RFQ No.:		_			Approved	d.		MS	-
	T	Data Sheet				-			Approved	u.		1013	
	Client:			Ref. P&ID:		-							
	Site:								Supplier:		LEEL	D FABRIC	ΔΤΙΟΝ
	Unit/Lease:			Remarks:		-			Model No	0.:		L30-0011	00
				GE	NERAL								
	Design Code:			-			NDE:				ED Fabrica	tion Sto	ndordo
1	-						NDE:			LC	ED Fabrica	ation Sta	nuarus
2	Service:						Custom	er Specs:			Yes		
3	Description:	fficiency Combu	stor						✓ No				
5	Description.	Standard Duar	Stage 40 mgm	-			I						
				PROC	ESS DAT	ΓΑ							
					Process Conditions:								
	Gas Composition:			mol %									
						Variable		Valu	e	Units			
4	Methane					Flow Rate		Up to	140	Mscfo	1		
5	Ethono					Pressure		Up to	12	oz/in2			
	Ethane					Flessule		0010	12				
6	Propane				1	Temperatur	e			٩F			
7	I-Butane		<u> </u>		M	olecular Wei	ght		1				
			 				-						
8	n-Butane					ess/Waste St		✓ Gas			Liquid		
9	I-Pentane				Detailed	d Process De	scriptio	n / Process N	otes:				
10	n-Pentane							an expected		neratio	rate india	ated ab	ove
										perating	, rate mult	area abi	
11	n-Hexane						-	esign conditi					
12	CO2		<u> </u>		3. Burne	er Pressure [Drop: Mi	n. 0.10 oz/in	2				
					-								
13	N2												
14	Helium												
15	H ₂ O				_								
16	C7												
17	C8												
					_								
18	C9												
19	C10												
					-								
20	C11+												
21		TOTAL											
	Other Components:			PPMV	Availab	le Utilities:							
22	H2S				F	uel / Pilot G	as		Min.	30psig I	Vatural Ga	s /Propa	ne 40-50 SCFH
23	Benzene				1	nstrument A	ir		NA				
						Davisar							
24	Toluene					Power			120 \	V / 60 Hz	or Solar P	ower	
25	E-Benzene					Steam			NA				
26	Xylene					Purge Gas							
	Agreene			DECK	GN DAT	-							
				DESIG		A							
27	Ambient Temperatures	5:			Noise P	erformance	Require	ments:			Unde	r 85 dBA	1
28		Low, °F	_	-20	Structu	ral Design Co	nde:						
					-	-	Juc.						
29	L	High, °F	1	120	Wind D	esign Code:					ASCE		
30	Design Conditions:	Pressure/Temperature											
31	Max. Relative Humidity			90	1		Pressur	e/Speed			100 mp	h	
		<i>,,</i>			+						200 mp		
32	Elevation (ASL), ft						Catego	ry					
33	Area Classification:		Class	s I Div 2	Seismic	Design Code	e:		Г				
	Electrical Design Code:			NEC	1	-	Locatio	n					
54	Licentical Design Code:		· · ·		00000		Locatio						
1				EQUIPMENT	SPECIF	ICATION							
35	Туре:	Elevated 🗸 E	Inclosed		Equipm	ent Design:							
36	-	Above Ground				-	omner	nt		Mark	orial / ci-) / Patin	a / Other
	-					C	ompone	int.		IVIA	erial / Size	, nating	57 Other
37		Stack	/lultiple Stack		Burner								
38		Portable / Trailer				Burner Tir	/ Assist	Gas Burner			3(04 SS	
39					1								
	-				-	В	urner Bo	ay			Carb	on Steel	
40	Smokeless By:	Steam A	Assist Air		Pilot								
41		Gas Assist 🗸 S	Staging				Pilot Tir				21	04 SS	
	-				Pilot Tip								
42	L					Р	ilot Line	(S)			Carb	on Steel	
43	Stack:	✓ Self Supporting			Firebox	/ Stack			Г				
44			mokeless [Cae Acciet	1		Ch - II				C	on Stort	
				Gas Assist	+		Shell					on Steel	
45	Pilot:	✓ Intermittent	Continuous				Piping				Carb	on Steel	
46	Pilot Air Inspirator:	✓ Local	Remote				Nozzles		Г		Carb	on Steel	
		No V		(alguo	1								
47	Pilot Flame Control:		Yes (Thermoo	ouhie)			Flanges)			Carb	on Steel	
48							Insulatio	n			Bla	anket	
49	Pilot Ignition:	Flamefront Generator	Inspirating Ig	nitor			sulation				21	04 SS	
				_	1								
50	L	Electronic 🗸	Automatic	Manual	1		Refracto	ry				NA	
51		With Pilot Flame Control				Refra	actory Ar	nchors				NA	
52		With Auto Pilot Re-Ignition			1		rs and Pl					NA	
					+								
53						Stack Sa	mple Co	nnections			Per EPA r	equirem	ents
54	Pilot Ignition Backup:	Manual Specify: i.e F	Piezo-Electric				Sight Gla	ss	1			2	
55		Battery Pack			1		-						
100	1				1		Other						

		Item/Tag No.:	Page	2	of	3
\cap		Project No.:	Revision	n:	В	-
LEED			Date:		7 February 20)14
FABRICATION		Project:	By:		JS	
Enviro	onmental Control Equipment	P.O. No.: -	Checked	d.	SG	
	Data Sheet	RFQ No.:	Approv		MS	
Client:	Butu bheet	Ref. P&ID:		cu.	1415	
Site:						
			Supplie		ED FABRICAT	
Unit/Lease:		Remarks:	Model I	NO.:	L30-0011-00	1
Flame Detection:						
Flame Detection:	Thermocouple Ionizatio	on Rod Auxiliary Ec				
UV Scanner			Valves	NA		
General Configuration			Blowers		NA	
	and the second s		Dampers		NA	
			Inlet KO / Liquid Seal		NA	
		F	lame / Detonation Arrestor		Yes	
	ö	Instrument	ation & Controls	<u> </u>		
			Solenoids / Shut-Off Valves	Check with Sale	s for availabl	e conf
			Flow Meters		NA	
	٥		Calorimeter		NA	
		Pre	essure Switches/Transmitters		NA	
			Thermocouples	Check with Sale	s for availabl	e conf
	a	Tem	perature Switches/Transmitters		NA	
	and the second		BMS	Check with Sale	s for availabl	e conf
	F		CEMS		NA	
			Other		NA	
			otilei			
5	ň					
	*	FABRICATION AND INSP	ECTION	1		
Special requirements	Skid Mounted Concrete Pa			Info		
Special requirements Skid Mounted Concrete Pad			Equipment		/ Dim	
	Other		Component	Weight	/ Dimension	;
		Burner				
Inspection	Vendor Standard		Burner Assembly			
	Other. Specify:	Stack				
Material Certification	Vendor Standard		Stack Assembly	48 "	OD x 25 ' H	
			Pilot Tip	l		
	Certificate of Compliance		Pilot Line(s)			
	Other (Specify):		Stack Assembly			
			uipment	<u> </u>		
NDE	✓ Vendor Standard	Auxiliary Ec		1		
	Vendor Standard Radiography. Specify:	Auxiliary Ec	Blowers			
		Auxiliary Ec				
	Radiography. Specify:		Blowers			
	Radiography. Specify: Ultrasonic. Specify:		Blowers Inlet KO / Liquid Seal			
	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant.	F	Blowers Inlet KO / Liquid Seal lame / Detonation Arrestor			
	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles.	F	Blowers Inlet KO / Liquid Seal lame / Detonation Arrestor Skid			
	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify:	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls			
Surface Preparation	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify:	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			
Surface Preparation	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			
Surface Preparation Paint System	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Other. Specify: Vendor Standard Vendor Standard Vendor Standard	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			
Surface Preparation	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify:	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			
Surface Preparation Paint System Finished Color	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			
Surface Preparation	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Other. Specify: Other. Specify:	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			
Surface Preparation Paint System Finished Color	Radiography. Specify: Ultrasonic. Specify: Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard	F	Blowers Inlet KO / Liquid Seal Iame / Detonation Arrestor Skid ation & Controls BMS			

ATTACHMENT T

Emission Calculations

ATTACHMENT T – EMISSIONS CALCULATIONS

Provide detailed potential to emit (PTE) emission calculations for criteria and hazardous air pollutants (HAPs) for each emission point identified in the application. For hazardous air pollutants and volatile organic compounds (VOCs), the speciated emission calculations must be included.

Use the following guidelines to ensure complete emission calculations:

- All emission sources and fugitive emissions are included in the emission calculations, as well as all methods used to calculate the emissions.
- Proper emission point identification numbers and APCD and ERD identification numbers are used consistently in the emission calculations that are used throughout the application.
- A printout of the emission summary sheets is attached to the registration application.
- Printouts of any modeling must be included with the emission calculations. The modeling printout must show all inputs/outputs or assumptions that the modeled emissions are based upon.
- If emissions are provided from the manufacturer, the manufacturer's documentation and/or certified emissions must also be included.
- The emission calculations results must match the emissions provided on the emissions summary sheet.
- If calculations are based on a compositional analysis of the gas, attach the laboratory analysis. Include the following information: the location that the sample was taken (and whether the sample was taken from the actual site or a representative site); the date the sample was taken; and, if the sample is considered representative, the reasons that it is considered representative (same gas field, same formation and depth, distance from actual site, etc.).
- Provide any additional clarification as necessary. Additional clarification or information is especially helpful when reviewing modeling calculations to assist the engineer in understanding the basis of assumptions and/or inputs.

Please follow specific guidance provided on the emissions summary sheet when providing the calculations.

EQT Production, LLC **Company Name:** Facility Name: OXF 121 Pad **Project Description:** G70-D Application

Facility-Wide Emission Summary - Controlled

5	per pad	Carbon equival	alent emissions (CO2e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:
6	per pad	CO ₂	1
0	per pad	CH4	25
1	per pad	N ₂ O	298
2	per pad		
0	per pad		
5	per pad		
0	per pad		
0	per pad		
1	per pad		
05	feet		
	6 0 1 2 0 0 0 0 0 5 0 0 1	0 per pad 0 per pad 0 per pad 5 per pad 5 per pad 0 per pad 1 per pad	

Emission	Emission	Emission	N	Ox	0	0	V	DC	S	02	PN	A ₁₀	PN	1 _{2.5}	C	H_4	CO	0 ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy								
C001	S020-S025	Storage Vessels					1.55	6.79							0.165	0.724	4.13	18.10
C001	S019	Captured Liquid Loading					0.22	0.06										
C001	C001	Tank Combustor	1.15	5.03	0.96	4.22	2.8E-04	1.2E-03	0.01	0.03	0.09	0.38	0.09	0.38	1.2E-04	5.1E-04	1,371.10	6,005.43
C001	S020-S025		1.15	5.03	0.96	4.22	1.77	6.85	0.01	0.03	0.09	0.38	0.09	0.38	0.17	0.72	1,375.24	6,023.53
E016	S016	Line Heater	0.11	0.48	0.09	0.40	0.01	0.03	6.6E-04	2.9E-03	0.01	0.04	0.01	0.04	2.5E-03	0.01	135.14	591.90
E017	S017	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	2.9E-05	1.3E-04	1.52	6.64
E018	S018	TEG	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	2.9E-05	1.3E-04	1.52	6.64
E019	S019	Uncaptured Liquid Loading					4.79	1.25										
		Fugitives						12.36								8.52		213.07
		Haul Roads										0.30		0.03				
Facility Total			1.26	5.52	1.06	4.64	6.57	20.48	0.01	0.03	0.10	0.72	0.10	0.45	0.17	9.26	1,513.41	6,841.79
Facility Total (excludi	ng fugitive emissions)		1.26	5.52	1.06	4.64	6.57	8.12	0.01	0.03	0.10	0.42	0.10	0.42	0.17	0.74	1,513.41	6,628.72

1. Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

Company Name: EQT Production, LLC Facility Name: OXF 121 Pad Project Description: G70-D Application

				Facili	ity-Wide	Emissio	n Summa	ry - Cont	rolled									
Emission	Emission	Emission		ldehyde		zene		uene		enzene	2	enes		exane		TEX		al HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001	S020-S025	Storage Vessels			1.6E-03	7.1E-03	3.5E-03	1.6E-02	9.7E-05	4.3E-04	1.5E-03	6.6E-03	0.06	0.27	0.01	0.03	0.09	0.38
C001	S019	Captured Liquid Loading			1.3E-04	3.5E-05	2.8E-04	7.2E-05	8.5E-06	2.2E-06	1.7E-04	4.4E-05	0.01	2.2E-03	5.9E-04	1.5E-04	0.01	2.9E-03
C001	C001	Tank Combustor																
C001	S020-S025				1.8E-03	7.2E-03	3.8E-03	1.6E-02	1.1E-04	4.3E-04	1.7E-03	6.6E-03	0.07	0.28	0.01	0.03	0.10	0.38
E016	S016	Line Heater	8.2E-05	3.6E-04	2.3E-06	1.0E-05	3.7E-06	1.6E-05					2.0E-03	0.01	6.0E-06	2.6E-05	2.1E-03	0.01
E017	S017	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	6.8E-08	3.0E-07	2.3E-05	1.0E-04
E018	S018	TEG	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	6.8E-08	3.0E-07	2.3E-05	1.0E-04
E019	S019	Uncaptured Liquid Loading			2.9E-03	7.4E-04	0.01	1.5E-03	1.8E-04	4.8E-05	3.6E-03	9.5E-04	0.18	0.05	0.01	3.3E-03	0.24	0.06
		Fugitives				0.01		0.01		< 0.01		0.01		0.20	< 0.01	0.02		0.39
		Haul Roads													< 0.01	< 0.01		
Facility Total			8.4E-05	3.7E-04	4.6E-03	0.01	0.01	0.03	2.9E-04	4.7E-04	0.01	0.01	0.25	0.53	0.02	0.06	0.34	0.84
Facility Total (excludin	g fugitive emissions)		8.4E-05	3.7E-04	4.6E-03	0.01	9.7E-03	1.7E-02	2.9E-04	4.7E-04	5.3E-03	7.6E-03	0.25	0.33	0.02	0.03	0.34	0.45

1. Emissions routed to combustors are divided evenly by the total number of combustors (i.e., Combustor Point Emissions = [storage tanks emissions + captured loading emissions] / [number of combustors] + combustor emissions). However, emissions can be routed to either combustor.

 Company Name:
 EOT Production, LLC

 Facility Name:
 OXF 121 Pad

 Project Description:
 G70-D Application

Produced Fluids Storage Vessels

98%

<u>Potential Throughput</u> Operational Hours	8,760 hrs/yr
Maximum Condensate Throughput ¹	40 bbl/day
Maximum Produced Water Throughput ¹	98 bbl/day

¹ Based on the highest monthly throughput recorded at the site (August 2013). Includes a 80 percent compliance margin

Overall Control Efficiency of Combustor

Storage Tanks - Uncontrolled

	Brea	thing	Wor	king	Flas	hing	Total E	nissions
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Methane	< 0.001	< 0.001	< 0.001	< 0.001	8.265	36.201	8.265	36.201
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	12.558	55.006	12.558	55.006
Propane	0.336	1.472	0.594	2.603	23.082	101.100	24.013	105.175
Isobutane	0.090	0.393	0.159	0.694	6.788	29.730	7.036	30.817
n-Butane	0.219	0.959	0.387	1.696	16.703	73.160	17.309	75.815
Isopentane	0.090	0.395	0.159	0.698	7.253	31.770	7.503	32.863
n-Pentane	0.088	0.386	0.156	0.683	7.454	32.650	7.699	33.720
n-Hexane	0.036	0.159	0.064	0.281	3.039	13.310	3.139	13.749
Cyclohexane	0.003	0.013	0.005	0.022	0.324	1.420	0.332	1.455
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
n-Heptane	0.037	0.161	0.065	0.284	3.368	14.750	3.469	15.195
n-Octane	0.008	0.034	0.014	0.060	0.742	3.249	0.763	3.342
n-Nonane	0.002	0.007	0.003	0.013	0.167	0.734	0.172	0.754
n-Decane	0.002	0.007	0.003	0.012	0.163	0.713	0.167	0.732
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Isohexane	0.053	0.234	0.094	0.414	4.575	20.040	4.723	20.688
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	0.003	0.001	0.004	0.080	0.349	0.081	0.356
Toluene	0.001	0.005	0.002	0.009	0.174	0.762	0.177	0.776
Ethylbenzene	3.7E-05	1.6E-04	6.6E-05	2.9E-04	0.005	0.021	0.005	0.021
m-Xylene	0.001	0.003	0.001	0.006	0.073	0.320	0.075	0.329
Isooctane	0.009	0.041	0.016	0.072	0.835	3.657	0.861	3.770
Total VOC Emissions:	0.97	4.27	1.72	7.55	74.83	327.73	77.52	339.56
Total HAP Emissions:	4.8E-02	0.21	0.08	0.37	4.21	18.42	4.34	19.00

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate). Non-methane emissions are taken from the tank emissions stencil. Methane emissions are taken from the flash stream composition.

² Emission calculations based on OXF -121 condensate sample

Company Name: EQT Proc Facility Name: OXF 121 Project Description: G70-D Ar

EOT Production, LLC OXF 121 Pad G70-D Application

Storage Tanks - Controlled

	Brea	thing	Wor	king	Flas	hing	Total Er	nissions
	lb/hr	tpy			lb/hr	tpy	lb/hr	tpy
Methane	<0.001	< 0.001	< 0.001	< 0.001	0.165	0.724	0.165	0.724
Ethane	< 0.001	< 0.001	< 0.001	< 0.001	0.251	1.100	0.251	1.100
Propane	0.007	0.029	0.012	0.052	0.462	2.022	0.480	2.104
sobutane	0.002	0.008	0.003	0.014	0.136	0.595	0.141	0.616
n-Butane	0.004	0.019	0.008	0.034	0.334	1.463	0.346	1.516
sopentane	0.002	0.008	0.003	0.014	0.145	0.635	0.150	0.657
n-Pentane	0.002	0.008	0.003	0.014	0.149	0.653	0.154	0.674
n-Hexane	0.001	0.003	0.001	0.006	0.061	0.266	0.063	0.275
Cyclohexane	5.7E-05	2.5E-04	1.0E-04	4.4E-04	0.006	0.028	0.007	0.029
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
1-Heptane	0.001	0.003	0.001	0.006	0.067	0.295	0.069	0.304
n-Octane	1.5E-04	0.001	2.7E-04	0.001	0.015	0.065	0.015	0.067
n-Nonane	3.3E-05	1.5E-04	5.9E-05	2.6E-04	0.003	0.015	0.003	0.015
1-Decane	3.0E-05	1.3E-04	5.3E-05	2.3E-04	0.003	0.014	0.003	0.015
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Friethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
sohexane	0.001	0.005	0.002	0.008	0.092	0.401	0.094	0.414
8-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Veohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Aethylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	1.2E-05	5.1E-05	2.1E-05	9.0E-05	0.002	0.007	0.002	0.007
oluene	2.4E-05	1.1E-04	4.3E-05	1.9E-04	0.003	0.015	0.004	0.016
Ethylbenzene	7.4E-07	3.3E-06	1.3E-06	5.8E-06	9.5E-05	4.2E-04	9.7E-05	4.3E-04
n-Xylene	1.5E-05	6.5E-05	2.6E-05	1.1E-04	0.001	0.006	0.002	0.007
sooctane	1.9E-04	0.001	3.3E-04	0.001	0.017	0.073	0.017	0.075
fotal VOC Emissions:	1.9E-02	0.09	0.03	0.15	1.50	6.55	1.55	6.79
otal HAP Emissions:	9.6E-04	4.2E-03	1.7E-03	7.4E-03	8.4E-02	0.37	0.09	0.38

Produced Fluids Storage Vessels

Company Name:	EQT Production, LLC
Facility Name:	OXF 121 Pad
Project Description:	G70-D Application

Tank Combustor

Source Designation:	C001
Pilot Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Pilot Rating (MMBtu/hr)	0.05
Combustor Rating (MMBtu/hr) ¹	11.66
Combustor Rating (Mscfd) ¹	188.38
Combustor Rating (scf/hr)	7849.17
Pilot Fuel Consumption (scf/hr):	50.00
Potential Annual Hours of Operation (hr/yr):	8,760

¹ Maximum heat input for 48" model from Leed Enclosed Combustor Operations Manual

Enclosed Combustor Emissions

	Emission Factors ²	Comb	oustor	Pi	lot	To	tal
Pollutant	(lb/MMBtu)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
NO _x	0.10	1.14	5.01	5.1E-03	0.02	1.15	5.03
CO	0.08	0.96	4.21	4.3E-03	0.02	0.96	4.22
VOC	5.4E-03			2.8E-04	1.2E-03	0.00	0.00
SO ₂	5.9E-04	0.01	0.03	3.1E-05	1.4E-04	0.01	0.03
PM/PM ₁₀	0.01	0.09	0.38	3.9E-04	1.7E-03	0.09	0.38
CO ₂	117.00	1364.189	5975.146	6.14	26.90	1370.33	6002.05
CH ₄	2.2E-03			1.2E-04	5.1E-04	0.00	0.00
N ₂ O	2.2E-04	2.6E-03	0.01	1.2E-05	5.1E-05	2.6E-03	0.01

² Emission factors from AP-42 Ch. 1.4 for natural gas combustion were used as they were determined to be most representative of the process. Ch. 5.3 (Natural Gas Processing) was consulted, however, factors contained there are appropriate for amine gas sweetening processes, which is not the case at the wellpad. Also, Ch. 13.5 (Industrial Flares) was consulted, but since the control device in this case is an enclosed combustor vs. an elevated flare, these factors were also determined to be inappropriate.

Combustor Maximum Loading:

7849.17 scf	lb-mol	20.44 lb	=	422.66 lb/hr
hr	379.5 scf	lb-mol		

Company Name: Facility Name: Project Description:	EQT Production, LLC OXF 121 Pad G70-D Application	
	Line Heaters	

Natural Gas
1,050
1.15
1.10E-03
8,760

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ^{1, 4} (lb/hr) ²		(tons/yr) ³
NO _x	100	0.11	0.48
CO	84	0.09	0.40
VOC	5.5	0.01	0.03
SO ₂	0.6	6.6E-04	2.9E-03
PM Total	7.6	0.01	0.04
PM Condensable	5.7	0.01	0.03
PM ₁₀ (Filterable)	1.9	2.1E-03	0.01
PM _{2.5} (Filterable)	1.9	2.1E-03	0.01
Lead	5.00E-04	5.5E-07	2.4E-06
CO ₂	117.0	135.00	591.29
CH ₄	2.21E-03	2.5E-03	1.1E-02
N ₂ O	2.21E-04	2.5E-04	1.1E-03

Company Name: Facility Name: **Project Description:** EQT Production, LLC OXF 121 Pad G70-D Application

Line Heaters

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
2-Methylnaphthalene	2.4E-05	2.6E-08	1.2E-07
3-Methylchloranthrene	1.8E-06	2.0E-09	8.7E-09
7,12-Dimethylbenz(a)anthracene	1.6E-05	1.8E-08	7.7E-08
Acenaphthene	1.8E-06	2.0E-09	8.7E-09
Acenaphthylene	1.8E-06	2.0E-09	8.7E-09
Anthracene	2.4E-06	2.6E-09	1.2E-08
Benz(a)anthracene	1.8E-06	2.0E-09	8.7E-09
Benzene	2.1E-03	2.3E-06	1.0E-05
Benzo(a)pyrene	1.2E-06	1.3E-09	5.8E-09
Benzo(b)fluoranthene	1.8E-06	2.0E-09	8.7E-09
Benzo(g,h,i)perylene	1.2E-06	1.3E-09	5.8E-09
Benzo(k)fluoranthene	1.8E-06	2.0E-09	8.7E-09
Chrysene	1.8E-06	2.0E-09	8.7E-09
Dibenzo(a,h) anthracene	1.2E-06	1.3E-09	5.8E-09
Dichlorobenzene	1.2E-03	1.3E-06	5.8E-06
Fluoranthene	3.0E-06	3.3E-09	1.4E-08
Fluorene	2.8E-06	3.1E-09	1.3E-08
Formaldehyde	7.5E-02	8.2E-05	3.6E-04
Hexane	1.8E+00	2.0E-03	8.7E-03
Indo(1,2,3-cd)pyrene	1.8E-06	2.0E-09	8.7E-09
Naphthalene	6.1E-04	6.7E-07	2.9E-06
Phenanthrene	1.7E-05	1.9E-08	8.2E-08
Pyrene	5.0E-06	5.5E-09	2.4E-08
Toluene	3.4E-03	3.7E-06	1.6E-05
Arsenic	2.0E-04	2.2E-07	9.6E-07
Beryllium	1.2E-05	1.3E-08	5.8E-08
Cadmium	1.1E-03	1.2E-06	5.3E-06
Chromium	1.4E-03	1.5E-06	6.7E-06
Cobalt	8.4E-05	9.2E-08	4.0E-07
Manganese	3.8E-04	4.2E-07	1.8E-06
Mercury	2.6E-04	2.9E-07	1.3E-06
Nickel	2.1E-03	2.3E-06	1.0E-05
Selenium	2.4E-05	2.6E-08	1.2E-07
Total HAP		2.1E-03	9.1E-03

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emission factor sprong (bh/rr)_{Potential} = (lb/hr)_{Emission} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
 ⁴ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Company Name:	EQT Production, LLC
Facility Name:	OXF 121 Pad
Project Description:	G70-D Application

Thermoelectric Gene	rators

Source Designation:	S017-S018
Fuel Used:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,050
Heat Input (MMBtu/hr) ¹	0.013
Fuel Consumption (MMscf/hr):	1.23E-05
Potential Annual Hours of Operation (hr/yr):	8,760

r.

¹ Global Themorelectric specification sheet states 311 ft³/day at 1000 BTU/ft³.

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ^{2, 5}	(lb/MMscf) ^{2, 5} (lb/hr) ³	
NO _x	100	1.2E-03	0.01
со	84	1.0E-03	4.5E-03
VOC	5.5	6.8E-05	3.0E-04
SO ₂	0.6	7.4E-06	3.2E-05
PM Total	7.6	9.4E-05	4.1E-04
PM Condensable	5.7	7.0E-05	3.1E-04
PM ₁₀ (Filterable)	1.9	2.3E-05	1.0E-04
PM _{2.5} (Filterable)	1.9	2.3E-05	1.0E-04
Lead	5.00E-04	6.2E-09	2.7E-08
CO ₂	116.9	1.51	6.64
CH ₄	2.21E-03	2.9E-05	1.3E-04
N ₂ O	2.21E-04	2.9E-06	1.3E-05

Company Name: Facility Name: **Project Description:** EQT Production, LLC OXF 121 Pad G70-D Application

Thermoelectric Generators

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential F	Emissions
Pollutant	(lb/MMscf) ²	(lb/hr) ³	(tons/yr) ⁴
HAPs:			
2-Methylnaphthalene	2.4E-05	3.0E-10	1.3E-09
3-Methylchloranthrene	1.8E-06	2.2E-11	9.7E-11
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.0E-10	8.6E-10
Acenaphthene	1.8E-06	2.2E-11	9.7E-11
Acenaphthylene	1.8E-06	2.2E-11	9.7E-11
Anthracene	2.4E-06	3.0E-11	1.3E-10
Benz(a)anthracene	1.8E-06	2.2E-11	9.7E-11
Benzene	2.1E-03	2.6E-08	1.1E-07
Benzo(a)pyrene	1.2E-06	1.5E-11	6.5E-11
Benzo(b)fluoranthene	1.8E-06	2.2E-11	9.7E-11
Benzo(g,h,i)perylene	1.2E-06	1.5E-11	6.5E-11
Benzo(k)fluoranthene	1.8E-06	2.2E-11	9.7E-11
Chrysene	1.8E-06	2.2E-11	9.7E-11
Dibenzo(a,h) anthracene	1.2E-06	1.5E-11	6.5E-11
Dichlorobenzene	1.2E-03	1.5E-08	6.5E-08
Fluoranthene	3.0E-06	3.7E-11	1.6E-10
Fluorene	2.8E-06	3.5E-11	1.5E-10
Formaldehyde	7.5E-02	9.3E-07	4.1E-06
Hexane	1.8E+00	2.2E-05	9.7E-05
Indo(1,2,3-cd)pyrene	1.8E-06	2.2E-11	9.7E-11
Naphthalene	6.1E-04	7.5E-09	3.3E-08
Phenanthrene	1.7E-05	2.1E-10	9.2E-10
Pyrene	5.0E-06	6.2E-11	2.7E-10
Toluene	3.4E-03	4.2E-08	1.8E-07
Arsenic	2.0E-04	2.5E-09	1.1E-08
Beryllium	1.2E-05	1.5E-10	6.5E-10
Cadmium	1.1E-03	1.4E-08	5.9E-08
Chromium	1.4E-03	1.7E-08	7.6E-08
Cobalt	8.4E-05	1.0E-09	4.5E-09
Manganese	3.8E-04	4.7E-09	2.1E-08
Mercury	2.6E-04	3.2E-09	1.4E-08
Nickel	2.1E-03	2.6E-08	1.1E-07
Selenium	2.4E-05	3.0E-10	1.3E-09
Total HAP		2.3E-05	1.0E-04

² Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

³ Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

⁴ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).
⁵ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

Company Name: Facility Name: **Project Description:** EQT Production, LLC OXF 121 Pad G70-D Application

Liquid Loading

Throughput Capture Efficiency Control Efficiency

2,115,540 gal/yr 70% non-tested tanker trucks 98% Combustor destruction efficiency

Liquid Loading Emissions

	Uncontrolle lb/hr	d Emissions tpy	Uncapture lb/hr	d Emissions tpy	Controlled lb/hr	l Emissions tpy
	10/11	φy	10/111	τpj	10/111	τpj
Propane	5.508	1.432	1.652	0.430	0.077	0.020
Isobutane	1.469	0.382	0.441	0.115	0.021	0.005
n-Butane	3.588	0.933	1.076	0.280	0.050	0.013
Isopentane	1.477	0.384	0.443	0.115	0.021	0.005
n-Pentane	1.445	0.376	0.434	0.113	0.020	0.005
n-Hexane	0.593	0.154	0.178	0.046	0.008	0.002
Cyclohexane	0.047	0.012	0.014	0.004	0.001	1.7E-04
Methylcyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
n-Heptane	0.601	0.156	0.180	0.047	0.008	0.002
n-Octane	0.126	0.033	0.038	0.010	0.002	4.6E-04
n-Nonane	0.027	0.007	0.008	0.002	3.8E-04	9.9E-05
n-Decane	0.025	0.006	0.007	0.002	3.4E-04	9.0E-05
n-Undecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Dodecane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Triethylene Glycol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyclopentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Isohexane	0.875	0.228	0.263	0.068	0.012	0.003
3-Methylpentane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Neohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
2,3-Dimethylbutane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Methylcyclohexane	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Decane, 2-Methyl-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.010	0.002	0.003	0.001	1.3E-04	3.5E-05
Toluene	0.020	0.005	0.006	0.002	2.8E-04	7.2E-05
Ethylbenzene	0.001	1.6E-04	1.8E-04	4.8E-05	8.5E-06	2.2E-06
m-Xylene	0.012	0.003	0.004	0.001	1.7E-04	4.4E-05
Isooctane	0.152	0.040	0.046	0.012	0.002	0.001
Total VOC Emissions:	15.975	4.153	4.792	1.246	0.224	0.058
Total HAP Emissions:	0.787	0.205	0.236	0.061	0.011	0.003

¹ Uncontrolled emissions calculation using Promax (sum of produced water and condensate).
² Hourly emissions assume two hours of loading per day, five days per week.

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices
Wellhead	8	38	0.5	0
Separators	1	6	0	0
Meters/Piping	12	45	0	0
Compressors	12	57	0	0
In-line heaters	14	65	2	1
Dehydrators	24	90	2	2

¹ Table W-1B to Subpart W of Part 98 —Default Average Component Counts for Major Onshore Natural Gas Production

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP	VOC Emissions ³ (tpy)	HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	9	1.73	1.00	0.03	1.73	0.05
Compressor	Gas	0.22800	0		0.17	0.01		
Valves	Gas	0.00597	179	10.29	0.17	0.01	1.71	0.05
Pressure Relief Valves	Gas	0.10400	14	13.56	0.17	0.01	2.25	0.07
Open-Ended Lines	All	0.00170	8	0.12	0.17	0.01	0.02	6.4E-04
Connectors	All	0.00183	765	13.52	0.17	0.01	2.24	0.07
Intermittent Pneumatic Devices ⁴	Gas	13.5	25				4.41	0.14
			Emission Totals:	39.22			12.36	0.39

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton)

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	9	1.73	1.3E-04	3.1E-04	<0.01	1.8E-04	0.01
Compressor	Gas	0.22800	0				< 0.01		
Valves	Gas	0.00597	179	10.29	7.9E-04	1.9E-03	< 0.01	1.1E-03	0.03
Pressure Relief Valves	Gas	0.10400	14	13.56	1.0E-03	2.4E-03	< 0.01	1.4E-03	0.04
Open-Ended Lines	All	0.00170	8	0.12	9.4E-06	2.2E-05	< 0.01	1.3E-05	3.8E-04
Connectors	All	0.00183	765	13.52	1.0E-03	2.4E-03	< 0.01	1.4E-03	0.04
Intermittent Pneumatic Devices ⁴	Gas	13.5	25		2.0E-03	4.8E-03	<0.01	2.8E-03	0.08
			Emission Totals:	39.22	0.01	0.01	<0.01	0.01	0.20

¹ U.S. EPA. Office of Air Quality Planning and Standards. *Protocol for Equipment Leak Emission Estimates*. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas liquids extraction. The pneumatic controller value is from 40 CFR 98 Subpart W, Table W-1A. Pneumatic assumes operation 1/3 of the year.

² Assumes one pump for each tank and one meter per wellhead. Pressure relief valves count includes one Emergency Pressure Relief valve and one lock-down hatch for each storage tank. Pneumatic devices assume 5 per well. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

GHG Fugitive Emissions from Component Leaks

		GHG Emission			
	Component	Factor ¹	CH ₄ Emissions ^{2,3}	CO ₂ Emissions ^{2,3}	CO ₂ e Emissions ⁴
Component	Count	scf/hr/component	(tpy)	(tpy)	(tpy)
Pumps	9	0.01	0.01	8.9E-05	0.33
Compressor	0	4.17			
Valves	179	0.027	0.71	4.8E-03	17.64
Pressure Relief Devices	14	0.04	0.08	5.3E-04	1.98
Open-Ended Lines	8	0.061	0.07	4.5E-04	1.67
Connectors	765	0.003	0.34	2.3E-03	8.40
Intermittent Pneumatic Devices	25	6	7.32	0.05	183.05
	ſotal		8.52	0.06	213.07

¹ Population emission factors for gas service in the Eastern U.S. from *Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production*, 40 CFR 98, Subpart W (Table W-6 for compressor). Pneumatic assumes operation 1/3 of the year. ² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

0.20%

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP ÷ 100 ÷ 379 (scf/lb-mol) ÷ 2,000 (lb/ton) Mole fractions of CH₄ and CO₂ based on gas analysis:

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1:

$$CH_{4:}$$
 79%
O₂e) are based on the following Glob
Carbon Dioxide (CO₂): 1
Methane (CH₄): 25

ane
$$(CH_4)$$
:

 Company Name:
 EQT Production, LLC

 Facility Name:
 OXF 121 Pad

 Project Description:
 G70-D Application

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

paved Road Emissions					
Unpaved Roads	E (lb/VMT)	$= k(s/12)^{a}(W/3)^{b}$)*[(365-p)/3	65]	
	PM	PM ₁₀	PM _{2.5}		
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)	
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing	
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2	
а	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)	
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)	

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	I PM	Emissions (tpy PM ₁₀) PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	0.46 0.46	529 200	482 182	0 0	1.03 0.14	0.26 0.04	0.03 0.00
Total Potential Emissions								1.17	0.30	0.03

EQT Production, LLC Company Name: OXF 121 Pad **Project Description:** G70-D Application

Gas Analysis	
	_

Sample Location:	
Sample Date:	
HHV (Btu/scf):	

OXF 121 Gas Analysis 5/29/2013 1,240

Note: A conservatively low BTU content of 1,050 was used for calculations.

Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.195	44.01	0.09	0.00	0.420
Nitrogen	0.532	28.01	0.15	0.01	0.729
Methane	78.965	16.04	12.67	0.62	61.981
Ethane	13.780	30.07	4.14	0.20	20.277
Propane	4.195	44.10	1.85	0.09	9.053
Isobutane	0.507	58.12	0.29	0.01	1.442
n-Butane	1.013	58.12	0.59	0.03	2.881
Isopentane	0.249	72.15	0.18	0.01	0.879
n-Pentane	0.240	72.15	0.17	0.01	0.847
Cyclopentane	< 0.001	70.1	0.0	0.0	0.000
n-Hexane	0.073	86.18	0.06	0.00	0.308
Cyclohexane	0.011	84.16	0.01	0.00	0.045
Other Hexanes	0.113	86.18	0.10	0.00	0.477
Heptanes	0.079	100.21	0.08	0.00	0.387
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000
2,2,4-Trimethylpentane	0.031	114.23	0.04	0.00	0.173
Benzene*	0.002	78.11	0.00	0.00	0.008
Toluene*	0.004	92.14	0.00	0.00	0.018
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000
Xylenes*	0.002	106.16	0.00	0.00	0.010
C8 + Heavies	0.010	130.80	0.01	0.00	0.064
Totals	100.00		20.44	1.00	100

TOC (Total)	99.27	98.85
VOC (Total)	6.53	16.59
HAP (Total)	0.11	0.52

Facility Name:

		OXF-121 Plant Schematic		
Client Name:	EQT Production		Job: V1.0	
Location:	OXF 121 Wellpad			
Flowsheet:	OXF-121			

Page 1 of 6

			All St	reams Report reams y Total Phase			
Client Name: Location:	EQT Production OXF 121 Wellpa				Job: V1.0		
Flowsheet:	OXF-121 Wellpa	lu					
	1						
			Conn	ections			
			Combined	Combined	Combined PW	Gas to Sales	Reservoir Gas
			Flash Vapor	Flowstream	& Cond	Line	
From Block			MIX-100	MIX-102	MIX-101	High Pressure	
T D					.	Tower	
To Block			MIX-105	Preheat	Produced Fluid Tanks		MIX-102
					TAIKS		
			Stroom C	omposition			
			Combined	Combined	Combined PW	Gas to Sales	Reservoir Gas
			Flash Vapor	Flowstream	& Cond	Line	Reservoir Gas
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen			0.0503402	163.634	0.0504575	163.583	163.634 *
Methane			12.1835	13921.8	12.2718	13909.6	13909.2 *
CO2			0.260237	94.4766	0.267879	94.2087	94.2272 *
Ethane Propane			18.4773 23.5824	4569.37 2057.83	19.2096 26.9038	4550.16 2030.93	4549.5 * 2031.06 *
Isobutane			7.14688	332.811	9.62373	323.188	323.553 *
n-Butane			17.9139	672.945	26.8261	646.119	646.468 *
Isopentane			8.25025	215.991	18.6482	197.343	197.253 *
n-Pentane			8.6423	212.909	22.5942	190.315	189.331 *
n-Hexane	_		3.82349	93.2657	25.0099	68.2558	69.0719 *
Methylcyclopentan Benzene	e		0.0995755	0 2.40714	0.651463	0 1.75568	0 *
Cyclohexane			0.408377	10.1646	3.05469	7.10993	10.1646 *
n-Heptane			4.46426	163.206	80.8312	82.3752	86.9158 *
n-Octane			1.02394	76.2265	55.8151	20.4115	3.76263 *
n-Nonane			0.240104	45.4661	40.319	5.1471	5.63287 *
n-Decane			0.240545	127.582	121.617	5.96441	4.68668 *
n-Undecane Dodecane			0	0	0	0	0 *
Water			2.11307	1459.01	1432.93	26.0764	0 *
Triethylene Glycol			0	0	0	0	0 *
Oxygen			0	0	0	0	0 *
Argon			0	0	0	0	0 *
Carbon Monoxide Cyclopentane			0	0	0	0	0 *
Isohexane			5.6128	130.844	27.5065	103.337	106.919 *
3-Methylpentane			0.0120	0	0	0	0 *
Neohexane			0	0	0	0	0 *
2,3-Dimethylbutane			0	0	0	0	0 *
Methylcyclohexane Isooctane	•		0 1.09689	0 39.0665	0 18.6966	0 20.3699	0 * 38.8805 *
Decane, 2-Methyl-			1.09689	39.0665	0	20.3699	38.8805
Toluene			0.229521	8.34898	4.29615	4.05283	4.04665 *
m-Xylene			0.100515	8.40178	6.45257	1.94921	2.33135 *
Ethylbenzene			0.0065356	0.511631	0.385681	0.12595	0 *
Volumetric Flow			Combined Flash Vapor ft^3/h	Combined Flowstream ft^3/h	Combined PW & Cond gpm	Gas to Sales Line ft^3/h	Reservoir Gas ft^3/h
Nitrogen			0.720426	78.2438	0.000195114	84.7382	78.3241
Methane			302.964	10575.1	0.0833275	11604.5	10578.6
CO2			2.34988	23.8905	0.000428801	26.6101	23.9166
Ethane			242.776	1487.63	0.0858216	1692.66	1487.75
Propane Isobutane			209.575 47.8612	366.742 36.3425	0.1035	435.726 45.291	367.258 36.441
n-Butane			119.763	66.7099	0.0925141	85.1096	66.938
Isopentane			44.1375	12.593	0.0600365	17.2129	12.4154
n-Pentane			46.1667	11.3992	0.0721615	15.8561	11.1004
n-Hexane Methylcyclopentan			16.9469	2.48552	0.075494	3.38477	1.91374
			0	0	0	0	0

* User Specified Values ? Extrapolated or Approximate Values

Г

			All St	reams Report reams y Total Phase			
Client Name:	EQT Production				Job: V1.0	*	
Location:	OXF 121 Wellpa	d					
Flowsheet:	OXF-121						
Volumetric Flow			Combined Flash Vapor ft^3/h	Combined Flowstream ft^3/h	Combined PW & Cond gpm	Gas to Sales Line ft^3/h	Reservoir Gas ft^3/h
Benzene			0.490262	0.0848824	0.00144108	0.122642	0.078427
Cyclohexane			1.85991	0.288926	0.00772492	0.401256	0.344784
n-Heptane n-Octane			16.8772 3.36669	2.8584 1.341	0.234912 0.15624	2.1105 0.188272	0.739678 0.00664644
n-Nonane			0.696274	0.86626	0.109675	-0.0303132	0.0244008
n-Decane			0.623464	2.53567	0.324565	-0.103238	0.0489429
n-Undecane			0	0	0	0	0
Dodecane Water			0 46.6917	0 33.2229	0 2.87143	0 18.7088	0
Triethylene Glycol			40.0317	0	0	0	0
Oxygen			0	0	0	0	0
Argon			0	0	0	0	0
Carbon Monoxide Cyclopentane			0	0	0	0	0
Isohexane			24.9276	4.03026	0.0839521	5.66109	3.54749
3-Methylpentane			0	4.03020	0.00000021	0	0
Neohexane			0	0	0	0	0
2,3-Dimethylbutane			0	0	0	0	0
Methylcyclohexane Isooctane			0 3.6322	0.646374	0.0530749	0.453872	0.292204
Decane, 2-Methyl-			0	0.040374	0.0550749	0.433072	0.292204
Toluene			0.949529	0.15194	0.00956599	0.159275	0.0757382
m-Xylene			0.357723	0.130775	0.0143715	0.0390928	0.0176282
Ethylbenzene			0.0232794	0.00796894	0.000856286	0.00270534	0
			Combined	Combined	Combined PW	Gas to Sales	Reservoir Gas
Mole Fraction			Combined Flash Vapor	Combined Flowstream	Combined PW & Cond	Gas to Sales Line	Reservoir Gas
Nitrogen			Flash Vapor 0.000622907	Flowstream 0.00492733	& Cond 2.09067E-05	Line 0.00531185	0.00532 *
Nitrogen Methane			Flash Vapor 0.000622907 0.263254	Flowstream 0.00492733 0.732033	& Cond 2.09067E-05 0.008879	Line 0.00531185 0.788706	0.00532 * 0.78965 *
Nitrogen Methane CO2			Flash Vapor 0.000622907 0.263254 0.00204973	Flowstream 0.00492733 0.732033 0.00181085	& Cond 2.09067E-05 0.008879 7.0651E-05	Line 0.00531185	0.00532 * 0.78965 * 0.00195 *
Nitrogen Methane			Flash Vapor 0.000622907 0.263254	Flowstream 0.00492733 0.732033	& Cond 2.09067E-05 0.008879	Line 0.00531185 0.788706 0.00194723	0.00532 * 0.78965 *
Nitrogen Methane CO2 Ethane Propane Isobutane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300009	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.00248926 0.000912944 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00330009 0.00363491 0.00336864 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0	0.00532 * 0.78965 * 0.0195 * 0.04195 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.00248926 0.000912944 0 0 2.5995E-05	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.00336864 0 9.68053E-05	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05	0.00532 * 0.78965 * 0.00195 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881	& Cond 2.09067E-05 0.008879 7.0651E-05 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.00336864 0 9.68053E-05 0.000421299	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05	0.00532 * 0.78965 * 0.0195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00073 * 0.00073 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.0154435	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393	& Cond 2.09067E-05 0.008879 7.0651E-05 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.00336864 0 9.68053E-05 0.000421299 0.0093633	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00071 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.00336864 0 9.68053E-05 0.000421299	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05	0.00532 * 0.78965 * 0.0195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00073 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.0154435 0.00310723	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.001013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00011 * 0.00079 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Nonane n-Decane n-Undecane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.00154435 0.00154435 0.0001648932 0.000586031 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00355724 0.0030009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00992139 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.000249 * 0.00239 * 0.000239 * 0.00073 * 0.00073 * 0.00071 * 0.00011 * 0.00010 * 0.000000 * 0.00000 * 0.000000000 * 0.0000000* 00000000* 0000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Decane n-Decane n-Undecane Dodecane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.0154435 0.00310723 0.000648932 0.000586031 0 0 0 0 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00992139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.00249 * 0.00239 * 0.000239 * 0.00073 * 0.00073 * 0.00071 * 0.00071 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 0.00 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane n-Undecane Dodecane Water			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.00154435 0.00154435 0.0001648932 0.000586031 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00355724 0.0030009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00992139 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.000249 * 0.00239 * 0.000239 * 0.00073 * 0.00073 * 0.00071 * 0.00011 * 0.00010 * 0.000000 * 0.00000 * 0.000000000 * 0.0000000* 00000000* 0000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Decane n-Decane n-Undecane Dodecane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.00168202 0.0154435 0.00168202 0.00154435 0.001684932 0.000648932 0.000586031 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300099 0.00363491 0.00336864 0 9.68053E-05 0.000421299 0.003633 0.00567157 0.0036489 0.00992139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.0195 * 0.0195 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.000239 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 3E-05 * 0
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.00168202 0.0154435 0.00168202 0.0154435 0.001684932 0.000586031 0 0 0 0 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300099 0.00363491 0.00363491 0.00336864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00992139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.0195 * 0.0195 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00073 * 0.00071 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 3E-05 * 0
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Decane n-Doctane n-Doctane n-Doctane n-Doctane n-Doctane n-Doctane Triethylene Glycol Oxygen Argon Carbon Monoxide			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.0154435 0.00168202 0.0154435 0.000648932 0.000586031 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.00336864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00992139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.0195 * 0.01378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 0.000079 * 0.00079 * 0.000079 * 0.000079 * 0.00079 * 0.000079 * 0.00000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0.00168202 0.00168202 0.00168202 0.001684932 0.000648932 0.000586031 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00932139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00073 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 0.000079 * 0.0000079 * 0.00000000000000000000000000000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.0154435 0.00168202 0.0154435 0.000648932 0.000586031 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.0030009 0.00363491 0.00336864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00992139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.0195 * 0.01378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00073 * 0.00073 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 3E-05 * 0.00079 * 0.000079 * 0.00079 * 0.000079 * 0.000079 * 0.00079 * 0.000079 * 0.00000000 * 0.0000000 * 0.0000000 * 0.0000000 * 0.0000000000
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Pentane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Dodecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.0154435 0.00168202 0.0154435 0.00168202 0.0154435 0.000586031 0 0 0 0 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00932139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00073 * 0.00011 * 0.000 * 0.000113 * 0.000113 * 0.000113 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0 0.000441885 0.00168202 0.0154435 0.00168202 0.0154435 0.00168202 0.0154435 0.000586031 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00932139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00239 * 0.00239 * 0.00239 * 0.00239 * 0.00073 * 0.00073 * 0.00011 * 0.00011 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 0.3E-05 * 0.000113 * 0.000113 * 0.000113 *
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0.000441885 0.00168202 0.00168202 0.00154435 0.00168202 0.001684932 0.000586031 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00355724 0.0030009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00932139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00249 * 0.00239 * 0.00239 * 0.00073 * 0.00073 * 0.00071 * 0.00071 * 0.00079 * 3E-05 * 4E-05 * 3E-05 * 0.00011 * 0.00079 * 3E-05 * 0.00011 * 0.00079 * 0.00011 * 0.00079 * 0.00079 * 0.00011 * 0.00079 * 0.0000 * 0.0000 * 0.0000 * 0.0000 * 0.0000 * 0.0
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			Flash Vapor 0.000622907 0.263254 0.00204973 0.213006 0.185381 0.0426234 0.106837 0.039638 0.0415216 0.0153798 0 0 0.000441885 0.00168202 0.0154435 0.00168202 0.0154435 0.00168202 0.0154435 0.000586031 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flowstream 0.00492733 0.732033 0.00181085 0.128186 0.0393658 0.00483016 0.00976658 0.00252529 0.00248926 0.000912944 0 0 2.5995E-05 0.000101881 0.00137393 0.000562907 0.000299032 0.000756388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	& Cond 2.09067E-05 0.008879 7.0651E-05 0.00741522 0.0070818 0.00192189 0.00535724 0.00300009 0.00363491 0.0036864 0 9.68053E-05 0.000421299 0.0093633 0.00567157 0.0036489 0.00936489 0.00932139 0 0 0 0 0 0 0 0 0 0 0 0 0	Line 0.00531185 0.788706 0.00194723 0.137651 0.0418959 0.00505808 0.0101121 0.00248809 0.00239947 0.000720492 0 2.04456E-05 7.68484E-05 0.000747813 0.000162544 3.65057E-05 3.81321E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00532 * 0.78965 * 0.00195 * 0.1378 * 0.04195 * 0.00507 * 0.01013 * 0.00249 * 0.00239 * 0.00239 * 0.00239 * 0.00239 * 0.00239 * 0.00073 * 0.00073 * 0.00011 * 0.00011 * 0.00079 * 3E-05 * 3E-05 * 3E-05 * 0.3E-05 * 0.000113 * 0.000113 * 0.000113 *

* User Specified Values ? Extrapolated or Approximate Values ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

		All S	reams Report treams by Total Phase			
Client Name: EQT Prod				Job: V1.0	•	
Location: OXF 121 \	Nellpad					
Flowsheet: OXF-121						
		Combined	Combined	Combined PW	Gas to Sales	Reservoir Gas
		Flash Vapor	Flowstream	& Cond	Line	
Mole Fraction						
Toluene		0.000863488	7.6436E-05	0.000541209	4.0012E-05	4E-05
m-Xylene		0.000328189	6.67567E-05	0.000705468	1.67013E-05	2E-05
Ethylbenzene		2.13392E-05	4.06519E-06	4.2167E-05	1.07917E-06	0
		Stream	Properties			
Property	Units	Combined	Combined	Combined PW	Gas to Sales	Reservoir Gas
		Flash Vapor	Flowstream	& Cond	Line	
Temperature	°F	85	65.1402	79.172	79.172	65
Pressure	psig	0	425	400	400	425
Mole Fraction Vapor		1	0.923976	0	1	0.999145
Mole Fraction Light Liquid		0	0.00838238	0.0762105	0	0.000855191
Mole Fraction Heavy Liquid		0	0.0676411	0.92379	0	0
Molecular Weight	lb/lbmol	40.1982	20.5877	22.68	20.4237	20.436
Mass Density	lb/ft^3	0.102285	1.92065	54.4317	1.59931	1.771
Molar Flow	lbmol/h	2.88487	1185.48	86.1537	1099.33	1097.98
Mass Flow	lb/h	115.967	24406.3	1953.97	22452.3	22438.3
Vapor Volumetric Flow	ft^3/h	1133.76	12707.3	35.8975	14038.8	12669.9
Liquid Volumetric Flow	gpm	141.351	1584.29	4.47554	1750.29	1579.62
Std Vapor Volumetric Flow	MMSCFD	0.0262743	10.7969	0.784655	10.0123	10
	sgpm	0.474227	136.989	4.50084	132.489	132.469
			1	0.872737	0.705174	
,		1.38794			011 0011 1	
Specific Gravity API Gravity				29.5835		
Std Liquid Volumetric Flow Specific Gravity API Gravity Net Ideal Gas Heating Value Net Liquid Heating Value	Btu/ft^3 Btu/lb	1.38794 2068.96 19374.5	1057.01 19364.2		1115.64 20671	1117.56 20695.2

		All St	eams Report reams y Total Phase		
Client Nome:	EOT Droduction			John V/4 O	
Client Name:	EQT Production			Job: V1.0	
Location:	OXF 121 Wellpac				
Flowsheet:	OXF-121				
		Conne	ections		
		Reservoir Oil	Reservoir Water	Water and Condensate	
From Block				Produced Fluid	
To Block		MIX-102	MIX-102	Tanks	
TO DIOCK		WIX-102	WIX-102		
		Stream Co	omposition		
		Reservoir Oil	Reservoir	Water and	
Mass Flow		lb/h	Water lb/h	Condensate lb/h	
Nitrogen		0 *	0 *	0.000117358	· · · · · · · · · · · · · · · · · · ·
Methane		12.6739 *	0 *	0.0883403	
CO2		0.24935 *	0 *	0.0076422	
Ethane		19.8662 *	0 *	0.732294	
Propane		26.77 *	0 *	3.32137	
Isobutane		9.25853 *	0 *	2.47685	
n-Butane		26.4773 *	0 *	8.9122	
Isopentane		18.7382 *	0 *	10.398	
n-Pentane		23.5778 *	0 *	13.9519	
n-Hexane		23.3778	0 *	21.1864	
Methylcyclopentane		0 *	0 *	0	
Benzene		0.69183 *	0 *	0.551888	
Cyclohexane		0.69183	0 *	2.64631	
n-Heptane		76.2907 *	0 *	76.367	
n-Heptane n-Octane		72.4639 *	0 *	54.7911	
n-Octane n-Nonane		39.8332 *	0 *	40.0789	
n-Nonane n-Decane			0 *	40.0789	
n-Decane n-Undecane			0 *	121.377	
Dodecane		0 *	0 *	0	
Water		0 *	1459.01 *	1430.82	
		0 *	1459.01 *		
Triethylene Glycol		0 *	0 *	0	
Oxygen		0 *	0 *	0	
Argon Carbon Monoxide		0 *	0 *	0	
Cyclopentane		0 *	0 *	0	
				-	
Isohexane 3-Methylpentane		23.9245 *	0 *	21.8937 0	
Neohexane		0 *	0 *	0	+ + + + + + + + + + + + + + + + + + + +
2,3-Dimethylbutane		0 *	0 *	0	
2,3-Dimethylbutane		0 *	0 *	0	
Isooctane		0.185977 *	0 *	17.5997	+ + + + + + + + + + + + + + + + + + + +
Decane, 2-Methyl-		0.185977	0 *	0	
Toluene		4.30233 *	0 *	4.06663	
			0 *	6.35205	
m-Xylene		6.07043 *	0 *		
Ethylbenzene		0.511631 *	0 "	0.379145	
		Reservoir Oil	Reservoir	Water and	
			Water	Condensate	
Volumetric Flow		gpm	gpm	gpm	
Nitrogen		0	0	3.73675E-07	
Methane		0.0848204	0	0.00051348	
CO2		0.000391807	0	1.03412E-05	
Ethane		0.0871941	0	0.00300209	
Propane		0.1013	0	0.0122587	
Isobutane		0.0324539	0	0.00867974	
n-Butane		0.0900095	0	0.0302911	
Isopentane		0.0595405	0	0.0335393	
			0	0.0446317	
n-Pentane		0 074348			
		0.074348			
n-Hexane		0.0721912	0	0.0647014	
n-Pentane n-Hexane Methylcyclopentane Benzene					

* User Specified Values ? Extrapolated or Approximate Values ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

				eams Report reams		
				y Total Phase		
Oliverth					[
Client Name:	EQT Production				Job: V1.0	
Location:	OXF 121 Wellpa	ad				
Flowsheet:	OXF-121					
			1			
			Reservoir Oil	Reservoir Water	Water and Condensate	
Volumetric Flow			gpm	gpm	gpm	
Cyclohexane			0	0	0.00683422	
n-Heptane			0.219364	0	0.226152	
n-Octane			0.200827	0	0.157018	
n-Nonane			0.107333	0	0.11199	
n-Decane			0.325007	0	0.333583	
n-Undecane			0	0	0	
Dodecane			0	0	0	
Water			0	2.91744	2.8711	
Triethylene Glycol			0	0	0	
Oxygen			0	0	0	
Argon			0	0	0	
Carbon Monoxide			0	0	0	
Cyclopentane			0	0	0	
Isohexane			0.0721533	0	0.0676121	
3-Methylpentane			0	0	0	
Neohexane			0	0	0	
2,3-Dimethylbutane			0	0	0	
Methylcyclohexane			0	0	0	
Isooctane			0.000522242	0	0.0512414	
Decane, 2-Methyl-			0.0000222.12	0	0	
Toluene			0.00951281	0	0.00927189	
m-Xylene			0.0134273	0	0.014579	
Ethylbenzene			0.00112815	0	0.000868941	
Earlyison20110			0.00112010	v	0.000000011	
Mole Fraction			Reservoir Oil	Reservoir Water	Water and Condensate	
Mole Fraction				Water	Condensate	
Nitrogen			0 *	Water 0 *	Condensate 5.03112E-08	
Nitrogen Methane			0 * 0.12131 *	Water 0 * 0 *	Condensate 5.03112E-08 6.61311E-05	
Nitrogen Methane CO2			0 * 0.12131 * 0.00087 *	Water 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06	
Nitrogen Methane CO2 Ethane			0 * 0.12131 * 0.00087 * 0.10145 *	Water 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472	
Nitrogen Methane CO2 Ethane Propane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564	
Nitrogen Methane CO2 Ethane Propane Isobutane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.05018 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.05018 * 0.04311 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane			0 * 0.12131 * 0.0087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.03988 * 0.05018 * 0.04311 * 0 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00173076 0.00232232 0.00295251 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.05018 * 0.04311 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.05018 * 0.05018 * 0.04311 * 0 * 0.00136 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.05018 * 0.05018 * 0.04311 * 0 * 0.00136 * 0 * 0.11691 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.05018 * 0.05018 * 0.04311 * 0 * 0.00136 * 0 * 0.011691 * 0.09741 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265 0.00576041	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.05018 * 0.04311 * 0 * 0.00136 * 0 * 0.011691 * 0.09741 * 0.04769 *	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265 0.00576041 0.00375283	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Nonane n-Decane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.05018 * 0.04311 * 0.04311 * 0.04311 * 0.0411691 * 0.09741 * 0.04769 * 0.13263 *	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265 0.00576041 0.00375283 0.0102448	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Nonane n-Decane n-Undecane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.03988 * 0.04311 * 0.04311 * 0.04311 * 0.0411691 * 0.09741 * 0.04769 * 0.13263 * 0 *	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265 0.000576041 0.00375283 0.0102448 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Octane n-Doctane n-Decane n-Undecane Dodecane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03018 * 0.04311 * 0 * 0.00136 * 0.00136 * 0.011691 * 0.09741 * 0.04769 * 0.13263 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.00576041 0.00375283 0.0102448 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Octane n-Doctane n-Docane n-Undecane Dodecane Water			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.03988 * 0.04311 * 0.04311 * 0.04311 * 0.04316 * 0.04769 * 0.13263 * 0 * 0 * 0 * 0 * 0.04769 * 0.13263 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000376041 0.00375283 0.0102448 0 0 0 0 0.95381	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol			0 * 0.12131 * 0.0087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.05018 * 0.04311 * 0.04311 * 0.04311 * 0.00136 * 0 * 0.011691 * 0.013263 * 0.13263 * 0 * 0.13263 * 0 * 0.13263 * 0 * 0.13263 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265 0.00576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen			0 * 0.12131 * 0.0087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.03988 * 0.05018 * 0.04311	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000376041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane n-Decane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon			0 * 0.12131 * 0.0087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.03988 * 0.03988 * 0.039741 * 0.011691 * 0.011691 * 0.011691 * 0.011691 * 0.01363 * 0.13263 * 0.	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 8.48499E-05 0.000377621 0.00915265 0.000377621 0.00915265 0.00576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane n-Decane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.03988 * 0.03018 * 0.04311 * 0 * 0.00136 * 0.00136 * 0.011691 * 0.09741 * 0.09741 * 0.04769 * 0.13263 * 0 * 0 * 0.13263 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000377621 0.00915265 0.00576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Heptane n-Octane n-Decane n-Decane Dodecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.03988 * 0.03018 * 0.03018 * 0.03018 * 0.03018 * 0.03018 * 0.03018 * 0.03018 * 0.03018 * 0.04311 * 0.04311 * 0.04311 * 0.09741 * 0.09741 * 0.04769 * 0.13263 * 0 * 0.13263 * 0 * 0.13263 * 0 * 0.13263 * 0 * 0.13263 * 0 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.13263 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000376041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.03988 * 0.05018 * 0.04311 * 0.04311 * 0.04311 * 0.04311 * 0.04769 * 0.09741 * 0.09741 * 0.09741 * 0.04769 * 0.13263 * 0 * 0 0 0 * 0 0 0 * 0 0 0 * 0 0 * 0 0 * 0 0 0 * 0 0 0 * 0 0 * 0 0 0 * 0 0 0 * 0 0 *	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.00037621 0.00975283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.02955 * 0.03988 * 0.05018 * 0.04311 * 0.04311 * 0.04311 * 0.04313 * 0.04363 * 0.04769 * 0.13263 * 0.04769 * 0.13263 * 0.13263 * 0.13263 * 0.04769 * 0.13263 * 0.04769 * 0.04263 * 0.04263 * 0.04263 * 0.04263 * 0.04263 * 0.04263 * 0.04263 *	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.03988 * 0.05018 * 0.04311 * 0.04311 * 0.04311 * 0.04313 * 0.04363 * 0.04769 * 0.13263 * 0.04769 * 0.13263 * 0.04769 * 0.13263 * 0.04769 * 0.00	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.00037621 0.00915265 0.00576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.03988 * 0.05018 * 0.03988 * 0.05018 * 0.04311 * 0.04311 * 0.04311 * 0.04313 * 0.04314 * 0.04769 * 0.13263 * 0.1326	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000377621 0.00975283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			0 * 0.12131 * 0.0087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.04311 * 0.04311 * 0.04311 * 0.04769 * 0.11691 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.04769 * 0.04769 * 0.04769 * 0.04769 * 0.04769 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane Methylcyclohexane Isooctane			0 * 0.12131 * 0.00087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.04311 * 0.04311 * 0.04311 * 0.04311 * 0.04769 * 0.11691 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.04263 * 0 * 0 0 0 * 0 0 * 0 0 0 * 0 0 * 0 0 0 0 * 0 0 0 * 0 0 0 * 0 0 0 * 0 0 0 0 0 * 0 0 0 0 0 * 0 0 0 0 0 0 * 0 0 0 0 0 0 * 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water 0 * <tr< td=""><td>Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000377621 0.00915265 0.00576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td></tr<>	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000377621 0.00915265 0.00576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Nitrogen Methane CO2 Ethane Propane Isobutane n-Butane Isopentane n-Pentane n-Pentane n-Hexane Methylcyclopentane Benzene Cyclohexane n-Heptane n-Octane n-Heptane n-Octane n-Decane n-Undecane Dodecane Water Triethylene Glycol Oxygen Argon Carbon Monoxide Cyclopentane Isohexane 3-Methylpentane Neohexane 2,3-Dimethylbutane			0 * 0.12131 * 0.0087 * 0.10145 * 0.09322 * 0.02446 * 0.06995 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.03988 * 0.04311 * 0.04311 * 0.04311 * 0.04769 * 0.11691 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.13263 * 0 * 0.04769 * 0.04769 * 0.04769 * 0.04769 * 0.04769 * 0.04769 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0	Water 0	Condensate 5.03112E-08 6.61311E-05 2.0854E-06 0.000292472 0.000904564 0.00051177 0.00184145 0.00173076 0.00232232 0.00295251 0 0 8.48499E-05 0.000377621 0.00915265 0.000576041 0.00375283 0.0102448 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

* User Specified Values ? Extrapolated or Approximate Values

		All St	eams Report reams y Total Phase		
Client Name: EQT Produ	uction			Job: V1.0	- <u>-</u>
Location: OXF 121 V	Vellpad				
Flowsheet: OXF-121	t				
Mole Fraction		Reservoir Oil	Reservoir Water	Water and Condensate	
m-Xvlene		0.00878 *	0 *	0.000718539	
Ethylbenzene		0.00074 *	0 *	4.28886E-05	
			-		
		Stream F	Properties		
Property	Units	Reservoir Oil	Reservoir	Water and	
_			Water	Condensate	
Temperature	°F	65 *	65 *	85 *	
Pressure	psig	425 *	425 *	0	
Mole Fraction Vapor		0	0	0	
Mole Fraction Light Liquid		1	1	0.0461951	
Mole Fraction Heavy Liquid		0	0	0.953805	
Molecular Weight	lb/lbmol	78.1542	18.0153	22.0731	
Mass Density	lb/ft^3	40.8595	62.35	56.5934	
Molar Flow	lbmol/h	6.51244	80.9874	83.2688	
Mass Flow	lb/h	508.975	1459.01	1838	
Vapor Volumetric Flow	ft^3/h	12.4567	23.4003	32.4773	
Liquid Volumetric Flow	gpm	1.55304	2.91744	4.04912	
Std Vapor Volumetric Flow	MMSCFD	0.0593128	0.737602	0.75838	
Std Liquid Volumetric Flow	sgpm	1.60417 *	2.91667 *	4.02661	
Specific Gravity		0.655124	0.999695	0.907395	
		83.5662	9.94738	23.3801	
			0	247.84	
API Gravity Net Ideal Gas Heating Value Net Liguid Heating Value	Btu/ft^3 Btu/lb	<u> </u>	-1059.76	3400.98	

Simulation Initiated on 8/1	6/2016 1:55:43	PM 201607	28_EQT_OXF 121 Wellpad Calculation	.pmx	Page 1 of 1
		En	ergy Stream Repo	rt	
Client Name:	EQT Proc	duction		Job: V1.0	
Location:	OXF 121	Wellpad			
Flowsheet:	OXF-121				
			Energy Streams		
Energy Stream		Energy Rate	Power	From Block	To Block
Pilot Heat Input		2.26501E+06 * Btu/h	890.184 * hp		REAC-100
Remarks					

			SRK Env	vironment			
Client Name:	EQT Production				Job: V1.0		
Location:	OXF 121 Wellpad						
Flowsheet:	OXF-121						
			Environm	ent Settings			
Number of Poynt	ing Intervals	0		Phase Tolerance		0.01	
Gibbs Excess Mo		77 °F		Emulsion Enabled		False	
Evaluation Temp	erature						
Freeze Out Temp	erature	10 °F		Emulsion Enabled		False	
Threshold Differe	nce						
			Comp	onents			
Component Name		Henry's Law	Phase	Component Name		Henry's Law	Phase
•		Component	Initiator			Component	Initiator
Nitrogen		False	False	Dodecane		False	False
Vethane		False	False	Water		False	True
CO2		False	False	Triethylene Glycol		False	True
Ethane		False	False	Oxygen		False	False
Propane		False	False	Argon		False	False
lsobutane		False	False	Carbon Monoxide		False	False
n-Butane		False	False	Cyclopentane		False	False
Isopentane		False	False	Isohexane		False	False
n-Pentane		False	False	3-Methylpentane		False	False
n-Hexane		False	False	Neohexane		False	False
Methylcyclopentane	;	False	False	2,3-Dimethylbutane		False	False
Benzene		False	False	Methylcyclohexane		False	False
Cyclohexane		False	False	Isooctane		False	False
n-Heptane		False	False	Decane, 2-Methyl-		False	False
n-Octane		False	False	Toluene		False	False
n-Nonane		False	False	m-Xylene		False	False
n-Decane		False	False	Ethylbenzene		False	False
n-Undecane		False	False				
				erty Method Sets			
Liquid Molar Volum		COSTALE)	Overall Package		SRK	
		SRK		Vapor Package		SRK	
Stability Calculation				Heavy Liquid Package		SRK	
Stability Calculatior Light Liquid Packag							

Client Name:	EQT Production	Er	vironm	ents Report	Job: V1.0		
Location:	OXF 121 Wellpad						
		Р	roject-Wie	de Constants			
Atmospheric Pressu		14.6959 p		Ideal Gas Reference Pre		14.6959	
Ideal Gas Reference		60 °		Ideal Gas Reference Vol	ume	379.484	ft^3/lbmol
Liquid Reference Te	mperature	60 °	Ϋ́F				
				RK Environment]			
Number of Deverting			<u>=nvironm</u>	ent Settings		0.01	
Number of Poyntir Gibbs Excess Mod		0 77 °F		Phase Tolerance Emulsion Enabled		0.01 False	
Evaluation Tempe		<i>11</i> F				raise	
Freeze Out Tempe		10 °F		Emulsion Enabled		False	
Threshold Differer						1 4100	
			Comp	onents			
Component Name		Henry's Law Component	Phase Initiator	Component Name		Henry's Law Component	Phase Initiator
Nitrogen		False	False	Dodecane		False	False
Methane		False	False	Water		False	True
CO2		False	False	Triethylene Glycol		False	True
Ethane		False	False	Oxygen		False	False
Propane		False	False	Argon		False	False
Isobutane		False	False	Carbon Monoxide		False	False
n-Butane		False	False	Cyclopentane		False	False
sopentane		False	False	Isohexane		False	False
n-Pentane		False	False	3-Methylpentane		False	False
n-Hexane		False	False	Neohexane		False	False
Methylcyclopentane		False	False	2,3-Dimethylbutane		False	False
Benzene		False	False	Methylcyclohexane		False	False
Cyclohexane		False	False	Isooctane		False	False
n-Heptane		False	False	Decane, 2-Methyl-		False	False
n-Octane		False	False	Toluene		False	False
n-Nonane		False	False	m-Xylene		False	False
n-Decane		False False	False	Ethylbenzene		False	False
n-Undecane		raise	False				
		Phys	ical Prope	erty Method Sets			
Liquid Molar Volume)	COSTALD		Overall Package		SRK	
Stability Calculation SRK		Vapor Package		SRK			
Light Liquid Package		SRK		Heavy Liquid Package		SRK	
Remarks							

	Calculator Report	
Client Name:	EQT Production Job: V1.0	
Location:	OXF 121 Wellpad	
	Simple Specifier 1	
	Source Code	
CV1 = O2Reqd * 3		
	Calculated Variable [CV1]	
Source Moniker	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Combustion Air!Phases!Total!Properties!Mola	r Flow
Value Unit	185.044	
	Measured Variable [O2Reqd]	
Source Moniker	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Combined Flash Vapor!Analyses!Combustion	Analysis
	1!Properties!Required Combustion Oxygen	-
Value Unit	12.9204	
Offic		
	Measured Variable [O2Frac]	
Source Moniker	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Combustion Air!Phases!Total!Composition!Mo	le Fraction!Oxygen
Value	0.20947	,,,
Unit		
Remarks		
Remarks		
	Simple Specifier 2	
	Source Code	
CV1 = FV*HV		
	Oplawlated Variable (OV/4)	
Source Moniker	Calculated Variable [CV1] ProMax:ProMax!Project!Flowsheets!OXF-121!QStreams!Pilot Heat Input!Energy Rate	
Value		
Unit		
	Measured Variable [FV]	
Source Moniker	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Flash Vapor!Phases!Total!Properties!Std Vap	or Volumetric Flow
Value Unit	1094.76	
	Measured Variable [HV]	
Source Moniker	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Flash Vapor!Phases!Total!Properties!Net Idea	I Gas Heating Value
Value	2068.96	
Unit		
Remarks		
i temarka		
	Simple Specifier 3	
0)//	Source Code	
CV1 = Pin		
Source Moniker	Calculated Variable [CV1] ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Reservoir Gas!Phases!Total!Properties!Press	
Value	425	
Unit		

Vhit
 * User Specified Values
 ? Extrapolated or Approximate Values

ProMax 4.0.16071.0 Copyright © 2002-2016 BRE Group, Ltd.

			Calculate	or Report		
Client Name:	EQT Production	L			Job: V1.0	
Location:	OXF 121 Wellpa					
			Measured V	ariable [Pin]		
Source Moniker		ax!Project!User Va	alue Sets!Parameters	Line Pressure!Properties	Parameter	
Value Unit	425					
Remarks						
			Simple S			
0)// 75			Source	e Code		
CV1 = Tin						
			Calculated V	ariable [CV1]		
Source Moniker	ProMax:ProMa	ax!Project!Flowshe	eets!OXF-121!PStrea	ams!Reservoir Gas!Phase	s!Total!Prope	erties!Temperature
Value	65				•	
Unit						
			Measured V	ariable [Tin]		
Source Moniker	ProMax:ProMa	ax!Project!User Va		SILine Temperature Proper	rties!Parame	ter
Value	65					
Unit					_	
Remarks						
			Simple S	pecifier 5		
			Source			
CV1 = Tin						
0	<u> </u>		Calculated V	ariable [CV1]		
Source Moniker Value	ProMax:ProMa 65	ax!Project!Flowshe	eets!OXF-121!PStrea	ams!Reservoir Oil!Phases!	! I otal!Proper	ties! I emperature
Unit	00					
			Measured V			
Source Moniker		ax!Project!User Va	alue Sets!Parameters	Line Temperature!Prope	rties!Parame	ter
Value Unit	65					
Remarks						
			Simple S	pecifier 6		
			Source			
CV1 = Pin						
			Calculated V	ariable [CV1]		
Source Moniker Value	ProMax:ProMa 425	ax!Project!Flowshe	eets!OXF-121!PStrea	ams!Reservoir Oil!Phases!	! I otal!Proper	ties!Pressure
value	420					

	Calculator Report
Client Name: Location:	EQT Production Job: V1.0 OXF 121 Wellpad
Unit	
	Measured Variable [Pin]
Source Moniker Value Unit	ProMax:ProMax!Project!User Value Sets!Parameters!Line Pressure!Properties!Parameter 425
Remarks	
	Simple Specifier 7
	Simple Specifier 7 Source Code
CV1 = Tin	
	Calculated Variable [CV1]
Source Moniker Value	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Reservoir Water!Phases!Total!Properties!Temperature 65
Unit	65
	Measured Variable [Tin]
Source Moniker	ProMax:ProMax!Project!User Value Sets!Parameters!Line Temperature!Properties!Parameter
Value Unit	65
Remarks	
	Simple Specifier 8
	Source Code
CV1 = Pin	
	Calculated Variable [CV1]
Source Moniker Value	ProMax:ProMax!Project!Flowsheets!OXF-121!PStreams!Reservoir Water!Phases!Total!Properties!Pressure
Unit	425
	Measured Variable [Pin]
Source Moniker	ProMax:ProMax!Project!User Value Sets!Parameters!Line Pressure!Properties!Parameter
Value	425
Unit	
Remarks	

		U	lser Value	Sets Report		
Client Name:	EQT Production				Job: V1.0	
Location:	OXF 121 Wellpa	ad				
			Cn+ Flow	v/Frac.55		
			User Value [CnPlusSum]		
* Parameter		363.024 te		Upper Bound		ton/yr
Lower Bound		ti	on/yr	* Enforce Bounds		False
Remarks This User Value S	et was programma	tically generated. GL	JID={6F8309F1-C	C05A-4942-A867-311E15	32159F}	
			Tan	ık-1	_	
			User Value [
* Parameter		1		Upper Bound		-
Lower Bound				* Enforce Bounds		False
			User Value [Shalll angth1		
* Parameter		20 f		Upper Bound		ft
* Lower Bound		0 f		* Enforce Bounds		False
* Dama a stan		40.4	User Value			
* Parameter * Lower Bound		<u>12 f</u> 0 f		Upper Bound * Enforce Bounds		ft False
201101 200110						
			User Value [
* Parameter		0.875 p		Upper Bound		psig
Lower Bound		F	osig	* Enforce Bounds		False
			Jser Value (P	BreatherVacP]		
* Parameter		-0.03125 p	sig	Upper Bound		psig
Lower Bound		F	osig	* Enforce Bounds		False
Parameter			-	DomeRadius]		ft
Parameter Lower Bound			t	DomeRadius] Upper Bound * Enforce Bounds		ft False
		f	t t	Upper Bound * Enforce Bounds		
Lower Bound		f	t t User Value	Upper Bound * Enforce Bounds [OpPress]		False
Lower Bound * Parameter		f f 	t t User Value osig	Upper Bound * Enforce Bounds [OpPress] Upper Bound		False psig
Lower Bound		f f 	t t User Value	Upper Bound * Enforce Bounds [OpPress]		False
Lower Bound * Parameter		f f g g f	t t User Value ^{Dsig} Dsig	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds		False psig
Lower Bound * Parameter Lower Bound * Parameter		f f 0 p p p U 50 %	t t User Value osig osig Iser Value [A %	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds vgPercentLiq] Upper Bound		False psig False %
Lower Bound * Parameter Lower Bound		f f 0 p p p U 50 %	t t User Value osig osig Iser Value [At	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds vgPercentLiq]		False psig False
Lower Bound * Parameter Lower Bound * Parameter		f f 0 p p p U 50 9 9	t t User Value osig Jser Value [A %	Upper Bound * Enforce Bounds		False psig False %
Lower Bound * Parameter Lower Bound * Parameter		f f 0 p p p U 50 9 9	t User Value osig Jser Value [A % % Vser Value [M	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds vgPercentLiq] Upper Bound		False psig False %
Lower Bound * Parameter Lower Bound * Parameter Lower Bound		f f 0 p p p v v v v v v v v v v v v v v v v v	t User Value osig Jser Value [A % % Vser Value [M	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds VgPercentLiq] Upper Bound * Enforce Bounds axPercentLiq]		False psig False % False
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter		f f 0 p p p v v v v v v v v v v v v v v v v v	t User Value osig Jser Value [A % % Vser Value [M %	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds VgPercentLiq] Upper Bound * Enforce Bounds axPercentLiq] Upper Bound * Enforce Bounds		False psig False % False %
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound		f f 0 p F U 50 9 9 9 90 9 9 90 9	t User Value ssig Iser Value [A' % % Vser Value [M % % User Value	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds Upper Bound * Enforce Bounds axPercentLiq] Upper Bound * Enforce Bounds [AnnNetTP]		False psig False % False % False
Lower Bound * Parameter		f f 0 p p p 0 p 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	t User Value osig Jser Value [A' % % Vser Value [M % % User Value obl/day	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds VgPercentLiq] Upper Bound * Enforce Bounds axPercentLiq] Upper Bound * Enforce Bounds [AnnNetTP] Upper Bound		False psig False % False % False bbl/day
Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound * Parameter Lower Bound		f f 0 p p p 0 p 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	t User Value ssig Iser Value [A' % % Vser Value [M % % User Value	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds Upper Bound * Enforce Bounds axPercentLiq] Upper Bound * Enforce Bounds [AnnNetTP]		False psig False % False % False
Lower Bound * Parameter		f f 0 p p p 0 p 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	t User Value bsig Iser Value [A' % % Vser Value [M % % User Value [M % bbl/day bbl/day	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds vgPercentLiq] Upper Bound * Enforce Bounds axPercentLiq] Upper Bound * Enforce Bounds [AnnNetTP] Upper Bound * Enforce Bounds [AnnNetTP] Upper Bound * Enforce Bounds [Core Bound Bounds] [Core Bound Bound Bounds] [Core Bound Bou		False psig False % False % False % False bbl/day
Lower Bound		f f f U 50 9 90 9 90 9 90 9 90 9 90 9 90 9 90 9	t User Value Dsig Iser Value [A* % % Vser Value [M % % User Value Dbl/day Dbl/day Dbl/day User Value	Upper Bound * Enforce Bounds [OpPress] Upper Bound * Enforce Bounds vgPercentLiq] Upper Bound * Enforce Bounds axPercentLiq] Upper Bound * Enforce Bounds [AnnNetTP] Upper Bound * Enforce Bounds		False psig False % False % False % False bbl/day

		User Valu	e Sets Report		
Client Name:	EQT Production			Job: V1.0	<u> </u>
Location:	OXF 121 Wellpad				
* Parameter		65.5 °F	Upper Bound		°E
Lower Bound		°F	* Enforce Bounds		False
			lue [MinAvgT]		
* Parameter Lower Bound		<u>44 °F</u> °F	Upper Bound * Enforce Bounds		°F False
Lower Bound		<u> </u>	Eniorce Bourius		Faise
		User Va	lue [BulkLiqT]		
* Parameter		59.09 °F	Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False
* Parameter			Alue [AvgP]		
Lower Bound		14.2535 psia psia	* Enforce Bounds		psia False
201101 200110		poid	2		
		User V	alue [Therml]		
* Parameter		1123 Btu/ft^2/day	Upper Bound		Btu/ft^2/day
Lower Bound		Btu/ft^2/day	* Enforce Bounds		False
* Parameter		6.3 mi/h	[AvgWindSpeed] Upper Bound		mi/h
Lower Bound		mi/h	* Enforce Bounds		False
			xHourlyLoadingRate]		
 * Parameter * Lower Bound 		5.7867 bbl/hr 0 bbl/hr	Upper Bound * Enforce Bounds		bbl/hr False
Lower Bound		0 00//11	Enlorce Bounds		1 0130
		User Value I	EntrainedOilFrac]		
* Parameter		1 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
* Parameter		23.2987	E [TurnoverRate] Upper Bound		
Lower Bound		23.2307	* Enforce Bounds		False
			[LLossSatFactor]		
* Parameter Lower Bound		0.5	Upper Bound * Enforce Bounds		False
Lower Bouria			Eniorce Bourius		Faise
		User Value	e [AtmPressure]		
* Parameter		14.2535 psia	Upper Bound		psia
Lower Bound		psia	* Enforce Bounds		False
* Parameter			Value [TVP] Upper Bound		naia
Lower Bound		5.74452 psia psia	* Enforce Bounds		psia False
		User Value	[AvgLiqSurfaceT]		
* Parameter		65.0762 °F	Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False
			MaxLigSurfaceT1		
* Parameter		75.9425 °F	[MaxLiqSurfaceT] Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False

* User Specified Values ? Extrapolated or Approximate Values

		User Valu	ue Sets Report	
ient Name:	EQT Production		Job: \	V1.0
ocation:	OXF 121 Wellpad			
		User Valu	ue [TotalLosses]	
Parameter	11.8221		Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
		Lleer Velue	[Working] occord	
Parameter	1.25867		[WorkingLosses] Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
Deservedes	0.711687	Jser Value	[StandingLosses]	to a lor
Parameter Lower Bound	0.711687	ton/yr	Upper Bound * Enforce Bounds	ton/yr False
			[RimSealLosses]	
Parameter		ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
		Iser Value	[WithdrawalLoss]	
Parameter		ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
Descenter			[LoadingLosses]	to stra
Parameter Lower Bound	4.15299	ton/yr ton/yr	Upper Bound * Enforce Bounds	ton/yr False
201101 200110				
	User	Value [Ma	xHourlyLoadingLoss]	
Parameter	0.948171	lb/hr	Upper Bound	lb/hr
Lower Bound		lb/hr	* Enforce Bounds	False
		sor Valuo [DeckFittingLosses]	
Parameter		ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
Doromotor			DeckSeamLosses]	kara har
Parameter Lower Bound	0	ton/yr ton/yr	* Enforce Bounds	ton/yr False
			[FlashingLosses]	
Parameter	327.739	ton/yr	Upper Bound	ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False
		lser Value	[GasMoleWeight]	
Parameter	0.0572024		Upper Bound	kg/mol
Lower Bound		kg/mol	* Enforce Bounds	False
emarks nis User Value Se	et was programmatically generated. C	JUID={0511AF	F0C-026D-4690-8095-2CBDEB1C76	84}
		Pa	rameters	
			[Line Temperature]	
Parameter			Upper Bound	°F
		°F	* Enforce Bounds	False

			User Va	lue Sets Report		
Client Name:	EQT Production				Job: V1.0	
Location:	OXF 121 Wellpa	ad				
	•					
			User Valu	ue [Line Pressure]		
* Parameter		425	psig	Upper Bound		psig
Lower Bound			psig	* Enforce Bounds		False
Remarks						

Certificate of Analysis Number:

2011080059-001A

FOR: Gas Analytical Services Chuck Honaker PO Box 1028

REPORT: C10+ (GPA Method 2286)

TYPE: Gas

CYLINDER: GAS

PRESSURE: 340

TEMPERATURE: N.G.

Bridgeport, WV 26330

CUSTOMER:Gas Analytical ServicesFIELD :EQT ProductionLOCATION :512432SAMPLE POINT:WellheadREPORT DATE:8/13/2011SAMPLE DATE:07/30/2011SAMPLED BY:SA - GASMEMO:

COMPONENT	<u>MOL %</u>	WEIGHT %	<u>GPM's @ 14.73</u>
N2	0.500	0.678	
METHANE	78.009	60.646	
CO2	0.212	0.451	
ETHANE	14.476	21.095	3.870
PROPANE	4.405	9.411	1.213
I-BUTANE	0.525	1.478	0.172
N-BUTANE	1.069	3.009	0.337
I-PENTANE	0.225	0.785	0.082
N-PENTANE	0.240	0.838	0.087
I-HEXANES	0.099	0.413	0.040
N-HEXANE	0.083	0.291	0.029
BENZENE	0.002	0.009	0.001
CYCLOHEXANE	0.011	0.044	0.004
I-HEPTANES	0.049	0.241	0.022
N-HEPTANE	0.023	0.111	0.010
TOLUENE	0.005	0.022	0.002
I-OCTANES	0.033	0.192	0.017
N-OCTANE	0.006	0.036	0.003
*E-BENZENE	NIL	0.002	NIL
*m,o,&p-XYLENE	0.002	0.016	0.001
I-NONANES	0.004	0.049	0.004
N-NONANE	0.002	0.011	0.001
I-DECANES	NIL	0.015	0.001
N-DECANE	0.001	0.005	NIL
I-UNDECANES +	0.019	0.152	0.013
TOTALS	100.000	100.000	5.909

SAMPLE POINT: Wellhead

REPORT DATE: 8/13/2011

07/30/2011 08:00

SA - GAS

SAMPLE DATE:

SAMPLED BY:

MEMO:

Certificate of A	nalysis Number:	2011080059-001A	FOR:	Gas Analytical Services Chuck Honaker PO Box 1028	
CUSTOMER: Gas Analytical Services		vices		Bridgeport, WV 26330	
FIELD : LOCATION :	EQT Production 512432		TYPE: Gas		

REPORT: C6+ CYLINDER: GAS PRESSURE: 340 TEMPERATURE: N.G.

COMPONENT	MOL %	WEIGHT %	<u>GPM's @ 14.73</u>	
N2	0.500	0.678		
METHANE	78.009	60.646		
CO2	0.212	0.451		
ETHANE	14.476	21.095	3.870	
PROPANE	4.405	9.411	1.213	
I-BUTANE	0.525	1.478	0.172	
N-BUTANE	1.069	3.009	0.337	
I-PENTANE	0.225	0.785	0.082	
N-PENTANE	0.240	0.838	0.087	
HEXANES PLUS	0.339	1.609	0.148	
TOTALS	100.000	100.000	5.909	

CALCULATED VALUES	TOTAL	<u>C6+</u>	<u>C7+</u>	<u>C8+</u> <u>C9+</u> 144.593 162.9	<u>C10+</u> 160.328
MOLECULAR WEIGHT	20.635	97.847	110.216	144.595 102.9	100.320
REAL DRY BTU AT 14.73 PSIA, 60°F	1250.7	5312.0	5893.1	7469.7 8394.5	8699.1
REAL WET BTU AT 14.73 PSIA, 60°F	1229.8	5220.4	5791.4	7340.6 8249.3	8548.6
RELATIVE DENSITY	0.7145	3.3622	3.7657	4.7889 5.3493	5.526
		<u>C2+</u>	<u>IC5+</u>		
GPM's AT 14.73		5.909	0.317		

0.9965

COMPRESSIBILITY FACTOR

512432

SA - GAS

LOCATION :

SAMPLED BY:

MEMO:

SAMPLE POINT: Wellhead

REPORT DATE: 8/13/2011

SAMPLE DATE: 07/30/2011 08:00

Certificate of Analysis Number:		2011080059-001A	FOR:	Gas Analytical Services Chuck Honaker PO Box 1028
CUSTOMER: FIELD :	Gas Analytical Ser EQT Production	vices		Bridgeport, WV 26330

TYPE: Gas REPORT: C7+ CYLINDER: GAS PRESSURE: 340 TEMPERATURE: N.G.

COMPONENT	MOL %	WEIGHT %	<u>GPM's @ 14.73</u>
N2	0.500	0.678	
METHANE	78.009	60.646	
CO2	0.212	0.451	
ETHANE	14.476	21.095	3.870
PROPANE	4.405	9.411	1.213
I-BUTANE	0.525	1.478	0.172
N-BUTANE	1.069	3.009	0.337
I-PENTANE	0.225	0.785	0.082
N-PENTANE	0.240	0.838	0.087
HEXANES	0.182	0.704	0.069
HEPTANES PLUS	0.157	0.905	0.079
TOTALS	100.000	100.000	5.909

CALCULATED VALUES MOLECULAR WEIGHT	<u>TOTAL</u> 20.635	<u>C6+</u> 97.847	C7+ 110.216
REAL DRY BTU AT 14.73 PSIA, 60°F REAL WET BTU AT 14.73 PSIA, 60°F	1250.7 1229.8	5312.0 5220.4	5893.1 5791.4
RELATIVE DENSITY	0.7145	3.3622	3.7657
GPM's AT 14.73		<u>C2+</u> 5.909	<u>IC5+</u> 0.317
COMPRESSIBILITY FACTOR		0.9965	

Certificate of Analysis Number:

2011080059-002A

FOR: Gas Analytical Services Chuck Honaker PO Box 1028

REPORT: C10+ (GPA Method 2286)

TYPE: Gas

CYLINDER: GAS

PRESSURE: 356

TEMPERATURE: N.G.

Bridgeport, WV 26330

CUSTOMER:Gas Analytical ServicesFIELD :EQT ProductionLOCATION :512447SAMPLE POINT:WellheadREPORT DATE:8/13/2011SAMPLE DATE:07/28/2011SAMPLED BY:SA - GASMEMO:

COMPONENT	MOL %	WEIGHT %	GPM's @ <u>14.73</u>
N2	0.500	0.686	
METHANE	78.384	61.628	
CO2	0.172	0.372	
ETHANE	14.497	21.365	3.876
PROPANE	4.366	9.435	1.203
I-BUTANE	0.494	1.407	0.162
N-BUTANE	1.005	2.862	0.317
I-PENTANE	0.198	0.701	0.072
N-PENTANE	0.201	0.711	0.073
I-HEXANES	0.068	0.282	0.027
N-HEXANE	0.049	0.179	0.018
BENZENE	0.001	0.005	NIL
CYCLOHEXANE	0.006	0.023	0.002
I-HEPTANES	0.025	0.122	0.011
N-HEPTANE	0.010	0.049	0.005
TOLUENE	0.002	0.009	0.001
I-OCTANES	0.012	0.075	0.007
N-OCTANE	0.003	0.015	0.001
*E-BENZENE	NIL	0.001	NIL
*m,o,&p-XYLENE	0.002	0.007	NIL
I-NONANES	0.001	0.023	0.002
N-NONANE	0.001	0.006	0.001
I-DECANES	NIL	0.007	0.001
N-DECANE	NIL	0.003	NIL
I-UNDECANES +	0.004	0.027	0.002
TOTALS	100.000	100.000	5.781

Certificate of Analysis Number:

LAFAYETTE LABORATORY 500 AMBASSADOR CAFFERY PKWY. SCOTT, LOUISIANA 70583-1790 PHONE (337) 237-4775 FAX (337) 237-8005

C10+

151.609

8571.2

8422.9

5.4445

Gas Analytical Services

FOR:

Certificate of An	aiysis number.	2011080033-002A		С	huck Honake O Box 1028			
CUSTOMER: FIELD : LOCATION : SAMPLE POINT: REPORT DATE: SAMPLE DATE: SAMPLED BY: MEMO:	Gas Analytical Serv EQT Production 512447 Wellhead 8/13/2011 07/28/2011 11:15 SA - GAS		RE CYLI	TYPE: G PORT: C NDER: G SURE: 3	6+ AS 56	/ 26330		
	COMPONENT	M	<u>OL %</u>	M	VEIGHT %	<u>GPM's</u>	<u>@ 14.73</u>	
	N2 METHANE CO2 ETHANE PROPANE I-BUTANE N-BUTANE I-PENTANE N-PENTANE <u>HEXANES PLUS</u> TOTALS	7	0.500 8.384 0.172 4.497 4.366 0.494 1.005 0.198 0.201 0.183 00.000	. –	0.686 61.628 0.372 21.365 9.435 1.407 2.862 0.701 0.711 0.833 100.000	-	3.876 1.203 0.162 0.317 0.072 0.073 0.078 5.781	
CALCULATED VA				<u>TOTAL</u> 20.403	<u> </u>	<u>C7+</u> 104.877	<u>C8+</u> 132.026	C9+ 149.9
	.T 14.73 PSIA, 60°F ∖T 14.73 PSIA, 60°F			1239.3 1218.6	5084.0 4996.4	5636.6 5539.4	6980.4 6859.8	
RELATIVE DENSI	ТҮ			0.7064	3.2106	3.6041	4.4966	5.0861
GPM's AT 14.73					<u>C2+</u> 5.781	<u>IC5+</u> 0.223		
COMPRESSIBILIT	TY FACTOR				0.9966			

2011080059-002A

LAFAYETTE LABORATORY 500 AMBASSADOR CAFFERY PKWY. SCOTT, LOUISIANA 70583-1790 PHONE (337) 237-4775 FAX (337) 237-8005

Certificate of Analysis Number:

2011080059-002A

Gas Analytical Services FOR: Chuck Honaker PO Box 1028

Bridgeport, WV 26330

Gas Analytical Services CUSTOMER: EQT Production FIELD : LOCATION : 512447 SAMPLE POINT: Wellhead **REPORT DATE:** 8/13/2011 SAMPLE DATE: 07/28/2011 11:15 SAMPLED BY: SA - GAS MEMO:

TYPE: Gas REPORT: C7+ CYLINDER: GAS PRESSURE: 356 TEMPERATURE: N.G.

COMPONENT	<u>MOL %</u>	<u>WEIGHT %</u>	<u>GPM's @ 14.73</u>
N2	0.500	0.686	
METHANE	78.384	61.628	
CO2	0.172	0.372	
ETHANE	14.497	21.365	3.876
PROPANE	4.366	9.435	1.203
I-BUTANE	0.494	1.407	0.162
N-BUTANE	1.005	2.862	0.317
I-PENTANE	0.198	0.701	0.072
N-PENTANE	0.201	0.711	0.073
HEXANES	0.116	0.461	0.045
HEPTANES PLUS	0.067	0.372	0.033
TOTALS	100.000	100.000	5.781

CALCULATED VALUES MOLECULAR WEIGHT	<u>TOTAL</u> 20.403	<u> </u>	<u> </u>
REAL DRY BTU AT 14.73 PSIA, 60°F REAL WET BTU AT 14.73 PSIA, 60°F	1239.3 1218.6	5084.0 4996.4	5636.6 5539.4
RELATIVE DENSITY	0.7064	3.2106	3.6041
GPM's AT 14.73		<u>C2+</u> 5.781	<u>IC5+</u> 0.223
COMPRESSIBILITY FACTOR		0.9966	

				€ Gas Analytical Services, Inc.	rtical Serv	vices, Inc.	2011080017	20073
			SKE	P.O. Box 1028, Bi 205 Water Street, ' (304) 623-0020 email: lab@	Sox 1028, Bridgeport, WV ater Street, Stonewood, V) 623-0020 fax: (304) 62 email: lab@gasana.com	P.O. Box 1028, Bridgeport, WV 26330 205 Water Street, Stonewood, WV 26301 (304) 623-0020 fax: (304) 624-8076 email: lab@gasana.com	7	
Ř	Referred to: Southern Petroleum Labs 500 Ambassador Caffery Parkw scott 1 A 70583	Southern Petroleum Labs 500 Ambassador Caffery Parkway		**24 Hr. T/A	r. T/A		RUSH	SH
	attn: Patti Petro	3 0			Testing Requested	guested		
	Date:	Date: 8/2/2011		*	* SCF Base C	** SCF Base Conditions: P _b 14.73 psia / T _b : 60 Df	4.73 psia / T _b : 60	Df
	Client	Location	Date of Collection	Sulfur -	Fotal Sulfur	Extended Total Sulfur Hydrocarbon	Hydrocarbon Dewnoint	Gas Temnerature
				GPA-2199)	(GPA-2199)	(GPA-2286)		
-	EQT Production	512432	7/30/2011			×>		
7 0	EQT Production	512447	//28/2011			<		
<u>v</u> 4								
5								
9								
~								
8								
6								
								
=								
12								
13								
4								
15 16						1		
1		//		U		Ì	Y	0/-/~
Ч	<u>Please email results to:</u> lab@gasana.com	HTMA KU Submitted by: Chuck Honaker, Manager Laboratory Services			Received by			$\frac{1}{2}$

Date of Collection: 713014 Gas Analytical Services Z Time of Collection: Meter ID Number: 572432 Telephone: 304-623-0020 205 Water Street Stonewood, WV 26301 Arod EOT Company Name Sample Source: psi. D Source Analysis 34 Sample Pressure: □ Alternative Fuel I Master Meter Sample Type: D Submeter from the source indicated above Bu Sat Who declares that this sample was Sampled By & APA 2011080059-00 A Shackley Comments: Resu

	• • •,		and the second se	
Gas Analytical S Telephone: 30 205 Water Str Stonewood, W	reet	Date of Collection Time of Collection Meter ID Number	: 11:13 AM	
Company Name:f	EQT Pro 12447 356 psi.		Source Analysis	
Sample Type: Wellhead D Submit	at this sample was	۲	ndicated above.	
comments: <u>Ex</u> <u>Results</u>	tended Greg S			000

ATTACHMENT U

Emission Summary Sheet

	АТ	TACH	MENT	U – FA	CILITY	-WIDE	E CONT	ROLLE	D EMI	SSION	S SUM	MARY	SHEET	Г		
List all sources	s of emis	sions in	this tab	ole. Use	e extra p	ages if	necessa	ry.								
	N	O _x	C	0	V	OC	s	O ₂	PN	I ₁₀	PN	I _{2.5}	Cł	\mathbf{I}_4	GHG	(CO ₂ e)
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001 (S020-S025, S019)	1.15	5.03	0.96	4.22	1.77	6.85	0.01	0.03	0.09	0.38	0.09	0.38	0.17	0.72	1,375.24	6,023.53
E016	0.11	0.48	0.09	0.40	0.01	0.03	6.6E-04	2.9E-03	0.01	0.04	0.01	0.04	0.00	0.01	135.14	591.90
E017	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	0.00	0.00	1.52	6.64
E018	1.2E-03	5.4E-03	1.0E-03	4.5E-03	6.8E-05	3.0E-04	7.4E-06	3.2E-05	9.4E-05	4.1E-04	9.4E-05	4.1E-04	0.00	0.00	1.52	6.64
E019					4.79	1.25										
Fugitives						12.36										213.07
Haul Roads										0.30		0.03		8.52		
Facility Total	1.26	5.52	1.06	4.64	6.57	20.48	0.01	0.03	0.10	0.72	0.10	0.45	0.17	9.26	1,513.41	6,841.79
Facility Total (excl. fugitives)	1.26	5.52	1.06	4.64	6.57	8.12	0.01	0.03	0.10	0.42	0.10	0.42	0.17	0.74	1,513.41	6,628.72

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

l I	ATTACHMENT U – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET													
List all sources	of emiss	sions in t	his table	e. Use e	xtra pag	es if nec	essary.							
E	Formal	dehyde	Ben	zene	Tol	uene	Ethyll	oenzene	Xyl	enes	Нех	ane	Total	HAPs
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
C001 (S020-S025, S019)			1.8E-03	7.2E-03	3.8E-03	1.6E-02	1.1E-04	4.3E-04	1.7E-03	6.6E-03	0.07	0.28	0.10	0.38
E016	8.2E-05	3.6E-04	2.3E-06	1.0E-05	3.7E-06	1.6E-05					2.0E-03	0.01	2.1E-03	0.01
E017	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E018	9.3E-07	4.1E-06	2.6E-08	1.1E-07	4.2E-08	1.8E-07					2.2E-05	9.7E-05	2.3E-05	1.0E-04
E019			2.9E-03	7.4E-04	0.01	1.5E-03	1.8E-04	4.8E-05	3.6E-03	9.5E-04	0.18	0.05	0.24	0.06
Fugitives				0.01		0.01		0.0E+00		0.01		0.20		0.39
Haul Roads														
Facility Total	8.4E-05	3.7E-04	4.6E-03	0.01	0.01	0.03	2.9E-04	4.7E-04	0.01	0.01	0.25	0.53	0.34	0.84
Facility Total (excl. fugitives)	8.4E-05	3.7E-04	4.6E-03	0.01	9.7E-03	1.7E-02	2.9E-04	4.7E-04	5.3E-03	7.6E-03	0.25	0.33	0.34	0.45

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V

Class I Legal Advertisement

ATTACHMENT V – CLASS I LEGAL ADVERTISEMENT

Publication of a proper Class I legal advertisement is a requirement of the G70-D registration process. In the event the applicant's legal advertisement fails to follow the requirements of 45CSR13, Section 8 or the requirements of Chapter 59, Article 3, of the West Virginia Code, the application will be considered incomplete and no further review of the application will occur until this is corrected.

The applicant, utilizing the format for the Class I legal advertisement example provided on the following page, shall have the legal advertisement appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

The advertisement shall contain, at a minimum, the name of the applicant, the type and location of the source, the type and amount of air pollutants that will be discharged (excluding fugitive emissions), the nature of the permit being sought, the proposed start-up date for the source, and a contact telephone number for more information.

The location of the source should be as specific as possible starting with: 1.) the street address of the source; 2.) the nearest street or road; 3.) the nearest town or unincorporated area, 4.) the county, and 5.) latitude and longitude coordinates in decimal format.

Types and amounts of pollutants discharged **must include** all regulated pollutants (Nitrogen Oxides, Carbon Monoxide, Particulate Matter-2.5, Particulate Matter-10, Volatile Organic Compounds, Sulfur Dioxide, Carbon Dioxide Equivalents, Methane, Formaldehyde, Benzene, Toluene, Ethylbenzene, Xylenes, Hexane, Total Hazardous Air Pollutants and their potential to emit or the permit level being sought in units of tons per year.

In the event the 30th day is a Saturday, Sunday, or legal holiday, the comment period will be extended until 5:00 p.m. on the following regularly scheduled business day.

A list of qualified newspapers that are eligible to publish legal ads may be found:

http://www.sos.wv.gov/elections/resource/Documents/Qualified%20Newspapers.pdf

RECOMMENDED PUBLIC NOTICE TEMPLATE

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit Registration for the natural gas production facility OXF-121 located off Straight Fork Road in Doddridge County, West Virginia. The latitude and longitude coordinates are: 39°8′8.34′′N, -80°49′14.36′′W. The project includes the installation of six (6) 400 bbl storage tanks which will replace the existing storage tanks at the site.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Emissions in tpy (tons per year)
NOx	5.52
СО	4.64
VOC	6.88
SO ₂	0.03
РМ	0.42
Formaldehyde	3.7E-04
BTEX	0.06
n-Hexane	0.04
Total HAPs	0.53
Carbon Dioxide Equivalents (CO ₂ e)	6,628.72

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated this the <u>(Day)</u> day of <u>(Month)</u>, 2016.

By: EQT Production Company Mike Gavin, Vice President 625 Liberty Ave Suite 1700 Pittsburgh, PA 15222

ATTACHMENT W

General Permit Registration Application Fee