

January 3, 2017 Kleinfelder Project No.: 20172965

Assistant Director for Permitting WV Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, WV 25304

SUBJECT: Antero Midstream LLC – South Canton Compressor Station West Virginia Department of Environmental Protection, Division of Air Quality, 45CSR13 Air Permit Application

On behalf of Antero Midstream LLC, please find attached the 45CSR13 Air Permit Application for the proposed South Canton Compressor Station located in Doddridge County, West Virginia. South Canton Compressor Station is a new source. Based on the calculated potential emissions for the full buildout of the Facility, the South Canton Compressor Station will be a major source under the Title V program for volatile organic compounds (VOCs). The Facility would also be a major source under the Title V program for nitrogen oxides (NO_x) under one of the two Alternative Operating Scenarios (AOS) explained below. Therefore, within 12 months of commencement of operation of the full buildout of the Facility, a 45CSR30 application (Title V operating permit application) will be submitted to WVDEP. South Canton Compressor Station is not subject to the requirements of 45CSR14 since the facility is not a PSD source nor the requirements of 45CSR19 since the facility will not be located in a nonattainment county.

This application contains equipment and emissions for two AOS for the dehydrators at the facility. It is being requested that the two AOS for the dehydrators be permitted at this time, but only one will be implemented. The first scenario, AOS1, will send the dehydrator still vent gas through a BTEX condenser and then a flare with 98% control efficiency. The dehydrator flash tank gas will either be used as fuel in the reboiler or be sent to the VRU system for control. One flare will control all the still vents at the facility. In the second scenario, AOS2, the dehydrator still vent and flash tank gas will go to a thermal oxidizer with 98% control efficiency. Each dehydrator in AOS2 will have a dedicated thermal oxidizer, but will not be equipped with a BTEX condenser unit. Emissions from the dehydrators themselves will be the same in both AOS1 and AOS2, however, the emissions from a single flare versus multiple thermal oxidizers differ. Throughout the permit application, emissions and equipment are noted as AOS1 and AOS2 for clarity. AOS2 has the maximum emissions and thus emissions from this scenario will be reported in the Public Notice.

Enclosed are one hardcopy and two CDs containing the entire permit application including the application form and required attachments. Per 45CSR22, a \$4,500 application fee is also enclosed, which covers the base 45CSR13 \$1,000 application fee, an additional \$1,000 for NSPS requirements, and an additional \$2,500 for Hazardous Air Pollutant requirements.

A copy of the Air Quality Permit Notice for the advertisement is included as Attachment P. As the Notice is being submitted simultaneously with the application, the official affidavit of publication will be submitted to the Division of Air Quality separately once it is completed.

Please call if you have any questions or if I can be of further assistance. I can be reached at (719)632-3593 or by email at <u>msteyskal@kleinfelder.com</u>.

Sincerely,

KLEINFELDER

Michele Stephal

Michele Steyskal Air Quality Professional

Enclosure: South Canton Compressor Station Air Permit Application

Antero Midstream LLC

South Canton Compressor Station

45CSR13 Permit Application West Virginia Department of Environmental Protection Division of Air Quality

Doddridge County, West Virginia

January 2017

Prepared by:

KLEINFELDER Bright People. Right Solutions.

1801 California Street, Suite 1100 Denver, CO 80202 (303) 237-6601 Fax (303) 237-6602 <u>www.kleinfelder.com</u>

> © 2017 Kleinfelder DEN16O50645

Table of Contents

Attachment A. Attachment B. Attachment C. Attachment D. Attachment E. Attachment F. Attachment G. Attachment H. Attachment I. Attachment J. Attachment K. Attachment L.	45CSR13 Application Form Discussion of Nearby Facilities Business Certificate Area Map Installation and Startup Schedule Regulatory Discussion Plot Plan Process Flow Diagram Process Description Material Safety Data Sheets Emission Units Table Emission Point Data Summary Sheet Fugitive Emissions Data Summary Sheet Emissions Unit Data Sheets a. Compressor Engines b. Dehydrators c. Generator d. Storage Tanks e. Fuel Conditioning Heater f. Venting Emissions
Attachment M.	 g. Bulk Loading and Fugitives Air Pollution Control Device Sheets a. Oxidation Catalysts b. Flare c. Thermal Oxidizers d. Vapor Becovery Units
Attachment N.	 d. Vapor Recovery Units Supporting Emissions Calculations a. Emission Calculations b. ProMax 4.0 c. GlyCalc 4.0
Attachment O. Attachment P. Attachment R.	Monitoring, Recordkeeping, Reporting, and Testing Plans Public Notice Authority/Delegation of Authority

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag		ICATION FOR NSR PERMIT AND TLE V PERMIT REVISION (OPTIONAL)	
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNC	WN): PLEASE CHECK	TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY):	
CLASS I ADMINISTRATIVE UPDATE TEMPORARY			
CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FA		VE IS CHECKED, INCLUDE TITLE V REVISION S ATTACHMENT S TO THIS APPLICATION	
FOR TITLE V FACILITIES ONLY: Please refer to "Title V F (Appendix A, "Title V Permit Revision Flowchart") and al			
Sect	ion I. General		
1. Name of applicant <i>(as registered with the WV Secretary</i> Antero Midstream LLC	of State's Office):	2. Federal Employer ID No. (FEIN): 46-5517375	
3. Name of facility (if different from above):		4. The applicant is the:	
South Canton Compressor Station		OWNER OPERATOR BOTH	
5A. Applicant's mailing address: 1615 Wynkoop Street Denver, CO 80202	5B. Facility's prese Nutter Fork Rd West Union, WV	ent physical address:	
 If YES, provide a copy of the Certificate of Incorporat change amendments or other Business Registration Ce If NO, provide a copy of the Certificate of Authority/A 	 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 		
7. If applicant is a subsidiary corporation, please provide th	7. If applicant is a subsidiary corporation, please provide the name of parent corporation:		
8. Does the applicant own, lease, have an option to buy or	8. Does the applicant own, lease, have an option to buy or otherwise have control of the proposed site? X YES NO		
- If YES, please explain: Antero Midstream LLC ov			
 If NO, you are not eligible for a permit for this source. 			
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary classification System (NAICS) code for the facility: 221210 			
11A. DAQ Plant ID No. (for existing facilities only): 11B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only):			
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.			

12A.

 For Modifications, Administrative Updates or Te present location of the facility from the nearest state 		please provide directions to the	
 For Construction or Relocation permits, please proad. Include a MAP as Attachment B. 	provide directions to the <i>proposed new</i> s	site location from the nearest state	
From the intersection of U.S. 50 and WV-18 near West on Main Street and then a left on Davis Street. In 0.2 m miles, turn right onto WV-18N/Sisterville Pike and drive The facility driveway will be on the left.	iles at the round-a-bout, keep to the rigl	ht to stay on Davis Street. After 0.2	
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:	
Nutter Fork Rd	West Union	Doddridge	
West Union, WV			
12.E. UTM Northing (KM): 4353.883	12F. UTM Easting (KM): 516.949	12G. UTM Zone: 17	
13. Briefly describe the proposed change(s) at the facilit New installation	-		
14A. Provide the date of anticipated installation or change		14B. Date of anticipated Start-Up	
 If this is an After-The-Fact permit application, prove change did happen: / / 	ide the date upon which the proposed	if a permit is granted: January 2018	
14C. Provide a Schedule of the planned Installation of/ application as Attachment C (if more than one uni		units proposed in this permit	
15. Provide maximum projected Operating Schedule o Hours Per Day 24 Days Per Week 7	f activity/activities outlined in this applica Weeks Per Year 52	ation:	
16. Is demolition or physical renovation at an existing fa	cility involved? 🗌 YES 🛛 🕅 NO		
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	ne subject due to proposed	
changes (for applicability help see www.epa.gov/cepp	oo), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.	
18. Regulatory Discussion. List all Federal and State a	air pollution control regulations that you	believe are applicable to the	
proposed process (if known). A list of possible application	able requirements is also included in Att	achment S of this application	
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this	
information as Attachment D.			
Section II. Additional att	achments and supporting d	ocuments.	
 Include a check payable to WVDEP – Division of Air 45CSR13). 	Quality with the appropriate application	1 fee (per 45CSR22 and	
20. Include a Table of Contents as the first page of you	ur application package.		
21. Provide a Plot Plan , e.g. scaled map(s) and/or sket source(s) is or is to be located as Attachment E (Reference)		erty on which the stationary	
 Indicate the location of the nearest occupied structure 	e (e.g. church, school, business, residen	ce).	
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	ving each proposed or modified emissio	ns unit, emission point and control	
23. Provide a Process Description as Attachment G.			
 Also describe and quantify to the extent possible 			
All of the required forms and additional information can be	e found under the Permitting Section of D	AQ's website, or requested by phone.	
24. Provide Material Safety Data Sheets (MSDS) for a		d as Attachment H.	
 For chemical processes, provide a MSDS for each compound emitted to the air. 			

25. Fill out the Emission Units Table and provide it as Attachment I.				
26. Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.				
27. Fill out the Fugitive Emissions Data Summary Sheet and provide it as Attachment K.				
28.	28. Check all applicable Emissions Unit Data Sheets listed below:			
🖂 E	Bulk Liquid Transfer Operations	🛛 Haul Road Emissions	Quarry	
\boxtimes (Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Ha	andling and Storage
	Concrete Batch Plant	Incinerator	Facilities	
	Grey Iron and Steel Foundry	Indirect Heat Exchanger	🛛 Storage Tanks	
\boxtimes (General Emission Unit, specify: Engine	s, Dehydrators, Generator, F	uel Conditioning Heater, Venting	Emissions
Fill	out and provide the Emissions Unit Da	ata Sheet(s) as Attachment	L.	
29.	Check all applicable Air Pollution Co	ntrol Device Sheets listed b	elow:	
	Absorption Systems	Baghouse	🛛 Flare	
	Adsorption Systems	Condenser	🗌 Mechani	cal Collector
$\Box A$	Afterburner	Electrostatic Precip	itator 🗌 Wet Col	lecting System
\boxtimes (Other Collectors, specify: Oxidation ca	talysts, VRUs, Thermal oxidi	zer	
Fill	out and provide the Air Pollution Cont	rol Device Sheet(s) as Atta	ohment M	
	Provide all Supporting Emissions Ca			v to the forms listed in
50.	Items 28 through 31.			
31.	Monitoring, Recordkeeping, Report testing plans in order to demonstrate of application. Provide this information a	compliance with the proposed		
7	Please be aware that all permits must measures. Additionally, the DAQ may are proposed by the applicant, DAQ w	not be able to accept all mea	asures proposed by the applicant.	
32.	Public Notice. At the time that the ap	pplication is submitted, place	a Class I Legal Advertisement i	n a newspaper of general
	circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>			
	Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.			
33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?				
•	If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.			
Section III. Certification of Information				
34. Authority/Delegation of Authority. Only required when someone other than the responsible official signs the application. Check applicable Authority Form below:				
Authority of Corporation or Other Business Entity				
	Authority of Governmental Agency		Authority of Limited Partnershi	0
	mit completed and signed Authority Fo		-	
	of the required forms and additional info		e Permitting Section of DAQ's web	site, or requested by phone.
			•	

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned 🖾 **Responsible Official** / 🗋 **Authorized Representative**, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

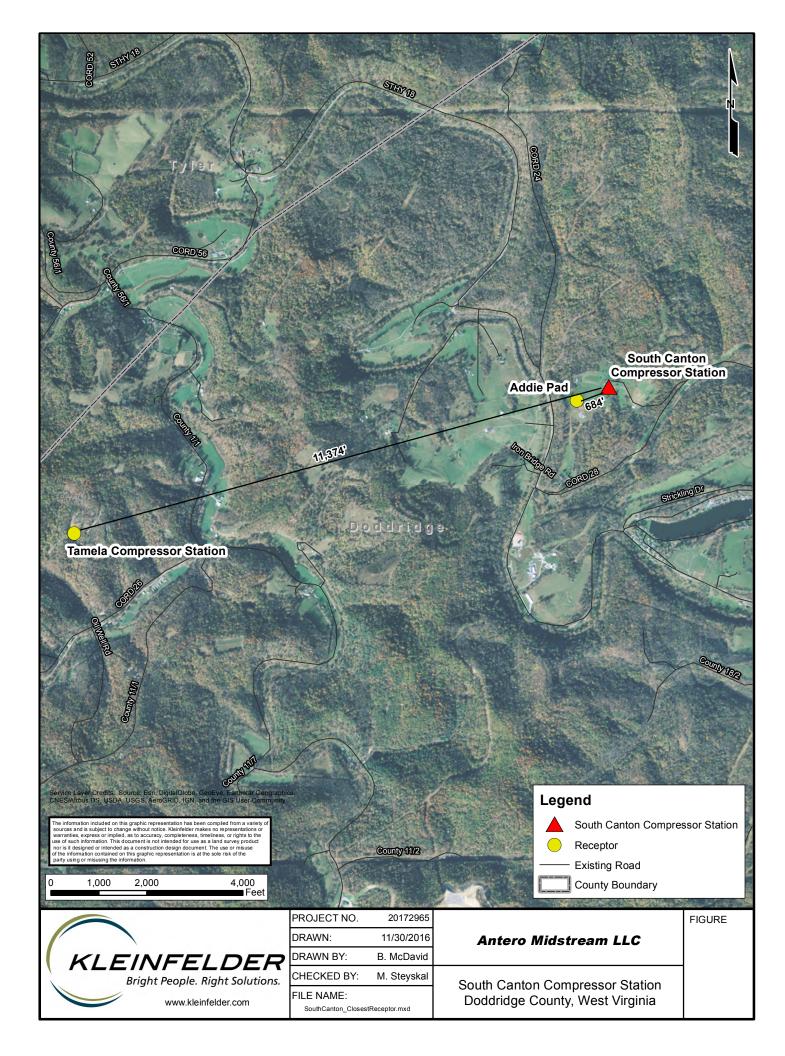
Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE(Please	use blue ink)	DATE: 12/12/16 (Please use blue ink)
35B. Printed name of signee: Ward McNeilly		35C. Title: Vice President, Reserves Planning an Midstream
35D. E-mail: wmcneilly@anteroresources.com	36E. Phone: (303) 357-6822	36F. FAX: (303)357-7315
36A. Printed name of contact person (if different from above): Barry Schatz		36B. Title: Senior Environmental and Regulatory Manager
36C. E-mail: bschatz@anteroresources.com	36D. Phone: (303) 357-7276	36E. FAX: (303)357-7315

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDI	ED WITH THIS PERMIT APPLICATION:		
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee 		
	permit application with the signature(s) to the DAQ, Permitting Section, at the s application. Please DO NOT fax permit applications.		
FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:			
Forward 1 copy of the application to the Title V Permittin	g Group and:		
For Title V Administrative Amendments:			
NSR permit writer should notify Title V permit write	ter of draft permit,		
For Title V Minor Modifications:			
Title V permit writer should send appropriate noti	fication to EPA and affected states within 5 days of receipt,		
□ NSR permit writer should notify Title V permit writer of draft permit.			
For Title V Significant Modifications processed in parallel	-		
□ NSR permit writer should notify a Title V permit w			
Public notice should reference both 45CSR13 and	• •		
EPA has 45 day review period of a draft permit.	, ,		

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.


Discussion of Nearby Facilities

South Canton Compressor Station – Closest Antero Facilities

1. Common Control: Only those facilities that are owned and managed by Antero were included in the aggregation discussion. This includes Antero Resources Corporation production facilities in addition to the Antero Midstream LLC midstream facilities.

2. SIC Code: The South Canton Compressor Station will operate under SIC code 4923 (natural gas distribution). The closest facility owned by Antero Midstream LLC with this SIC code is the Tamela Compressor Station which is 2.2 miles west of the Facility. All Antero Resources Corporation production facilities operate under the SIC code of 1311 (crude petroleum and natural gas extraction). The closest facility operated by Antero Resources Corporation with the SIC code of 1311 is the Addie Pad 0.1 miles to the west. The Addie Pad has not been constructed as of yet.

3. Contiguous or Adjacent: The land between the South Canton Compressor Station and its nearest facility operating under SIC code 4923 is not owned or managed by Antero Midstream LLC or Antero Resources Corporation. Therefore, the two facilities are not contiguous or adjacent. Secondly, although some of the South Canton Compressor Station land parcel is the same as the land parcel for the Addie Pad facility operating under 1311, they should not be aggregated because they do not belong to the same major industrial group and do not directly rely on each other. The South Canton Compressor Station and the Addie Pad will also have separate access roads to enter the facilities.

Attachment A. Business Certificate

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

ANTERO MIDSTREAM LLC

Control Number: 9A5E1

a limited liability company, organized under the laws of the State of Delaware

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of April 29, 2014, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of April 29, 2014

talil & Your

Secretary of State

	APR 29 2014 IN THE OFFICE WV SECRETARY OF		Submitted by: CT Corporation Rep-Terry Terry.Stamper@wolterski 304-776-1152
Sec 190 Blo Ch FII (Ty stat	LE ONE ORIGINAL CERTIFI	APPLICATION FOR CATE OF AUTHORITED LIABILITY COMP	UPPERAMENDED Office Hours: Monday – Friday 8:30 a.m. – 5:00 p.m. ET
1.	The name of the company as registered home state is:	d in itsAntero Midstrea	Im LLC
\sim	CHISCH HIDRES to multiale you have of	otained and submitted with	this application a <u>CERTIFICATE OF</u>
	EXISTENCE (GOOD STANDING), da incorporation as <u>required</u> to process ye Secretary of State's Office in the home The name to be used in West Virginia [The name must contain one of the required t as limited liability company" or abbreviations su "LLC" or "PLLC". See instructions for complet acceptable terms and requirements for use of tra	ated during the current tax our application. The certific e state of original incorpora is will be: Home State (If name is r follow spected is to follow spe	year, from your home state of original rate may be obtained by contacting the tion. name as listed above, if available in WV tot available, check DBA Name box below and cial instructions in Section 2. attached.) instructions in Section 2. Regarding the tesolution attached to this application.)
	EXISTENCE (GOOD STANDING), da incorporation as <u>required</u> to process ye Secretary of State's Office in the home The name to be used in West Virginia [The name must contain one of the required t as limited liability company" or abbreviations su "LLC" or "PLLC". See instructions for complet	ated during the current tax our application. The certific e state of original incorpora will be: Home State (If name is r ouch as follow spec- te list of DBA name (See special Letter of F or limitations regular L. NI members a Letter of F Professio	year, from your home state of original rate may be obtained by contacting the tion. name as listed above, if available in WV tot available, check DBA Name box below and cial instructions in Section 2. attached.) instructions in Section 2. Regarding the tesolution attached to this application.)
	EXISTENCE (GOOD STANDING), da incorporation as required to process ye Secretary of State's Office in the home The name to be used in West Virginia [The name must contain one of the required t as limited liability company" or abbreviations st "LLC" or "PLLC". See instructions for complet acceptable terms and requirements for use of tra The company will be a: [See instructions for en professions which may form P.L.L.C. in WV. A must have WV professional license. In most cases, Authorization/Approval from the appropriate S	ated during the current tax our application. The certific e state of original incorpora is will be: Home State (If name is r follow spec- te list of the name.] DBA name (See special Letter of F or limitations NI members a Letter of istate ation.] Cee No. & Street: 162	year, from your home state of original ate may be obtained by contacting the tion. name as listed above, if available in WV or available, check DBA Name box below and cial instructions in Section 2. attached.) instructions in Section 2. Regarding the tesolution attached to this application.) L.C.
3.	EXISTENCE (GOOD STANDING), da incorporation as required to process ye Secretary of State's Office in the home The name to be used in West Virginia (The name must contain one of the required t as limited liability company" or abbreviations st "LLC" or "PLLC". See instructions for complet acceptable terms and requirements for use of tra The company will be a: [See instructions fo on professions which may form P.L.L.C. in WV. A must have WV professional license. In most cases, Authorization/Approval from the appropriate S Licensing Board is required to process the applica The street address of the principal office	ated during the current tax our application. The certific e state of original incorpora will be: Home State (If name is r follow spec- (If name is r follow spec- (See special Letter of F or limitations (I members a Letter of For factor of City/State/Zip: Def City/State/Zip: Def	year, from your home state of original rate may be obtained by contacting the tion. mame as listed above, if available in WV tot available, check DBA Name box below and cial instructions in Section 2. attached.) instructions in Section 2. Regarding the tesolution attached to this application.) L.C. aal L.L.C. for the profession of 5 17th Street, Suite 300
3.	 EXISTENCE (GOOD STANDING), daincorporation as required to process you Secretary of State's Office in the home The name to be used in West Virginia [The name must contain one of the required tas limited liability company" or abbreviations at "LLC" or "PLLC". See instructions for complet acceptable terms and requirements for use of transformer to the company will be at [See instructions for one professions which may form P.L.L.C. in WV. A must have WV professional license. In most cases, Authorization/Approval from the appropriate S Licensing Board is required to process the applica The street address of the principal officies: 	ated during the current tax our application. The certific e state of original incorpora a will be: Home State (If name is r ouch as the list of the name.] DBA name (See special Letter of F or limitations Regular L. No. & Street: Derived City/State/Zip: city/State/Zip: City/State/Zip: of No. & Street: 540	year, from your home state of original rate may be obtained by contacting the tion. mame as listed above, if available in WV tot available, check DBA Name box below and cial instructions in Section 2. attached.) instructions in Section 2. Regarding the tesolution attached to this application.) L.C. aal L.L.C. for the profession of 5 17th Street, Suite 300

WV045 - 09/04/2013 Wolters Kluwe: Online

. .

APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY Page 2

7.	E-mail address where business correspondence may be received:		
8.	Website address of the business, if any:		
9.	. The company is: an at-will company, for an indefinite period a term company, for the term of years, which will expire on		
10.	The company is: member-managed. [List the names and addresses of all members.] manager-managed. [List the names and addresses of all managers.]		
	List the Name(s) and Address(es) of the Member(s)/Manager(s) of the company (attach additional pages if necessary).		
	Name Street Address City, State, Zip		
	Antero Resources Corporation 1625 17th Street, Suite 300 Denver, Colorado 80202		
11.	All or specified members of a limited liability company are liable in their capacity as members for all or specified debts, obligations or liabilities of the company. Yes Those persons who are liable in their capacity as members for all debts, obligations or liability of the company have consented in writing to the adoption of the provision or to be bound by the provision.		
12.	The purpose for which this limited liability company is formed are as follows: (Describe the type(s) of business activity which will be conducted, for example, "real estate," "construction of residentia and commercial buildings," "commercial printing," "professional practice of architecture.")		
	Midstream oil and gas operating company		
13.	Is the business a Scrap Metal Dealer?		
	Yes [If "Yes," you must complete the Scrap Metal Dealer Registration Form (Form SMD-1) and proceed to question 14.].		
	No [Proceed to question 14.]		

14. The number of pages attached and included in this application is: ______

Form LLF+1

Issued by the Office of the Secretary of State

Revised 8/13

WV045 - 09/04/2013 Wolters Kluwer Online

•

APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY Page 3

15. The requested effective date is:	the date & time of filing in the Secretary of State's Office		
[Requested date <u>may not be earlier than</u> <u>filing nor later than 90 days after filing</u> <u>in our office.</u>]	the following date	and time	

16. Contact and Signature Information* (See below Important Legal Notice Regarding Signature):

a.	Alvyn A. Schopp	(313) 357-7310
	Contact Name	Phone Number
ь.	Alvyn A. Schopp	Chief Administrative Officer and Regional Vice President
0.	Print or type name other	Title / Capacity of Signer
c.	Hz-Tochtp	April 28, 2014
	Signature /	Date

*Important Legal Notice Regarding Signature: Per West Virginia Code §31B-2-209. Liability for false statement in filed record. If a record authorized or required to be filed under this chapter contains a false statement, one who suffers loss by reliance on the statement may recover damages for the loss from a person who signed the record or caused another to sign it on the person's behalf and knew the statement to be false at the time the record was signed.

Form LLF-1

Issued by the Office of the Secretary of State

•

Revised 8/13

WV045 - 09/04/2013 Wolters Kluwer Opline

•

Delaware

PAGE 1

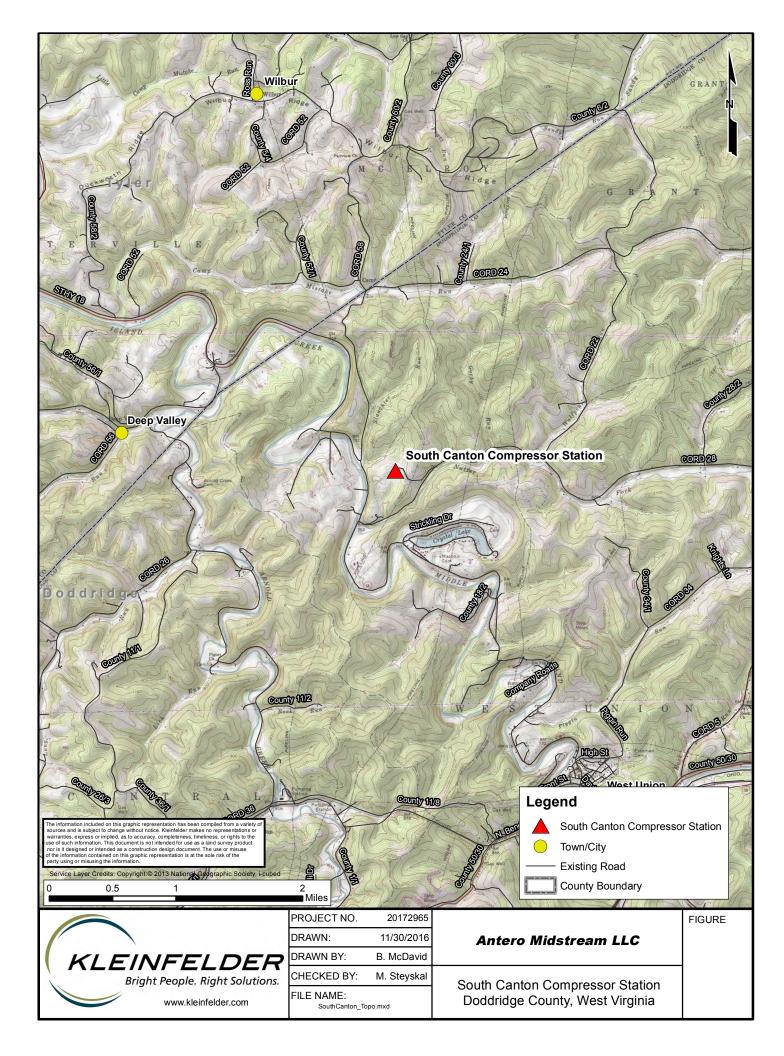
The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF DELAWARE, DO HEREBY CERTIFY "ANTERO MIDSTREAM LLC" IS DULY FORMED UNDER THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD STANDING AND HAS A LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS OF THE TWENTY-NINTH DAY OF APRIL, A.D. 2014.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE NOT BEEN ASSESSED TO DATE.

5466900 8300

140532521 You may verify this certificate online at corp.delaware.gov/authver.shtml


••••

Jeffrey W. Bullock, Secretary of State

AUTHENTICATION: 1328067

DATE: 04-29-14

Attachment B. Area Map

Attachment C. Installation and Startup Schedule

South Canton Compressor Station – Installation and Startup Schedule

The South Canton Compressor Station will be a new facility located in Doddridge County, WV, approximately 3 miles north of West Union, West Virginia. Ground clearing and other site preparation activities are anticipated to occur starting in May of 2017. Installation of equipment is also anticipated to begin in May of 2017. Facility operations are scheduled to begin on or around January of 2018.

Attachment D. Regulatory Discussion

South Canton Compressor Station – Regulatory Discussion

Federal Regulations

40 CFR Part 60 – Standards of Performance for New Stationary Sources

I. Subpart Kb - Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984.

<u>Applicability:</u> Subpart Kb applies to volatile organic liquid storage tanks with a capacity greater than or equal to 75 m³ (§60.110b(a)). However, Subpart Kb does not apply to storage vessels with a design capacity less than or equal to 1,589.874 m³ that are used for petroleum or condensate storage prior to custody transfer. The storage tanks at South Canton Compressor Station will be less than 1,589.874 m³ and will be used for storage prior to custody transfer. Therefore, Subpart Kb does not apply to the South Canton Compressor Station.

II. Subpart KKK - Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plants for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011.

<u>Applicability:</u> Subpart KKK applies to facilities built or modified before August 23, 2011. Subpart KKK will not apply as the South Canton Compressor Station is not yet built.

III. Subpart LLL - Standards of Performance for SO₂ Emissions from Onshore Natural Gas Processing for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011.

<u>Applicability:</u> Subpart LLL applies to facilities built or modified before August 23, 2011. Subpart LLL will not apply as the South Canton Compressor Station is not yet built.

IV. Subpart JJJJ - Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

<u>Applicability:</u> Subpart JJJJ applies to engines that were ordered after June 12, 2006 and manufactured on or after July 1, 2007 for engines with maximum power greater than or equal to 500 hp (§60.4230(a)(4)(i)). Thus, Subpart JJJJ applies to the South Canton Compressor Station as the compressor engines and generator will be ordered after June 12, 2006 and manufactured after July 1, 2007.

V. Subpart OOOO - Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution

<u>Applicability:</u> Subpart OOOO applies to facilities that were constructed, modified, or reconstructed after August 23, 2011 and on or before September 18, 2015 (§60.5365).

Therefore, Subpart OOOO does not apply as the South Canton Compressor Station is not yet constructed.

VI. Subpart OOOOa – Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification, or Reconstruction Commenced after September 18, 2015

<u>Applicability</u>: Subpart OOOOa applies to reciprocating compressor facilities that were constructed, modified, or reconstructed after September 18, 2015 (§60.5365a(c)). Also, Subpart OOOOa applies to storage vessel affected facilities with individual tank emissions greater than 6 tons per year (§60.5365a(e)). Lastly, the collection of fugitive emissions components at a compressor station is an affected facility under this Subpart (§60.5365a(j)). Since the South Canton Compressor Station will be built after September 18, 2015 and will be a compressor station with reciprocating compressors, Subpart OOOOa does apply. The pneumatic devices that will be installed at South Canton Compressor Station will be a storage tank affected facility applicability for the onsite storage tanks will be determined within the first 30 days of production, per Subpart OOOOa.

40 CFR Part 61 – National Emission Standards for Hazardous Air Pollutants

I. Subpart V – National Emission Standard for Equipment Leaks (Fugitive Emission Sources)

<u>Applicability:</u> Subpart V applies to components such as compressors, valves, and pumps that are intended to operate in volatile hazardous air pollutant (VHAP) service (§61.240(a)). VHAP service means that a component contains or contacts a fluid that is at least 10 percent by weight a VHAP. Subpart V does not apply to the South Canton Compressor Station because none of the components will have fluid (natural gas, water, or condensate) that is over 10 percent by weight of any VHAP.

40 CFR Part 63 – National Emission Standards for Hazardous Air Pollutants for Source Categories

I. Subpart HH – National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

<u>Applicability:</u> Subpart HH applies to oil and natural gas production facilities that are a major or area source of HAP emissions, and that process, upgrade, or store hydrocarbon liquids or natural gas prior to the transmission and storage source category (§63.760(a)). Subpart HH does apply to the South Canton Compressor Station, and because it is an area source of HAP emissions, the three (3) TEG dehydrators are applicable sources under Subpart HH (§63.760(b)(2)). However, actual benzene emissions from each of the dehydrators at the South Canton Compressor Station are

estimated to be less than 1 ton per year, so the dehydrators are exempt from all requirements except recordkeeping (§63.764(e)(1)(ii)).

II. Subpart HHH – National Emission Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities

<u>Applicability</u>: Subpart HHH applies to natural gas transmission and storage facilities that are a major source of HAP emissions (§63.1270(a)). Subpart HHH does not apply to the South Canton Compressor Station as it is not a major source of HAP emissions. Further, the South Canton Compressor Station is prior to the gas transmission and storage phase.

III. Subpart EEEE – National Emission Standards for Hazardous Air Pollutants: Organic Liquids Distribution (Non-Gasoline)

<u>Applicability:</u> Subpart EEEE applies to organic liquids distribution operations that are located at major source of HAP emissions (§63.2334(a)). Subpart EEEE does not apply to the South Canton Compressor Station as it is not a major source of HAP emissions.

IV. Subpart ZZZZ - National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

<u>Applicability:</u> Subpart ZZZZ applies to stationary RICE at a major or area source of HAP emissions (§63.6585). Subpart ZZZZ applies to the South Canton Compressor Station as the compressor engines and generator engine will be new RICE. The engines will meet Subpart ZZZZ by meeting 40 CFR Part 60, Subpart JJJJ as the South Canton Compressor Station is an area source of HAP emissions (§63.6590(c)(1)).

V. Subpart DDDDD – National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters

<u>Applicability:</u> Subpart DDDDD applies to process heaters at a major source of HAP emissions (§63.7485). Subpart DDDDD does not apply to the South Canton Compressor Station as it is not a major source of HAP emissions.

Prevention of Significant deterioration and Title V Greenhouse Gas Tailoring Rule

<u>Applicability:</u> The Tailoring Rule was published into the Federal Register starting in 2010 in three steps. Step 1 of the Tailoring Rule stated that Title V or PSD requirements would apply to greenhouse gas (GHG) sources only if the sources were subject to Title V or PSD because of other regulated pollutants. Due to court proceedings in 2014, the facility is required to follow Step 1 of the Tailoring Rule. The potential CO₂e emissions from the South Canton Compressor Station are greater than 100,000 tons per year. Because the South Canton Compressor Station is also a major source under the Title V program due to VOC emissions and NOx emissions under AOS2, GHG emissions may also be subject to Title V, but not PSD, requirements.

West Virginia State Regulations

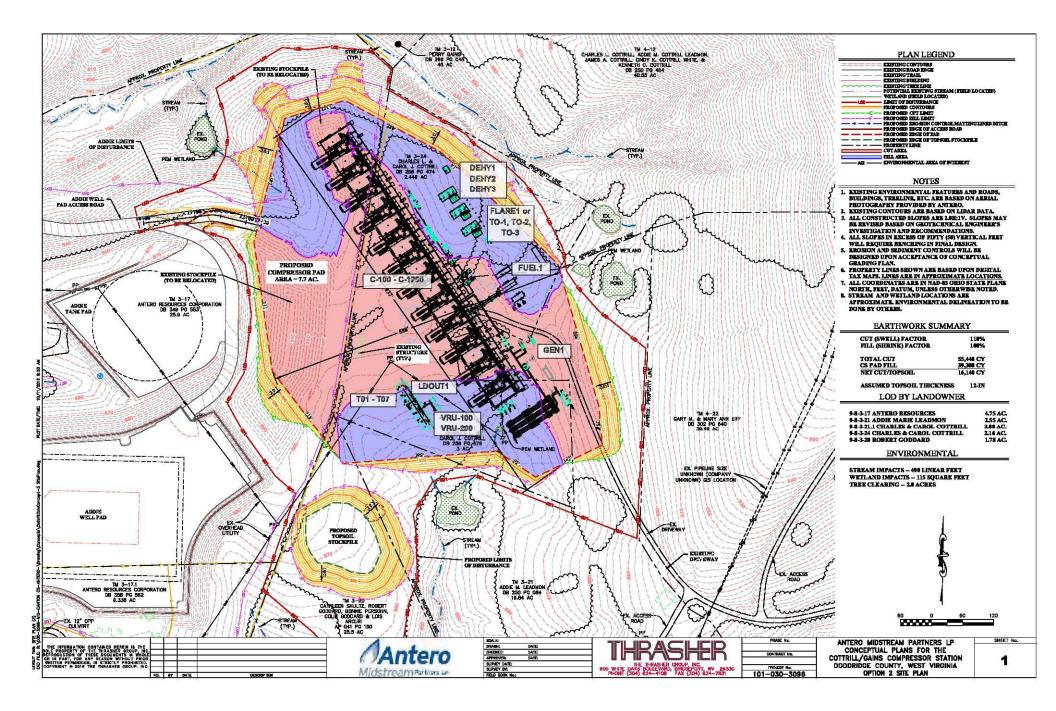
Title 45 Legislative Rule – Division of Environmental Protection, Office of Air Quality

The following Title 45 Legislative Rules will be applicable to the South Canton Compressor Station:

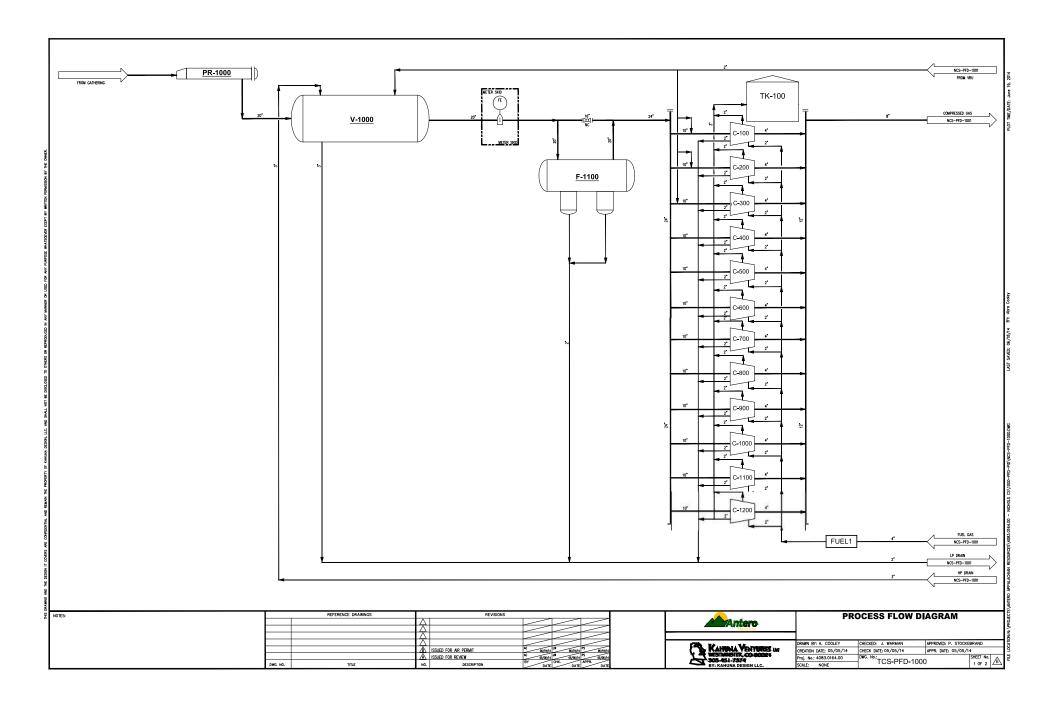
- I. 45CSR2 To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers
- *II.* 45CSR4 To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors
- III. 45CSR6 Control of Air Pollution from Combustion of Refuse
- *IV.* 45CSR8 Ambient Air Quality Standards
- V. 45CSR11 Prevention of Air Pollution Emergency Episodes
- VI. 45CSR13 Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, Permission to Commence Construction, and Procedures for Evaluation
- VII. 45CSR14 Permits for Construction and Major Modification of Major Stationary Sources for the Prevention of Significant Deterioration of Air Quality

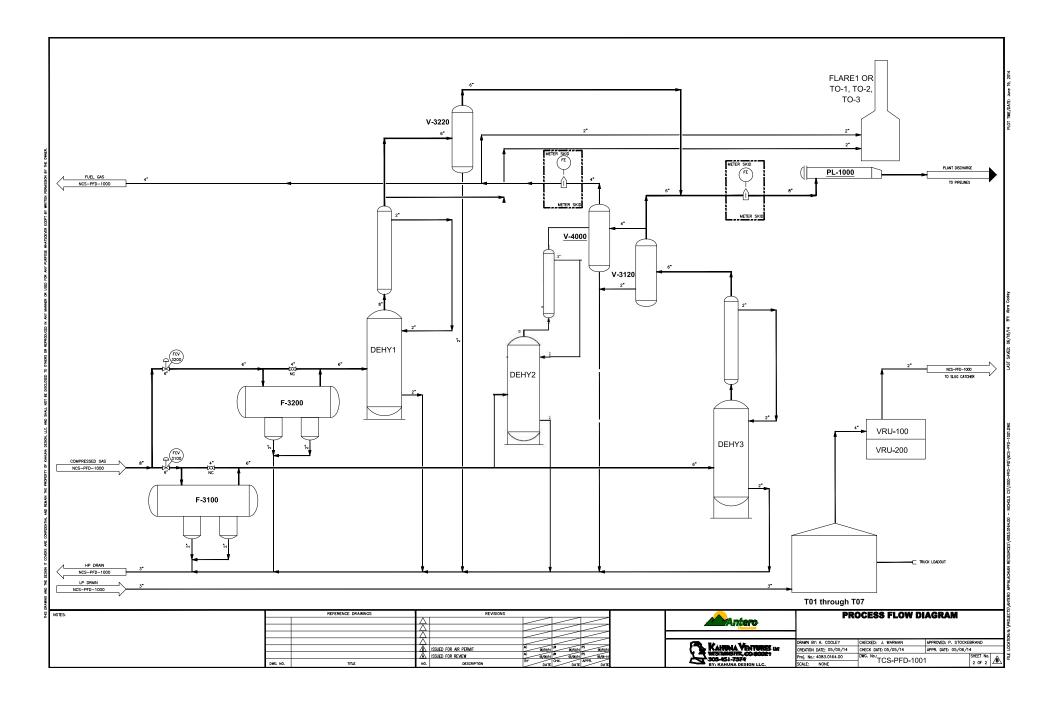
45CSR14 establishes a preconstruction permit program for the Prevention of Significant Deterioration (PSD) Program under the Clean Air Act. According to Section 2.43 of this rule, a Major Stationary Source is defined as any of the twenty six named sources listed in 2.43a which emits or has the potential to emit 100 tons per year or more of any regulated pollutant. Although the South Canton Compressor Station will have the potential to emit over 100 tons per year of VOCs, and over 100 tons per year of NOx under AOS2, it is not one of the twenty six named stationary sources and thus not defined a Major Stationary Source under the PSD Program by Section 2.43a. Additionally, Section 2.43b of this rule defines a Major Stationary Source as any stationary source which emits or has the potential to emit, 250 tons per year or more of any regulated pollutant. The South Canton Compressor Station does not have the potential to emit 250 tons per year or more of any regulated pollutant. The South Canton Compressor Station does not have the potential to emit 250 tons per year or more of any regulated pollutant. The South Canton Compressor Station does not have the potential to emit 250 tons per year or more of any regulated pollutant, thus is not a Major Stationary Source under the PSD Program and 45CSR14 does not apply.

- VIII. 45CSR16 Standards of Performance for New Stationary Sources Pursuant to 40 CFR, Part 60
- IX. 45CSR20 Good Engineering Practice as Applicable to Stack Heights
- X. 45CSR22 Air Quality Management Fee Program


XI. 45CSR27 – To Prevent and Control the Emissions of Toxic Air Pollutants

XII. 45CSR30 – Requirements for Operating Permits


This rule establishes an air permitting program that is consistent with Title V of the Clean Air Act. According to Section 3.1.a.1, any major source as defined by the rule, shall not operate except in compliance with a permit issued under this rule on or after the effective date of the operating permit program. Section 2.26.b defines a major source as any stationary source that directly emits or has the potential to emit 100 tons per year or more of any pollutant subject to regulation. However, because a compressor station is not one of the 44 named sources under 2.26.b, fugitives do not need to be included when determining the 100 ton per year threshold. Potential emissions of VOCs and NOx from AOS2 from the South Canton Compressor Station will be over 100 tons per year not including fugitive emissions, so the South Canton Compressor Station is a major source as defined by this rule and applicable to 45CSR30. The South Canton Compressor Station will need to apply for a permit under this rule within 12 months of the effective date of the operating permit program per Section 4.1.a.1.F of the rule.


- XIII. 45CSR34 Emission Standards for Hazardous Air Pollutants for Source Categories Pursuant to 40 CFR, Part 63
- XIV. 45CSR38 Provisions for Determination of Compliance with Air Quality Management Rules

Attachment E. Plot Plan

Attachment F. Process Flow Diagram

Attachment G. Process Description

South Canton Compressor Station – Process Description

The South Canton Compressor Station will be located in Doddridge County, West Virginia. The process description below is based on the full buildout of the facility.

Gas from surrounding pipelines enters the facility through receivers and associated slug catcher. From there, the gas is metered and routed through a scrubber and filter separator. Any produced liquids from the scrubber or separator are sent to the 500 barrel settling tank (T04). Gas from the filter separator is sent to one (1) of twelve (12) 2,500 horsepower (hp) Caterpillar G3608 lean burn compressor engines (C-100 through C-1200). The twelve (12) compressor engines are controlled with oxidation catalysts (1C through 12C). Fuel gas for the compressor engines will be treated prior to the engines by a fuel conditioning skid with a 0.5 MMBtu/hr heater (FUEL1) to allow more complete combustion. Produced fluids are routed to the settling tank and gas goes to one of the three (3) TEG dehydrators.

Each TEG dehydrator (DEHY1 through DEHY3) contains a flash gas tank and 1.5 MMBtu/hr reboiler. Each dehydrator has a design rate of 150 million standard cubic feet per day (MMscf/day). It is being requested that two alternative operating scenarios (AOS) for the dehydrators be permitted at this time, but only one will be implemented. The first scenario, AOS1, will consist of a flare (FLARE1) as follows.

Within the dehydrator unit, vent gas from the flash gas tank (DFLSH1 through DFLSH3) is routed to the reboiler (DREB1 through DREB3) and used as fuel. In the case where the flash tank gas cannot be used by the reboiler due to excess gas or the reboiler being offline, the gas will be sent to the VRUs (VRU-100 and VRU-200) via the storage tanks (T01 through T07) and thus controlled by 98%. Emissions from each reboiler are routed to the atmosphere. The dehydrator still vents are controlled by a flare with at least 98% control efficiency (FLARE1). Each still vent is also equipped with a BTEX condenser unit.

The second scenario, AOS2, will consist of three (3) thermal oxidizers (TO-1 through TO-3) as follows.

Within the dehydrator unit, both vent gas from the flash gas tank (DFLSH1 through DFLSH3) and vent gas from the still vents will be routed to a thermal oxidizer (TO-1 through TO-3) with a control efficiency of 98%. Each dehydrator will have a dedicated thermal oxidizer, but will not be equipped with a BTEX condenser unit. Emissions from each reboiler are routed to the atmosphere.

In either AOS, produced fluids from the dehydrators (DEHY1 through DEHY3) are routed to the settling tank (T04). The dry gas from the dehydration process is either routed to a fuel gas scrubber, metered, and routed to the compressors as fuel gas or metered and sent to plant discharge.

All produced fluids enter one (1) 500 barrel settling tank (T04) where the fluids settle out as either condensate or produced water. The produced water goes to three (3) 400 barrel produced water tanks (T05 through T07) and the condensate goes to three (3) 400 barrel

condensate tanks (T01 through T03). Flashing only occurs at the settling tank as the fluids stabilize in the settling tank before going to the other storage tanks. All seven (7) tanks are connected to a vapor recovery unit (VRU-100) where tank vapors are collected and recycled back into the gas system right before the initial filter scrubber. A second vapor recovery unit (VRU-200) is also connected to the tanks as a backup unit. The produced fluids are trucked out via tanker trucks as needed (LDOUT1). The anticipated production is 300 barrels per day of condensate and 90 barrels per day of produced water.

The facility will likely operate off of grid electricity; however, one (1) natural gas engine generator rated at 649 hp will supply power to the facility (GEN1) in the case the grid power is down or not available. The generator will be permitted at 8,760 hours per year of operation for maximum operational flexibility.

Fugitive emissions from component leaks and emissions from pigging venting or blowdown events (VENT1) also occur.

There will also be small storage tanks (1,000 to 4,000 gallons) located at the facility. Their ID number, description, and exact size are listed in the table below.

Tag Number	Description	Gallons
TK-100	Compressor Skid Oily Water Tank	2,000
TK-101	Used Oil Tank	4,000
TK-102	TEG Make-Up Tank	1,000
TK-103	Compressor Coolant Tank	2,000
TK-104	Engine Lube Oil Tank	2,000
TK-105	Compressor Lube Oil Tank	2,000

Attachment H. Material Safety Data Sheets

JMN Specialties, Inc.

1100 Victory Drive Westwego, LA 70094 (504) 341-3749 ISO 9001 Registered HMIS HEALTH:.....2 HMIS FLAMMABILITY:.....1 HMIS REACTIVITY:.....0 PERSONAL PROTECTION:C

SECTION 1 – IDENTIFICATION OF CHEMICAL PRODUCT

PRODUCT NAME:TRIETHYLENE GLYCOL (TEG)**EFFECTIVE DATE:**October 1, 2007**CHEMICAL FAMILY:**Glycol**FORMULA:** $C_6H_{14}O_4$ **CAS NUMBER:**112-27-6

SECTION 2 – COMPOSITION / INFORMATION ON INGREDIENTS

HAZARDOUS INGREDIENT	PERCENT	CAS NUMBER	PEL
TRIETHYLENE GLYCOL	> 99	112-27-6	None Established by ACGIH
			or OSHA.

The criteria for listing components in the composition section are as follows: Carcinogens are listed when present at 0.1% or greater; components which are otherwise hazardous according to OSHA are listed when present at 1.0% or greater. Non-hazardous components may be listed at 3.0% or greater if not proprietary in nature. This is not intended to be complete compositional disclosure. Refer to section 14 for applicable states right to know and other regulatory information.

SECTION 3 – HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW			
APPEARANCE / ODOR:	. Clear Liquid / Mild Odor		
SHORT TERM EXPOSURE:	Inhalation: No adverse health effects expected from inhalation.		
	Ingestion: No adverse effects expected. Skin Contact: Prolonged		
	exposure may cause skin irritation. Eye Contact: Splashing in eye		
	causes irritation with transitory disturbances of corneal epithelium.		
	However, these effects diminish and no permanent injury is expected.		
	Vapors are non-irritating. Chronic Exposure: Possible skin irritation.		
	Aggravation of Pre-existing Conditions: No information found.		
OSHA REGULATED:	. No		
LISTED CARCINOGEN:	. NTP: No IARC MONOGRAPHS: No		

POTENTIAL HEALTH EFFECTS

INHALATION:	Unlikely
INGESTION:	Irritant
SKIN (DERMAL):	Slight Irritant After Prolonged Contact

OVER EXPOSURE EFFECTS: Inhalation: No adverse health effects expected from inhalation. Ingestion: No adverse effects expected. Skin Contact: Prolonged exposure may cause skin irritation. Eye Contact: Splashing in eye causes irritation with transitory disturbances of corneal epithelium. However, these effects diminish and no permanent injury is expected. Vapors are non-irritating. Chronic Exposure: Possible skin irritation. Aggravation of Pre-existing Conditions: No information found.

SECTION 4 – FIRST AID MEASURES

FIRST AID:	SKIN CONTACT: Remove contaminated clothing and shoes immediately. Wash affected area with soap or mild detergent and large amounts of water until no evidence of chemical remains (at least 15-20 minutes). Get medical attention immediately. EYE CONTACT: Flush eyes immediately with large amounts of water or normal saline solution, occasionally lifting upper and lower lids until no evidence of chemical remains (at least 15-20 minutes). Get medical attention immediately. INGESTION: Give large amounts of fresh water or milk immediately. Do not give anything by mouth if person is unconscious or otherwise unable to swallow. If vomiting occurs, keep head below hips to prevent aspiration. Treat symptomatically and supportively. Seek medical attention immediately. INHALATION: Remove from exposure area to fresh air immediately. If breathing has stopped, perform artificial resuscitation. Keep person warm and at rest. Treat symptomatically and supportively. Seek medical attention immediately. Qualified medical personnel should consider
NOTE TO PHYSICIAN:	administering oxygen. • Ethylene Glycol (EG) and diethylene glycol (DEG) intoxication may initially produce behavioral changes, drowsiness, vomiting, diarrhea, thirst, and convulsions. EG and DEG are nephrotoxic. End stages of poisoning may include renal damage or failure with acidosis. Supportive measures, supplemented with hemodialysis if indicated, may limit the progression and severity of toxic effects. Primary toxic effects of EG when swallowed are kidney damage and metabolic acidosis. This product may contain trace amounts of Ethylene Glycol (EG) or Diethylene Glycol (DEG).

SECTION 5 - FIRE FIGHTING MEASURES

FLASHPOINT:	.350°F
EXTINGUISHING MEDIA:	Water fog or spray, Foam, Dry Powder, Carbon Dioxide (CO ₂).
DECOMPOSITION	
PRODUCTS:	. From fire; Smoke, Carbon dioxide, & Carbon Monoxide
LOWER FLAME LIMIT:	. < 0.9
HIGHER FLAME LIMIT:	.>9
UNUSUAL FIRE AND	
EXPLOSION HAZARDS:	• Toxic levels of carbon monoxide, carbon dioxide, irritation aldehydes and ketones may be formed on burning. Heating in air may produce
	irritating aldehydes, acids, and ketones.
FIRE FIGHTING	inflating aldenytes, actos, and ketolies.

EOUIPMENT:	Fire fighters and others exposed to products of combustion should wear
-	self-contained breathing apparatus. Equipment should be thoroughly
	decontaminated after use.

SECTION 6 – ACCIDENTAL RELEASE MEASURES

CHEMTEL EMERGENCY NUMBER (24 Hour):	. 1-800-255-3924
SPILL:	. Ventilate area of leak or spill. Wear appropriate personal protective
	equipment as specified in Section 8. Isolate hazard area. Keep
	unnecessary and unprotected personnel from entering. Contain and
	recover liquid when possible. Collect liquid in an appropriate container
	or absorb with an inert material (e. g., vermiculite, dry sand, earth), and
	place in a chemical waste container. Do not use combustible materials,
	such as saw dust. Do not flush to sewer!
RCRA STATUS:	. None

SECTION 7 – HANDLING AND STORAGE

HANDLE IN ACCORDANCE WITH GOOD INDUSTRIAL HYGIENE AND SAFETY PRACTICES. THESE PRACTICES INCLUDE AVOIDING UNNECESSARY EXPOSURE AND PROMPT REMOVAL OF MATERIAL FROM EYES, SKIN, AND CLOTHING.

HANDLING AND STORAGE: .. No special storage requirements. Do not store above 120°F. PRECAUTIONARY

MEASURES: Provide fresh air ventilation during and after application. Close container after each use. Avoid prolonged or repeated contact with skin. Avoid contact with skin, eyes, and clothing. After handling this product, wash hands before eating, drinking, or smoking. If needed, take first aid action shown in Section 4.

SECTION 8 – EXPOSURE CONTROL / PERSONAL PROTECTION

GENERAL CONSIDERATIONS:

Consider the potential hazards of this material (see section 3), applicable exposure limits, job activities, and other substances in the work place when designing engineering controls and selecting personal protective equipment.

EYE PROTECTION:	• Chemical safety goggles meeting the specifications of OSHA 29CFR 1910.133 / ANSI Standard Z87.1 should be worn whenever there is the possibility of splashing or other contact with the eyes. Wear safety glasses meeting the specifications of OSHA 29CFR 1910.133 / ANSI Standard Z87.1 where no contact with the eye is anticipated.
RESPIRATORY PROTECTION:	• Not normally needed. Use NIOSH approved vapor respirator if exposure is unknown or exceeds permissible limits. A respiratory protection program that meets OSHA's 29 CFR 1910.134 or ANSI Z88.2 requirements must be followed whenever workplace conditions warrant respirator use.

Use NIOSH / MSHA approved respiratory protection equipment when airborne exposure limits are exceeded (see below). Consult the respirator manufacturer to determine appropriate type of

PAGE 3 of 6

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

MECHANICAL EXHAUST: Desired in closed places LOCAL EXHAUST: Recommended

VENTILATION:

VENTILATION NOTES: Provide natural or mechanical ventilation to control exposure levels below Airborne exposure limits (see below). The use of local mechanical exhaust ventilation is preferred at sources of air contamination such as open process equipment. Consult NFPA Standard 91 for design of exhaust systems.

THRESHOLD LIMIT VALUE: None Established

PROTECTIVE EQUIPMENT:... HMIS PERSONAL PROTECTION: C: Safety Glasses, Gloves, Apron The user should read and understand all instructions and limitations supplied with the equipment since protection is usually provided for a limited time or under certain circumstances.

SECTION 9 - PHYSICAL AND CHEMICAL PROPERTIES

 APPEARANCE / ODOR:
 Clear Liquid / Mild Odor

 BOILING POINT:
 > 500°F

 FREEZING POINT:
 < 32°F</td>

 VAPOR PRESSURE:
 > 1

 VAPOR DENSITY (AIR=1):
 5.1

 SPECIFIC GRAVITY:
 1.1

 pH:
 8.2

 SOLUBILITY IN WATER:
 Complete

SECTION 10 – STABILITY AND REACTIVITY

STABILITY:StableHAZARDOUSWill Not OccurPOLYMERIZATION AVOID:Will Not OccurPOLYMERIZATION AVOID:Explosive decomposition may occur if combined with strong acids or
strong bases and subjected to elevated temperatures. Therefore, avoid
strong acids and strong bases at elevated temperatures. Avoid
contamination with strong oxidizing agentsand materials reactive with
hydroxyl compounds. Avoid burning or heating in air. This may
produce irritating aldehydes, acids, and ketones.CONDITIONS TO AVOID:Excessive heat. Will ignite in air at 700°F

SECTION 11 – TOXICOLOGICAL INFORMATION

EYE EFFECTS:

The eye irritation hazard is based on data from information supplied by raw material(s) supplier(s). **SKIN EFFECTS:**

The skin irritation hazard is based on data from information supplied by raw material(s) supplier(s). **ACUTE ORAL EFFECTS:**

The acute oral toxicity is based on data from information supplied by raw material(s) supplier(s). **ACUTE INHALATION EFFECTS:**

The acute respiratory toxicity is based on data from information supplied by raw material(s) supplier(s).

SECTION 12 – ECOLOGICAL INFORMATION

Data from laboratory studies and from scientific literature is noted below if available.

SECTION 13 DISPOSAL CONSIDERATIONS

WASTE DISPOSAL: Treatment, storage, transportation and disposal must be in accordance with Federal, State/Provincial and Local Regulations. Regulations may vary in different locations. Characterization and compliance with applicable laws are the responsibility solely of the generator. Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste disposal facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

SECTION 14- TRANSPORTATION INFORMATION

The data provided in this section is for information only. The description shown may not apply to all shipping situations. Consult 49CFR, or appropriate regulations to properly classify your shipment for transportation.

SECTION 15 - REGULATORY INFORMATION

EPA CHRONIC: No EPA IGNITABILITY: No EPA REACTIVITY: No **EPA SUDDEN RELEASE** OF PRESSURE: No CERCLA RQ VALUE: None SARA TPO: None SARA RQ:..... None EPA HAZARD WASTE #:..... None CLEAN AIR: NA CLEAN WATER:..... NA SARA SECTION 313:..... No NFPA FLAMMABILITY:.....1 NFPA REACTIVITY:0 **DEA Chemical Trafficking Act:..** No TSCA STATUS: All ingredients in this product are on the TSCA Inventory List.

SECTION 16 - ADDITIONAL INFORMATION

FOOT NOTES: NA - NOT APPLICABLE ND - NO DATA AVAILABLE > = GREATER THAN < = LESS THAN

Prepared according to the OSHA Hazard Communication Standard (29 CFR 1910.1200) and the ANSI MSDS Standard (Z400.1) by the Company Health and Risk Assessment Unit, PO Box 1519, Gretna, LA 70054-1519.

REVISION STATEMENT: Changes have been made throughout this Material Safety Data Sheet. Please read the entire document.

DISCLAIMER:

Although the information and recommendations set forth herein (hereinafter "Information") are presented in good faith and believed to be correct as of the date hereof, the Company makes no representations as to the completeness or accuracy thereof. Information is supplied upon the condition that the persons receiving this MSDS will make their own determination as to its suitability for their intended purposes prior to use. Since the product is within the exclusive control of the user, it is the user's obligation to determine the conditions of safe use of this product. Such conditions should comply with all Federal Regulations concerning the Product. It must be recognized that the physical and chemical properties of any product may not be fully understood and that new, possibly hazardous products may arise from reactions between chemicals. The information given in this data sheet is based on our present knowledge and shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship. NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED. OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS.

Material Name: Produced Water

US GHS

SYNONYMS: Produced Brine Water, Brine, Brine Water, Formation Water

* * * Section 1 – PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME:	Produced Water	EMERGENCY PHONE:	(800) 878-1373
PRODUCT CODES:	Mixture	AFTER HOURS:	(800) 878-1373
ADDRESS: 16	ntero Resources 15 Wynkoop Street enver, Colorado 80202	CHEMTREC PHONE:	(800) 424-9300

* * * Section 2 – HAZARDS IDENTIFICATION * * *

GHS Classification:

Eye Irritant – Category 2A.

GHS LABEL ELEMENTS Symbol(s)

Signal Word Warning

Hazard Statements

Causes serious eye irritation

Precautionary Statements

Prevention

Wear protective gloves/protective clothing/eye protection/face protection.

Response

If on SKIN (or hair): Rinse skin with water / shower. Remove / Take off all contaminated clothing immediately.

Material Name: Produced Water

If in EYES: Rinse cautiously with water for at least fifteen (15) minutes. Remove Contact Lenses, if present and easy to do. Continue rinsing.

If EYE irritation persists, get medical advice / attention.

Storage

Store in a secure area.

Disposal

Dispose of contents/containers in accordance with regulations.

* * * Section 3 – COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS #	Component	Percent
7732-18-5	Water	80
7647-14-5	Sodium Chloride	20

Because brine water is a natural product, composition can vary greatly.

* * * Section 4 – FIRST AID MEASURES * * *

First Aid: Eyes

Flush eyes with clean running water for at least fifteen (15) minutes. If irritation or redness develops from exposure, following flushing, seek medical attention.

First Aid: Skin

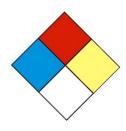
First aid is not required, normally. However, it is a good practice to wash any chemical from the skin.

First Aid: Ingestion (Swallowing)

First aid is not required, normally. If spontaneous vomiting occurs, lean the victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. If symptoms develop, seek medical attention.

First Aid: Inhalation (Breathing)

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.


Material Name: Produced Water

US GHS

Most important symptoms and effects

None known or anticipated.

* * * Section 5 – FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: 1 Flammability: 0 Instability: 0 (0=Minimal, 1=Slight, 2=Moderate, 3=Serious, 4=Severe)

General Fire Hazards

No fire hazards are expected.

General Fire Hazards

No unusual fire or explosion hazards are expected. If container is not properly cooled, it can rupture in the heat of a fire.

Extinguishing Media

The material is non-flammable. Use extinguishing agent suitable for the type of surrounding fire.

Unsuitable Extinguishing Media

None

Fire Fighting Equipment / Instructions

Small fires in the beginning stage may typically be extinguished using handheld portable fire extinguishers and other firefighting equipment. Isolate area around container involved in fire and keep unauthorized personnel out. Stop spill/release if it can be done safely. Move undamaged containers from the immediate hazard area if it can be done safely. Cool equipment exposed to fire with water, if it can be done safely.

Hazardous Combustion Products

None Anticipated. See Section 9 for Flammable Properties including Flash Point and Flammable (Explosive) Limits

Material Name: Produced Water

* * * Section 6 – ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Contain and stop the source of the spill, if safe to do so.

Materials and Methods for Clean-Up

Notify relevant authorities in accordance with all applicable regulations. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal. If spilled on water remove with appropriate methods (e.g. skimming, booms or absorbents). In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations.

Recommended measures are based on the most likely spillage scenarios of this material. However, local conditions and regulations may influence or limit the choice of appropriate actions to be taken. See Section 13 for information on appropriate disposal.

Emergency Measures

The material is not considered hazardous. Nevertheless, evacuate nonessential personnel and secure the area. Stay upwind and uphill, if possible.

Personal Precautions and Protective Equipment

Stay upwind and away from the spill/release. Avoid direct contact with the material. For large spillages, notify persons downstream of the spill/release. Isolate the immediate hazard area and keep unauthorized personnel out. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

Environmental Precautions

Protect bodies of water by diking or absorbents, if possible. Do not flush down sewer or drainage systems. Use water sparingly to minimize environmental contamination and reduce disposal requirements. If a spill occurs on water, notify appropriate authorities and advise shipping of any hazard.

Prevention of Secondary Hazards

None

Material Name: Produced Water

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment (see section 8).

Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29 CFR 1910.146. Do not wear contaminated clothing or shoes.

Storage Procedures

Keep container(s) tightly closed and properly labeled. Use and store this material in cool, dry, well ventilated areas. Store only in approved containers. Keep away from any incompatible material (see Section 10). Protect container(s) against physical damage.

Incompatibilities

Keep away from excessive heat to prevent rupture of container.

* * * Section 8 – EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Water (7732-18-5) ACGIH: Not listed

Sodium Chloride (7647-14-5)

ACGIH: Not listed

Engineering Measures

If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits, additional engineering controls may be required.

Personal Protective Equipment: Respiratory

Emergencies or conditions that could result in significant airborne exposures may require the use of NIOSH approved respiratory protection. An industrial hygienist or other appropriate health and safety professional should be consulted for specific guidance under these situations.

A respiratory protection program that meets or is equivalent to OSHA 29 CFR

Material Name: Produced Water

1910.134 and ANSI Z88.2 should be followed whenever workplace conditions warrant a respirator's use.

Personal Protective Equipment: Skin and Hands

The use of skin protection is not normally required; however, good industrial hygiene practice suggests the use of gloves or other appropriate skin protection whenever working with chemicals.

Personal Protective Equipment: Eyes

Safety glasses or goggles that meet or exceed ANSI Z-87.1 are recommended where there is a possibility of splashing or spraying.

Hygiene Measures

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Promptly remove contaminated clothing and launder before reuse.

* * * Section 9 – PHYSICAL AND CHEMICAL PROPERTIES * * *				
Appearance:	Clear to Brown	Odor:	Salty	
Physical State:	Liquid	pH:	ND	
Vapor Pressure:	< 0.36 psia @ 70°F / 21.1°C	Vapor Density:	> 1	
Boiling Point:	212°F / 100°C	Melting Point:	2.4°F / -16.5°C	
Solubility (H2O):	Complete	Specific Gravity:	1.1 @ 68°F / 20°C	
Evaporation Rate:	Variable	VOC:	ND	
Octanol / H2O Coeff.:	ND	Flash Point:	ND	
Flash Point Method:	ND			
Lower Flammability Limit:	ND	Upper Flammability Limit:	ND	
(LFL):		(UFL):		
Auto Ignition:	ND	Burning Rate:	ND	

Material Name: Produced Water

*** Section 10 – CHEMICAL STABILITY & REACTIVITY INFORMATION ***

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will react with alkali and alkaline metals to form flammable hydrogen gas.

Conditions to Avoid

Avoid contact with alkali metals (lithium, sodium, potassium), alkaline metals (beryllium, magnesium, calcium, strontium, and barium), and metallic hydrides like lithium aluminum hydride.

Hazardous Decomposition Products

Not anticipated under normal conditions of use.

Hazardous Polymerization

Not known to occur.

*** Section 11 - TOXICOLOGICAL INFORMATION ***

Acute Toxicity

A: General Product Information

Unlikely to be harmful.

B. Component Analysis – D50/LC50

Water (7732-18-5) Oral LD50 Rat 90 g/kg

Sodium Chloride (7647-14-5)

Oral LD50 Rat 3 g/kg

Potential Health Effects: Skin Corrosion Property / Stimulativeness

May cause skin irritation with prolonged or repeated contact. Not expected to be a skin sensitizer.

Potential Health Effects: Eye Critical Damage / Stimulativeness

Contact with eyes may cause moderate irritation.

Material Name: Produced Water

Potential Health Effects: Ingestion

Ingestion may result in nausea, vomiting, diarrhea, abdominal cramps, and dehydration (thirst).

Potential Health Effects: Inhalation

No information available on the mixture. However, none of the components have been classified for respiratory sensitization (or are below the concentration threshold for classification).

Generative Cell Mutagenicity

Not expected to cause genetic effects.

Carcinogenicity

General Product Information

Not expected to cause cancer. This substance is not listed as a carcinogen by IARC, NTP or OSHA.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product is not reported to have any specific target organ general toxicity single exposure effects.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ general toxicity multiple exposure effects.

Aspiration Respiratory Organs Hazard

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

Material Name: Produced Water

US GHS

Persistence / Degradability

No information available

Bioaccumulation

No information available

Mobility in Soil

No information available

* * * Section 13 – DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Recover or recycle if possible. It is the responsibility of the generator to determine the toxicity and physical properties of the material generated so as to properly classify the waste and ensure disposal methods comply with applicable regulations.

This material, if discarded as produced, is not a RCRA "listed" hazardous waste, and is not believed to exhibit characteristics of hazardous waste. Consult state and local regulations regarding the proper disposal of this material. Do not dispose of brine water by draining onto the ground. This will result in soil and groundwater contamination. Waste arising from spillage or tank cleaning should be disposed of in accordance with applicable regulations.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate should not be considered a RCRA hazardous waste but must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a qualified drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

* * * Section 14 – TRANSPORTATION INFORMATION * * *

DOT Information Shipping Description: Not Regulated UN #: Not Regulated

Material Name: Produced Water

*** Section 15 – REGULATORY INFORMATION ***

CERCLA/SARA – Section 302 Extremely Hazardous Substances and TPQs (in pounds):

This material does not contain any chemicals subject to the reporting requirements of SARA 302 and 40 CFR 372,

CERCLA/SARA – Section 313 and 40 CFR 372):

This material does not contain any chemicals subject to the reporting requirements of SARA 313 and 40 CFR 372.

EPA (CERCLA) Reportable Quantity (in pounds):

This material does not contain any chemicals with CERCLA Reportable Quantities.

State Regulations

Component Analysis

The following components appear on one or more of the following state hazardous substances list.

California Proposition 65:

This material does not contain any chemicals that are known to the State of California to cause cancer, birth defects or other reproductive harm at concentrations that trigger the warning requirements of California Proposition 65.

National Chemical Inventories:

All components are either listed on the US TSCA Inventory, or are not regulated under TSCA.

U.S. Export control classification Number: EAR99.

* * * Section 16 – OTHER INFORMATION * * *

NFPA® Hazard Rating

	Health Fire Reactivit	0	
HMIS® Hazard Rating	Fire	0	Slight Minimal Minimal

Material Name: Produced Water

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 28, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Material Name: Natural Gas Condensate

US GHS

SYNONYMS: Drips; Condensate; Field Condensate; Gas Well Condensate; High Pressure Inlet Liquids; Lease Condensate; Natural Gas Liquids; Pipeline Liquids

* * * Section 1 – PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAM		EMERGENCY PHONE: AFTER HOURS:	(800) 878-1373 (800) 878-1373
ADDRESS:	Antero Resources 1615 Wynkoop Street Denver, Colorado 80202	CHEMTREC PHONE:	(800) 424-9300

* * * Section 2 – HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Liquids – Category 2. Acute Toxicity Inhalation – Category 3 Germ Cell Mutagenicity – Category 1B Carcinogenicity – Category 1A Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 3 Specific Target Organ Systemic Toxicity (STOT) – Repeat Exposure Category 1 Aspiration Toxicity – Category 1 Toxic to the Aquatic Environment Acute – Category 3

GHS LABEL ELEMENTS

Signal Word Danger

Material Name: Natural Gas Condensate

US GHS

Hazard Statements

Highly flammable liquid and vapor.
Toxic if inhaled.
May cause genetic defects.
May cause cancer.
May cause respiratory irritation.
May cause drowsiness or dizziness.
May cause damage to organs (liver, kidneys, blood, nervous system, and skin) through prolonged or repeated exposure.
May be fatal if swallowed and enters airways.
Harmful to aquatic life.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking. Keep container tightly closed.

Ground/bond container and receiving equipment.

Use explosion-proof electrical/ventilating/lighting equipment.

Use only non-sparking tools.

Take precautionary measures against static discharge.

Wear protective gloves/protective clothing/eye protection/face protection.

Do not breathe gas/mist/vapors/spray.

Do not handle until all safety precautions have been read and understood. Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Use only outdoors or in a well-ventilated area.

Avoid release to the environment.

Response

If on SKIN (or hair): Wash with plenty of soap and water. Remove / Take off all contaminated clothing immediately. Rinse skin with water/shower.

If INHALED: Remove victim to fresh air and keep comfortable for breathing. Call a poison center/doctor if the victim feels unwell.

If SWALLOWED: Immediately call a poison center or doctor / physician. Do not Induce vomiting.

If exposed or concerned: Get medical advice/attention.

In case of fire: Use water spray, fog or fire-fighting foam.

Storage

Store in a well-ventilated place. Keep cool. Store in a secure area.

Material Name: Natural Gas Condensate

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

CAS #	Component	Percent
111-65-9	Octanes	25 - 95
142-82-5	Heptanes	25 - 95
110-54-3	Hexanes as n-Hexane	25 - 95
109-66-0	Pentanes as n-Pentane	5 - 70
106-97-8	N-butane	0 - 45
74-98-6	Propane	0 - 15
78-84-0	Ethane	0 - 5
71-43-2	Benzene	< 1
108-88-3	Toluene	< 1
1330-20-7	m-,o-,p-Xylene	< 1

Because natural gas condensate is a natural product, composition can vary greatly.

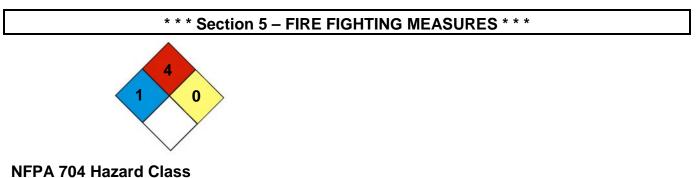
* * * Section 4 – FIRST AID MEASURES * * *

First Aid: Eyes

Flush eyes with clean running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or waterless hand cleanser. Obtain medical attention if irritation or redness develops. Wash contaminated clothing before reuse.


First Aid: Ingestion (swallowing)

DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean the victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated.

Material Name: Natural Gas Condensate

First Aid: Inhalation (breathing)

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

Health: 1 Flammability: 4 Instability: 0 (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Extremely flammable. Vapors may be ignited rapidly when exposed to heat, spark, open flame, or other source of ignition (e.g., static electricity, pilot lights, mechanical / electrical equipment, and electronic devices such as cell phones, computers, calculators, and pagers which have not been certified as intrinsically safe). Flammable vapors can burn in the open or explode in confined spaces. Vapors are heavier than air, and may travel distances to an ignition source and flash back. Runoff to sewer systems may cause fire or explosion.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, firefighting foam, water spray, carbon dioxide (CO_2), or other gaseous extinguishing agents. Use caution when applying CO2 in confined spaces.

LARGE FIRES: Water spray, fog or fire-fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

Unsuitable Extinguishing Media

None

Material Name: Natural Gas Condensate

US GHS

Fire Fighting Equipment / Instructions

Small fires in the beginning stage may typically be extinguished using handheld portable fire extinguishers and other firefighting equipment. Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied firefighting foam.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full face piece and full protective clothing.

* * * Section 6 – ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Contain and stop the source of the spill, if safe to do so.

Materials and Methods for Clean-Up

Notify relevant authorities in accordance with all applicable regulations. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal. If spilled on water remove with appropriate methods (e.g. skimming, booms or absorbents). In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations.

Recommended measures are based on the most likely spillage scenarios for this material; however local conditions and regulations may influence or limit the choice of appropriate actions to be taken.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8). Extremely flammable. Spillages of liquid product will create a fire hazard and may form an explosive atmosphere. Keep all sources of

Page 5 of 17

Material Name: Natural Gas Condensate

ignition and hot metal surfaces away from spill/release if safe to do so.

The use of explosion-proof electrical equipment is recommended. Stay upwind and away from spill/release. Avoid direct contact with material. For large spillages, notify persons downwind of the spill/release, isolate immediate hazard area and keep unauthorized personnel out. Wear appropriate protective equipment, including respiratory protection, as conditions warrant (see Section 8). See Sections 2 and 7 for additional information on hazards and precautionary measures.

Environmental Precautions

Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of firefighting foam may be useful in certain situations to reduce vapors. If spill occurs on water notify appropriate authorities and advise shipping of any hazard. Spills into or upon navigable waters, the contiguous zone, or adjoining shorelines that cause a sheen or discoloration on the surface of the water, may require notification of the National Response Center (phone number 800-424-8802).

Prevention of Secondary Hazards

None

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use non-sparking tools. Use only outdoors or in well ventilated areas. Wear protective gloves / clothing and eye / face protection. Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment (see section 8).

Storage Procedures

Store only in approved containers. Bond and ground containers. Keep away from flame, sparks, excessive temperatures and open flames. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks."

Material Name: Natural Gas Condensate

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

* * * Section 8 – EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Octanes (111-65-9)

ACGIH: 300 ppm TWA (listed under Octane, all isomers)

Heptanes (142-82-5)

ACGIH: 400 ppm TWA (listed under n-Heptane)

n-Hexane (110-54-3)

ACGIH: 20 ppm TWA (listed under n-Hexane)

n-Pentane (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

n-Butane (106-97-8)

ACGIH: 600 ppm TWA (listed under n-Butane)

Propane (74-98-6)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases C1-C4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases C1-C4)

Benzene (71-43-2)

ACGIH: 0.5 ppm (TWA); NIOSH: 0.1 ppm (TWA); OSHA 1 ppm (TWA)

Toluene (108-88-3)

ACGIH: 20 ppm TWA (listed under Toluene)

m-, o-, p-Xylene (1330-20-7)

ACGIH: 100 ppm TWA (listed under Xylene o, m & p isomers)

Material Name: Natural Gas Condensate

Engineering Measures

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH-approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere (oxygen content less than 19.5 percent). A respiratory program that meets or is equivalent to OSHA 29 CFR 1910.134 and ANSI Z88.2 should be followed whenever workplace conditions warrant the use of a respirator.

If benzene concentrations equal or exceed applicable exposure limits, OSHA requirements for personal protective equipment, exposure monitoring, and training may apply (29 CFR 1910.1028 – Benzene).

CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Gloves constructed of nitrile or neoprene are recommended.

Personal Protective Equipment: Eyes

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying. Eye protection that meets or exceeds ANSI Z.87.1 is recommended. Depending on conditions of use, a face shield may be necessary.

Personal Protective Equipment: Skin and Body

Chemical protective clothing such as of E.I. DuPont TyChem®, Saranex® or equivalent recommended based on degree of exposure. Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

Hygiene Measures

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use gasoline or solvents (naphtha, kerosene, etc.) for washing this product from

Material Name: Natural Gas Condensate

* * * Section 9 – PHYSICAL AND CHEMICAL PROPERTIES * * *

Appearance: Physical State: Vapor Pressure:	Colorless to straw yellow Liquid 110 – 200 psia (Reid VP) @ 100°F/37.8°C	Odor: pH: Vapor Density (air = 1):	Aromatic, Gasoline; ND > 1
Boiling Point:	Approx. 85 - 437°F (39 – 200°C)	Melting Point:	ND
Solubility (H2O):	Insoluble to slightly soluble	Specific Gravity:	AP 0.62-0.76 (varies)
Evaporation Rate:	High	VOC:	ND
Octanol / H2O Coeff.:	ND	Flash Point:	-40°F -40°C
Flash Point Method:	Tag Closed Cup (TCC)		
Lower Flammability Limit: (LFL):	ND (NFPA Gasoline 1.4)	Upper Flammability Limit: (UFL):	ND (NFPA Gasoline 7.6)
Auto Ignition:	AP 480°F (250°C)	Burning Rate:	ND

* * * Section 10 - CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from ignition sources and high temperatures.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Material Name: Natural Gas Condensate

US GHS

*** Section 11 – TOXICOLOGICAL INFORMATION ***

Acute Toxicity

- A: General Product Information Harmful if swallowed.
- B. Component Analysis LD50/LC50 Octanes (111-65-9) Inhalation LC50 rat = 118,000 mg/m3 / 4H

Heptanes (142-82-5) Inhalation LC50 rat = 103,000 mg/m3 / 4H

Hexanes as n-Hexane (110-53-3) Inhalation LC50 rat = 48,000 ppm / 4H

Pentanes as n-Pentane (109-66-0)

Inhalation LC50 rat = 364,000 mg/m3 / 4H

Butanes as n-Butane (106-97-8)

Inhalation LC50 rat 658,000 mg/l / 4H

Propane (74-98-6) Inhalation LC50 Rat > 800,000 ppm / 0.25H

Ethane (74-84-0) Inhalation LC50 Rat 658,000 mg/l / 4H

Benzene (71-43-2) Inhalation LC50 Rat 44,700 mg/m3 /

Toluene (108-88-3) Inhalation LD50 Rat 12/5 mg/l / 4H

m-, o-, p-Xylene (1330-20-7) Inhalation LC50 Rat 5000 ppm / 4H

Potential Health Effects: Skin Corrosion Property / Stimulativeness

May cause skin irritation with prolonged or repeated contact. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are exposed repeatedly.

Material Name: Natural Gas Condensate

Potential Health Effects: Eye Critical Damage / Stimulativeness

Contact with eyes may cause moderate irritation.

Potential Health Effects: Ingestion (swallowing)

Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and diarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

Potential Health Effects: Inhalation (breathing)

Excessive exposure may cause irritations to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death.

Respiratory Organs Sensitization / Skin Sensitization

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

May cause genetic defects. Some crude oils and crude oil fractions have been positive in mutagenicity studies.

Carcinogenicity

A: General Product Information

May cause cancer.

This product contains benzene, although at very low concentrations. Human health studies indicate that prolonged and/or repeated overexposure to benzene may cause damage to the blood-forming system (particularly bone marrow), and serious blood disorders such as aplastic anemia and leukemia. Benzene is listed as a human carcinogen by the NTP, IARC, OSHA and ACGIH.

Exposure to light hydrocarbons in the same boiling range as this product have been associated in animal studies with effects to the central nervous system, peripheral nervous system, liver, and kidneys. The significance of these animal models to predict similar human response is uncertain. Observing good work practices and personal hygiene procedures (Sections 7 and 8) can minimize potential risks to humans.

B: Component Carcinogenicity

Benzene (71-43-2)

ACGIH:	A1 - Confirmed Human Carcinogen
OSHA:	5 ppm STEL (Cancer hazard, Flammable, See 29 CFR 1910.1028,
	15 min); 0.5 ppm Action Level; 1 ppm TWA
NIOSH:	potential occupational carcinogen
NTP:	Known Human Carcinogen (Select Carcinogen)
• · -	

Page 11 of 17

Material Name: Natural Gas Condensate

US GHS

IARC: Monograph 100F [in preparation]; Supplement 7 [1987]; Monograph 29 [1982] (Group 1 (carcinogenic to humans))

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product is not reported to have any specific target organ general toxicity single exposure effects.

Specified Target Organ General Toxicity: Repeated Exposure

May cause damage to organs (liver, kidneys, blood, nervous system and skin) through prolonged or repeated exposure.

Aspiration Respiratory Organs Hazard

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity Benzene (71-43-2)

Test and Species Conditions 96 Hr LC50 Pimephales promelas 10.7-14.7 mg/L [flow-through] 96 Hr LC50 Oncorhynchus mykiss 5.3 mg/L [flow-through] 96 Hr LC50 Lepomis macrochirus 22.49 mg/L [static] 96 Hr LC50 Poecilia reticulata 28.6 mg/L [static] 22330-41160 µg/L [static] 96 Hr LC50 Pimephales promelas 70000-142000 µg/L [static] 96 Hr LC50 Lepomis macrochirus 72 Hr EC50 Pseudokirchneriella subcapitata 29 mg/L 8.76 - 15.6 mg/L [static] 48 Hr EC50 Daphnia magna 48 Hr EC50 Daphnia magna 10 mg/L

Conditions

119 mg/L [static]

82 mg/L [static]

56 mg/L

170 mg/L

Material Name: Natural Gas Condensate

Natural Gas condensates (68919-39-1)

Test and Species

96 Hr LC50 Alburnus alburnus
96 Hr LC50 Cyprinodon variegatus
72 Hr EC50 Pseudokirchneriella subcapitata
24 Hr EC50 Daphnia magna

Persistence / Degradability

No information available

Bioaccumulation

No information available

Mobility in Soil

No information available

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Recover or recycle if possible. It is the responsibility of the generator to determine the toxicity and physical properties of the material generated so as to properly classify the waste and ensure disposal methods comply with applicable regulations. This material, if discarded should be fully characterized for ignitability (D001), reactivity (D003) and benzene (D018) prior to disposal (40 CFR261). Use which results in chemical or physical change or contamination may subject it to regulation as a hazardous waste. Along with properly characterizing all waste materials, consult state and local regulations regarding the proper disposal of this material. Do not dispose of by draining onto the ground. This will result in soil and groundwater contamination. Waste arising from spillage or tank cleaning should be disposed of in accordance with applicable regulations.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate could be considered a RCRA hazardous waste and must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a qualified drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

US GHS

Material Name: Natural Gas Condensate

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Petroleum Products, n.o.s. (condensate)

UN #: 1268 Hazard Class: 3

Additional Info.: Dependent on the product's properties, the shipper may also elect to classify as Gasoline UN1203 or Petroleum Crude Oil UN1267 - reference 49 CFR 172.101 for further description (e.g., packing group determination).

Placard:

* * * Section 15 - REGULATORY INFORMATION * * *

Regulatory Information

Component Analysis

This material contains one or more of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65) and/or CERCLA (40 CFR 302.4).

Benzene (71-43-2)

SARA 313: 0.1% de minimis concentration

CERCLA: 10 lb final RQ (received an adjusted RQ of 10 lbs based on potential carcinogenicity in an August 14, 1989 final rule); 4.54 kg final RQ (received an adjusted RQ of 10 lbs based on potential carcinogenicity in an August 14, 1989 final rule)

SARA Section 311/312 – Hazard Classes

Acute Health	Chronic Health	<u>Fire</u>	Sudden Release of Pressure	Reactive
Х	Х	Х		

SARA SECTION 313 – SUPPLIER NOTIFICATION

This product contains the following toxic chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372:

Material Name: Natural Gas Condensate

US GHS

INGREDIENT NAME (CAS NUMBER)

CONCENTRATION PERCENT BY WEIGHT

Benzene (71-43-2) <0.1 to 2

Canadian Regulatory Information

DSL/NDSL Inventory	This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the SDS contains all the information required by the Regulations.
Workplace Hazardous Materials Information System	 B2 - Flammable Liquid D1A – Material Causing Immediate and Serious Toxic Effects - Very Toxic Material D2A: Material Causing Other Toxic Effects Very Toxic D2B - Material Causing Other Toxic Effects - Toxic Material

European Union Regulatory Information

Labeling	Product is dangerous as defined by the European Union Dangerous Substances / Preparations Directives. Contains: Low Boiling Point Naphtha
Symbol	 F+ Extremely Flammable T Toxic N Dangerous for the Environment
Risk Phrases	R12-45-38-65-67-51/53 Extremely flammable. May cause cancer. Irritating to skin. Harmful: may cause lung damage if swallowed. Vapors may cause drowsiness and dizziness. Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
Safety Phrases	S16-53-45-2-23-24-29-43-62 Keep away from sources of ignition – No smoking. Avoid exposure – obtain special instructions before use. In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible). Keep out of reach of children. Do not breathe vapor. Avoid contact with skin. Do not empty into drains. In case of fire use foam/dry powder/CO2. If swallowed, do not induce vomiting: seek medical advice immediately and show this container or label.

Material Name: Natural Gas Condensate

State Regulations

Component Analysis – State

The following components appear on one or more of the following state hazardous substances lists

Component	CAS	СА	MA	MN	NJ	ΡΑ	RI
Octanes	111-65-9	Yes	No	Yes	Yes	Yes	Yes
Heptanes	142-82-5	Yes	No	Yes	Yes	Yes	Yes
n-Hexane	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
n-Pentane	109-66-0	Yes	No	Yes	Yes	Yes	Yes
n-Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Benzene	71-43-2	Yes	Yes	Yes	Yes	Yes	Yes
Toluene	108-88-3	Yes	Yes	Yes	Yes	Yes	Yes
m-, o-, p-Xylene	1330-20-7	Yes	Yes	Yes	Yes	Yes	Yes

The following statement(s) are provided under the California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65):

WARNING! This product contains a chemical known to the state of California to cause cancer.

WARNING! This product contains a chemical known to the state of California to cause Reproductive / developmental effects.

Component Analysis – WHMIS IDL

The following components are identified under the Canadian Hazardous Products Act

Ingredient Disclosure List:

Component	CAS #	Minimum Concentration
Benzene	71-43-2	0.1%

* * * Section 16 – OTHER INFORMATION * * *					
NFPA® Hazard Rating	Health 1 Fire 4 Reactivity 0				
HMIS® Hazard Rating	Health 1 Slight Fire 4 Severe Physical 0 Minimal * Chronic				

Material Name: Natural Gas Condensate

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 29, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Material Name: Wet Field Natural Gas

SYNONYMS: CNG, Natural Gas, Methane.

* * * Section 1 – PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME:		Wet Field Natural Gas	EMERGENCY PHONE:	(800) 878-1373	
PRODUCT CODES:		CAS Reg. No. 68410-63-9	AFTER HOURS:	(800) 878-1373	
PRODUCER: ADDRESS:	16 ⁻	tero Resources I5 Wynkoop Street nver, Colorado 80202	CHEMTREC PHONE:	(800) 424-9300	

* * * Section 2 – HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Gas – Category 1.

Gases Under Pressure – Gas.

Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 2.

GHS LABEL ELEMENTS

Symbol(s)

Signal Word

Danger

Hazard Statements

Extremely flammable gas.

Contains gas under pressure, may explode if heated.

May cause damage to central nervous and respiratory systems.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Do not breathe fume/gas/mist/vapors/spray.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Material Name: Wet Field Natural Gas

Response

Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.

If exposed to gas, or concerned about possible exposure: Call a POISON CENTER or doctor/physician.

Storage

Protect from sunlight. Store in a well-ventilated place. Store in a secure area.

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

* * * Section 3 – COMPOSITION	INFORMATION ON INGREDIENTS * * *

CAS #	Component	Percent
74-82-8	Methane	72 - 97
78-84-0	Ethane	2.2 - 14
74-98-6	Propane	0.0 - 8.0
106-97-8	Butanes	0.0 - 3.5
109-66-0	Pentanes	0.0 - 1.4
110-54-3	Hexanes	0.0 - 0.5
7727-37-9	Nitrogen	< 0.4
124-38-9	Carbon Dioxide	< 0.2
7782-44-7	Oxygen	< 0.04

Because natural gas is a natural product, composition can vary greatly.

* * * Section 4 – FIRST AID MEASURES * * *

First Aid: Eyes

In case of freeze burn, cover eyes to protect from light. Flush eyes with running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. In case of blistering, frostbite or freeze burns, seek immediate medical attention.

Material Name: Wet Field Natural Gas

First Aid: Ingestion

Risk of ingestion is extremely low. However, if oral exposure occurs, seek immediate medical assistance.

First Aid: Inhalation

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* * * Section 5 – FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: **1** Flammability: **4** Instability: **0** (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Forms a flammable mixture with air. If released, the resulting vapors will disperse with the prevailing wind. If a source of ignition is present where the vapor exists at a 5 - 15% concentration in air, the vapor will burn along the flame front toward the source of the fuel.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

Any extinguisher suitable for Class B fires, dry chemical, firefighting foam, CO2, and other gaseous agents. However, fire should not be extinguished unless flow of gas can be immediately stopped.

Unsuitable Extinguishing Media

None.

Fire Fighting Equipment / Instructions

Gas fires should not be extinguished unless flow of gas can be immediately stopped. Shut off gas source and allow gas to burn out. If spill or leak has not ignited, determine

Material Name: Wet Field Natural Gas

if water spray may assist in dispersing gas or vapor to protect personnel attempting to stop leak. Use water to cool equipment, surfaces and piping exposed to fire and excessive heat. For large fire, the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Isolate area, particularly around piping. Let the fire burn unless leak can be stopped. Concentrate fire-fighting efforts on objects / materials ignited by the initial fire. Withdraw immediately in the event of a rising sound from a venting safety device.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH-approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

* * * Section 6 – ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Stop the source of the release, if safe to do so.

Materials and Methods for Clean-Up

Consider the use of water spray to disperse gas vapors. Do not use water spray to direct gas vapors toward sewer or drainage systems. Isolate the area until gas has dispersed. Ventilate and gas test area before entering.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Cooling effect of expanding gas from leak may present frostbite / freeze burn hazard. Wear flame retardant (FR) clothing around un-ignited leak. Wear fire protective clothing around an active fire.

Environmental Precautions

Do not flush gas vapors toward sewer or drainage systems.

Prevention of Secondary Hazards

None.

Material Name: Wet Field Natural Gas

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use only in well ventilated areas.

Storage Procedures

Natural gas will be contained in the pipeline. Keep away from flame, sparks, excessive temperatures and open flames. Empty pipeline segments may contain explosive residues from natural gas liquids. Do not cut, heat, weld or expose containers to sources of ignition sections of pipeline unless the sections have been purged of natural gas residues.

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

*** Section 8 – EXPOSURE CONTROLS / PERSONAL PROTECTION ***

Component Exposure Limits

Methane (74-82-8)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Propane (74-98-6)

ACGIH: 2500 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Butane (106-97-8)

ACGIH: 800 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Pentanes (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

Hexanes (110-54-3)

ACGIH: 50 ppm TWA (listed under n-Hexane)

Material Name: Wet Field Natural Gas

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

ACGIH: 5000 ppm TWA (listed under Carbon Dioxide)

Oxygen (7782-44-7)

N/A – Necessary for life

Engineering Measures

Use adequate ventilation to keep gas and vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere. CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Use cold-impervious, insulating flame-retardant (FR) gloves where contact with pressurized gas may occur.

Personal Protective Equipment: Eyes

Where there is a possibility of pressurized gas contact, wear splash-proof safety goggles and faceshield.

Personal Protective Equipment: Skin and Body

Where contact with pressurized gas may occur, wear flame-retardant (FR) and a faceshield.

Appearance:	Colorless	Odor:	Odorless to slight petroleum odor
Physical State:	Gas	pH:	ND
Vapor Pressure:	40 atm @ -187°F (-86°C)	Vapor Density:	0.6
Boiling Point:	-259°F (-162°C)	Melting Point:	ND
Solubility (H2O):	3.5%	Specific Gravity:	0.4 @ -263°F (-164°C)

*** Section 9 – PHYSICAL AND CHEMICAL PROPERTIES ***

Material Name: Wet Field Natural Gas

Evaporation Rate: ND Octanol / H2O Coeff.: ND Flash Point Method: N/A Lower Flammability Limit: 3.8 – 6.5 (LFL): Auto Ignition: 900-1170°F (482-632°C) VOC: ND Flash Point: Flammable Gas

Upper Flammability Limit: 13-17 (UFL): Burning Rate: ND

* * * Section 10 – CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from strong oxidizers, ignition sources and heat.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

* * * Section 11 - TOXICOLOGICAL INFORMATION * * *

Acute Toxicity

A: General Product Information

Methane and ethane, the main components of natural gas, are considered practically inert in terms of physiological effects. At high concentrations these materials act as simple asphyxiants and may cause death due to lack of oxygen.

B. Component Analysis – LD50/LC50

Methane (74-82-8)

Inhalation LC50 Mouse 326 g/m3 2h

Ethane (74-84-0)

Inhalation LC50 Rat 658 mg/l 4h

Propane (74-98-6)

Inhalation LC50 Rat 658 mg/l 4h

Material Name: Wet Field Natural Gas

Butanes (106-97-8) Inhalation LC50 Rat 658 g/m3 4h

Pentanes (109-66-0) Inhalation LD50 Rat 364 g/m3 4h

Hexanes (110-54-3) Inhalation LC50 Rat > 20 mg/l 4h

Nitrogen (7727-37-9) Simple Asphyxiant

Carbon Dioxide (124-38-9) Inhalation LC50 Human 100,000 ppm 1minute

Oxygen (7782-44-7) N/A – Necessary for life

Potential Health Effects: Skin Corrosion Property / Stimulativeness

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

This product is not reported to have any mutagenic effects.

Carcinogenicity

A: General Product Information

This product is not reported to have any carcinogenic effects.

B: Component Carcinogenicity

None of this product's components are listed by ACGIH, IARC, OSHA, NIOSH, or NTP.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product may cause damage to the heart.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ repeat effects.

Aspiration Respiratory Organs Hazard

This product is not reported to have any aspiration hazard effects.

Page 8 of 11

Material Name: Wet Field Natural Gas

*** Section 12 - ECOLOGICAL INFORMATION ***

Ecotoxicity

A: General Product Information

Keep gas and vapors out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity

No ecotoxicity data are available for this product's components.

Persistance / Degradability

No information available.

Bioaccumulation

No information available.

Mobility in Soil

No information available.

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Dispose of contents / container in accordance with local / regional / national / international regulations.

* * * Section 14 – TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Natural Gas, Compressed UN #: 1971 Hazard Class: 2.1

Placard:

Material Name: Wet Field Natural Gas

* * * Section 15 – REGULATORY INFORMATION * * *

Regulatory Information Component Analysis

None of this products components are listed under SARA Section 302 (40 CFR 355 Appendix A.

n-hexane is listed under SARA Section 313 (40 CFR 372.65). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

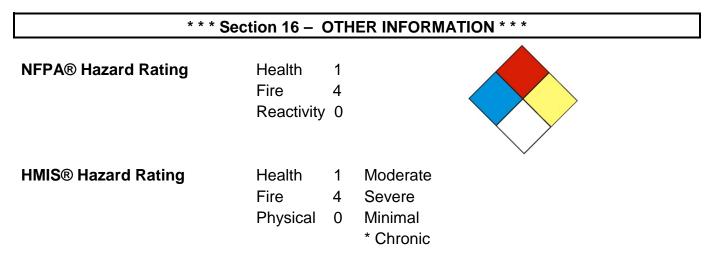
n-hexane is listed under CERCLA (40 CFR 302.4). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

SARA Section 311/312 – Hazard Classes

Acute Health	Chronic Health	<u>Fire</u>	Sudden Release of Pressure	Reactive
		Х	Х	

SARA Section 313 – Supplier Notification

This product contains one chemical (n-Hexane) that is subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-to-know act (EPCRA) of 1986 and of 40 CFR 372. However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.


State Regulations

Component Analysis – State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	РА	RI
Methane	74-82-8	No	No	Yes	Yes	Yes	No
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Pentanes	109-66-0	Yes	No	Yes	Yes	Yes	Yes
Hexanes	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
Nitrogen	7727-37-9	No	No	No	No	No	No
Carbon Dioxide	124-38-9	Yes	No	Yes	Yes	Yes	Yes
Oxygen	7782-44-7	No	No	No	No	No	No

Material Name: Wet Field Natural Gas

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: February 7, 2014

Date of Last Revision: March 4,, 2014

Material Name: Dry Field Natural Gas

US GHS

SYNONYMS: CNG, Natural Gas, Methane.

* * * Section 1 – PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAM		Dry Field Natural Gas CAS Reg. No. 68410-63-9	EMERGENCY PHONE: AFTER HOURS:	(800) 878-1373 (800) 878-1373
PRODUCER: ADDRESS:	16′	tero Resources I5 Wynkoop Street nver, Colorado 80202	CHEMTREC PHONE:	(800) 424-9300

* * * Section 2 – HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Gas – Category 1.

Gases Under Pressure – Gas.

Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 2.

GHS LABEL ELEMENTS

Symbol(s)

Signal Word

Danger

Hazard Statements

Extremely flammable gas.

Contains gas under pressure, may explode if heated.

May cause damage to central nervous and respiratory systems.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Do not breathe fume/gas/mist/vapors/spray.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Material Name: Dry Field Natural Gas

Response

Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.

If exposed to gas, or concerned about possible exposure: Call a POISON CENTER or doctor/physician.

Storage

Protect from sunlight. Store in a well-ventilated place. Store in a secure area.

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

* * * Section 3 – COMPOSITION / INFORMATION ON INGREDIENTS * * *
--

CAS #	Component	Percent
74-82-8	Methane	95.01
78-84-0	Ethane	3.99
74-98-6	Propane	0.32
106-97-8	Butanes	0.07
109-66-0	Pentanes	0.02
110-54-3	Hexanes	0.01
7727-37-9	Nitrogen	0.35
124-38-9	Carbon Dioxide	0.19
7782-44-7	Oxygen	0.03

Because natural gas is a natural product, composition can vary greatly.

* * * Section 4 – FIRST AID MEASURES * * *

First Aid: Eyes

In case of freeze burn, cover eyes to protect from light. Flush eyes with running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. In case of blistering, frostbite or freeze burns, seek immediate medical attention.

Material Name: Dry Field Natural Gas

First Aid: Ingestion

Risk of ingestion is extremely low. However, if oral exposure occurs, seek immediate medical assistance.

First Aid: Inhalation

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* * * Section 5 – FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: **1** Flammability: **4** Instability: **0** (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Forms a flammable mixture with air. If released, the resulting vapors will disperse with the prevailing wind. If a source of ignition is present where the vapor exists at a 5 - 15% concentration in air, the vapor will burn along the flame front toward the source of the fuel.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

Any extinguisher suitable for Class B fires, dry chemical, fire fighting foam, CO2, and other gaseous agents. However, fire should not be extinguished unless flow of gas can be immediately stopped.

Unsuitable Extinguishing Media

None.

Fire Fighting Equipment / Instructions

Gas fires should not be extinguished unless flow of gas can be immediately stopped. Shut off gas source and allow gas to burn out. If spill or leak has not ignited, determine

Material Name: Dry Field Natural Gas

if water spray may assist in dispersing gas or vapor to protect personnel attempting to stop leak. Use water to cool equipment, surfaces and piping exposed to fire and excessive heat. For large fire, the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Isolate area, particularly around piping. Let the fire burn unless leak can be stopped. Concentrate fire-fighting efforts on objects / materials ignited by the initial fire. Withdraw immediately in the event of a rising sound from a venting safety device.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH-approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

* * * Section 6 – ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Stop the source of the release, if safe to do so.

Materials and Methods for Clean-Up

Consider the use of water spray to disperse gas vapors. Do not use water spray to direct gas vapors toward sewer or drainage systems. Isolate the area until gas has dispersed. Ventilate and gas test area before entering.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Cooling effect of expanding gas from leak may present frostbite / freeze burn hazard. Wear flame retardant (FR) clothing around un-ignited leak. Wear fire protective clothing around an active fire.

Environmental Precautions

Do not flush gas vapors toward sewer or drainage systems.

Prevention of Secondary Hazards

None.

Material Name: Dry Field Natural Gas

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use only in well ventilated areas.

Storage Procedures

Natural gas will be contained in the pipeline. Keep away from flame, sparks, excessive temperatures and open flames. Empty pipeline segments may contain explosive residues from natural gas liquids. Do not cut, heat, weld or expose containers to sources of ignition sections of pipeline unless the sections have been purged of natural gas residues.

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

* * * Section 8 – EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Methane (74-82-8)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Propane (74-98-6)

ACGIH: 2500 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Butane (106-97-8)

ACGIH: 800 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Pentanes (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

Hexanes (110-54-3)

ACGIH: 50 ppm TWA (listed under n-Hexane)

Material Name: Dry Field Natural Gas

US GHS

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

ACGIH: 5000 ppm TWA (listed under Carbon Dioxide)

Oxygen (7782-44-7)

N/A – Necessary for life

Engineering Measures

Use adequate ventilation to keep gas and vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere. CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Use cold-impervious, insulating flame-retardant (FR) gloves where contact with pressurized gas may occur.

Personal Protective Equipment: Eyes

Where there is a possibility of pressurized gas contact, wear splash-proof safety goggles and faceshield.

Personal Protective Equipment: Skin and Body

Where contact with pressurized gas may occur, wear flame-retardant (FR) and a faceshield.

Appearance:	Colorless	Odor:	Odorless to slight petroleum odor
Physical State:	Gas	pH:	ND
Vapor Pressure:	40 atm @ -187°F (-86°C)	Vapor Density:	0.6
Boiling Point:	-259°F (-162°C)	Melting Point:	ND
Solubility (H2O):	3.5%	Specific Gravity:	0.4 @ -263°F (-164°C)

* * * Section 9 – PHYSICAL AND CHEMICAL PROPERTIES * * *

Material Name: Dry Field Natural Gas

Evaporation Rate: ND Octanol / H2O Coeff.: ND Flash Point Method: N/A Lower Flammability Limit: 3.8 – 6.5 (LFL): Auto Ignition: 900-1170°F (482-632°C) VOC: ND Flash Point: Flammable Gas

Upper Flammability Limit: 13-17 (UFL): Burning Rate: ND

* * * Section 10 – CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from strong oxidizers, ignition sources and heat.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

*** Section 11 – TOXICOLOGICAL INFORMATION ***

Acute Toxicity

A: General Product Information

Methane and ethane, the main components of natural gas, are considered practically inert in terms of physiological effects. At high concentrations these materials act as simple asphyxiants and may cause death due to lack of oxygen.

B. Component Analysis – LD50/LC50

Methane (74-82-8)

Inhalation LC50 Mouse 326 g/m3 2h

Ethane (74-84-0)

Inhalation LC50 Rat 658 mg/l 4h

Propane (74-98-6)

Inhalation LC50 Rat 658 mg/l 4h

Material Name: Dry Field Natural Gas

Butanes (106-97-8) Inhalation LC50 Rat 658 g/m3 4h

Pentanes (109-66-0) Inhalation LD50 Rat 364 g/m3 4h

Hexanes (110-54-3) Inhalation LC50 Rat > 20 mg/l 4h

Nitrogen (7727-37-9) Simple Asphyxiant

Carbon Dioxide (124-38-9) Inhalation LC50 Human 100,000 ppm 1minute

Oxygen (7782-44-7) N/A – Necessary for life

Potential Health Effects: Skin Corrosion Property / Stimulativeness

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

This product is not reported to have any mutagenic effects.

Carcinogenicity

A: General Product Information

This product is not reported to have any carcinogenic effects.

B: Component Carcinogenicity

None of this product's components are listed by ACGIH, IARC, OSHA, NIOSH, or NTP.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product may cause damage to the heart.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ repeat effects.

Aspiration Respiratory Organs Hazard

This product is not reported to have any aspiration hazard effects.

Page 8 of 11

Material Name: Dry Field Natural Gas

*** Section 12 - ECOLOGICAL INFORMATION ***

Ecotoxicity

A: General Product Information

Keep gas and vapors out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity

No ecotoxicity data are available for this product's components.

Persistance / Degradability

No information available.

Bioaccumulation

No information available.

Mobility in Soil

No information available.

*** Section 13 - DISPOSAL CONSIDERATIONS ***

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Dispose of contents / container in accordance with local / regional / national / international regulations.

* * * Section 14 – TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Natural Gas, Compressed UN #: 1971 Hazard Class: 2.1

Placard:

Material Name: Dry Field Natural Gas

*** Section 15 – REGULATORY INFORMATION ***

Regulatory Information Component Analysis

None of this products components are listed under SARA Section 302 (40 CFR 355 Appendix A.

n-hexane is listed under SARA Section 313 (40 CFR 372.65). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

n-hexane is listed under CERCLA (40 CFR 302.4). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

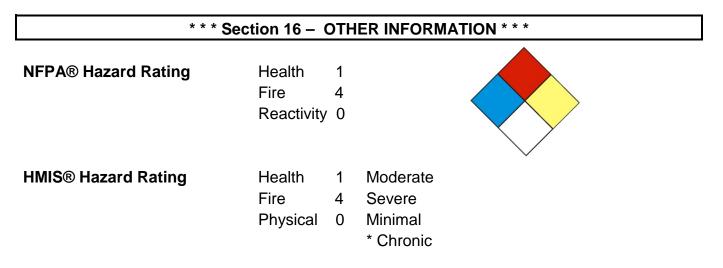
SARA Section 311/312 – Hazard Classes

Acute Health	Chronic Health	<u>Fire</u>	Sudden Release of Pressure	Reactive
		Х	Х	

SARA Section 313 – Supplier Notification

This product contains one chemical (n-Hexane) that is subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-to-know act (EPCRA) of 1986 and of 40 CFR 372. However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

State Regulations


Component Analysis – State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA	RI
Methane	74-82-8	No	No	Yes	Yes	Yes	No
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Pentanes	109-66-0	Yes	No	Yes	Yes	Yes	Yes
Hexanes	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
Nitrogen	7727-37-9	No	No	No	No	No	No
Carbon Dioxide	124-38-9	Yes	No	Yes	Yes	Yes	Yes
Oxygen	7782-44-7	No	No	No	No	No	No

Material Name: Dry Field Natural Gas

US GHS

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 30, 2014

Date of Last Revision: March 4, 2014

Attachment I. Emission Units Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
C-100	1E	Compressor Engine #1	2017	2,500 hp	New	OxCat (1C)
C-200	2E	Compressor Engine #2	2017	2,500 hp	New	OxCat (2C)
C-300	3E	Compressor Engine #3	2017	2,500 hp	New	OxCat (3C)
C-400	4E	Compressor Engine #4	2017	2,500 hp	New	OxCat (4C)
C-500	5E	Compressor Engine #5	2017	2,500 hp	New	OxCat (5C)
C-600	6E	Compressor Engine #6	2017	2,500 hp	New	OxCat (6C)
C-700	7E	Compressor Engine #7	2017	2,500 hp	New	OxCat (7C)
C-800	8E	Compressor Engine #8	2017	2,500 hp	New	OxCat (8C)
C-900	9E	Compressor Engine #9	2017	2,500 hp	New	OxCat (9C)
C-1000	10E	Compressor Engine #10	2017	2,500 hp	New	OxCat (10C)
C-1100	11E	Compressor Engine #11	2017	2,500 hp	New	OxCat (11C)
C-1200	12E	Compressor Engine #12	2017	2,500 hp	New	OxCat (12C)
GEN1	13E	Natural Gas Engine Generator	2017	649 hp	New	Certified Engine
DEHY1	14E	Dehydrator Still Vent #1	2017	150 MMscfd	New	FLARE1 (13C) or TO- 1 (16C)
DFLSH1	15E	Dehydrator Flash Tank #1	2017	150 MMscfd	New	DREB1 (16E) or TO- 1 (16C)
DREB1	16E	Dehydrator Reboiler #1	2017	1.5 mmbtu/hr	New	None
DEHY2	17E	Dehydrator Still Vent #2	2017	150 MMscfd	New	FLARE1 (13C) or TO- 2 (17C)
DFLSH2	18E	Dehydrator Flash Tank #2	2017	150 MMscfd	New	DREB2 (19E) or TO- 2 (17C)
DREB2	19E	Dehydrator Reboiler #2	2017	1.5 mmbtu/hr	New	None
DEHY3	20E	Dehydrator Still Vent #3	2017	150 MMscfd	New	FLARE1 (13C) or TO- 3 (18C)

DFLSH3	21E	Dehydrator Flash Tank #3	2017	150 MMscfd	New	DREB3 (22E) or TO- 3 (18C)
DREB3	22E	Dehydrator Reboiler #3	2017	1.5 mmbtu/hr	New	None
T01	23E	Condensate Tank #1	2017	400 barrel	New	VRU-100 & VRU-200 (14C & 15C)
T02	24E	Condensate Tank #2	2017	400 barrel	New	VRU-100 & VRU-200 (14C & 15C)
T03	25E	Condensate Tank #3	2017	400 barrel	New	VRU-100 & VRU-200 (14C & 15C)
T04	26E	Settling Tank	2017	500 barrel	New	VRU-100 & VRU-200 (14C & 15C)
T05	27E	Produced Water Tank #1	2017	400 barrel	New	VRU-100 & VRU-200 (14C & 15C)
T06	28E	Produced Water Tank #2	2017	400 barrel	New	VRU-100 & VRU-200 (14C & 15C)
T07	29E	Produced Water Tank #3	2017	400 barrel	New	VRU-100 & VRU-200 (14C & 15C)
FUEL1	30E	Fuel Conditioning Heater	2017	0.5 MMBtu/hr	New	None
		Oxidation Catalyst - Compressor #1	2017		New	1C
		Oxidation Catalyst - Compressor #2	2017		New	2C
		Oxidation Catalyst - Compressor #3	2017		New	3C
		Oxidation Catalyst - Compressor #4	2017		New	4C
		Oxidation Catalyst - Compressor #5	2017		New	5C
		Oxidation Catalyst - Compressor #6	2017		New	6C
		Oxidation Catalyst - Compressor #7	2017		New	7C
		Oxidation Catalyst - Compressor #8	2017		New	8C
		Oxidation Catalyst - Compressor #9	2017		New	9C
		Oxidation Catalyst - Compressor #10	2017		New	10C
		Oxidation Catalyst - Compressor #11	2017		New	11C
		Oxidation Catalyst - Compressor #12	2017		New	12C

FLARE1	31E	Flare Combustion Device	2017	4.8 MMBtu/hr	New	13C
VRU-100		Vapor Recovery Unit #1	2017	TBD	New	14C
VRU-200		Vapor Recovery Unit #2	2017	TBD	New	15C
TO-1	32E	Thermal Oxidizer #1	2017	6.0 MMBtu/hr	New	16C
TO-2	33E	Thermal Oxidizer #2	2017	6.0 MMBtu/hr	New	17C
TO-3	34E	Thermal Oxidizer #3	2017	6.0 MMBtu/hr	New	18C
LDOUT1	35E	Production Liquids Truck Loadout	2017	390 bbl/day	New	None
VENT1	36E	Venting Episodes	2017	Variable	New	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
 ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 ³ New, modification, removal
 ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Attachment J. Emission Point Data Summary Sheet

Attachment J EMISSION POINTS DATA SUMMARY SHEET

							Table	1: Emissions D	ata						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Po (Must	nted gh This int match on Units	Contro (Must Emission	ollution I Device match Units Table t Plan)	Vent T Emissic (chemical on	on Unit <i>processes</i>	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Pot Unco	kimum ential ntrolled ssions ⁴	Cont	n Potential trolled ssions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
1E	Upward Vertical Stack	C-100	Compre ssor Engine #1	1C	Oxidati on Catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	1.65 14.44 2.26 0.17 0.010 1.21 0.88 2811	7.24 63.25 9.90 0.75 0.044 5.32 3.86 12311	1.65 0.88 1.49 0.17 0.010 0.33 0.11 2811	7.24 3.86 6.52 0.75 0.044 1.45 0.48 12311	Gas/Vapor	EE	
2E	Upward Vertical Stack	C-200	Compre ssor Engine #2	2C	Oxidati on catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	1.65 14.44 2.26 0.17 0.010 1.21 0.88 2811	7.24 63.25 9.90 0.75 0.044 5.32 3.86 12311	1.65 0.88 1.49 0.17 0.010 0.33 0.11 2811	7.24 3.86 6.52 0.75 0.044 1.45 0.48 12311	Gas/Vapor	EE	
3E	Upward Vertical Stack	C-300	Compre ssor Engine #3	3C	Oxidati on catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	1.65 14.44 2.26 0.17 0.010 1.21 0.88 2811	7.24 63.25 9.90 0.75 0.044 5.32 3.86 12311	1.65 0.88 1.49 0.17 0.010 0.33 0.11 2811	7.24 3.86 6.52 0.75 0.044 1.45 0.48 12311	Gas/Vapor	EE	

II. 1	C 400	Comme	10		0	0.740	NO	1.65	7.04	1.65	7.04	C NI	TT	
	C-400	ssor	4C		С	8,760						Gas/Vapor	EE	
Stack		Engine #4												
		#4		5										
							•							
								2011	12511	2011	12311			
Upward	C-500		5C	Oxidati	С	8,760		1.65	7.24	1.65	7.24	Gas/Vapor	EE	
		Engine												
Stack		#5		catalyst										
							SO2	0.010	0.044	0.010	0.044			
							Total HAPs	1.21	5.32	0.33	1.45			
							Formaldehyde		3.86	0.11	0.48			
							CO2e	2811	12311	2811	12311			
Upward	C-600	Compre	6C	Oxidati	С	8.760	NOx	1.65	7.24	1.65	7.24	Gas/Vapor	EE	
Vertical		ssor		on	_	- ,	CO	14.44	63.25	0.88	3.86	1		
Stack		#6		catalyst			VOC	2.26	9.90	1.49	6.52			
							PM10	0.17	0.75	0.17	0.75			
							SO2	0.010	0.044	0.010	0.044			
							Total HAPs	1.21	5.32	0.33	1.45			
								0.88	3.86	0.11	0.48			
							CO2e	2811	12311	2811	12311			
Upward	C-700	Compre	7C	Oxidati	С	8,760	NOx	1.65	7.24	1.65	7.24	Gas/Vapor	EE	
Vertical		ssor		on	-	-,	CO	14.44	63.25	0.88	3.86	· · · T · · ·		
Stack		#7		catalyst			VOC	2.26	9.90	1.49				
							PM10	0.17	0.75	0.17				
							SO2	0.010			0.044			
							Formaldehyde		3.86	0.11	0.48			
	Upward Vertical Stack Upward Vertical Stack Upward Vertical	Vertical StackC-500Upward Vertical StackC-500Upward Vertical StackC-600Upward Vertical StackC-600Upward Vertical StackC-700	Vertical StackSsor Engine #4Upward Vertical StackC-500 Engine #5Compre ssor Engine #5Upward Vertical StackC-600 Engine #6Compre ssor Engine #6Upward Vertical StackC-600 Engine #6Compre ssor Engine #6Upward Vertical StackC-600 Engine Ssor Engine #6Compre ssor Engine #6	Vertical StackC-500Compre ssor Engine #45CUpward Vertical StackC-500Compre ssor Engine #55CUpward Vertical StackC-600Compre ssor ngine #66CUpward Vertical StackC-600Compre ssor ngine #66CUpward Vertical StackC-700Compre ssor Engine7C	Vertical StackC-500Compre ssor Engine #45COxidati on catalystUpward Vertical StackC-500Compre ssor Engine #55COxidati on catalystUpward Vertical StackC-600Compre ssor Engine #66COxidati on catalystUpward Vertical StackC-600Compre ssor mgine #66COxidati on catalystUpward Vertical StackC-600Compre ssor ngine #66COxidati on catalystUpward Vertical StackC-700Compre ssor Engine7COxidati on on catalyst	Vertical Stackssor Engine #4ICon catalystUpward Vertical StackC-500 C-500Compre ssor Engine #55C COxidati on catalystCUpward Vertical StackC-600 C-600Compre ssor ngine #66C COxidati on catalystCUpward Vertical StackC-600 C-600Compre ssor ngine #66C COxidati on catalystCUpward Vertical VerticalC-700 C-700Compre Ssor Engine Regine7C COxidati on catalystC	Vertical Stackssor Engine #4on catalyston catalystUpward Vertical StackC-500 Sor Engine #5Compre Sor Engine #5SC Oxidati on catalystOxidati on catalystC 8,760Upward Vertical StackC-600 Sor ngine #6Compre sor ngine #6Oxidati on catalystC S,760Upward Vertical StackC-600 Sor ngine #6Compre sor ngine mgineOxidati on catalystC S,760Upward VerticalC-700 Compre Sor ngine #67C Sor on on catalystC S,760	Vertical Stackssor Engine #4ssor catalyston catalystCO VOC PM10 SO2 Total HAPs Formaldehyde CO2eUpward Vertical StackC-500 Engine #5Compre ssor Engine #5SC SC on catalystOxidati on catalystC S,760NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2eUpward Vertical StackC-600 Engine #6Compre ssor engine #6SC SC Oxidati on catalystC S,760NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2eUpward Vertical StackC-600 Engine #6Compre sor engine #6Oxidati on catalystC S,760NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2eUpward Vertical StackC-700 Engine #7Compre sor engine #77C C Oxidati on catalystC S,760 S,760 S,760 C,700 PM10 SO2 Total HAPs	Vertical Stackser Engine $#4$ son catalyston catalystCO14.44 VOCVertical StackC-500Compre Engine $#5$ 5C catalystOxidati on catalystC8,760 catalystNOx CO1.65 COUpward Vertical StackC-600Compre Engine $#5$ 5C catalystOxidati on catalystC8,760 catalystNOx CO1.65 COUpward Vertical StackC-600Compre Engine $#5$ 6C catalystOxidati on catalystC8,760 catalystNOx CO1.65 COUpward Vertical StackC-600Compre sor ngine $#6$ 6C catalystOxidati on catalystC8,760 catalystNOx catalyst1.65 COUpward Vertical StackC-700Compre sor Engine $#7$ 7C co catalystOxidati on catalystC8,760 coNOx co catalyst1.65 COUpward Vertical StackC-700Compre Engine $#7$ 7C co co catalystC8,760 co catalystNOx co co catalyst1.65 COUpward Vertical StackC-700Compre Engine $#7$ 7C co catalystC8,760 co catalystNOx co co co co co co catalystNOx co catalyst1.65 co co co co co co co catalystNOx co co co co co co co co coNOx co co co co co co <b< td=""><td>Vertical Stack ssor #4 ssor #4 on catalyst on catalyst on catalyst CO 14.44 63.25 VOC 2.26 9.90 PM10 0.17 0.75 SO2 0.010 0.044 Total HAPs 1.21 5.32 Formaldehyde 0.88 3.86 Vertical Stack C-500 Compre #5 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 Vertical Stack C-500 Compre #5 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 Vertical Stack C-600 Compre #6 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 Vertical Stack C-600 Compre #6 SO Oxidati on catalyst C 8,760 NOx 1.65 7.24 Vertical Stack C-600 Compre #6 SO Oxidati on catalyst C 8,760 NOx 1.65 7.24 VoC 2.26 9.90 <</td><td>Vertical Stack sor #4 sor #4 sor eatalyst on catalyst on catalyst CO 14.44 63.25 0.88 VOC 2.26 9.90 1.49 PM10 0.17 0.75 0.17 Sol 0.010 0.0144 0.010 Total HAPS 1.21 5.32 0.33 Upward Vertical Stack C-500 Compre Engine #5 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 1.65 Vertical Stack C-600 Compre #5 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 1.65 Volc 2.26 9.90 1.49 PM10 0.17 0.75 0.17 Stack C-600 Compre Sor SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 1.65 Vertical Stack C-600 Compre Sor Oxidati on catalyst C 8,760 NOx 1.65 7.24 1.65 Vertical Stack<</td><td>Vertical Stack sor engine #4 sor eatalyst on catalyst on catalyst CO 14.44 63.25 0.88 3.86 VOC 2.26 9.90 1.49 6.52 PM10 0.017 0.75 0.17 0.75 S02 0.010 0.044 0.010 0.044 Vertical Vertical Stack C-500 Compre #gine #5 SC Oxidati on catalyst C NOx 1.65 7.24 1.65 7.24 Upward Vertical Stack C-600 Compre #6 SC Oxidati on catalyst C NOx 1.65 7.24 1.65 7.24 Upward Vertical Stack C-600 Compre #6 SC Oxidati on catalyst C NOx 1.65 7.24 1.65 7.24 Upward Stack C-600 Compre #6 GC Oxidati on catalyst C NOx 1.65 7.24 1.65 7.24 Upward Stack C-600 Compre #6 GC Oxidati on catalyst C NOx 1.65<</td><td>Vertical Stack sor #4 sor mail sor mail on catalyst on catalyst on catalyst CO 14.44 63.25 0.88 3.86 5.2 VOC 2.26 9.90 1.49 6.52 PM10 0.17 0.75 0.010 0.044 0.010 0.044 Vertical Stack C-500 Compre #5 SC Oxidati on catalyst C NOX 1.65 7.24 1.65 7.2</td><td>Vertical Stack sor #4 sor #4 sor #4 on catalyst #4 on catalyst energy on catalyst energy on catalyst energy CO 14.44 63.25 0.88 3.86 on 6.52 PM10 0.17 0.75 0.010 0.044 0.010 0.044 Output 0.010 0.044 0.010 0.044 0.010 0.044 Vertical Stack C-500 Compt 85 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 1.65 7.24 Vertical Stack C-500 Compt 85 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 1.65 7.24 Vertical Stack C-600 Sor 85 SC 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.010</td></b<>	Vertical Stack ssor #4 ssor #4 on catalyst on catalyst on catalyst CO 14.44 63.25 VOC 2.26 9.90 PM10 0.17 0.75 SO2 0.010 0.044 Total HAPs 1.21 5.32 Formaldehyde 0.88 3.86 Vertical Stack C-500 Compre #5 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 Vertical Stack C-500 Compre #5 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 Vertical Stack C-600 Compre #6 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 Vertical Stack C-600 Compre #6 SO Oxidati on catalyst C 8,760 NOx 1.65 7.24 Vertical Stack C-600 Compre #6 SO Oxidati on catalyst C 8,760 NOx 1.65 7.24 VoC 2.26 9.90 <	Vertical Stack sor #4 sor #4 sor eatalyst on catalyst on catalyst CO 14.44 63.25 0.88 VOC 2.26 9.90 1.49 PM10 0.17 0.75 0.17 Sol 0.010 0.0144 0.010 Total HAPS 1.21 5.32 0.33 Upward Vertical Stack C-500 Compre Engine #5 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 1.65 Vertical Stack C-600 Compre #5 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 1.65 Volc 2.26 9.90 1.49 PM10 0.17 0.75 0.17 Stack C-600 Compre Sor SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 1.65 Vertical Stack C-600 Compre Sor Oxidati on catalyst C 8,760 NOx 1.65 7.24 1.65 Vertical Stack<	Vertical Stack sor engine #4 sor eatalyst on catalyst on catalyst CO 14.44 63.25 0.88 3.86 VOC 2.26 9.90 1.49 6.52 PM10 0.017 0.75 0.17 0.75 S02 0.010 0.044 0.010 0.044 Vertical Vertical Stack C-500 Compre #gine #5 SC Oxidati on catalyst C NOx 1.65 7.24 1.65 7.24 Upward Vertical Stack C-600 Compre #6 SC Oxidati on catalyst C NOx 1.65 7.24 1.65 7.24 Upward Vertical Stack C-600 Compre #6 SC Oxidati on catalyst C NOx 1.65 7.24 1.65 7.24 Upward Stack C-600 Compre #6 GC Oxidati on catalyst C NOx 1.65 7.24 1.65 7.24 Upward Stack C-600 Compre #6 GC Oxidati on catalyst C NOx 1.65<	Vertical Stack sor #4 sor mail sor mail on catalyst on catalyst on catalyst CO 14.44 63.25 0.88 3.86 5.2 VOC 2.26 9.90 1.49 6.52 PM10 0.17 0.75 0.010 0.044 0.010 0.044 Vertical Stack C-500 Compre #5 SC Oxidati on catalyst C NOX 1.65 7.24 1.65 7.2	Vertical Stack sor #4 sor #4 sor #4 on catalyst #4 on catalyst energy on catalyst energy on catalyst energy CO 14.44 63.25 0.88 3.86 on 6.52 PM10 0.17 0.75 0.010 0.044 0.010 0.044 Output 0.010 0.044 0.010 0.044 0.010 0.044 Vertical Stack C-500 Compt 85 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 1.65 7.24 Vertical Stack C-500 Compt 85 SC Oxidati on catalyst C 8,760 NOx 1.65 7.24 1.65 7.24 Vertical Stack C-600 Sor 85 SC 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.044 0.010 0.010

· · · · · ·															
8E	Upward	C-800	Compre ssor	8C	Oxidati	С	8,760	NOx	1.65	7.24	1.65	7.24	Gas/Vapor	EE	
	Vertical Stack		Engine		on			CO	14.44	63.25	0.88	3.86			
	Stack		#8		catalyst			VOC	2.26	9.90	1.49	6.52			
								PM10	0.17	0.75	0.17	0.75			
								SO2	0.010	0.044	0.010	0.044			
								Total HAPs	1.21	5.32	0.33	1.45			
								Formaldehyde		3.86	0.11	0.48			
								CO2e	2811	12311	2811	12311			
9E	Upward	C-900	Compre	9C	Oxidati	С	8,760	NOx	1.65	7.24	1.65	7.24	Gas/Vapor	EE	
	Vertical		ssor Engine		on		2	СО	14.44	63.25	0.88	3.86	-		
	Stack		#9		catalyst			VOC	2.26	9.90	1.49	6.52			
								PM10	0.17	0.75	0.17	0.75			
								SO2	0.010	0.044	0.010	0.044			
								Total HAPs	1.21	5.32	0.33	1.45			
								Formaldehyde	0.88	3.86	0.11	0.48			
								CO2e	2811	12311	2811	12311			
10E	Upward	C-1000	Compre	10C	Oxidati	С	8,760	NOx	1.65	7.24	1.65	7.24	Gas/Vapor	EE	
_	Vertical		ssor Engine		on	_	- ,	CO	14.44	63.25	0.88	3.86	1		
	Stack		#10		catalyst			VOC	2.26	9.90	1.49	6.52			
								PM10	0.17	0.75	0.17	0.75			
								SO2	0.010	0.044	0.010	0.044			
								Total HAPs	1.21	5.32	0.33	1.45			
								Formaldehyde	0.88	3.86	0.11	0.48			
								CO2e	2811	12311	2811	12311			
11E	Upward	C-1100	Compre	11C	Oxidati	С	8,760	NOx	1.65	7.24	1.65	7.24	Gas/Vapor	EE	
	Vertical		ssor Engine		on			CO	14.44	63.25	0.88	3.86			
	Stack		#11		catalyst			VOC	2.26	9.90	1.49	6.52			
								PM10	0.17	0.75	0.17	0.75			
								SO2	0.010	0.044	0.010	0.044			
								Total HAPs	1.21	5.32	0.33	1.45			
								Formaldehyde		3.86	0.11	0.48			
								CO2e	2811	12311	2811	12311			
	1				L			8		1	1	1	I	I	l

12E	Upward Vertical Stack	C-1200	Compre ssor Engine #12	12C	Oxidati on catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs	1.65 14.44 2.26 0.17 0.010 1.21	7.24 63.25 9.90 0.75 0.044 5.32	1.65 0.88 1.49 0.17 0.010 0.33	7.24 3.86 6.52 0.75 0.044 1.45	Gas/Vapor	EE	
								Formaldehyde CO2e	0.88 2811	3.86 12311	0.11 2811	0.48 12311			
13E	Upward Vertical Stack	GEN1	Natural Gas Engine Generat or			С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	1.43 2.86 1.00 0.11 0.003 0.18 0.11 649	6.27 12.53 4.39 0.47 0.014 0.78 0.50 2841	1.43 2.86 1.00 0.11 0.003 0.18 0.11 649	6.27 12.53 4.39 0.47 0.014 0.78 0.50 2841	Gas/Vapor	EE	
14E	Upward Vertical Stack	DEHY1	Dehydra tor Still Vent #1	13C (AOS1) OR 16C (AOS2)	Flare (AOS1) OR Thermal oxidizer (AOS2)- 98% Control	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	16.37 4.94 1.16 2.62 0.16 0.58 0.42 462.3	71.69 21.64 5.08 11.46 0.72 2.56 1.82 2025	0.33 0.099 0.023 0.053 0.0033 0.012 0.0083 9.50	1.43 0.43 0.10 0.23 0.014 0.051 0.036 41.62	Gas/Vapor	EE	
15E	Upward Vertical Stack or used as fuel in 16E	DFLSH1	Dehydra tor Flash Tank #1	Used for Fuel in 16E (AOS1) or 16C (AOS2)	Reboiler or VRU Backup (AOS1) or Thermal oxidizer (AOS2) - 98%	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	48.91 1.31 0.097 0.13 0.0041 0.0091 1.08 2894	214.2 5.75 0.42 0.56 0.018 0.040 4.71 12677	0.98 0.026 0.0019 0.0025 0.0001 0.0002 0.022 60.10	4.28 0.12 0.0085 0.011 0.0004 0.0008 0.094 263.2	Gas/Vapor	EE	

16E	Upward Vertical Stack	DREB1	Dehydra tor Reboiler #1			С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e	0.15 0.12 0.0081 0.011 8.8E-4 0.0028 176.1	0.64 0.54 0.035 0.049 0.0039 0.012 771.2	0.15 0.12 0.0081 0.011 8.8E-4 0.0028 176.1	0.64 0.54 0.035 0.049 0.0039 0.012 771.2	Gas/Vapor	EE	
17E	Upward Vertical Stack	DEHY2	Dehydra tor Still Vent #2	13C (AOS1) OR 17C (AOS2)	Flare (AOS1) OR Thermal oxidizer (AOS2)- 98% Control	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	16.37 4.94 1.16 2.62 0.16 0.58 0.42 462.3	71.69 21.64 5.08 11.46 0.72 2.56 1.82 2025	0.33 0.099 0.023 0.053 0.0033 0.012 0.0083 9.50	1.43 0.43 0.10 0.23 0.014 0.051 0.036 41.62	Gas/Vapor	EE	
18E	Upward Vertical Stack or used as fuel in 19E	DFLSH2	Dehydra tor Flash Tank #2	Used for Fuel in 19E (AOS1) or 17C (AOS2)	Reboiler or VRU Backup (AOS1) or Thermal oxidizer (AOS2) - 98%	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	48.91 1.31 0.097 0.13 0.0041 0.0091 1.08 2894	214.2 5.75 0.42 0.56 0.018 0.040 4.71 12677	0.98 0.026 0.0019 0.0025 0.0001 0.0002 0.022 60.10	4.28 0.12 0.0085 0.011 0.0004 0.0008 0.094 263.2	Gas/Vapor	EE	
19E	Upward Vertical Stack	DREB2	Dehydra tor Reboiler #2			С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e	0.15 0.12 0.0081 0.011 8.8E-4 0.0028 176.1	0.64 0.54 0.035 0.049 0.0039 0.012 771.2	0.15 0.12 0.0081 0.011 8.8E-4 0.0028 176.1	0.64 0.54 0.035 0.049 0.0039 0.012 771.2	Gas/Vapor	EE	

20E	Upward Vertical Stack	DEHY3	Dehydra tor Still Vent #3	13C (AOS1) OR 18C (AOS2)	Flare (AOS1) OR Thermal oxidizer (AOS2)- 98% Control	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	16.37 4.94 1.16 2.62 0.16 0.58 0.42 462.3	71.69 21.64 5.08 11.46 0.72 2.56 1.82 2025	0.33 0.099 0.023 0.053 0.0033 0.012 0.0083 9.50	1.43 0.43 0.10 0.23 0.014 0.051 0.036 41.62	Gas/Vapor	EE	
21E	Upward Vertical Stack or used as fuel in 22E	DFLSH3	Dehydra tor Flash Tank #3	Used for Fuel in 22E (AOS1) or 18C (AOS2)	Reboiler or VRU Backup (AOS1) or Thermal oxidizer (AOS2) - 98%	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	48.91 1.31 0.097 0.13 0.0041 0.0091 1.08 2894	214.2 5.75 0.42 0.56 0.018 0.040 4.71 12677	0.98 0.026 0.0019 0.0025 0.0001 0.0002 0.022 60.10	4.28 0.12 0.0085 0.011 0.0004 0.0008 0.094 263.2	Gas/Vapor	EE	
22E	Upward Vertical Stack	DREB3	Dehydra tor Reboiler #3			С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e	0.15 0.12 0.0081 0.011 8.8E-4 0.0028 176.1	0.64 0.54 0.035 0.049 0.0039 0.012 771.2	0.15 0.12 0.0081 0.011 8.8E-4 0.0028 176.1	0.64 0.54 0.035 0.049 0.0039 0.012 771.2	Gas/Vapor	EE	
23E	Upward Vertical Stack	T01	Conden sate Tank #1	14C/ 15C	VRUs- 98% capture	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	1.05 0.025 4.6e-4 9.6e-4 4.0e-4 9.2e-4 2.3e-2 0.80	4.60 0.11 2.0e-3 4.2e-3 1.8e-3 4.0e-3 0.10 3.52	0.021 5.1e-4 9.3e-6 1.9e-5 8.1e-6 1.8e-5 4.5e-4 0.017	0.092 2.2e-3 4.1e-5 8.4e-5 3.5e-5 8.1e-5 2.0e-3 0.076	Gas/Vapor	EE	

24E	Upward Vertical Stack	T02	Conden sate Tank #2	14C/ 15C	VRUs- 98% capture	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	1.05 0.025 4.6e-4 9.6e-4 4.0e-4 9.2e-4 2.3e-2 0.80	4.60 0.11 2.0e-3 4.2e-3 1.8e-3 4.0e-3 0.10 3.52	0.021 5.1e-4 9.3e-6 1.9e-5 8.1e-6 1.8e-5 4.5e-4 0.017	0.092 2.2e-3 4.1e-5 8.4e-5 3.5e-5 8.1e-5 2.0e-3 0.076	Gas/Vapor	EE	
25E	Upward Vertical Stack	Т03	Conden sate Tank #3	14C/ 15C	VRUs- 98% capture	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	1.05 0.025 4.6e-4 9.6e-4 4.0e-4 9.2e-4 2.3e-2 0.80	4.60 0.11 2.0e-3 4.2e-3 1.8e-3 4.0e-3 0.10 3.52	0.021 5.1e-4 9.3e-6 1.9e-5 8.1e-6 1.8e-5 4.5e-4 0.017	0.092 2.2e-3 4.1e-5 8.4e-5 3.5e-5 8.1e-5 2.0e-3 0.076	Gas/Vapor	EE	
26E	Upward Vertical Stack	т04	Settling Tank	14C/ 15C	VRUs- 98% capture	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	81.96 1.93 0.051 0.093 0.034 0.086 1.67 600	359.0 8.46 0.22 0.41 0.15 0.38 7.31 2626	1.64 0.039 1.1e-3 1.9e-3 6.9e-4 1.7e-3 3.3e-2 12.2	7.18 0.17 4.4e-3 8.1e-3 3.0e-3 7.5e-3 1.5e-1 53	Gas/Vapor	EE	
27E	Upward Vertical Stack	T05	Produce d Water Tank #1	14C/ 15C	VRUs- 98% capture	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	6.3e-5 2.5e-7 1.7e-7 6.4e-8 7.7e-9 1.1e-8 3.4e-8 4.3e-3	2.8e-4 1.1e-6 7.3e-7 2.8e-7 3.4e-8 4.9e-8 1.5e-8 0.019	1.3e-6 5.1e-9 3.3e-9 1.3e-9 1.6e-10 2.3e-10 6.7e-11 1.3e-4	5.5e-6 2.2e-8 1.5e-8 5.6e-9 6.8e-10 9.9e-10 3.0e-10 5.5e-4	Gas/Vapor	EE	

28E	Upward Vertical Stack	т06	Produce d Water Tank #2	14C/1 5C	VRUs- 98% capture	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	6.3e-5 2.5e-7 1.7e-7 6.4e-8 7.7e-9 1.1e-8 3.4e-8 4.3e-3	2.8e-4 1.1e-6 7.3e-7 2.8e-7 3.4e-8 4.9e-8 1.5e-8 0.019	1.3e-6 5.1e-9 3.3e-9 1.3e-9 1.6e-10 2.3e-10 6.7e-11 1.3e-4	5.5e-6 2.2e-8 1.5e-8 5.6e-9 6.8e-10 9.9e-10 3.0e-10 5.5e-4	Gas/Vapor	EE	
29E	Upward Vertical Stack	Т07	Produce d Water Tank #3	14C/1 5C	VRUs- 98% capture	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	6.3e-5 2.5e-7 1.7e-7 6.4e-8 7.7e-9 1.1e-8 3.4e-8 4.3e-3	2.8e-4 1.1e-6 7.3e-7 2.8e-7 3.4e-8 4.9e-8 1.5e-8 0.019	1.3e-6 5.1e-9 3.3e-9 1.3e-9 1.6e-10 2.3e-10 6.7e-11 1.3e-4	5.5e-6 2.2e-8 1.5e-8 5.6e-9 6.8e-10 9.9e-10 3.0e-10 5.5e-4	Gas/Vapor	EE	
30E	Upward Vertical Stack	FUEL1	Fuel Conditi oning Heater			С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e	0.049 0.041 0.0027 0.0037 2.9E-4 9.2E-4 58.7	0.21 0.18 0.012 0.016 0.0013 0.0040 257.1	0.049 0.041 0.0027 0.0037 2.9E-4 9.2E-4 58.7	0.21 0.18 0.012 0.016 0.0013 0.0040 257.1	Gas/Vapor	EE	
31E	Upward Vertical Stack	FLARE1	Flare Combus tion Device			С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e	 	 	0.33 1.78 3.3e-4 4.6e-4 3.6e-5 1.1e-4 571	1.46 7.80 1.5e-3 2.0e-3 1.6e-4 5.0e-4 2500	Gas/Vapor	EE	
32E	Upward Vertical Stack	TO-1	Thermal oxidizer 1			С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e	 	 	0.47 2.27 3.3e-3 4.6e-3 3.6e-4 1.1e-3 777	2.05 9.95 1.5e-2 2.0e-2 1.6e-3 5.0e-3 3401	Gas/Vapor	EE	

33E	Upward Vertical Stack	ТО-2	Thermal oxidizer 2	 	С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e	 	0.47 2.27 3.3e-3 4.6e-3 3.6e-4 1.1e-3 777	2.05 9.95 1.5e-2 2.0e-2 1.6e-3 5.0e-3 3401
34E	Upward Vertical Stack	ТО-3	Thermal oxidizer 3	 	С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e	 	0.47 2.27 3.3e-3 4.6e-3 3.6e-4 1.1e-3 777	2.05 9.95 1.5e-2 2.0e-2 1.6e-3 5.0e-3 3401
36E	Relief Vent	VENT1	Venting Episode s	 	Intermi ttent	Varia ble	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	 21.14 0.44 0.013 0.024 0.0013 0.0033 0.39 1980	 	21.14 0.44 0.013 0.024 0.0013 0.0033 0.39 1980

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

 6 Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

			Table 2: R	elease Parameter	Data			
Emission	Inner		Exit Gas		Emission Point Elev	vation (ft)	UTM Coordinate	es (km)
Point ID No.	Diameter (ft.)	Temp.	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ²	Northing	Easting
1E/1C	1.1	818	16086	282	875	25	4353.899	516.989
2E/2C	1.1	818	16086	282	875	25	4353.917	516.983
3E/3C	1.1	818	16086	282	875	25	4353.935	516.978
4E/4C	1.1	818	16086	282	875	25	4353.953	516.972
5E/5C	1.1	818	16086	282	875	25	4353.971	516.966
6E/6C	1.1	818	16086	282	875	25	4353.989	516.960
7E/7C	1.1	818	16086	282	875	25	4354.007	516.954
8E/8C	1.1	818	16086	282	875	25	4354.024	516.948
9E/9C	1.1	818	16086	282	875	25	4354.042	516.943
10E/10C	1.1	818	16086	282	875	25	4354.06	516.937
11E/11C	1.1	818	16086	282	875	25	4354.078	516.931
12E/12C	1.1	818	16086	282	875	25	4354.096	516.925
13E	0.42	1382	3179	382	875	~12	4353.908	518.001
16E	0.75	350	530	20	875	~18	4354.043	516.975
19E	0.75	350	530	20	875	~18	4354.031	516.978
22E	0.75	350	530	20	875	~18	4354.02	516.982
30E	0.75	350	530	20	875	~18	4353.892	517.001
31E	3	1000	2545	6	875	20	4354.03	516.985
32E/33E/34E	2.3	1450	3994	15.6	875	20	4354.03	516.985
36E		1	Venting emiss	sions occur at various	locations across the facility	7	1	1

Attachment J EMISSION POINTS DATA SUMMARY SHEET

¹Give at operating conditions. Include inerts. ²Release height of emissions above ground level.

Attachment K. Fugitive Emissions Data Summary Sheet

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	Yes No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	⊠ Yes □ No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	☑ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	Yes No
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	bu answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants - Chemical Name/CAS ¹	Maximum Uncontrolled		Maximum P Controlled En	Est. Method	
	Onemical Name/OAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads	PM-10 PM-2.5	0.21 0.021	0.90 0.090	0.21 0.021	0.90 0.090	EE
Storage Pile Emissions						
Loading/Unloading Operations	VOCs Total HAPs CO2e	59.72 1.41 445.3	12.45 0.29 92.86	59.72 1.41 445.3	12.45 0.29 92.86	EE
Wastewater Treatment Evaporation & Operations						
Equipment Leaks	VOCs Total HAPs CO2e	2.04 0.044 40.41	8.94 0.19 177.0	2.04 0.044 40.41	8.94 0.19 177.0	EE
General Clean-up VOC Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Attachment L. Emission Unit Data Sheets **Compressor Engines**

Source Ide	1E		2E		3E			
Engine Mar	Caterpillar G3608		Caterpillar G3608		Caterpillar G3608			
Manufactu	rer's Rated bhp/rpm	2,500 bhp	2,500 bhp/1,000 rpm		2,500 bhp/1,000 rpm		2,500 bhp/1,000 rpm	
So	urce Status ²	١	NS	١	1S	Ν	NS	
Date Installe	d/Modified/Removed ³	May	2017	May	2017	May	2017	
Engine Manufact	ured/Reconstruction Date4	Т	BD	T	BD	T	BD	
	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	1	Ňo	1	No	Ν	No	
	Engine Type ⁶	LI	34S	LI	34S	LI	34S	
	APCD Type ⁷	S	CR	S	CR	S	CR	
	Fuel Type ⁸	F	RG	F	kG	R	RG	
Engine, Fuel and	H ₂ S (gr/100 scf)	0		0		0		
Combustion Data	Operating bhp/rpm	2,500 bhp/1,000 rpm		2,500 bhp/1,000 rpm		2,500 bhp/1,000 rpm		
Data	BSFC (Btu/bhp-hr)	6,850		6,850		6,850		
	Fuel throughput (ft ³ /hr)	16,500		16,500		16,500		
	Fuel throughput (MMft ³ /yr)	144.54		144.54		144.54		
	Operation (hrs/yr)	8,760		8,760		8,760		
Reference9	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr	
MD	NOx	1.65	7.24	1.65	7.24	1.65	7.24	
MD	СО	0.88	3.86	0.88	3.86	0.88	3.86	
MD	VOC	1.49	6.52	1.49	6.52	1.49	6.52	
AP	SO ₂	0.010	0.044	0.010	0.044	0.010	0.044	
AP	PM10	0.17	0.75	0.17	0.75	0.17	0.75	
MD	Formaldehyde	0.11	0.48	0.11	0.48	0.11	0.48	

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

Source Ide	4E		5E		6	δE	
Engine Mar	Caterpillar G3608		Caterpillar G3608		Caterpillar G3608		
Manufactu	2,500 bhp/1,000 rpm		2,500 bhp/1,000 rpm		2,500 bhp/1,000 rpm		
So	urce Status ²	1	NS	١	15	Ν	IS
Date Installe	d/Modified/Removed ³	May	2017	May	2017	May	2017
Engine Manufact	ured/Reconstruction Date4	Т	BD	T	BD	T	BD
	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	1	No	I	ło	Ν	No
	Engine Type ⁶	LI	34S	LI	34S	LF	34S
	APCD Type ⁷	S	CR	S	CR	S	CR
	Fuel Type ⁸	F	RG	F	G	R	RG
Engine, Fuel and	H ₂ S (gr/100 scf)		0		0		0
Combustion Data	Operating bhp/rpm	2,500 bhp/1,000 rpm		2,500 bhp/1,000 rpm		2,500 bhp/1,000 rpm	
Data	BSFC (Btu/bhp-hr)	6,850		6,850		6,850	
	Fuel throughput (ft ³ /hr)	16,500		16,500		16,500	
	Fuel throughput (MMft ³ /yr)	144.54		144.54		144.54	
	Operation (hrs/yr)	8,760		8,760		8,760	
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
ОТ	NO _X	1.65	7.24	1.65	7.24	1.65	7.24
OT	СО	0.88	3.86	0.88	3.86	0.88	3.86
MD	VOC	1.49	6.52	1.49	6.52	1.49	6.52
AP	SO ₂	0.010	0.044	0.010	0.044	0.010	0.044
AP	PM10	0.17	0.75	0.17	0.75	0.17	0.75
MD	Formaldehyde	0.11	0.48	0.11	0.48	0.11	0.48

Source Ide	7E		8E		ç	ЭE	
Engine Mar	Caterpillar G3608		Caterpillar G3608		Caterpillar G3608		
Manufactu	rer's Rated bhp/rpm	2,500 bhp	2,500 bhp/1,000 rpm		/1,000 rpm	2,500 bhp/1,000 rpm	
So	purce Status ²	1	NS	١	15	NS	
Date Installe	d/Modified/Removed ³	May	2017	May	2017	May	2017
	cured/Reconstruction Date4	T	BD	T	BD	T	BD
	I Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	ľ	No	ſ	ło	ſ	No
	Engine Type ⁶	LI	B4S	LI	34S	LI	34S
	APCD Type ⁷	S	CR	S	CR	S	CR
	Fuel Type ⁸	F	RG	F	G	F	kG
Engine, Fuel and	H ₂ S (gr/100 scf)	0		0		0	
Combustion Data	Operating bhp/rpm	2,500 bhp/1,000 rpm		2,500 bhp/1,000 rpm		2,500 bhp/1,000 rpm	
Data	BSFC (Btu/bhp-hr)	6,850		6,850		6,850	
	Fuel throughput (ft ³ /hr)	16,500		16,500		16,500	
	Fuel throughput (MMft ³ /yr)	144.54		144.54		144.54	
	Operation (hrs/yr)	8,	760	8,760		8,760	
Reference9	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
ОТ	NO _X	1.65	7.24	1.65	7.24	1.65	7.24
ОТ	СО	0.88	3.86	0.88	3.86	0.88	3.86
MD	VOC	1.49	6.52	1.49	6.52	1.49	6.52
AP	SO_2	0.010	0.044	0.010	0.044	0.010	0.044
AP	PM10	0.17	0.75	0.17	0.75	0.17	0.75
MD	Formaldehyde	0.11	0.48	0.11	0.48	0.11	0.48

Source Ide	10E		11E		1	2E	
Engine Mar	Caterpillar G3608		Caterpillar G3608		Caterpillar G3608		
Manufactu	rer's Rated bhp/rpm	2,500 bhp	o/1,000 rpm	2,500 bhp	/1,000 rpm	2,500 bhp/1,000 rpm	
So	purce Status ²	1	NS	Ν	IS	١	1S
Date Installe	d/Modified/Removed ³	May	2017	May	2017	May	2017
Engine Manufact	tured/Reconstruction Date ⁴	Т	BD	T	BD	T	BD
	l Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	1	No	Ν	ło	I	No
	Engine Type ⁶	Ll	B4S	LI	34S	LI	34S
	APCD Type ⁷	S	CR	S	CR	S	CR
	Fuel Type ⁸	F	RG	R	G	F	kG
Engine, Fuel and	H ₂ S (gr/100 scf)	0		0			0
Combustion Data	Operating bhp/rpm	2,500 bhp/1,000 rpm		2,500 bhp/1,000 rpm		2,500 bhp/1,000 rpm	
Data	BSFC (Btu/bhp-hr)	6,850		6,850		6,850	
	Fuel throughput (ft ³ /hr)	16,500		16,500		16,500	
	Fuel throughput (MMft ³ /yr)	144.54		144.54		144.54	
	Operation (hrs/yr)	8,760		8,760		8,760	
Reference9	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
OT	NOx	1.65	7.24	1.65	7.24	1.65	7.24
ОТ	СО	0.88	3.86	0.88	3.86	0.88	3.86
MD	VOC	1.49	6.52	1.49	6.52	1.49	6.52
AP	SO ₂	0.010	0.044	0.010	0.044	0.010	0.044
AP	PM10	0.17	0.75	0.17	0.75	0.17	0.75
MD	Formaldehyde	0.11	0.48	0.11	0.48	0.11	0.48

1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.

- 2. Enter the Source Status using the following codes:
 - NS Construction of New Source (installation)
 - MS Modification of Existing Source
- ES Existing Source
- RS Removal of Source

- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- 6. Enter the Engine Type designation(s) using the following codes:
- LB2S
 Lean Burn Two Stroke
 RB4S
 Rich Burn Four Stroke

 LB4S
 Lean Burn Four Stroke
 RB4S
 Rich Burn Four Stroke

 7.
 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:
- A/F Air/Fuel Ratio IR Ignition Retard HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers PSC Prestratified Charge Low Emission Combustion LEC NSCR Rich Burn & Non-Selective Catalytic Reduction SCR Lean Burn & Selective Catalytic Reduction 8. Enter the Fuel Type using the following codes: PQ Pipeline Quality Natural Gas RG Raw Natural Gas
- 9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc TM	OT	Other	Based on typical operating conditions

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

G3608

GAS COMPRESSION APPLICATION

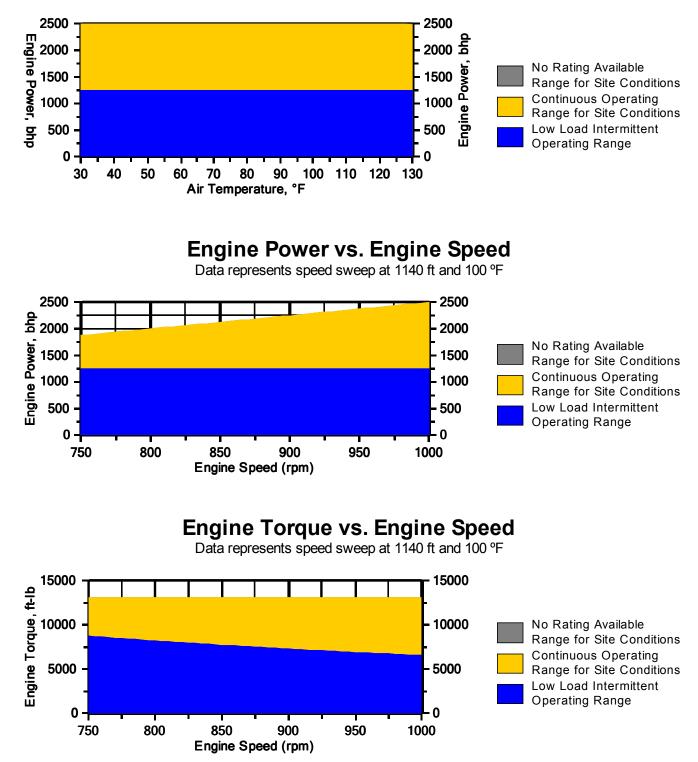
GAS ENGINE SITE SPECIFIC TECHNICAL DATA 8666

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX): SET POINT TIMING:	1000 7.6 SCAC 130 174 190 TA JW+1AC, OC+2AC ADEM4 DRY LOW EMISSION 0.3 17	RATING FUEL S FUEL: FUEL P FUEL M FUEL L ALTITUE MAXIMU	YSTEM: INDITIONS: RESSURE RA ETHANE NUM IV (Btu/scf): DE(ft):	MBER: TEMPERATUF	RE(°F):		FUEL RATIO	STANDARD DNTINUOUS GAV D CONTROL Gas Analysis 58.0-70.3 65.1 1039 1140 100 p@1000rpm
					RATING			-
RATING	3		NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER		(WITHOUT FAN)	(1)	bhp	2500	2500	1875	1250
INLET AIR TEMPERATURE				°F	100	100	100	100
ENGINE D	АТА							
FUEL CONSUMPTION (LHV)			(2)	Btu/bhp-hr	6850	6850	7077	7575
FUEL CONSUMPTION (HHV)			(2)	Btu/bhp-hr	7570	7570	7821	8372
AIR FLOW (@inlet air temp, 14.7 psia)		(WET)	(3)(4)	ft3/min	6562	6562	4973	3381
AIR FLOW		(WET)	(3)(4)	lb/hr	27899	27899	21142	14374
FUEL FLOW (60°F, 14.7 psia)				scfm	275	275	213	152
INLET MANIFOLD PRESSURE			(5)	in Hg(abs)	102.9	102.9	77.8	54.3
EXHAUST TEMPERATURE - ENGINE OUTLET			(6)	°F	827	827	870	935
EXHAUST GAS FLOW (@engine outlet temp, 1	4.5	(WET)	(7)(4)	ft3/min	16056	16056	12589	8996
psia) EXHAUST GAS MASS FLOW		(WET)	(7)(4)	lb/hr	28710	28710	21771	14823
EXHAUST GAS WASS FLOW		(***= 1)	(7)(4)	ווו/נו	20710	20710	21771	14023
EMISSIONS DATA -	ENGINE OUT							
NOx (as NO2)			(8)(9)	g/bhp-hr	0.30	0.30	0.30	0.30
СО			(8)(9)	g/bhp-hr	2.62	2.62	2.62	2.62
THC (mol. wt. of 15.84)			(8)(9)	g/bhp-hr	4.49	4.49	4.76	4.84
NMHC (mol. wt. of 15.84)			(8)(9)	g/bhp-hr	1.26	1.26	1.33	1.35
NMNEHC (VOCs) (mol. wt. of 15.84)			(8)(9)(10)	g/bhp-hr	0.41	0.41	0.43	0.44
HCHO (Formaldehyde) CO2			(8)(9)	g/bhp-hr	0.16	0.16 429	0.17 445	0.20 474
EXHAUST OXYGEN			(8)(9)	g/bhp-hr % DRY	429 11.6	429 11.6	445 11.3	474 10.9
EARAOSTOXIGEN			(8)(11)	% DRT	11.0	11.0	11.3	10.9
HEAT REJE	CTION							
HEAT REJ. TO JACKET WATER (JW)			(12)	Btu/min	27608	27608	23006	18921
HEAT REJ. TO ATMOSPHERE			(12)	Btu/min	9197	9197	9684	9447
HEAT REJ. TO LUBE OIL (OC)			(12)	Btu/min	12834	12834	12204	11129
HEAT REJ. TO A/C - STAGE 1 (1AC)			(12)(13)	Btu/min	25471	25471	13030	3866
HEAT REJ. TO A/C - STAGE 2 (2AC)			(12)(13)	Btu/min	8738	8738	5571	2865
COOLING SYSTEM SI	ZING CRITERIA							
TOTAL JACKET WATER CIRCUIT (JW+1AC)			(13)(14)	Btu/min	57113			
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (O	C+2AC)		(13)(14)	Btu/min	24576			
A cooling system safety factor of 0% has been	added to the cooling svs	tem sizing criteri	a.					

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.


CATERPILLAR®

GAS ENGINE SITE SPECIFIC TECHNICAL DATA 8666

CATERPILLAR®

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1140 ft and 1000 rpm

Note: At site conditions of 1140 ft and 100°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

G3608

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA 8666

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

- 2. Fuel consumption tolerance is $\pm 2.5\%$ of full load data.
- 3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.
- 4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.
- 8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	84.8500	85.0712	Fuel Makeup:	Gas Analysis
Ethane	C2H6	11.1700	11.1991	Unit of Measure:	English
Propane	C3H8	1.8400	1.8448		
Isobutane	iso-C4H1O	0.0300	0.0301	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.5700	0.5715	Caterpillar Methane Number:	65.1
Isopentane	iso-C5H12	0.1500	0.1504		05.1
Norpentane	nor-C5H12	0.1500	0.1504		
Hexane	C6H14	0.1000	0.1003	Lower Heating Value (Btu/scf):	1039
Heptane	C7H16	0.0500	0.0501	Higher Heating Value (Btu/scf):	1148
Nitrogen	N2	0.7000	0.7018	WOBBE Index (Btu/scf):	1289
Carbon Dioxide	CO2	0.1000	0.1003		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	123.67
Carbon Monoxide	CO	0.0000	0.0000		0.8%
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.997
Octane	C8H18	0.0200	0.0201	Stoich A/F Ratio (Vol/Vol):	10.80
Nonane	C9H20	0.0100	0.0100	Stoich A/F Ratio (Mass/Mass):	16.64
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.649
Propylene	C3H6	0.0000	0.0000		1.295
TOTAL (Volume %)		99.7400	100.0001	Specific Heat Constant (K):	1.295

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Dehydrators

West Virginia Department of Environmental Protection

DIVISION OF AIR QUALITY : (304) 926-0475 WEB PAGE: http://www.wvdep.org

Division of Air Quality 40 CFR Part 63; Subpart HH & HHH Registration Form

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

Section A: Facility Description	
Affected facility actual annual average natural gas throughput (scf/day):	450,000,000 (150,000,000
	per dehy)
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day):	390
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer.	Yes No
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas	Yes No
(NG) enters the NG transmission and storage source category or is delivered to the end user.	
The affected facility is: 🛛 prior to a NG processing plant 🗌 a NG processing plant	
prior to the point of custody transfer and there is no NG processing plant	
The affected facility transports or stores natural gas prior to entering the pipeline to a local	Yes No
distribution company or to a final end user (if there is no local distribution company).	
The affected facility exclusively processes, stores, or transfers black oil.	Yes No
Initial producing gas-to-oil ratio (GOR):scf/bbl API gravity:degrees	
Section B: Dehydration Unit (if applicable) ¹	
Description: South Canton Compressor Station Dehydrators (DEHY1, DEHY2, and I	DEHY3)
Date of Installation: May 2017 Annual Operating Hours: 8,760 Burner rating	g (MMbtu/hr): 1.5
Exhaust Stack Height (ft):TBDStack Diameter (ft):TBDStack	ck Temp. (°F): 200
$\Box \qquad \qquad$	
Glycol Pump Type: 🗌 Electric 🖾 Gas If gas, what is the volume ratio?	0.032ACFM/gpm
Condenser installed?	
Condenser will be installed Yes No Exit Temp. 200_ °F Condense	r Pressure _0psig
under AOS1 but not AOS2	
Incinerator/flare installed? Xes <i>AOS1 only</i> No Destruction Eff98_	%
Other controls installed? Xes <i>AOS2 only</i> No Describe: Thermal ox	idizer with 98% eff
Wet Gas ² : Gas Temp.: _120_°F Gas Pressure _1,200 psig	
(Upstream of Contact Tower) Saturated Gas? Yes No If no, water co	ontent lb/MMSCF
Dry Gas: Gas Flowrate(MMSCFD) Actual Design150	
(Downstream of Contact Tower) Water Content5.0 lb/MMSCF	
Lean Glycol: Circulation rate (gpm) Actual ³ Maximum ⁴ 1:	5
Pump make/model: Kimray 45015PV	
Glycol Flash Tank (if applicable): Temp.: <u>80</u> °F Pressure <u>5</u> psig Vented? Y	es 🗌 No 🖾
If no, describe vapor control: Vent gas used in reboiler as fuel of	or sent to VRU system
Stripping Gas (if applicable): Source of gas: Dry gas, if used Rate _	9 scfm

 applicant provide th accomplished by su more detailed inform Extended gas analysy Association (GPA) entrained liquids fro EPA Method TO-14 	 applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request more detailed information in order to make the necessary decisions. Extended gas analysis from the Wet Gas Stream including mole percents of C₁-C₈, benzene, ethylbenzene, toluene, xylene and n-Hexane, using Gas Processors Association (GPA) 2286 (or similar). A sample should be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove entrained liquids from the sample and a probe to collect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of EPA Method TO-14, (or similar) should be used. 								
	3.0 aggregate report based on maximum Lean Glycol circulation rate and maximum throughput. s of gas or hydrocarbon flow rate.								
	Section C: Facility NESHAPS Subpart HH/HHH status								
	Subject to Subpart HH - applies, but is exempt through < 1 tpy benzene exemption								
Affected facility	Subject to Subpart HHH								
status:	\boxtimes Not Subject \boxtimes < 10/25 TPY								
(choose only one)	because: Affected facility exclusively handles black oil								
	The facility wide actual annual average NG throughput is < 650 thousand								
	scf/day and facility wide actual annual average hydrocarbon liquid is < 250 bpd								
	No affected source is present								

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

		Manufact	urer and Model	TBD, 150) MMscfd	
		Max Dry Gas Fl	ow Rate (MMscf/day)	15	50	
		Design Heat	Input (MMBtu/hr)	1.5		
General Glycol Dehydration Unit Data		Design Typ	be (DEG or TEG)	TE	EG	
		Sour	rce Status ²	Ν	S	
		Date Installed/	Modified/Removed ³	May	2017	
		Regenerator	Still Vent APCD ⁴	F	L	
		Fuel H	IV (Btu/scf)	1,2	31	
		H ₂ S Cont	ent (gr/100 scf)	()	
		Opera	tion (hrs/yr)	8,7	60	
Source ID #1	Vent	Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr	
16E		AP	NO _X	0.15	0.64	
			AP	СО	0.12	0.54
	Reboiler Vent	AP	VOC	0.0081	0.035	
		AP	SO_2	0.00088	0.0039	
		AP	PM10	0.011	0.049	
		GRI-GLYCalc TM	VOC	0.33	1.43	
		GRI-GLYCalc [™]	Benzene	0.023	0.10	
14E	Glycol Regenerator	GRI-GLYCalc [™]	Ethylbenzene	0.0033	0.014	
1712	Still Vent	GRI-GLYCalc [™]	Toluene	0.053	0.23	
		GRI-GLYCalc [™]	Xylenes	0.012	0.051	
		GRI-GLYCalc [™]	n-Hexane	0.0083	0.036	
		GRI-GLYCalc TM	VOC	0.98	4.28	
		GRI-GLYCalc [™]	Benzene	0.0019	0.0085	
15E	Flash Gas	GRI-GLYCalc [™]	Ethylbenzene	0.00010	0.00040	
151	Tank Vent	GRI-GLYCalc [™]	Toluene	0.0025	0.011	
		GRI-GLYCalc [™]	Xylenes	0.00020	0.00080	
		GRI-GLYCalc [™]	n-Hexane	0.022	0.094	

Manufacturer and Model Max Dry Gas Flow Rate (mmscf/day Design Heat Input (mmBtu/hr)		urer and Model	TBD, 150) MMscfd	
		Max Dry Gas Fl	ow Rate (mmscf/day)	1:	50
		Design Heat	Input (mmBtu/hr)	1.5	
		Design Typ	be (DEG or TEG)	TI	EG
	l Glycol	Sou	rce Status ²	N	IS
•	tion Unit ata	Date Installed/	Modified/Removed ³	May	2017
		Regenerator	Still Vent APCD ⁴	F	L
		Fuel H	IV (Btu/scf)	1,2	231
		H ₂ S Cont	ent (gr/100 scf)		0
		Opera	tion (hrs/yr)	8,7	760
Source ID #1	Vent	Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr
		AP	NO _X	0.15	0.64
		AP	СО	0.12	0.54
19E	Reboiler Vent	AP	VOC	0.0081	0.035
		AP	SO ₂	0.00088	0.0039
		AP	PM_{10}	0.011	0.049
		GRI-GLYCalc [™]	VOC	0.33	1.43
		GRI-GLYCalc [™]	Benzene	0.023	0.10
17E	Glycol Regenerator	GRI-GLYCalc [™]	Ethylbenzene	0.0033	0.014
172	Still Vent	GRI-GLYCalc [™]	Toluene	0.053	0.23
		GRI-GLYCalc [™]	Xylenes	0.012	0.051
		GRI-GLYCalc [™]	n-Hexane	0.0083	0.036
		GRI-GLYCalc [™]	VOC	0.98	4.28
		GRI-GLYCalc [™]	Benzene	0.0019	0.0085
18E	Flash Gas	GRI-GLYCalc TM	Ethylbenzene	0.00010	0.00040
1012	Tank Vent	GRI-GLYCalc TM	Toluene	0.0025	0.011
		GRI-GLYCalc TM	Xylenes	0.00020	0.00080
		GRI-GLYCalc [™]	n-Hexane	0.022	0.094

		Manufacturer and Model		TBD, 150) MMscfd
		Max Dry Gas Fl	ow Rate (mmscf/day)	15	50
		Design Heat	Input (mmBtu/hr)	1.5	
		Design Typ	e (DEG or TEG)	TE	EG
	l Glycol	Sou	rce Status ²	Ν	S
	tion Unit ata	Date Installed/	Modified/Removed ³	May	2017
		Regenerator	Still Vent APCD ⁴	F	L
		Fuel H	IV (Btu/scf)	1,2	.31
		H ₂ S Cont	ent (gr/100 scf)	()
		Opera	tion (hrs/yr)	8,7	60
Source ID #1	Vent	Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr
		AP	NO _X	0.15	0.64
		AP	СО	0.12	0.54
22E	Reboiler Vent	AP	VOC	0.0081	0.035
		AP	SO_2	0.00088	0.0039
		AP	PM_{10}	0.011	0.049
		GRI-GLYCalc [™]	VOC	0.33	1.43
		GRI-GLYCalc [™]	Benzene	0.023	0.10
20E	Glycol Regenerator	GRI-GLYCalc [™]	Ethylbenzene	0.0033	0.014
2012	Still Vent	GRI-GLYCalc [™]	Toluene	0.053	0.23
		GRI-GLYCalc [™]	Xylenes	0.012	0.051
		GRI-GLYCalc [™]	n-Hexane	0.0083	0.036
		GRI-GLYCalc TM	VOC	0.98	4.28
		GRI-GLYCalc TM	Benzene	0.0019	0.0085
21E	Flash Gas	GRI-GLYCalc TM	Ethylbenzene	0.00010	0.00040
2112	Tank Vent	GRI-GLYCalc TM	Toluene	0.0025	0.011
		GRI-GLYCalc [™]	Xylenes	0.00020	0.00080
		GRI-GLYCalc [™]	n-Hexane	0.022	0.094

1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Unit Data Sheet shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

- 2. Enter the Source Status using the following codes:
 - NS Construction of New Source MS
- ES **Existing Source**
- Modification of Existing Source
- RS Removal of Source

- 3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.
- 4. Enter the Air Pollution Control Device (APCD) type designation using the following codes:

	NA	None	CD	Condenser
	FL	Flare	CC	Condenser/Combustion Combination
	ТО	Thermal Oxidizer		
5.	Enter the Pot	ential Emissions Data Reference designation	on using the	e following codes:
	MD	Manufacturer's Data	AP	AP-42

- MDManufacturer's DataAFAF-42GRGRI-GLYCalcTMOTOther _____ (please list)
- 6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalcTM analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

Generator

Source Identification Number ¹		1	3E				
Engine Manufacturer and Model		Power Solutions Inc. 21.9L TCAC HO					
Manufactu	rer's Rated bhp/rpm	649 bhp/	/1800 rpm				
So	urce Status ²	Ν	NS				
Date Installe	d/Modified/Removed ³	May	2017				
Engine Manufact	ured/Reconstruction Date4	Post-Jul	y 1, 2007				
Is this a Certified	Stationary Spark Ignition to 40CFR60 Subpart JJJJ?	Y	/es				
	Engine Type ⁶	RI	B4S				
	APCD Type ⁷	Certified emissions	to meet				
Engine,	Fuel Type ⁸	F	RG				
Fuel and Combustion	H ₂ S (gr/100 scf)		0				
Data	Operating bhp	649					
	BSFC (Btu/hp-hr)	8,515					
	Fuel throughput (ft ³ /hr)	4,490					
	Fuel throughput (MMft ³ /yr)	39	9.33				
	Operation (hrs/yr)	8,	760				
Reference ⁹	Potential Emissions ¹⁰	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
MD	NO _X	1.43	6.27				
MD	СО	2.86	12.53				
MD	VOC	1.00	4.39				
AP	SO ₂	0.0032	0.014				
AP	PM10	0.11	0.47				
AP	Formaldehyde	0.11	0.50				
							<u> </u>

NATURAL GAS COMPRESSOR/GENERATOR ENGINE DATA SHEET

- 1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2. Enter the Source Status using the following codes:
 - NS Construction of New Source (installation)
 - MS Modification of Existing Source
- ES Existing Source
- RS Removal of Source

- 3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.
- 4. Enter the date that the engine was manufactured, modified or reconstructed.
- 5. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- 6. Enter the Engine Type designation(s) using the following codes:
 - LB2S Lean Burn Two Stroke RB4S Rich Burn Four Stroke
 - LB4S Lean Burn Four Stroke
- 7. Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

	PSC	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction		Ignition Retard Screw-in Precombustion Chambers Low Emission Combustion Lean Burn & Selective Catalytic Reduction
8.	Enter the F	uel Type using the following codes:		
	PQ	Pipeline Quality Natural Gas	RG	Raw Natural Gas
9.	Enter the	Potential Emissions Data Reference designation usi	ing the fo	llowing codes. Attach all referenced data to t

9. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this *Compressor/Generator Data Sheet(s)*.

MD	Manufacturer's Data	AP	AP-42	
GR	GRI-HAPCalc TM	OT	Other	(please list)

10. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

NUMBER STATES - DUBDY NO	UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2014 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT OF 1990			OFFICE OF TRANS AND AIR QU ANN ARBOR, MICH	ALITY
	er Solutions International, Inc. Manufacturer or Importer) 21.9NGP-012	Effective Date:10/28/2013Expiration Date:12/31/2014	Byron J, Bunker Complian	r, Division Director nce Division	Issue Date: 10/28/2013 Revision Date: N/A
Manufacturer: Power Solution Engine Family: EPSIB21.9N Certificate Number: EPSIB22 Certification Type: Mobile at Fuel: LPG/Propane Natural Gas (CNG/LN Emission Standards : CO (g HC + NOx (g/kW-hr)) NMHC + NOx (g/kW-hr)) NMHC + NOx (g/kW-hr)) NMHC + NOx (g/kW-hr)) CO (g/Hp-hr): 2 VOC (g/Hp-hr): 0.7 Emergency Use Only : N	GP 21.9NGP-012 and Stationary G) y/kW-hr) : 4.4	UNITED STA	758		

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 1048, 40 CFR Part 60, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 1048, 40 CFR Part 60 and produced in the stated model year.

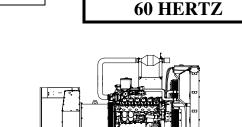
This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 1048, 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 1048, 40

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 1048, 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 60.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

SENTRY-PRO POWER SYSTEMS

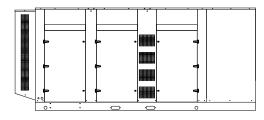
By Gillette Generators, Inc.


LIQUID COOLED NAT. GAS ENGINE GENERATOR SET

KW POWER RATINGS RANGE FOR 60 HZ

Model		STANDBY 130°C RISE
	HZ	N.G.
SP-4250-60 HERTZ	60	425

STANDARD FEATURES


- All generator sets are USA prototype built and thoroughly tested. Production models are USA factory built and 100% load tested.
- All generator sets meet NFPA-110. Level 1, when equipped with the necessary accessories and installed per NFPA standards.
- All generators are UL-1446 certified.
- Solid state, frequency compensated voltage regulation is standard on all gen-sets.
- Electronic engine governor incorporates a throttle body actuator, which allows precise isochronous frequency regulation.
- A brushless rotating field generator design with shunt wound excitation system and connectable at a broad range of 3 phase voltages.
- SENTINEL "ULTIMATE" digital controller allows programming to basic engine functions in the field. Controller has stop-manual-auto mode and engine shutdowns, signaled by full text LCD indicators.
- Heavy Duty Main Line Circuit Breaker is standard on all gen-sets.
- All generator set control systems components and accessories provide a 1-year limited warranty at time of initial start-up. Generators and engines are governed by separate warranties.
- "OPEN" Generator Sets: There is no enclosure, so gen-set must be placed within a weather protected area, un-inhabited by humans or animals, with proper ventilation. Muffler and flexible exhaust hose are not supplied, as installation requirements are not known. However, these two items are available as optional equipment.
- "LEVEL 2" Aluminum Housing: Full weather protection and superior sound attenuation for specific low noise applications. <u>Critical grade muffler is standard.</u>

MODEL

SP-4250

"OPEN" GEN-SET

"LEVEL 2" HOUSED GEN-SET

GENERATOR RATINGS					NATURAL GAS FUEL			
GENERATOR MODEL	VOL	TAGE	РН	HZ	130°C RISE STANDBY RATING		POWER LEAD CONNECTIONS	
	L-N	L-L		112	KW/KVA	AMP		
SP-4250-3-2	120	208	3	60	425/531	1476	12 LEAD LOW WYE	
SP-4250-3-3	120	240	3	60	425/531	1280	12 LEAD HIGH DELTA	
SP-4250-3-4	277	480	3	60	425/531	640	12 LEAD HIGH WYE	
SP-4250-3-5	127	220	3	60	425/531	1396	12 LEAD LOW WYE	
SP-4250-3-16	346	600	3	60	425/531	512	4 LEAD WYE 3PH	

RATINGS: All three phase gen-sets are 12 lead windings, rated at .8 power factor. 130°C "STANDBY RATINGS" are strictly for gen-sets that are used for back-up emergency power to a failed normal utility power source. This standby rating allows varying loads, with no overload capability, for the entire duration of utility power outage. All gen-set power ratings are based on temperature rise measured by resistance method as defined by MIL-STD 705C and IEEE STD 115, METHOD 6.4.4. All generators have class H (180°C) insulation system on both rotor and stator windings. All factory tests and KW/KVA charts shown above are based on 130°C (standby) R/R winding temperature, within a maximum 40°C ambient condition. Generators operated at standby power ratings must not exceed the temperature rise limitation for class H insulation system, as specified in NEMA MG1-22.40. Specifications & ratings are subject to change without prior notice.

APPLICATION AND ENGINEERING DATA FOR MODEL SP-4250-60 HZ

GENERATOR SPECIFICATIONS

Manufacturer	erators
Model & Type	
ExciterBrushless, shunt	
Voltage Regulator Solid State, HZ	
Voltage Regulation ¹ / ₂ %, No load to fu	ull load
FrequencyField convertible, 60 HZ to	50 HZ
Frequency Regulation ¹ /2% (¹ / ₂ cycle, no load to fu	
Unbalanced Load Capability 100% of standb	y amps
Total Stator and Load InsulationClass H,	180°C
Temperature Rise 130°C R/R, standby rating @ 40°	C amb.
3 Ø Motor Starting @ 30% Voltage Dip (208-240V)86	60 kVA
3 Ø Motor Starting @ 30% Voltage Dip (480V)110	00 kVA
Bearing1, Pre-lubed and	sealed
CouplingDirect flexib	ole disc
Total Harmonic Distortion Max 31/2% (MIL-STE)705B)
Telephone Interference Factor Max 50 (NEMA M	
Deviation Factor Max 5% (MIL-STD	
Ltd. Warranty Period 24 Months from date of star	rt-up or
	occur.

GENERATOR FEATURES

- World Renown Marathon Electric Generator having UL-1446 certification.
- Full generator protection with **SENTINEL "ULTIMATE"** controller, having UL-508 certification.
- Automatic voltage regulator with over-excitation, underfrequency compensation, under-speed protection, and EMI filtering. Entire solid-state board is encapsulated for moisture protection.
- Generator power ratings are based on temperature rise, measured by resistance method, as defined in MIL-STD 705C and IEEE STD 115, Method 6.4.4.
- Power ratings will not exceed temperature rise limitation for class H insulation as per NEMA MG1-22.40.
- Insulation resistance to ground, exceeds 1.5 meg-ohm.
- Stator receives 2000 V. hi-potential test on main windings, and rotor windings receive a 1500 V. hi-potential test, as per MIL-STD 705B.
- Full amortisseur windings with UL-1446 certification.
- Complete engine-generator torsional acceptance, confirmed during initial prototype testing.
- Full load testing on all engine-generator sets, before shipping.
- Self ventilating and drip-proof & revolving field design

ENGINE SPECIFICATIONS AND APPLICATIONS DATA

ENGINE

Manufacturer	Power Solutions Inc. (PSI)
Model and Type Heavy De	uty, 21.9LTCAC HO, 4 cycle
AspirationTurboo	charged & Charge Air Cooled
Cylinder Arrangement	12 Cylinders, Vee
Displacement Cu. In. (Liters)	
Bore & Stroke In. (Cm.)	
Compression Ratio	
Main Bearings & Style	14, Precision Half-Shell
Cylinder Head	Cast Iron
Pistons	Cast Aluminum
Crankshaft	Forged Steel
Exhaust Valve	Inconel, A193
Governor	Electronic
Frequency Reg. (no load-full load).	Isochronous
Frequency Reg. (steady state)	± 1/4%
Air Cleaner	
Engine Speed	
Piston Speed, ft/min (m./min)	
Max Power, bhp (kwm) Standby/NG	G649 (484)
Ltd. Warranty Period 12 Mon	

FUEL SYSTEM

Туре	NAT. GAS, Vapor Withdrawal
Fuel Pressure (kpa), in. H ₂ O	
Secondary Fuel Regulator	NG Vapor System
Auto Fuel Lock-Off Solenoid	Standard on all sets
Fuel Supply Inlet Line	

FUEL CONSUMPTION

NAT. GAS: FT ³ /HR (M ³ /HR)	STANDBY
100% LOAD	4490 (127.0)
75% LOAD	3500 (99.00)
50% LOAD	2456 (69.54)
NG = 1000 BTU X FT ³ /HR =	= Total BTU/HR

OIL SYSTEM

Туре	Full Pressure
Oil Pan Capacity qt. (L)	
Oil Pan Cap. W/ filter qt. (L)	
Oil Filter	

ELECTRICAL SYSTEM

Ignition SystemElectronic Eng. Alternator/Starter: 24 VDC, negative ground, 45 amp/hr.

Recommended battery to $-18^{\circ}C$ (0° F):(2) 12 VDC, BCI# 31, Max. Dimensions: 14"lg x 6 3/4" wi x 10" hi, with standard round posts. Min output 1000 CCA. Battery tray (max. dim. at 15"lg x 7"wi). This model has (2) battery trays, (2) hold down straps, (2) sets of battery cables, and (1) battery charger. Installation of (2) 12VDC starting batteries connected in series for 24VDC output is required, with possible higher AMP/HR rating, as described above, if the normal environment temperature averages -13° F (-25°C) or cooler.

APPLICATION AND ENGINEERING DATA FOR MODEL SP-4250-60 HZ

COOLING SYSTEM

Type of System Pressurized, cl	osed recovery
Coolant PumpPre-lubricate	d, self-sealing
Cooling Fan Type (no. of blades)	Pusher (8)
Fan Diameter inches (mm)	52" (1321)
Ambient Capacity of Radiator °F (°C)	125 (51.6)
Engine Jacket Coolant Capacity Gal (L)	14 (53.0)
Radiator Coolant Capacity Gal. (L)	
Maximum Restriction of Cooling Air Intake	
and discharge side of radiator in. H ₂ 0 (kpa)	0.5 (.125)
Water Pump Capacity gpm (L/min)	
Heat Reject Coolant: Btu/min (kw)	25,760 (453)
Low Radiator Coolant Level Shutdown	Standard
Note: Coolant temp. shut-down switch setting at 230°F (110°C)	with 50/50
(water/antifreeze) mix.	

AIR REQUIREMENTS

Combustion Air, cfm (m ³ /min)	
Radiator Air Flow cfm (m ³ /min)	
Heat Rejected to Ambient:	
Engine: kw (btu/min)	
Alternator: kw (btu/min)	

EXHAUST SYSTEM

Exhaust Outlet Size	(2) 5"
Max. Back Pressure, in. hg (KPA)	
Exhaust Flow, at rated kw: cfm (m ³ /min)	
Exhaust Temp., at rated kw: °F (°C)	1382 (750)
Engines are EPA certified for Natural Gas.	

SOUND LEVELS MEASURED IN dB(A)

	Open	Level 2
	Set	Encl.
Level 2, Critical Silencer		
Level 3, Hospital Silencer	91	

Note: Open sets (no enclosure) has (2) optional silencer system choices due to unknown job-site applications. Level 2 enclosure has installed critical silencer with upgrade to hospital silencer. Sound tests are averaged from several test points and taken at 23 ft. (7 m) from source of noise at normal operation.

DERATE GENERATOR FOR ALTITUDE

3% per 1000 ft.(305m) above 3000 ft. (914m) from sea level

DERATE GENERATOR FOR TEMPERATURE

2% per 10°F(5.6°C) above 85°F (29.4°C)

DIMENSIONS AND WEIGHTS

	Open	Level 2
	Set	Enclosure
Length in (cm)		
Width in (cm)		
Height in (cm)		
3 Ø Net Weight lbs (kg)	9550 (4332)	
3 Ø Ship Weight lbs (kg).	9950 (4513)	

SENTINEL ULTIMATE DIGITAL MICROPROCESSOR CONTROLLER

SENTINEL ULTIMATE

The "**Ultimate**" controller is an auto start mains (utility) failure module for single gen-set applications. This controller includes a backlit LCD display which <u>continuously</u> displays the status of the engine and generator at all times.

The "**Ultimate**" controller will also monitor speed, frequency, voltage, current, oil pressure, coolant temp., and fuel levels. These modules have been designed to display warning and shut down status. It also includes: (11) configurable inputs \bullet (8) configurable outputs \bullet voltage monitoring \bullet mains (utility) failure detection \bullet (250) event logs \bullet configurable timers \bullet automatic shutdown or warning during fault detection \bullet remote start (on load) \bullet engine preheat \bullet advanced metering capability \bullet hour meter \bullet text LCD displays \bullet protected solid state outputs \bullet test buttons for: stop/reset \bullet manual mode \bullet auto mode \bullet lamp test \bullet start button \bullet power monitoring (kWh, kVAr, kVAh, kVArh)

This controller includes the "**Ultimate**" in expansion features including RS232, RS484 (using MODBUS-RTU/TCP), direct USB connection with PC, expansion optioned using DSENet for remote annunciation and remote relay interfacing for a distance of up to 3300FT. The controller software is freely downloadable from the internet and allows monitoring with direct USB cable, LAN, or by internet via the built in web interface.

Further expansion is available by adding the optional "WebNet" gateway interface module. This device will allow comprehensive monitoring of the generator via the cloud including identification, location, and status. Some advantages of this module include: reduced site visits and maintenance costs • remote fuel management • fault analysis • asset tracking • automatic system alerts • maximized system up-time.

STANDARD AND OPTIONAL FEATURES FOR MODEL SP-4250-60 HZ

STANDARD FEATURES

CONTROL PANEL:

SENTINEL "ULTIMATE" digital microprocessor with logic allows programming in the field. Controller has:

- STOP-MANUAL-AUTO modes and automatic engine shutdowns, signaled by full text LCD indicators:
- Low oil pressure
- Engine fail to startEngine over speed

• Over & under voltage

- High engine tempLow Radiator Level
- Engine under speed
- Three auxiliary alarms
- Battery fail alarm

Also included is tamper-proof engine hour meter

ENGINE:

Full flow oil filter • Air filter • Oil pump • Solenoid type starter motor • Hi-temp radiator • Jacket water pump

- Thermostat Pusher fan and guard Exhaust manifold
- Residential Silencer 24 VDC battery charging alternator

• Flexible exhaust connector • "Isochronous" duty, electronic governor • Secondary dry fuel regulator • Dry fuel lock-off solenoid • Vibration isolators • Closed coolant recovery system with 50/50 water to anti-freeze mixture

AC GENERATOR SYSTEM:

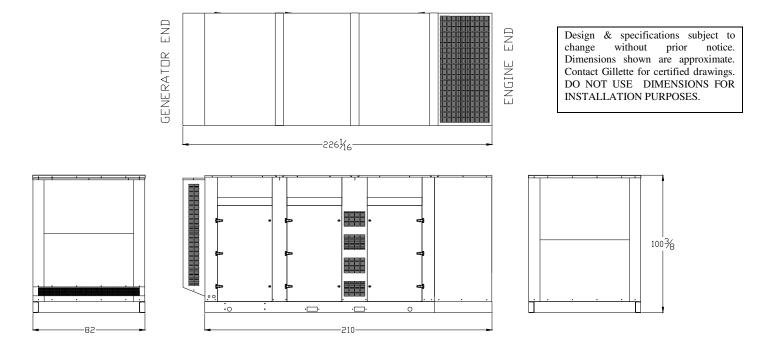
AC generator • Shunt excited • Brushless design • Circuit Breaker installed and wired to gen-set • Direct connection to engine with flex disc • Class H, 180°C insulation • Self ventilated • Drip proof construction • UL Certified

VOLTAGE REGULATOR:

¹/₂% Voltage regulation • EMI filter • Under-speed protection • Over-excitation protection • total encapsulation

DC ELECTRICAL SYSTEM:

Battery tray • Battery cables • Battery hold down straps
2-stage battery float charger with maintaining & recharging automatic charge stages


WEATHER/SOUND PROOF ALUMINUM HOUSING CORROSION RESISTANT PROTECTION CONSISTING OF:

- 9 Heated And Agitated Wash Stages.
- Zinc Phosphate Etching-coating Stage
- Final Baked On Enamel Powder Coat
- 18/8 Stainless Steel Hardware

ACCESSORY ITEMS

- □ Engine Coolant Heater with automatic 80°F on, 100°F off, thermostat
- □ Starting Battery Heater Blanket with automatic 60°F on, 80°F off, thermostat
- □ Battery Charger Upgrade, float type, 24 VDC at max. charge, with ammeter/voltmeter on charger.
- Exhaust Silencer Upgrade, Hospital Grade

- ☐ All brushed type 304 stainless steel weather and sound deadening housing for coastal areas.
- □ DSE WebNet Gateway expansion module will allow communications with a host server via Ethernet and the DSE cloud connection for mapping static locations, real time instrumentation, control event log tables, and automatic system alerts via email.
- ☐ Remote Annunciator for up to (10) reporting functions. An additional relay expansion module, plus a second Annunciator adds another (10) reporting functions.

4

Storage Tanks

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name
Production Storage Tanks	Condensate Tank 1
 Tank Equipment Identification No. (as assigned on Equipment List Form) T01 	 Emission Point Identification No. (as assigned on Equipment List Form) 23E
5. Date of Commencement of Construction (for existing	tanks)
6. Type of change 🛛 New Construction 🗌 I	New Stored Material Other Tank Modification
7. Description of Tank Modification (if applicable)	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be
7C. Provide any limitations on source operation affecting variation, etc.): None	emissions, any work practice standards (e.g. production
II. TANK INFORM	ATION (required)
height.	the internal cross-sectional area multiplied by internal 0 barrel
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
12	20
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
19	10
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
1	10
liquid levels and overflow valve heights.	is also known as "working volume" and considers design
38	0 barrel

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
1,533,000	4,200
14. Number of Turnovers per year (annual net throughpu	·
	96.05
15. Maximum tank fill rate (gal/min) TBD	
16. Tank fill method Submerged	Splash 🗌 Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Ta	
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
 18. Type of tank (check all that apply): 	double deck roof
 Internal Floating Roof vertical column su Variable Vapor Space lifter roof Pressurized spherical cylindrical Underground Other (describe) 	diaphragm
	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	
Riveted Gunite lined Epoxy-coated	d rivets Other (describe)
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted
21. Shell Condition (if metal and unlined):	ust 🗌 Not applicable
22A. Is the tank heated? YES NO	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to t	ank.
23. Operating Pressure Range (psig): to	
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft)	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Tail	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resil	
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):
25E. Is the Floating Roof equipped with a weather shie	eld? YES NO

25F. Describe deck fittings; indicat	te the number of eac	ch type of fitting:	
	ACCESS	S НАТСН	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
	AUTOMATIC GAL	JGE FLOAT WELL	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
	COLUM	N WELL	1
BUILT-UP COLUMN - SLIDING			PIPE COLUMN – FLEXIBLE
COVER, GASKETED:	COVER, UNGASH		FABRIC SLEEVE SEAL:
		R WELL	-
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:
	AGRETED.		SEIDING COVEN, CNGASKETED.
	GAUGE-HATCH	SAMPLE PORT	
SLIDING COVER, GASKETED:		SLIDING COVER,	, UNGASKETED:
		HANGER WELL	
			SAMPLE WELL-SLIT FABRIC SEAL
ACTUATION, GASKETED:	ACTUATION, UN		(10% OPEN AREA)
	1		
		BREAKER	
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECH	ANICAL ACTUATION, UNGASKETED:
	BIM	VENT	
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION. UNGASKETED:
		1 1 1 1	
	DECK DRAIN (3-I	NCH DIAMETER)	
OPEN:		90% CLOSED:	
		1 1 1 1	
		DRAIN	
1-INCH DIAMETER:	0100		
OTHER (DESCI	RIBE, ATTACH ADI	DITIONAL PAGES I	IF NECESSARY)

26. Complete the following section for Internal Float	ting Roof Tanks 🗌 Does Not Apply
26A. Deck Type: Deck Type: Welded	ł
26B. For Bolted decks, provide deck construction	n:
26C. Deck seam:	
Continuous sheet construction 5 feet wide	
Continuous sheet construction 7 feet wide	
□ Continuous sheet construction 5 × 7.5 feet w □ Continuous sheet construction 5 × 12 feet w	
Other (describe)	
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	
	ional if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in t	this section are based.
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(f	ft²·day))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (opti	tional if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be	e stored in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

Maximum Vapor Press 39F. True (psia)	sure				
39G. Reid (psia)					
Months Storage per Ye	ear				
39H. From					
39I. To					
VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply): Does Not Apply					
		y as apply):	Does No	it Apply	
Carbon Adsorp	otion ¹				
Condenser ¹					
Conservation V					
Vacuum S	•		Pressure Se	etting	
Emergency Re	lief Valve (psig)				
🗌 Inert Gas Blank	ket of				
Insulation of Ta	ank with				
🗌 Liquid Absorpti	on (scrubber)1				
Refrigeration of	f Tank				
Rupture Disc (p	osig)				
Vent to Incinera	ator ¹				
Other ¹ (describ	e): Vapor Recovery U	nit and vapor	rs recycled ba	ack into system	
```	priate Air Pollution Cont	-	-	·	
· · · · · · · · · · · · · · · · · · ·	n Rate (submit Test Da			ar alaawhara in tha anr	liestion
				or eisewhere in me aor	DICATION
	1	1	1		
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin	g Loss	Annual Loss (Ib/yr)	Estimation Method ¹
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

## Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

#### I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	2. Tank Name
Production Storage Tanks	Condensate Tank 2
<ol> <li>Tank Equipment Identification No. (as assigned on Equipment List Form) T02</li> </ol>	<ul> <li>Emission Point Identification No. (as assigned on Equipment List Form) 24E</li> </ul>
5. Date of Commencement of Construction (for existing tanks)	
6. Type of change 🛛 New Construction 🗌 I	New Stored Material Other Tank Modification
7. Description of Tank Modification (if applicable)	
7A. Does the tank have more than one mode of operation? (e.g. Is there more than one product stored in the tank?)	
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).	
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): None	
II. TANK INFORMATION (required)	
<ol> <li>Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.</li> <li>400 barrel</li> </ol>	
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
12	20
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
19	10
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
1	10
<ol> <li>Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights.</li> <li>380 barrel</li> </ol>	
	Udaliti

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)	
1,533,000	4,200	
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)		
96.05		
15. Maximum tank fill rate (gal/min) TBD		
16. Tank fill method Submerged	Splash 🗌 Bottom Loading	
17. Complete 17A and 17B for Variable Vapor Space Tank Systems 🛛 Does Not Apply		
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year	
<ul> <li>18. Type of tank (check all that apply):</li> <li> M Fixed Roof X vertical horizontal flat roof cone roof X dome roof other (describe) I External Floating Roof pontoon roof double deck roof I Domed External (or Covered) Floating Roof</li></ul>		
<ul> <li>Internal Floating Roofvertical column supportself-supporting</li> <li>Variable Vapor Spacelifter roofdiaphragm</li> <li>Pressurizedsphericalcylindrical</li> <li>Underground</li> <li>Other (describe)</li> </ul>		
III. TANK CONSTRUCTION & OPERATION INFORMATION (optional if providing TANKS Summary Sheets)		
19. Tank Shell Construction:		
Riveted Gunite lined Epoxy-coated	d rivets Other (describe)	
20A. Shell Color 20B. Roof Color	r 20C. Year Last Painted	
21. Shell Condition (if metal and unlined):		
22A. Is the tank heated? YES NO		
22B. If YES, provide the operating temperature (°F)		
22C. If YES, please describe how heat is provided to tank.		
23. Operating Pressure Range (psig): to		
24. Complete the following section for Vertical Fixed Roof Tanks		
24A. For dome roof, provide roof radius (ft)		
24B. For cone roof, provide slope (ft/ft)		
25. Complete the following section for Floating Roof Tanks		
25A. Year Internal Floaters Installed:		
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resil		
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO	
25D. If YES, how is the secondary seal mounted? (check one) Shoe Rim Other (describe):		
25E. Is the Floating Roof equipped with a weather shie	eld?  YES  NO	

25F. Describe deck fittings; indicate the number of each type of fitting:				
	ACCESS	S НАТСН		
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	AUTOMATIC GAL	JGE FLOAT WELL		
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	COLUM	N WELL	1	
BUILT-UP COLUMN - SLIDING			PIPE COLUMN – FLEXIBLE	
COVER, GASKETED:	COVER, UNGASH		FABRIC SLEEVE SEAL:	
		R WELL	-	
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:	
	AGRETED.		SEIDING COVEN, CNGASKETED.	
	GAUGE-HATCH	SAMPLE PORT		
SLIDING COVER, GASKETED:		SLIDING COVER,	, UNGASKETED:	
		HANGER WELL		
			SAMPLE WELL-SLIT FABRIC SEAL	
ACTUATION, GASKETED:	ACTUATION, UN		(10% OPEN AREA)	
	1			
		BREAKER		
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECH	ANICAL ACTUATION, UNGASKETED:	
	BIM	VENT		
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION. UNGASKETED:	
		1 1 1 1		
	DECK DRAIN (3-I	NCH DIAMETER)		
OPEN:		90% CLOSED:		
		1 1 1 1		
STUB DRAIN				
1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				

26. Complete the following section for Internal Float	ting Roof Tanks 🗌 Does Not Apply			
26A. Deck Type: Deck Type: Welded	ł			
26B. For Bolted decks, provide deck construction	n:			
26C. Deck seam:				
Continuous sheet construction 5 feet wide				
Continuous sheet construction 7 feet wide				
Continuous sheet construction 5 × 7.5 feet wide Continuous sheet construction 5 × 12 feet wide				
Other (describe)				
26D. Deck seam length (ft)	26E. Area of deck (ft ² )			
For column supported tanks:	26G. Diameter of each column:			
26F. Number of columns:				
	ional if providing TANKS Summary Sheets)			
27. Provide the city and state on which the data in t	this section are based.			
28. Daily Average Ambient Temperature (°F)				
29. Annual Average Maximum Temperature (°F)				
30. Annual Average Minimum Temperature (°F)				
31. Average Wind Speed (miles/hr)				
32. Annual Average Solar Insulation Factor (BTU/(f	ft²·day))			
33. Atmospheric Pressure (psia)				
V. LIQUID INFORMATION (opti	tional if providing TANKS Summary Sheets)			
34. Average daily temperature range of bulk liquid:				
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)			
39. Provide the following for each liquid or gas to be	e stored in tank. Add additional pages if necessary.			
39A. Material Name or Composition				
39B. CAS Number				
39C. Liquid Density (lb/gal)				
39D. Liquid Molecular Weight (lb/lb-mole)				
39E. Vapor Molecular Weight (lb/lb-mole)				

Maximum Vapor Press 39F. True (psia)	sure					
39G. Reid (psia)						
Months Storage per Ye	ear					
39H. From						
39I. To						
VI. EMISSIONS AND CONTROL DEVICE DATA (required)						
	Devices (check as man	y as apply):	Does No	it Apply		
Carbon Adsorp	otion ¹					
Condenser ¹						
Conservation V						
Vacuum S	•		Pressure Se	etting		
Emergency Re	lief Valve (psig)					
🗌 Inert Gas Blank	ket of					
Insulation of Ta	ank with					
🗌 Liquid Absorpti	on (scrubber)1					
Refrigeration of	f Tank					
Rupture Disc (p	osig)					
Vent to Incinera	ator ¹					
Other ¹ (describ	e): Vapor Recovery U	nit and vapor	rs recycled ba	ack into system		
```	priate Air Pollution Cont	-	-	·		
· · · · · · · · · · · · · · · · · · ·	n Rate (submit Test Da			ar alaawhara in tha anr	liestion	
				or eisewhere in me aor	DICATION	
	1	1	1			
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin	g Loss	Annual Loss (Ib/yr)	Estimation Method ¹	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss		
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1. Bulk Storage Area Name	2. Tank Name			
Production Storage Tanks	Condensate Tank 3			
 Tank Equipment Identification No. (as assigned on Equipment List Form) T03 	 Emission Point Identification No. (as assigned on Equipment List Form) 25E 			
5. Date of Commencement of Construction (for existing	tanks)			
6. Type of change 🛛 New Construction 🗌 New Stored Material 🗌 Other Tank Modification				
7. Description of Tank Modification (if applicable)				
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)			
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).				
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. productio variation, etc.): None				
II. TANK INFORM	ATION (required)			
height.	the internal cross-sectional area multiplied by internal 0 barrel			
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)			
12	20			
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)			
19	10			
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)			
1	10			
 Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights. 				
38	0 barrel			

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)				
1,533,000	4,200				
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)					
96.05					
15. Maximum tank fill rate (gal/min) TBD					
16. Tank fill method Submerged	Splash 🗌 Bottom Loading				
17. Complete 17A and 17B for Variable Vapor Space Ta					
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year				
 18. Type of tank (check all that apply): ∑ Fixed Roof X vertical horizontal flat roof cone roof X dome roof other (describe) ☐ External Floating Roof pontoon roof double deck roof ☐ Domed External (or Covered) Floating Roof					
 Internal Floating Roof vertical column su Variable Vapor Space lifter roof Pressurized spherical cylindrical Underground Other (describe) 	diaphragm				
	ATION (optional if providing TANKS Summary Sheets)				
19. Tank Shell Construction:					
Riveted Gunite lined Epoxy-coated	d rivets Other (describe)				
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted				
21. Shell Condition (if metal and unlined):	ust 🗌 Not applicable				
22A. Is the tank heated? YES NO					
22B. If YES, provide the operating temperature (°F)					
22C. If YES, please describe how heat is provided to tank.					
23. Operating Pressure Range (psig): to					
24. Complete the following section for Vertical Fixed Roof Tanks					
24A. For dome roof, provide roof radius (ft)					
4B. For cone roof, provide slope (ft/ft)					
25. Complete the following section for Floating Roof Tanks					
25A. Year Internal Floaters Installed:					
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resil					
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO				
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):				
25E. Is the Floating Roof equipped with a weather shie	eld? YES NO				

25F. Describe deck fittings; indicate the number of each type of fitting:				
	ACCESS	S НАТСН		
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	AUTOMATIC GAL	JGE FLOAT WELL		
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	COLUM	N WELL	1	
BUILT-UP COLUMN - SLIDING			PIPE COLUMN – FLEXIBLE	
COVER, GASKETED:	COVER, UNGASH		FABRIC SLEEVE SEAL:	
		R WELL	-	
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:	
	AGRETED.		SEIDING COVEN, CNGASKETED.	
	GAUGE-HATCH	SAMPLE PORT		
SLIDING COVER, GASKETED:		SLIDING COVER,	, UNGASKETED:	
		HANGER WELL		
			SAMPLE WELL-SLIT FABRIC SEAL	
ACTUATION, GASKETED:	ACTUATION, UN		(10% OPEN AREA)	
	1			
		BREAKER		
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECH	ANICAL ACTUATION, UNGASKETED:	
	BIM	VENT		
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION. UNGASKETED:	
		1 1 1 1		
	DECK DRAIN (3-I	NCH DIAMETER)		
OPEN:		90% CLOSED:		
		1 1 1 1		
STUB DRAIN				
1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				

26. Complete the following section for Internal Float	ting Roof Tanks 🗌 Does Not Apply			
26A. Deck Type: Deck Type: Welded	ł			
26B. For Bolted decks, provide deck construction	n:			
26C. Deck seam:				
Continuous sheet construction 5 feet wide				
Continuous sheet construction 7 feet wide				
Continuous sheet construction 5 × 7.5 feet wide Continuous sheet construction 5 × 12 feet wide				
Other (describe)				
26D. Deck seam length (ft)	26E. Area of deck (ft ²)			
For column supported tanks:	26G. Diameter of each column:			
26F. Number of columns:				
	ional if providing TANKS Summary Sheets)			
27. Provide the city and state on which the data in t	this section are based.			
28. Daily Average Ambient Temperature (°F)				
29. Annual Average Maximum Temperature (°F)				
30. Annual Average Minimum Temperature (°F)				
31. Average Wind Speed (miles/hr)				
32. Annual Average Solar Insulation Factor (BTU/(f	ft²·day))			
33. Atmospheric Pressure (psia)				
V. LIQUID INFORMATION (opti	tional if providing TANKS Summary Sheets)			
34. Average daily temperature range of bulk liquid:				
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)			
39. Provide the following for each liquid or gas to be	e stored in tank. Add additional pages if necessary.			
39A. Material Name or Composition				
39B. CAS Number				
39C. Liquid Density (lb/gal)				
39D. Liquid Molecular Weight (lb/lb-mole)				
39E. Vapor Molecular Weight (lb/lb-mole)				

Maximum Vapor Press 39F. True (psia)	sure					
39G. Reid (psia)						
Months Storage per Ye	ear					
39H. From						
39I. To						
VI. EMISSIONS AND CONTROL DEVICE DATA (required)						
	Devices (check as man	y as apply):	Does No	it Apply		
Carbon Adsorp	otion ¹					
Condenser ¹						
Conservation V						
Vacuum S	•		Pressure Se	etting		
Emergency Re	lief Valve (psig)					
🗌 Inert Gas Blank	ket of					
Insulation of Ta	ank with					
🗌 Liquid Absorpti	on (scrubber)1					
Refrigeration of	f Tank					
Rupture Disc (p	osig)					
Vent to Incinera	ator ¹					
Other ¹ (describ	e): Vapor Recovery U	nit and vapor	rs recycled ba	ack into system		
```	priate Air Pollution Cont	-	-	·		
· · · · · · · · · · · · · · · · · · ·	n Rate (submit Test Da			ar alaawhara in tha anr	liestion	
				or eisewhere in me aor	DICATION	
	1	1	1			
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin	g Loss	Annual Loss (Ib/yr)	Estimation Method ¹	
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss		
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1.	Bulk Storage Area Name	2.	Tank Name		
	Production Storage Tanks		Settling Tank		
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i> ) T04	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i> ) 26E		
5.	Date of Commencement of Construction (for existing	tank	is)		
6.	6. Type of change 🛛 New Construction 🗌 Ne		Stored Material 🗌 Other Tank Modification		
7.	7. Description of Tank Modification (if applicable)				
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	🗌 Yes 🛛 No		
7B.	7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).				
7C.	7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): None				
	II. TANK INFORM	ATIO	ON (required)		
8.	Design Capacity (specify barrels or gallons). Use height.	the 0 bar			
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)		
	12		25		
10A	A. Maximum Liquid Height (ft)	10E	<ol><li>Average Liquid Height (ft)</li></ol>		
	24		12.5		
11 <i>A</i>	A. Maximum Vapor Space Height (ft)	11E	<ol> <li>Average Vapor Space Height (ft)</li> </ol>		
	1		12.5		
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights.					
	473	5 bar	rel		

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
5,978,700	16,380			
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)				
	299.7			
15. Maximum tank fill rate (gal/min) TBD				
16. Tank fill method Submerged	Splash 🗌 Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems 🛛 Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply):				
<ul> <li>Internal Floating Roofvertical column supportself-supporting</li> <li>Variable Vapor Spacelifter roofdiaphragm</li> <li>Pressurizedsphericalcylindrical</li> <li>Underground</li> </ul>				
Other (describe)				
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:				
Riveted Gunite lined Epoxy-coate				
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted			
21. Shell Condition (if metal and unlined):	ust 🗌 Not applicable			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to tank.				
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Roof Tanks				
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)	4B. For cone roof, provide slope (ft/ft)			
25. Complete the following section for Floating Roof Tanks				
25A. Year Internal Floaters Installed:				
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resil				
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather shield	eld? YES NO			

25F. Describe deck fittings; indicate the number of each type of fitting:				
	ACCESS	S НАТСН		
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	AUTOMATIC GAL	JGE FLOAT WELL		
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
	COLUM	N WELL	1	
BUILT-UP COLUMN - SLIDING			PIPE COLUMN – FLEXIBLE	
COVER, GASKETED:	COVER, UNGASH		FABRIC SLEEVE SEAL:	
		R WELL	-	
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:	
	AGRETED.		SEIDING COVEN, CNGASKETED.	
	GAUGE-HATCH	SAMPLE PORT		
SLIDING COVER, GASKETED:		SLIDING COVER,	, UNGASKETED:	
		HANGER WELL		
			SAMPLE WELL-SLIT FABRIC SEAL	
ACTUATION, GASKETED:	ACTUATION, UN		(10% OPEN AREA)	
	1			
		BREAKER		
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECH	ANICAL ACTUATION, UNGASKETED:	
	BIM	VENT		
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION. UNGASKETED:	
		1 1 1 1		
	DECK DRAIN (3-I	NCH DIAMETER)		
OPEN:		90% CLOSED:		
		1 1 1 1		
STUB DRAIN				
1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				

26. Complete the following section for Internal Float	ting Roof Tanks 🗌 Does Not Apply			
26A. Deck Type: Deck Type: Welded	ł			
26B. For Bolted decks, provide deck construction	n:			
26C. Deck seam:				
Continuous sheet construction 5 feet wide				
Continuous sheet construction 7 feet wide				
Continuous sheet construction 5 × 7.5 feet wide Continuous sheet construction 5 × 12 feet wide				
Other (describe)				
26D. Deck seam length (ft)	26E. Area of deck (ft ² )			
For column supported tanks:	26G. Diameter of each column:			
26F. Number of columns:				
	ional if providing TANKS Summary Sheets)			
27. Provide the city and state on which the data in t	this section are based.			
28. Daily Average Ambient Temperature (°F)				
29. Annual Average Maximum Temperature (°F)				
30. Annual Average Minimum Temperature (°F)				
31. Average Wind Speed (miles/hr)				
32. Annual Average Solar Insulation Factor (BTU/(f	ft²·day))			
33. Atmospheric Pressure (psia)				
V. LIQUID INFORMATION (opti	tional if providing TANKS Summary Sheets)			
34. Average daily temperature range of bulk liquid:				
34A. Minimum (°F)	34B. Maximum (°F)			
35. Average operating pressure range of tank:				
35A. Minimum (psig)	35B. Maximum (psig)			
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)			
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)			
39. Provide the following for each liquid or gas to be	e stored in tank. Add additional pages if necessary.			
39A. Material Name or Composition				
39B. CAS Number				
39C. Liquid Density (lb/gal)				
39D. Liquid Molecular Weight (lb/lb-mole)				
39E. Vapor Molecular Weight (lb/lb-mole)				

Maximum Vapor Press 39F. True (psia)	sure					
39G. Reid (psia)						
Months Storage per Ye	ear					
39H. From						
39I. To						
	VI. EMISSIONS AND CONTROL DEVICE DATA (required)					
	Devices (check as man	y as apply):	Does No	it Apply		
Carbon Adsorp	tion ¹					
Condenser ¹						
Conservation V						
Vacuum S	•		Pressure Se	etting		
Emergency Re	lief Valve (psig)					
🗌 Inert Gas Blank	ket of					
Insulation of Ta	ank with					
Liquid Absorpti	on (scrubber)1					
Refrigeration of	f Tank					
Rupture Disc (p	osig)					
Vent to Incinera	ator ¹					
Other ¹ (describ	e): Vapor Recovery U	nit and vapor	rs recycled ba	ack into system		
¹ Complete approp	priate Air Pollution Cont	rol Device S	Sheet.			
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).						
41. Expected Emission	n Rate (submit Test Da	ta or Calcula	ations here	or elsewhere in the ap	plication).	
41. Expected Emission Material Name & CAS No.	n Rate (submit Test Da Breathing Loss (lb/hr)	ta or Calcula Workin Amount		or elsewhere in the ap Annual Loss (lb/yr)	plication). Estimation Method ¹	
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss		
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 14,360 *annual emissions	Estimation Method ¹	
Material Name & CAS No. VOC	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 14,360	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 14,360 *annual emissions	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 14,360 *annual emissions	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 14,360 *annual emissions	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 14,360 *annual emissions	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 14,360 *annual emissions	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 14,360 *annual emissions	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 14,360 *annual emissions	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 14,360 *annual emissions	Estimation Method ¹	

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1. Bulk Storage Area Name	2. Tank Name
Production Storage Tanks	Produced Water Tank 1
<ol> <li>Tank Equipment Identification No. (as assigned on Equipment List Form) T05</li> </ol>	<ul> <li>Emission Point Identification No. (as assigned on Equipment List Form) 27E</li> </ul>
5. Date of Commencement of Construction (for existing	tanks)
6. Type of change 🛛 New Construction 🗌 N	New Stored Material 🗌 Other Tank Modification
7. Description of Tank Modification (if applicable)	
7A. Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)
7B. If YES, explain and identify which mode is covere completed for each mode).	ed by this application (Note: A separate form must be
7C. Provide any limitations on source operation affecting variation, etc.): None	emissions, any work practice standards (e.g. production
II. TANK INFORM	ATION (required)
height.	the internal cross-sectional area multiplied by internal 0 barrel
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
12	20
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
19	10
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
1	10
liquid levels and overflow valve heights.	is also known as "working volume" and considers design
38	0 barrel

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
459,900	1,260			
14. Number of Turnovers per year (annual net throughpu	·			
	28.82			
15. Maximum tank fill rate (gal/min) TBD				
16. Tank fill method Submerged	Splash Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems 🛛 Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply):				
Internal Floating Roofvertical column su Variable Vapor Spacelifter roof Pressurizedsphericalcylindrica	diaphragm			
Underground Other (describe)				
	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:	ATON (optional in providing TANKS Summary Sneets)			
Riveted Gunite lined Epoxy-coate	d rivets 🗌 Other (describe)			
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted			
21. Shell Condition (if metal and unlined):				
🔄 🗌 No Rust 🔄 Light Rust 🔄 Dense R	ust 🗌 Not applicable			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to t	ank.			
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply			
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tanks				
25A. Year Internal Floaters Installed:				
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Residence				
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather ship	eld? YES NO			

25F. Describe deck fittings; indicate the number of each type of fitting:					
ACCESS HATCH					
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
	AUTOMATIC GAL	JGE FLOAT WELL			
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
	COLUM	N WELL	1		
BUILT-UP COLUMN - SLIDING			PIPE COLUMN – FLEXIBLE		
COVER, GASKETED:	COVER, UNGASH		FABRIC SLEEVE SEAL:		
		R WELL	-		
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:		
	AGRETED.		SEIDING COVEN, CNGASKETED.		
	GAUGE-HATCH	SAMPLE PORT			
SLIDING COVER, GASKETED:		SLIDING COVER,	, UNGASKETED:		
		HANGER WELL			
			SAMPLE WELL-SLIT FABRIC SEAL		
ACTUATION, GASKETED:	ACTUATION, UN		(10% OPEN AREA)		
	1				
		BREAKER			
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECH	ANICAL ACTUATION, UNGASKETED:		
	BIM	VENT			
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION. UNGASKETED:		
		1 1 1 1			
	DECK DRAIN (3-I	NCH DIAMETER)			
OPEN:		90% CLOSED:			
		1 1 1 1			
		DRAIN			
1-INCH DIAMETER:	0100				
OTHER (DESCI	RIBE, ATTACH ADI	DITIONAL PAGES I	IF NECESSARY)		

26. Complete the following section for Internal Float	ting Roof Tanks 🗌 Does Not Apply
26A. Deck Type: Deck Type: Welded	ł
26B. For Bolted decks, provide deck construction	n:
26C. Deck seam:	
Continuous sheet construction 5 feet wide	
Continuous sheet construction 7 feet wide	
□ Continuous sheet construction 5 × 7.5 feet w □ Continuous sheet construction 5 × 12 feet w	
Other (describe)	
26D. Deck seam length (ft)	26E. Area of deck (ft ² )
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	
	ional if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in t	this section are based.
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(f	ft²·day))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (opti	tional if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be	e stored in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

39F. True (psia)	Sure				
39G. Reid (psia)					
Months Storage per Ye	ear				
39H. From					
39I. To					
	VI. EMISSIONS A			, i ,	
	Devices (check as man	y as apply):	Does No	it Apply	
Carbon Adsorp	otion ¹				
Condenser ¹					
Conservation V					
Vacuum S	•		Pressure Se	etting	
Emergency Re	lief Valve (psig)				
🗌 Inert Gas Blank	ket of				
Insulation of Ta	ank with				
🗌 Liquid Absorpti	on (scrubber)1				
Refrigeration of	f Tank				
Rupture Disc (p	osig)				
Vent to Incinera	ator ¹				
Other ¹ (describ	e): Vapor Recovery U	nit and vapor	rs recycled ba	ack into system	
```	, ,	-	•	·	
 ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). 					
· · · · · · · · · · · · · · · · · · ·	n Rate (submit Test Da	ta or Calcula		or elsewhere in the apr	plication).
41. Expected Emission	1		ations here		blication).
· · · · · · · · · · · · · · · · · · ·	n Rate (submit Test Da Breathing Loss (Ib/hr)	Workin	ations here o g Loss	or elsewhere in the app Annual Loss (Ib/yr)	blication). Estimation Method ¹
41. Expected Emission Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name &	Breathing Loss	Workin	ations here o g Loss	Annual Loss	
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1.	Bulk Storage Area Name	2.	Tank Name
	Production Storage Tanks		Produced Water Tank 2
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>) T06	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i>) 28E
5.	Date of Commencement of Construction (for existing	tank	(S)
6.	Type of change 🛛 New Construction	lew	Stored Material Other Tank Modification
7.	Description of Tank Modification (if applicable)		
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	Yes No
7B.	If YES, explain and identify which mode is covere completed for each mode).	ed b	y this application (Note: A separate form must be
7C.	Provide any limitations on source operation affecting variation, etc.): None	emi	ssions, any work practice standards (e.g. production
	II. TANK INFORM	ATI	ON (required)
8.	height.	the 0 bar	internal cross-sectional area multiplied by internal rel
9A.	Tank Internal Diameter (ft)	9B.	. Tank Internal Height (or Length) (ft)
	12		20
10A	A. Maximum Liquid Height (ft)	10	Average Liquid Height (ft)
	19		10
11A	A. Maximum Vapor Space Height (ft)	116	Average Vapor Space Height (ft)
	1		10
12.	Nominal Capacity (specify barrels or gallons). This i liquid levels and overflow valve heights.		
	380	0 bar	rel

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
459,900	1,260			
14. Number of Turnovers per year (annual net throughpu	·			
	28.82			
15. Maximum tank fill rate (gal/min) TBD				
16. Tank fill method Submerged	Splash Bottom Loading			
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems 🛛 Does Not Apply			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply):				
Internal Floating Roofvertical column su Variable Vapor Spacelifter roof Pressurizedsphericalcylindrica	diaphragm			
Underground Other (describe)				
	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction:	ATON (optional in providing TANKS Summary Sneets)			
Riveted Gunite lined Epoxy-coate	d rivets 🗌 Other (describe)			
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted			
21. Shell Condition (if metal and unlined):				
🔄 🗌 No Rust 🔄 Light Rust 🔄 Dense R	ust 🗌 Not applicable			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to t	ank.			
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply			
24A. For dome roof, provide roof radius (ft)				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tanks				
25A. Year Internal Floaters Installed:				
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Residence				
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):			
25E. Is the Floating Roof equipped with a weather ship	eld? YES NO			

25F. Describe deck fittings; indicate the number of each type of fitting:					
ACCESS HATCH					
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
	AUTOMATIC GAL	JGE FLOAT WELL			
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:		
	COLUM	N WELL	1		
BUILT-UP COLUMN - SLIDING			PIPE COLUMN – FLEXIBLE		
COVER, GASKETED:	COVER, UNGASH		FABRIC SLEEVE SEAL:		
		R WELL	-		
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:		
	AGRETED.		SEIDING COVEN, CNGASKETED.		
	GAUGE-HATCH	SAMPLE PORT			
SLIDING COVER, GASKETED:		SLIDING COVER,	, UNGASKETED:		
		HANGER WELL			
			SAMPLE WELL-SLIT FABRIC SEAL		
ACTUATION, GASKETED:	ACTUATION, UN		(10% OPEN AREA)		
	1				
		BREAKER			
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECH	ANICAL ACTUATION, UNGASKETED:		
	BIM	VENT			
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION. UNGASKETED:		
		1 1 1 1			
	DECK DRAIN (3-I	NCH DIAMETER)			
OPEN:		90% CLOSED:			
		1 1 1 1			
		DRAIN			
1-INCH DIAMETER:	0100				
OTHER (DESCI	RIBE, ATTACH ADI	DITIONAL PAGES I	IF NECESSARY)		

26. Complete the following section for Internal Float	ting Roof Tanks 🗌 Does Not Apply
26A. Deck Type: Deck Type: Welded	ł
26B. For Bolted decks, provide deck construction	n:
26C. Deck seam:	
Continuous sheet construction 5 feet wide	
Continuous sheet construction 7 feet wide	
□ Continuous sheet construction 5 × 7.5 feet w □ Continuous sheet construction 5 × 12 feet w	
Other (describe)	
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	
	ional if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in t	this section are based.
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(f	ft²·day))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (opti	tional if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be	e stored in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

39F. True (psia)	Sure				
39G. Reid (psia)					
Months Storage per Ye	ear				
39H. From					
39I. To					
	VI. EMISSIONS A			, i ,	
	Devices (check as man	y as apply):	Does No	it Apply	
Carbon Adsorp	otion ¹				
Condenser ¹					
Conservation V					
Vacuum S	•		Pressure Se	etting	
Emergency Re	lief Valve (psig)				
🗌 Inert Gas Blank	ket of				
Insulation of Ta	ank with				
🗌 Liquid Absorpti	on (scrubber)1				
Refrigeration of	f Tank				
Rupture Disc (p	osig)				
Vent to Incinera	ator ¹				
Other ¹ (describ	e): Vapor Recovery U	nit and vapor	rs recycled ba	ack into system	
```	, ,	-	•	·	
<ul> <li>¹ Complete appropriate Air Pollution Control Device Sheet.</li> <li>41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).</li> </ul>					
· · · · · · · · · · · · · · · · · · ·	n Rate (submit Test Da	ta or Calcula		or elsewhere in the apr	plication).
41. Expected Emission	1		ations here		blication).
· · · · · · · · · · · · · · · · · · ·	n Rate (submit Test Da Breathing Loss (Ib/hr)	Workin	ations here o <b>g Loss</b>	or elsewhere in the app Annual Loss (Ib/yr)	blication). Estimation Method ¹
41. Expected Emission Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name &	Breathing Loss	Workin	ations here o <b>g Loss</b>	Annual Loss	
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1.	Bulk Storage Area Name	2.	Tank Name
	Production Storage Tanks		Produced Water Tank 3
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i> ) T07	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i> ) 29E
5.	Date of Commencement of Construction (for existing	tank	(S)
6.	Type of change 🛛 New Construction	lew	Stored Material Other Tank Modification
7.	Description of Tank Modification (if applicable)		
	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan	k?)	🗌 Yes 🛛 No
7B.	If YES, explain and identify which mode is covere completed for each mode).	ed b	y this application (Note: A separate form must be
7C.	Provide any limitations on source operation affecting variation, etc.): None	emi	ssions, any work practice standards (e.g. production
	II. TANK INFORM	ATIC	ON (required)
8.	height.	the 0 bar	internal cross-sectional area multiplied by internal rel
9A.	Tank Internal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)
	12		20
10A	A. Maximum Liquid Height (ft)	10E	3. Average Liquid Height (ft)
	19		10
11 <i>A</i>	A. Maximum Vapor Space Height (ft)	11E	<ol><li>Average Vapor Space Height (ft)</li></ol>
	1		10
12.	Nominal Capacity (specify barrels or gallons). This i liquid levels and overflow valve heights.	is als	so known as "working volume" and considers design
	38	0 bar	rel

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)					
459,900	1,260					
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume)						
28.82						
15. Maximum tank fill rate (gal/min) TBD						
16. Tank fill method Submerged	Splash 🗌 Bottom Loading					
17. Complete 17A and 17B for Variable Vapor Space Tail	nk Systems 🛛 Does Not Apply					
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year					
<ul> <li>18. Type of tank (check all that apply):</li> <li> □ Fixed Roof X vertical other (describe) □ External Floating Roof pontoon roof □ Domed External (or Covered) Floating Roof □ Internal Floating Roof vertical column successful and the sector of the sector of</li></ul>	double deck roof					
Variable Vapor Space lifter roof	-					
	ATION (optional if providing TANKS Summary Sheets)					
19. Tank Shell Construction:						
🗌 Riveted 🔄 Gunite lined 🗌 Epoxy-coated	d rivets 🛛 Other (describe)					
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted					
21. Shell Condition (if metal and unlined):						
🔄 🗌 No Rust 🔄 Light Rust 🔄 Dense R	ust 🗌 Not applicable					
22A. Is the tank heated? YES NO						
22B. If YES, provide the operating temperature (°F)						
22C. If YES, please describe how heat is provided to tank.						
23. Operating Pressure Range (psig): to						
24. Complete the following section for Vertical Fixed Roof Tanks						
24A. For dome roof, provide roof radius (ft)						
24B. For cone roof, provide slope (ft/ft)						
25. Complete the following section for Floating Roof Tanks Does Not Apply						
25A. Year Internal Floaters Installed:						
25B.Primary Seal Type:Image: Metallic (Mechanical)(check one)Image: Vapor Mounted Resil						
25C. Is the Floating Roof equipped with a Secondary Seal? YES NO						
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):					
25E. Is the Floating Roof equipped with a weather shield	eld? YES NO					

25F. Describe deck fittings; indicate the number of each type of fitting:						
ACCESS HATCH						
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNGASKETED	):					
AUTOMATIC GAUGE FLOAT WELL						
BOLT COVER, GASKETED: UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNGASKETED	):					
COLUMN WELL						
BUILT-UP COLUMN – SLIDING BUILT-UP COLUMN – SLIDING PIPE COLUMN – FLEXIB	BLE					
COVER, GASKETED: COVER, UNGASKETED: FABRIC SLEEVE SEAL:						
LADDER WELL						
PIP COLUMN – SLIDING COVER, GASKETED: PIPE COLUMN – SLIDING COVER, UNGASKETED:						
	•					
GAUGE-HATCH/SAMPLE PORT						
SLIDING COVER, GASKETED: SLIDING COVER, UNGASKETED:						
ROOF LEG OR HANGER WELL						
WEIGHTED MECHANICAL WEIGHTED MECHANICAL SAMPLE WELL-SLIT FABRIC SE	- ^ 1					
ACTUATION, GASKETED: ACTUATION, UNGASKETED: (10% OPEN AREA)	-71					
WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:						
RIM VENT						
WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:						
DECK DRAIN (3-INCH DIAMETER)						
OPEN: 90% CLOSED:						
STUB DRAIN						
1-INCH DIAMETER:						
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)						

26. Complete the following section for Internal Floating Roof Tanks						
26A. Deck Type: Deck Type: Welded	ł					
26B. For Bolted decks, provide deck construction:						
26C. Deck seam:						
Continuous sheet construction 5 feet wide						
Continuous sheet construction 7 feet wide						
□ Continuous sheet construction 5 × 7.5 feet w □ Continuous sheet construction 5 × 12 feet w						
Other (describe)						
26D. Deck seam length (ft)	26E. Area of deck (ft ² )					
For column supported tanks:	26G. Diameter of each column:					
26F. Number of columns:						
	ional if providing TANKS Summary Sheets)					
27. Provide the city and state on which the data in t	this section are based.					
28. Daily Average Ambient Temperature (°F)						
29. Annual Average Maximum Temperature (°F)						
30. Annual Average Minimum Temperature (°F)						
31. Average Wind Speed (miles/hr)						
32. Annual Average Solar Insulation Factor (BTU/(f	ft²·day))					
33. Atmospheric Pressure (psia)						
V. LIQUID INFORMATION (opti	tional if providing TANKS Summary Sheets)					
34. Average daily temperature range of bulk liquid:						
34A. Minimum (°F)	34B. Maximum (°F)					
35. Average operating pressure range of tank:						
35A. Minimum (psig) 35B. Maximum (psig)						
36A. Minimum Liquid Surface Temperature (°F) 36B. Corresponding Vapor Pressure (psia)						
37A. Average Liquid Surface Temperature (°F) 37B. Corresponding Vapor Pressure (psia)						
38A.    Maximum Liquid Surface Temperature (°F)    38B.    Corresponding Vapor Pressure (psia)						
39. Provide the following for <u>each</u> liquid or gas to be stored in tank. Add additional pages if necessary.						
39A. Material Name or Composition						
39B. CAS Number						
39C. Liquid Density (lb/gal)						
39D. Liquid Molecular Weight (lb/lb-mole)						
39E. Vapor Molecular Weight (lb/lb-mole)						

Maximum Vapor Press 39F. True (psia)	sure							
39G. Reid (psia)								
Months Storage per Y	ear							
39H. From								
39I. To								
VI. EMISSIONS AND CONTROL DEVICE DATA (required)								
	Devices (check as man	y as apply):	Does No	ot Apply				
Carbon Adsorp	otion ¹							
Condenser ¹								
Conservation V								
Vacuum S	•		Pressure Se	etting				
Emergency Re	lief Valve (psig)							
Inert Gas Blank	ket of							
Insulation of Ta	ank with							
🗌 Liquid Absorpti	on (scrubber)1							
Refrigeration o	f Tank							
🗌 Rupture Disc (p	osig)							
Vent to Incinera	ator ¹							
⊠ Other¹ (describ	e): Vapor Recovery U	nit and vapor	rs recycled ba	ack into system				
¹ Complete approp	priate Air Pollution Cont	rol Device S	Sheet.					
<ul> <li>¹ Complete appropriate Air Pollution Control Device Sheet.</li> <li>41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).</li> </ul>								
41. Expected Emission				or elsewhere in the ap	plication).			
Material Name &	Breathing Loss	Workin		Annual Loss				
-		1		-	Estimation Method ¹			
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss				
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹			
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹			
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹			
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹			
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹			
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹			
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹			
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹			
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹			
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹			
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹			
Material Name & CAS No. VOC Emissions are	Breathing Loss (Ib/hr)	Workin Amount	g Loss Units	Annual Loss (Ib/yr)	Estimation Method ¹			

**Fuel Conditioning Heater** 

### Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 30E

1. Name or type and model of proposed affected source:
Fuel Conditioning Heater - 500,000 Btu/hr
<ol> <li>On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.</li> </ol>
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Natural Gas as fuel - 490 scf/hr
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Heater is used to increase temperature of fuel before use by the compressor engines to allow more complete combustion.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Combustion process

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if applic	able):				
(a) Type and amount in appropriate units of fuel(s) to be burned:					
Natural gas as fuel - 490 scf/hr					
<ul><li>(b) Chemical analysis of pl and ash:</li></ul>	oposed fuel(s), exc	luding coal, in	cluding maxim	um percent sulfur	
Same as onsite gas analysis - see A	ttachment N				
(c) Theoretical combustion	n air requirement (A	CF/unit of fue	I):		
@		°F and		psia.	
(d) Percent excess air:					
(e) Type and BTU/hr of bu	rners and all other f	iring equipme	ent planned to b	be used:	
500,000 Btu/hr. Natural gas.					
(f) If coal is proposed as a	source of fuel ider	ntify supplier a	and seams and	aive sizing of the	
coal as it will be fired:		itiny supplier e		give sizing of the	
(g) Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.	
7. Projected operating sched	ule:				
		7	Weeks/Year	52	
Hours/Day 24	Days/Week	7	vveeks/rear	32	

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
@	© °F and					
a.	NOx	0.049	lb/hr	grains/ACF		
b.	SO ₂	0.00029	lb/hr	grains/ACF		
c.	со	0.041	lb/hr	grains/ACF		
d.	PM ₁₀	0.0037	lb/hr	grains/ACF		
e.	Hydrocarbons		lb/hr	grains/ACF		
f.	VOCs	0.0027	lb/hr	grains/ACF		
g.	Pb		lb/hr	grains/ACF		
h.	Specify other(s)					
	Total HAP (including HCHO)	0.00092	lb/hr	grains/ACF		
	CO2e	58.7	lb/hr	grains/ACF		
			lb/hr	grains/ACF		
			lb/hr	grains/ACF		

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
  - (2) Complete the Emission Points Data Sheet.

9. Proposed Monitoring, Recordkeeping, Repo	orting, and Testing
	and reporting in order to demonstrate compliance
	Please propose testing in order to demonstrate
compliance with the proposed emissions lin	
MONITORING	RECORDKEEPING
see Attachment O	see Attachment O
see Attachment O	see Attachinent O
REPORTING	TESTING
see Attachment O	see Attachment O
	I PROCESS PARAMETERS AND RANGES THAT ARE
	NSTRATE COMPLIANCE WITH THE OPERATION OF THIS
PROCESS EQUIPMENT OPERATION/AIR POLLUTION	
<b>RECORDKEEPING.</b> PLEASE DESCRIBE THE PROP	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
MONITORING.	
	OPOSED FREQUENCY OF REPORTING OF THE
RECORDKEEPING.	
<b>TESTING.</b> PLEASE DESCRIBE ANY PROPOSED EM	ISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
POLLUTION CONTROL DEVICE.	
10 Describe all operating ranges and mainte	nance procedures required by Manufacturer to
maintain warranty	
mamamwananty	

Venting Emissions

### Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): 36E (VENT1)

1. Name or type and model of proposed affected source:
Fugitive emissions from venting episodes such as plant shutdowns, compressor start/shut downs, and pigging.
<ol> <li>On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.</li> </ol>
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
4. Name(s) and maximum amount of proposed material(s) produced per hour:
- compressor blowdown - 0.009 tons VOC per event, 0.84 tons CO2e per event - compressor startup - 0.0047 tons VOC per event, 0.44 tons CO2e per event
- plant shutdown - 0.45 tons VOC per event, 41.81 tons CO2e per event
- low pressure pigging venting - 0.0023 tons VOC per event, 0.22 tons CO2e per event
- high pressure pigging venting - 0.013 tons VOC per event, 1.17 tons CO2e per event
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
none
none

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	. Combustion Data (if applicable):						
	(a) Type and amount in appropriate units of fuel(s) to be burned:						
	(h)	Chemic	al analysis of pr	onosed fuel(s) e	aveluding coal ir	ocluding maxim	um percent sulfur
	(0)	and ash					
	$(\alpha)$	Theoret	ical combustion	air requirement	/ACE/upit of fue	J) •	
	(0)	THEOLEI				1).	
			@		°F and		psia.
	(d)	Percent	excess air:				
	(e)	Type ar	nd BTU/hr of bu	rners and all othe	er firing equipme	ent planned to b	be used:
	(f)	If coal is	nronosod as a	source of fuel it	dontify supplior :	and soams and	give sizing of the
	(י)	coal as	it will be fired:			and seams and	give sizing of the
╞							
	(g)	Propose	ed maximum de	sign heat input:			× 10 ⁶ BTU/hr.
7.	Pro	jected o	perating schedu	ıle:		1	
Ho	ours/	Day	not a regular schedule	Days/Week	not a regular schedule	Weeks/Year	not a regular schedule

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
@	venting events are uncon	trolled °F and	psia			
a.	NOx	lb/hr	grains/ACF			
b.	SO ₂	lb/hr	grains/ACF			
c.	со	lb/hr	grains/ACF			
d.	PM ₁₀	lb/hr	grains/ACF			
e.	Hydrocarbons	lb/hr	grains/ACF			
f.	VOCs	Not on a regular lb/hr schedule	grains/ACF			
g.	Pb	lb/hr	grains/ACF			
h.	Specify other(s)					
		lb/hr	grains/ACF			
		lb/hr	grains/ACF			
		lb/hr	grains/ACF			
		lb/hr	grains/ACF			

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
  - (2) Complete the Emission Points Data Sheet.

<ol> <li>Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate complianc with the proposed operating parameters. Please propose testing in order to demonstrat compliance with the proposed emissions limits.</li> </ol>					
MONITORING	RECORDKEEPING				
See Attachment O	See Attachment O				
REPORTING	TESTING				
See Attachment O	See Attachment O				
	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.				
<b>RECORDKEEPING.</b> PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE				
<b>REPORTING.</b> PLEASE DESCRIBE THE PRORECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE				
<b>TESTING.</b> PLEASE DESCRIBE ANY PROPOSED EM POLLUTION CONTROL DEVICE.	ISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR				
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to				
N/A					

Bulk Loading and Fugitives

#### Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

		PM			PM-10					
k =	Particle size multiplier		0.80			0.36				
S =	Silt content of road surface ma	aterial (%)				4.8			4.8	
p =	Number of days per year with	precipitati	on >0.01 i	n.		160			160	
Item Numbe	r Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maxii Trips Ye	s per	Control Device ID Number	Control Efficiency (%)
1	Condensate Tank Truck	4	40		0.83	1	73	30	NA	NA
2	Produced Water Tank Truck	4	40		0.83	1	36	55	NA	NA
3	Passenger Vehicles	4	3		0.83	1	1,460		NA	NA
4										
5										
6										
7										
8										

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$  lb/Vehicle Mile Traveled (VMT) Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
S =	Silt content of road surface material (%)	4.8	4.8
S =	Mean vehicle speed (mph)		
W =	Mean vehicle weight (tons)	18.9	18.9
w =	Mean number of wheels per vehicle	4	4
p =	Number of days per year with precipitation >0.01 in.	160	160

For lb/hr:  $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$ 

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		Р	М			PM	-10	
Item No.	Uncontrolled		Controlled		Uncontrolled		Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	0.23	1.01	0.23	1.01	0.059	0.26	0.059	0.26
2	0.12	0.51	0.12	0.51	0.029	0.13	0.029	0.13
3	0.46	2.01	0.46	2.01	0.12	0.51	0.12	0.51
4								
5								
6								
7								
8								
TOTALS	0.81	3.53	0.81	3.53	0.21	0.90	0.21	0.90

### Attachment L **EMISSIONS UNIT DATA SHEET** BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the Equipment List Form and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on *Equipment List Form*): 35E (LDOUT1)

1. Loading Area Name: Produced Fluids Loadout

2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply):

Drums X Tank Trucks □ Marine Vessels □ Rail Tank Cars

3. Loading Rack or Transfer Point Data:

Number of pumps	None – use truck pumps
Number of liquids loaded	Two – Condensate, Produced Water
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time	Six as each tank has a connection, but not likely that there will be six at one time. T04 does not have a loading connection.

4. Does ballasting of marine vessels occur at this loading area? □ Yes ⊓ No X Does not apply

5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point: N/A

6. Are cargo vessels pressure tested for leaks at this or any other location? □ Yes X No

If YES, describe:

page of

WVDEP-OAQ Revision 03-

2007

7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):						
Maximum Jan Mar. Apr June July - Sept.				Oct Dec.		
hours/day	10	10	10	10		
days/week	5	5	5	5		
weeks/quarter	all	all	all	all		

8. Bulk Liquid Data (add pages as necessary):						
Pump ID No.		N/A	N/A			
Liquid Name		Condensate	Produced Water			
Max. daily thro	oughput (1000 gal/day)	12.6	3.78			
Max. annual t	hroughput (1000 gal/yr)	4,599	1,379.7			
Loading Meth	od ¹	SUB	SUB			
Max. Fill Rate	(gal/min)	240	240			
Average Fill T	Average Fill Time (min/loading)		45			
Max. Bulk Liq	Max. Bulk Liquid Temperature (°F)		52			
True Vapor P	ressure ²	11.1	0.28			
Cargo Vessel	Condition ³	U	U			
Control Equip	ment or Method ⁴	None	None			
Minimum cont	trol efficiency (%)	NA	NA			
Maximum	Loading (lb/hr)	58.89	0.83			
Emission Rate	Annual (lb/yr)	24,802.7	104.9			
Estimation Me	ethod ⁵	EPA	EPA			
¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill						
² At maximum bulk liquid temperature						

page __ of __

WVDEP-OAQ Revision 03-

 3  B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)

⁴ List as many as apply (complete and submit appropriate *Air Pollution Control Device Sheets*):CA = Carbon Adsorption
 Condensation
 Condensation
 CC = Scrubber (Absorption)CRA = Compressor-Refrigeration-Absorption
 CRC = Compression-Refrigeration-Condensation
 VB = Dedicated Vapor Balance (closed system)
 O = other (descibe)

 ⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance TM = Test Measurement based upon test data submittal O = other (describe)

#### 9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING See Attachment O	RECORDKEEPING See Attachment O
REPORTING	TESTING
See Attachment O	See Attachment O

page __ of __

WVDEP-OAQ Revision 03-

**MONITORING.** PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS

**RECORDKEEPING.** PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

**REPORTING.** PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

**TESTING.** PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

 Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty
 NA

> page __ of __ WVDEP-OAQ Revision 03-

## Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

	For chemical processes please fill out this sheet and all supplementary forms (see below) that apply. Please check all supplementary forms that have been completed.						
	<ul> <li>Emergency Vent Summary Sheet</li> <li>Leak Sources Data Sheet</li> <li>Toxicology Data Sheet</li> <li>Reactor Data Sheet</li> </ul>						
	Distillation Column Data Sheet						
1.	Chemical process area name and Piping for Entire Facility. Piping n	l equipment ID number (as shown in Eq ot contained in equipment form.	ןעוֹסָment List Form)				
2.	Standard Industrial Classification 4923	Codes (SICs) for process(es)					
3.	<ol> <li>List raw materials and ⊠ attach MSDSs Wet Natural Gas</li> </ol>						
4.	List Products and Maximum Products	uction and 🗌 attach MSDSs					
De	scription and CAS Number	Maximum Hourly (lb/hr)	Maximum Annual (ton/year)				
	Dry Natural Gas	18.75 MMscf/hour	164,250 MMscf/year				
	Condensate	12.5 barrels/hour	109,500 barrels/year				
	Produced Water	3.75 barrels/hour	32,850 barrels/year				
5.	Complete the Emergency Vent Su	ummary Sheet for all emergency relief of	devices.				
6.	<ol> <li>Complete the Leak Source Data Sheet and describe below or attach to application the leak detection or maintenance program to minimize fugitive emissions. Include detection instruments, calibration gases or methods, planned inspection frequency, and record-keeping, and similar pertinent information. If subject to a rule requirement (e.g. 40CFR60, Subpart VV), please list those here.</li> <li>Will reference developed and implemented Leak Detection and Repair (LDAR) plan per 40 CFR Part 60 Subpart OOOOa.</li> </ol>						
7.							
7.	spill or release.	nd approved Spill Prevention, Control a					
I							

	<ul> <li>A. Complete the <i>Toxicology Data Sheet</i> or attach to application a toxicology report (an up-to-date material safety data sheets (MSDS) may be used) outlining the currently known acute and chronic health effects of each compound or chemical entity emitted to the air. If these compounds have already been listed in Item 3, then a duplicate MSDS sheet is not required. Include data such as the OSHA time weighted average (TWA) or mutagenicity, teratogenicity, irritation, and other known or suspected effects should be addressed. Indicate where these are unknown, and provide references.</li> <li>B. Describe any health effects testing or epidemiological studies on these compounds that are being or may be conducted by the company or required under TSCA, RCRA or other federal regulations. Discuss the persistence in the environment of any emission (e.g. pesticides, etc.).</li> </ul>					
9.		cts - Waste products status ste Section of WVDEP, OAC		source is subject to RCRA or 45(304) 926-3647.)	CSR25, please contact the	
9A.	Types and amo	ounts of wastes to be dispos	ed:			
9B.	Method of disp	osal and location of waste di	ispos	al facilities:		
	Carrier:			Phone:		
9C.	Check here if a	pproved USEPA/State Haza	ardou	s Waste Landfill will be used 🗌		
10.	Maximum and	Projected Typical Operating	Sche	dule for process or project as a who	ole (circle appropriate units).	
	circle units:	(hrs/day) hr/batch)	(day	ys), batches/day), (batches/week)	(days/yr), weeks/year)	
10A	A. Maximum	24		7	52	
10E	3. Typical	24		7	52	
11.	Complete a Re	eactor Data Sheet for each re	eacto	r in this chemical process.		
12.	Complete a Dis	stillation Column Data Sheet	for e	ach distillation column in this chem	ical process.	
МС	<ul> <li>13. Proposed Monitoring, Recordkeeping, Reporting, and Testing         Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed         operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions         limits.     </li> <li>MONITORING</li> <li>RECORDKEEPING</li> </ul>					
Se	e Attachment	t <b>O</b>		See Attachment O		

See Attachment O	See Attachment O

REPORTING

**MONITORING.** Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment operation or air pollution control device. **RECORDKEEPING.** Please describe the proposed recordkeeping that will accompany the monitoring.

TESTING

**REPORTING.** Please describe the proposed frequency of reporting of the recordkeeping.

TESTING. Please describe any proposed emissions testing for this process equipment or air pollution control device.

14. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

## LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴
Pumps ⁵	light liquid VOC ^{6,7}				
	heavy liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	750	NA	1 st attempt – 5 days	10,969 – EE
	Light Liquid VOC	160	NA	1 st attempt – 5 days	4,319 – EE
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC				
	Non VOC				
Open-ended Lines ¹²	VOC				
	Non-VOC				
Sampling Connections ¹³	VOC				
Connections	Non-VOC				
Compressors	VOC	36	NA	1 st attempt – 5 days	1,030 – EE
	Non-VOC				
Flanges	Gas VOC	850	NA	1 st attempt – 5 days	1,077 – EE
	Light Liquid VOC	400	NA	1 st attempt – 5 days	475 – EE
Other	VOC				
	Non-VOC				

¹⁻¹³ See notes on the following page.

Attachment M. Air Pollution Control Device Sheets **Oxidation Catalysts** 

#### Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 1C through 12C

**Equipment Information** 

1.	Manufacturer: TBD – efficiencies per a specification sheet Model No.	ttached	<ol> <li>Control Device Nar for C-100 through C Type: Oxidation Ca</li> </ol>				
3.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.						
4.	On a separate sheet(s) supply all data and ca	alculatio	ns used in selecting or de	esigning this collection device.			
5.	Provide a scale diagram of the control device	showin	g internal construction.				
6.	Submit a schematic and diagram with dimens	ions an	d flow rates.				
	Guaranteed minimum collection efficiency for - no capture of pollutants	each po	ollutant collected:				
8.	Attached efficiency curve and/or other efficier	ncy infor	mation.				
9.	Design inlet volume: 16,086	ACFM	10. Capacity:				
N/A 12. 13.	<ul> <li>11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any. N/A</li> <li>12. Attach any additional data including auxiliary equipment and operation details to thoroughly evaluate the control equipment.</li> <li>13. Description of method of handling the collected material(s) for reuse of disposal. Replace Catalyst elements when necessary</li> </ul>						
	Gas St	ream C	haracteristics				
14.	14. Are halogenated organics present?       □ Yes       No         Are particulates present?       □ Yes       No         Are metals present?       □ Yes       No						
15.	Inlet Emission stream parameters:		Maximum	Typical			
Pressure (mmHg): Not specified			Not specified				
	Heat Content (BTU/scf):		1,400	1,231			
	Oxygen Content (%):		Not specified				
	Moisture Content (%):		Not specified				
	Relative Humidity (%): Not specified						

16.	Type of pollutant(s) of Particulate (type):		SOx	☐ Odor ⊠ Other CO, VOC, HCHO				
17.	Inlet gas velocity:		282 ft/sec	18. Pollutant s	18. Pollutant specific gravity:			
19.	Gas flow into the coll 16,086 ACF @ 8		PSIA	20. Gas strea	m temperature: Inlet: Outlet:	818 818	°F °F	
21.	Gas flow rate: Design Maximum: Average Expected:		86 ACFM 86 ACFM	22. Particulate	e Grain Loading Inlet: Outlet:	in grains/scf: I	N/A	
23.	Emission rate of eac	h pollutant (spec	ify) into and out	of collector:				
	Pollutant	IN Pol	lutant	Emission	OUT Po	ollutant	Control	
		lb/hr	grains/acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %	
	A CO	14.44			0.88		94	
	B VOC	2.26			1.49		34	
	C HCHO	0.88			0.11		88	
	D							
	E							
24.	Dimensions of stack:	Heig	ht 25	ft.	Diameter	1.1	ft.	
25.	25. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 percent of design rating of collector.							

#### Particulate Distribution

26. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0-2		
2-4		
4-6		
6 - 8		
8 – 10		
10 – 12		
12 – 16		
16 – 20		
20 - 30		
30 - 40		
40 - 50		
50 - 60		
60 - 70		
70 – 80		
80 - 90		
90 - 100		
>100		

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): **None** 

28. Describe the collection material disposal system: Catalyst elements can be cleaned and/or replaced; materials are not disposed on site.

29. Have you included *Other Collectores Control Device* in the Emissions Points Data Summary Sheet? yes

30. **Proposed Monitoring, Recordkeeping, Reporting, and Testing** Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING:		RECORDKEEPING:		
See Attachment O		See Attachment O		
REPORTING:		TESTING:		
See Attachment O		See Attachment O		
MONITORING:	•	bcess parameters and ranges that are proposed to be trate compliance with the operation of this process		
RECORDKEEPING:		cordkeeping that will accompany the monitoring.		

REPORTING: Please describe any proposed emissions testing for this process equipment on air pollution control device.

TESTING: Please describe any proposed emissions testing for this process equipment on air pollution control device.

31. Manufacturer's Guaranteed Control Efficiency for each air pollutant. CO: 94%, VOC: 34%, HCHO: 88%

32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. CO: 94%, VOC: 34%, HCHO: 88%

33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. Inlet temperature range is 750 F – 1250 F. Engine must be operated between 50 – 100 % load. A/F ratio controller must be set properly with fuel heating value of around 1400 Btu/scf. Engine lube oil shall contain less than 0.5 wt% sulfated ash. Catalyst must not be exposed to the following: antimony, arsenic, chromium, copper, iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, zinc.



#### Prepared For:

Clayton Brown

## ANTERO

#### APPLICATION INFORMATION DRIVER

Make:	CATERPILLAR
Model:	G3608A4
Horsepower:	2500
RPM:	1000
Compression Ratio:	7.6
Exhaust Flow Rate:	16086 CFM
Exhaust Temperature:	818 °F
Reference:	EM0655-05-001
Fuel:	Natural Gas
Annual Operating Hours:	8760

#### UNCONTROLLED EMISSIONS DATA

	<u>g/bhp-hr</u>
NO _x :	0.30
CO:	3.01
THC:	4.35
NMHC:	1.62
NMNEHC:	0.62
HCHO:	0.16
Oxygen:	11.70%

#### POST CATALYST EMISSIONS DATA

	<u>g/bhp-hr</u>
NO _x :	Unaffected by Oxidation Catalyst
CO:	<0.10
NMNEHC:	<0.27
HCHO:	<0.01

# Date:

June 9, 2016

#### CATALYST ELEMENT

Model:	RT-3615-H
Catalyst Type:	Oxidation, Premium Grade Element
Substrate Type:	BRAZED
Element Size:	Rectangle, 36" x 15" x 3.5"
Element Quantity:	6

Flare

#### Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No.	(must match Emission Units Table):	13C/31E
		1001011

	Equipment Information					
1.	Manufacturer: TBD	2. Method: 🛛 Elevated flare				
	Model No. TBD	Other     Describe				
	4.8 MMBtu/hr					
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.				
4.	Method of system used:	Pressure-assisted Non-assisted				
F	Movimum consoity of flores	6. Dimensions of stack:				
5.	Maximum capacity of flare: 4.8 MMBtu/hr	Diameter TBD ft.				
	4.0 WWD0/m	Height TBD ft.				
7.	Estimated combustion efficiency: (Waste gas destruction efficiency)	8. Fuel used in burners:				
	Estimated: 98 %	Natural Gas				
	Minimum guaranteed: 98 %	☐ Fuel Oil, Number ☐ Other, Specify:				
9.	Number of burners:	11. Describe method of controlling flame:				
0.	Rating: 4,800,000 BTU/hr	Enclosed flare				
10.	Will preheat be used? Yes No					
12.	Flare height: TBD ft	14. Natural gas flow rate to flare pilot flame per pilot light: 0.27 scf/min				
13.	Flare tip inside diameter: TBD ft	16.4 scf/hr				
15.	Number of pilot lights: 1	16. Will automatic re-ignition be used?				
	Total 61,537 BTU/hr	🗌 Yes 🛛 No				
17.	17. If automatic re-ignition will be used, describe the method:					
18.	<ul> <li>18. Is pilot flame equipped with a monitor?</li> <li>If yes, what type?</li> <li>Infra-Red</li> <li>Infra-Red</li> <li>Iltra Violet</li> <li>Other, Describe:</li> </ul>					
19.	Hours of unit operation per year: 8,760					

		Steam I	njeo	ction		
20.	Will steam injection be used	d? 🗌 Yes 🛛 No	21	. Steam pressure Minimum Expected: Design Maximum:		PSIG
22.	Total Steam flow rate:	LB/hr	23	. Temperature:		°F
24.	Velocity	ft/sec	25	Number of jet streams		
26.	Diameter of steam jets:	in	27	. Design basis for steam ir		
28.	How will steam flow be con			ed?	<u>B steam/L</u>	B hvdrocarbon
			te G	as Stream to be Burned		
29.	Name	Quantity Grains of H ₂ S/100 ft ³		<b>Quantity</b> (LB/hr, ft³/hr, etc)	Sourc	ce of Material
	DEHY1	0		~3,000 scfh	Deh	y Still Vent
	DEHY2	0		~3,000 scfh	Deh	y Still Vent
	DEHY3	0		~3,000 scfh	Deh	y Still Vent
	<b>—</b>			0.000		
30. Estimate total combustible to flare:~9,000LB/hr or ACF/h)(Maximum mass flow rate of waste gas)~150scfm			)			
31.	Estimated total flow rate to LB/hr or ACF/hr		o be		xiliary fuel,	etc.:
32.	Give composition of carrier	gases:				
33.	Temperature of emission st	tream: °F	34	Identify and describe all a BTU/scf	auxiliary fu	els to be burned.
	Heating value of emission s					BTU/scf
	~1,231 Mean molecular weight of e					BTU/scf
	MW =					BTU/scf
35.	Temperature of flare gas:	> 1030 °F	36	. Flare gas flow rate:	scf/mir	۱
_	Flare gas heat content:	BTU/ft ³		. Flare gas exit velocity:		f/min
	Maximum rate during emerged					scf/min
	Maximum rate during emerg					BTU/min
41.	Describe any air pollution reheating, gas humidification		outle	t gas conditioning proces	ses (e.g.,	gas cooling, gas
	Describe the collection mat			no Deireto Data Ormana a	beet0	Vac
43.	Have you included Flare C	ontroi Device in the Emis	SIO	is Points Data Summary S	neet?	Yes

Please propose m proposed operatin proposed emission MONITORING:	g parameters. Please propose	, and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING:		
see Attachment O		see Attachment O		
REPORTING: see Attachment O		TESTING: see Attachment O		
MONITORING:	monitored in order to demons	process parameters and ranges that are proposed to be trate compliance with the operation of this process		
RECORDKEEPING:	equipment or air control device. Please describe the proposed real	cordkeeping that will accompany the monitoring.		
REPORTING:	Please describe any proposed pollution control device.	emissions testing for this process equipment on air		
TESTING:	1	emissions testing for this process equipment on air		
	aranteed Capture Efficiency for each	ch air pollutant.		
N/A – no c	apture efficiency			
	aranteed Control Efficiency for eac			
98% contr	ol efficiency for VOCs, HAPs,	, C1, C2		
	ing ranges and maintenance proce <b>st range between 2 oz/in² and 1</b> 2	edures required by Manufacturer to maintain warranty. 20 psig		

**Thermal Oxidizers** 

#### Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table):	16C/32E, 17C/33E, 18C/34E
----------------------------------------------------------	---------------------------

	Equipment Information				
1.	Manufacturer: EnviroTherm TM Model No. DVC-36 6.0 MMBtu/hr	<ol> <li>Method: Elevated flare</li> <li>Ground flare</li> <li>Other</li> <li>Describe Thermal Oxidizer</li> </ol>			
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.			
4.	Method of system used:	Pressure-assisted Non-assisted			
5.	Maximum capacity of flare: 6.0 MMBtu/hr each	6. Dimensions of stack: Diameter 2.3 ft. Height 20 ft.			
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: 98 % Minimum guaranteed: 98 %	<ul> <li>8. Fuel used in burners:</li> <li>Natural Gas</li> <li>Fuel Oil, Number</li> <li>Other, Specify:</li> </ul>			
9.	Number of burners: Rating: 6,000,000 each BTU/hr Will preheat be used? Yes Xo	11. Describe method of controlling flame: Enclosed unit			
12.	Will preheat be used?YesNoFlare height:20ftFlare tip inside diameter:2.3ft	14. Natural gas flow rate to flare pilot flame per pilot light:8.3 scf/min500scf/hr			
15.	Number of pilot lights: 1 Total 615,365 each BTU/hr	16. Will automatic re-ignition be used?			
17.	If automatic re-ignition will be used, describe the met	hod:			
	<ul> <li>18. Is pilot flame equipped with a monitor?</li> <li>If yes, what type?</li> <li>Infermocouple</li> <li>Infra-Red</li> <li>Ultra Violet</li> <li>Other, Describe:</li> </ul>				
19.	Hours of unit operation per year: <b>8,760</b>				

Steam Injection					
20. Will steam injection be used?  Yes	🛛 No	21. Steam pressure Minimum Expected: Design Maximum:	PSIG		
		Design Maximum.			
22. Total Steam flow rate:	LB/hr	23. Temperature:	°F		
24. Velocity	ft/sec	25. Number of jet streams			
26. Diameter of steam jets:	in	27. Design basis for steam injected:			
		LB steam/LB hydroc	arbon		
28. How will steam flow be controlled if steam injection is used?					

	Characteristics of the Waste Gas Stream to be Burned				
29.	Name	Quantity Grains of H ₂ S/100 ft ³	<b>Quantity</b> (LB/hr, ft ³ /hr, etc)	Source of Material	
	DEHY1 for 16C	0	15,570 scfh	Dehy Still Vent and Flash Tank	
	DEHY2 for 17C	0	15,570 scfh	Dehy Still Vent and Flash Tank	
	DEHY3 for 18C	0	15,570 scfh	Dehy Still Vent and Flash Tank	
30.	Estimate total combustible t	o flare:	15,570 scfh eac	h	
	(Maximum mass flow rate o		260 scfm each		
31.		-	b be burned, carrier gases, au	kiliary fuel, etc.:	
	15,570 LB/hr or SCF/hr				
32.	Give composition of carrier	gases:			
33.	Temperature of emission st	ream: 1,450 -1,600 °F	34. Identify and describe all a BTU/scf	uxiliary fuels to be burned.	
	Heating value of emission s			BTU/scf	
	~1,231			BTU/scf	
	Mean molecular weight of e MW =	mission stream:		BTU/scf	
35.	Temperature of flare gas:	> 1450 °F	36. Flare gas flow rate:	cf/min	
37.	Flare gas heat content:	1,231 BTU/ft ³	38. Flare gas exit velocity:	ft/min	
39.	9. Maximum rate during emergency for one major piece of equipment or process unit: N/A scf/min				
40.	10. Maximum rate during emergency for one major piece of equipment or process unit: N/A BTU/min				
41.	11. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):				
42.	2. Describe the collection material disposal system:				
43.	Have you included Flare Co	ontrol Device in the Emis	sions Points Data Summary S	heet? Yes	

Please propose m proposed operatin proposed emission MONITORING: see Attachment O	g parameters. Please propose	porting in order to demonstrate compliance with the testing in order to demonstrate compliance with the RECORDKEEPING: see Attachment O
REPORTING: see Attachment O		TESTING: see Attachment O
MONITORING:		process parameters and ranges that are proposed to be trate compliance with the operation of this process
RECORDKEEPING:	Please describe the proposed red	cordkeeping that will accompany the monitoring.
REPORTING:	Please describe any proposed pollution control device.	emissions testing for this process equipment on air
TESTING:	•	emissions testing for this process equipment on air
N/A – no c	aranteed Capture Efficiency for each apture efficiency	
	aranteed Control Efficiency for eac rol efficiency for VOCs, HAPs,	
90 % contr	or efficiency for voes, fixits,	01, 02
		dures required by Manufacturer to maintain warranty. nd minimum residence time is 1 second
	i temperature is 1,400 degrees F a	

Vapor Recovery Units

#### Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 14C (VRU-100)

**Equipment Information** 

1.	Manufacturer: TBD	2.	Control Device Nar Type: Vapor Recov	ne: 14C (VRU-100) ery Unit for Storage Tanks	
3.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.				
4.	On a separate sheet(s) supply all data and calcul	ations u	sed in selecting or de	esigning this collection device.	
5.	Provide a scale diagram of the control device sho	wing int	ernal construction.		
6.	Submit a schematic and diagram with dimensions	s and flo	w rates.		
clo	<ol> <li>Guaranteed minimum collection efficiency for each pollutant collected: closed loop system, however claiming 98% efficiency.</li> <li>VRU-100 is the primary VRU to collect storage tank vapors and VRU-200 is the backup VRU. In the unlikely event that both VRU-100 and VRU-200 are under maintenance or are shutdown, a bypass system is in place to route tank vapors to the facility inlet.</li> </ol>				
8.	3. Attached efficiency curve and/or other efficiency information.				
9.	Design inlet volume: TBD	10.	Capacity: TBD		
	<ol> <li>Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any.</li> <li>N/A</li> </ol>				
12.	Attach any additional data including auxiliary e control equipment.	quipme	nt and operation de	tails to thoroughly evaluate the	
	Description of method of handling the collected m llected materials get recycled back into gas sys			al.	
	Gas Stream	m Chara	acteristics		
14.	4. Are halogenated organics present?       □ Yes       ⊠ No         Are particulates present?       □ Yes       ⊠ No         Are metals present?       □ Yes       ⊠ No				
15.	Inlet Emission stream parameters:	I	<i>l</i> laximum	Typical	
	Pressure (mmHg):		0.01 psig		
	Heat Content (BTU/scf):	No	ot specified		
	Oxygen Content (%):	No	ot specified		
	Moisture Content (%): Not specified				
	Relative Humidity (%):   Not specified				

16. Type of pollutant(s)	☐ Odor ⊠ Other VOC	C, HAPs, C1, C2	2			
17. Inlet gas velocity:	17. Inlet gas velocity: N/A ft/sec			specific gravity:		
<ul><li>19. Gas flow into the collector:</li><li>28.6 ACFM @ ambient temp and ambient PSIA</li></ul>		20. Gas strea	am temperature: Inlet: Outlet:	ambient ambient	°F °F	
21. Gas flow rate: Design Maximum: Average Expected:	Design Maximum: ACFM		22. Particulate Grain Loading in grains/scf: N/A Inlet: Outlet:		N/A	
23. Emission rate of eac	h pollutant (speci	fy) into and out	of collector:			
Pollutant	IN Poll	lutant	Emission	OUT Po	ollutant	Control
	lb/hr	grains/acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %
A VOC	85.11		98	1.7	<u> </u>	N/A
B HAPs	2.01		98	0.040		N/A
C CO2e	602		98	12.2		N/A
D						
E						
24. Dimensions of stack	: Heigl	ht NA f	ft.	Diameter	NA	ft.
25. Supply a curve shor rating of collector.	25. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 percent of design rating of collector.					
		Particulate I	Distribution			
26. Complete the table:	6. Complete the table: Particle Size Distribution at Inlet to Collector					

	to Collector	
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0-2		
2-4		
4 - 6		
6 – 8		
8 – 10		
10 – 12		
12 – 16		
16 – 20		
20-30		
30-40		
40 - 50		
50 - 60		
60 – 70		
70 - 80		
80 - 90		
90 - 100		
>100		

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): **None** 

28. Describe the collection material disposal system:	Closed loop system - vapors get recycled back into
system	

29. Have you included Other Collectores Control Device in the Emissions Points Data Summary Sheet? Yes

30. **Proposed Monitoring, Recordkeeping, Reporting, and Testing** Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING: <b>see Att</b>	achment O	RECORDKEEPING: see Attachment O	
REPORTING: see Attachment O		TESTING: see Attachment O	
MONITORING:		ocess parameters and ranges that are proposed to be trate compliance with the operation of this process	

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.

REPORTING: Please describe any proposed emissions testing for this process equipment on air pollution control device.

TESTING: Please describe any proposed emissions testing for this process equipment on air pollution control device.

31. Manufacturer's Guaranteed Control Efficiency for each air pollutant.

100% - Closed loop system. However, claiming 98% to account for down time with a back up VRU.

32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 100% - Closed loop system. However, claiming 98% to account for down time with a back up VRU.

33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. None – system has automatic monitoring, shutdown and alerts systems for malfunctions.

#### Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 15C (VRU-200)

**Equipment Information** 

1.	Manufacturer: TBD	2. Control Device Nan Type: Vapor Recov	ne: 15C (VRU-200) ery Unit for Storage Tanks		
3.	. Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.				
4.	On a separate sheet(s) supply all data and cal	culations used in selecting or de	esigning this collection device.		
5.	Provide a scale diagram of the control device s	showing internal construction.			
6.	Submit a schematic and diagram with dimension	ons and flow rates.			
	<ol> <li>Guaranteed minimum collection efficiency for each pollutant collected: closed loop system, however claiming 98% efficiency.</li> <li>VRU-100 is the primary VRU to collect storage tank vapors and VRU-200 is the backup VRU in times when the primary VRU is undergoing maintenance or shutdown. In the unlikely event that both VRU-100 and VRU-200 are under maintenance or are shutdown, a bypass system is in place to route tank vapors to the facility inlet.</li> </ol>				
8.	Attached efficiency curve and/or other efficience	cy information.			
9.	Design inlet volume: TBD Mscfd	10. Capacity: TBD Msc	fd		
	11. Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any. N/A				
12.	Attach any additional data including auxiliary control equipment.	y equipment and operation de	tails to thoroughly evaluate the		
	Description of method of handling the collected llected materials get recycled back into gas		al.		
	Gas Str	eam Characteristics			
14.	4. Are halogenated organics present?       □ Yes       ⊠ No         Are particulates present?       □ Yes       ⊠ No         Are metals present?       □ Yes       ⊠ No				
15.	Inlet Emission stream parameters:	Maximum	Typical		
	Pressure (mmHg):	0.01 psig			
	Heat Content (BTU/scf):	Not specified			
	Oxygen Content (%):	Not specified			
	Moisture Content (%): Not specified				
	Relative Humidity (%): Not specified				

16. Type of pollutant(s) controlled:       □ SOx       □ Odor         □ Particulate (type):       □ Other VOC, HAPs, C1, C2											
17. Inlet gas velocity:	1	N/A ft/sec	18. Pollutant specific gravity:								
19. Gas flow into the co 28.6 ACFM @ a	llector: ambient temp and		20. Gas strea	am temperature: Inlet: Outlet:	ambient ambient	°F °F					
21. Gas flow rate: Design Maximum: Average Expected:		ACFM ACFM	22. Particulate Grain Loading in grains/scf: N/A Inlet: Outlet:								
23. Emission rate of eac	h pollutant (speci	fy) into and out	of collector:								
Pollutant	IN Poll	lutant	Emission								
	lb/hr	grains/acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %					
A VOC	85.11		98	1.7	<u> </u>	N/A					
B HAPs	2.01		98	0.040		N/A					
C CO2e	602		98	12.2		N/A					
D											
E											
24. Dimensions of stack	: Heigl	ht NA f	ft.	Diameter	NA	ft.					
25. Supply a curve shor rating of collector.	25. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 percent of design rating of collector.										
		Particulate I	Distribution								
26. Complete the table:											

	to Collector	
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0-2		
2-4		
4 - 6		
6 – 8		
8 – 10		
10 – 12		
12 – 16		
16 – 20		
20-30		
30-40		
40 - 50		
50 - 60		
60 – 70		
70 - 80		
80 - 90		
90 - 100		
>100		

27. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): **None** 

28. Describe the collection material disposal system:	Closed loop system - vapors get recycled back into
system	

29. Have you included Other Collectores Control Device in the Emissions Points Data Summary Sheet? Yes

30. **Proposed Monitoring, Recordkeeping, Reporting, and Testing** Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING: <b>see Att</b>	achment O	RECORDKEEPING: see Attachment O
REPORTING: see Atta	chment O	TESTING: see Attachment O
MONITORING:		ocess parameters and ranges that are proposed to be trate compliance with the operation of this process

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.

REPORTING: Please describe any proposed emissions testing for this process equipment on air pollution control device.

TESTING: Please describe any proposed emissions testing for this process equipment on air pollution control device.

31. Manufacturer's Guaranteed Control Efficiency for each air pollutant.

100% - Closed loop system. However, claiming 98% to account for down time with a back up VRU.

32. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 100% - Closed loop system. However, claiming 98% to account for down time with a back up VRU.

33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. None – system has automatic monitoring, shutdown and alerts systems for malfunctions.

Attachment N. Supporting Emissions Calculations

# **Emission Calculations**

#### **Emissions Summary Total**

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Facility Location:	Doddridge County, West Virginia

#### UNCONTROLLED POTENTIAL EMISSION SUMMARY

2		NOx		CO		VOC		SO ₂		PM-10		HAPs		Formaldehyde	
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
<u>Engines</u>															
Compressor Engine 1	1.65	7.24	14.44	63.25	2.26	9.90	0.010	0.044	0.17	0.75	1.21	5.32	0.88	3.86	12,311
Compressor Engine 2	1.65	7.24	14.44	63.25	2.26	9.90	0.010	0.044	0.17	0.75	1.21	5.32	0.88	3.86	12,311
Compressor Engine 3	1.65	7.24	14.44	63.25	2.26	9.90	0.010	0.044	0.17	0.75	1.21	5.32	0.88	3.86	12,311
Compressor Engine 4	1.65	7.24	14.44	63.25	2.26	9.90	0.010	0.044	0.17	0.75	1.21	5.32	0.88	3.86	12,311
Compressor Engine 5	1.65	7.24	14.44	63.25	2.26	9.90	0.010	0.044	0.17	0.75	1.21	5.32	0.88	3.86	12,311
Compressor Engine 6	1.65	7.24	14.44	63.25	2.26	9.90	0.010	0.044	0.17	0.75	1.21	5.32	0.88	3.86	12,311
Compressor Engine 7	1.65	7.24	14.44	63.25	2.26	9.90	0.010	0.044	0.17	0.75	1.21	5.32	0.88	3.86	12,311
Compressor Engine 8	1.65	7.24	14.44	63.25	2.26	9.90	0.010	0.044	0.17	0.75	1.21	5.32	0.88	3.86	12,311
Compressor Engine 9	1.65	7.24	14.44	63.25	2.26	9.90	0.010	0.044	0.17	0.75	1.21	5.32	0.88	3.86	12,311
Compressor Engine 10	1.65	7.24	14.44	63.25	2.26	9.90	0.010	0.044	0.17	0.75	1.21	5.32	0.88	3.86	12,311
Compressor Engine 11	1.65	7.24	14.44	63.25	2.26	9.90	0.010	0.044	0.17	0.75	1.21	5.32	0.88	3.86	12,311
Compressor Engine 12	1.65	7.24	14.44	63.25	2.26	9.90	0.010	0.044	0.17	0.75	1.21	5.32	0.88	3.86	12,311
Fuel Conditioning Heater	0.049	0.21	0.041	0.18	0.0027	0.012	0.00029	0.0013	0.0037	0.016	0.00092	0.0040	0.000037	0.00016	257
<u>Generator</u>															
Natural Gas Generator	1.43	6.27	2.86	12.53	1.00	4.39	0.0032	0.014	0.11	0.47	0.18	0.78	0.11	0.50	2,841
<u>Dehydrator</u>															
TEG Dehydrator 1					65.28	285.93					6.25	27.39			14,701
TEG Dehydrator 2					65.28	285.93					6.25	27.39			14,701
TEG Dehydrator 3					65.28	285.93					6.25	27.39			14,701
Reboiler 1	0.15	0.64	0.12	0.54	0.0081	0.035	0.00088	0.0039	0.011	0.049	0.0028	0.012	0.00011	0.00048	771
Reboiler 2	0.15	0.64	0.12	0.54	0.0081	0.035	0.00088	0.0039	0.011	0.049	0.0028	0.012	0.00011	0.00048	771
Reboiler 3	0.15	0.64	0.12	0.54	0.0081	0.035	0.00088	0.0039	0.011	0.049	0.0028	0.012	0.00011	0.00048	771
Flare - AOS 1															
Flare 1															
Thermal Oxidizers-AOS 2															
Thermal Oxidizer 1															
Thermal Oxidizer 2															
Thermal Oxidizer 3															
Hydrocarbon Loading															
Truck Loadout					59.72	12.45					1.41	0.29			93
Venting Emissions															
Compressor Blowdown Emissions						8.44						0.17			791
Startup and Shutdown Emissions						5.28						0.11			495
Pigging Emissions						7.42						0.15			694
Fugitive Emissions															
Component Leak Emissions					2.04	8.94					0.044	0.19			177
Haul Road Dust Emissions									0.21	0.90					
Storage Tanks															
Produced Water Tanks					0.00019	0.0008					7.60E-07	3.33E-06			0.06
Settler Tank					81.96	359.0					1.93	8.46			2,626
Condensate Tanks					3.15	13.79					0.08	0.33			11
Total Facility PTE under AOS 1 =	21.76	95.32	176.55	773.31	370.86	1,396.37	0.13	0.56	2.40	10.52	36.98	156.52	10.70	46.85	202,130
Total Facility PTE under AOS 2 =	21.76	95.32	176.55	773.31	370.86	1,396.37	0.13	0.56	2.40	10.52	36.98	156.52	10.70	46.85	202,130

#### **Emissions Summary Total**

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Facility Location:	Doddridge County, West Virginia

#### CONTROLLED POTENTIAL EMISSION SUMMARY

-	NOx		со		VOC		SO ₂		PM-10		HAPs		Formaldehyde		CO ₂ e
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
Engines															
Compressor Engine 1	1.65	7.24	0.88	3.86	1.49	6.52	0.010	0.044	0.17	0.75	0.33	1.45	0.11	0.48	12,311
Compressor Engine 2	1.65	7.24	0.88	3.86	1.49	6.52	0.010	0.044	0.17	0.75	0.33	1.45	0.11	0.48	12,311
Compressor Engine 3	1.65	7.24	0.88	3.86	1.49	6.52	0.010	0.044	0.17	0.75	0.33	1.45	0.11	0.48	12,311
Compressor Engine 4	1.65	7.24	0.88	3.86	1.49	6.52	0.010	0.044	0.17	0.75	0.33	1.45	0.11	0.48	12,311
Compressor Engine 5	1.65	7.24	0.88	3.86	1.49	6.52	0.010	0.044	0.17	0.75	0.33	1.45	0.11	0.48	12,311
Compressor Engine 6	1.65	7.24	0.88	3.86	1.49	6.52	0.010	0.044	0.17	0.75	0.33	1.45	0.11	0.48	12,311
Compressor Engine 7	1.65	7.24	0.88	3.86	1.49	6.52	0.010	0.044	0.17	0.75	0.33	1.45	0.11	0.48	12,311
Compressor Engine 8	1.65	7.24	0.88	3.86	1.49	6.52	0.010	0.044	0.17	0.75	0.33	1.45	0.11	0.48	12,311
Compressor Engine 9	1.65	7.24	0.88	3.86	1.49	6.52	0.010	0.044	0.17	0.75	0.33	1.45	0.11	0.48	12,311
Compressor Engine 10	1.65	7.24	0.88	3.86	1.49	6.52	0.010	0.044	0.17	0.75	0.33	1.45	0.11	0.48	12,311
Compressor Engine 11	1.65	7.24	0.88	3.86	1.49	6.52	0.010	0.044	0.17	0.75	0.33	1.45	0.11	0.48	12,311
Compressor Engine 12	1.65	7.24	0.88	3.86	1.49	6.52	0.010	0.044	0.17	0.75	0.33	1.45	0.11	0.48	12,311
Fuel Conditioning Heater	0.049	0.21	0.041	0.18	0.0027	0.012	0.00029	0.0013	0.0037	0.016	0.00092	0.0040	0.000037	0.00016	257
Generator															
Natural Gas Generator	1.43	6.27	2.86	12.53	1.00	4.39	0.00	0.01	0.11	0.47	0.18	0.78	0.11	0.50	2,841
Dehydrator			-												
TEG Dehydrator 1					1.31	5.72					0.13	0.55			305
TEG Dehydrator 2					1.31	5.72					0.13	0.55			305
TEG Dehydrator 3					1.31	5.72					0.13	0.55			305
Reboiler 1	0.15	0.64	0.12	0.54	0.0081	0.035	0.00088	0.0039	0.011	0.049	0.0028	0.012	0.00011	0.00048	771
Reboiler 2	0.15	0.64	0.12	0.54	0.0081	0.035	0.00088	0.0039	0.011	0.049	0.0028	0.012	0.00011	0.00048	771
Reboiler 3	0.15	0.64	0.12	0.54	0.0081	0.035	0.00088	0.0039	0.011	0.049	0.0028	0.012	0.00011	0.00048	771
Flare - AOS 1															
Flare 1	0.33	1.46	1.78	7.80	0.00033	0.0015	0.000036	0.00016	0.00046	0.0020	0.00011	0.00050			2,500
Thermal Oxidizers-AOS 2															
Thermal Oxidizer 1	0.47	2.05	2.27	9.95	0.0033	0.015	0.00036	0.0016	0.0046	0.020	0.0011	0.0050			3,401
Thermal Oxidizer 2	0.47	2.05	2.27	9.95	0.0033	0.015	0.00036	0.0016	0.0046	0.020	0.0011	0.0050			3,401
Thermal Oxidizer 3	0.47	2.05	2.27	9.95	0.0033	0.015	0.00036	0.0016	0.0046	0.020	0.0011	0.0050			3,401
Hydrocarbon Loading															
Truck Loadout					59.72	12.45					1.41	0.29			93
Venting Emissions															
Compressor Blowdown Emissions						8.44						0.17			791
Startup and Shutdown Emissions						5.28						0.11			495
Pigging Emissions						7.42						0.15			694
Fugitive Emissions															
Component Leak Emissions					2.04	8.94					0.044	0.19			177
Haul Road Dust Emissions									0.21	0.90					
Storage Tanks															
Produced Water Tanks					3.78E-06	1.66E-05					1.52E-08	6.66E-08			0.0017
Settler Tank					1.64	7.18					0.039	0.17			53
Condensate Tanks					0.063	0.28					0.0015	0.007			0.23
Total Facility PTE under AOS 1 =	22.09	96.77	15.64	68.49	86.27	149.86	0.13	0.56	2.40	10.52	6.03	20.96	1.44	6.29	158,857
Total Facility PTE under AOS 2 =	23.17	101.47	20.67	90.52	86.28	149.90	0.13	0.56	2.42	10.58	6.03	20.98	1.44	6.29	166,561

### HAP Emissions Summary Total

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Facility Location:	Doddridge County, West Virginia

CONTROLLED POTENTIAL EMISSION SUMMARY

	Ben	zene	Tol	Jene	Ethvlb	enzene	Xvl	enes	n-He	exane	Acetal	dehyde	Acr	olein	Meth	nanol
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy								
Engines								7								
Compressor Engine 1	0.0050	0.022	0.0046	0.020	0.00045	0.0020	0.0021	0.0091	0.013	0.055	0.094	0.41	0.058	0.25	0.028	0.12
Compressor Engine 2	0.0050	0.022	0.0046	0.020	0.00045	0.0020	0.0021	0.0091	0.013	0.055	0.094	0.41	0.058	0.25	0.028	0.12
Compressor Engine 3	0.0050	0.022	0.0046	0.020	0.00045	0.0020	0.0021	0.0091	0.013	0.055	0.094	0.41	0.058	0.25	0.028	0.12
Compressor Engine 4	0.0050	0.022	0.0046	0.020	0.00045	0.0020	0.0021	0.0091	0.013	0.055	0.094	0.41	0.058	0.25	0.028	0.12
Compressor Engine 5	0.0050	0.022	0.0046	0.020	0.00045	0.0020	0.0021	0.0091	0.013	0.055	0.094	0.41	0.058	0.25	0.028	0.12
Compressor Engine 6	0.0050	0.022	0.0046	0.020	0.00045	0.0020	0.0021	0.0091	0.013	0.055	0.094	0.41	0.058	0.25	0.028	0.12
Compressor Engine 7	0.0050	0.022	0.0046	0.020	0.00045	0.0020	0.0021	0.0091	0.013	0.055	0.094	0.41	0.058	0.25	0.028	0.12
Compressor Engine 8	0.0050	0.022	0.0046	0.020	0.00045	0.0020	0.0021	0.0091	0.013	0.055	0.094	0.41	0.058	0.25	0.028	0.12
Compressor Engine 9	0.0050	0.022	0.0046	0.020	0.00045	0.0020	0.0021	0.0091	0.013	0.055	0.094	0.41	0.058	0.25	0.028	0.12
Compressor Engine 3	0.0050	0.022	0.0046	0.020	0.00045	0.0020	0.0021	0.0091	0.013	0.055	0.094	0.41	0.058	0.25	0.028	0.12
Compressor Engine 10	0.0050	0.022	0.0046	0.020	0.00045	0.0020	0.0021	0.0091	0.013	0.055	0.094	0.41	0.058	0.25	0.028	0.12
Compressor Engine 12	0.0050	0.022	0.0046	0.020	0.00045	0.0020	0.0021	0.0091	0.013	0.055	0.094	0.41	0.058	0.25	0.028	0.12
Fuel Conditioning Heater	0.0050	0.022	0.0046	0.020	0.00045	0.0020	0.0021	0.0091	0.013	0.055	0.094		0.056	0.25	0.028	0.12
Generator																
Natural Gas Generator	0.0087	0.038	0.0031	0.014	0.00014	0.00060	0.0011	0.0047			0.015	0.068	0.015	0.064	0.017	0.074
Dehydrator	0.0067	0.036	0.0031	0.014	0.00014	0.00060	0.0011	0.0047			0.015	0.066	0.015	0.064	0.017	0.074
TEG Dehydrator 1	0.025	0.11	0.056	0.24	0.0034	0.015	0.012	0.052	0.030	0.13						
TEG Dehydrator 2	0.025	0.11	0.056	0.24	0.0034	0.015	0.012	0.052	0.030	0.13						
TEG Dehydrator 2	0.025	0.11	0.056	0.24	0.0034	0.015	0.012	0.052	0.030	0.13						
Reboiler 1	0.025		0.056	0.24	0.0034	0.015		0.052	0.030	0.13			1			
Reboiler 1 Reboiler 2																
Reboiler 3																
Flare - AOS 1																
Flare 1																
<u>Thermal Oxidizers-AOS 2</u> Thermal Oxidizer 1																
Thermal Oxidizer 2																
Thermal Oxidizer 3																
<u>Hydrocarbon Loading</u>	0.007	0.0077	0.000	0.014	0.005	0.0050	0.000	0.010	1.01	0.05						
Truck Loadout Venting Emissions	0.037	0.0077	0.068	0.014	0.025	0.0052	0.063	0.013	1.21	0.25						
		0.0053		0.009		0.00053		0.0012		0.16						
Compressor Blowdown Emissions		0.0053		0.009		0.00053		0.0013								
Startup and Shutdown Emissions										0.10						
Pigging Emissions		0.0046		0.0083		0.00046		0.0012		0.14						
Fugitive Emissions	0.0010	0.0050	0.0000	0.010	0.00000	0.0014	0.00001	0.0000	0.000	0.17					-	
Component Leak Emissions	0.0013	0.0056	0.0023	0.010	0.00032	0.0014	0.00081	0.0036	0.039	0.17						
Haul Road Dust Emissions																
Storage Tanks																
Produced Water Tanks	1.00E-08	4.39E-08	3.84E-09	1.68E-08	4.64E-10	2.03E-09	6.75E-10	2.96E-09	2.02E-10	8.84E-10						
Settler Tank	1.01E-03	4.44E-03	1.85E-03	8.12E-03	6.88E-04	3.01E-03	1.72E-03	7.54E-03	3.34E-02	1.46E-01						
Condensate Tanks	2.78E-05	1.22E-04	5.75E-05	2.52E-04	2.41E-05	1.06E-04	5.54E-05	2.43E-04	1.36E-03	5.97E-03						
Total Facility PTE under AOS 1 =	0.18	0.66	0.30	1.03	0.042	0.080	0.13	0.30	1.53	2.02	1.15	5.02	0.71	3.11	0.36	1.56
Total Facility PTE under AOS 2 =	0.18	0.66	0.30	1.03	0.042	0.080	0.13	0.30	1.53	2.02	1.15	5.02	0.71	3.11	0.36	1.56

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Compressor Engines
Emission Point IDs:	1E through 12E

#### Source Information-Per Engine

Emission Unit ID:	C-100 thr	ough C-1200
Engine Make/Model	Caterpi	llar G3608
Service	Com	pression
Controls - Y or N / Type	Y	NSCR/AFRC
Site Horsepower Rating ¹	2,500	hp
Fuel Consumption (BSFC) ¹	6,850	Btu/(hp-hr)
Heat Rating ²	17.13	MMBtu/hr
Fuel Consumption ^{2,3}	144.54	MMscf/yr
Fuel Consumption ¹	16,500	scf/hr
Fuel Heating Value	1,231	Btu/scf
Operating Hours	8,760	hrs/yr

 Operating Hours
 8,760
 hrs/yr

 Notes:
 1. Values from Caterpillar specification sheet

 2. Calculated values
 3. Annual fuel consumption is 100% of maximum fuel consumption at 100% load.

#### Potential Emissions per Engine

		L	Incontrolled	1				Controlled				
Pollutant	Emissio			mated Emiss		Emissio			mated Emissi		Source of Emissions Factors	
Ox ^{1,4}	(Ib/MMBtu)	(g/bhp-hr) 0.30	(lb/hr) 1.65	(lb/yr)	(tpy) 7.24	(Ib/MMBtu)	(g/bhp-hr) 0.30	(lb/hr) 1.65	(lb/yr)	(tpy) 7.24	Manufacturer's Specs - uncontrolled and controlled	
0 ^{1,4}		2.62	14.44		63.25		0.16	0.88		3.86	Manufacturer's Specs - uncontrolled, see note 6 - controlled	
OC ^{1,4}		0.41	2.26		9.90		0.18	1.49		6.52	Manufacturer's Specs - uncontrolled, see note 6 - controlled Manufacturer's Specs - uncontrolled, see note 6 - controlled	
0C ·		0.41	0.010		0.044		0.27					
-	5.88E-04					5.88E-04		0.010		0.044	AP-42, Chapter 3.2, Table 3.2-2	
M _{2.5} /PM ₁₀	9.99E-03		0.17		0.75	9.99E-03		0.17		0.75	AP-42, Chapter 3.2, Table 3.2-2	
otal PM	9.98E-03		0.17		0.75	9.98E-03		0.17		0.75	AP-42, Chapter 3.2, Table 3.2-2	
,3-Butadiene	2.67E-04		0.0046	40.05	0.020	1.76E-04		0.0030	26.38	0.013	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
-Methylnaphthalene	3.32E-05		0.00057	4.98	0.0025	3.32E-05		0.00057	4.98	0.0025	AP-42, Chapter 3.2, Table 3.2-2	
,2,4-Trimethylpentane	2.50E-04		0.0043	37.50	0.019	1.65E-04		0.0028	24.70	0.012	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
cenaphthene	1.25E-06		0.000021	0.19	0.000094	1.25E-06		0.000021	0.19	0.000094	AP-42, Chapter 3.2, Table 3.2-2	
cenaphthylene	5.53E-06		0.000095	0.83	0.00041	5.53E-06		0.000095	0.83	0.00041	AP-42, Chapter 3.2, Table 3.2-2	
cetaldehyde	8.36E-03		0.14	1,254	0.63	5.51E-03		0.094	825.9	0.41	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
crolein	5.14E-03		0.088	771.1	0.39	3.38E-03		0.058	507.8	0.25	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
lenzene	4.40E-04		0.0075	66.01	0.033	2.90E-04		0.0050	43.47	0.022	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
enzo(b)fluoranthene	1.66E-07		0.0000028	0.025	0.000012	1.66E-07		0.0000028	0.025	0.000012	AP-42, Chapter 3.2, Table 3.2-2	
enzo(e)pyrene	4.15E-07		0.0000071	0.062	0.000031	4.15E-07		0.0000071	0.062	0.000031	AP-42, Chapter 3.2, Table 3.2-2	
enzo(g,h,i)perylene	4.14E-07		0.0000071	0.062	0.000031	4.14E-07		0.0000071	0.062	0.000031	AP-42, Chapter 3.2, Table 3.2-2	
iphenyl	2.12E-04		0.0036	31.80	0.016	1.40E-04		0.0024	20.94	0.010	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
hrysene	6.93E-07		0.000012	0.10	0.000052	6.93E-07		0.000012	0.10	0.000052	AP-42, Chapter 3.2, Table 3.2-2	
thylbenzene	3.97E-05		0.00068	5.96	0.0030	2.61E-05		0.00045	3.92	0.0020	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
luoranthene	1.11E-06		0.000019	0.17	0.000083	1.11E-06		0.000019	0.17	0.000083	AP-42, Chapter 3.2, Table 3.2-2	
luorene	5.67E-06		0.00010	0.85	0.00043	5.67E-06		0.00010	0.85	0.00043	AP-42, Chapter 3.2, Table 3.2-2	
ormaldehyde ¹		0.16	0.88	7,725	3.86		0.020	0.11	965.6	0.48	Manufacturer's Specs - uncontrolled, see note 6 - controlled	
lethanol	2.50E-03		0.043	375.0	0.19	1.65E-03		0.028	247.0	0.12	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
lethylene Chloride	2.00E-05		0.00034	3.00	0.0015	1.32E-05		0.00023	1.98	0.0010	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
-Hexane	1.11E-03		0.019	166.5	0.083	7.31E-04		0.013	109.7	0.055	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
aphthalene	7.44E-05		0.0013	11.16	0.0056	4.90E-05		0.00084	7.35	0.0037	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
AH	2.69E-05		0.00046	4.04	0.0020	2.69E-05		0.00046	4.04	0.0020	AP-42, Chapter 3.2, Table 3.2-2	
henanthrene	1.04E-05		0.00018	1.56	0.00078	1.04E-05		0.00018	1.56	0.00078	AP-42, Chapter 3.2, Table 3.2-2	
henol	2.40E-05		0.00041	3.60	0.0018	1.58E-05		0.00027	2.37	0.0012	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
yrene	1.36E-06		0.000023	0.20	0.00010	1.36E-06		0.000023	0.20	0.00010	AP-42, Chapter 3.2, Table 3.2-2	
etrachloroethane	2.48E-06		0.000042	0.37	0.00019	1.63E-06		0.000028	0.25	0.00012	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
oluene	4.08E-04		0.0070	61.21	0.031	2.69E-04		0.0046	40.31	0.020	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
invl Chloride	1.49E-05		0.00026	2.24	0.0011	9.81E-06		0.00017	1.47	0.00074	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
vlenes	1.43E-03		0.00020	27.60	0.0011	1.21E-04		0.0021	18.18	0.00074	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 5 - controlled	
other HAPs ²	2.62E-04		0.0032	39.26	0.020	2.62E-04		0.0021	39.26	0.0091	AP-42, Chapter 3.2, Table 3.2-2 - uncontrolled, see note 3 - controlled AP-42, Chapter 3.2, Table 3.2-2	
	2.021-04					2.022.04						
Total HAPS		L	1.21	10,634	5.32		L	0.33	2,900	1.45		
Pollutant	Emissio (kg/MMBtu)	n Factor (g/bhp-hr)	Esti (Ib/hr)	mated Emiss (lb/yr)	ions ² (tpy)	Emissio (kg/MMBtu)		Esti (Ib/hr)	mated Emissi (lb/yr)	ions ² (tpy)	Source of Emissions Factors	
0 ₂ ¹		429	2,364	(ID/yr) 	10,356	(Kg/WIWBtu)	429	2,364	(i0/yi) 	10.356	Manufacturer's Specs	
H ₄ ^{1,4}		3.23	17.80		77.97		3.23	17.80		77.97	Manufacturer's Specs - uncontrolled; THC minus NMHC emission factor	
»O	0.0001		0.0038		0.017	0.0001		0.0038		0.017	40 CFR Part 98, Subpart C, Table C-2	
:0 ₂ e ²	0.0001		2.811		12,311	0.0001		2,811		12,311	40 CFR Part 98, Subpart A, Table A-1, effective January 2014	
			2,011		12,011			2,011		12,011	1.5 State and So, Subpart A, Table A 1, Ellective Saluary 2014	

# Natural Gas Fueled Fuel Conditioning Heater Emissions

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Location:	Doddridge County, West Virginia
Source Description:	Fuel Conditioning Heater
Emission Point ID:	30E

### Source Information

Emission Unit ID:	FUEL1				
Source Description:	Fuel Conditioning Heater				
Hours of Operation	8,760	hr/yr			
Design Heat Rate	0.50	MMBtu/hr			
Fuel Heat Value	1,020	Btu/scf			
Fuel Use	4.29	MMscf/yr			

### **Emission Calculations per Heater**

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Foliutant	(Ib/MMscf)	(lb/hr)	(tpy)	Source
NO _X	100	0.049	0.21	AP-42 Ch. 1.4 Table 1.4-1
СО	84	0.041	0.18	AP-42 Ch. 1.4 Table 1.4-1
VOC	5.5	0.0027	0.012	AP-42 Ch. 1.4 Table 1.4-2
PM ₁₀	7.6	0.0037	0.016	AP-42 Ch. 1.4 Table 1.4-2
SO ₂	0.6	0.00029	0.0013	AP-42 Ch. 1.4 Table 1.4-2
Formaldehyde	0.075	0.000037	0.00016	AP-42 Ch. 1.4 Table 1.4-3
Total HAPs (including HCHO) ¹	1.9	0.00092	0.0040	AP-42 Ch. 1.4 Table 1.4-3
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Pollutant	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	58.63	256.8	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.0011	0.0048	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.00011	0.00048	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		58.69	257.1	40 CFR Part 98, Subpart A, Table A-1

1. Only those HAP pollutants above detection thresholds were included.

### Sample Calculations:

Fuel Consumption (MMscf/yr) = Heater Size (MMBtu/hr) * Hours of Operation (hrs/yr)

Fuel Heat Value (Btu/scf) * Heater Efficiency

Emissions (tons/yr) = Emission Factor (lbs/MMscf) * Fuel Consumption (MMscf/yr) 2,000 (lbs/ton)

# **Natural Gas Generator Emission Calculations**

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Natural Gas Generator
Emission Point ID:	13-E
Emission Unit ID:	GEN1

#### Source Information

Make/Model	PSI Ind	ustrial 21.9L
Horsepower at Rated kW	649	bhp
Fuel Consumption	4,490	scf/hr
BSFC	8,515	Btu/hp-hr
Heating Value ¹	5.53	MMBtu/hr
Annual Fuel Consumption ¹	39.33	MMscf/yr
Fuel Heating Value	1,231	Btu/scf
Operating Hours	8,760	hrs/yr
Notes:		

1) Calculated

### Potential Emissions

Pollutant	Emissio	on Factor	Esti	mated Emissi	ons ¹	Source of Emissions Factors
	(lb/MMBtu)	(g/bhp-hr)	(lb/hr)	(lb/yr)	(tpy)	
NOx		1.00	1.43		6.27	Emissions Certification - uncontrolled and controlled
со		2.00	2.86		12.53	Emissions Certification - uncontrolled and controlled
VOC		0.70	1.00		4.39	Emissions Certification - uncontrolled and controlled
SO ₂	5.88E-04		0.0032		0.014	AP-42, Chapter 3.2, Table 3.2-3
PM _{2.5}	1.94E-02		0.11		0.47	AP-42, Chapter 3.2, Table 3.2-3
PM ₁₀	1.94E-02		0.11		0.47	AP-42, Chapter 3.2, Table 3.2-3
1,1,2,2-Tetrachloroethane	2.53E-05		1.40E-04	1.22	6.12E-04	AP-42, Chapter 3.2, Table 3.2-3
1,3-Butadiene	6.63E-04		3.66E-03	32.09	1.60E-02	AP-42, Chapter 3.2, Table 3.2-3
Acetaldehyde	2.79E-03		1.54E-02	135.06	6.75E-02	AP-42, Chapter 3.2, Table 3.2-3
Acrolein	2.63E-03		1.45E-02	127.31	6.37E-02	AP-42, Chapter 3.2, Table 3.2-3
Benzene	1.58E-03		8.73E-03	76.48	3.82E-02	AP-42, Chapter 3.2, Table 3.2-3
Ethylbenzene	2.48E-05		1.37E-04	1.201	6.00E-04	AP-42, Chapter 3.2, Table 3.2-3
Formaldehyde	2.05E-02		1.13E-01	992.36	4.96E-01	AP-42, Chapter 3.2, Table 3.2-3
Methanol	3.06E-03		1.69E-02	148.13	7.41E-02	AP-42, Chapter 3.2, Table 3.2-3
Methylene Chloride	4.12E-05		2.28E-04	1.99	9.97E-04	AP-42, Chapter 3.2, Table 3.2-3
РАН	1.41E-04		7.79E-04	6.83	3.41E-03	AP-42, Chapter 3.2, Table 3.2-3
Toluene	5.58E-04		3.08E-03	27.01	1.35E-02	AP-42, Chapter 3.2, Table 3.2-3
Xylenes	1.95E-04		1.08E-03	9.44	4.72E-03	AP-42, Chapter 3.2, Table 3.2-3
Other HAPs	2.10E-04		1.16E-03	10.15	5.08E-03	AP-42, Chapter 3.2, Table 3.2-3
Total HAPS			0.18	1569.3	0.78	
Pollutant	Emissio	on Factor	Esti	mated Emissi	ons ¹	Source of Emissions Factors
Foliutant	(kg/N	IMBtu)	(lb/hr)		(tpy)	
CO ₂	53	.06	648		2,838.2	40 CFR Part 98, Subpart C, Table C-1
CH₄	0.0	001	0.012		0.053	40 CFR Part 98, Subpart C, Table C-2
N ₂ O	0.0	001	0.0012		0.0053	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e			649		2,841.1	40 CFR Part 98, Subpart A, Table A-1, effective January 2014

### Example Calculations

lb/hr = (kg/MMBtu) * (MMBtu/hr) * (2.21 lb/kg) = (lb/MMBtu) * (MMBtu/hr) = (g/bhp-hr) * hp * (1 lb/ 453.59 g)

tpy = (lb/hr) * (hr/yr) * (ton/2000 lb)

# **Dehydrator Emissions**

Company:	Antero Midstream LLC	
Facility Name:	South Canton Compressor Station	
Facility Location:	Doddridge County, West Virginia	
Source Description:	Dehydrator Units	
Emission Point IDs:	14E and 15E, 17E and 18E, 20E and 21E	

### Potential Emissions per Dehydrator

	Emission Unit ID:	DEHY1 - DEHY3	Emission Unit ID:	DFLSH1-DFLSH3
	Dehydrator Still Vent		Flash Ta	
Pollutant	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Uncontrolled Emissions ¹				
VOC	16.37	71.69	48.91	214.2
Total HAPs	4.94	21.64	1.31	5.75
Benzene	1.16	5.08	0.097	0.42
Toluene	2.62	11.46	0.13	0.56
Ethylbenzene	0.16	0.72	0.0041	0.018
Xylenes	0.58	2.56	0.0091	0.040
n-Hexane	0.42	1.82	1.08	4.71
Methane	18.48	80.95	115.7	506.7
Carbon Dioxide	0.26	1.15	2.26	9.90
CO ₂ e	462.3	2,025	2,894	12,677
Controlled Emissions ²				
VOC	0.33	1.43	0.98	4.28
Total HAPs	0.099	0.43	0.026	0.12
Benzene	0.023	0.10	0.0019	0.0085
Toluene	0.053	0.23	0.0025	0.011
Ethylbenzene	0.0033	0.014	0.00010	0.00040
Xylenes	0.012	0.051	0.00020	0.00080
n-Hexane	0.0083	0.036	0.022	0.094
Methane	0.37	1.62	2.31	10.13
Carbon Dioxide	0.26	1.15	2.26	9.90
CO ₂ e	9.50	41.62	60.10	263.2

	Dehydrator Emission Totals		
Pollutant	(lb/hr)	(tpy)	
Uncontrolled Emissions ¹			
VOC	65.28	285.9	
Total HAPs	6.25	27.39	
Benzene	1.26	5.50	
Toluene	2.74	12.02	
Ethylbenzene	0.17	0.74	
Xylenes	0.59	2.60	
n-Hexane	1.49	6.54	
Methane	134.2	587.6	
Carbon Dioxide	2.52	11.05	
CO ₂ e	3,356	14,701	
Controlled Emissions ²			
VOC	1.31	5.72	
Total HAPs	0.13	0.55	
Benzene	0.025	0.11	
Toluene	0.056	0.24	
Ethylbenzene	0.0034	0.015	
Xylenes	0.012	0.052	
n-Hexane	0.030	0.13	
Methane	2.68	11.75	
Carbon Dioxide	2.52	11.05	
CO ₂ e	69.60	304.9	

¹Output from GRI-GLYCalc 4.0 for both the still vent and flash tank gas emissions.

²Controlled emissions assume that the glycol still vent is controlled by either a flare or thermal oxidizer with a 98% control efficiency. Controlled emissions also assume that the flash tank is controlled by either the reboiler (with VRU system backup) or a thermal oxidizer, both with 98% control efficiency. To be conservative, a condenser was not included in the model run, however if the flare option is utilized, a condenser will be installed.

# Natural Gas Fueled Dehydrator Reboiler Emissions

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Location:	Doddridge County, West Virginia
Source Description:	Dehydrator Reboilers
Emission Point IDs:	16E, 19E, 22E

### Source Information

Emission Unit ID:	DREB1 through DREB3		
Source Description:	Dehydrator Reboiler		
Hours of Operation	8,760 hr/yr		
Design Heat Rate	1.5 MMBtu/hr		
Fuel Heat Value	1,020 Btu/scf		
Fuel Use	12.9	MMscf/yr	

### Emission Calculations per Reboiler

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Foliutant	(lb/MMscf)	(lb/hr)	(tpy)	Source
NO _X	100	0.15	0.64	AP-42 Ch. 1.4 Table 1.4-1
CO	84	0.12	0.54	AP-42 Ch. 1.4 Table 1.4-1
VOC	5.5	0.0081	0.035	AP-42 Ch. 1.4 Table 1.4-2
PM ₁₀	7.6	0.011	0.049	AP-42 Ch. 1.4 Table 1.4-2
SO ₂	0.6	0.00088	0.0039	AP-42 Ch. 1.4 Table 1.4-2
Formaldehyde	0.075	0.00011	0.00048	AP-42 Ch. 1.4 Table 1.4-3
Total HAPs (including HCHO)	1.9	0.0028	0.012	AP-42 Ch. 1.4 Table 1.4-3
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Fonutant	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	175.9	770.4	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.0033	0.015	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.00033	0.0015	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		176.1	771.2	40 CFR Part 98, Subpart A, Table A-1

### Sample Calculations:

Fuel Consumption (MMscf/yr) = <u>Heater Size (MMBtu/hr)</u> * Hours of Operation (hrs/yr) Fuel Heat Value (Btu/scf) * Heater Efficiency

Fuel Heat Value (Blu/Sci) Heater Elliciency

Emissions (tons/yr) = Emission Factor (lbs/MMscf) * Fuel Consumption (MMscf/yr)

2,000 (lbs/ton)

# Flare Emissions - Alternative Operating Scenario 1

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Flare for Dehydrator Still Vent Gas
Emission Unit ID:	FLARE1
Emission Point ID:	31E

### **Combusted Gas Emissions**

Flare Heat Input :	4.80	MMBtu/hr
Hours of Operation:	8,760	hr/yr

Pollutant	Emission Factor ¹ (Ib/MMBtu)	Emissions (Ibs/hr)	Emissions (tons/yr)
Particulate Matter (PM/PM ₁₀ /PM _{2.5} )	N/A - Smokeless Design		
Nitrogen Oxides (NO _x )	0.068	0.33	1.43
Carbon Monoxide (CO)	0.37	1.78	7.78

¹ Emission Factors from Table 13.5-1 of AP-42 Section 13.5 (Sept 1991)

### **Pilot Emissions**

Pilot Heating Value:	1,231	Btu/scf
Hours of Operation:	8,760	hr/yr
Total Pilot Natural Gas Usage:	5.00E-05	MMscf/hr

Pollutant	Emission Factor (Ib/MMscf)	Emissions (lbs/hr)	Emissions (tons/yr)
Particulate Matter (PM/PM ₁₀ /PM _{2.5} ) ²	7.6	4.59E-04	2.01E-03
Nitrogen Oxides (NOx)	100	6.03E-03	2.64E-02
Sulfur Dioxide (SO ₂ ) ²	0.6	3.62E-05	1.59E-04
Carbon Monoxide (CO) ²	84	5.07E-03	2.22E-02
Volatile Organic Compounds (VOC) ²	5.5	3.32E-04	1.45E-03
Total HAPs ^{2,3}	1.88	1.13E-04	4.97E-04

² Emission Factors from AP-42 Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (7/98).

³ Sum of Emissions Factors published for pollutants classified as "HAPS" under AP-42 Table 1.4-3.

### **Total Flare Emissions**

Pollutant	Total Potential Emission Rate (Ibs/hr)	Total Potential Emission Rate (tons/year)
Particulate Matter (PM/PM ₁₀ /PM _{2.5} )	4.59E-04	2.01E-03
Nitrogen Oxides (NOx)	0.33	1.46
Sulfur Dioxide (SO ₂ )	3.62E-05	1.59E-04
Carbon Monoxide (CO)	1.78	7.80
Volatile Organic Compounds (VOC)	3.32E-04	1.45E-03
Total HAPs	1.13E-04	4.97E-04

### Greenhouse Gas Emissions

Pollutant	Emission Factor (kg/MMBtu)	Emissions (lb/hr)	Emissions (tpy)	Emission Factor Source
Carbon Dioxide	53.06	570.1		40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.011	0.047	40 CFR Part 98, Subpart C, Table C-2
Nitrogen Dioxide	0.0001	0.0011	0.0047	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		570.7	2,500	40 CFR Part 98, Subpart A, Table A-1

# **Thermal Oxidizer Emissions-Alternative Operating Scenario 2**

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Thermal Oxidizer for Dehydrator Still Vent Gas
Emission Unit ID:	TO-1 through TO-3
Emission Point ID:	32E, 33E, 34E

### **Combusted Gas Emissions**

Flare Heat Input :	6.00	MMBtu/hr	Per thermal oxidizer
Hours of Operation:	8,760	hr/yr	

Pollutant	Emission Factor ¹ (Ib/MMBtu)				
Particulate Matter (PM/PM ₁₀ /PM _{2.5} )	N/A - Smokeless Design				
Nitrogen Oxides (NO _x )	0.068	0.41	1.79		
Carbon Monoxide (CO)	0.37	2.22	9.72		

¹ Emission Factors from Table 13.5-1 of AP-42 Section 13.5 (Sept 1991)

### **Pilot Emissions**

Pilot Heating Value:	1,231	Btu/scf
Hours of Operation:	8,760	hr/yr
Total Pilot Natural Gas Usage:	5.00E-04	MMscf/hr

Pollutant	Emission Factor (Ib/MMscf)	Emissions (Ibs/hr)	Emissions (tons/yr)
Particulate Matter (PM/PM ₁₀ /PM _{2.5} ) ²	7.6	4.59E-03	2.01E-02
Nitrogen Oxides (NOx)	100	6.03E-02	2.64E-01
Sulfur Dioxide (SO ₂ ) ²	0.6	3.62E-04	1.59E-03
Carbon Monoxide (CO) ²	84	5.07E-02	2.22E-01
Volatile Organic Compounds (VOC) ²	5.5	3.32E-03	1.45E-02
Total HAPs ^{2,3}	1.88	1.13E-03	4.97E-03

² Emission Factors from AP-42 Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (7/98).

³ Sum of Emissions Factors published for pollutants classified as "HAPS" under AP-42 Table 1.4-3.

### **Total Flare Emissions**

Pollutant	Total Potential Emission Rate (Ibs/hr)	Total Potential Emission Rate (tons/year)		
Particulate Matter (PM/PM ₁₀ /PM _{2.5} )	4.59E-03	2.01E-02		
Nitrogen Oxides (NOx)	0.47	2.05		
Sulfur Dioxide (SO ₂ )	3.62E-04	1.59E-03		
Carbon Monoxide (CO)	2.27	9.95		
Volatile Organic Compounds (VOC)	3.32E-03	1.45E-02		
Total HAPs	1.13E-03	4.97E-03		

### Greenhouse Gas Emissions

Pollutant	Emission Factor (kg/MMBtu)	Emissions (lb/hr)	Emissions (tpy)	Emission Factor Source
Carbon Dioxide	53.06	775.7	3,398	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.015	0.064	40 CFR Part 98, Subpart C, Table C-2
Nitrogen Dioxide	0.0001	0.0015	0.0064	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		776.5	3,401	40 CFR Part 98, Subpart A, Table A-1

# Storage Tank Flashing Emissions Calculated by ProMax Simulation

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Settling Tank
Emission Unit ID:	T04
Emission Point ID:	26E

### **Settling Tank Flashing Emissions**

Component	Uncontrolled Flashing Emissions ¹ (lb/hr)	Uncontrolled Flashing Emissions (tons/yr)	Controlled Flashing Emissions ^{2,3} (lb/hr)	Controlled Flashing Emissions ^{2,3} (tons/yr)
Methane	23.92	104.76	0.48	2.10
Ethane	39.67	173.76	0.79	3.48
Propane	37.35	163.57	0.75	3.27
i-Butane	8.66	37.91	0.17	0.76
n-Butane	15.13	66.29	0.30	1.33
i-Pentane	6.21	27.19	0.12	0.54
n-Pentane	5.24	22.96	0.10	0.46
Hexanes	2.97	13.01	0.059	0.26
Heptanes	1.79	7.86	0.036	0.16
Octanes	0.81	3.57	0.016	0.071
Nonanes	0.13	0.56	0.0026	0.011
Decanes+	0.0087	0.038	0.00017	0.00076
Benzene	0.050	0.22	0.0010	0.0044
Toluene	0.091	0.40	0.0018	0.0080
Ethylbenzene	0.034	0.15	0.00067	0.0030
Xylenes	0.085	0.37	0.0017	0.0074
n-Hexane	1.63	7.14	0.033	0.14
Water	1.04	4.56	1.04	4.56
Nitrogen	0.19	0.83	0.19	0.83
Carbon Dioxide	0.17	0.75	0.17	0.75
VOC Subtotal	80.19	351.2	1.60	7.02
HAP Subtotal	1.89	8.28	0.038	0.17
CO ₂ e Subtotal	598.1	2,619.8	12.13	53.13
Total	145.18	635.9	4.28	18.73

Notes:

1. Flashing emissions calculated by ProMax 4.0. Flash gas is "Flash Gas" of the associated ProMax simulation. Flashing only occurs in the settling tank as all pressurized fluids flow into the settling tank and then separate out at atmospheric conditions to the condensate and produced water tanks.

2. Tanks are controlled by a VRU with assumed 98% capture efficiency; but will likely be higher as vapors are recycled back into the system.

3. VRU-100 is the primary VRU to collect storage tank vapors and VRU-200 is the backup VRU in times when the primary VRU is undergoing maintenance or shutdown.

# **Storage Tank Working and Breathing Emissions**

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Condensate, Settling, and Produced Water Tanks
Emission Unit IDs:	T01 through T07
Emission Point IDs:	23E through 29E

TANK	Uncontrolled VOC	Uncontrolled Benzene	Uncontrolled Toluene	Uncontrolled Ethylbenzene	Uncontrolled Xylene	Uncontrolled n-Hexane	Uncontrolled CH ₄	Uncontrolled CO ₂ e
DESCRIPTION	Emissions ¹	Emissions ¹	Emissions ¹	Emissions ¹	Emissions ¹	Emissions ¹	Emissions ¹	Emissions
	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
400 bbl Hydrocarbon Storage Tank (T01)	4.60	0.0020	0.0042	0.0018	0.0040	0.10	0.14	3.52
400 bbl Hydrocarbon Storage Tank (T02)	4.60	0.0020	0.0042	0.0018	0.0040	0.10	0.14	3.52
400 bbl Hydrocarbon Storage Tank (T03)	4.60	0.0020	0.0042	0.0018	0.0040	0.10	0.14	3.52
500 bbl Settling Tank (T04)	7.75	0.0034	0.0071	0.0030	0.0068	0.17	0.24	5.94
400 bbl Produced Water Storage Tank (T05)	0.00028	7.31E-07	2.81E-07	3.38E-08	4.93E-08	1.47E-08	0.00075	0.019
400 bbl Produced Water Storage Tank (T06)	0.00028	7.31E-07	2.81E-07	3.38E-08	4.93E-08	1.47E-08	0.00075	0.019
400 bbl Produced Water Storage Tank (T07)	0.00028	7.31E-07	2.81E-07	3.38E-08	4.93E-08	1.47E-08	0.00075	0.019
TOTAL	21.54	0.010	0.020	0.0083	0.019	0.47	0.66	16.57

TANK	Controlled VOC	Controlled Benzene	Controlled Toluene	Controlled Ethylbenzene	Controlled Xylene	Controlled n-Hexane	Controlled CH₄	Controlled CO ₂ e
DESCRIPTION	Emissions ^{1,2}	Emissions ^{1,2}	Emissions ^{1,2}	Emissions ^{1,2}	Emissions ^{1,2}	Emissions ^{1,2}	Emissions ^{1,2}	Emissions ^{1,2}
DESCRIPTION	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
400 bbl Hydrocarbon Storage Tank (T01)	0.092	4.06E-05	8.39E-05	3.52E-05	8.09E-05	1.99E-03	2.81E-03	0.076
400 bbl Hydrocarbon Storage Tank (T02)	0.092	4.06E-05	8.39E-05	3.52E-05	8.09E-05	1.99E-03	2.81E-03	0.076
400 bbl Hydrocarbon Storage Tank (T03)	0.092	4.06E-05	8.39E-05	3.52E-05	8.09E-05	1.99E-03	2.81E-03	0.076
500 bbl Settling Tank (T04)	0.15	6.84E-05	1.41E-04	5.94E-05	1.36E-04	3.36E-03	4.75E-03	0.13
400 bbl Produced Water Storage Tank (T05)	5.52E-06	1.46E-08	5.61E-09	6.77E-10	9.86E-10	2.95E-10	1.49E-05	5.53E-04
400 bbl Produced Water Storage Tank (T06)	5.52E-06	1.46E-08	5.61E-09	6.77E-10	9.86E-10	2.95E-10	1.49E-05	5.53E-04
400 bbl Produced Water Storage Tank (T07)	5.52E-06	1.46E-08	5.61E-09	6.77E-10	9.86E-10	2.95E-10	1.49E-05	5.53E-04
TOTAL	0.43	0.00019	0.00039	0.00017	0.00038	0.0093	0.013	0.36

Notes:

1. ProMax 4.0 used to calculate standing, working, and breathing (S,W,B) emissions

2. Tanks are controlled by a VRU with assumed 98% capture efficiency; but will likely be higher as vapors are recycled back into the system.

3. VRU-100 is the primary VRU to collect storage tank vapors and VRU-200 is the backup VRU in times when the primary VRU is undergoing maintenance or shutdown.

# **Truck Loading Emissions**

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Production Liquids Truck Loadout
Emission Unit ID:	LDOUT1
Emission Point ID:	35E

### AP - 42, Chapter 5.2 $L_{L} = 12.46 \times S \times P \times M / T$

- L_L = Loading Loss Emission Factor (lbs VOC/1000 gal loaded)
  - S = Saturation Factor
  - P = True Vapor Pressure of the Loaded Liquid (psia)
  - M = Vapor Molecular Weight of the Loaded Liquid (lbs/lbmol)
  - $T = Temperature of Loaded Liquid (^{o}R)$

VOC Emissions (tpy) = L_L (lbs VOC/1000 gal) * 42 gal/bbl * 365 days/year * production (bbl/day)

								Uncontrolled						
						L	Production	VOC	Benzene	Toluene	E-Benzene	Xylene	n-Hexane	CO₂e ⁵
Source	S ¹	P (psia) ²	M ³	T (ºF) ⁴	T (ºR)	(lb/1000 gal)	(bbl/day)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Condensate	0.6	11.1	33.2	52	511.90	5.39	300	12.40	0.0077	0.014	0.0052	0.013	0.25	92.47
Produced Water	0.6	0.28	18.6	52	511.90	0.076	90	0.052	3.26E-05	5.96E-05	2.21E-05	5.53E-05	1.07E-03	0.39

Notes: 1. Saturation factor from AP-42, Table 5.2-1 (Submerged loading (bottom loading): dedicated normal service)

1000 gal * 2000 lbs/ton

2. True vapor pressure retrieved from tank-specific ProMax 4.0 simulation for both liquids.

3. Molecular weight of the liquid vapor is retrieved from tank-specific ProMax simulation for both liquids.

4. Temperature is the annual average temperature of Charleston, WV retrieved from ProMax working & breathing report.

6. CO₂e emissions estimated assuming 16% of the vent gas by weight is methane and 55% by weight are VOCs (per ProMax simulation).

7. HAP emissions estimated assuming 1.3% by weight of the vent gas are HAPs and 55% by weight are VOCs (per ProMax simulation).

Assume 1 truck loaded per hour, 260 bbl truck, for short term emissions

											Uncontrolle	d						
						L	Loading	VOC	Benzene	Toluene	E-Benzene	Xylene	n-Hexane	CO ₂ e ⁵				
Source	S ¹	P (psia) ²	M ³	T (ºF) ⁴	T (ºR)	(lb/1000 gal)	(bbl/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)				
Condensate	0.6	11.1	33.2	52	511.90	5.39	260	58.89	0.037	0.067	0.025	0.062	1.20	439.1				
Produced Water	0.6	0.28	18.6	52	511.90	0.076	260	0.83	5.16E-04	9.43E-04	3.49E-04	8.75E-04	1.69E-02	6.19				

# Venting Episodes

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Venting Episodes
Emission Unit ID:	VENT1
Emission Point ID:	36E

		VOC Venting E	Emissions			
Type of Event ¹	Number Of Events (event/yr)	Amount Vented per Event (scf/event)	Molecular Weight of Vented Gas (Ib/Ib-mol)	Total Emissions (ton/yr)	VOC Weight Fraction ⁴	VOC Emissions (ton/yr)
Compressor Blowdown ²	936	2,020	20.43	50.90	0.17	8.44
Compressor Startup	936	1,050	20.43	26.46	0.17	4.39
Plant Shutdown	2	100,000	20.43	5.38	0.17	0.89
Low Pressure Pig Venting ³	395	516	20.43	5.49	0.17	0.91
High Pressure Pig Venting ³	520	2,801	20.43	39.21	0.17	6.50
Total Emissions (tons/yr)						21.14

			HAI	Ps Venting En	nissions			1		
Type of Event ¹	Benzene Weight Fraction ⁴	Benzene Emissions (tpy)	Toluene Weight Fraction ⁴	Toluene Emissions (tpy)	Ethylbenzene Weight Fraction ⁴	Ethylbenzene Emissions (tpy)	Xylene Weight Fraction ⁴	Xylene Emissions (tpy)	n-Hexane Weight Fraction ⁴	n-Hexane Emissions (tpy)
Compressor Blowdown ²	1.03E-04	0.0053	1.85E-04	0.009	1.04E-05	0.00053	2.60E-05	0.0013	3.09E-03	0.16
Compressor Startup	1.03E-04	0.0027	1.85E-04	0.0049	1.04E-05	0.00027	2.60E-05	0.00069	3.09E-03	0.082
Plant Shutdown	1.03E-04	0.00056	1.85E-04	0.0010	1.04E-05	0.000056	2.60E-05	0.00014	3.09E-03	0.017
Low Pressure Pig Venting ³	1.03E-04	0.00057	1.85E-04	0.0010	1.04E-05	0.000057	2.60E-05	0.00014	3.09E-03	0.017
High Pressure Pig Venting ³	1.03E-04	0.0040	1.85E-04	0.0072	1.04E-05	0.00041	2.60E-05	0.0010	3.09E-03	0.12
Total Emissions (tons/yr)		0.013		0.024		0.0013		0.0033		0.39

		G	HG Venting Em	issions				
	Number	Amount	Molecular					
Type of Event ¹	Of	Vented per	Weight of	CH₄	CO ₂	CH ₄	CO ₂	CO ₂ e
	Events	Event	Vented Gas	Weight	Weight	Emissions	Emissions	Emissions
	(event/yr)	(scf/event)	(lb/lb-mol)	Fraction ⁴	Fraction ⁴	(ton/yr)	(ton/yr)	(tpy)
Compressor Blowdown ²	936	2,020	20.43	0.62	0.0040	31.62	0.20	790.6
Compressor Startup	936	1,050	20.43	0.62	0.0040	16.43	0.11	411.0
Plant Shutdown	2	100,000	20.43	0.62	0.0040	3.34	0.021	83.63
Low Pressure Pig Venting ³	395	516	20.43	0.62	0.0040	3.41	0.022	85.3
High Pressure Pig Venting ³	520	2,801	20.43	0.62	0.0040	24.36	0.16	609.0
Total Emissions (tons/yr)						79.16	0.51	1,979.5

1) Estimated number of events and venting per event from engineering.

2) Total number of compressor blowdowns based on 18 blowdowns per week.

3) Total number of pigging events based on expected operations.

4) Weight fractions are from a site-specific gas analysis.

# **Component Fugitive Emissions**

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Fugitive Emissions - Component Leaks

		VOC Fugitiv	e Emissions	;		
Equipment Type and Service	Number of Units ¹	Hours of Operation (hours/yr)	THC Emission Factor ² (kg/hr-unit)	VOC Weight Fraction ³	THC Emissions (tpy)	VOC Emissions (tpy)
Flanges - Gas Service	850	8,760	3.90E-04	0.17	3.21	0.54
Valves - Gas Service	750	8,760	4.50E-03	0.17	32.67	5.48
Compressor Seals Gas Service	36	8,760	8.80E-03	0.17	3.07	0.51
Flanges - Liquid Service	400	8,760	1.10E-04	0.56	0.43	0.24
Valves - Liquid Service	160	8,760	2.50E-03	0.56	3.87	2.16
Total Emissions (tons/yr)					43.24	8.94

				HAPs Fugitive E	missions					
Equipment Type and Service	Benzene Weight Fraction ³	Benzene Emissions (tpy)	Toluene Weight Fraction ²	Toluene Emissions (tpy)	Ethylbenzene Weight Fraction ²	Ethylbenzene Emissions (tpy)	Xylene Weight Fraction ²	Xylene Emissions (tpy)	n-Hexane Weight Fraction ²	n-Hexane Emissions (tpy)
Flanges - Gas Service	1.04E-04	0.00034	1.87E-04	0.00060	1.05E-05	0.000034	2.63E-05	0.000084	3.13E-03	0.010
Valves - Gas Service	1.04E-04	0.0034	1.87E-04	0.0061	1.05E-05	0.00034	2.63E-05	0.00086	3.13E-03	0.10
Compressor Seals Gas Service	1.04E-04	0.00032	1.87E-04	0.00057	1.05E-05	0.000032	2.63E-05	0.000081	3.13E-03	0.010
Flanges - Liquid Service	3.47E-04	0.00015	6.34E-04	0.00027	2.35E-04	0.000100	5.88E-04	0.00025	1.13E-02	0.0048
Valves - Liquid Service	3.47E-04	0.0013	6.34E-04	0.0025	2.35E-04	0.00091	5.88E-04	0.0023	1.13E-02	0.044
Total Emissions (tons/yr)		0.0056		0.010		0.0014		0.0036		0.17

1) Component counts from engineering lists.

2) API average emission factors are for oil and gas production operations - Table 2.4, EPA Protocol for Equipment Leak Emission Estimates - 1995. A LDAR program will be implemented per NSPS OOOOa, so it is likely emissions will be lower.

3) Gas weight fractions from a site-specific gas analysis and liquid weight fractions from a site-specific ProMax model run.

		-	GHG Fugiti	ve Emissions				
Equipment Type	Number of	Hours of Operation	Emission Factor ²	CH₄ Concentration ³	CO₂ Concentration ³	CH₄ Emissions	CO ₂ Emissions	CO ₂ e Emissions
	Units ¹	(hours/yr)	(scf/hr-unit)			(tpy)	(tpy)	(tpy)
Flanges	1,250	8,760	0.003	0.98	0.011	0.68	0.021	16.97
Valves	910	8,760	0.027	0.98	0.011	4.44	0.14	111.17
Compressor Seals	36	8,760	0.300	0.98	0.011	1.95	0.060	48.87
Total Emissions (tons/yr)						7.07	0.22	177.01

1) Component counts from engineering lists.

2) Emission factors from 40 CFR Part 98 Subpart W, Table W1-A.

3) CH₄ and CO₂ concentrations as defined in 40 CFR Part 98.233(r).

# **Fugitive Dust Emissions**

Company:	Antero Midstream LLC
Facility Name:	South Canton Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Fugitive Dust Emissions

Gravel Access Road	Loaded Truck Weight ¹	Trips per year ²	Trips per day ²	Distance per (truck in ar		VMT per year ⁴
	tons			feet	miles	miles
Condensate Tank Truck	40.00	730	2.0	4,400	0.83	608
Produced Water Tank Truck	40.00	365	1.0	4,400	0.83	304
Passenger Trucks	3.00	1,460	4.0	4,400	0.83	1,217

Equation Parameter	PM-10/PM2.5	PM-Total
<b>E</b> , annual size-specific emission factor for PM ₁₀ & PM _{2.5} (upaved industrial roads) extrapolated for natural mitigation ⁶	see table below	see table below
<b>k</b> , Particle size multiplier for particle size range (PM ₁₀ ), (lb/VMT) (Source: AP-42 Table 13.2.2-2)	1.5	4.9
<b>k</b> , Particle size multiplier for particle size range (PM _{2.5} ), (lb/VMT) (Source: AP-42 Table 13.2.2-2)	0.15	4.9
<b>s</b> , surface material silt content, (%) (Source: AP-42 Table 13.2.2-1)	4.8	4.8
W, mean weight (tons) of the vehicles traveling the road	18.9	18.9
<b>a</b> , constant for PM ₁₀ and PM _{2.5} on industrial roads (Source: AP-42 Table 13.2.2-2)	0.9	0.7
<b>b</b> , constant for PM ₁₀ and PM _{2.5} on industrial roads (Source: AP-42 Table 13.2.2-2)	0.45	0.45
<b>P</b> , number of "wet" days with at least 0.254 mm (0.01 in) of precipitation during the averaging period, based on AP-42 Figure 13.2.2-1.	160	160

 $E = \left| k \left( \frac{s}{12} \right)^a \times \left( \frac{W}{3} \right)^b \right| \times (365 - P/365)$ 

Source of Equation: AP-42 Section 13.2.2

#### **PM₁₀ Emissions**

Emission Factor (Ib/VMT)	Vehicle miles traveled (VMT/yr) ⁴	Annual Uncontrolled PM ₁₀ Emissions (tpy)
0.84	2,129	0.90

### PM_{2.5} Emissions (tons/yr)

Emission Factor (Ib/VMT)	Vehicle miles traveled (VMT/yr) ⁴	Annual Uncontrolled PM _{2.5} Emissions (tpy)
0.084	2,129	0.090

#### PM- Total Emissions (tons/yr)

Emission Factor (Ib/VMT)	Vehicle miles traveled (VMT/yr) ⁴	Annual Uncontrolled PM-Total Emissions (tpy)
3.31	2,129	3.53

Table Notes:

1. Loaded truck weight is based on typical weight limit for highway vehicles.

2. Based on production, it's assumed a maximum of two condensate trucks (260 bbl truck), one produced water truck (260 bbl truck), and four passenger trucks will be onsite per day.

3. Distance per round trip is based on the site layout. The one way distance is measured as 2,200 feet for the gravel access road.

4. VMT/yr = Trips/yr x Roundtrip Distance

5. Hourly emissions determined from tons per year calculation using 2,000 lb/ton and 8,760 hours per year.

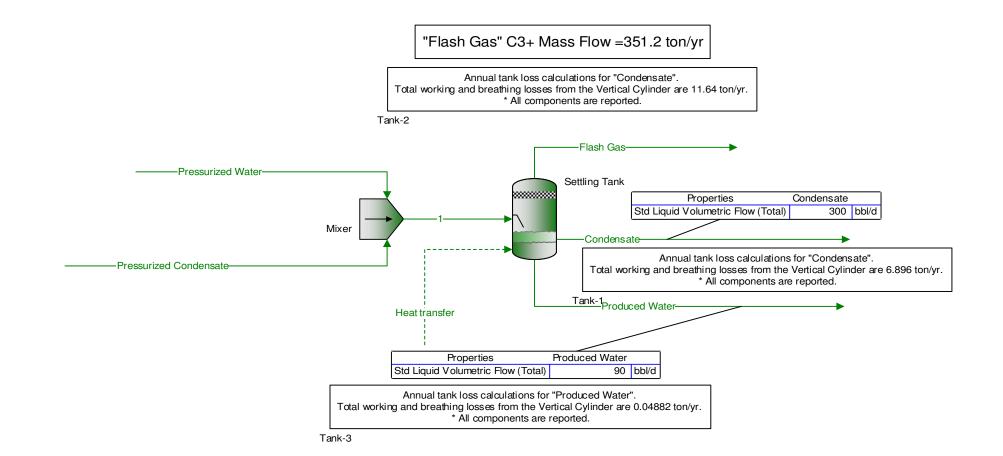
# **Facility Gas Analysis**

	MOL %	MW	Component Weight Ib/Ib-mol	Wt. Fraction
Methane	79.12	16.04	12.69	0.62
Ethane	13.66	30.07	4.11	0.20
Propane	4.13	44.10	1.82	0.089
i-Butane	0.52	58.12	0.30	0.015
n-Butane	0.96	58.12	0.56	0.027
i-Pentane	0.27	72.15	0.20	0.010
n-Pentane	0.24	72.15	0.17	0.0084
Hexanes	0.13	106.72	0.14	0.0067
Heptanes	0.094	100.20	0.094	0.0046
Octanes	0.023	114.23	0.026	0.0013
Nonanes	0.0052	128.26	0.0067	0.00033
Decanes	0.00030	142.29	0.00043	0.000021
n-Hexane	0.073	86.18	0.063	0.0031
Benzene	0.0027	78.11	0.0021	0.00010
Toluene	0.0041	92.14	0.0038	0.00018
Ethylbenzene	0.00020	106.17	0.00021	0.000010
Xylenes	0.00050	106.16	0.00053	0.000026
Nitrogen	0.54	28.01	0.15	0.0074
Carbon Dioxide	0.18	44.01	0.081	0.0040
Oxygen	0.029	32.01	0.0092	0.00045
Totals	100.0		20.43	1.00

Heating Value (Btu/scf)	1,230.7
Molecular weight	20.43
VOC weight fraction	0.17
Methane weight fraction	0.62
THC weight fraction	0.99
VOC of THC wt fraction	0.17
Methane of THC wt fraction	0.63
Benzene of THC wt fraction	0.00010
Toluene of THC wt fraction	0.00019
E-benzene of THC wt fraction	0.000011
Xylene of THC wt fraction	0.000026
n-Hexane of THC wt fraction	0.0031

1. Gas analysis is a representative sample from a nearby compressor station.

	MOL %	MW	Component Weight Ib/Ib-mol	Wt. Fraction
Methane	34.07	16.04	5.47	0.16
Ethane	30.15	30.07	9.07	0.27
Propane	19.35	44.10	8.53	0.26
i-Butane	3.40	58.12	1.98	0.060
n-Butane	5.95	58.12	3.46	0.10
i-Pentane	1.97	72.15	1.42	0.043
n-Pentane	1.66	72.15	1.20	0.036
Hexanes	0.79	86.18	0.68	0.020
Heptanes	0.41	100.20	0.41	0.012
Octanes	0.16	114.23	0.19	0.0056
Nonanes	0.023	128.26	0.029	0.00089
Decanes+	0.0011	179.10	0.0020	0.000060
n-Hexane	0.43	86.18	0.37	0.011
Benzene	0.015	78.11	0.011	0.00034
Toluene	0.023	92.14	0.021	0.00063
Ethylbenzene	0.0073	106.16	0.0077	0.00023
Xylenes	0.018	106.16	0.019	0.00058
Nitrogen	0.15	28.01	0.043	0.0013
Carbon Dioxide	0.089	44.01	0.039	0.0012
Water	1.32	18.02	0.24	0.0072
Totals	100.00		33.18	1.00


# Facility Tank Vent Gas Analysis

Molecular weight	33.18
VOC weight fraction	0.55
Methane weight fraction	0.16
THC weight fraction	0.99
VOC of THC wt fraction	0.56
Methane of THC wt fraction	0.17
Benzene of THC wt fraction	0.00035
Toluene of THC wt fraction	0.00063
E-benzene of THC wt fraction	0.00023
Xylene of THC wt fraction	0.00059
n-Hexane of THC wt fraction	0.011

1. Tank vent gas analysis retrieved from "Flash Gas" stream from ProMax 4.0 simulation.

ProMax 4.0

Bryan Research & Engineering, Inc. ProMax[®]4.0 BR&E Copyright © 2002-2016 BRE Group, Ltd. All Rights Reserved. **Simulation Report** Project: SouthCantonCS.pmx Licensed to Kleinfelder, Inc. and Affiliates **Client Name: Antero Midstream LLC** Location: South Canton CS Job: ProMax Filename: \\denver\denver-data\WORKING\20171806 - Antero WV CS Permit Mods\South Canton CS\Promax\SouthCantonCS.pmx ProMax Version: 4.0.16071.0 Simulation Initiated: 11/15/2016 10:47:34 AM Bryan Research & Engineering, Inc. Chemical Engineering Consultants P.O. Box 4747 Bryan, Texas 77805 Office: (979) 776-5220 FAX: (979) 776-4818 mailto:sales@bre.com http://www.bre.com/ Report Navigator can be activated via the ProMax Navigator Toolbar. An asterisk (*), throughout the report, denotes a user specified value. A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.



Process Streams		Condensate	Flash Gas	Pressurized Condensate	Pressurized Water	Produced Water	1
	atus:	Solved	Solved	Solved	Solved	Solved	Solved
		Settling Tank			-	Settling Tank	Mixer
	Block:			Mixer	Mixer		Settling Tank
Mole Fraction		%	%	%	%	%	%
Methane		0.179361	34.0726	4.97990*	0.498453*	0.000976593	1.48314
Ethane		1.12337	30.1501	5.23590*	0.524076*	0.00145119	1.55939
Propane		2.96688	19.3547	5.28789*	0.529281*	0.000671534	1.57487
i-Butane		1.45176	3.40321	1.72797*	0.172957*	9.64833E-05	0.514633
n-Butane		3.79663	5.95079	4.33991*	0.343312*	0.000187581	1.22147
i-Pentane		3.38302	1.96653	3.18194*	0.318489*	4.91478E-05	0.947664
n-Pentane		3.94625	1.66065	3.62193*	0.362529*	1.32286E-05	1.07870
2-Methylpentane		4.75203	0.787932	4.18992*	0.419381*	9.72708E-06	1.24787
n-Heptane n-Octane		13.1559 18.7975	0.409208 0.162869	11.3488* 16.1557*	1.13593* 1.61707*	1.94569E-06 2.98882E-07	3.37996 4.81158
n-Nonane		9.48414	0.0229509	8.14284*	0.815040*	6.14141E-08	2.42515
Benzene		0.143013	0.0145946	0.124998*	0.0125114*	8.17717E-05	0.0372275
Toluene		0.882703	0.0226034	0.760985*	0.0761692*	9.37860E-05	0.226641
Ethylbenzene		0.973962	0.00726011	0.836983*	0.0837761*	2.97416E-05	0.249276
p-Xylene		2.49963	0.0181997	2.14796*	0.214995*	4.84970E-05	0.639718
n-Hexane		3.89140	0.432287	3.40093*	0.340409*	2.51645E-06	1.01289
2,2,4-Trimethylpentane		0	0	0*	0*	0	0
Carbon Dioxide		0.00146932	0.0890175	0.0139997*	0.00140127*	5.78817E-05	0.00416948
Nitrogen		0.000242184	0.153893	0.0219996*	0.00220200*	2.15323E-06	0.00655205
Water		0.0476969	1.31951	0*	90.0818*	99.9962	70.2884
Decanes+		28.5230	0.00111273	24.4795*	2.45022*	1.31779E-07	7.29064
Mass Fraction		%	%	%	%	%	%
Methane		0.0239809	16.4748	0.741267*	0.296569*	0.000869614	0.532056
Ethane		0.281519	27.3245	1.46081*	0.584447*	0.00242207	1.04852
Propane		1.09034	25.7231	2.16352*	0.865591*	0.00164364	1.55290
i-Butane		0.703237	5.96175	0.931880*	0.372831*	0.000311269	0.668872
n-Butane i-Pentane		1.83910 2.03423	10.4246 4.27635	2.34049* 2.13012*	0.740052* 0.852226*	0.000605166 0.000196823	1.58755 1.52893
n-Pentane		2.03423	3.61120	2.13012	0.852228	5.29765E-05	1.74034
2-Methylpentane		3.41294	2.04652	3.35021*	1.34036*	4.65273E-05	2.40466
n-Heptane		10.9866	1.23584	10.5514*	4.22143*	1.08216E-05	7.57340
n-Octane		17.8954	0.560732	17.1231*	6.85069*	1.89503E-06	12.2904
n-Nonane		10.1377	0.0887191	9.69022*	3.87690*	4.37205E-07	6.95531
Benzene		0.0931019	0.0343600	0.0905944*	0.0362454*	0.000354537	0.0650256
Toluene		0.677830	0.0627707	0.650579*	0.260286*	0.000479646	0.466963
Ethylbenzene		0.861765	0.0232310	0.824482*	0.329862*	0.000175262	0.591785
p-Xylene		2.21169	0.0582357	2.11588*	0.846528*	0.000285784	1.51870
n-Hexane		2.79483	1.12279	2.71934*	1.08797*	1.20369E-05	1.95185
2,2,4-Trimethylpentane		0	0	0*	0*	0	0
Carbon Dioxide		0.000538926	0.118077	0.00571675*	0.00228718*	0.000141394	0.00410329
Nitrogen		5.65427E-05	0.129935	0.00571825*	0.00228778*	3.34810E-06	0.00410436
Water		0.00716138	0.716470	0*	60.1879*	99.9924	28.3158
Decanes+ Mass Flow		42.5752 lb/h	0.00600660 lb/h	40.6800* <b>Ib/h</b>	16.2754* <b>Ib/h</b>	1.31004E-06 lb/h	29.1988 <b>lb/h</b>
Methane Ethane		0.763289 8.96050	23.9185 39.6704	18.2178* 35.9017*	6.47537* 12.7610*	0.0114179 0.0318015	24.6932 48.6627
		34.7044	39.6704			0.0215808	40.0027 72.0715
Propane i-Butane		22.3834	8.65542	53.1720* 22.9024*	18.8995* 8.14048*	0.0215808	31.0429
n-Butane		58.5370	15.1347	57.5212*	16.1585*	0.00794576	73.6797
i-Pentane		64.7477	6.20851	52.3510*	18.6077*	0.00258426	70.9588
n-Pentane		75.5273	5.24283	59.5900*	21.1808*	0.000695577	80.7708
2-Methylpentane		108.631	2.97118	82.3367*	29.2659*	0.000610899	111.603
n-Heptane		349.694	1.79423	259.316*	92.1717*	0.000142087	351.488
n-Octane		569.593	0.814085	420.828*	149.580*	2.48816E-05	570.407
n-Nonane		322.673	0.128805	238.153*	84.6492*	5.74046E-06	322.802
Benzene		2.96335	0.0498847	2.22650*	0.791391*	0.00465504	3.01789
Toluene		21.5747	0.0911321	15.9890*	5.68315*	0.00629771	21.6722
Ethylbenzene		27.4292	0.0337273	20.2630*	7.20229*	0.00230117	27.4653
p-Xylene		70.3960	0.0845481	52.0010*	18.4833*	0.00375232	70.4843
n-Hexane		88.9569	1.63009	66.8322*	23.7549*	0.000158043	90.5871
2,2,4-Trimethylpentane		0	0	0*	0*	0	0
Carbon Dioxide		0.0171536	0.171427	0.140498*	0.0499388*	0.00185648	0.190437
Nitrogen		0.00179970	0.188643	0.140535*	0.0499520*	4.39602E-05	0.190487
Water		0.227940	1.04019	0*	1314.16*	1312.89	1314.16
Decanes+		1355.13	0.00872053	999.777*	355.362*	1.72007E-05	1355.14

Process Streams		Condensate	Flash Gas	Pressurized Condensate	Pressurized Water	Produced Water	1
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	Settling Tank	Settling Tank			Settling Tank	Mixer
	To Block:			Mixer	Mixer		Settling Tank
Property	Units						
Temperature	°F	52.23	52.23*	120*	120*	52.23	119.763
Pressure	psig	0	0*	300*	300*	0	300
Mole Fraction Vapor	%	0	100	0	0	0	0
Mole Fraction Light Liquid	%	100	0	100	9.91340	100	29.7570
Mole Fraction Heavy Liquid	%	0	0	0	90.0866	0	70.2430
Molecular Weight	lb/lbmol	119.987	33.1785	107.775	26.9630	18.0160	44.7195
Mass Density	lb/ft^3	46.0053	0.0897204	43.2260	52.7710	62.4275	47.2662
Molar Flow	lbmol/h	26.5271	4.37580	22.8037	80.9785	72.8792	103.782
Mass Flow	lb/h	3182.91	145.182	2457.66	2183.42	1312.99	4641.08
Vapor Volumetric Flow	ft^3/h	69.1858	1618.17	56.8560	41.3755	21.0322	98.1904
Liquid Volumetric Flow	gpm	8.62576	201.745	7.08854	5.15850	2.62220	12.2419
Std Vapor Volumetric Flow	MMSCFD	0.241599	0.0398531	0.207687	0.737521	0.663756	0.945208
Std Liquid Volumetric Flow	sgpm	8.75000	0.673632	6.96172*	5.08691*	2.62500	12.0486
Compressibility		0.00697711	0.989270	0.126130	0.0258476	0.000772024	0.0478819
Specific Gravity		0.737631	1.14556	0.693069	0.846109	1.00094	0.757847
API Gravity		61.2665		64.2518	31.8505	10.0042	49.1103
Enthalpy	Btu/h	-2.72890E+06	-180955	-2.07494E+06	-9.64037E+06	-8.98762E+06	-1.17153E+07
Mass Enthalpy	Btu/lb	-857.359	-1246.40	-844.275	-4415.25	-6845.15	-2524.26
Mass Cp	Btu/(lb*°F)	0.480325	0.415017	0.528013	0.800546	0.983987	0.656095
Ideal Gas CpCv Ratio		1.04738	1.16981	1.04723	1.20435	1.32669	1.11809
Dynamic Viscosity	cP	0.710701	0.00887425	0.375810	0.478873	1.26160	0.419775
Kinematic Viscosity	cSt	0.964402	6.17476	0.542753	0.566506	1.26160	0.554429
Thermal Conductivity	Btu/(h*ft*°F)	0.0716760?	0.0123013	0.0655454	0.220902	0.338360?	0.130969
Net Ideal Gas Heating Value	Btu/ft^3	6026.92	1749.95	5427.59	540.521	0.0702704	1614.34
Net Liquid Heating Value	Btu/lb	18904.5	19878.4	18955.3	6907.59	-1058.21	13287.4
Gross Ideal Gas Heating Value	Btu/ft^3	6469.74	1910.66	5830.88	625.979	50.3844	1769.63
Gross Liquid Heating Value	Btu/lb	20305.0	21716.5	20375.3	8110.35	1.59554	14605.2

Settling Tank W&B Inputs						
Process Stream	Condensate					
Tank Geometry	Vertical Cylinder					
Shell Length	25	ft				
Shell Diameter	12	ft				
Number of Storage Tanks Employed	1					
Location	Charleston, WV					
Time Frame	Year					
Net Throughput	390	bbl/day				
Report Components	All					
Set Bulk Temperature to Stream Temperature?	TRUE					
Use AP42 Raoult's Vapor Pressure?	TRUE					
Maximum Fraction Fill of Tank	90	%				
Average Fraction Fill of Tank	50	%				
Material Category	Light Organics					
Tank Color	Dark Green					
Shell Paint Condition	Good					
Operating Pressure	0	psig				
Breather Vent Pressure	0.03	psig				
Breather Vacuum Pressure	-0.03	psig				
Roof Type	Dome					
Radius of Domed Roof	6	ft				
Roof Color	Dark Green					
Roof Paint Condition	Good					

### Settling Tank W&B Inputs

### ProMax AP-42 Emissions Report Annual Emissions Settiling Tank

		Breathing	Total
	Working Losses	Losses	Losses
Components	(ton/yr)	(ton/yr)	(ton/yr)
Mixture	8.631	3.064	11.69
Methane	0.1751	0.06216	0.2373
Ethane	2.729	0.969	3.698
Propane	2.576	0.9144	3.49
i-Butane	0.608	0.2159	0.8238
n-Butane	1.152	0.409	1.561
i-Pentane	0.4392	0.1559	0.5951
n-Pentane	0.3762	0.1336	0.5098
2-Methylpentane	0.2146	0.07619	0.2908
n-Heptane	0.138	0.04899	0.187
n-Octane	0.06542	0.02323	0.08865
n-Nonane	0.0108	0.003836	0.01464
Benzene	0.002524	0.0008961	0.00342
Toluene	0.00522	0.001853	0.007073
Ethylbenzene	0.002192	0.0007782	0.00297
p-Xylene	0.005033	0.001787	0.00682
n-Hexane	0.1239	0.04398	0.1678
2,2,4-Trimethylpentane	0	0	0
Carbon Dioxide	0.006753	0.002398	0.009151
Nitrogen	0.0001448	5.14E-05	0.0001963
Water	3.69E-05	1.31E-05	5.00E-05
Decanes+	0.0006177	0.0002193	0.000837

### Condensate Tank W&B Inputs

B Qi		
Process Stream	Condensate	
Tank Geometry	Vertical Cylinder	
Shell Length	20	ft
Shell Diameter	12	ft
Number of Storage Tanks Employed	1	
Location	Charleston, WV	
Time Frame	Year	
Net Throughput	100	bbl/day
Report Components	All	
Set Bulk Temperature to Stream Temperature?	TRUE	
Use AP42 Raoult's Vapor Pressure?	TRUE	
Maximum Fraction Fill of Tank	90	%
Average Fraction Fill of Tank	50	%
Material Category	Light Organics	
Tank Color	Dark Green	
Shell Paint Condition	Good	
Operating Pressure	0	psig
Breather Vent Pressure	0.03	psig
Breather Vacuum Pressure	-0.03	psig
Roof Type	Dome	
Radius of Domed Roof	6	ft
Roof Color	Dark Green	
Roof Paint Condition	Good	

True Vapor Pressure

11.13

psia

ProMax AP-42 Emissions Report Annual Emissions Single Condensate Tank

		Breathing	Total
	Working Losses	Losses	Losses
Components	(ton/yr)	(ton/yr)	(ton/yr)
Mixture	3.922	3.014	6.936
Methane	0.07957	0.06115	0.1407
Ethane	1.24	0.9531	2.193
Propane	1.171	0.8995	2.07
i-Butane	0.2763	0.2123	0.4886
n-Butane	0.5236	0.4023	0.9259
i-Pentane	0.1996	0.1534	0.353
n-Pentane	0.171	0.1314	0.3024
2-Methylpentane	0.09753	0.07495	0.1725
n-Heptane	0.06271	0.04819	0.1109
n-Octane	0.02973	0.02285	0.05258
n-Nonane	0.00491	0.003773	0.008683
Benzene	0.001147	0.000882	0.002029
Toluene	0.002372	0.001823	0.004195
Ethylbenzene	0.0009962	0.000766	0.001762
p-Xylene	0.002287	0.001758	0.004045
n-Hexane	0.05629	0.04326	0.09955
2,2,4-Trimethylpentane	0	0	0
Carbon Dioxide	0.003069	0.002358	0.005427
Nitrogen	6.58E-05	5.06E-05	0.000116
Water	1.68E-05	1.29E-05	2.96E-05
Decanes+	0.0002807	0.000216	0.000496

### Produced Water Tank W&B Inputs

FIGUICEU Water Talik W		
Process Stream	Produced Water	
Tank Geometry	Vertical Cylinder	
Shell Length	20	ft
Shell Diameter	12	ft
Number of Storage Tanks Employed	1	
Location	Charleston, WV	
Time Frame	Year	
Net Throughput	30	bbl/day
Report Components	All	
Set Bulk Temperature to Stream Temperature?	TRUE	
Use AP42 Raoult's Vapor Pressure?	TRUE	
Maximum Fraction Fill of Tank	90	%
Average Fraction Fill of Tank	50	%
Material Category	Light Organics	
Tank Color	Dark Green	
Shell Paint Condition	Good	
Operating Pressure	0	psig
Breather Vent Pressure	0.03	psig
Breather Vacuum Pressure	-0.03	psig
Roof Type	Dome	
Radius of Domed Roof	6	ft
Roof Color	Dark Green	
Roof Paint Condition	Good	

True Vapor Pressure

0.2798

psia

ProMax AP-42 Emissions Report Annual Emissions Single Produced Water Tank

		Breathing	
	Working Losses	Losses	<b>Total Losses</b>
Components	(ton/yr)	(ton/yr)	(ton/yr)
Mixture	0.0281	0.02071	0.04881
Methane	0.000429	0.0003163	0.0007453
Ethane	0.0009848	0.000726	0.001711
Propane	0.0001359	0.0001002	0.000236
i-Butane	8.38E-06	6.18E-06	1.46E-05
n-Butane	1.26E-05	9.27E-06	2.19E-05
i-Pentane	1.28E-06	9.40E-07	2.22E-06
n-Pentane	1.67E-07	1.23E-07	2.90E-07
2-Methylpentane	6.88E-08	5.07E-08	1.20E-07
n-Heptane	1.78E-09	1.31E-09	3.09E-09
n-Octane	4.58E-11	3.38E-11	7.96E-11
n-Nonane	3.28E-12	2.42E-12	5.69E-12
Benzene	4.21E-07	3.10E-07	7.31E-07
Toluene	1.62E-07	1.19E-07	2.81E-07
Ethylbenzene	1.95E-08	1.44E-08	3.38E-08
p-Xylene	2.84E-08	2.09E-08	4.93E-08
n-Hexane	8.48E-09	6.25E-09	1.47E-08
2,2,4-Trimethylpentane	0	0	0
Carbon Dioxide	0.000104	7.67E-05	0.0001806
Nitrogen	9.69E-07	7.14E-07	1.68E-06
Water	0.02642	0.01948	0.04589
Decanes+	7.32E-13	5.40E-13	1.27E-12

GlyCalc 4.0

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: South Canton CS File Name: W:\20172965.001A_South Canton CS Air Permitting\2.0 Technical Information\WVDEQ Application\Attachment N\GlyCalc\South Canton CS.ddf Date: November 28, 2016 DESCRIPTION: _____ Description: 150 MMSCFD TEG Dehydration Unit Kimray 45015PV Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 120.00 deg. F Pressure: 1200.00 psig Wet Gas Water Content: Saturated Component Conc. (vol %) _____ ____ Carbon Dioxide 0.1844 Nitrogen 0.5688 Methane 79.1226 Ethane 13.6626 Propane 4.1333 
 Isobutane
 0.5231

 n-Butane
 0.9624

 Isopentane
 0.2739

 n-Pentane
 0.2370

 n-Hexane
 0.0733
 Other Hexanes0.1284Heptanes0.0941Benzene0.0027Toluene0.0041Ethylbenzene0.0002 Xylenes 0.0005 C8+ Heavies 0.0286 DRY GAS: _____ Flow Rate: 150.0 MMSCF/day Water Content: 5.0 lbs. H20/N 5.0 lbs. H2O/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Water Content: 1.5 wt% H20 Flow Rate: 15.0 gpm PUMP: _____ Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.032 acfm gas/qpm glycol

Page: 1

FLASH TANK:

Flash Control: Combustion device Flash Control Efficiency: 98.00 % Temperature: 80.0 deg. F Pressure: 5.0 psig

STRIPPING GAS:

_____

Source of Gas: Dry Gas Gas Flow Rate: 9.000 scfm

### REGENERATOR OVERHEADS CONTROL DEVICE:

_____

Control Device:	Combustion Device
Destruction Efficiency:	98.0 %
Excess Oxygen:	0.0 %
Ambient Air Temperature:	0.0 deg. F

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: South Canton CS File Name: W:\20172965.001A_South Canton CS Air Permitting\2.0 Technical Information\WVDEQ Application\Attachment N\GlyCalc\South Canton CS.ddf Date: November 28, 2016

### DESCRIPTION:

Description: 150 MMSCFD TEG Dehydration Unit Kimray 45015PV

Annual Hours of Operation: 8760.0 hours/yr

#### EMISSIONS REPORTS:

_____

#### CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	$\begin{array}{c} 0.3696 \\ 0.1308 \\ 0.0715 \\ 0.0145 \\ 0.0325 \end{array}$	8.871	1.6189
Ethane		3.138	0.5728
Propane		1.716	0.3132
Isobutane		0.348	0.0635
n-Butane		0.781	0.1426
Isopentane	0.0121	0.290	0.0529
n-Pentane	0.0130	0.312	0.0569
n-Hexane	0.0083	0.200	0.0364
Other Hexanes	0.0107	0.256	0.0467
Heptanes	0.0257	0.617	0.1125
Benzene	0.0232	0.556	0.1015
Toluene	0.0523	1.256	0.2292
Ethylbenzene	0.0033	0.079	0.0144
Xylenes	0.0117	0.280	0.0512
C8+ Heavies	0.0486	1.167	0.2129
Total Emissions	0.8277	19.866	3.6255
Total Hydrocarbon Emissions	0.8277	19.866	3.6255
Total VOC Emissions	0.3274	7.857	1.4339
Total HAP Emissions	0.0988	2.371	0.4328
Total BTEX Emissions	0.0905	2.172	0.3963

#### UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	18.4806	443.534	80.9450
Ethane	6.5385	156.924	28.6386
Propane	3.5753	85.807	15.6598
Isobutane	0.7244	17.386	3.1729
n-Butane	1.6274	39.058	7.1281
Isopentane	0.6036	14.488	2.6440
n-Pentane	0.6490	15.577	2.8428
n-Hexane	0.4158	9.979	1.8211
Other Hexanes	0.5331	12.795	2.3351
Heptanes	1.2846	30.829	5.6263
Benzene	1.1587	27.810	5.0753
Toluene	2.6169	62.806	11.4620
Ethylbenzene	0.1647	3.953	0.7214

Xylenes C8+ Heavies	0.5841 2.4305	14.019 58.333	Page: 2 2.5585 10.6457
Total Emissions	41.3874	993.297	181.2767
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	41.3874 16.3683 4.9402 4.5245	993.297 392.839 118.566 108.587	181.2767 71.6931 21.6383 19.8172

### FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	2.3135	55.525	10.1333
Ethane	0.9868	23.682	4.3220
Propane	0.4958	11.900	2.1718
Isobutane	0.0876	2.102	0.3836
n-Butane	0.1793	4.302	0.7852
Isopentane	0.0571	1.371	0.2502
n-Pentane	0.0545	1.309	0.2389
n-Hexane	0.0215	0.517	0.0943
Other Hexanes	0.0350	0.839	0.1531
Heptanes	0.0333	0.800	0.1460
Benzene	0.0019	0.046	0.0085
Toluene	0.0025	0.061	0.0111
Ethylbenzene	0.0001	0.002	0.0004
Xylenes	0.0002	0.004	0.0008
C8+ Heavies	0.0093	0.224	0.0408
Total Emissions	4.2785	102.685	18.7400
Total Hydrocarbon Emissions	4.2785	102.685	18.7400
Total VOC Emissions	0.9782	23.478	4.2847
Total HAP Emissions	0.0263	0.630	0.1150
Total BTEX Emissions	0.0047	0.114	0.0207

### FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	115.6773	2776.256	506.6667
Ethane	49.3378	1184.108	216.0998
Propane	24.7922	595.013	108.5899
Isobutane	4.3789	105.094	19.1796
n-Butane	8.9631	215.113	39.2582
Isopentane	2.8563	68.551	12.5106
n-Pentane	2.7271	65.451	11.9448
n-Hexane	1.0765	25.835	4.7149
Other Hexanes	1.7479	41.949	7.6557
Heptanes	1.6670	40.008	7.3014
Benzene	0.0968	2.324	0.4241
Toluene	0.1267	3.041	0.5550
Ethylbenzene	0.0041	0.098	0.0180
Xylenes	0.0091	0.220	0.0401
C8+ Heavies	0.4659	11.181	2.0406
Total Emissions	213.9268	5134.242	936.9992
Total Hydrocarbon Emissions	213.9268	5134.242	936.9992
Total VOC Emissions	48.9116	1173.878	214.2327
Total HAP Emissions	1.3132	31.517	5.7519
Total BTEX Emissions	0.2368	5.683	1.0371

Component	lbs/hr	lbs/day	tons/yr
Methane	2.6832	64.396	11.7522
Ethane	1.1175	26.821	4.8948
Propane	0.5674	13.616	2.4850
Isobutane	0.1021	2.450	0.4470
n-Butane	0.2118	5.083	0.9277
Isopentane	0.0692	1.661	0.3031
n-Pentane	0.0675	1.621	0.2958
n-Hexane	0.0298	0.716	0.1307
Other Hexanes	0.0456	1.095	0.1998
Heptanes	0.0590	1.417	0.2586
Benzene	0.0251	0.603	0.1100
Toluene	0.0549	1.317	0.2403
Ethylbenzene	0.0034	0.081	0.0148
Xylenes	0.0119	0.285	0.0520
C8+ Heavies	0.0579	1.390	0.2537
Total Emissions	5.1063	122.551	22.3655
Total Hydrocarbon Emissions	5.1063	122.551	22.3655
Total VOC Emissions	1.3056	31.334	5.7185
Total HAP Emissions	0.1251	3.002	0.5478
Total BTEX Emissions	0.0952	2.285	0.4171

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane Ethane Propane Isobutane n-Butane	587.6117 244.7384 124.2497 22.3524 46.3863	11.7522 4.8948 2.4850 0.4470 0.9277	98.00 98.00 98.00 98.00 98.00 98.00
Isopentane n-Pentane n-Hexane Other Hexanes Heptanes	15.1546 14.7876 6.5360 9.9908 12.9278	0.3031 0.2958 0.1307 0.1998 0.2586	98.00 98.00 98.00 98.00 98.00 98.00
Benzene Toluene Ethylbenzene Xylenes C8+ Heavies	5.4994 12.0170 0.7394 2.5985 12.6863	0.1100 0.2403 0.0148 0.0520 0.2537	98.00 98.00 98.00 98.00 98.00
Total Emissions	1118.2759	22.3655	98.00
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	1118.2759 285.9257 27.3902 20.8543	22.3655 5.7185 0.5478 0.4171	98.00 98.00 98.00 98.00 98.00

EQUIPMENT REPORTS:

_____

# COMBUSTION DEVICE

Ambient Temperatur Excess Oxyge Combustion Efficienc Supplemental Fuel Requiremen	y: 98.00 %
Component	Emitted Destroyed
Methane Ethane Propane Isobutane n-Butane	2.00% 98.00% 2.00% 98.00% 2.00% 98.00% 2.00% 98.00% 2.00% 98.00% 2.00% 98.00%
Isopentane n-Pentane n-Hexane Other Hexanes Heptanes	2.00%98.00%2.00%98.00%2.00%98.00%2.00%98.00%
Benzene Toluene Ethylbenzene Xylenes C8+ Heavies	2.00%98.00%2.00%98.00%2.00%98.00%2.00%98.00%2.00%98.00%
ABSORBER	
Calculated Absorber Stage Specified Dry Gas Dew Poin Temperatur Pressur Dry Gas Flow Rat Glycol Losses with Dry Ga Wet Gas Water Conten Calculated Wet Gas Water Conten Calculated Lean Glycol Recirc. Ration	<pre>t: 5.00 lbs. H2O/MMSCF e: 120.0 deg. F e: 1200.0 psig e: 150.0000 MMSCF/day s: 11.4990 lb/hr t: Saturated t: 89.60 lbs. H2O/MMSCF</pre>
	Remaining Absorbed in Dry Gas in Glycol
Water Water Carbon Dioxide Nitrogen Methane Ethane	5.57%       94.43%         99.86%       0.14%         99.99%       0.01%         99.99%       0.01%         99.97%       0.03%
Propane Isobutane n-Butane Isopentane n-Pentane	99.96%0.04%99.95%0.05%99.94%0.06%99.95%0.05%99.93%0.07%
n-Hexane Other Hexanes Heptanes Benzene Toluene	99.91%0.09%99.93%0.07%99.86%0.14%96.44%3.56%95.64%4.36%
Ethylbenzene Xylenes C8+ Heavies	95.22%4.78%93.26%6.74%99.69%0.31%

FLASH TANK

Flash Contro Flash Control Efficiend Flash Temperatu Flash Pressu	cy: 98.00 re: 80	00
Component	Left in Glycol	Removed in Flash Gas
Water Carbon Dioxide Nitrogen Methane Ethane	99.88% 6.13% 0.33% 0.36% 1.39%	99.67%
Propane Isobutane n-Butane Isopentane n-Pentane	3.81% 6.25% 8.49% 10.40% 13.22%	
n-Hexane Other Hexanes Heptanes Benzene Toluene	23.50% 18.21% 41.06% 92.65% 95.74%	76.50% 81.79% 58.94% 7.35% 4.26%
Ethylbenzene Xylenes C8+ Heavies	97.82% 98.66% 85.29%	2.18% 1.34% 14.71%

_____

REGENERATOR

WET GAS STREAM

120.00 deg. F 1214.70 psia 6.26e+006 scfh		
Component		Loading (lb/hr)
 Carbon Dioxide Nitrogen Methane	1.89e-001 1.84e-001 5.68e-001 7.90e+001 1.36e+001	1.34e+003 2.62e+003 2.09e+005
Isobutane n-Butane Isopentane	4.13e+000 5.22e-001 9.61e-001 2.73e-001 2.37e-001	5.01e+003 9.21e+003 3.26e+003
Other Hexanes Heptanes Benzene	7.32e-002 1.28e-001 9.39e-002 2.69e-003 4.09e-003	1.82e+003 1.55e+003 3.47e+001
Ethylbenzene Xylenes C8+ Heavies	4.99e-004	8.75e+000
 Total Components	100.00	3.37e+005

DRY GAS STREAM

Temperature:       120.00 deg. F         Pressure:       1214.70 psia         Flow Rate:       6.25e+006 scfh         Component       Conc. Loading (vol%)         Water       1.05e-002       3.13e+001         Carbon Dioxide       1.84e-001       1.34e+003         Nitrogen       5.69e-001       2.62e+003         Methane       7.91e+001       2.09e+005         Ethane       1.37e+001       6.77e+004         Propane       4.13e+000       3.00e+004         Isobutane       5.23e-001       5.01e+003         n-Butane       9.62e-001       9.21e+003         Isopentane       2.74e-001       3.25e+003         n-Pentane       2.37e-001       2.82e+003         Nether Hexanes       1.28e-001       1.82e+003         Nether Hexanes       9.40e-002       1.55e+003         Benzene       2.60e-003       3.35e+001         Toluene       3.92e-003       5.95e+001         Ethylbenzene       1.90e-004       3.33e+000         Xylenes       4.66e-004       8.16e+000         C8+ Heavies       2.85e-002       8.00e+002				
(vol%) (lb/hr) Water 1.05e-002 3.13e+001 Carbon Dioxide 1.84e-001 1.34e+003 Nitrogen 5.69e-001 2.62e+003 Methane 7.91e+001 2.09e+005 Ethane 1.37e+001 6.77e+004 Propane 4.13e+000 3.00e+004 Isobutane 5.23e-001 5.01e+003 n-Butane 9.62e-001 9.21e+003 Isopentane 2.74e-001 3.25e+003 n-Pentane 2.37e-001 2.82e+003 N-Hexanes 1.28e-001 1.82e+003 Other Hexanes 1.28e-001 1.82e+003 Heptanes 9.40e-002 1.55e+003 Benzene 2.60e-003 3.35e+001 Toluene 3.92e-003 5.95e+001 Ethylbenzene 1.90e-004 3.33e+000 Xylenes 4.66e-004 8.16e+000	Pressure:	1214.70 psia		
Carbon Dioxide 1.84e-001 1.34e+003 Nitrogen 5.69e-001 2.62e+003 Methane 7.91e+001 2.09e+005 Ethane 1.37e+001 6.77e+004 Propane 4.13e+000 3.00e+004 Isobutane 5.23e-001 5.01e+003 n-Butane 9.62e-001 9.21e+003 Isopentane 2.74e-001 3.25e+003 n-Pentane 2.37e-001 2.82e+003 Other Hexanes 1.28e-001 1.82e+003 Heptanes 9.40e-002 1.55e+003 Benzene 2.60e-003 3.35e+001 Toluene 3.92e-003 5.95e+001 Ethylbenzene 1.90e-004 3.33e+000 Xylenes 4.66e-004 8.16e+000		Component		
Isobutane 5.23e-001 5.01e+003 n-Butane 9.62e-001 9.21e+003 Isopentane 2.74e-001 3.25e+003 n-Pentane 2.37e-001 2.82e+003 0ther Hexanes 1.28e-001 1.82e+003 Heptanes 9.40e-002 1.55e+003 Benzene 2.60e-003 3.35e+001 Toluene 3.92e-003 5.95e+001 Ethylbenzene 1.90e-004 3.33e+000 Xylenes 4.66e-004 8.16e+000		Carbon Dioxide Nitrogen Methane	1.84e-001 5.69e-001 7.91e+001	1.34e+003 2.62e+003 2.09e+005
Other Hexanes 1.28e-001 1.82e+003 Heptanes 9.40e-002 1.55e+003 Benzene 2.60e-003 3.35e+001 Toluene 3.92e-003 5.95e+001 Ethylbenzene 1.90e-004 3.33e+000 Xylenes 4.66e-004 8.16e+000		Isobutane n-Butane Isopentane	5.23e-001 9.62e-001 2.74e-001	5.01e+003 9.21e+003 3.25e+003
Xylenes 4.66e-004 8.16e+000		Other Hexanes Heptanes Benzene	1.28e-001 9.40e-002 2.60e-003	1.82e+003 1.55e+003 3.35e+001
		Xylenes	4.66e-004	8.16e+000

LEAN GLYCOL STREAM

Temperature: 120.00 deg. F Flow Rate: 1.50e+001 gpm		
Component		Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.85e+001 1.50e+000 2.16e-012 4.41e-013 1.00e-017	1.27e+002 1.83e-010 3.72e-011
Propane Isobutane	1.15e-007 6.13e-009 8.86e-010 1.70e-009 1.05e-004	5.17e-007 7.48e-008 1.43e-007
n-Hexane Other Hexanes Heptanes	1.14e-004 5.65e-005 1.59e-004 1.28e-004 7.72e-004	4.77e-003 1.34e-002 1.08e-002
Ethylbenzene	1.04e-003	1.94e-002 8.77e-002
Total Components	100.00	8.44e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 120.00 deg. F Pressure: 1214.70 psia Flow Rate: 1.65e+001 gpm NOTE: Stream has more than one phase.

Component		Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.03e+001 7.14e+000 2.62e-002 1.65e-002 1.26e+000	6.57e+002 2.41e+000 1.51e+000
Propane Isobutane	5.44e-001 2.80e-001 5.08e-002 1.07e-001 3.47e-002	2.58e+001 4.67e+000 9.79e+000
n-Hexane Other Hexanes Heptanes	3.42e-002 1.53e-002 2.32e-002 3.08e-002 1.43e-002	1.41e+000 2.14e+000 2.83e+000
Ethylbenzene	3.23e-002 2.04e-003 7.40e-003	1.88e-001

Page: 8

C8+ Heavies 3.44e-002 3.17e+000

Total Components 100.00 9.19e+003

FLASH TANK OFF GAS STREAM

Temperature: Pressure: Flow Rate:	80.00 deg. F 19.70 psia 3.77e+003 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	4.34e-001 5.17e-001 5.43e-001 7.27e+001 1.65e+001	2.26e+000 1.51e+000 1.16e+002
	Isobutane n-Butane Isopentane	5.66e+000 7.59e-001 1.55e+000 3.99e-001 3.81e-001	4.38e+000 8.96e+000 2.86e+000
	Other Hexanes Heptanes Benzene	1.26e-001 2.04e-001 1.68e-001 1.25e-002 1.39e-002	1.75e+000 1.67e+000 9.68e-002
	Ethylbenzene Xylenes C8+ Heavies	8.68e-004	9.15e-003
	Total Components	100.00	2.18e+002

FLASH TANK GLYCOL STREAM

Temperature: 80.00 deg. F Flow Rate: 1.61e+001 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.25e+001 8.31e+003 Water 7.31e+000 6.56e+002 Carbon Dioxide 1.64e-003 1.48e-001 Nitrogen 5.50e-005 4.94e-003 Methane 4.68e-003 4.20e-001 Ethane 7.72e-003 6.93e-001 Propane 1.09e-002 9.82e-001 Isobutane 3.25e-003 2.92e-001 n-Butane 9.27e-003 8.32e-001 Isopentane 3.69e-003 3.31e-001 n-Pentane 4.63e-003 4.15e-001 n-Hexane 3.68e-003 3.31e-001 Other Hexanes 4.34e-003 3.89e-001 Heptanes 1.29e-002 1.16e+000 Benzene 1.36e-002 1.22e+000 Toluene 3.17e-002 2.84e+000 Ethylbenzene 2.05e-003 1.84e-001 Xylenes 7.48e-003 6.71e-001 C8+ Heavies 3.01e-002 2.70e+000

_____

FLASH GAS EMISSIONS

Flow Rate: 1.41e+004 scfh Control Method: Combustion Device Control Efficiency: 98.00

Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	6.26e+001 3.68e+001 1.45e-001 3.89e-001 8.86e-002	6.00e+002 1.51e+000 2.31e+000
Isobutane n-Butane Isopentane	3.03e-002 4.07e-003 8.32e-003 2.14e-003 2.04e-003	8.76e-002 1.79e-001 5.71e-002
Other Hexanes Heptanes Benzene	6.74e-004 1.09e-003 8.98e-004 6.69e-005 7.42e-005	3.50e-002 3.33e-002 1.94e-003
Ethylbenzene Xylenes C8+ Heavies	4.65e-006	1.83e-004
Total Components	100.00	1.02e+003

#### REGENERATOR OVERHEADS STREAM

Pressure:	212.00 deg. F 14.70 psia 1.18e+004 scfh Component		
	Component		
	-		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	2.67e-002 3.72e+000	2.63e-001 2.32e-001 1.85e+001
	Isobutane n-Butane Isopentane	4.02e-002 9.03e-002 2.70e-002	7.24e-001 1.63e+000 6.04e-001
	Other Hexanes Heptanes Benzene	2.00e-002 4.13e-002 4.78e-002	5.33e-001 1.28e+000 1.16e+000
	Xylenes	1.77e-002	5.84e-001
		Nitrogen Methane Ethane Propane Isobutane n-Butane Isopentane n-Pentane Other Hexanes Heptanes Benzene Toluene Ethylbenzene Xylenes	Carbon Dioxide 1.93e-002 Nitrogen 2.67e-002 Methane 3.72e+000 Ethane 7.01e-001 Propane 2.61e-001 Isobutane 4.02e-002 n-Butane 9.03e-002 Isopentane 2.70e-002 n-Pentane 2.90e-002 n-Hexanes 2.00e-002 Meptanes 4.13e-002 Benzene 4.78e-002 Toluene 9.16e-002 Ethylbenzene 5.00e-003 Xylenes 1.77e-002 C8+ Heavies 4.60e-002

COMBUSTION DEVICE OFF GAS STREAM		
Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 1.21e+001 scfh		
Component		Loading (lb/hr)
Ethane Propane Isobutane	7.22e+001 1.36e+001 5.08e+000 7.81e-001 1.75e+000	1.31e-001 7.15e-002 1.45e-002
n-Hexane Other Hexanes	5.63e-001 3.02e-001	1.30e-002 8.32e-003 1.07e-002
Toluene Ethylbenzene	3.45e-001	5.23e-002 3.29e-003 1.17e-002
Total Components	100.00	8.28e-001

# Attachment O. Monitoring, Recordkeeping, Reporting, and Testing Plans

# Monitoring, Recordkeeping, Reporting, and Testing Plans

The following is a summary of the methods to comply with the requirements of West Virginia Division of Air Quality (WVDAQ) 45CSR13 rules and regulations for the South Canton Compressor Station, including federal and state regulatory requirements.

### 1. Summary of Key Operational Throughput Limits

- a. Maximum dry gas throughput into each dehydrator: 150 MMscf/day or 54,750 MMscf/year.
- b. Maximum liquids loaded out: 5,978,700 gallons per year.

### 2. Operational Requirements

- a. Compressor engines will operate with the catalytic converter in place at all times and will be fueled by natural gas only.
- b. Catalysts installed on all compressor engines will be operated per manufacturer instructions.
- c. Reciprocating compressor rod packing will be replaced within 36 months of last packing, startup, or within 26,000 operating hours, whichever comes first.
- d. The generator will be fueled by natural gas only.
- e. Each dehydrator reboiler will operate at no more than 1.5 MMBtu/hr and be fueled only by natural gas or offgases from the dehydrator flash tanks in the case of AOS1.
- f. No fuel-burning unit of any kind will have opacity greater than 10 percent based on a six minute block average observation.
- g. Under AOS1, the dehydrator flare capacity will not exceed 4.80 MMBtu/hr, will achieve 98 percent destruction efficiency, will operate at all times that gas is vented to it, will have a flame present at all times, and will have no visible emissions other than for periods not to exceed a total of 5 minutes during any 2 consecutive hours.
- h. Under AOS2, each dehydrator thermal oxidizer capacity will not exceed 6.0 MMBtu/hr, will achieve 98 percent destruction efficiency, will operate at all times that gas is vented to it, will have a flame present at all times, and will have no visible emissions other than for periods not to exceed a total of 5 minutes during any 2 consecutive hours.
- i. The dehydrator flare or thermal oxidizers will be operated per manufacturer instructions.
- j. Produced water, condensate, and settling storage tanks' potential emissions will be routed to the VRU with recovery greater than 98 percent at all times.
- k. Storage tanks will be covered and routed to a closed vent system with no detectable emissions.
- I. Liquid loadout trucks will use the submerged-fill method.
- m. Dehydrator still vents will be controlled by the flare under AOS1, or by the thermal oxidizers under AOS2.
- n. Dehydrator flash tanks' vent gas will be used in the reboilers as fuel or routed to the VRU system under AOS1, or under AOS2 the flash gas will be routed to the thermal oxidizers.

## 3. Monitoring

- a. Non-certified engines will be stack tested within 1 year of startup and every 8,760 hours of operation thereafter.
- b. Catalyst inlet temperature will be monitored.
- c. Compressor run time or number of months since compressor rod repacking will be monitored or tracked.
- d. Rolling 12-month average of the dry gas throughput for the dehydrators will be monitored.
- e. Initial Method 22 observation of the reboilers' exhaust and flare or thermal oxidizers will be conducted for a minimum of 2 hours.
- f. Monthly Method 22 observations of the reboilers' exhaust and flare or thermal oxidizers will be conducted for a minimum of 10 minutes each.
- g. Monthly olfactory, visual, and auditory inspections will be conducted of the tanks closed vent and control system for leaks or defects that could result in emissions. Leaks will be repaired as soon as practicable, and no later than 5 days for the first attempt.
- h. The presence of flare's or thermal oxidizer's flame will be continuously monitored.
- i. Monthly and rolling twelve-month average amount of liquids loaded out will be monitored.
- j. The initial and subsequent leak detection and repair (LDAR) inspections will be conducted per the implemented LDAR monitoring plan. Repair procedures will be followed per the implemented LDAR monitoring plan.

### 4. Recordkeeping

- a. Records will be kept for a minimum of 5 years.
- b. Records of inspection, observations, preventive maintenance, malfunctions, and shutdowns of all onsite equipment will be kept.
- c. Records of the date, time, duration of each time that a flame is not present at the flare and startup, shutdown, malfunctions of the flare will be kept.
- d. Records of the date, time, duration of each time that a flame is not present at the thermal oxidizers and startup, shutdown, malfunctions of the thermal oxidizers will be kept.
- e. Records of engine maintenance and engine run time will be kept.
- f. Records of catalyst inlet temperature will be kept.
- g. Records of the actual annual average natural gas throughput in each of the dehydrators will be kept.
- h. Records of LDAR inspections, repaired leaks, and the LDAR monitoring plan will be kept.

### 5. Notifications and Reports

- a. WVDAQ will be notified within 30 calendar days of startup.
- b. Upon startup, a Certificate to Operate (CTO) application will be filed and fees to WVDAQ will be paid for the period from startup to the following June 30 and then annually renew the CTO and pay fees. CTO will be maintained on-site.

- c. An annual report of compliance with 40 CFR 60 Subpart OOOOa for applicable affected facilities will be submitted within 90 days after one year of operations startup.
- d. For stack testing, a protocol will be filed at least 30 days prior to test and notify WVDAQ and EPA of the test at least 15 days prior to test. Results will be reported within 60 days of the test.
- e. If operations are suspended for 60 days or more, WVDAQ will be notified within 2 weeks after the 60th day.

Attachment P. Public Notice

# AIR QUALITY PERMIT NOTICE Notice of Application – South Canton Compressor Station

Notice is given that Antero Midstream LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for an initial 45CSR13 construction permit application for a natural gas compressor station located 3 miles north of West Union in Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.33420N, 80.80334W.

Regulated Pollutant	Potential Emissions (tpy)
Nitrogen Oxides (NOx)	101.47
Carbon Monoxide (CO)	90.52
Volatile Organic Compounds (VOC)	149.90
Sulfur Dioxide (SO ₂ )	0.56
Particulate Matter less than 10 micrometers (PM ₁₀ )	10.58
Particulate Matter less than 2.5 micrometers (PM _{2.5} )	9.77
Total Hazardous Air Pollutants (HAPs)	20.98
Benzene	0.66
Toluene	1.03
Ethylbenzene	0.080
Xylenes	0.30
Formaldehyde	6.29
n-Hexane	2.02
Acetaldehyde	5.02
Acrolein	3.11
Methanol	1.56
Carbon Dioxide Equivalent (CO ₂ e)	166,561

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours. Dated the 30th day of December 2016.

By: Antero Midstream LLC Barry Schatz Senior Environmental & Regulatory Manager 1615 Wynkoop Street Denver, CO 80202 Attachment R. Authority/Delegation of Authority

### Attachment R AUTHORITY OF CORPORATION OR OTHER BUSINESS ENTITY (DOMESTIC OR FOREIGN)

TO: The West Virginia Department of Environmental Protection, Division of Air Quality

DATE: August 5 , 2015

ATTN.: Director

Corporation's / other business entity's Federal Employer I.D. Number _____46-5517375

The undersigned hereby files with the West Virginia Department of Environmental Protection, Division of Air Quality, a permit application and hereby certifies that the said name is a trade name which is used in the conduct of an incorporated business or other business entity.

Further, the corporation or the business entity certifies as follows:

(1) Luz Slauter and Barry Schatz (is/are) the authorized representative(s) and in that capacity may represent the interest of the corporation or the business entity and may

obligate and legally bind the corporation or the business entity.

(2) The corporation or the business entity is authorized to do business in the State of West Virginia.

(3) If the corporation or the business entity changes its authorized representative(s), the corporation or the business entity shall notify the Director of the West Virginia Department of Environmental Protection, Division of Air Quality, immediately upon such change.

Ward McNeilly, Vice President - Vice President Reserves Planning & Midstream

President or Other Authorized Officer (Vice President, Secretary, Treasurer or other official in charge of a principal business function of the corporation or the business entity)

(If not the President, then the corporation or the business entity must submit certified minutes or bylaws stating legal authority of other authorized officer to bind the corporation or the business entity).

Secretary

Antero Midstream LLC