

July 11, 2017

Assistant Director for Permitting WV Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, WV 25304

SUBJECT: Antero Midstream LLC – Tamela Compressor Station

West Virginia Department of Environmental Protection, Division of Air Quality,

45CSR13 Air Permit Modification, R13-3216A

To Whom it May Concern:

On behalf of Antero Midstream LLC, please find attached the 45CSR13 Air Permit Modification for permit number R13-3216A for the Tamela Compressor Station (Facility ID 017-00131) located in Doddridge County, West Virginia. A summary of the modifications in this application include:

- 1. Updating storage tank and loading emissions using ProMax 4.0,
- 2. New installation of a fuel conditioning heater (0.5 million BTU/hr capacity),
- 3. Increasing the dehydrator throughput to 110 MMscfd per dehydrator,
- 4. Updating fugitive counts based on current component counts at similar facilities, and
- 5. Modifying compressor blowdown and pigging events based on expected operations.

Enclosed are one hardcopy and two CDs containing the entire permit application including the application form and required attachments. Per 45CSR22, a \$4,500 application fee is also enclosed, which covers the base 45CSR13 \$1,000 application fee, an additional \$1,000 for the NSPS fee, and an additional \$2,500 for Hazardous Air Pollutant requirements.

A copy of the Air Quality Permit Notice for the advertisement is included as Attachment P. As the Notice is being submitted simultaneously with the application, the official affidavit of publication will be submitted to the Division of Air Quality separately once it is completed.

Please call if you have any questions or if I can be of further assistance. I can be reached at (719)632-3593 or by email at kmeszaros@kleinfelder.com.

Sincerely,

KLEINFELDER

Kaitlin Meszaros Air Quality Specialist

Kaitlin AMesgaros

Enclosures: Tamela Compressor Station R13-3216A Air Permit Modification

Antero Midstream LLC

Tamela Compressor Station

NSR Permit Modification Application
West Virginia Department of Environmental Protection
Division of Air Quality
45CSR13 – R13-3216A

Doddridge County, West Virginia

July 2017

Prepared by:

1801 California Street, Suite 1100 Denver, CO 80202 (303) 237-6601 Fax (303) 237-6602 www.kleinfelder.com

> © 2017 Kleinfelder DEN17O60997

Table of Contents

45CSR13 Application Form Discussion of Nearby Facilities

Attachment A. Business Certificate

Attachment B. Area Map

Attachment C. Installation and Startup Schedule

Attachment D. Regulatory Discussion

Attachment E. Plot Plan

Attachment F. Process Flow Diagram Attachment G. Process Description

Attachment H. Material Safety Data Sheets

Attachment I. Emission Units Table

Attachment J. Emission Point Data Summary Sheet Fugitive Emissions Data Summary Sheet

Attachment L. Emissions Unit Data Sheets

a. Dehydrators

b. Fuel Conditioning Heater

c. Storage Tanksd. Venting Episodes

e. Bulk Loading

Attachment M. Air Pollution Control Device Sheets Attachment N. Supporting Emissions Calculations

a. Emission Calculations

b. GlyCalcc. ProMax 4.0

Attachment O. Monitoring, Recordkeeping, Reporting, and Testing Plans

Attachment P. Public Notice

Attachment R. Authority/Delegation of Authority

WEST VIRGINIA DEPARTMENT OF **ENVIRONMENTAL PROTECTION**

DIVISION OF AIR QUALITY

APPLICATION FOR NSR PERMIT **AND**

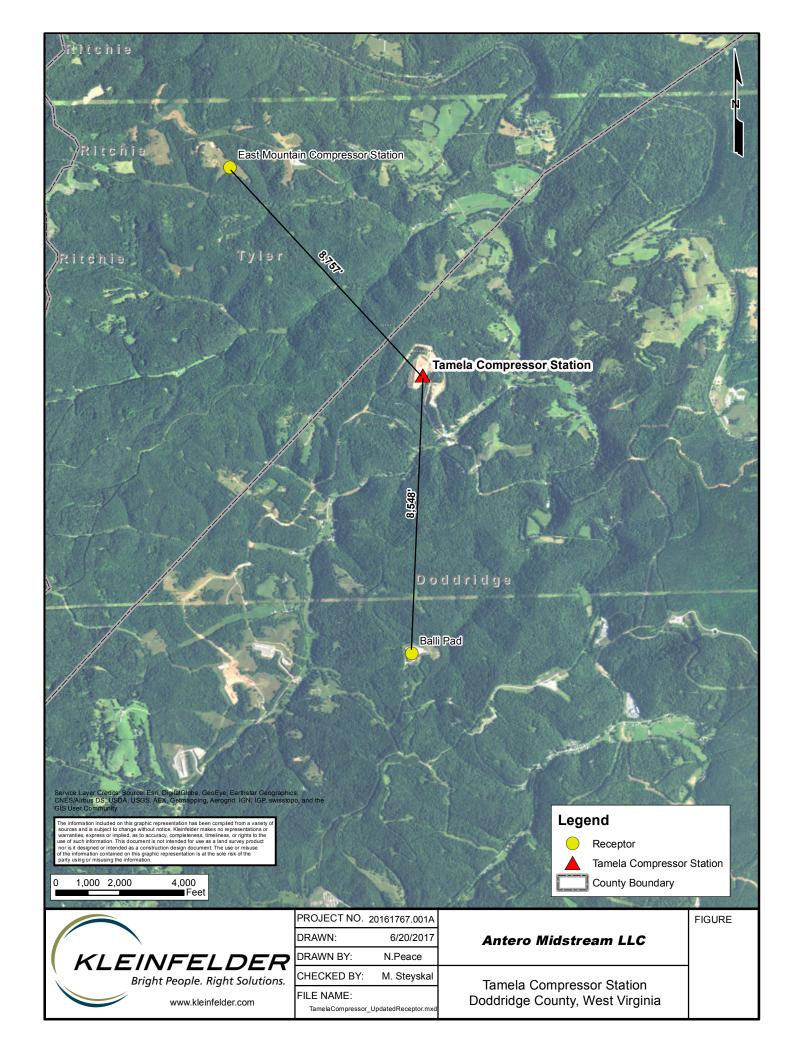
Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag	TI	TITLE V PERMIT REVISION (OPTIONAL)	
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOW ☐ CONSTRUCTION ☐ MODIFICATION ☐ RELOCATION ☐ CLASS I ADMINISTRATIVE UPDATE ☐ TEMPORARY ☐ CLASS II ADMINISTRATIVE UPDATE ☐ AFTER-THE-FACT	☐ ADMINISTRATION SIGNIFICANT	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION	
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Rev (Appendix A, "Title V Permit Revision Flowchart") and abili			
Sectio	n I. General		
Name of applicant (as registered with the WV Secretary of Antero Midstream LLC	f State's Office):	2. Federal Employer ID No. (FEIN): 46-5517375	
3. Name of facility (if different from above):		4. The applicant is the:	
Tamela Compressor Station		☐ OWNER ☐ OPERATOR ☑ BOTH	
5A. Applicant's mailing address: 1615 Wynkoop Street Denver, CO 80202 5B. Facility's present physical address: Long Run Rd West Union, WV 26456			
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? ☐ YES ☐ NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 			
7. If applicant is a subsidiary corporation, please provide the $\boldsymbol{\eta}$	name of parent corpo	oration:	
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>?			
9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Natural Gas Compressor Station 10. North American Industry Classification System (NAICS) code for the facility 221210			
11A. DAQ Plant ID No. (for existing facilities only): 11B. 017 – 00131		SR13 and 45CSR30 (Title V) permit numbers s process (for existing facilities only):	
All of the required forms and additional information can be foun	d under the Permitting	g Section of DAQ's website, or requested by phone.	

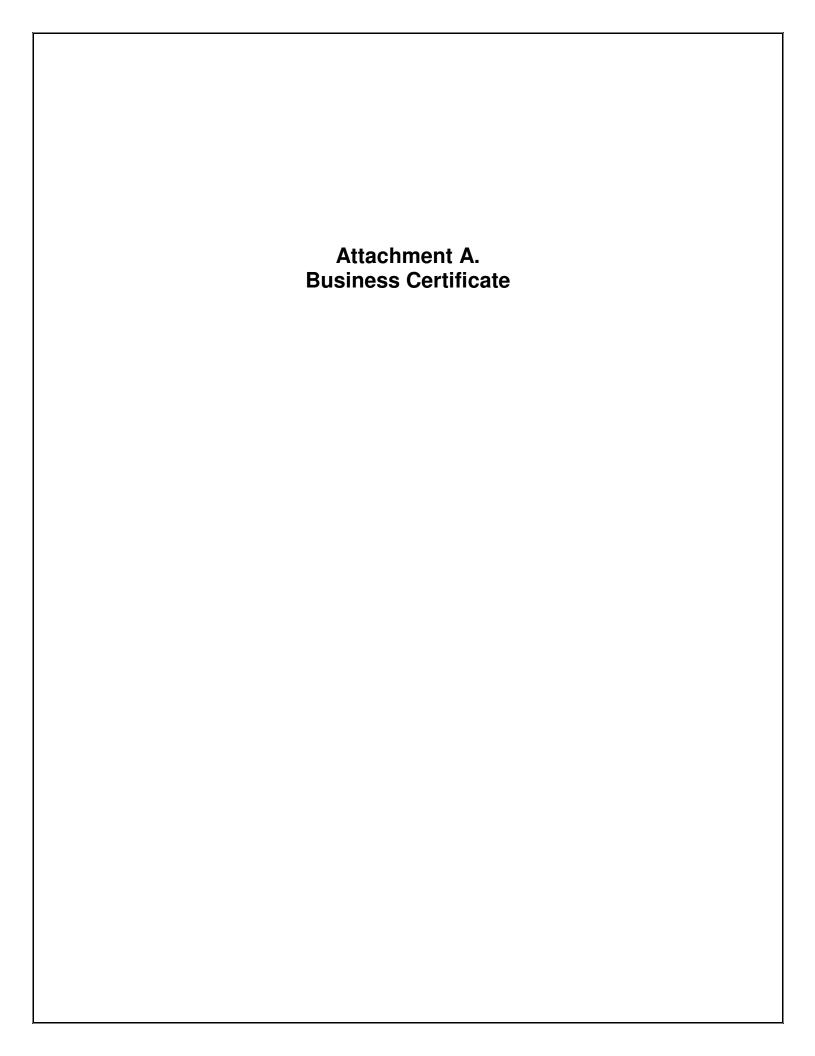
12A.			
 For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road; 			
For Construction or Relocation permits, please proad. Include a MAP as Attachment B.		site location from the nearest state	
From Pennsboro, WV, head southeast on Collins Avenu Make a slight right onto WV-74N and continue for			
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:	
Long Run	West Union	Doddridge	
West Union, WV 26456			
12.E. UTM Northing (KM): 4352.966	12F. UTM Easting (KM): 513.556	12G. UTM Zone: 17	
13. Briefly describe the proposed change(s) at the facilit Dehydrator capacities will be increased to 110 MMscfd p number of venting events as well as the amount vented have been updated with a new ProMax 4.0 software sim	per dehydrator, a fuel conditioning heate have been updated per current operation		
14A. Provide the date of anticipated installation or change. If this is an After-The-Fact permit application, provided that the change did happen: / /	• ' '	14B. Date of anticipated Start-Up if a permit is granted: Upon permit issuance	
14C. Provide a Schedule of the planned Installation of/application as Attachment C (if more than one uni	-	units proposed in this permit	
15. Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day 24 Days Per Week 7 Weeks Per Year 52			
16. Is demolition or physical renovation at an existing fa	cility involved?		
17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed			
changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.			
18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the			
proposed process (if known). A list of possible applica	able requirements is also included in Att	achment S of this application	
(Title V Permit Revision Information). Discuss applica	ability and proposed demonstration(s) of	compliance (if known). Provide this	
information as Attachment D .			
Section II. Additional attachments and supporting documents.			
19. Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and			
45CSR13).			
20. Include a Table of Contents as the first page of your application package.			
21. Provide a Plot Plan , e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance).			
 Indicate the location of the nearest occupied structure 	e (e.g. church, school, business, residen	ce).	
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	wing each proposed or modified emissio	ns unit, emission point and control	
23. Provide a Process Description as Attachment G.			
 Also describe and quantify to the extent possible 	all changes made to the facility since the	e last permit review (if applicable).	

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

24.	24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.			
– F	 For chemical processes, provide a MSDS for each compound emitted to the air. 			
25.	25. Fill out the Emission Units Table and provide it as Attachment I.			
26.	Fill out the Emission Points Data Sun	nmary Sheet (Table 1 and Ta	ble 2) and provide it as Attachment J.	
27.	Fill out the Fugitive Emissions Data S	Summary Sheet and provide it	as Attachment K.	
28.	Check all applicable Emissions Unit D	ata Sheets listed below:		
\boxtimes E	Bulk Liquid Transfer Operations	☐ Haul Road Emissions	☐ Quarry	
	Chemical Processes	☐ Hot Mix Asphalt Plant	☐ Solid Materials Sizing, Handling and Storage	
	Concrete Batch Plant	☐ Incinerator	Facilities	
	Grey Iron and Steel Foundry	☐ Indirect Heat Exchanger	⊠ Storage Tanks	
\boxtimes (General Emission Unit, specify: Dehydr	ator, Fuel conditioning heater,	venting episodes	
Fill	out and provide the Emissions Unit Da	ta Sheet(s) as Attachment L		
29.	Check all applicable Air Pollution Con	trol Device Sheets listed belo	DW:	
	Absorption Systems	☐ Baghouse	☐ Flare	
	Adsorption Systems	☐ Condenser	☐ Mechanical Collector	
	Afterburner	☐ Electrostatic Precipita	tor	
	Other Collectors, specify:			
Fill	out and provide the Air Pollution Contr	ol Device Sheet(s) as Attach	ment M.	
30. Provide all Supporting Emissions Calculations as Attachment N , or attach the calculations directly to the forms listed in Items 28 through 31.				
31.	31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.			
>		not be able to accept all meas	ther or not the applicant chooses to propose such ures proposed by the applicant. If none of these plans ude them in the permit.	
32.	Public Notice. At the time that the ap	plication is submitted, place a	Class I Legal Advertisement in a newspaper of general	
	circulation in the area where the source	e is or will be located (See 450	SR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>	
	Advertisement for details). Please suit	omit the Affidavit of Publicat	on as Attachment P immediately upon receipt.	
33.	Business Confidentiality Claims. Do	es this application include con	fidential information (per 45CSR31)?	
	☐ YES	⊠ NO		
>		the criteria under 45CSR§31	mitted as confidential and provide justification for each 4.1, and in accordance with the DAQ's "Precautionary Instructions as Attachment Q.	
	Sec	tion III. Certification	of Information	
34.	Authority/Delegation of Authority. C Check applicable Authority Form belo		ther than the responsible official signs the application.	
	Authority of Corporation or Other Busine	ss Entity	Authority of Partnership	
	Authority of Governmental Agency	•	Authority of Limited Partnership	
	Submit completed and signed Authority Form as Attachment R .			
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				
	t-q t und dadisonal infol	The state of the s	profile	

35A. Certification of Information. To certify 2.28) or Authorized Representative shall check	this permit application, a Respor	nsible Official (per 45CSR§13-2.22 and 45CSR§30- elow.	
Certification of Truth, Accuracy, and Compl	eteness		
I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.			
that, based on information and belief formed af compliance with all applicable requirements. SIGNATURE	fter reasonable inquiry, all air con	te is not achieved, I, the undersigned hereby certify intaminant sources identified in this application are in DATE: (Please use blue ink)	
35B. Printed name of signee: Ward McNeilly		35C. Title: Vice President, Reserves Planning and Midstream	
35D. E-mail: wmcneilly@anteroresources.com	36E. Phone: (303) 357-6822	36F. FAX: (303)357-7315	
36A. Printed name of contact person (if differen	nt from above): Barry Schatz	36B. Title: Senior Environmental and Regulatory Manager	
36C. E-mail: bschatz@anteroresources.com	36D. Phone: (303) 357-7276	36E. FAX: (303)357-7315	
10			
PLEASE CHECK ALL APPLICABLE ATTACHMENT Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Scheol Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagrant Attachment G: Process Description Attachment H: Material Safety Data Sheets (Material Safety Data Sheets (Mat	Attachment K: Attachment L: Attachment M: Attachment N: Attachment N: Attachment O: M(s) Attachment P: Attachment Q: MSDS) Attachment R: Attachment R: Attachment S: Y Sheet Attachment F:	Fugitive Emissions Data Summary Sheet Emissions Unit Data Sheet(s) : Air Pollution Control Device Sheet(s) : Supporting Emissions Calculations : Monitoring/Recordkeeping/Reporting/Testing Plans Public Notice : Business Confidential Claims : Authority Forms Title V Permit Revision Information the signature(s) to the DAQ, Permitting Section, at the	
FOR AGENCY USE ONLY – IF THIS IS A TITLE V	SOURCE:		
☐ Forward 1 copy of the application to the Title ☐ For Title V Administrative Amendments: ☐ NSR permit writer should notify Title V ☐ For Title V Minor Modifications: ☐ Title V permit writer should send applications processed ☐ NSR permit writer should notify Title V ☐ For Title V Significant Modifications processed ☐ NSR permit writer should notify a Title V ☐ Public notice should reference both 4 ☐ EPA has 45 day review period of a drawn and the should reference of the should reference of a drawn and the should reference of a	e V Permitting Group and: V permit writer of draft permit, ropriate notification to EPA and aft V permit writer of draft permit. ed in parallel with NSR Permit revis e V permit writer of draft permit, 15CSR13 and Title V permits, aft permit.		


Discussion of Nearby Faciliti	es


Tamela Compressor Station – Closest Antero Facilities

- 1. Common Control: Only those facilities that are owned and managed by Antero were included in the aggregation discussion. This includes Antero Resources Corporation production facilities in addition to the Antero Midstream LLC midstream facilities.
- 2. SIC Code: The Tamela Compressor Station will operate under SIC code 4923 (natural gas distribution). The closest facility owned by Antero Midstream LLC with this SIC code is the East Mountain Compressor station which is 1.7 miles northwest of the Facility. All Antero Resources Corporation production facilities operate under the SIC code of 1311 (crude petroleum and natural gas extraction). The closest facility operated by Antero Resources Corporation with the SIC code of 1311 is the Balli Pad 1.6 miles to the south.
- 3. Contiguous or Adjacent: The land between the Tamela Compressor Station and its nearest facility operating under SIC code 4923 is not owned or managed by Antero Midstream LLC or Antero Resources Corporation. Therefore, the two facilities are not contiguous or adjacent.

Based on this three-pronged evaluation, although the Tamela Compressor Station and East Mountain Compressor Station do belong to the same major industrial group, they should not be aggregated because they are not contiguous or adjacent.

The Tamela Compressor Station and Balli Pad should not be aggregated because they do not belong to the same major industrial group and do not directly rely on each other nor are they contiguous or adjacent.

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

ANTERO MIDSTREAM LLC

Control Number: 9A5E1

a limited liability company, organized under the laws of the State of Delaware has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of April 29, 2014, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of April 29, 2014

Secretary of State

IN THE OFFICE OF WY SECRETARY OF STATE

Submitted by: CT Corporation Rep-Terry Stamper Terry.Stamper@wolterskluwer.com 304-776-1152

Natafie E. Tennant Secretary of State 1900 Kanawha Blvd E Bldg 1, Suite 157-K. Charleston, WV 25305

FILE ONE ORIGINAL

FEE: \$150

(Two if you want a filed stamped copy returned to you)

WV APPLICATION FOR CERTIFICATE OF AUTHORITY OF LIMITED LIABILITY COMPANY

Penney Barker, Manager Corporations Division Tel: (304)558-8000 Fax: (304)558-8381 Website: www.wvsos.com E-mail: business@wvsos.com

Office Hours: Monday – Friday 8:30 a.m. – 5:00 p.m. ET Control #

1.	The name of the company as registered in its home state is:	Antero Midstream LLC
	and the state or country of organization is:	Delaware
\geq	EXISTENCE (GOOD STANDING), dated do	d and submitted with this application a CERTIFICATE OF uring the current tax year, from your home state of original plication. The certificate may be obtained by contacting the of original incorporation.
2.	The name to be used in West Virginia will be [The name must contain one of the required terms s as limited liability company" or abbreviations such as "LLC" or "PLLC". See instructions for complete list of acceptable terms and requirements for use of trade name	(If name is not available, check DBA Name box below and follow special instructions in Section 2, attached.)
3.	The company will be a: [See instructions for limitar on professions which may form P.L.L.C. in WV. All ment must have WV professional license. In most cases, a Lette Authorization/Approval from the appropriate State Licensing Board is required to process the application.]	bers
4.	The street address of the principal office is:	No. & Street: Denver, Colorado 80202
	and the mailing address (if different) is:	City/State/Zip: Street/Box: City/State/Zip:
5.	The address of the designated office of the company in WV, if any, will be:	No. & Street: City/State/Zip: 5400 D Big Tyler Road Charleston, West Virginia 25313
6.	Agent of Process: Properly designated person to whom notice of legal process may be sent, if any:	Name: C T Corporation System 5400 D Big Tyler Road City/State/Zip: Charleston, West Virginia 25313
	rm LLF-1 Issued b	y the Office of the Scorotary of State Revised (

WV045 - 09/04/2013 Wolters Kluwer Online

Issued by the Office of the Secretary of State

Revised 8/13

Form LLF-I

APPL	ICATION FOR CERTIFICATE O	OF AUTHORITY OF LIMITED LIABILITY COMPANY Page 3	
[R <i>fili</i>	ne requested effective date is: equested date <u>may not be earlier than</u> ing nor later than 90 days after filing our office.	the date & time of filing in the Secretary of State's Office the following date and time	
16. Ce	ontact and Signature Informatio	on* (See below Important Legal Notice Regarding Signature):	
a.	Alvyn A. Schopp	(313) 357-7310	
	Contact Name	Phone Number	
ь.	Alvyn A. Schopp	Chief Administrative Officer and Regional Vice Pres	ident
	Print or type name of aignor	Title / Capacity of Signer	
c.	As Tochto	April 28, 2014	
C.	Signature /	Date	

*Important Legal Notice Regarding Signature: Per West Virginia Code §31B-2-209. Liability for false statement in filed record. If a record authorized or required to be filed under this chapter contains a false statement, one who suffers loss by reliance on the statement may recover damages for the loss from a person who signed the record or caused another to sign it on the person's behalf and knew the statement to be false at the time the record was signed.

Delaware

PAGE :

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF

DELAWARE, DO HEREBY CERTIFY "ANTERO MIDSTREAM LLC" IS DULY

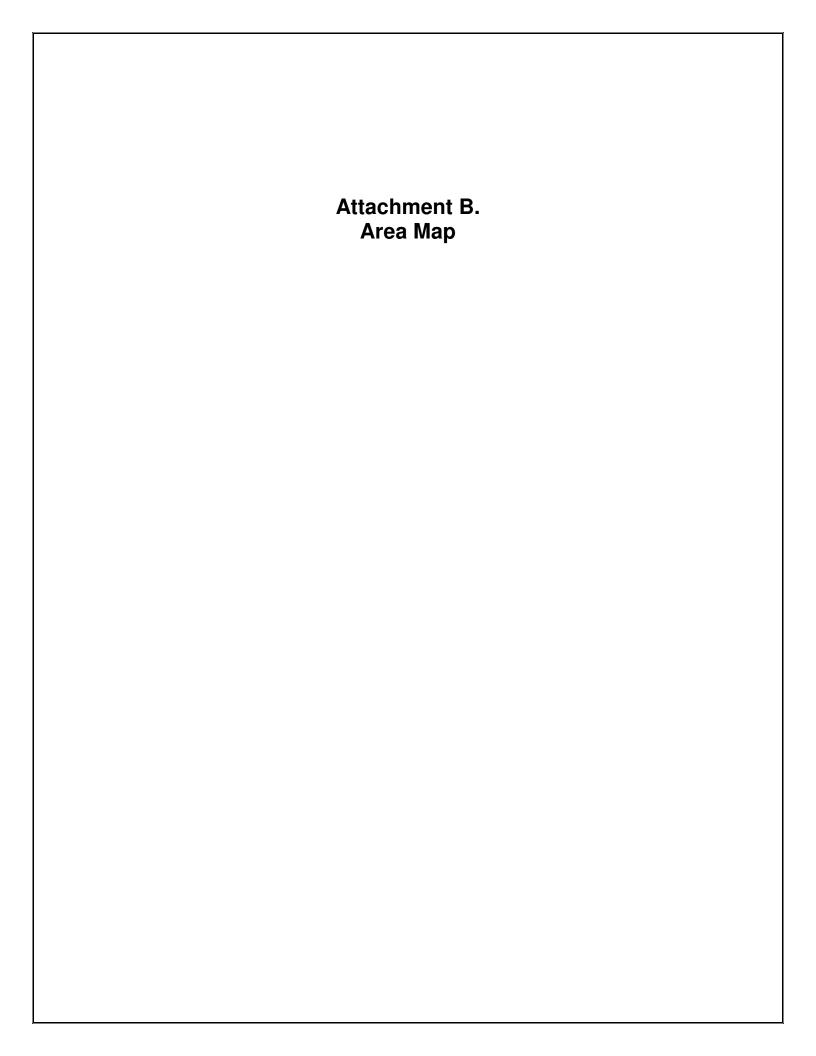
FORMED UNDER THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD

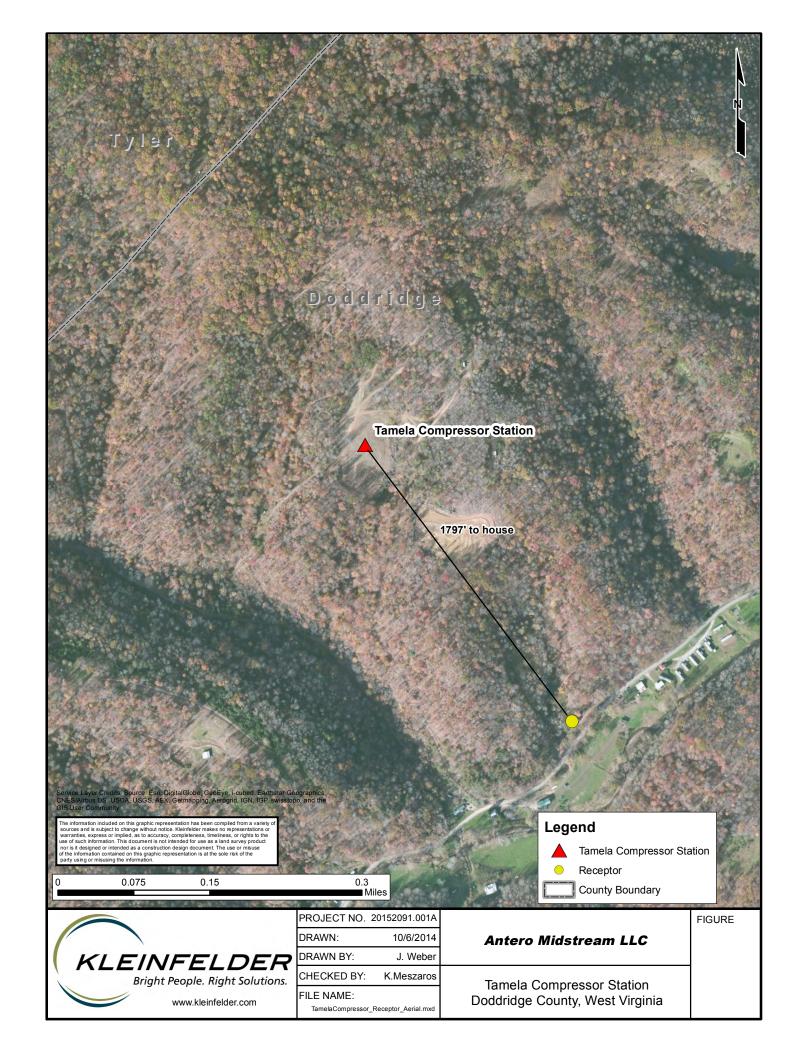
STANDING AND HAS A LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS

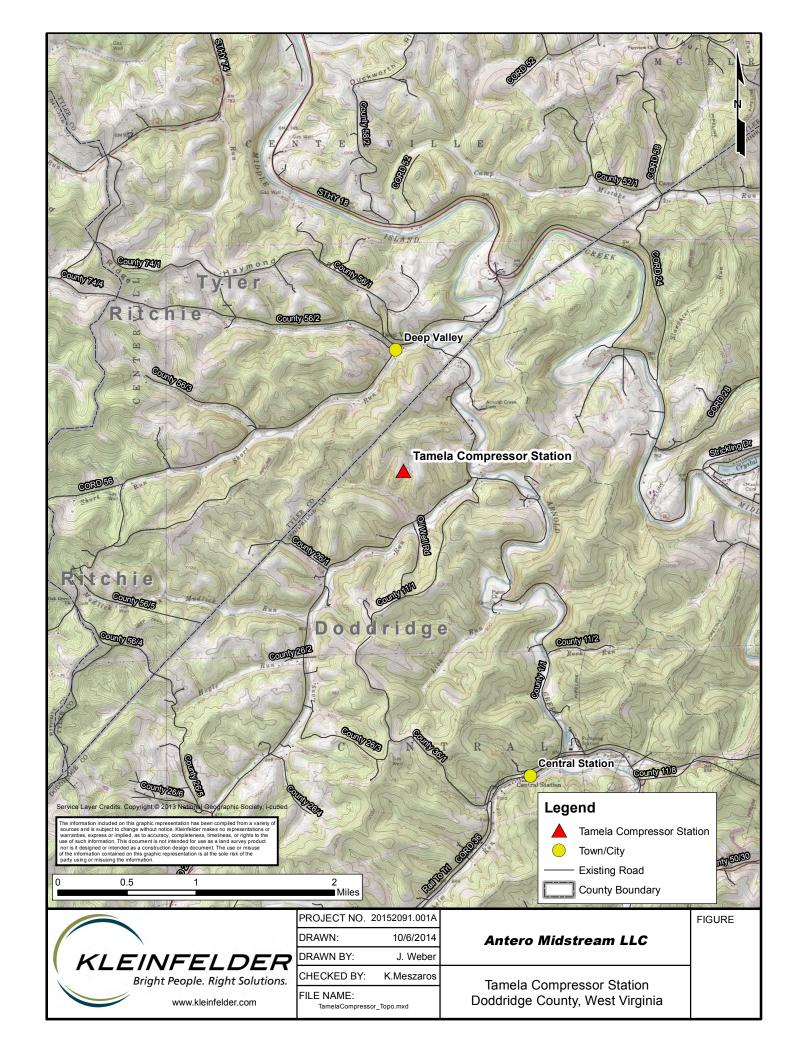
OFFICE SHOW, AS OF THE TWENTY-NINTH DAY OF APRIL, A.D. 2014.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE NOT BEEN ASSESSED TO DATE.

5466900 8300


140532521


Jeffrey W. Bullock, Secretary of State


AUTHENT CATION: 1328067

DATE: 04-29-14

You may verify this certificate online at corp.delaware.gov/authver.shtml

Attachr Installation and S		

Tamela Compressor Station – Installation and Startup Schedule

The Tamela Compressor Station is an existing facility located in Doddridge County, WV, approximately 4.0 miles northwest of West Union, WV. Equipment is currently installed and operating per permit R13-3216A. The proposed new equipment and modifications are scheduled to be installed and operational upon permit issuance.

Attachment D. Regulatory Discussion	

Tamela Compressor Station – Regulatory Discussion

Federal Regulations

40 CFR Part 60 – Standards of Performance for New Stationary Sources

I. Subpart Kb - Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984.

<u>Applicability:</u> Subpart Kb applies to volatile organic liquid storage tanks with a capacity greater than or equal to 75 m³ (§60.110b(a)). Storage vessels with a design capacity less than 1,589.874 m³ do not apply to this subpart if they are used store condensate prior to custody transfer. The condensate and produced water storage tanks at the Tamela Compressor Station are 64 m³. The settler tank is 79 m³, but stores condensate prior to custody transfer. Therefore, Subpart Kb does not apply to the Tamela Compressor Station.

II. Subpart GG - Standards of Performance for Stationary Gas Turbines

<u>Applicability:</u> Subpart GG applies to all stationary gas turbines with a heat input at peak load equal to or greater than 10 million BTU per hour based on the lower heating value of the fuel (§60.330(a)). Since the microturbine generators at the Tamela Compressor Station have a heat input rating less than 10 million Btu per hour, Subpart GG does not apply.

III. Subpart KKK - Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plants for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011.

<u>Applicability:</u> Subpart KKK applies to facilities built or modified before August 23, 2011, so Subpart KKK will not apply as the Tamela Compressor Station was constructed after August 23, 2011.

IV. Subpart LLL - Standards of Performance for SO₂ Emissions from Onshore Natural Gas Processing for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011.

<u>Applicability:</u> Subpart LLL applies to facilities built or modified before August 23, 2011, so Subpart LLL will not apply as the Tamela Compressor Station was constructed after August 23, 2011.

V. Subpart JJJJ - Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

Applicability: Subpart JJJJ applies to rich burn engines that were ordered after June 12, 2006 and manufactured on or after July 1, 2007 for engines with maximum power

greater than or equal to 500 hp (§60.4230(a)(4)(i)). Thus, Subpart JJJJ applies to the Tamela Compressor Station as the compressor engines were installed after July 1, 2007 and manufactured after July 1, 2010.

VI. Subpart KKKK - Standards of Performance for Stationary Combustion Turbines

<u>Applicability:</u> Subpart KKKK applies to all stationary combustion turbines with a heat input at peak load equal to or greater than 10 million BTU per hour based on the higher heating value of the fuel (§60.4305(a)). Since the microturbine generators at the Tamela Compressor Station have a heat input rating less than 10 million Btu per hour, Subpart KKKK does not apply.

VII. Subpart OOOO - Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution for Which Construction, Modification or Reconstruction Commenced after August 23, 2011, and on or before September 18, 2015

<u>Applicability:</u> Subpart OOOO applies to reciprocating compressor facilities that were constructed, modified, or reconstructed after August 23, 2011 and on or before September 18, 2015 (§60.5365(c)). Tamela Compressor Station was not constructed during this time period, therefore Quad O does not apply.

VIII. Subpart OOOOa - Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution for Which Construction, Modification or Reconstruction Commenced after September 18, 2015

Applicability: Subpart OOOOa applies to reciprocating compressor facilities that were constructed, modified, or reconstructed after September 18, 2015 (§60.5365a(c)). Also, Subpart OOOOa applies to storage vessel affected facilities with individual tank emissions greater than 6 tons per year (§60.5365a(e)). Lastly, the collection of fugitive emissions components at a compressor station is an affected facility under this Subpart (§60.5365a(j)). Since the Tamela Compressor Station was built after September 18, 2015 and is a compressor station with reciprocating compressors, Subpart OOOOa does apply. The pneumatic devices that were installed at Tamela Compressor Station are air-actuated or electric and therefore exempt from the requirements of this Subpart. The storage tank affected facility applicability for the onsite storage tanks will be determined within the first 30 days of production, per Subpart OOOOa.

40 CFR Part 61 – National Emission Standards for Hazardous Air Pollutants

I. Subpart V – National Emission Standard for Equipment Leaks (Fugitive Emission Sources)

Applicability: Subpart V applies to components such as compressors, valves, and pumps that are intended to operate in volatile hazardous air pollutant (VHAP) service (§61.240(a)). VHAP service means that a component contains or contacts a fluid that is at least 10 percent by weight a VHAP. Subpart V does not apply to the Tamela

Compressor Station because none of the components have fluid (natural gas, water, or condensate) that is over 10 percent by weight of any VHAP.

40 CFR Part 63 – National Emission Standards for Hazardous Air Pollutants for Source Categories

I. Subpart HH – National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

Applicability: Subpart HH applies to oil and natural gas production facilities that are a major or area source of HAP emissions, and that process, upgrade, or store hydrocarbon liquids or natural gas prior to the transmission and storage source category (§63.760(a)). Subpart HH does apply to the Tamela Compressor Station, and because it is an area source of HAP emissions, the two (2) TEG dehydrators are applicable sources under Subpart HH (§63.760(b)(2)). However, actual benzene emissions from the dehydrators at the Tamela Compressor Station are less than 1 ton per year, so both dehydrators are exempt from all requirements except recordkeeping (§63.764(e)(1)(ii)).

II. Subpart HHH – National Emission Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities

<u>Applicability:</u> Subpart HHH applies to natural gas transmission and storage facilities that are a major source of HAP emissions (§63.1270(a)). Subpart HHH does not apply to the Tamela Compressor Station as it is not a major source of HAP emissions. Further, the Tamela Compressor Station is prior to the gas transmission and storage phase.

III. Subpart EEEE – National Emission Standards for Hazardous Air Pollutants: Organic Liquids Distribution (Non-Gasoline)

<u>Applicability:</u> Subpart EEEE applies to organic liquids distribution operations that are located at major source of HAP emissions (§63.2334(a)). Subpart EEEE does not apply to the Tamela Compressor Station as it is not a major source of HAP emissions.

IV. Subpart YYYY – National Emission Standards for Hazardous Air Pollutants for Stationary Combustion Turbines

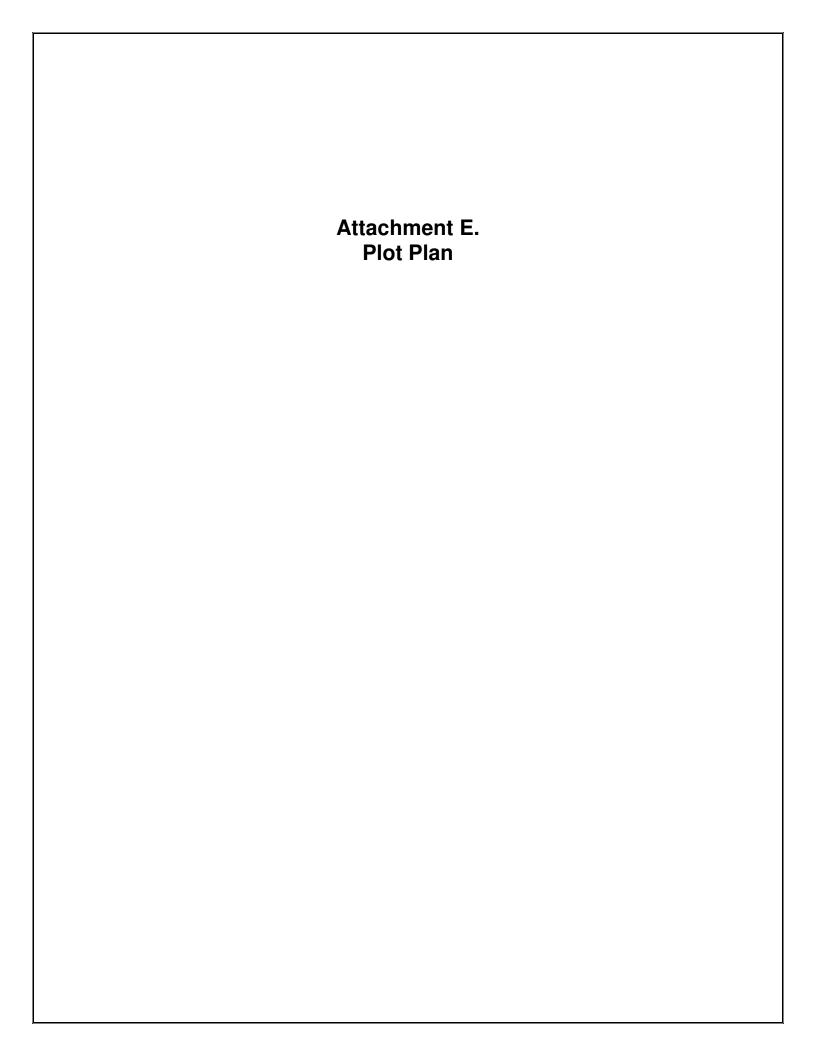
<u>Applicability:</u> Subpart YYYY applies to stationary combustion turbines located at major sources of HAP emissions (§63.6085(a)). Since the Tamela Compressor Station is not a major source of HAP emissions, Subpart YYYY does not apply.

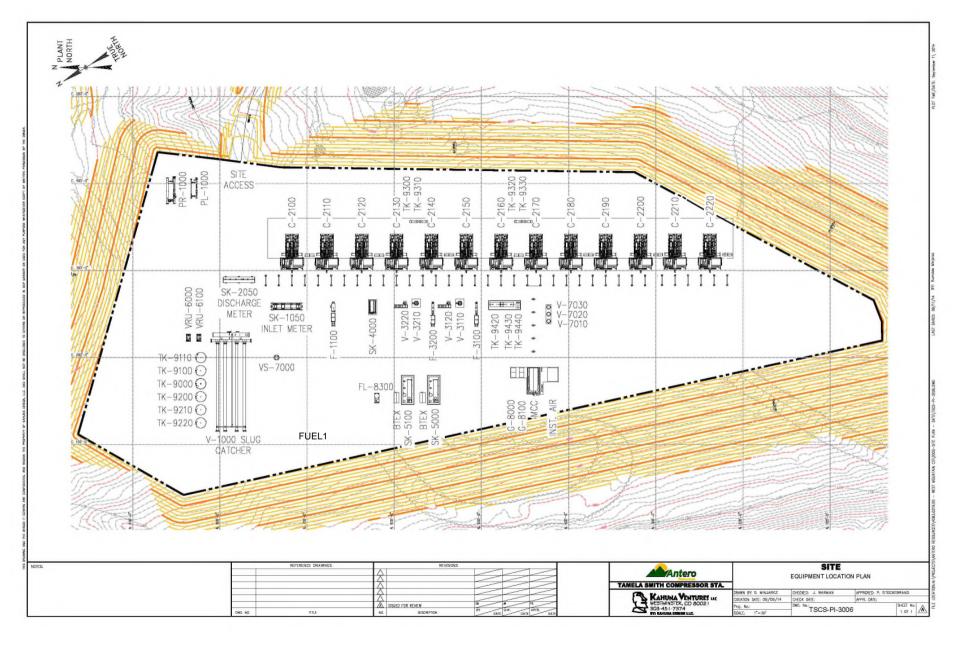
V. Subpart ZZZZ - National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

Applicability: Subpart ZZZZ applies to stationary RICE at a major or area source of HAP emissions (§63.6585). Subpart ZZZZ applies to the Tamela Compressor Station as the

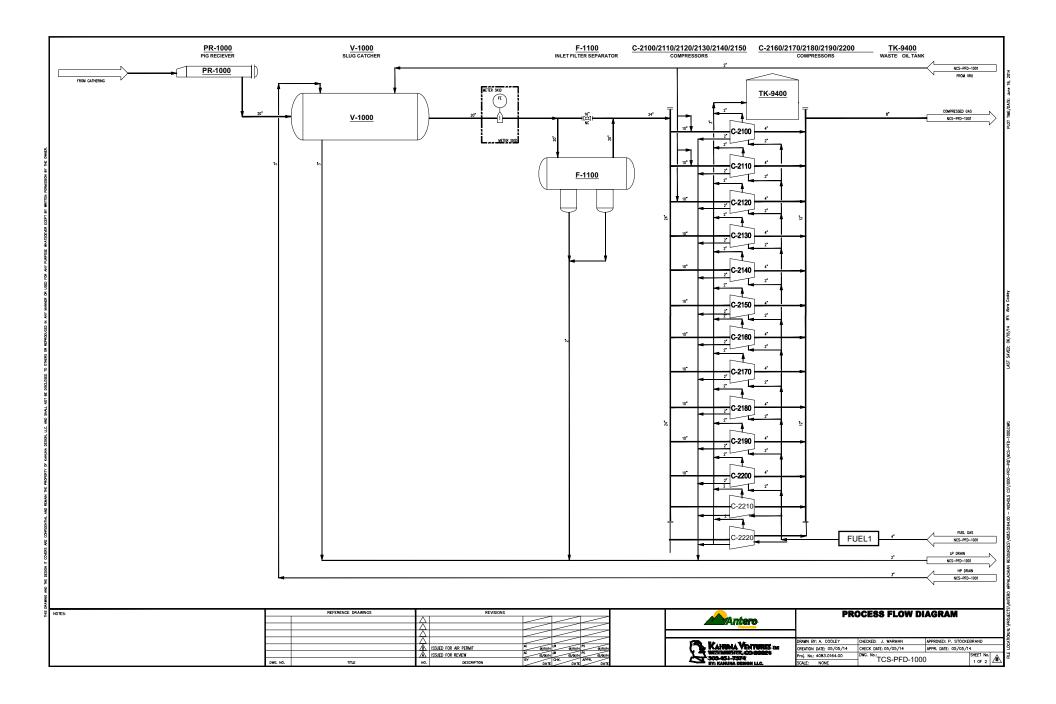
compressor engines are new RICE. The engines will meet Subpart ZZZZ by meeting 40 CFR Part 60, Subpart JJJJ as the Tamela Compressor Station is an area source of HAP emissions (§63.6590(c)(1)).

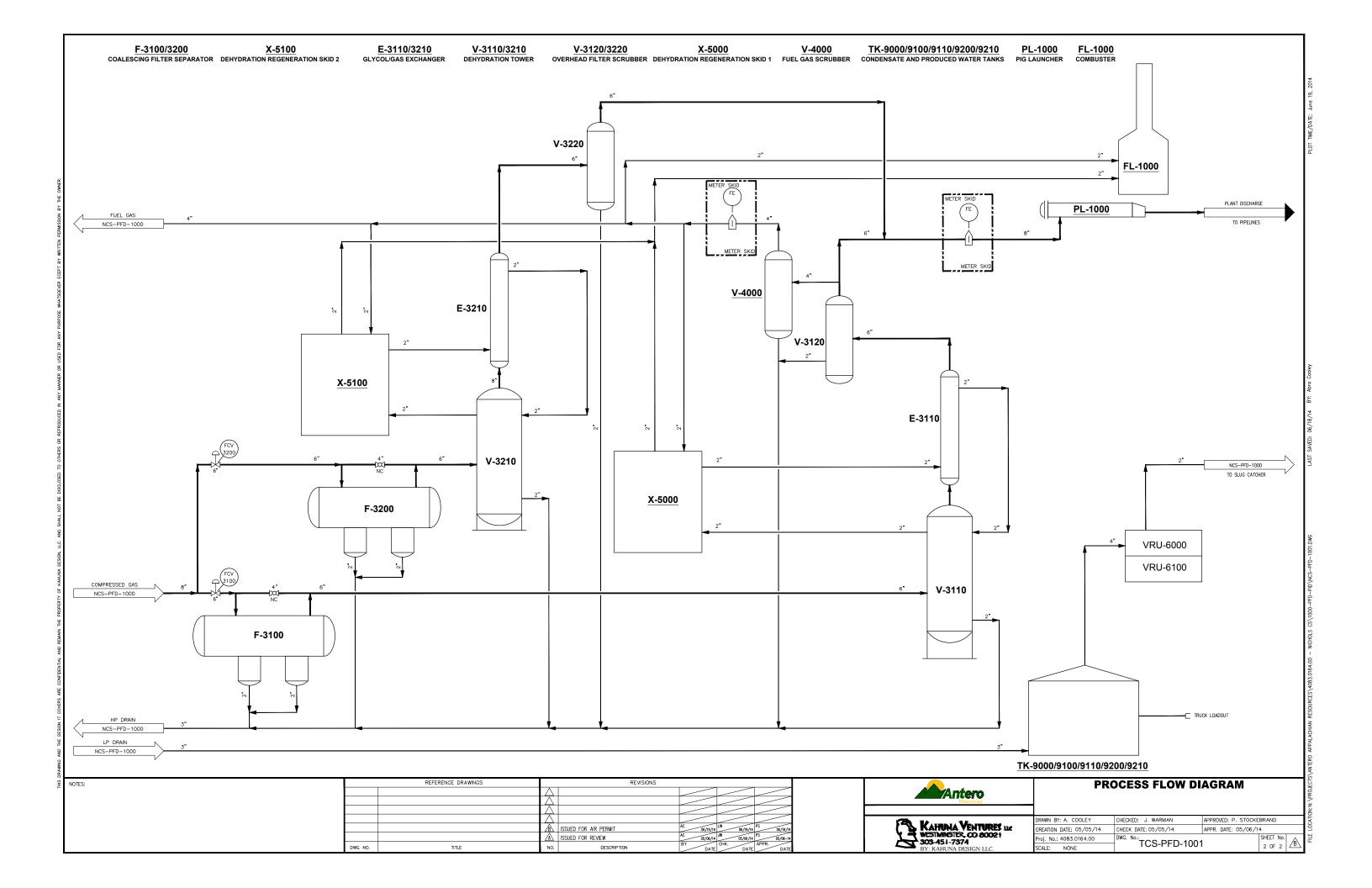
VI. Subpart DDDDD – National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters


<u>Applicability:</u> Subpart DDDDD applies to process heaters at a major source of HAP emissions (§63.7485). Subpart DDDDD does not apply to the Tamela Compressor Station as it is not a major source of HAP emissions.


West Virginia State Regulations

Title 45 Legislative Rule – Division of Environmental Protection, Office of Air Quality


The following Title 45 Legislative Rules will be applicable to the Tamela Compressor Station:


- I. 45CSR2 To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers
- II. 45CSR2A Testing, Monitoring, Recordkeeping and Reporting Requirements Under 45CSR2
- III. 45CSR4 To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors
- IV. 45CSR6 Control of Air Pollution from Combustion of Refuse
- V. 45CSR8 Ambient Air Quality Standards
- VI. 45CSR11 Prevention of Air Pollution Emergency Episodes
- VII. 45CSR13 Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation
- VIII. 45CSR16 Standards of Performance for New Stationary Sources Pursuant to 40 CFR, Part 60
- IX. 45CSR20 Good Engineering Practice as Applicable to Stack Heights
- X. 45CSR22 Air Quality Management Fee Program
- XI. 45CSR27 To Prevent and Control the Emissions of Toxic Air Pollutants
- XII. 45CSR33 Acid Rain Provisions and Permits
- XIII. 45CSR34 Emission Standards for Hazardous Air Pollutants for Source Categories Pursuant to 40 CFR, Part 63
- XIV. 45CSR38 Provisions for Determination of Compliance with Air Quality Management Rules
- XV. 45CSR42 Greenhouse Gas Emissions Inventory

Attachment F. Process Flow Diagram	

Attachment G. Process Description	

Tamela Compressor Station – Process Description

The Tamela Compressor Station is located in Doddridge County, West Virginia. Gas from surrounding pipelines enters the facility through one (1) receiver and associated slug catcher. From there, the gas is metered and routed through a filter separator. Any produced liquids from the scrubber or separator are sent to the 500 barrel settling tank (TK-9000). Gas from the filter separator is sent to thirteen (13) 1680 hp Waukesha compressor engines (C-2100 – C-2220). The thirteen (13) compressor engines are controlled with NSCR catalysts and air-fuel ratio controllers (1C – 11C, 15C & 16C). Fuel gas for the compressor engines will be treated prior to the engines by a fuel conditioning skid with a 0.5 MMBtu/hr heater (FUEL1) to allow more complete combustion. Produced fluids are routed to the settling tank and high pressure gas is sent to one of the two (2) TEG dehydrators.

Each TEG dehydrator (V-3110 & V-3210) contains a flash gas tank and 1.5 MMBtu/hr reboiler (F-3100 & F-3200). Each dehydrator has a design rate of 110 MMscf/day. Within the dehydrator unit, vent gas from the flash gas tank (V-3120 & V-3220) is routed to the reboiler (F-3100 & F-3200) and used as fuel. In the case where the flash tank gas cannot be used by the reboiler due to excess gas or the reboiler being offline, the gas will be sent to the VRUs (VRU-6000 and VRU-6100) via the storage tanks (TK-9000 –TK-9210) and thus controlled by 98%. Combustion emissions from each reboiler are routed to the atmosphere. The dehydrator still vents (V-3110 & V-3210) are controlled by a flare with at least 98% control efficiency (FL-1000). Produced fluids from the dehydrator are routed to the settling tank. The dry gas from the dehydration process is either routed to a fuel gas scrubber, metered, and routed to the compressors as fuel gas or metered and sent to the high pressure facility discharge pipeline.

All produced fluids enter one (1) 500 barrel settling tank (TK-9000) where the fluids settle out as either condensate or produced water. The produced water goes to two (2) 400 barrel produced water tanks (TK-9200 – TK-9210) and the condensate goes to two (2) 400 barrel condensate tanks (TK-9100 – TK-9110). Flashing only occurs at the settling tank as the fluids stabilize in the settling tank before going to the other storage tanks. All five (5) tanks are connected to a primary vapor recovery unit (VRU-6000) where tank vapors are collected and recycled back into the gas system right before the initial filter scrubber. A second vapor recovery unit (VRU-6100) is used as back-up to the primary vapor recovery unit. The produced fluids are trucked out via tanker trucks as needed (LDOUT1). The loading emissions are uncontrolled. The anticipated production is 150 barrels per day of condensate and 45 barrels per day of produced water.

Two (2) natural gas microturbine generators, each rated at 200 kWe, will supply power to the facility (G-8000 & G-8100). Typically, no more than 200 kWe will be operational at any given time and the remaining 200 kWe unit will be on standby. G-8000 and G-8100 may switch between primary and standby status depending on their need for maintenance. Emissions were calculated as though each generator operates 8760 hours per year as to not limit operations however. The fuel line for the generators will be heated by a small catalytic heater (CATHT1) with a burner rating of 24 Btu/hr.

There will also be small storage tanks located at the facility. Their ID number, description, and exact size are listed in the table below.

Fugitive emissions from component leaks and emissions from venting or blowdown events (VENT1) will also occur.

Tag Number	Description	Gallons
TK-9300 & TK-9320	Compressor Skid Oily Water Tanks	500 each
TK-9310 & TK-9330	Used Oil Tank	500 each
TK-9410	TEG Make-Up Tank	1,000
TK-9420	Compressor Coolant Tank	2,000
TK-9430	Engine Lube Oil Tank	2,000
TK-9440	Compressor Lube Oil Tank	2,000
TK-9400	Compressor Waste Oil Tank	4,200

Attachment H. Material Safety Data Sheets		

Material Safety Data Sheet (TRIETHYLENE GLYCOL (TEG))

SECTION 1 – IDENTIFICATION OF CHEMICAL PRODUCT

PRODUCT NAME:..... TRIETHYLENE GLYCOL (TEG)

EFFECTIVE DATE:..... October 1, 2007

CHEMICAL FAMILY: Glycol **FORMULA:** $C_6H_{14}O_4$ **CAS NUMBER:** 112-27-6

SECTION 2 – COMPOSITION / INFORMATION ON INGREDIENTS

HAZARDOUS INGREDIENT PERCENT CAS NUMBER PEL

TRIETHYLENE GLYCOL > 99 112-27-6 None Established by ACGIH or OSHA.

The criteria for listing components in the composition section are as follows: Carcinogens are listed when present at 0.1% or greater; components which are otherwise hazardous according to OSHA are listed when present at 1.0% or greater. Non-hazardous components may be listed at 3.0% or greater if not proprietary in nature. This is not intended to be complete compositional disclosure. Refer to section 14 for applicable states right to know and other regulatory information.

SECTION 3 – HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

APPEARANCE / ODOR: Clear Liquid / Mild Odor

SHORT TERM EXPOSURE: Inhalation: No adverse health effects expected from inhalation.

Ingestion: No adverse effects expected. **Skin Contact:** Prolonged exposure may cause skin irritation. **Eye Contact:** Splashing in eye causes irritation with transitory disturbances of corneal epithelium. However, these effects diminish and no permanent injury is expected. Vapors are non-irritating. **Chronic Exposure:** Possible skin irritation.

Aggravation of Pre-existing Conditions: No information found.

OSHA REGULATED: No

LISTED CARCINOGEN: NTP: No IARC MONOGRAPHS: No

POTENTIAL HEALTH EFFECTS

SKIN (DERMAL): Slight Irritant After Prolonged Contact

Material Safety Data Sheet (TRIETHYLENE GLYCOL (TEG))

OVER EXPOSURE EFFECTS: Inhalation: No adverse health effects expected from inhalation. **Ingestion:** No adverse effects expected. **Skin Contact:** Prolonged exposure may cause skin irritation. Eye Contact: Splashing in eye causes irritation with transitory disturbances of corneal epithelium. However, these effects diminish and no permanent injury is expected. Vapors are non-irritating. **Chronic Exposure:** Possible skin irritation. Aggravation of Pre-existing Conditions: No information found.

SECTION 4 – FIRST AID MEASURES

FIRST AID:

SKIN CONTACT: Remove contaminated clothing and shoes immediately. Wash affected area with soap or mild detergent and large amounts of water until no evidence of chemical remains (at least 15-20 minutes). Get medical attention immediately. EYE CONTACT: Flush eyes immediately with large amounts of water or normal saline solution, occasionally lifting upper and lower lids until no evidence of chemical remains (at least 15-20 minutes). Get medical attention immediately. INGESTION: Give large amounts of fresh water or milk immediately. Do not give anything by mouth if person is unconscious or otherwise unable to swallow. If vomiting occurs, keep head below hips to prevent aspiration. Treat symptomatically and supportively. Seek medical attention immediately. **INHALATION:** Remove from exposure area to fresh air immediately. If breathing has stopped, perform artificial resuscitation. Keep person warm and at rest. Treat symptomatically and supportively. Seek medical attention immediately. Qualified medical personnel should consider administering oxygen.

NOTE TO PHYSICIAN: Ethylene Glycol (EG) and diethylene glycol (DEG) intoxication may initially produce behavioral changes, drowsiness, vomiting, diarrhea, thirst, and convulsions. EG and DEG are nephrotoxic. End stages of poisoning may include renal damage or failure with acidosis. Supportive measures, supplemented with hemodialysis if indicated, may limit the progression and severity of toxic effects. Primary toxic effects of EG when swallowed are kidney damage and metabolic acidosis. This product may contain trace amounts of Ethylene Glycol (EG) or Diethylene Glycol (DEG).

SECTION 5 - FIRE FIGHTING MEASURES

FLASHPOINT:.... 350°F

Water fog or spray, Foam, Dry Powder, Carbon Dioxide (CO₂). **EXTINGUISHING MEDIA:**

DECOMPOSITION

PRODUCTS: From fire; Smoke, Carbon dioxide, & Carbon Monoxide

LOWER FLAME LIMIT:....< 0.9 HIGHER FLAME LIMIT:.....> 9

UNUSUAL FIRE AND

EXPLOSION HAZARDS:...... Toxic levels of carbon monoxide, carbon dioxide, irritation aldehydes

and ketones may be formed on burning. Heating in air may produce

irritating aldehydes, acids, and ketones.

FIRE FIGHTING

Material Safety Data Sheet (TRIETHYLENE GLYCOL (TEG))

EQUIPMENT: Fire fighters and others exposed to products of combustion should wear self-contained breathing apparatus. Equipment should be thoroughly decontaminated after use.

SECTION 6 – ACCIDENTAL RELEASE MEASURES

CHEMTEL EMERGENCY

NUMBER (24 Hour): 1-800-255-3924

SPILL: Ventilate area of leak or spill. Wear appropriate personal protective

equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Collect liquid in an appropriate container or absorb with an inert material (e.g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials,

such as saw dust. Do not flush to sewer!

RCRA STATUS: None

SECTION 7 – HANDLING AND STORAGE

HANDLE IN ACCORDANCE WITH GOOD INDUSTRIAL HYGIENE AND SAFETY PRACTICES. THESE PRACTICES INCLUDE AVOIDING UNNECESSARY EXPOSURE AND PROMPT REMOVAL OF MATERIAL FROM EYES, SKIN, AND CLOTHING.

HANDLING AND STORAGE: .. No special storage requirements. Do not store above 120°F.

PRECAUTIONARY

container after each use. Avoid prolonged or repeated contact with skin. Avoid contact with skin, eyes, and clothing. After handling this product, wash hands before eating, drinking, or smoking. If needed, take first aid action shown in Section 4.

SECTION 8 – EXPOSURE CONTROL / PERSONAL PROTECTION

GENERAL CONSIDERATIONS:

Consider the potential hazards of this material (see section 3), applicable exposure limits, job activities, and other substances in the work place when designing engineering controls and selecting personal protective equipment.

EYE PROTECTION:..... Chemical safety goggles meeting the specifications of OSHA 29CFR

1910.133 / ANSI Standard Z87.1 should be worn whenever there is the possibility of splashing or other contact with the eyes. Wear safety glasses meeting the specifications of OSHA 29CFR 1910.133 / ANSI

Standard Z87.1 where no contact with the eye is anticipated.

RESPIRATORY

exposure is unknown or exceeds permissible limits. A respiratory protection program that meets OSHA's 29 CFR 1910.134 or ANSI Z88.2 requirements must be followed whenever workplace conditions

warrant respirator use.

Use NIOSH / MSHA approved respiratory protection equipment when airborne exposure limits are exceeded (see below). Consult the respirator manufacturer to determine appropriate type of

Material Safety Data Sheet (TRIETHYLENE GLYCOL (TEG))

equipment for a given application. Observe respirator use limitations specified by NIOSH / MSHA or the manufacturer. Respiratory protection programs must comply with 29 CFR 1910.134. WARNING: Air-purifying respirators do not protect workers in oxygen-deficient atmospheres.

PROTECTIVE GLOVES:..... Wear impervious gloves

VENTILATION: A system of local and/or general exhaust is recommended to keep

employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most

recent edition, for details.

MECHANICAL EXHAUST: Desired in closed places

LOCAL EXHAUST: Recommended

VENTILATION NOTES: Provide natural or mechanical ventilation to control exposure levels below Airborne exposure limits (see below). The use of local mechanical exhaust ventilation is preferred at sources of air contamination such as open process equipment. Consult NFPA Standard 91 for design of exhaust systems.

THRESHOLD LIMIT VALUE: . None Established

PROTECTIVE EQUIPMENT:... HMIS PERSONAL PROTECTION: C: Safety Glasses, Gloves, Apron The user should read and understand all instructions and limitations supplied with the equipment since protection is usually provided for a limited time or under certain circumstances.

SECTION 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE / ODOR: Clear Liquid / Mild Odor

SOLUBILITY IN WATER: Complete

SECTION 10 – STABILITY AND REACTIVITY

STABILITY: Stable

HAZARDOUS

POLYMERIZATION: Will Not Occur

POLYMERIZATION AVOID:... None

INCOMPATIBILITY: Explosive decomposition may occur if combined with strong acids or

strong bases and subjected to elevated temperatures. Therefore, avoid strong acids and strong bases at elevated temperatures. Avoid

contamination with strong oxidizing agents and materials reactive with

hydroxyl compounds. Avoid burning or heating in air. This may

produce irritating aldehydes, acids, and ketones.

CONDITIONS TO AVOID:...... Excessive heat. Will ignite in air at 700°F

Material Safety Data Sheet (TRIETHYLENE GLYCOL (TEG))

SECTION 11 – TOXICOLOGICAL INFORMATION

EYE EFFECTS:

The eye irritation hazard is based on data from information supplied by raw material(s) supplier(s).

SKIN EFFECTS:

The skin irritation hazard is based on data from information supplied by raw material(s) supplier(s).

ACUTE ORAL EFFECTS:

The acute oral toxicity is based on data from information supplied by raw material(s) supplier(s).

ACUTE INHALATION EFFECTS:

The acute respiratory toxicity is based on data from information supplied by raw material(s) supplier(s).

SECTION 12 - ECOLOGICAL INFORMATION

Data from laboratory studies and from scientific literature is noted below if available.

SECTION 13 DISPOSAL CONSIDERATIONS

WASTE DISPOSAL: Treatment, storage, transportation and disposal must be in accordance with Federal, State/Provincial and Local Regulations. Regulations may vary in different locations. Characterization and compliance with applicable laws are the responsibility solely of the generator. Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste disposal facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

SECTION 14- TRANSPORTATION INFORMATION

The data provided in this section is for information only. The description shown may not apply to all shipping situations. Consult 49CFR, or appropriate regulations to properly classify your shipment for transportation.

PROPER SHIPPING NAME:..... DOT NON-REGULATED - TRIETHYLENE GLYCOL (TEG)

REPORTABLE QUANTITY:..... None

HAZARD CLASS AND LABEL: NON-REGULATED

UN NUMBER: None NA NUMBER: None

PACKAGING SIZE:..... Pail, Drum & Bulk

SECTION 15 - REGULATORY INFORMATION

SARA 311 CATEGORIES:

EPA ACUTE:..... Yes (Eyes)

Material Safety Data Sheet (TRIETHYLENE GLYCOL (TEG))

EPA CHRONIC:
Of Theodoria minimum 100
CERCLA RQ VALUE: None
SARA TPQ: None
SARA RQ:None
EPA HAZARD WASTE #: None
CLEAN AIR: NA
CLEAN WATER:NA
SARA SECTION 313: No
NFPA HEALTH:2
NFPA FLAMMABILITY: 1
NFPA REACTIVITY: 0
DEA Chemical Trafficking Act: No
TSCA STATUS: All ingredients in this product are on the TSCA Inventory List.

SECTION 16 - ADDITIONAL INFORMATION

FOOT NOTES: NA - NOT APPLICABLE ND - NO DATA AVAILABLE > = GREATER THAN < = LESS THAN

Prepared according to the OSHA Hazard Communication Standard (29 CFR 1910.1200) and the ANSI MSDS Standard (Z400.1) by the Company Health and Risk Assessment Unit, PO Box 1519, Gretna, LA 70054-1519.

REVISION STATEMENT: Changes have been made throughout this Material Safety Data Sheet. Please read the entire document.

DISCLAIMER:

Although the information and recommendations set forth herein (hereinafter "Information") are presented in good faith and believed to be correct as of the date hereof, the Company makes no representations as to the completeness or accuracy thereof. Information is supplied upon the condition that the persons receiving this MSDS will make their own determination as to its suitability for their intended purposes prior to use. Since the product is within the exclusive control of the user, it is the user's obligation to determine the conditions of safe use of this product. Such conditions should comply with all Federal Regulations concerning the Product. It must be recognized that the physical and chemical properties of any product may not be fully understood and that new, possibly hazardous products may arise from reactions between chemicals. The information given in this data sheet is based on our present knowledge and shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship. REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED. MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS.

Material Name: Produced Water US GHS

Produced Brine Water, Brine, Brine Water, Formation Water SYNONYMS:

* * * Section 1 - PRODUCT AND COMPANY IDENTIFICATION * * *

Produced Water (800) 878-1373 PRODUCT NAME: **EMERGENCY PHONE:** Mixture (800) 878-1373 PRODUCT CODES: AFTER HOURS:

PRODUCER: Antero Resources

1615 Wynkoop Street (800) 424-9300 ADDRESS: **CHEMTREC PHONE:**

Denver, Colorado 80202

* * * Section 2 - HAZARDS IDENTIFICATION * * *

GHS Classification:

Eye Irritant – Category 2A.

GHS LABEL ELEMENTS Symbol(s)

Signal Word

Warning

Hazard Statements

Causes serious eye irritation

Precautionary Statements

Prevention

Wear protective gloves/protective clothing/eye protection/face protection.

Response

If on SKIN (or hair): Rinse skin with water / shower. Remove / Take off all contaminated clothing immediately.

Material Name: Produced Water US GHS

If in EYES: Rinse cautiously with water for at least fifteen (15) minutes. Remove Contact Lenses, if present and easy to do. Continue rinsing.

If EYE irritation persists, get medical advice / attention.

Storage

Store in a secure area.

Disposal

Dispose of contents/containers in accordance with regulations.

* * * Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS#	Component	Percent
7732-18-5	Water	80
7647-14-5	Sodium Chloride	20

Because brine water is a natural product, composition can vary greatly.

* * * Section 4 - FIRST AID MEASURES * * *

First Aid: Eyes

Flush eyes with clean running water for at least fifteen (15) minutes. If irritation or redness develops from exposure, following flushing, seek medical attention.

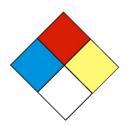
First Aid: Skin

First aid is not required, normally. However, it is a good practice to wash any chemical from the skin.

First Aid: Ingestion (Swallowing)

First aid is not required, normally. If spontaneous vomiting occurs, lean the victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. If symptoms develop, seek medical attention.

First Aid: Inhalation (Breathing)


Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

Material Name: Produced Water US GHS

Most important symptoms and effects

None known or anticipated.

* * * Section 5 - FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: 1 Flammability: 0 Instability: 0 (0=Minimal, 1=Slight, 2=Moderate, 3=Serious, 4=Severe)

General Fire Hazards

No fire hazards are expected.

General Fire Hazards

No unusual fire or explosion hazards are expected. If container is not properly cooled, it can rupture in the heat of a fire.

Extinguishing Media

The material is non-flammable. Use extinguishing agent suitable for the type of surrounding fire.

Unsuitable Extinguishing Media

None

Fire Fighting Equipment / Instructions

Small fires in the beginning stage may typically be extinguished using handheld portable fire extinguishers and other firefighting equipment. Isolate area around container involved in fire and keep unauthorized personnel out. Stop spill/release if it can be done safely. Move undamaged containers from the immediate hazard area if it can be done safely. Cool equipment exposed to fire with water, if it can be done safely.

Hazardous Combustion Products

None Anticipated. See Section 9 for Flammable Properties including Flash Point and Flammable (Explosive) Limits

Material Name: Produced Water US GHS

* * * Section 6 - ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Contain and stop the source of the spill, if safe to do so.

Materials and Methods for Clean-Up

Notify relevant authorities in accordance with all applicable regulations. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal. If spilled on water remove with appropriate methods (e.g. skimming, booms or absorbents). In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations.

Recommended measures are based on the most likely spillage scenarios of this material. However, local conditions and regulations may influence or limit the choice of appropriate actions to be taken. See Section 13 for information on appropriate disposal.

Emergency Measures

The material is not considered hazardous. Nevertheless, evacuate nonessential personnel and secure the area. Stay upwind and uphill, if possible.

Personal Precautions and Protective Equipment

Stay upwind and away from the spill/release. Avoid direct contact with the material. For large spillages, notify persons downstream of the spill/release. Isolate the immediate hazard area and keep unauthorized personnel out. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

Environmental Precautions

Protect bodies of water by diking or absorbents, if possible. Do not flush down sewer or drainage systems. Use water sparingly to minimize environmental contamination and reduce disposal requirements. If a spill occurs on water, notify appropriate authorities and advise shipping of any hazard.

Prevention of Secondary Hazards

None

Material Name: Produced Water US GHS

* * * Section 7 - HANDLING AND STORAGE * * *

Handling Procedures

Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment (see section 8).

Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29 CFR 1910.146. Do not wear contaminated clothing or shoes.

Storage Procedures

Keep container(s) tightly closed and properly labeled. Use and store this material in cool, dry, well ventilated areas. Store only in approved containers. Keep away from any incompatible material (see Section 10). Protect container(s) against physical damage.

Incompatibilities

Keep away from excessive heat to prevent rupture of container.

* * * Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Water (7732-18-5)

ACGIH: Not listed

Sodium Chloride (7647-14-5)

ACGIH: Not listed

Engineering Measures

If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits, additional engineering controls may be required.

Personal Protective Equipment: Respiratory

Emergencies or conditions that could result in significant airborne exposures may require the use of NIOSH approved respiratory protection. An industrial hygienist or other appropriate health and safety professional should be consulted for specific guidance under these situations.

A respiratory protection program that meets or is equivalent to OSHA 29 CFR

Material Name: Produced Water US GHS

1910.134 and ANSI Z88.2 should be followed whenever workplace conditions warrant a respirator's use.

Personal Protective Equipment: Skin and Hands

The use of skin protection is not normally required; however, good industrial hygiene practice suggests the use of gloves or other appropriate skin protection whenever working with chemicals.

Personal Protective Equipment: Eyes

Safety glasses or goggles that meet or exceed ANSI Z-87.1 are recommended where there is a possibility of splashing or spraying.

Hygiene Measures

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Promptly remove contaminated clothing and launder before reuse.

* * * Section 9 - PHYSICAL AND CHEMICAL PROPERTIES * * *

Appearance:	Clear to Brown	Odor:	Salty
Physical State:	Liquid	pH:	ND
Vapor Pressure:	< 0.36 psia @ 70°F / 21.1°C	Vapor Density:	> 1
Boiling Point:	212°F / 100°C	Melting Point:	2.4°F / -16.5°C
Solubility (H2O):	Complete	Specific Gravity:	1.1 @ 68°F / 20°C
Evaporation Rate:	Variable	VOC:	ND
Octanol / H2O Coeff.:	ND	Flash Point:	ND
Flash Point Method:	ND		
Lower Flammability Limit:	ND	Upper Flammability Limit:	ND
(LFL):		(UFL):	
Auto Ignition:	ND	Burning Rate:	ND

Material Name: Produced Water US GHS

* * * Section 10 - CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will react with alkali and alkaline metals to form flammable hydrogen gas.

Conditions to Avoid

Avoid contact with alkali metals (lithium, sodium, potassium), alkaline metals (beryllium, magnesium, calcium, strontium, and barium), and metallic hydrides like lithium aluminum hydride.

Hazardous Decomposition Products

Not anticipated under normal conditions of use.

Hazardous Polymerization

Not known to occur.

* * * Section 11 - TOXICOLOGICAL INFORMATION * * *

Acute Toxicity

A: General Product Information

Unlikely to be harmful.

B. Component Analysis - D50/LC50

Water (7732-18-5)

Oral LD50 Rat 90 g/kg

Sodium Chloride (7647-14-5)

Oral LD50 Rat 3 g/kg

Potential Health Effects: Skin Corrosion Property / Stimulativeness

May cause skin irritation with prolonged or repeated contact. Not expected to be a skin sensitizer.

Potential Health Effects: Eye Critical Damage / Stimulativeness

Contact with eyes may cause moderate irritation.

Page 7 of 11

Material Name: Produced Water US GHS

Potential Health Effects: Ingestion

Ingestion may result in nausea, vomiting, diarrhea, abdominal cramps, and dehydration (thirst).

Potential Health Effects: Inhalation

No information available on the mixture. However, none of the components have been classified for respiratory sensitization (or are below the concentration threshold for classification).

Generative Cell Mutagenicity

Not expected to cause genetic effects.

Carcinogenicity

General Product Information

Not expected to cause cancer. This substance is not listed as a carcinogen by IARC. NTP or OSHA.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product is not reported to have any specific target organ general toxicity single exposure effects.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ general toxicity multiple exposure effects.

Aspiration Respiratory Organs Hazard

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

Material Name: Produced Water US GHS

Persistence / Degradability

No information available

Bioaccumulation

No information available

Mobility in Soil

No information available

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Recover or recycle if possible. It is the responsibility of the generator to determine the toxicity and physical properties of the material generated so as to properly classify the waste and ensure disposal methods comply with applicable regulations.

This material, if discarded as produced, is not a RCRA "listed" hazardous waste, and is not believed to exhibit characteristics of hazardous waste. Consult state and local regulations regarding the proper disposal of this material. Do not dispose of brine water by draining onto the ground. This will result in soil and groundwater contamination. Waste arising from spillage or tank cleaning should be disposed of in accordance with applicable regulations.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate should not be considered a RCRA hazardous waste but must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a qualified drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Description: Not Regulated

UN #: Not Regulated

Page 9 of 11

Material Name: Produced Water US GHS

* * * Section 15 - REGULATORY INFORMATION * * *

CERCLA/SARA – Section 302 Extremely Hazardous Substances and TPQs (in pounds):

This material does not contain any chemicals subject to the reporting requirements of SARA 302 and 40 CFR 372.

CERCLA/SARA – Section 313 and 40 CFR 372):

This material does not contain any chemicals subject to the reporting requirements of SARA 313 and 40 CFR 372.

EPA (CERCLA) Reportable Quantity (in pounds):

This material does not contain any chemicals with CERCLA Reportable Quantities.

State Regulations

Component Analysis

The following components appear on one or more of the following state hazardous substances list.

California Proposition 65:

This material does not contain any chemicals that are known to the State of California to cause cancer, birth defects or other reproductive harm at concentrations that trigger the warning requirements of California Proposition 65.

National Chemical Inventories:

All components are either listed on the US TSCA Inventory, or are not regulated under TSCA.

U.S. Export control classification Number: EAR99.

* * * Section 16 - OTHER INFORMATION * * *

NFPA® Hazard Rating

Health 1
Fire 0
Reactivity0

HMIS® Hazard Rating Health 1 Slight

Fire 0 Minimal Physical 0 Minimal

Material Name: Produced Water US GHS

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 28, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Material Name: Natural Gas Condensate US GHS

SYNONYMS: Drips; Condensate; Field Condensate; Gas Well Condensate; High

Pressure Inlet Liquids; Lease Condensate; Natural Gas Liquids; Pipeline

Liquids

* * * Section 1 - PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME: Natural Gas Condensate EMERGENCY PHONE: (800) 878-1373
PRODUCT CODES: 64741-47-5 AFTER HOURS: (800) 878-1373

PRODUCER: Antero Resources

ADDRESS: 1615 Wynkoop Street CHEMTREC PHONE: (800) 424-9300

Denver, Colorado 80202

* * * Section 2 - HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Liquids – Category 2.

Acute Toxicity Inhalation - Category 3

Germ Cell Mutagenicity - Category 1B

Carcinogenicity - Category 1A

Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 3

Specific Target Organ Systemic Toxicity (STOT) - Repeat Exposure Category 1

Aspiration Toxicity - Category 1

Toxic to the Aquatic Environment Acute – Category 3

GHS LABEL ELEMENTS

Symbol(s)

Signal Word

Danger

Material Name: Natural Gas Condensate US GHS

Hazard Statements

Highly flammable liquid and vapor.

Toxic if inhaled.

May cause genetic defects.

May cause cancer.

May cause respiratory irritation.

May cause drowsiness or dizziness.

May cause damage to organs (liver, kidneys, blood, nervous system, and skin) through prolonged or repeated exposure.

May be fatal if swallowed and enters airways.

Harmful to aquatic life.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Keep container tightly closed.

Ground/bond container and receiving equipment.

Use explosion-proof electrical/ventilating/lighting equipment.

Use only non-sparking tools.

Take precautionary measures against static discharge.

Wear protective gloves/protective clothing/eye protection/face protection.

Do not breathe gas/mist/vapors/spray.

Do not handle until all safety precautions have been read and understood.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Use only outdoors or in a well-ventilated area.

Avoid release to the environment.

Response

If on SKIN (or hair): Wash with plenty of soap and water. Remove / Take off all contaminated clothing immediately. Rinse skin with water/shower.

If INHALED: Remove victim to fresh air and keep comfortable for breathing. Call a poison center/doctor if the victim feels unwell.

If SWALLOWED: Immediately call a poison center or doctor / physician. Do not Induce vomiting.

If exposed or concerned: Get medical advice/attention.

In case of fire: Use water spray, fog or fire-fighting foam.

Storage

Store in a well-ventilated place. Keep cool.

Store in a secure area.

Material Name: Natural Gas Condensate US GHS

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

* * * Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS#	Component	Percent
111-65-9	Octanes	25 - 95
142-82-5	Heptanes	25 - 95
110-54-3	Hexanes as n-Hexane	25 - 95
109-66-0	Pentanes as n-Pentane	5 - 70
106-97-8	N-butane	0 - 45
74-98-6	Propane	0 - 15
78-84-0	Ethane	0 - 5
71-43-2	Benzene	< 1
108-88-3	Toluene	< 1
1330-20-7	m-,o-,p-Xylene	< 1

Because natural gas condensate is a natural product, composition can vary greatly.

* * * Section 4 - FIRST AID MEASURES * * *

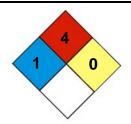
First Aid: Eyes

Flush eyes with clean running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or waterless hand cleanser. Obtain medical attention if irritation or redness develops. Wash contaminated clothing before reuse.

First Aid: Ingestion (swallowing)


DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean the victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated.

Material Name: Natural Gas Condensate US GHS

First Aid: Inhalation (breathing)

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* * * Section 5 – FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: 1 **Flammability:** 4 **Instability:** 0 (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Extremely flammable. Vapors may be ignited rapidly when exposed to heat, spark, open flame, or other source of ignition (e.g., static electricity, pilot lights, mechanical / electrical equipment, and electronic devices such as cell phones, computers, calculators, and pagers which have not been certified as intrinsically safe). Flammable vapors can burn in the open or explode in confined spaces. Vapors are heavier than air, and may travel distances to an ignition source and flash back. Runoff to sewer systems may cause fire or explosion.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, firefighting foam, water spray, carbon dioxide (CO_2), or other gaseous extinguishing agents. Use caution when applying CO_2 in confined spaces.

LARGE FIRES: Water spray, fog or fire-fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

Unsuitable Extinguishing Media

None

Material Name: Natural Gas Condensate US GHS

Fire Fighting Equipment / Instructions

Small fires in the beginning stage may typically be extinguished using handheld portable fire extinguishers and other firefighting equipment. Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied firefighting foam.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full face piece and full protective clothing.

* * * Section 6 - ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Contain and stop the source of the spill, if safe to do so.

Materials and Methods for Clean-Up

Notify relevant authorities in accordance with all applicable regulations. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal. If spilled on water remove with appropriate methods (e.g. skimming, booms or absorbents). In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations.

Recommended measures are based on the most likely spillage scenarios for this material; however local conditions and regulations may influence or limit the choice of appropriate actions to be taken.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8). Extremely flammable. Spillages of liquid product will create a fire hazard and may form an explosive atmosphere. Keep all sources of

Material Name: Natural Gas Condensate

US GHS

ignition and hot metal surfaces away from spill/release if safe to do so.

The use of explosion-proof electrical equipment is recommended. Stay upwind and away from spill/release. Avoid direct contact with material. For large spillages, notify persons downwind of the spill/release, isolate immediate hazard area and keep unauthorized personnel out. Wear appropriate protective equipment, including respiratory protection, as conditions warrant (see Section 8). See Sections 2 and 7 for additional information on hazards and precautionary measures.

Environmental Precautions

Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of firefighting foam may be useful in certain situations to reduce vapors. If spill occurs on water notify appropriate authorities and advise shipping of any hazard. Spills into or upon navigable waters, the contiguous zone, or adjoining shorelines that cause a sheen or discoloration on the surface of the water, may require notification of the National Response Center (phone number 800-424-8802).

Prevention of Secondary Hazards

None

* * * Section 7 - HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use non-sparking tools. Use only outdoors or in well ventilated areas. Wear protective gloves / clothing and eye / face protection. Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment (see section 8).

Storage Procedures

Store only in approved containers. Bond and ground containers. Keep away from flame, sparks, excessive temperatures and open flames. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks."

Material Name: Natural Gas Condensate US GHS

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

* * * Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Octanes (111-65-9)

ACGIH: 300 ppm TWA (listed under Octane, all isomers)

Heptanes (142-82-5)

ACGIH: 400 ppm TWA (listed under n-Heptane)

n-Hexane (110-54-3)

ACGIH: 20 ppm TWA (listed under n-Hexane)

n-Pentane (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

n-Butane (106-97-8)

ACGIH: 600 ppm TWA (listed under n-Butane)

Propane (74-98-6)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases C1-C4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases C1-C4)

Benzene (71-43-2)

ACGIH: 0.5 ppm (TWA); NIOSH: 0.1 ppm (TWA); OSHA 1 ppm (TWA)

Toluene (108-88-3)

ACGIH: 20 ppm TWA (listed under Toluene)

m-, o-, p-Xylene (1330-20-7)

ACGIH: 100 ppm TWA (listed under Xylene o, m & p isomers)

Material Name: Natural Gas Condensate US GHS

Engineering Measures

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH-approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere (oxygen content less than 19.5 percent). A respiratory program that meets or is equivalent to OSHA 29 CFR 1910.134 and ANSI Z88.2 should be followed whenever workplace conditions warrant the use of a respirator.

If benzene concentrations equal or exceed applicable exposure limits, OSHA requirements for personal protective equipment, exposure monitoring, and training may apply (29 CFR 1910.1028 – Benzene).

CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Gloves constructed of nitrile or neoprene are recommended.

Personal Protective Equipment: Eyes

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying. Eye protection that meets or exceeds ANSI Z.87.1 is recommended. Depending on conditions of use, a face shield may be necessary.

Personal Protective Equipment: Skin and Body

Chemical protective clothing such as of E.I. DuPont TyChem®, Saranex® or equivalent recommended based on degree of exposure. Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

Hygiene Measures

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use gasoline or solvents (naphtha, kerosene, etc.) for washing this product from

Material Name: Natural Gas Condensate

US GHS

exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

* * * Section 9 - PHYSICAL AND CHEMICAL PROPERTIES * * *

Appearance: Colorless to straw yellow **Odor:** Aromatic, Gasoline;

Physical State: Liquid pH: ND

Vapor Pressure: 110 - 200 psia (Reid VP) Vapor Density (air = 1): > 1 @ $100^{\circ}\text{F}/37.8^{\circ}\text{C}$

Boiling Point: Approx. 85 - 437°F **Melting Point:** ND

(39 – 200°C)

Solubility (H2O): Insoluble to slightly Specific Gravity: AP 0.62-0.76 (varies)

soluble

Evaporation Rate:HighVOC:NDOctanol / H2O Coeff.:NDFlash Point:-40°F

-40°C

Flash Point Method: Tag Closed Cup (TCC)

Lower Flammability Limit: ND (NFPA Gasoline 1.4) Upper Flammability Limit: ND (NFPA Gasoline 7.6)

(LFL): (UFL):

Auto Ignition: AP 480°F (250°C) Burning Rate: ND

* * * Section 10 - CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from ignition sources and high temperatures.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Material Name: Natural Gas Condensate US GHS

* * * Section 11 - TOXICOLOGICAL INFORMATION * * *

Acute Toxicity

A: General Product Information

Harmful if swallowed.

B. Component Analysis - LD50/LC50

Octanes (111-65-9)

Inhalation LC50 rat = 118,000 mg/m3 / 4H

Heptanes (142-82-5)

Inhalation LC50 rat = 103,000 mg/m3 / 4H

Hexanes as n-Hexane (110-53-3)

Inhalation LC50 rat = 48,000 ppm / 4H

Pentanes as n-Pentane (109-66-0)

Inhalation LC50 rat = 364,000 mg/m3 / 4H

Butanes as n-Butane (106-97-8)

Inhalation LC50 rat 658,000 mg/l / 4H

Propane (74-98-6)

Inhalation LC50 Rat > 800,000 ppm / 0.25H

Ethane (74-84-0)

Inhalation LC50 Rat 658,000 mg/l / 4H

Benzene (71-43-2)

Inhalation LC50 Rat 44,700 mg/m3 /

Toluene (108-88-3)

Inhalation LD50 Rat 12/5 mg/l / 4H

m-, o-, p-Xylene (1330-20-7)

Inhalation LC50 Rat 5000 ppm / 4H

Potential Health Effects: Skin Corrosion Property / Stimulativeness

May cause skin irritation with prolonged or repeated contact. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are exposed repeatedly.

Material Name: Natural Gas Condensate US GHS

Potential Health Effects: Eye Critical Damage / Stimulativeness

Contact with eyes may cause moderate irritation.

Potential Health Effects: Ingestion (swallowing)

Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and diarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

Potential Health Effects: Inhalation (breathing)

Excessive exposure may cause irritations to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death.

Respiratory Organs Sensitization / Skin Sensitization

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

May cause genetic defects. Some crude oils and crude oil fractions have been positive in mutagenicity studies.

Carcinogenicity

A: General Product Information

May cause cancer.

This product contains benzene, although at very low concentrations. Human health studies indicate that prolonged and/or repeated overexposure to benzene may cause damage to the blood-forming system (particularly bone marrow), and serious blood disorders such as aplastic anemia and leukemia. Benzene is listed as a human carcinogen by the NTP, IARC, OSHA and ACGIH.

Exposure to light hydrocarbons in the same boiling range as this product have been associated in animal studies with effects to the central nervous system, peripheral nervous system, liver, and kidneys. The significance of these animal models to predict similar human response is uncertain. Observing good work practices and personal hygiene procedures (Sections 7 and 8) can minimize potential risks to humans.

B: Component Carcinogenicity

Benzene (71-43-2)

ACGIH: A1 - Confirmed Human Carcinogen

OSHA: 5 ppm STEL (Cancer hazard, Flammable, See 29 CFR 1910.1028,

15 min); 0.5 ppm Action Level; 1 ppm TWA

NIOSH: potential occupational carcinogen

NTP: Known Human Carcinogen (Select Carcinogen)

Page 11 of 17

Material Name: Natural Gas Condensate US GHS

IARC: Monograph 100F [in preparation]; Supplement 7 [1987]; Monograph

29 [1982] (Group 1 (carcinogenic to humans))

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product is not reported to have any specific target organ general toxicity single exposure effects.

Specified Target Organ General Toxicity: Repeated Exposure

May cause damage to organs (liver, kidneys, blood, nervous system and skin) through prolonged or repeated exposure.

Aspiration Respiratory Organs Hazard

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity Benzene (71-43-2)

Test and Species	Conditions
96 Hr LC50 Pimephales promelas	10.7-14.7 mg/L [flow-through]
96 Hr LC50 Oncorhynchus mykiss	5.3 mg/L [flow-through]
96 Hr LC50 Lepomis macrochirus	22.49 mg/L [static]
96 Hr LC50 Poecilia reticulata	28.6 mg/L [static]
96 Hr LC50 Pimephales promelas	22330-41160 µg/L [static]
96 Hr LC50 Lepomis macrochirus	70000-142000 μg/L [static]
72 Hr EC50 Pseudokirchneriella subcapitata	29 mg/L
48 Hr EC50 Daphnia magna	8.76 - 15.6 mg/L [static]
48 Hr EC50 Daphnia magna	10 mg/L

Material Name: Natural Gas Condensate US GHS

Natural Gas condensates (68919-39-1)

Test and Species

96 Hr LC50 Alburnus alburnus

96 Hr LC50 Cyprinodon variegatus

72 Hr EC50 Pseudokirchneriella

24 b applieds

56 mg/L

subcapitata 30 mg/L 24 Hr EC50 Daphnia magna 170 mg/L

Persistence / Degradability

No information available

Bioaccumulation

No information available

Mobility in Soil

No information available

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Recover or recycle if possible. It is the responsibility of the generator to determine the toxicity and physical properties of the material generated so as to properly classify the waste and ensure disposal methods comply with applicable regulations. This material, if discarded should be fully characterized for ignitability (D001), reactivity (D003) and benzene (D018) prior to disposal (40 CFR261). Use which results in chemical or physical change or contamination may subject it to regulation as a hazardous waste. Along with properly characterizing all waste materials, consult state and local regulations regarding the proper disposal of this material. Do not dispose of by draining onto the ground. This will result in soil and groundwater contamination. Waste arising from spillage or tank cleaning should be disposed of in accordance with applicable regulations.

Container contents should be completely used and containers should be emptied prior to discard. Container rinsate could be considered a RCRA hazardous waste and must be disposed of with care and in full compliance with federal, state and local regulations. Larger empty containers, such as drums, should be returned to the distributor or to a qualified drum reconditioner. To assure proper disposal of smaller empty containers, consult with state and local regulations and disposal authorities.

Material Name: Natural Gas Condensate US GHS

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Petroleum Products, n.o.s. (condensate)

UN #: 1268 Hazard Class: 3

Additional Info.: Dependent on the product's properties, the shipper may also elect to classify as Gasoline UN1203 or Petroleum Crude Oil UN1267 - reference 49 CFR

172.101 for further description (e.g., packing group determination).

Placard:

* * * Section 15 - REGULATORY INFORMATION * * *

Regulatory Information

Component Analysis

This material contains one or more of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65) and/or CERCLA (40 CFR 302.4).

Benzene (71-43-2)

SARA 313: 0.1% de minimis concentration

CERCLA: 10 lb final RQ (received an adjusted RQ of 10 lbs based on

potential carcinogenicity in an August 14, 1989 final rule); 4.54 kg final RQ (received an adjusted RQ of 10 lbs based on potential

carcinogenicity in an August 14, 1989 final rule)

SARA Section 311/312 – Hazard Classes

Acute Health Chronic Health X Sudden Release of Pressure Reactive

SARA SECTION 313 – SUPPLIER NOTIFICATION

This product contains the following toxic chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372:

Material Name: Natural Gas Condensate **US GHS**

CONCENTRATION PERCENT BY WEIGHT INGREDIENT NAME (CAS NUMBER)

Benzene (71-43-2) <0.1 to 2

Canadian Regulatory Information

This product has been classified in accordance with the hazard criteria of the DSL/NDSL

Controlled Products Regulations (CPR) and the SDS contains all the Inventory

information required by the Regulations.

Workplace B2 - Flammable Liquid

Hazardous D1A – Material Causing Immediate and Serious Toxic Effects - Very Toxic

Materials Material

Information D2A: Material Causing Other Toxic Effects Very Toxic D2B - Material Causing Other Toxic Effects - Toxic Material System

European Union Regulatory Information

Product is dangerous as defined by the European Union Dangerous

Substances / Preparations Directives. Labeling

Contains: Low Boiling Point Naphtha

F+ Extremely Flammable

T Toxic Symbol

N Dangerous for the Environment

R12-45-38-65-67-51/53

Extremely flammable. May cause cancer. Irritating to skin. Harmful: may cause lung damage if swallowed. Vapors may cause drowsiness

Risk Phrases and dizziness. Toxic to aquatic organisms, may cause long-term

adverse effects in the aquatic environment.

S16-53-45-2-23-24-29-43-62

Keep away from sources of ignition – No smoking. Avoid exposure – obtain special instructions before use. In case of accident or if you feel

unwell, seek medical advice immediately (show the label where

possible). Keep out of reach of children. Do not breathe vapor. Avoid

contact with skin. Do not empty into drains. In case of fire use foam/dry powder/CO2. If swallowed, do not induce vomiting: seek

medical advice immediately and show this container or label.

Safety

Phrases

Material Name: Natural Gas Condensate US GHS

State Regulations

Component Analysis - State

The following components appear on one or more of the following state hazardous substances lists

Component	CAS	CA	MA	MN	NJ	РА	RI
Octanes	111-65-9	Yes	No	Yes	Yes	Yes	Yes
Heptanes	142-82-5	Yes	No	Yes	Yes	Yes	Yes
n-Hexane	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
n-Pentane	109-66-0	Yes	No	Yes	Yes	Yes	Yes
n-Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Benzene	71-43-2	Yes	Yes	Yes	Yes	Yes	Yes
Toluene	108-88-3	Yes	Yes	Yes	Yes	Yes	Yes
m-, o-, p-Xylene	1330-20-7	Yes	Yes	Yes	Yes	Yes	Yes

The following statement(s) are provided under the California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65):

WARNING! This product contains a chemical known to the state of California to cause cancer.

WARNING! This product contains a chemical known to the state of California to cause Reproductive / developmental effects.

Component Analysis - WHMIS IDL

The following components are identified under the Canadian Hazardous Products Act Ingredient Disclosure List:

Component	CAS#	Minimum Concentration
Benzene	71-43-2	0.1%

* * * Section 16 - OTHER INFORMATION * * *	

NFPA® Hazard Rating Health 1

Fire 4 Reactivity 0

HMIS® **Hazard Rating** Health 1 Slight

Fire 4 Severe
Physical 0 Minimal

* Chronic

Material Name: Natural Gas Condensate US GHS

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 29, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Material Name: Wet Field Natural Gas

SYNONYMS: CNG, Natural Gas, Methane.

* * * Section 1 - PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME: Wet Field Natural Gas EMERGENCY PHONE: (800) 878-1373
PRODUCT CODES: CAS Reg. No. 68410-63-9 AFTER HOURS: (800) 878-1373

PRODUCER: Antero Resources

ADDRESS: 1615 Wynkoop Street CHEMTREC PHONE: (800) 424-9300

Denver, Colorado 80202

* * * Section 2 - HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Gas – Category 1.

Gases Under Pressure - Gas.

Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 2.

GHS LABEL ELEMENTS

Signal Word

Danger

Hazard Statements

Extremely flammable gas.

Contains gas under pressure, may explode if heated.

May cause damage to central nervous and respiratory systems.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Do not breathe fume/gas/mist/vapors/spray.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Material Name: Wet Field Natural Gas

Response

Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.

If exposed to gas, or concerned about possible exposure: Call a POISON CENTER or doctor/physician.

Storage

Protect from sunlight. Store in a well-ventilated place.

Store in a secure area.

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

* * * Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS#	Component	Percent
74-82-8	Methane	72 - 97
78-84-0	Ethane	2.2 - 14
74-98-6	Propane	0.0 - 8.0
106-97-8	Butanes	0.0 - 3.5
109-66-0	Pentanes	0.0 - 1.4
110-54-3	Hexanes	0.0 - 0.5
7727-37-9	Nitrogen	< 0.4
124-38-9	Carbon Dioxide	< 0.2
7782-44-7	Oxygen	< 0.04

Because natural gas is a natural product, composition can vary greatly.

* * * Section 4 - FIRST AID MEASURES * * *

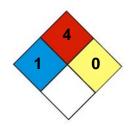
First Aid: Eyes

In case of freeze burn, cover eyes to protect from light. Flush eyes with running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. In case of blistering, frostbite or freeze burns, seek immediate medical attention.

Material Name: Wet Field Natural Gas


First Aid: Ingestion

Risk of ingestion is extremely low. However, if oral exposure occurs, seek immediate medical assistance.

First Aid: Inhalation

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* * * Section 5 - FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: **1** Flammability: **4** Instability: **0** (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Forms a flammable mixture with air. If released, the resulting vapors will disperse with the prevailing wind. If a source of ignition is present where the vapor exists at a 5 – 15% concentration in air, the vapor will burn along the flame front toward the source of the fuel.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

Any extinguisher suitable for Class B fires, dry chemical, firefighting foam, CO2, and other gaseous agents. However, fire should not be extinguished unless flow of gas can be immediately stopped.

Unsuitable Extinguishing Media

None.

Fire Fighting Equipment / Instructions

Gas fires should not be extinguished unless flow of gas can be immediately stopped. Shut off gas source and allow gas to burn out. If spill or leak has not ignited, determine

Material Name: Wet Field Natural Gas

if water spray may assist in dispersing gas or vapor to protect personnel attempting to stop leak. Use water to cool equipment, surfaces and piping exposed to fire and excessive heat. For large fire, the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Isolate area, particularly around piping. Let the fire burn unless leak can be stopped. Concentrate fire-fighting efforts on objects / materials ignited by the initial fire. Withdraw immediately in the event of a rising sound from a venting safety device.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH-approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

* * * Section 6 - ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Stop the source of the release, if safe to do so.

Materials and Methods for Clean-Up

Consider the use of water spray to disperse gas vapors. Do not use water spray to direct gas vapors toward sewer or drainage systems. Isolate the area until gas has dispersed. Ventilate and gas test area before entering.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Cooling effect of expanding gas from leak may present frostbite / freeze burn hazard. Wear flame retardant (FR) clothing around un-ignited leak. Wear fire protective clothing around an active fire.

Environmental Precautions

Do not flush gas vapors toward sewer or drainage systems.

Prevention of Secondary Hazards

None.

Material Name: Wet Field Natural Gas

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use only in well ventilated areas.

Storage Procedures

Natural gas will be contained in the pipeline. Keep away from flame, sparks, excessive temperatures and open flames. Empty pipeline segments may contain explosive residues from natural gas liquids. Do not cut, heat, weld or expose containers to sources of ignition sections of pipeline unless the sections have been purged of natural gas residues.

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

* * * Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Methane (74-82-8)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Propane (74-98-6)

ACGIH: 2500 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Butane (106-97-8)

ACGIH: 800 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Pentanes (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

Hexanes (110-54-3)

ACGIH: 50 ppm TWA (listed under n-Hexane)

Material Name: Wet Field Natural Gas

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

ACGIH: 5000 ppm TWA (listed under Carbon Dioxide)

Oxygen (7782-44-7)

N/A – Necessary for life

Engineering Measures

Use adequate ventilation to keep gas and vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere. CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Use cold-impervious, insulating flame-retardant (FR) gloves where contact with pressurized gas may occur.

Personal Protective Equipment: Eyes

Where there is a possibility of pressurized gas contact, wear splash-proof safety goggles and faceshield.

Personal Protective Equipment: Skin and Body

Where contact with pressurized gas may occur, wear flame-retardant (FR) and a faceshield.

* * * Section 9 - PHYSICAL AND CHEMICAL PROPERTIES * * *

Odorless to slight

Appearance: Colorless Odor: petroleum odor

Physical State:GaspH:NDVapor Pressure:40 atm @ -187°F (-86°C)Vapor Density:0.6Boiling Point:-259°F (-162°C)Melting Point:ND

Solubility (H2O): 3.5% **Specific Gravity:** 0.4 @ -263°F (-164°C)

Material Name: Wet Field Natural Gas

Evaporation Rate: ND VOC: ND

Octanol / H2O Coeff.: ND Flash Point: Flammable Gas

Flash Point Method: N/A

Lower Flammability Limit: 3.8 – 6.5 Upper Flammability Limit: 13-17

(LFL): (UFL):

Auto Ignition: 900-1170°F (482-632°C) Burning Rate: ND

* * * Section 10 - CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from strong oxidizers, ignition sources and heat.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

* * * Section 11 - TOXICOLOGICAL INFORMATION * * *

Acute Toxicity

A: General Product Information

Methane and ethane, the main components of natural gas, are considered practically inert in terms of physiological effects. At high concentrations these materials act as simple asphyxiants and may cause death due to lack of oxygen.

B. Component Analysis – LD50/LC50

Methane (74-82-8)

Inhalation LC50 Mouse 326 g/m3 2h

Ethane (74-84-0)

Inhalation LC50 Rat 658 mg/l 4h

Propane (74-98-6)

Inhalation LC50 Rat 658 mg/l 4h

Material Name: Wet Field Natural Gas

Butanes (106-97-8)

Inhalation LC50 Rat 658 g/m3 4h

Pentanes (109-66-0)

Inhalation LD50 Rat 364 g/m3 4h

Hexanes (110-54-3)

Inhalation LC50 Rat > 20 mg/l 4h

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

Inhalation LC50 Human 100,000 ppm 1minute

Oxygen (7782-44-7)

N/A – Necessary for life

Potential Health Effects: Skin Corrosion Property / Stimulativeness

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

This product is not reported to have any mutagenic effects.

Carcinogenicity

A: General Product Information

This product is not reported to have any carcinogenic effects.

B: Component Carcinogenicity

None of this product's components are listed by ACGIH, IARC, OSHA, NIOSH, or NTP.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product may cause damage to the heart.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ repeat effects.

Aspiration Respiratory Organs Hazard

This product is not reported to have any aspiration hazard effects.

Page 8 of 11

Material Name: Wet Field Natural Gas

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep gas and vapors out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity

No ecotoxicity data are available for this product's components.

Persistance / Degradability

No information available.

Bioaccumulation

No information available.

Mobility in Soil

No information available.

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Dispose of contents / container in accordance with local / regional / national / international regulations.

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Natural Gas, Compressed

UN #: 1971 **Hazard Class:** 2.1

Placard:

Material Name: Wet Field Natural Gas

* * * Section 15 - REGULATORY INFORMATION * * *

Regulatory Information

Component Analysis

None of this products components are listed under SARA Section 302 (40 CFR 355 Appendix A.

n-hexane is listed under SARA Section 313 (40 CFR 372.65). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

n-hexane is listed under CERCLA (40 CFR 302.4). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

SARA Section 311/312 – Hazard Classes

Acute Health	Chronic Health	<u>Fire</u>	Sudden Release of Pressure	Reactive
		Χ	X	

SARA Section 313 – Supplier Notification

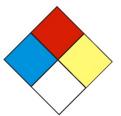
This product contains one chemical (n-Hexane) that is subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-to-know act (EPCRA) of 1986 and of 40 CFR 372. However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

State Regulations

Component Analysis – State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA	RI
Methane	74-82-8	No	No	Yes	Yes	Yes	No
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Pentanes	109-66-0	Yes	No	Yes	Yes	Yes	Yes
Hexanes	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
Nitrogen	7727-37-9	No	No	No	No	No	No
Carbon Dioxide	124-38-9	Yes	No	Yes	Yes	Yes	Yes
Oxygen	7782-44-7	No	No	No	No	No	No


Material Name: Wet Field Natural Gas

* * * Section 16 - OTHER INFORMATION * * *

NFPA® Hazard Rating Health 1

Fire 4

Reactivity 0

HMIS® Hazard Rating Health 1 Moderate

Fire 4 Severe
Physical 0 Minimal
* Chronic

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: February 7, 2014

Date of Last Revision: March 4,, 2014

End of Sheet

Material Name: Dry Field Natural Gas US GHS

SYNONYMS: CNG, Natural Gas, Methane.

* * * Section 1 - PRODUCT AND COMPANY IDENTIFICATION * * *

PRODUCT NAME: Dry Field Natural Gas EMERGENCY PHONE: (800) 878-1373
PRODUCT CODES: CAS Reg. No. 68410-63-9 AFTER HOURS: (800) 878-1373

PRODUCER: Antero Resources

ADDRESS: 1615 Wynkoop Street CHEMTREC PHONE: (800) 424-9300

Denver, Colorado 80202

* * * Section 2 – HAZARDS IDENTIFICATION * * *

GHS Classification:

Flammable Gas – Category 1.

Gases Under Pressure - Gas.

Specific Target Organ Systemic Toxicity (STOT) – Single Exposure Category 2.

GHS LABEL ELEMENTS Symbol(s)

Signal Word

Danger

Hazard Statements

Extremely flammable gas.

Contains gas under pressure, may explode if heated.

May cause damage to central nervous and respiratory systems.

Precautionary Statements

Prevention

Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Do not breathe fume/gas/mist/vapors/spray.

Wash thoroughly after handling.

Do not eat, drink or smoke when using this product.

Material Name: Dry Field Natural Gas US GHS

Response

Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.

If exposed to gas, or concerned about possible exposure: Call a POISON CENTER or doctor/physician.

Storage

Protect from sunlight. Store in a well-ventilated place.

Store in a secure area.

Disposal

Dispose of contents/containers in accordance with local/regional/national/international regulations.

* * * Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS * * *

CAS#	Component	Percent
74-82-8	Methane	95.01
78-84-0	Ethane	3.99
74-98-6	Propane	0.32
106-97-8	Butanes	0.07
109-66-0	Pentanes	0.02
110-54-3	Hexanes	0.01
7727-37-9	Nitrogen	0.35
124-38-9	Carbon Dioxide	0.19
7782-44-7	Oxygen	0.03

Because natural gas is a natural product, composition can vary greatly.

* * * Section 4 - FIRST AID MEASURES * * *

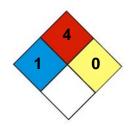
First Aid: Eyes

In case of freeze burn, cover eyes to protect from light. Flush eyes with running water for at least fifteen (15) minutes. Following flushing, seek medical attention.

First Aid: Skin

Remove contaminated clothing. In case of blistering, frostbite or freeze burns, seek immediate medical attention.

Material Name: Dry Field Natural Gas US GHS


First Aid: Ingestion

Risk of ingestion is extremely low. However, if oral exposure occurs, seek immediate medical assistance.

First Aid: Inhalation

Remove person to fresh air. If person is not breathing, provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

* * * Section 5 - FIRE FIGHTING MEASURES * * *

NFPA 704 Hazard Class

Health: 1 Flammability: 4 Instability: 0 (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

General Fire Hazards

See Section 9 for Flammability Properties.

Forms a flammable mixture with air. If released, the resulting vapors will disperse with the prevailing wind. If a source of ignition is present where the vapor exists at a 5-15% concentration in air, the vapor will burn along the flame front toward the source of the fuel.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

Extinguishing Media

Any extinguisher suitable for Class B fires, dry chemical, fire fighting foam, CO2, and other gaseous agents. However, fire should not be extinguished unless flow of gas can be immediately stopped.

Unsuitable Extinguishing Media

None.

Fire Fighting Equipment / Instructions

Gas fires should not be extinguished unless flow of gas can be immediately stopped. Shut off gas source and allow gas to burn out. If spill or leak has not ignited, determine

Material Name: Dry Field Natural Gas US GHS

if water spray may assist in dispersing gas or vapor to protect personnel attempting to stop leak. Use water to cool equipment, surfaces and piping exposed to fire and excessive heat. For large fire, the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Isolate area, particularly around piping. Let the fire burn unless leak can be stopped. Concentrate fire-fighting efforts on objects / materials ignited by the initial fire. Withdraw immediately in the event of a rising sound from a venting safety device.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH-approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

* * * Section 6 - ACCIDENTAL RELEASE MEASURES * * *

Recovery and Neutralization

Stop the source of the release, if safe to do so.

Materials and Methods for Clean-Up

Consider the use of water spray to disperse gas vapors. Do not use water spray to direct gas vapors toward sewer or drainage systems. Isolate the area until gas has dispersed. Ventilate and gas test area before entering.

Emergency Measures

Evacuate nonessential personnel and secure all ignition sources. No road flares, smoking or flames in hazard area. Consider wind direction. Stay upwind and uphill, if possible. Vapor cloud may be white, but color will dissipate as cloud disperses. Fire and explosion hazard is still present.

Personal Precautions and Protective Equipment

Cooling effect of expanding gas from leak may present frostbite / freeze burn hazard. Wear flame retardant (FR) clothing around un-ignited leak. Wear fire protective clothing around an active fire.

Environmental Precautions

Do not flush gas vapors toward sewer or drainage systems.

Prevention of Secondary Hazards

None.

Material Name: Dry Field Natural Gas US GHS

* * * Section 7 – HANDLING AND STORAGE * * *

Handling Procedures

Keep away from flame, sparks and excessive temperatures. Bond and ground containers. Use only in well ventilated areas.

Storage Procedures

Natural gas will be contained in the pipeline. Keep away from flame, sparks, excessive temperatures and open flames. Empty pipeline segments may contain explosive residues from natural gas liquids. Do not cut, heat, weld or expose containers to sources of ignition sections of pipeline unless the sections have been purged of natural gas residues.

Incompatibilities

Keep away from strong oxidizers, ignition sources and heat.

* * * Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION * * *

Component Exposure Limits

Methane (74-82-8)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Ethane (74-84-0)

ACGIH: 1000 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Propane (74-98-6)

ACGIH: 2500 ppm TWA (listed under Aliphatic hydrocarbon gases : Alkane C1-4)

Butane (106-97-8)

ACGIH: 800 ppm TWA (listed under Aliphatic hydrocarbon gases: Alkane C1-4)

Pentanes (109-66-0)

ACGIH: 600 ppm TWA (listed under Pentane, all isomers)

Hexanes (110-54-3)

ACGIH: 50 ppm TWA (listed under n-Hexane)

Material Name: Dry Field Natural Gas US GHS

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

ACGIH: 5000 ppm TWA (listed under Carbon Dioxide)

Oxygen (7782-44-7)

N/A – Necessary for life

Engineering Measures

Use adequate ventilation to keep gas and vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces. Use explosion-proof equipment and lighting in classified / controlled areas.

Personal Protective Equipment: Respiratory

Use a NIOSH approved positive-pressure, supplied air respirator with escape bottle or self-contained breathing apparatus (SCBA) for gas concentrations above occupational exposure limits, for potential for uncontrolled release, if exposure levels are not known, or in an oxygen-deficient atmosphere. CAUTION: Flammability limits (i.e., explosion hazard should be considered when assessing the need to expose personnel to concentrations requiring respiratory protection.

Personal Protective Equipment: Hands

Use cold-impervious, insulating flame-retardant (FR) gloves where contact with pressurized gas may occur.

Personal Protective Equipment: Eyes

Where there is a possibility of pressurized gas contact, wear splash-proof safety goggles and faceshield.

Personal Protective Equipment: Skin and Body

Where contact with pressurized gas may occur, wear flame-retardant (FR) and a faceshield.

* * * Section 9 - PHYSICAL AND CHEMICAL PROPERTIES * * *

Odorless to slight

Appearance: Colorless Odor: petroleum odor

Physical State:GaspH:NDVapor Pressure:40 atm @ -187°F (-86°C)Vapor Density:0.6Boiling Point:-259°F (-162°C)Melting Point:ND

Solubility (H2O): 3.5% **Specific Gravity:** 0.4 @ -263°F (-164°C)

Material Name: Dry Field Natural Gas US GHS

Evaporation Rate: ND VOC: ND

Octanol / H2O Coeff.: ND Flash Point: Flammable Gas

Flash Point Method: N/A

Lower Flammability Limit: 3.8 – 6.5 Upper Flammability Limit: 13-17

(LFL): (UFL):

Auto Ignition: 900-1170°F (482-632°C) Burning Rate: ND

* * * Section 10 - CHEMICAL STABILITY & REACTIVITY INFORMATION * * *

Chemical Stability

This is a stable material.

Hazardous Reaction Potential

Will not occur.

Conditions to Avoid

Keep away from strong oxidizers, ignition sources and heat.

Hazardous Decomposition Products

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

* * * Section 11 - TOXICOLOGICAL INFORMATION * * *

Acute Toxicity

A: General Product Information

Methane and ethane, the main components of natural gas, are considered practically inert in terms of physiological effects. At high concentrations these materials act as simple asphyxiants and may cause death due to lack of oxygen.

B. Component Analysis – LD50/LC50

Methane (74-82-8)

Inhalation LC50 Mouse 326 g/m3 2h

Ethane (74-84-0)

Inhalation LC50 Rat 658 mg/l 4h

Propane (74-98-6)

Inhalation LC50 Rat 658 mg/l 4h

Material Name: Dry Field Natural Gas US GHS

Butanes (106-97-8)

Inhalation LC50 Rat 658 g/m3 4h

Pentanes (109-66-0)

Inhalation LD50 Rat 364 g/m3 4h

Hexanes (110-54-3)

Inhalation LC50 Rat > 20 mg/l 4h

Nitrogen (7727-37-9)

Simple Asphyxiant

Carbon Dioxide (124-38-9)

Inhalation LC50 Human 100,000 ppm 1minute

Oxygen (7782-44-7)

N/A – Necessary for life

Potential Health Effects: Skin Corrosion Property / Stimulativeness

This product is not reported to have any skin sensitization effects.

Generative Cell Mutagenicity

This product is not reported to have any mutagenic effects.

Carcinogenicity

A: General Product Information

This product is not reported to have any carcinogenic effects.

B: Component Carcinogenicity

None of this product's components are listed by ACGIH, IARC, OSHA, NIOSH, or NTP.

Reproductive Toxicity

This product is not reported to have any reproductive toxicity effects.

Specified Target Organ General Toxicity: Single Exposure

This product may cause damage to the heart.

Specified Target Organ General Toxicity: Repeated Exposure

This product is not reported to have any specific target organ repeat effects.

Aspiration Respiratory Organs Hazard

This product is not reported to have any aspiration hazard effects.

Page 8 of 11

Material Name: Dry Field Natural Gas US GHS

* * * Section 12 - ECOLOGICAL INFORMATION * * *

Ecotoxicity

A: General Product Information

Keep gas and vapors out of sewers, drainage areas, and waterways. Report spills and releases, as applicable under Federal and State regulations.

B: Component Analysis – Ecotoxicity – Aquatic Toxicity

No ecotoxicity data are available for this product's components.

Persistance / Degradability

No information available.

Bioaccumulation

No information available.

Mobility in Soil

No information available.

* * * Section 13 - DISPOSAL CONSIDERATIONS * * *

Waste Disposal Instructions

See Section 7 for Handling Procedures. See Section 8 for Personal Protective Equipment Recommendations.

Disposal of Contaminated Containers or Packaging

Dispose of contents / container in accordance with local / regional / national / international regulations.

* * * Section 14 - TRANSPORTATION INFORMATION * * *

DOT Information

Shipping Name: Natural Gas, Compressed

UN #: 1971 Hazard Class: 2.1

Placard:

Material Name: Dry Field Natural Gas US GHS

* * * Section 15 - REGULATORY INFORMATION * * *

Regulatory Information

Component Analysis

None of this products components are listed under SARA Section 302 (40 CFR 355 Appendix A.

n-hexane is listed under SARA Section 313 (40 CFR 372.65). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

n-hexane is listed under CERCLA (40 CFR 302.4). However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

SARA Section 311/312 – Hazard Classes

Acute Health	Chronic Health	<u>Fire</u>	Sudden Release of Pressure	<u>Reactive</u>
		Χ	X	

SARA Section 313 – Supplier Notification

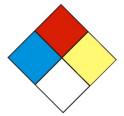
This product contains one chemical (n-Hexane) that is subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-to-know act (EPCRA) of 1986 and of 40 CFR 372. However the concentration of this component is approximately 0.01 % in compressed natural gas and is therefore far under the reporting threshold for the chemical.

State Regulations

Component Analysis – State

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA	RI
Methane	74-82-8	No	No	Yes	Yes	Yes	No
Ethane	78-84-0	No	No	Yes	Yes	Yes	No
Propane	74-98-6	No	No	Yes	Yes	Yes	Yes
Butane	106-97-8	Yes	No	Yes	Yes	Yes	Yes
Pentanes	109-66-0	Yes	No	Yes	Yes	Yes	Yes
Hexanes	110-54-3	Yes	Yes	Yes	Yes	Yes	Yes
Nitrogen	7727-37-9	No	No	No	No	No	No
Carbon Dioxide	124-38-9	Yes	No	Yes	Yes	Yes	Yes
Oxygen	7782-44-7	No	No	No	No	No	No


Material Name: Dry Field Natural Gas US GHS

* * * Section 16 - OTHER INFORMATION * * *

NFPA® Hazard Rating Health 1

Fire 4

Reactivity 0

HMIS® Hazard Rating Health 1 Moderate

Fire 4 Severe
Physical 0 Minimal

* Chronic

Key/Legend

EPA = Environmental Protection Agency; TSCA = Toxic Substance Control Act: ACGIH = American Conference of Governmental Industrial Hygienists; IARC = International Agency for Research on Cancer; NIOSH = National Institute for Occupational Safety and Health; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; NJTSR = New Jersey Trade Secret Registry.

Literature References

None

Other Information

The information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Date of Preparation: January 30, 2014

Date of Last Revision: March 4, 2014

End of Sheet

Attachment I. Emission Units Table	

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and of Char		Control Device ⁴
C-2100	1E	Compressor Engine #1	2016	1,680 hp	N/A	NS	SCR (1C)
C-2110	2E	Compressor Engine #2	2016	1,680 hp	N/A	NS	SCR (2C)
C-2120	3E	Compressor Engine #3	2016	1,680 hp	N/A	NS	SCR (3C)
C-2130	4E	Compressor Engine #4	2016	1,680 hp	N/A	NS	SCR (4C)
C-2140	5E	Compressor Engine #5	2016	1,680 hp	N/A	NS	SCR (5C)
C-2150	6E	Compressor Engine #6	2016	1,680 hp	N/A	NS	SCR (6C)
C-2160	7E	Compressor Engine #7	2016	1,680 hp	N/A	NS	SCR (7C)
C-2170	8E	Compressor Engine #8	2016	1,680 hp	N/A	NS	SCR (8C)
C-2180	9E	Compressor Engine #9	2016	1,680 hp	N/A	NS	SCR (9C)
C-2190	10E	Compressor Engine #10	2016	1,680 hp	N/A	NS	CR(10C)
C-2200	11E	Compressor Engine #11	2016	1,680 hp	N/A	NS	CR(11C)
G-8000	12E	Microturbine Generator #1	2016	200 kWe	N/A		None
G-8100	13E	Microtrubine Generator #2	2016	200 kWe	N/A		None
V-3110	14E	Dehydrator Still Vent #1	2016	110 MMscfd	Modified	FL-	1000 (12C)
V-3120	15E	Dehydrator Flash Tank #1	2016	110 MMscfd	Modified	98	% control
F-3100	16E	Dehydrator Reboiler #1	2016	1.5 mmbtu/hr	N/A		None
V-3210	17E	Dehydrator Still Vent #2	2016	110 MMscfd	Modified	FL-	1000 (12C)
V-3220	18E	Dehydrator Flash Tank #2	2016	110 MMscfd	Modified	98	% contol
F-3200	19E	Dehydrator Reboiler #2	2016	1.5 mmbtu/hr	N/A		None
TK-9000	20E	Settling Tank 1	2016	500 barrel	Modified	l l	5000 & VRU- (13C & 14C)
TK-9200	21E	Condensate Tank 1	2016	400 barrel	Modified	VRU-6	6000 & VRU- (13C & 14C)
TK-9210	22E	Condensate Tank 2	2016	400 barrel	Modified		5000 & VRU- (13C & 14C)
TK-9100	23E	Produced Water Tank 1	2016	400 barrel	Modified	fied VRU-6000 & 6100 (13C &	

Emission Units Table 03/2007

TK-9110	24E	Produced Water Tank 2	2016	400 barrel	Modified	VRU-6000 & VRU- 6100 (13C & 14C)
CATHT1	27E	Catalytic Heater for Generator Fuel	2016	0.024 MMBtu/hr	N/A	None
		NSCR Catalyst for Compressor #1	2016		N/A	1C
		NSCR Catalyst for Compressor #2	2016		N/A	2C
		NSCR Catalyst for Compressor #3	2016		N/A	3C
		NSCR Catalyst for Compressor #4	2016		N/A	4C
		NSCR Catalyst for Compressor #5	2016		N/A	5C
		NSCR Catalyst for Compressor #6	2016		N/A	6C
		NSCR Catalyst for Compressor #7	2016		N/A	7C
		NSCR Catalyst for Compressor #8	2016		N/A	8C
		NSCR Catalyst for Compressor #9	2016		N/A	9C
		NSCR Catalyst for Compressor #10	2016		N/A	10C
		NSCR Catalyst for Compressor #11	2016		N/A	11C
FL-1000	26E	Flare Combustion Device 1	2016	4.8 MMBtu/hr	N/A	12C
		Vapor Recovery Unit 1	2016	40 Mscfd	N/A	13C
		Vapor Recovery Unit 2	2016	40 Mscfd	N/A	14C
C-2210	28E	Compressor Engine #12	2016	1,680 hp	N/A	NSCR (15C)
C-2220	29E	Compressor Engine #13	2016	1,680 hp	N/A	NSCR (16C)
		NSCR Catalyst for Compressor #12	2016		N/A	15C
		NSCR Catalyst for Compressor #13	2016		N/A	16C
LDOUT1	30E	Hydrocarbon Truck loading	2016	195 bbl/day	N/A	None
FUEL1	31E Fuel Conditioning Heater		2017	0.5 MMBtu/hr	New	None
VENT1	32E	Venting Episodes	2016	Variable	Modified	None

¹ For Emission Units (or <u>S</u>ources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Attachment J. Emission Point Data Summary Sheet	

Attachment J EMISSION POINTS DATA SUMMARY SHEET

							Table ⁻	1: Emissions [Data						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissic Ven Throug Po (Must Emissic Table & F	ited Jh This int <i>match</i>	d Control Device This (Must match Emission Units atch Units		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Pot Unco	rimum ential ntrolled sions ⁴	Pot Con	kimum ential trolled esions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
1E	Upward Vertical Stack	C-2100	Compressor engine 1	1C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.52 0.27 0.008 0.35 0.19 2083	220.62 207.64 6.65 1.18 0.036 1.54 0.81 9125	1.26 1.19 0.24 0.27 0.008 0.18 0.019 1992	5.52 5.19 1.06 1.18 0.036 0.81 0.081 8725	Gas/Vapor	EE	
2E	Upward Vertical Stack	C-2110	Compressor engine 2	2C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.52 0.27 0.008 0.35 0.19 2083	220.62 207.64 6.65 1.18 0.036 1.54 0.81 9125	1.26 1.19 0.24 0.27 0.008 0.18 0.019 1992	5.52 5.19 1.06 1.18 0.036 0.81 0.081 8725	Gas/Vapor	EE	
3E	Upward Vertical Stack	C-2120	Compressor engine 3	3C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.52 0.27 0.008 0.35 0.19 2083	220.62 207.64 6.65 1.18 0.036 1.54 0.81 9125	1.26 1.19 0.24 0.27 0.008 0.18 0.019 1992	5.52 5.19 1.06 1.18 0.036 0.81 0.081 8725	Gas/Vapor	EE	

4E	Upward Vertical Stack	C-2130	Compressor engine 4	4C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde	50.37 47.41 1.52 0.27 0.008 0.35 0.19	220.62 207.64 6.65 1.18 0.036 1.54 0.81	1.26 1.19 0.24 0.27 0.008 0.18 0.019	5.52 5.19 1.06 1.18 0.036 0.81 0.081	Gas/Vapor	EE	
								CO2e	2083	9125	1992	8725			
5E	Upward Vertical Stack	C-2140	Compressor engine 5	5C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.52 0.27 0.008 0.35 0.19 2083	220.62 207.64 6.65 1.18 0.036 1.54 0.81 9125	1.26 1.19 0.24 0.27 0.008 0.18 0.019 1992	5.52 5.19 1.06 1.18 0.036 0.81 0.081 8725	Gas/Vapor	EE	
6E	Upward Vertical Stack	C-2150	Compressor engine 6	6C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.52 0.27 0.008 0.35 0.19 2083	220.62 207.64 6.65 1.18 0.036 1.54 0.81 9125	1.26 1.19 0.24 0.27 0.008 0.18 0.019 1992	5.52 5.19 1.06 1.18 0.036 0.81 0.081 8725	Gas/Vapor	EE	
7E	Upward Vertical Stack	C-2160	Compressor engine 7	7C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.52 0.27 0.008 0.35 0.19 2083	220.62 207.64 6.65 1.18 0.036 1.54 0.81 9125	1.26 1.19 0.24 0.27 0.008 0.18 0.019 1992	5.52 5.19 1.06 1.18 0.036 0.81 0.081 8725	Gas/Vapor	EE	

8E	Upward Vertical Stack	C-2170	Compressor engine 8	8C	NSCR catalyst	С	8,760	NOx CO VOC	50.37 47.41 1.52	220.62 207.64 6.65	1.26 1.19 0.24	5.52 5.19 1.06	Gas/Vapor	EE	
								PM10 SO2 Total HAPs Formaldehyde	0.27 0.008 0.35 0.19	1.18 0.036 1.54 0.81	0.27 0.008 0.18 0.019	1.18 0.036 0.81 0.081			
9E	Upward Vertical Stack	C-2180	Compressor engine 9	9C	NSCR catalyst	С	8,760	NOX CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.52 0.27 0.008 0.35 0.19 2083	9125 220.62 207.64 6.65 1.18 0.036 1.54 0.81 9125	1992 1.26 1.19 0.24 0.27 0.008 0.18 0.019 1992	5.52 5.19 1.06 1.18 0.036 0.81 0.081 8725	Gas/Vapor	EE	
10E	Upward Vertical Stack	C-2190	Compressor engine 10	10C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.52 0.27 0.008 0.35 0.19 2083	220.62 207.64 6.65 1.18 0.036 1.54 0.81 9125	1.26 1.19 0.24 0.27 0.008 0.18 0.019 1992	5.52 5.19 1.06 1.18 0.036 0.81 0.081 8725	Gas/Vapor	EE	
11E	Upward Vertical Stack	C-2200	Compressor engine	11C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.52 0.27 0.008 0.35 0.19 2083	220.62 207.64 6.65 1.18 0.036 1.54 0.81 9125	1.26 1.19 0.24 0.27 0.008 0.18 0.019 1992	5.52 5.19 1.06 1.18 0.036 0.81 0.081 8725	Gas/Vapor	EE	

12E	Upward Vertical Stack	G8000	Microtu rbine Genera tor			С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	0.080 0.22 0.020 0.014 0.007 0.002 0.001 266	0.35 0.96 0.088 0.060 0.031 0.009 0.006 1166	0.080 0.22 0.020 0.014 0.007 0.002 0.001 266	0.35 0.96 0.088 0.060 0.031 0.009 0.006 1166	Gas/Vapor	EE	
13E	Upward Vertical Stack	G8100	Microtu rbine Genera tor			С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	0.080 0.22 0.020 0.014 0.007 0.002 0.001 266	0.35 0.96 0.088 0.060 0.031 0.009 0.006 1166	0.080 0.22 0.020 0.014 0.007 0.002 0.001 266	0.35 0.96 0.088 0.060 0.031 0.009 0.006 1166	Gas/Vapor	EE	
14E	Upward Vertical Stack	V-3110	Dehydr ator Still Vent 1	12C	Flare- 98% Control	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	16.88 5.04 1.18 2.67 0.17 0.59 0.44 462.5	73.93 22.10 5.16 11.70 0.74 2.59 1.91 2026	0.34 0.10 0.024 0.053 0.003 0.012 0.009 9.51	1.48 0.44 0.10 0.23 0.015 0.052 0.038 41.66	Gas/Vapor	EE	
15E	Used for fuel in 16E	V-3120	Dehydr ator Flash Gas 1	Used for Fuel in 16E	98% Combu stion	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	48.87 1.31 0.094 0.12 0.004 0.009 1.08 2876	214.06 5.73 0.41 0.53 0.017 0.038 4.73 12595	0.98 0.026 0.002 0.002 0.0001 0.0002 0.022 59.74	4.28 0.11 0.0083 0.011 0.0003 0.0008 0.095 261.7	Gas/Vapor	EE	

16E	Upward Vertical Stack	F-3100	Dehydr ator Reboile r 1			С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	0.15 0.12 0.008 0.011 0.001 0.003 0.0001 176.1	0.64 0.54 0.035 0.049 0.0039 0.012 0.0005 771.2	0.15 0.12 0.008 0.011 0.001 0.003 0.0001 176.1	0.64 0.54 0.035 0.049 0.0039 0.012 0.0005 771.2	Gas/Vapor	EE	
17E	Upward Vertical Stack	V-3210	Dehydr ator Still Vent 2	12C	Flare- 98% Control	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	16.88 5.04 1.18 2.67 0.17 0.59 0.44 462.5	73.93 22.10 5.16 11.70 0.74 2.59 1.91 2026	0.34 0.10 0.024 0.053 0.003 0.012 0.009 9.51	1.48 0.44 0.10 0.23 0.015 0.052 0.038 41.66	Gas/Vapor	EE	
18E	Used for fuel in 19E	V-3220	Dehydr ator Flash Gas 2	Used for Fuel in 19E	98% Combu stion	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	48.87 1.31 0.094 0.12 0.004 0.009 1.08 2876	214.06 5.73 0.41 0.53 0.017 0.038 4.73 12595	0.98 0.026 0.002 0.002 0.0001 0.0002 0.022 59.74	4.28 0.11 0.0083 0.011 0.0003 0.0008 0.095 261.7	Gas/Vapor	EE	
19E	Upward Vertical Stack	F-3200	Dehydr ator Reboile r 2			С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	0.15 0.12 0.008 0.011 0.001 0.003 0.0001 176.1	0.64 0.54 0.035 0.049 0.0039 0.012 0.0005 771.2	0.15 0.12 0.008 0.011 0.001 0.003 0.0001 176.1	0.64 0.54 0.035 0.049 0.0039 0.012 0.0005 771.2	Gas/Vapor	EE	

20E	Upward Vertical Stack	TK- 9000	Settler Tank	13C	VRU- 98% capture	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	157.6 4.75 0.076 0.18 0.065 0.17 4.26 567	690.43 20.80 0.33 0.79 0.29 0.73 18.66 2483	3.6e-3 1.3e-3 3.3e-3	13.81 0.42 6.7e-3 1.6e-2 5.7e-3 1.5e-2 3.7e-1 51	Gas/Vapor	EE	
21E	Upward Vertical Stack	TK- 9200	Conden sate Tank 1	13C	VRU- 98% capture	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	1.61 0.050 5.3e-4 1.4e-3 5.4e-4 1.3e-3 4.6e-2 0.53	7.05 0.22 0.002 0.006 0.002 0.006	0.032 0.001	0.14 4.4e-3 4.7e-5 1.2e-4 4.7e-5 1.1e-4 4.1e-3 0.052	Gas/Vapor	EE	
22E	Upward Vertical Stack	TK- 9210	Conden sate Tank 2	13C	VRU- 98% capture	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	1.61 0.050 5.3e-4 1.4e-3 5.4e-4 1.3e-3 4.6e-2 0.53	0.006 0.002 0.006	2.5e-5	0.14 4.4e-3 4.7e-5 1.2e-4 4.7e-5 1.1e-4 4.1e-3 0.052	Gas/Vapor	EE	
23E	Upward Vertical Stack	TK- 9100	Produc ed Water Tank 1	13C	VRU- 98% capture	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	2.5e-7 1.5e-7 7.5e-8 8.7e-9 1.3e-8	6.5e-7 3.3e-7 3.8e-8 5.8e-8 2.8e-8		5.9e-6 2.2e-8 1.3e-8 6.6e-9 7.6e-10 1.2e-9 5.6e-10 3.8e-4	Gas/Vapor	EE	

24E	Upward Vertical Stack	TK- 9110	Produc ed Water Tank 2	13C	VRU- 98% capture	С	8,760	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	1.5e-7	1.1e-6 6.5e-7 3.3e-7 3.8e-8 5.8e-8 2.8e-8	1.3e-6 5.0e-9 3.0e-9 1.5e-9 1.7e-10 2.7e-10 1.3e-10 8.6e-5	5.9e-6 2.2e-8 1.3e-8 6.6e-9 7.6e-10 1.2e-9 5.6e-10 3.8e-4	Gas/Vapor	EE	
26E	Upward Vertical Stack	FL- 1000	Flare combu stion device 1			С	8,760	NOx CO VOC PM10 Total HAPs CO2e	 	 	0.33 1.78 1.1e-4 1.5e-4 3.7E-5 565	1.44 7.79 4.7e-4 6.5e-4 1.6e-4 2476	Gas/Vapor	EE	
27E	Upward Vertical Stack	CATHT 1	Catalyti c Heater for Genera tor Fuel			С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	0.0024 0.0020 1.3 E-4 1.8 E-4 1.4 E-5 4.4 E-5 1.8 E-6 2.82	0.010 0.0087 5.7 E-4 7.8E-4 6.2 E-5 1.9 E-4 7.7 E-6	0.0024 0.0020 1.3 E-4 1.8 E-4 1.4 E-5 4.4 E-5 1.8 E-6 2.82	0.010 0.0087 5.7 E-4 7.8E-4 6.2 E-5 1.9 E-4 7.7 E-6	Gas/Vapor	EE	
28E	Upward Vertical Stack	C-2210	Compressor engine 12	15C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.52 0.27 0.008 0.35 0.19 2083	220.62 207.64 6.65 1.18 0.036 1.54 0.81 9125	1.26 1.19 0.24 0.27 0.008 0.18 0.019 1992	5.52 5.19 1.06 1.18 0.036 0.81 0.081 8725	Gas/Vapor	EE	

29E	Upward Vertical Stack	C-2220	Compressor engine 13	16C	NSCR catalyst	С	8,760	NOx CO VOC PM10 SO2 Total HAPs Formaldehyde CO2e	50.37 47.41 1.52 0.27 0.008 0.35 0.19 2083	220.62 207.64 6.65 1.18 0.036 1.54 0.81 9125	1.26 1.19 0.24 0.27 0.008 0.18 0.019 1992	5.52 5.19 1.06 1.18 0.036 0.81 0.081 8725	Gas/Vapor	EE	
31E	Upward Vertical Stack	FUEL1	Fuel Conditi oning Heater			С	8,760	NOx CO VOC PM10 SO2 Total HAPs CO2e	0.049 0.041 0.0027 0.0037 2.9E-4 9.2E-4 58.7	0.21 0.18 0.012 0.016 0.0013 0.0040 257.1	0.049 0.041 0.0027 0.0037 2.9E-4 9.2E-4 58.7	0.21 0.18 0.012 0.016 0.0013 0.0040 257.1	Gas/Vapor	EE	
32E	Relief Vent	VENT1	Venting Episode s			Intermi ttent	Varia ble	VOC Total HAPs Benzene Toluene Ethylbenzene Xylenes n-Hexane CO2e	 	22.50 0.46 0.014 0.025 0.0014 0.0035 0.42 2107	 	22.50 0.46 0.014 0.025 0.0014 0.0035 0.42 2107	Gas/Vapor	EE	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂O, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

			Table 2: Re	lease Paramete	er Data			
Emission	Inner		Exit Gas		Emission Point Ele	evation (ft)	UTM Coordinates	s (km)
Point ID No.	Diameter (ft.)	Temp.	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ²	Northing	Easting
1E/1C	1.1	1224	8876	156	1,025	TBD	4352.993	513.570
2E/2C	1.1	1224	8876	156	1,025	TBD	4352.984	513.568
3E/3C	1.1	1224	8876	156	1,025	TBD	4352.975	513.567
4E/4C	1.1	1224	8876	156	1,025	TBD	4352.967	513.566
5E/5C	1.1	1224	8876	156	1,025	TBD	4352.958	513.565
6E/6C	1.1	1224	8876	156	1,025	TBD	4352.949	513.563
7E/7C	1.1	1224	8876	156	1,025	TBD	4352.940	513.562
8E/8C	1.1	1224	8876	156	1,025	TBD	4352.931	513.561
9E/9C	1.1	1224	8876	156	1,025	TBD	4352.922	513.559
10E/10C	1.1	1224	8876	156	1,025	TBD	4352.913	513.558
11E/11C	1.1	1224	8876	156	1,025	TBD	4352.904	513.557
12E	TBD	535	1.3 kg/s mass flow	TBD	1,025	TBD	4352.929	513.529
13E	TBD	535	1.3 kg/s mass flow	TBD	1,025	TBD	4352.937	513.529
14E/12C/26E	5	1400	7069	6	1,025	15	4352.992	513.526
15E	Combusted i	n 16E	N/A	N/A	1,025	N/A	4352.951	513.532
16E	0.75	350	530	20	1,025	~18	4352.963	513.534
17E/12C/26E	5	1400	7069	6	1,025	15	4352.992	513.526
18E	Combusted i	n 19E	N/A	N/A	1,025	N/A	4352.975	513.537
19E	0.75	350	530	20	1,025	~18	4352.987	513.539
20E-24E/13C-14C	Emissions captured		in closed loop system wit	h VRU	1,025	N/A	4353.011	513.559
27E	0.5	200	70.7	6	1,025	5	4352.933	513.529
28E/15C	1.1	1224	8876	156	1,025	TBD	4352.895	513.555

29E/16C	1.1	1224	8876	156	1,025	TBD	4352.886	513.554	
31E	3	1000	2545	6	1,025	20	4353.002	513.526	
32E	Venting emissions occur at various locations across the facility								

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

Attachment K. Fugitive Emissions Data Summary Sheet	

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

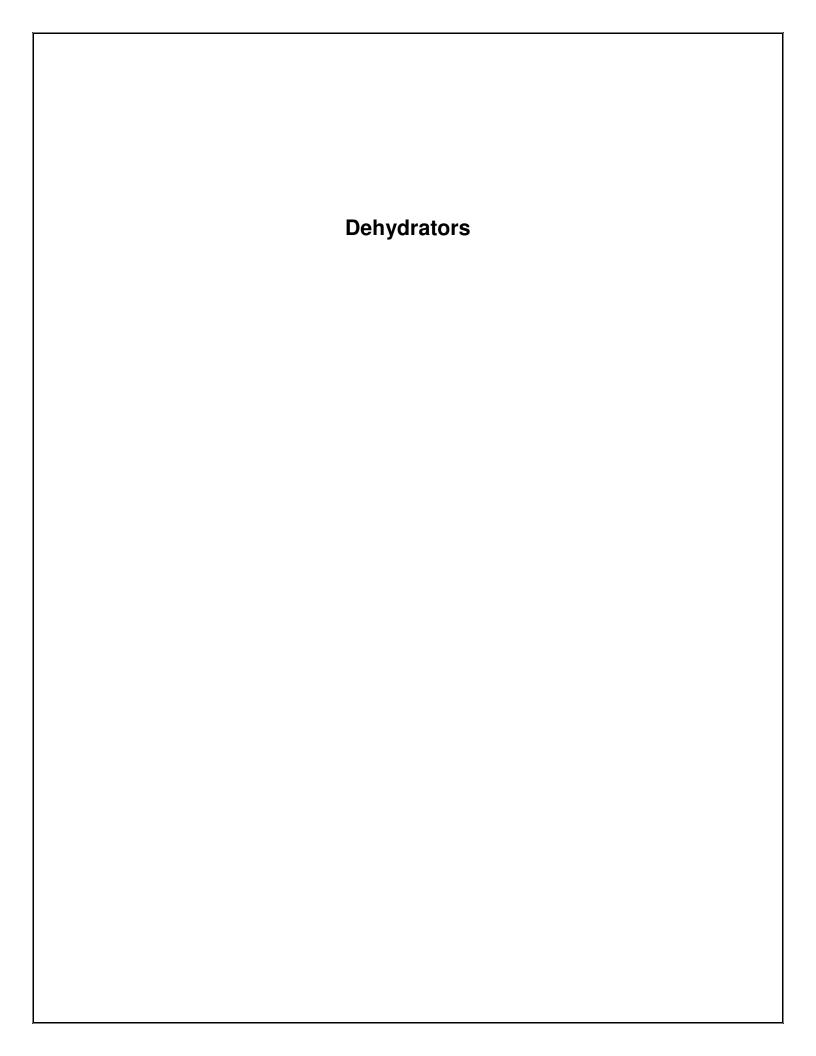
Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	⊠ Yes □ No
	☐ If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	☐ Yes ☐ No
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
3.)	Will there be Liquid Loading/Unloading Operations?
	⊠ Yes □ No
	$oxed{oxed}$ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	⊠ Yes □ No
	$\hfill \square$ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	☐ Yes ☐ No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

Page 1 of 2 Revision 2/11

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
	Chemical Name/CAS ¹	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads	PM-10 PM-2.5	0.075 0.0075	0.33 0.033	0.075 0.0075	0.33 0.033	EE
Storage Pile Emissions						
Loading/Unloading Operations	VOCs Total HAPs CO2e	72.85 2.19 265	7.66 0.23 28	72.85 2.19 265	7.66 0.23 28	EE
Wastewater Treatment Evaporation & Operations						
Equipment Leaks	VOCs Total HAPs CO2e	2.18 0.051 45.14	9.54 0.22 198	2.18 0.051 45.14	9.54 0.22 198	EE
General Clean-up VOC Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.


Page 2 of 2 Revision 2/11

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Attachment L.	
Emission Unit Data Sheets	

West Virginia Department of Environmental Protection

Division of Air Quality

40 CFR Part 63; Subpart HH & HHH Registration Form

DIVISION OF AIR QUALITY: (304) 926-0475 WEB PAGE: http://www.wvdep.org

Complete this form for any oil and natural gas production or natural gas transmission and storage facility that uses an affected unit under HH/HHH, whether subject or not.

Section A: Facility Description					
Affected facility actual annual average natural gas throughput (scf/day): 220,000,000					
Affected facility actual annual average hydrocarbon liquid throughput: (bbl/day):	195				
The affected facility processes, upgrades, or stores hydrocarbon liquids prior to custody transfer.	(Yes)	No			
The affected facility processes, upgrades, or stores natural gas prior to the point at which natural gas	Yes	No			
(NG) enters the NG transmission and storage source category or is delivered to the end user.					
The affected facility is: prior to a NG processing plant a NG processing plant					
prior to the point of custody transfer and there is no NG processing plant					
The affected facility transports or stores natural gas prior to entering the pipeline to a local	Yes	No			
distribution company or to a final end user (if there is no local distribution company).					
The affected facility exclusively processes, stores, or transfers black oil.	Yes	(N_0)			
Initial producing gas-to-oil ratio (GOR):scf/bbl API gravity:degrees					
Section B: Dehydration Unit (if applicable) 1					
Description: Tamela Compressor Station Dehydrators (V-3110 & V-3210)					
Date of Installation: Upon Permit Annual Operating Hours: 8,760 Burner rating	(MMbtu/hr): 1.	5			
Issuance					
Exhaust Stack Height (ft): 18 Stack Diameter (ft): 0.75 Stack	k Temp. (°F): 35	0			
Glycol Type:					
Glycol Pump Type:	0.032ACFM/	gpm			
Condenser installed? Yes No Exit Temp. 200_ °F Condenser	r Pressure _0psi	g			
Incinerator/flare installed?					
Other controls installed? Yes No Describe:					
Wet Gas ² : Gas Temp.: _120_°F Gas Pressure _1,100 psig					
(Upstream of Contact Tower) Saturated Gas? Yes No If no, water co	ntent lb/MN	ASCF			
Dry Gas: Gas Flowrate(MMSCFD) Actual Design110 e	each				
(Downstream of Contact Tower) Water Content5.0 lb/MMSCF					
Lean Glycol: Circulation rate (gpm) Actual ³ _TBD Maximum ⁴ _	15				
Pump make/model: Kimray 45015PV					
Glycol Flash Tank (if applicable): Temp.:80°F Pressure5 psig Vented? Ye	es 🗌 No 🛭	\leq			
If no, describe vapor control: Vent gas used in reboiler as fuel a	and as a backup wo	uld go to			
the VRU system via the storage tanks					
Stripping Gas (if applicable): Source of gas: Dry gas, if used Rate _9	O scfm				

			the following required dehydration unit information:					
1.	System map indicating the chain of custody information. See Page 43 of this document for an example of a gas flow schematic. It is not intended that the							
	applicant provide this level of detail for all sources. The level of detail that is necessary is to establish where the custody transfer points are located. This can be accomplished by submitting a process flow diagram indicating custody transfer points and the natural gas flow. However, the DAQ reserves the right to request							
		ation in order to make the neces	•					
2.	Extended gas analysis from the Wet Gas Stream including mole percents of C ₁ -C ₈ , benzene, ethylbenzene, toluene, xylene and n-Hexane, using Gas Processors							
	, ,	` / 1	ould be taken from the inlet gas line, downstream from any inlet separator, and using a manifold to remove lect the sample from the center of the gas line. GPA standard 2166 reference method or a modified version of					
		(or similar) should be used.	the sample from the center of the gas line. Of 1 standard 2100 reference medica of a modified version of					
3.								
4.	Detailed calculations	of gas or hydrocarbon flow rat).					
		Section	C: Facility NESHAPS Subpart HH/HHH status					
		Subject to Subp	art HH - applies, but is exempt through < 1 tpy benzene exemption					
A	ffected facility	Subject to Subp	art HHH					
	status:		< 10/25 TPY					
(cl	hoose only one)	because:	Affected facility exclusively handles black oil					
			The facility wide actual annual average NG throughput is < 650 thousand					

No affected source is present

scf/day and facility wide actual annual average hydrocarbon liquid is < 250 bpd

NATURAL GAS GLYCOL DEHYDRATION UNIT DATA SHEET

Manufacturer and Model Max Dry Gas Flow Rate (MMscf/day)		110 M	Mscfd		
		Max Dry Gas Flow Rate (MMscf/day)		110	
		Design Heat	Input (MMBtu/hr)	1.5	
		Design Typ	e (DEG or TEG)	TE	EG
	Glycol	Sour	rce Status ²	M	[S
-	tion Unit ata	Date Installed/	Modified/Removed ³	Upon Permit Issuance	
		Regenerator	Still Vent APCD ⁴	F.	L
		Fuel F	IV (Btu/scf)	12	13
		H ₂ S Cont	ent (gr/100 scf)	()
		Opera	tion (hrs/yr)	8,7	60
Source ID #1	Vent	Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr
		AP	NO_X	0.15	0.64
	Reboiler Vent	AP	CO	0.12	0.54
16E		AP	VOC	0.0081	0.035
		AP	SO_2	0.00088	0.0039
		AP	PM_{10}	0.011	0.049
		GRI-GLYCalc [™]	VOC	0.34	1.48
		GRI-GLYCalc [™]	Benzene	0.024	0.10
14E	Glycol Regenerator	GRI-GLYCalc TM	Ethylbenzene	0.0034	0.015
1412	Still Vent	GRI-GLYCalc TM	Toluene	0.053	0.23
		GRI-GLYCalc [™]	Xylenes	0.012	0.052
		GRI-GLYCalc TM	n-Hexane	0.0087	0.038
		GRI-GLYCalc TM	VOC	0.98	4.28
		GRI-GLYCalc [™]	Benzene	0.0019	0.0083
15E	Flash Gas	GRI-GLYCalc [™]	Ethylbenzene	0.00010	0.0003
1311	Tank Vent	GRI-GLYCalc [™]	Toluene	0.0024	0.011
		GRI-GLYCalc [™]	Xylenes	0.00020	0.00080
		GRI-GLYCalc [™]	n-Hexane	0.022	0.095

		Manufact	urer and Model	110 M	Mscfd
		Max Dry Gas Flow Rate (mmscf/day)		11	0
		Design Heat	Input (mmBtu/hr)	1.5	
		Design Typ	oe (DEG or TEG)	TE	EG
	l Glycol	Sour	rce Status ²	M	[S
	ation Unit	Date Installed/	Modified/Removed ³	Upon Perm	it Issuance
		Regenerator	Still Vent APCD ⁴	F	L
		Fuel F	IV (Btu/scf)	12	13
		H ₂ S Cont	ent (gr/100 scf)	()
		Opera	tion (hrs/yr)	8,7	60
Source ID #1	Vent	Reference ⁵	Potential Emissions ⁶	lbs/hr	tons/yr
	Reboiler Vent	AP	NO _X	0.15	0.64
		AP	СО	0.12	0.54
19E		AP	VOC	0.0081	0.035
		AP	SO_2	0.00088	0.0039
		AP	PM_{10}	0.011	0.049
		GRI-GLYCale TM	VOC	0.34	1.48
		GRI-GLYCalc TM	Benzene	0.024	0.10
17E	Glycol Regenerator Still Vent	GRI-GLYCalc TM	Ethylbenzene	0.0034	0.015
1712		GRI-GLYCalc TM	Toluene	0.053	0.23
		GRI-GLYCalc TM	Xylenes	0.012	0.052
		GRI-GLYCalc TM	n-Hexane	0.0087	0.038
		GRI-GLYCalc TM	VOC	0.98	4.28
		GRI-GLYCalc TM	Benzene	0.0019	0.0083
18E	Flash Gas	GRI-GLYCalc TM	Ethylbenzene	0.00010	0.0003
1012	Tank Vent	GRI-GLYCalc TM	Toluene	0.0024	0.011
		GRI-GLYCalc TM	Xylenes	0.00020	0.00080
		GRI-GLYCalc TM	n-Hexane	0.022	0.095

- 1. Enter the appropriate Source Identification Numbers for the glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent. The glycol dehydration unit Reboiler Vent and glycol Regenerator Still Vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a *Glycol Dehydration Unit Data Sheet* shall be completed for each, using Source Identification #s RBV-2 and RSV-2, RBV-3 and RSV-3, etc.
- 2. Enter the Source Status using the following codes:

NS Construction of New Source ES Existing Source
MS Modification of Existing Source RS Removal of Source

	modification	or removal.			
4.	Enter the Air	Pollution Control Device	(APCD) type designation u	using the followin	ng codes:
	NA	None	CD	Condenser	
	FL	Flare	CC	Condenser/Cor	mbustion Combination
	TO	Thermal Oxidizer			
5.	Enter the Po	tential Emissions Data Re	ference designation using th	e following code	s:
	MD	Manufacturer's Data	AP	AP-42	
	GR	GRI-GLYCalc TM	OT	Other	(please list)

3. Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source),

6. Enter the Reboiler Vent and glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs per hour and tons per year. The glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalc Aggregate Calculations Report to this Glycol Dehydration Unit Data Sheet(s). This PTE data shall be incorporated in the Emissions Summary Sheet.

Include a copy of the GRI-GLYCalc $^{\rm TM}$ analysis. This includes a printout of the aggregate calculations report, which shall include emissions reports, equipment reports, and stream reports.

*An explanation of input parameters and examples, when using GRI-GLYCalcTM is available on our website.

Fu	uel Conditioning Heater
1	

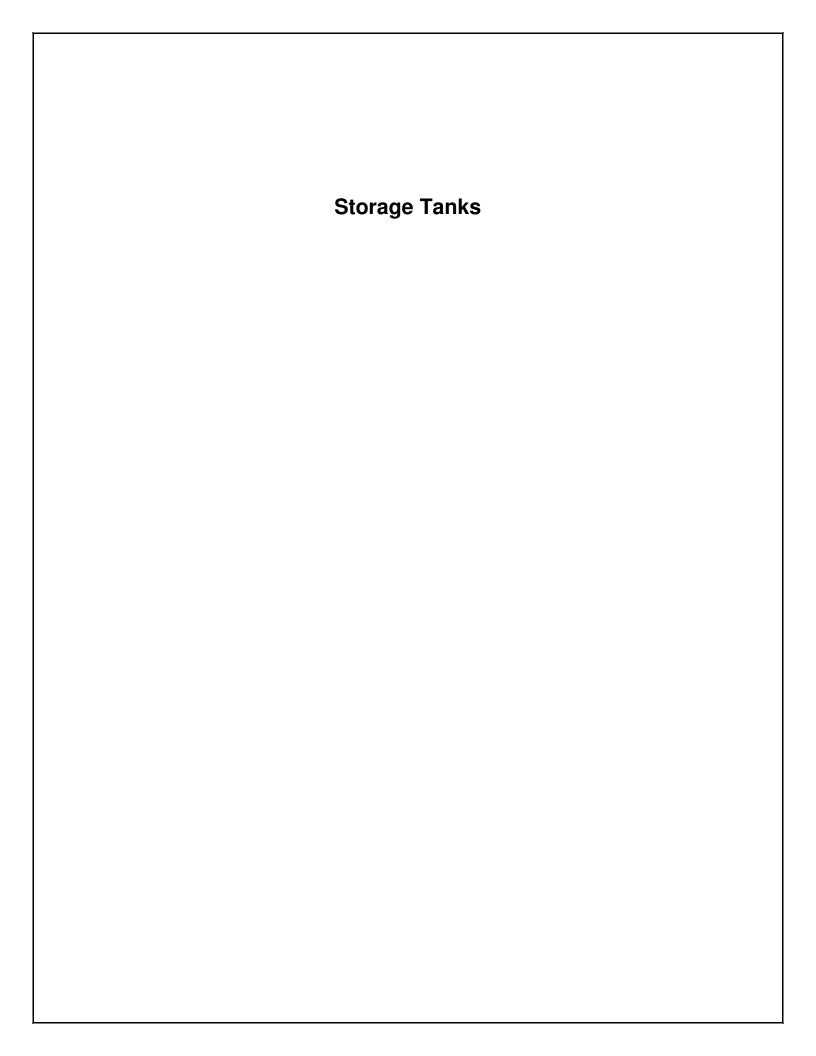
Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 31E

Name or type and model of proposed affected source:
Fuel Conditioning Heater - 500,000 Btu/hr
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Natural Gas as fuel - 490 scf/hr
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Heater is used to increase temperature of fuel before use by the compressor engines to allow more complete combustion.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Combustion process

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.


6.	Co	mbustion Data (if applic	able):			
	(a)	Type and amount in ap	propriate units	of fuel(s) to be b	urned:	
Na	tura	ıl gas as fuel - 490 scf/hr				
	(b)	Chemical analysis of prand ash:	oposed fuel(s),	excluding coal, i	ncluding maxim	um percent sulfur
Sa	me a	as onsite gas analysis - see A	ttachment N			
	(c)	Theoretical combustion	air requiremer	nt (ACF/unit of fu	el):	
		@		°F and		psia.
	(d)	Percent excess air:				
	(e)	Type and BTU/hr of bu	rners and all ot	her firing equipm	ent planned to I	oe used:
50	0,00	00 Btu/hr. Natural gas.				
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel,	identify supplier	and seams and	I give sizing of the
	(g)	Proposed maximum de	sign heat input	:		× 10 ⁶ BTU/hr.
7.	Pro	jected operating schedu	ıle:			
Ηοι	ırs/	Day 24	Days/Week	7	Weeks/Year	52

8.	. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
@		°F and	d	psia		
a.	NOx	0.049	lb/hr	grains/ACF		
b.	SO ₂	0.00029	lb/hr	grains/ACF		
c.	СО	0.041	lb/hr	grains/ACF		
d.	PM ₁₀	0.0037	lb/hr	grains/ACF		
e.	Hydrocarbons		lb/hr	grains/ACF		
f.	VOCs	0.0027	lb/hr	grains/ACF		
g.	Pb		lb/hr	grains/ACF		
h.	Specify other(s)					
	Total HAP (including HCHO)	0.00092	lb/hr	grains/ACF		
	CO2e	58.7	lb/hr	grains/ACF		
			lb/hr	grains/ACF		
			lb/hr	grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

⁽²⁾ Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 						
MONITORING	RECORDKEEPING					
see Attachment O	see Attachment O					
DEDODTINO	TEOTINO					
REPORTING	TESTING					
see Attachment O	see Attachment O					
	E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.					
RECORDKEEPING. PLEASE DESCRIBE THE PROPMONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE					
REPORTING. PLEASE DESCRIBE THE PRO	POSED FREQUENCY OF REPORTING OF THE					
	POSED FREQUENCY OF REPORTING OF THE					
RECORDKEEPING.						
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISPOLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR					
10 Describe all operating ranges and mainter	nance procedures required by Manufacturer to					
• • • •	iance procedures required by manaraturer to					
maintain warranty						

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

4	Dulle Oterana Araa Nama		Tauli Nama
1.	Bulk Storage Area Name		Tank Name
	Production Storage Tanks		Settling Tank
3.	Tank Equipment Identification No. (as assigned on		Emission Point Identification No. (as assigned on
	Equipment List Form)		Equipment List Form)
	TK-9000	2	20E
5.	Date of Commencement of Construction (for existing	tanks	
6.	Type of change ⊠ New Construction □ N	lew S	stored Material
7.	Description of Tank Modification (if applicable)		
	,		
<u> </u>			
7A.	Does the tank have more than one mode of operation		☐ Yes
	(e.g. Is there more than one product stored in the tank		
7B.	If YES, explain and identify which mode is covered	d by	this application (Note: A separate form must be
	completed for each mode).		
7C.	Provide any limitations on source operation affecting	emis	sions, any work practice standards (e.g. production
	variation, etc.):		
	None		
	II. TANK INFORM	ATIO	N (required)
8.	Design Capacity (specify barrels or gallons). Use		• • •
-	height.		mornar oroto cocacina, area mempioa e,
) barre	el
9A.	Tank Internal Diameter (ft)	9B. ⁻	Tank Internal Height (or Length) (ft)
	12		25
10A	. Maximum Liquid Height (ft)	10B.	Average Liquid Height (ft)
	24		12.5
11A	. Maximum Vapor Space Height (ft)	11B.	Average Vapor Space Height (ft)
	1		12.5
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design			
	liquid levels and overflow valve heights.		
l	480) harre	[د

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
2,989,350	8,190			
14. Number of Turnovers per year (annual net throughput/maximum tank liquid volume) 148				
15. Maximum tank fill rate (gal/min) TBD				
16. Tank fill method				
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal ☐ other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof	flat roofcone roof <u>X</u> dome roofdouble deck roof			
☐ Internal Floating Roof vertical column su ☐ Variable Vapor Space lifter roof ☐ Pressurized spherical cylindrical ☐ Underground ☐ Other (describe)	diaphragm			
	ATION (optional if providing TANKS Summary Sheets)			
19. Tank Shell Construction: ☐ Riveted ☐ Gunite lined ☐ Epoxy-coated	_			
20A. Shell Color 20B. Roof Colo	I			
21. Shell Condition (if metal and unlined):				
☐ No Rust ☐ Light Rust ☐ Dense R	ust Not applicable			
22A. Is the tank heated? YES NO				
22B. If YES, provide the operating temperature (°F)				
22C. If YES, please describe how heat is provided to t	ank.			
23. Operating Pressure Range (psig): to				
24. Complete the following section for Vertical Fixed Ro	oof Tanks Does Not Apply			
24A. For dome roof, provide roof radius (ft) 12				
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Tal	nks Does Not Apply			
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type:	•			
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (che	eck one)			
25E. Is the Floating Roof equipped with a weather ship	eld? YES NO			

25F. Describe deck fittings; indica	te the number of eac	ch type of fittina:			
ACCESS HATCH					
BOLT COVER, GASKETED:					
	AUTOMATIC GAL	JGE FLOAT WELL	<u>; </u>		
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:		
	COLLIM	N WELL	<u> </u>		
BUILT-UP COLUMN – SLIDING COVER, GASKETED:		JMN – SLIDING	PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:		
	LADDE	R WELL	1		
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:		
	GAUGE-HATCH	/SAMPLE PORT			
SLIDING COVER, GASKETED:		SLIDING COVER	, UNGASKETED:		
	ROOF LEG OR	HANGER WELL			
WEIGHTED MECHANICAL ACTUATION, GASKETED:	WEIGHTED ACTUATION, UN		SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)		
	· VACIIIM	BREAKER	i		
WEIGHTED MECHANICAL ACTUAT		•	ANICAL ACTUATION, UNGASKETED:		
	DIM '	: VENT			
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
OPEN:	DECK DRAIN (3-	NCH DIAMETER) 90% CLOSED:			
OTUD DDAIN					
STUB DRAIN 1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal Floating Roof Tanks Does Not Apply					
26A. Deck Type: Bolted Welded					
26B. For Bolted decks, provide deck construction:					
26C. Deck seam:					
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide					
Continuous sheet construction 7 feet wide					
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide					
Other (describe)					
26D. Deck seam length (ft)	26E. Area of deck (ft²)				
For column supported tanks:	26G. Diameter of each co	nlumn:			
26F. Number of columns:	Plamotor or dadir of				
IV. SITE INFORMANTION (optional	f providing TANKS Summary	Sheets)			
27. Provide the city and state on which the data in this s	ection are based.				
28. Daily Average Ambient Temperature (°F)					
29. Annual Average Maximum Temperature (°F)					
30. Annual Average Minimum Temperature (°F)					
31. Average Wind Speed (miles/hr)					
32. Annual Average Solar Insulation Factor (BTU/(ft²-da	r))				
33. Atmospheric Pressure (psia)					
V. LIQUID INFORMATION (optional	f providing TANKS Summary	Sheets)			
34. Average daily temperature range of bulk liquid:					
34A. Minimum (°F)	34B. Maximum (°F)				
35. Average operating pressure range of tank:					
35A. Minimum (psig)	35B. Maximum (psig)				
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vap	or Pressure (psia)			
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vap	or Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vap	or Pressure (psia)			
39. Provide the following for each liquid or gas to be sto	ı ed in tank. Add additional pa	ges if necessary.			
39A. Material Name or Composition					
39B. CAS Number					
39C. Liquid Density (lb/gal)					
39D. Liquid Molecular Weight (lb/lb-mole)					
39E. Vapor Molecular Weight (lb/lb-mole)					

Maximum Vapor Press	sure						
39F. True (psia)							
39G. Reid (psia) Months Storage per Yo							
39H. From	Cai						
39I. To							
VI. EMISSIONS AND CONTROL DEVICE DATA (required)							
40. Emission Control I	Devices (check as man			, , ,			
☐ Carbon Adsorp		,,		r. FF.			
☐ Condenser ¹							
☐ Conservation V	/ent (psia)						
Vacuum S	(1 0)		Pressure S	ettina			
	lief Valve (psig)			- ······g			
☐ Inert Gas Blank	:						
☐ Insulation of Ta							
Liquid Absorpti							
Refrigeration o							
☐ Rupture Disc (p							
☐ Vent to Incinera	• •						
☐ Vent to moment ☐ Other¹ (describ		nit and vano	rs recycled h	ack into system			
,	, .	-	-	uck into system			
Complete appropriate Air Pollution Control Device Sheet.							
41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).							
	i i	1			olication). I		
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	Estimation Method ¹		
	i i	1			Estimation Method ¹		
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss			
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617	Estimation Method ¹		
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617 *Annual Loss includes	Estimation Method ¹		
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617	Estimation Method ¹		
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617 *Annual Loss includes	Estimation Method ¹		
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617 *Annual Loss includes	Estimation Method ¹		
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617 *Annual Loss includes	Estimation Method ¹		
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617 *Annual Loss includes	Estimation Method ¹		
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617 *Annual Loss includes	Estimation Method ¹		
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617 *Annual Loss includes	Estimation Method ¹		
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617 *Annual Loss includes	Estimation Method ¹		
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617 *Annual Loss includes	Estimation Method ¹		
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617 *Annual Loss includes	Estimation Method ¹		
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617 *Annual Loss includes	Estimation Method ¹		
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617 *Annual Loss includes	Estimation Method ¹		
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr) 27,617 *Annual Loss includes	Estimation Method ¹		

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

 $[\]boxtimes$ Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

	T		
Bulk Storage Area Name	2. Tank Name		
Production Storage Tanks	Produced Water Tank 1		
3. Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>)	4. Emission Point Identification No. (as assigned on <i>Equipment List Form</i>)		
TK-9100	23E		
5. Date of Commencement of Construction (for existing	tanks)		
6. Type of change ⊠ New Construction □ I	New Stored Material Other Tank Modification		
7. Description of Tank Modification (if applicable)			
7A. Does the tank have more than one mode of operatio (e.g. Is there more than one product stored in the tar	k?)		
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode).			
7C. Provide any limitations on source operation affecting variation, etc.): None	emissions, any work practice standards (e.g. production		
II TANK INFORM	IATION (required)		
Design Capacity (specify barrels or gallons). Use height.	the internal cross-sectional area multiplied by internal		
	0 barrel		
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)		
12	20		
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)		
19	12.5		
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)		
1	10		
12. Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights.	is also known as "working volume" and considers design		
38	0 barrel		

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
344,925	945			
14. Number of Turnovers per year (annual net throughpu	17/maximum tank liquid volume) 22			
15. Maximum tank fill rate (gal/min) TBD				
16. Tank fill method				
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): Fixed Roof	double deck roof upport self-supporting diaphragm			
Other (describe)	ATION (a l'a a l'Y a a l'E a TANKO O a a a a constitue de la			
19. Tank Shell Construction:	ATION (optional if providing TANKS Summary Sheets)			
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated	d rivets			
20A. Shell Color 20B. Roof Colo				
21. Shell Condition (if metal and unlined):				
☐ No Rust ☐ Light Rust ☐ Dense R 22A. Is the tank heated? ☐ YES ☐ NO	ust Not applicable			
22B. If YES, provide the operating temperature (°F)22C. If YES, please describe how heat is provided to t	onk			
<u> </u>	dir.			
23. Operating Pressure Range (psig): to24. Complete the following section for Vertical Fixed Ro	of Tanks Doos Not Apply			
24A. For dome roof, provide roof radius (ft) 12	of Tanks Does Not Apply			
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Ta	nks Does Not Apply			
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type:	·			
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (che	eck one)			
25E. Is the Floating Roof equipped with a weather ship	eld?			

25F. Describe deck fittings; indica	te the number of eac	ch type of fittina:			
ACCESS HATCH					
BOLT COVER, GASKETED:					
	AUTOMATIC GAL	JGE FLOAT WELL	<u>; </u>		
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:		
	COLLIM	N WELL	<u> </u>		
BUILT-UP COLUMN – SLIDING COVER, GASKETED:		JMN – SLIDING	PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:		
	LADDE	R WELL	1		
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:		
	GAUGE-HATCH	/SAMPLE PORT			
SLIDING COVER, GASKETED:		SLIDING COVER	, UNGASKETED:		
	ROOF LEG OR	HANGER WELL			
WEIGHTED MECHANICAL ACTUATION, GASKETED:	WEIGHTED ACTUATION, UN		SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)		
	· VACIIIM	BREAKER	i		
WEIGHTED MECHANICAL ACTUAT		•	ANICAL ACTUATION, UNGASKETED:		
	DIM '	: VENT			
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:					
OPEN:	DECK DRAIN (3-	NCH DIAMETER) 90% CLOSED:			
OTUD DDAIN					
STUB DRAIN 1-INCH DIAMETER:					
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)					

26. Complete the following section for Internal Floating Roof Tanks Does Not Apply					
26A. Deck Type: Bolted Welded					
26B. For Bolted decks, provide deck construction:					
26C. Deck seam:					
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide					
Continuous sheet construction 7 feet wide					
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide					
Other (describe)					
26D. Deck seam length (ft)	26E. Area of deck (ft²)				
For column supported tanks:	26G. Diameter of each co	nlumn:			
26F. Number of columns:	Plamotor or dadir of				
IV. SITE INFORMANTION (optional	f providing TANKS Summary	Sheets)			
27. Provide the city and state on which the data in this s	ection are based.				
28. Daily Average Ambient Temperature (°F)					
29. Annual Average Maximum Temperature (°F)					
30. Annual Average Minimum Temperature (°F)					
31. Average Wind Speed (miles/hr)					
32. Annual Average Solar Insulation Factor (BTU/(ft²-da	r))				
33. Atmospheric Pressure (psia)					
V. LIQUID INFORMATION (optional	f providing TANKS Summary	Sheets)			
34. Average daily temperature range of bulk liquid:					
34A. Minimum (°F)	34B. Maximum (°F)				
35. Average operating pressure range of tank:					
35A. Minimum (psig)	35B. Maximum (psig)				
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vap	or Pressure (psia)			
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vap	or Pressure (psia)			
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vap	or Pressure (psia)			
39. Provide the following for each liquid or gas to be sto	ı ed in tank. Add additional pa	ges if necessary.			
39A. Material Name or Composition					
39B. CAS Number					
39C. Liquid Density (lb/gal)					
39D. Liquid Molecular Weight (lb/lb-mole)					
39E. Vapor Molecular Weight (lb/lb-mole)					

39F. True (psia) 39G. Reid (psia)	ure					
Months Storage per Ye 39H. From 39I. To	ear					
391. 10	VI FMISSIONS /		OL DEVICE	DATA (required)		
40. Emission Control D				` ' '		
☐ Carbon Adsorpt	•	iy as appiy).		т Арріу		
☐ Condenser ¹						
☐ Conservation V	ont (psia)					
Vacuum S			Pressure Se	atting		
☐ Emergency Rel	•		i iessuie od	atting		
☐ Inert Gas Blank	" •,					
Insulation of Ta						
☐ Liquid Absorptio☐ Refrigeration of						
☐ Rupture Disc (p☐ Vent to Incinera	•					
		Tu:4 4		1 . :		
Other¹ (describe	, 1	_	-	ack into system		
¹ Complete appropriate Air Pollution Control Device Sheet.						
44 5 1 15 1 1	D . / . ". T . D				1' 1' \	
41. Expected Emission	n Rate (submit Test Da	1	1	or elsewhere in the a	oplication).	
Material Name &	Breathing Loss	Workin	g Loss	Annual Loss		
1		1	1		Estimation Method ¹	
Material Name & CAS No.	Breathing Loss	Workin	g Loss	Annual Loss		
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	
Material Name & CAS No. VOC Emissions are	Breathing Loss (lb/hr)	Workin Amount	g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹	

 $^{^1}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

		I		
,	ge Area Name		Tank Name	
	Storage Tanks		Produced Water Tank 2	
	pment Identification No. (as assigned on List Form)		Emission Point Identification No. (as assigned on <i>Equipment List Form</i>)	
TK-9110	LIST FOITH		• •	
			24E	
5. Date of Co	mmencement of Construction (for existing	tanks	5)	
6. Type of ch	ange 🛛 New Construction 🔲 N	New S	Stored Material	
7. Description	of Tank Modification (if applicable)			
_				
		_		
	ank have more than one mode of operatior re more than one product stored in the tan		☐ Yes	
	-		this application (Note: A separate form must be	
	to the form of the first section in the first covered for each mode).	ea by	this application (Note: A separate form must be	
Completed	ioi each mode).			
		emis	sions, any work practice standards (e.g. production	
variation, e	etc.):			
None				
	II. TANK INFORM	ATIO	N (required)	
•	pacity (specify barrels or gallons). Use	the i	internal cross-sectional area multiplied by internal	
height.	400	~ 4		
		0 barre		
9A. Lank Interr	nal Diameter (ft)	9B.	Tank Internal Height (or Length) (ft)	
	12		20	
10A. Maxim	um Liquid Height (ft)	10B.	Average Liquid Height (ft)	
	19		12.5	
11A. Maxim	um Vapor Space Height (ft)	11B.	Average Vapor Space Height (ft)	
	1		10	
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design				
liquid level	s and overflow valve heights.			
	380	() barre	el	

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)			
344,925	945			
14. Number of Turnovers per year (annual net throughpu	17/maximum tank liquid volume) 22			
15. Maximum tank fill rate (gal/min) TBD				
16. Tank fill method				
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems			
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year			
18. Type of tank (check all that apply): Fixed Roof	double deck roof upport self-supporting diaphragm			
Other (describe)	ATION (a l'a a l'Y a a l'E a TANKO O a a a a constitue de la			
19. Tank Shell Construction:	ATION (optional if providing TANKS Summary Sheets)			
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated	d rivets			
20A. Shell Color 20B. Roof Colo				
21. Shell Condition (if metal and unlined):				
☐ No Rust ☐ Light Rust ☐ Dense R 22A. Is the tank heated? ☐ YES ☐ NO	ust Not applicable			
22B. If YES, provide the operating temperature (°F)22C. If YES, please describe how heat is provided to t	onk			
<u> </u>	dir.			
23. Operating Pressure Range (psig): to24. Complete the following section for Vertical Fixed Ro	of Tanks Doos Not Apply			
24A. For dome roof, provide roof radius (ft) 12	of Tanks Does Not Apply			
24B. For cone roof, provide slope (ft/ft)				
25. Complete the following section for Floating Roof Ta	nks Does Not Apply			
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type:	·			
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO			
25D. If YES, how is the secondary seal mounted? (che	eck one)			
25E. Is the Floating Roof equipped with a weather ship	eld?			

25F. Describe deck fittings; indica	te the number of eac	ch type of fittina:	
		S HATCH	
BOLT COVER, GASKETED:	UNBOLTED COV	=	UNBOLTED COVER, UNGASKETED:
	AUTOMATIC GAL	JGE FLOAT WELL	<u>; </u>
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:
	COLLIM	N WELL	<u> </u>
BUILT-UP COLUMN – SLIDING COVER, GASKETED:		JMN – SLIDING	PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
	LADDE	R WELL	<u>'</u>
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:
	GAUGE-HATCH	/SAMPLE PORT	
SLIDING COVER, GASKETED:		SLIDING COVER	, UNGASKETED:
	ROOF LEG OR	HANGER WELL	
WEIGHTED MECHANICAL ACTUATION, GASKETED:		MECHANICAL	SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)
	\/ACLILIM	BREAKER	i
WEIGHTED MECHANICAL ACTUAT		•	ANICAL ACTUATION, UNGASKETED:
	RIM '	: VENT	
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION, UNGASKETED:
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:			
	QTI ID	DRAIN	
1-INCH DIAMETER:	3106	סונתווא	
OTHER (DESC	RIBE, ATTACH ADI	DITIONAL PAGES	IF NECESSARY)

26. Complete the following section for Internal Floating	loof Tanks Does N	lot Apply
26A. Deck Type:		
26B. For Bolted decks, provide deck construction:		
26C. Deck seam:		
☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide		
Continuous sheet construction 7 feet wide		
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide		
Other (describe)		
26D. Deck seam length (ft)	26E. Area of deck (ft²)	
For column supported tanks:	26G. Diameter of each	column.
26F. Number of columns:	Zodi. Zidiriotor or odori	ooidiiiii
IV. SITE INFORMANTION (optional	f providing TANKS Summa	ary Sheets)
27. Provide the city and state on which the data in this s	ection are based.	
28. Daily Average Ambient Temperature (°F)		
29. Annual Average Maximum Temperature (°F)		
30. Annual Average Minimum Temperature (°F)		
31. Average Wind Speed (miles/hr)		
32. Annual Average Solar Insulation Factor (BTU/(ft²-da	y))	
33. Atmospheric Pressure (psia)		
V. LIQUID INFORMATION (optional	f providing TANKS Summa	ary Sheets)
34. Average daily temperature range of bulk liquid:	T	
34A. Minimum (°F)	34B. Maximum (°F)	
35. Average operating pressure range of tank:		
35A. Minimum (psig)	35B. Maximum (psig)	
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Va	apor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Va	apor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Va	apor Pressure (psia)
39. Provide the following for each liquid or gas to be sto	ed in tank. Add additional ı	pages if necessary.
39A. Material Name or Composition		
39B. CAS Number		
39C. Liquid Density (lb/gal)		
39D. Liquid Molecular Weight (lb/lb-mole)		
39E. Vapor Molecular Weight (lb/lb-mole)		

39F. True (psia) 39G. Reid (psia)	ure				
Months Storage per Ye 39H. From 39I. To	ear				
391. 10	VI EMISSIONS /		OL DEVICE	E DATA (required)	
40. Emission Control D				` ' '	
☐ Carbon Adsorpt	•	iy as appiy).		т Арріу	
☐ Condenser ¹					
☐ Conservation V	ont (neig)				
Vacuum S			Pressure Se	atting	
☐ Emergency Rel	•		i iessuie ot	atting	
☐ Emergency Ner	•,				
☐ Insulation of Ta					
☐ Liquid Absorptio☐ Refrigeration of					
☐ Rupture Disc (p☐ Vent to Incinera					
		Tu:4		1 . :	
Other¹ (describe	, .	_	-	ack into system	
	riate Air Pollution Con	troi Device S	meet.		
		. 0		1 1 1 1	l'
41. Expected Emission		1	ations here	or elsewhere in the a	pplication).
41. Expected Emission Material Name &	n Rate (submit Test Da Breathing Loss	Workin	ations here	Annual Loss	
41. Expected Emission	n Rate (submit Test Da	1	ations here		pplication). Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC	n Rate (submit Test Da Breathing Loss	Workin	ations here	Annual Loss	
41. Expected Emission Material Name & CAS No.	Rate (submit Test Da Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Rate (submit Test Da Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Rate (submit Test Da Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Rate (submit Test Da Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Rate (submit Test Da Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Rate (submit Test Da Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Rate (submit Test Da Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emission Material Name & CAS No. VOC Emissions are	Rate (submit Test Da Breathing Loss (lb/hr)	Workin Amount	ations here g Loss Units	Annual Loss (lb/yr)	Estimation Method ¹

 $^{^1}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

	10	- 1 1	
Bulk Storage Area Name	2.		
Production Storage Tanks		Condensate Tank 1	
	ation No. (as assigned on 4.	` ` `	
Equipment List Form)		Equipment List Form)	
TK-9200		21E	
5. Date of Commencement of	of Construction (for existing tal	anks)	
6. Type of change 🛛 Ne	ew Construction	w Stored Material	
7. Description of Tank Modifi	ication (if applicable)		
- 	,		
7A. Does the tank have more			
. –	ne product stored in the tank?		
completed for each mode)		by this application (Note: A separate form must be	
Completed for each mode,)-		
	source operation affecting er	missions, any work practice standards (e.g. production	
variation, etc.):			
None			
	II. TANK INFORMAT	TION (required)	
	barrels or gallons). Use th	he internal cross-sectional area multiplied by internal	
height.	400.1		
	400 b		
9A. Tank Internal Diameter (ft		B. Tank Internal Height (or Length) (ft)	
	2	20	
10A. Maximum Liquid Heig	ht (ft) 10	0B. Average Liquid Height (ft)	
	9	12.5	
11A. Maximum Vapor Space	ce Height (ft)	1B. Average Vapor Space Height (ft)	
	1	10	
		also known as "working volume" and considers design	
liquid levels and overflow valve heights.			
	380 h	parrel	

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
1,149,750 14. Number of Turnovers per year (annual net throughpu	3,150
14. Number of Furnovers per year (annual net infoughpe	72
15. Maximum tank fill rate (gal/min) TBD	
16. Tank fill method	
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal ☐ other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof	flat roof cone roof X dome roof double deck roof
☐ Internal Floating Roof vertical column su ☐ Variable Vapor Space lifter roof ☐ Pressurized spherical cylindrica ☐ Underground ☐ Other (describe)	diaphragm
	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	_
Riveted Gunite lined Epoxy-coate	
20A. Shell Color 20B. Roof Colo	or 20C. Year Last Painted
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense R	lust
22A. Is the tank heated? YES NO	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to t	ank.
23. Operating Pressure Range (psig): to	
24. Complete the following section for Vertical Fixed Ro	oof Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft) 12	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Ta	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	•
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (che	eck one)
25E. Is the Floating Roof equipped with a weather ship	eld?

25F. Describe deck fittings; indica	te the number of eac	ch type of fittina:	
		S HATCH	
BOLT COVER, GASKETED:	UNBOLTED COV	=	UNBOLTED COVER, UNGASKETED:
	AUTOMATIC GAL	JGE FLOAT WELL	<u>; </u>
BOLT COVER, GASKETED:	UNBOLTED COV		UNBOLTED COVER, UNGASKETED:
	COLLIM	N WELL	<u> </u>
BUILT-UP COLUMN – SLIDING COVER, GASKETED:		JMN – SLIDING	PIPE COLUMN – FLEXIBLE FABRIC SLEEVE SEAL:
	LADDE	R WELL	<u>'</u>
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:
	GAUGE-HATCH	/SAMPLE PORT	
SLIDING COVER, GASKETED:		SLIDING COVER	, UNGASKETED:
	ROOF LEG OR	HANGER WELL	
WEIGHTED MECHANICAL ACTUATION, GASKETED:		MECHANICAL	SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)
	\/ACLILIM	BREAKER	i
WEIGHTED MECHANICAL ACTUAT		•	ANICAL ACTUATION, UNGASKETED:
	RIM '	: VENT	
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION, UNGASKETED:
DECK DRAIN (3-INCH DIAMETER) OPEN: 90% CLOSED:			
	QTI ID	DRAIN	
1-INCH DIAMETER:	3106	סונתווא	
OTHER (DESC	RIBE, ATTACH ADI	DITIONAL PAGES	IF NECESSARY)

26. Complete the following section for Internal Floating	loof Tanks Does N	lot Apply
26A. Deck Type:		
26B. For Bolted decks, provide deck construction:		
26C. Deck seam:		
☐ Continuous sheet construction 5 feet wide ☐ Continuous sheet construction 6 feet wide		
Continuous sheet construction 7 feet wide		
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide		
Other (describe)		
26D. Deck seam length (ft)	26E. Area of deck (ft²)	
For column supported tanks:	26G. Diameter of each	column.
26F. Number of columns:	Zodi. Zidiriotor or odori	ooidiiiii
IV. SITE INFORMANTION (optional	f providing TANKS Summa	ary Sheets)
27. Provide the city and state on which the data in this s	ection are based.	
28. Daily Average Ambient Temperature (°F)		
29. Annual Average Maximum Temperature (°F)		
30. Annual Average Minimum Temperature (°F)		
31. Average Wind Speed (miles/hr)		
32. Annual Average Solar Insulation Factor (BTU/(ft²-da	y))	
33. Atmospheric Pressure (psia)		
V. LIQUID INFORMATION (optional	f providing TANKS Summa	ary Sheets)
34. Average daily temperature range of bulk liquid:	T	
34A. Minimum (°F)	34B. Maximum (°F)	
35. Average operating pressure range of tank:		
35A. Minimum (psig)	35B. Maximum (psig)	
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Va	apor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Va	apor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Va	apor Pressure (psia)
39. Provide the following for each liquid or gas to be sto	ed in tank. Add additional ı	pages if necessary.
39A. Material Name or Composition		
39B. CAS Number		
39C. Liquid Density (lb/gal)		
39D. Liquid Molecular Weight (lb/lb-mole)		
39E. Vapor Molecular Weight (lb/lb-mole)		

Maximum Vapor Press 39F. True (psia) 39G. Reid (psia) Months Storage per Ye 39H. From 39I. To					
391. 10	VI FMISSIONS /		OL DEVICE	DATA (required)	
40. Emission Control D			_	· · · · ·	
☐ Carbon Adsorp ☐ Condenser¹ ☐ Conservation V Vacuum S ☐ Emergency Rel ☐ Inert Gas Blank ☐ Insulation of Ta ☐ Liquid Absorptic ☐ Refrigeration of ☐ Rupture Disc (p ☐ Vent to Incinera ☐ Other¹ (describ	tion ¹ fent (psig) etting ief Valve (psig) set of ink with on (scrubber) ¹ Fank osig) ator ¹	Jnit and vapor	Pressure Se	etting	
				or alasythers in the ar	anlication)
41. Expected Emission Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	1	Annual Loss (lb/yr)	Estimation Method ¹
VOC	0.018	0.015	lb/hr	282.1	O - ProMax 4.0
Emissions are controlled value					

 $^{^1}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

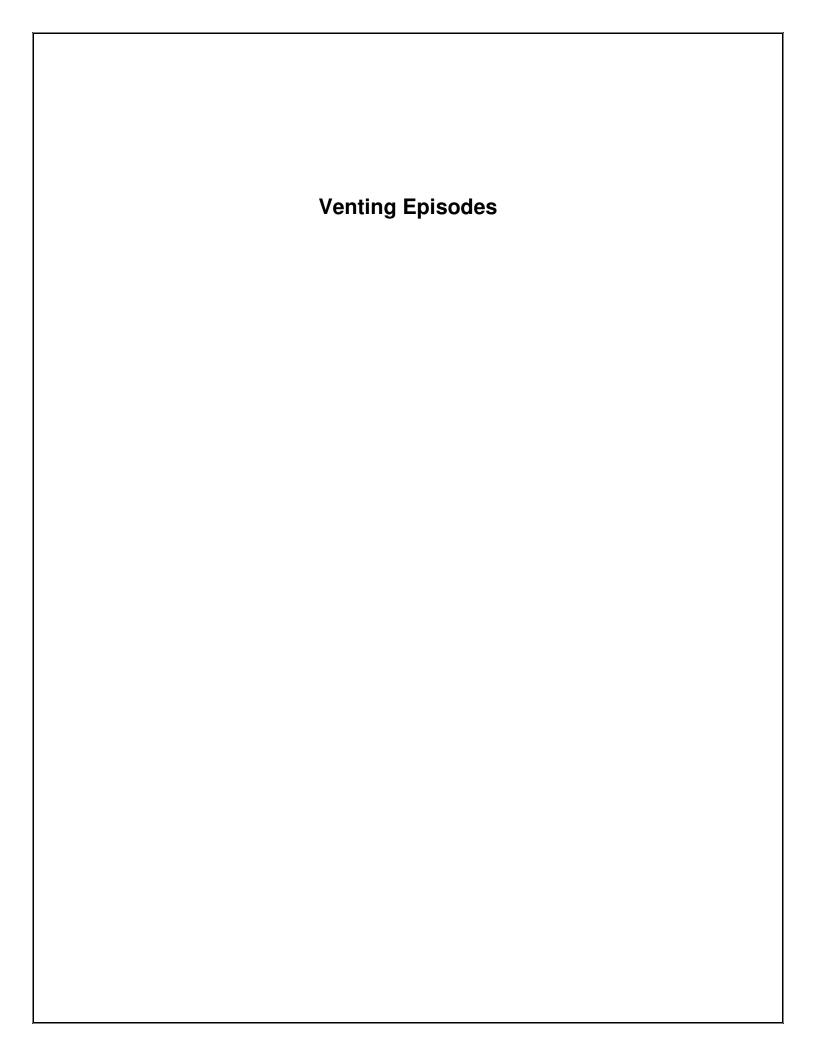
[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT www.epa.gov/tnn/tanks.html), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

Equipment List Form) TK-9210 5. Date of Commencement of Construction (for existing tanks) 6. Type of change New Construction New Stored Material Other Tank Modification 7. Description of Tank Modification (if applicable) 7A. Does the tank have more than one mode of operation? (e.g. Is there more than one product stored in the tank?) 7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must b completed for each mode). 7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): None II. TANK INFORMATION (required) 8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. 400 barrel 9A. Tank Internal Diameter (ft) 9B. Tank Internal Height (or Length) (ft)	ii deivertae iiti ori	instruction (required)		
3. Tank Equipment Identification No. (as assigned on Equipment List Form) TK-9210 5. Date of Commencement of Construction (for existing tanks) 6. Type of change ⊠ New Construction □ New Stored Material □ Other Tank Modification 7. Description of Tank Modification (if applicable) 7. Does the tank have more than one mode of operation? □ Yes ☑ No (e.g. Is there more than one product stored in the tank?) 7. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode). 7. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): None 11. TANK INFORMATION (required) 8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. 400 barrel 9A. Tank Internal Diameter (ft) 9B. Tank Internal Height (or Length) (ft)	Bulk Storage Area Name	2. Tank Name		
Equipment List Form) TK-9210 5. Date of Commencement of Construction (for existing tanks) 6. Type of change New Construction New Stored Material Other Tank Modification 7. Description of Tank Modification (if applicable) 7A. Does the tank have more than one mode of operation? (e.g. Is there more than one product stored in the tank?) 7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must b completed for each mode). 7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): None II. TANK INFORMATION (required) 8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. 400 barrel 9A. Tank Internal Diameter (ft) 9B. Tank Internal Height (or Length) (ft)	Production Storage Tanks	Condensate Tank 2		
6. Type of change New Construction New Stored Material Other Tank Modification 7. Description of Tank Modification (if applicable) 7. Description of Tank Modification (if applicable) 7. Does the tank have more than one mode of operation? Yes No (e.g. Is there more than one product stored in the tank?) 7. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): None II. TANK INFORMATION (required)	Equipment List Form)	Equipment List Form)		
7A. Does the tank have more than one mode of operation? (e.g. Is there more than one product stored in the tank?) 7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode). 7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): None II. TANK INFORMATION (required) 8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internating height. 400 barrel 9A. Tank Internal Diameter (ft) 9B. Tank Internal Height (or Length) (ft)	5. Date of Commencement of Construction (for existing	tanks)		
7A. Does the tank have more than one mode of operation? Yes No (e.g. Is there more than one product stored in the tank?) 7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode). 7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): None II. TANK INFORMATION (required) 8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internating the internal Diameter (ft) 9A. Tank Internal Diameter (ft) 9B. Tank Internal Height (or Length) (ft)	6. Type of change ⊠ New Construction □ N	New Stored Material		
(e.g. Is there more than one product stored in the tank?) 7B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode). 7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): None II. TANK INFORMATION (required) 8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internating the internal Diameter (ft) 9A. Tank Internal Diameter (ft) 9B. Tank Internal Height (or Length) (ft) 20	7. Description of Tank Modification (if applicable)			
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): None II. TANK INFORMATION (required) 8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. 400 barrel 9A. Tank Internal Diameter (ft) 9B. Tank Internal Height (or Length) (ft) 20		_		
variation, etc.): None II. TANK INFORMATION (required) 8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. 400 barrel 9A. Tank Internal Diameter (ft) 9B. Tank Internal Height (or Length) (ft) 20		ed by this application (Note: A separate form must be		
8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height. 400 barrel 9A. Tank Internal Diameter (ft) 12 9B. Tank Internal Height (or Length) (ft) 20	variation, etc.):	emissions, any work practice standards (e.g. production		
height. 400 barrel 9A. Tank Internal Diameter (ft) 9B. Tank Internal Height (or Length) (ft) 20	II. TANK INFORMATION (required)			
12	height.			
	9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)		
10A. Maximum Liquid Height (ft) 10B. Average Liquid Height (ft)	12	20		
	10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)		
19 12.5		12.5		
11A. Maximum Vapor Space Height (ft) 11B. Average Vapor Space Height (ft)	11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)		
1 10	1	-		
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers desig liquid levels and overflow valve heights. 380 barrel	liquid levels and overflow valve heights.			

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
1,149,750 14. Number of Turnovers per year (annual net throughpu	3,150
14. Number of Furnovers per year (annual net infoughpe	72
15. Maximum tank fill rate (gal/min) TBD	
16. Tank fill method	
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
18. Type of tank (check all that apply): ☐ Fixed Roof X vertical horizontal ☐ other (describe) ☐ External Floating Roof pontoon roof ☐ Domed External (or Covered) Floating Roof	flat roof cone roof X dome roof double deck roof
☐ Internal Floating Roof vertical column su ☐ Variable Vapor Space lifter roof ☐ Pressurized spherical cylindrica ☐ Underground ☐ Other (describe)	diaphragm
	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	_
Riveted Gunite lined Epoxy-coate	
20A. Shell Color 20B. Roof Colo	or 20C. Year Last Painted
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense R	lust
22A. Is the tank heated? YES NO	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to t	ank.
23. Operating Pressure Range (psig): to	
24. Complete the following section for Vertical Fixed Ro	oof Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft) 12	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Ta	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type:	•
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (che	eck one)
25E. Is the Floating Roof equipped with a weather ship	eld?


25F. Describe deck fittings; indicat	te the number of each	ch type of fitting:		
		S HATCH		
BOLT COVER, GASKETED:	UNBOLTED COVER, GASKETED: UNBOLTED COVER, UNGASKETED:			
BOLT COVER, GASKETED:	AUTOMATIC GAL UNBOLTED COV	JGE FLOAT WELL ER, GASKETED:	UNBOLTED COVER, UNGASKETED:	
COLUMN WELL BUILT-UP COLUMN - SLIDING BUILT-UP COLUMN - SLIDING PIPE COLUMN - FLEXIBL COVER, GASKETED: FABRIC SLEEVE SEAL:				
PIP COLUMN – SLIDING COVER, G		R WELL PIPE COLUMN –	SLIDING COVER, UNGASKETED:	
SLIDING COVER, GASKETED:	GAUGE-HATCH	/SAMPLE PORT SLIDING COVER, UNGASKETED:		
WEIGHTED MECHANICAL ACTUATION, GASKETED:			SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)	
VACUUM BREAKER WEIGHTED MECHANICAL ACTUATION, GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:				
RIM VENT WEIGHTED MECHANICAL ACTUATION GASKETED: WEIGHTED MECHANICAL ACTUATION, UNGASKETED:				
OPEN:	DECK DRAIN (3-	INCH DIAMETER) 90% CLOSED:		
STUB DRAIN 1-INCH DIAMETER:				
OTHER (DESCRIBE, ATTACH ADDITIONAL PAGES IF NECESSARY)				

26. Complete the following section for Internal Floating Roof Tanks Does Not Apply			
26A. Deck Type:			
26B. For Bolted decks, provide deck construction:			
26C. Deck seam:			
Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide			
Continuous sheet construction 7 feet wide			
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide			
Other (describe)			
26D. Deck seam length (ft)	26E. Area of deck (ft²)		
For column supported tanks:	26G. Diameter of each co	nlumn:	
26F. Number of columns:	Plamotor or dadir of		
IV. SITE INFORMANTION (optional	f providing TANKS Summary	Sheets)	
27. Provide the city and state on which the data in this s	ection are based.		
28. Daily Average Ambient Temperature (°F)			
29. Annual Average Maximum Temperature (°F)			
30. Annual Average Minimum Temperature (°F)			
31. Average Wind Speed (miles/hr)			
32. Annual Average Solar Insulation Factor (BTU/(ft²-da	r))		
33. Atmospheric Pressure (psia)			
V. LIQUID INFORMATION (optional	f providing TANKS Summary	Sheets)	
34. Average daily temperature range of bulk liquid:			
34A. Minimum (°F)	34B. Maximum (°F)		
35. Average operating pressure range of tank:			
35A. Minimum (psig)	35B. Maximum (psig)		
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vap	or Pressure (psia)	
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vap	or Pressure (psia)	
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vap	or Pressure (psia)	
39. Provide the following for each liquid or gas to be sto	ı ed in tank. Add additional pa	ges if necessary.	
39A. Material Name or Composition			
39B. CAS Number			
39C. Liquid Density (lb/gal)			
39D. Liquid Molecular Weight (lb/lb-mole)			
39E. Vapor Molecular Weight (lb/lb-mole)			

Maximum Vapor Press 39F. True (psia) 39G. Reid (psia) Months Storage per Ye 39H. From 39I. To					
391. 10	VI EMISSIONS /		OL DEVICE	DATA (required)	
40. Emission Control D			_	· · · · ·	
☐ Carbon Adsorp ☐ Condenser¹ ☐ Conservation V Vacuum S ☐ Emergency Rel ☐ Inert Gas Blank ☐ Insulation of Ta ☐ Liquid Absorptic ☐ Refrigeration of ☐ Rupture Disc (p ☐ Vent to Incinera	tion ¹ Yent (psig) Setting Setting Set of	Jnit and vapor	Pressure Se	etting	
41. Expected Emission				or elsewhere in the ar	onlication)
Material Name & CAS No.	Breathing Loss (lb/hr)	Workin Amount	1	Annual Loss (lb/yr)	Estimation Method ¹
VOC	0.018	0.015	lb/hr	282.1	O - ProMax 4.0
Emissions are controlled value					

 $^{^1}$ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

[⊠] Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

Attachment L **EMISSIONS UNIT DATA SHEET GENERAL**

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 32E (VENT1)

Name or type and model of proposed affected source:
Fugitive emissions from venting episodes such as plant shutdowns and compressor start ups/shut downs.
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
4. Name(s) and maximum amount of proposed material(s) produced per hour:
 compressor blowdown - 0.010 tons VOC per event, 0.94 tons CO2e per event compressor startup - 0.005 tons VOC per event, 0.44 tons CO2e per event plant shutdown - 0.447 tons VOC per event, 41.81 tons CO2e per event low pressure pigging venting - 0.002 tons VOC per event, 0.22 tons CO2e per event high pressure pigging venting - 0.013 tons VOC per event, 1.17 tons CO2e per event
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
none

The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

6.	Combustion Data (if applicable):					
	(a) Type a	a) Type and amount in appropriate units of fuel(s) to be burned:				
			oposed fuel(s),	excluding coal, in	cluding maxim	um percent sulfur
	and asl	n:				
	(c) Theore	tical combustion	air requirement	(ACF/unit of fue	 l):	
	(0)				.,.	
		@		°F and		psia.
	(d) Percen	t excess air:				
	(e) Type a	nd BTU/hr of bu	rners and all oth	er firing equipme	ent planned to t	be used:
	(f) If coal i	s proposed as a	source of fuel i	dentify supplier a	and seams and	give sizing of the
		it will be fired:		donary dapping, c	and obanno and	give eizing er are
	(g) Propos	ed maximum de	sign heat input:			× 10 ⁶ BTU/hr.
7.	Projected of	perating schedu	ule:			
	•	not a regular		not a regular	Weeks/Year	not a regular
пО	urs/Day	schedule	Days/Week	schedule	vveeks/ rear	schedule

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:			
@	venting events are uncor	ntrolled °F and	psia	
a.	NO _X	lb/hr	grains/ACF	
b.	SO ₂	lb/hr	grains/ACF	
C.	СО	lb/hr	grains/ACF	
d.	PM ₁₀	lb/hr	grains/ACF	
e.	Hydrocarbons	lb/hr	grains/ACF	
f.	VOCs	variable depending on vent type lb/hr	grains/ACF	
g.	Pb	lb/hr	grains/ACF	
h.	Specify other(s)			
		lb/hr	grains/ACF	

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. 			
MONITORING	RECORDKEEPING		
see Attachment O	see Attachment O		
REPORTING	TESTING		
see Attachment O	see Attachment O		
MONITORING. PLEASE LIST AND DESCRIBE THI PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION			
RECORDKEEPING. PLEASE DESCRIBE THE PROPMONITORING.	OSED RECORDKEEPING THAT WILL ACCOMPANY THE		
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE		
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI- POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR		
10. Describe all operating ranges and mainter maintain warranty N/A	nance procedures required by Manufacturer to		
IVA			

Bulk Loading and Fugitives				

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form): LDOUT1			
Loading Area Name: Produced Fluids Loadout			
2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply): □ Drums □ Marine Vessels □ Rail Tank Cars X Tank Trucks			
3. Loading Rack or Transfer Point Data:			
Number of pumps	None – use truck pumps		
Number of liquids loaded	Two - Condensate & Produced Water		
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time Four as each tank has a connection, but no likely that there will be four at one time. TK 9000 does not have a loading connection.			
Does ballasting of marine vessels occur at this loading area? ☐ Yes ☐ No X Does not apply			
5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point: N/A			
6. Are cargo vessels pressure tested for leaks at this or any other location? □ Yes X No If YES, describe:			

7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):				
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.
hours/day	10	10	10	10
days/week	5	5	5	5
weeks/quarter	all	all	all	all

8. Bulk Liqu	id Data <i>(add pages as</i>	necessary,) <i>:</i>		
Pump ID No.		N/A	N/A		
Liquid Name		Conden- sate	Produced Water		
Max. daily thro	oughput (1000 gal/day)	6.30	1.89		
Max. annual t	hroughput (1000 gal/yr)	2,299.5	689.85		
Loading Meth	od ¹	SUB	SUB		
Max. Fill Rate	(gal/min)	240	240		
Average Fill Time (min/loading)		45	45		
Max. Bulk Liquid Temperature (°F)		60	60		
True Vapor Pressure ²		12.0	0.32		
Cargo Vessel Condition ³		U	U		
Control Equipment or Method ⁴		None	None		
Minimum cont	trol efficiency (%)	0	0		
Maximum	Loading (lb/hr)	72.76	0.092		
Emission Rate	Annual (lb/yr)	15231	5.8		
Estimation Method ⁵ EPA			EPA		
¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill					
² At maximum bulk liquid temperature					

³ B = Ballasted Vessel, C = Cleaned, U = Uncle	eaned (dedicated service), O = other (describe)
⁴ List as many as apply (complete and submit a Sheets):CA = Carbon Adsorption Condensation SC = Refrigeration-Absorption TO = Thermal Oxid CRC = Compression-Refrigeration-Condensation O = other (descibe)	LOA = Lean Oil AdsorptionCO = = Scrubber (Absorption)CRA = Compressor- dation or Incineration
 ⁵ EPA = EPA Emission Factor as stated in AP MB = Material Balance TM = Test Measurement based upon test da 	

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

O = other (describe)

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING see Attachment O	RECORDKEEPING see Attachment O
REPORTING see Attachment O	TESTING see Attachment O

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

	For chemical processes please fill out this sheet and all supplementary forms (see below) that apply. Please check all supplementary forms that have been completed.											
	Toxicology Data Sheet Reactor Data Sheet Distillation Column Data Sheet											
1.	. Chemical process area name and equipment ID number (as shown in <i>Equipment List Form</i>) Piping for Entire Facility. Piping not contained in equipment form.											
2.	2. Standard Industrial Classification Codes (SICs) for process(es) 4923											
3.	3. List raw materials and □ attach MSDSs Wet Natural Gas											
4.	List Products and Maximum Produ	uction and attach MSDSs										
De	scription and CAS Number	Maximum Hourly (lb/hr)	Maximum Annual (ton/year)									
	Dry Natural Gas	9.17 MMscf/hour	80,300 MMscf/year									
	Condensate	6.25 barrels/hour	54,750 barrels/year									
	Produced Water	1.875 barrels/hour	16,425 barrels/year									
5.	Complete the Emergency Vent St	ummary Sheet for all emergency relief of	devices.									
6.	· · · · · · · · · · · · · · · · · · ·											
7.	spill or release.	o application Accident Procedures to be										

	SA. Complete the <i>Toxicology Data Sheet</i> or attach to application a toxicology report (an up-to-date material safety data sheets (MSDS) may be used) outlining the currently known acute and chronic health effects of each compound or chemical entity emitted to the air. If these compounds have already been listed in Item 3, then a duplicate MSDS sheet is not required. Include data such as the OSHA time weighted average (TWA) or mutagenicity, teratogenicity, irritation, and other known or suspected effects should be addressed. Indicate where these are unknown, and provide references. 3B. Describe any health effects testing or epidemiological studies on these compounds that are being or may be conducted by the company or required under TSCA, RCRA or other federal regulations. Discuss the persistence in the environment of any emission (e.g. pesticides, etc.).										
9.											
9A.	Types and amo	ounts of wastes to be dispos	ed:								
9B.	Method of disp Carrier:	osal and location of waste di	isposal facilities: Phone:								
Carrier: Phone: 9C. Check here if approved USEPA/State Hazardous Waste Landfill will be used □ 10. Maximum and Projected Typical Operating Schedule for process or project as a whole (circle appropriate units)											
10.	Maximum and	Projected Typical Operating	Schedule for process or project as a who	ole (circle appropriate units).							
	circle units: (hrs/day) (hr/batch) (days), (batches/day), (batches/week) (days/yr), (weeks/year)										
10A. Maximum 24 7 52											
10E	10B. Typical 24 7 52										
11.	Complete a Re	eactor Data Sheet for each re	eactor in this chemical process.								
12.	Complete a Dis	stillation Column Data Sheet	for each distillation column in this chem	ical process.							
	Please propose		Reporting, and Testing and reporting in order to demonstrate coing in order to demonstrate compliance very recompliance with the RECORDKEEPING								
	Attachment O		see Attachment O								
REI	PORTING		TESTING								
see	Attachment O		see Attachment O								
REG REG TES	er to demonstra CORDKEEPINO PORTING. Plea STING. Please o	te compliance with the opera 3. Please describe the proposed from the proposed from the proposed emissible any proposed emissible any proposed emissible and the complex control of the control of the complex control of the control of t	ocess parameters and ranges that are partion of this process equipment operation of this process equipment ocean pany equency of reporting of the recordkeeping that will accompany equency of reporting of the recordkeeping to the recordkeeping that will accompany of the recordkeeping that will be accompany to the record that the reco	or air pollution control device. the monitoring. g. r air pollution control device.							

INFORMATION REQUIRED FOR CHEMICAL PROCESSES

The notes listed below for chemical processes are intended to help the applicant submit a complete application to the OAQ; these notes are not intended to be all inclusive. The requirements for a complete application for a permit issued under 45CSR13 are designed to provided enough information for a permit reviewer to begin a technical review. Additional information beyond that identified may be required to complete the technical review of any individual application.

Process Description

Please keep these points in mind when completing your process description as part of this permit application.

- 1. Provide a general process overview. This brief, but complete, process description should include chemical or registered trademark names of chemical products, intermediates, and/or raw materials to be produced or consumed, and the ultimate use(s) of the product(s). A list of the various chemical compounds is helpful.
- Describe <u>each process step</u>. Include the process chemistry and stoichiometrically balanced reaction equation or material mass balance on all components.
- 3. Describe the methods and equipment used to receive, store, handle, and charge raw materials.
- 4. Describe the methods and equipment used to handle, store, or package final products and intermediates.
- 5. Provide process flow diagrams or equipment layout drawings which clearly show the process flow relationships among all pieces of process and control equipment. Identify all air emission discharge points. Discuss instrumentation and controls for the process.
- 6. Discuss the possibilities of process upsets, the duration and frequency of upsets, and consequences (including air emissions) of these upsets. Include a description of rupture discs, pressure relief valves, and secondary containment systems.
- 7. Discuss any fugitive emissions and the methods used to minimize them.
- 8. Include the following plans for the process if available:
 - a. preventative maintenance and malfunction abatement plan (recommended for all control equipment).
 - b. continuous emissions (in-stack) monitoring plan
 - c. ambient monitoring plan
 - d. emergency response plan

Regulatory Discussion

The following state and federal air pollution control regulations may be applicable to your chemical process. You should review these regulations carefully to determine if they apply to your process. Please summarize the results of your review in your permit application along with any other regulations you believe are applicable.

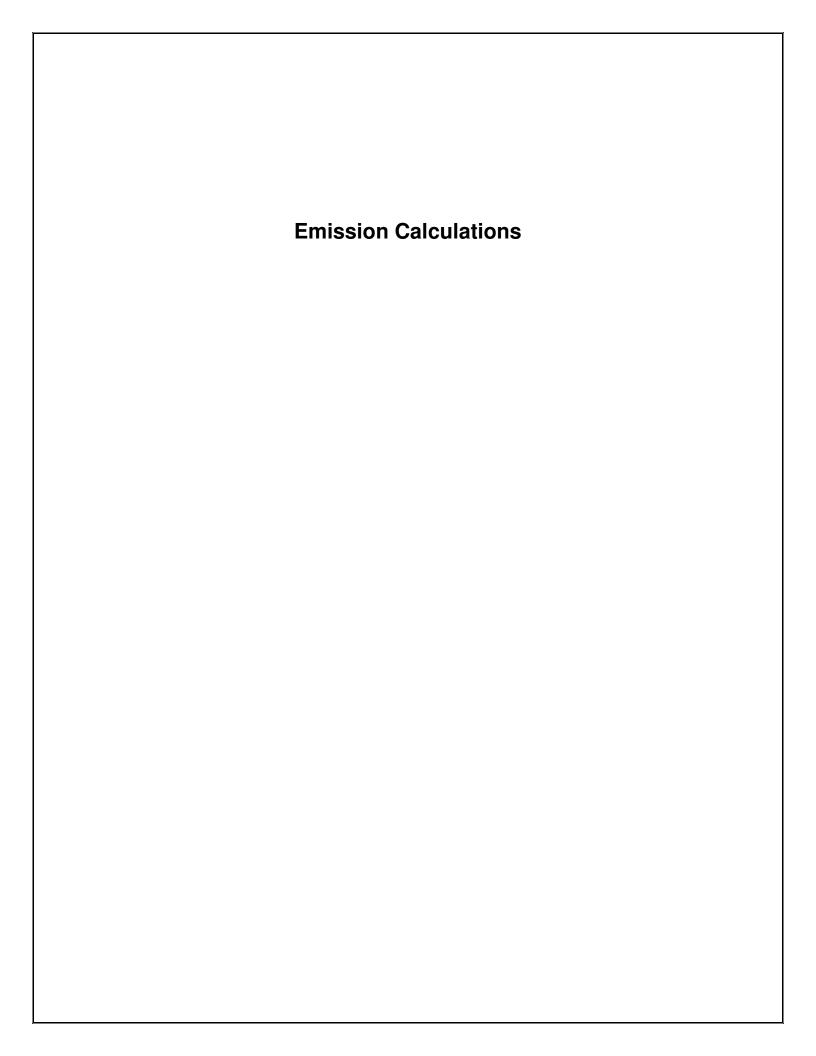
- Title 45 Legislative Rule Division of Environmental Protection, Office of Air Quality contains West Virginia's air pollution control regulations, including the following promulgated rules which may require emissions reductions or control technologies for your chemical process:
 - a. 45CSR27 Best Available Technology (BAT) for Toxic Air Pollutants (TAPs)
 - 45CSR21 VOC emissions controls for ozone maintenance in Kanawha, Cabell, Putnam, Wayne, and Wood counties.
 - c. 45CSR13 (Table 45-13A) plantwide emission thresholds for permitting for certain pollutants.
- Federal Guidelines for case-by-case MACT determinations under section 112(g) of the 1990 CAAA for individual and total HAPs greater than 10 and 25 tons per year, respectively.
- There are also subparts of the federal Standards of Performance for New Stationary Sources (NSPS), 40CFR60 60, and the National Emission Standards for Hazardous Air Pollutants (NESHAP) at 40CFR61 and 40CFR63, which apply to various chemical and nonchemical processes. These subparts are too numerous to list here, but these areas of the federal regulations should be consulted carefully to determine applicability to your process.

Emissions Summary and Calculations

Please keep these points in mind when submitting your emissions calculations as part of this permit application.

- 1. For each pollutant, provide the basis for the emissions estimate and for all emission reduction(s) or control efficiency(ies) claimed.
- 2. For all batch processes provide the following
 - a. Emissions of each pollutant in pound(s) per batch, from each process step
 - b. Annual emissions based on number of batches requested per year
 - c. The total time for each process step and the duration of the emissions during the process step
 - d. Total batch time, total emissions per batch (or per day), and annual emissions based on the number of batches requested per year.

LEAK SOURCE DATA SHEET


Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (lb/yr) ⁴
Pumps ⁵	light liquid VOC ^{6,7}				
	heavy liquid VOC8				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC	750	TBD	1st attempt – 5 days	10,969 – EE
	Light Liquid VOC	160	TBD	1 st attempt – 5 days	5,336 – EE
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC				
	Non VOC				
Open-ended Lines ¹²	VOC				
	Non-VOC				
Sampling Connections ¹³	VOC				
	Non-VOC				
Compressors	VOC	39	TBD	1 st attempt – 5 days	1,115 – EE
	Non-VOC				
Flanges	Gas VOC	850	TBD	1 st attempt – 5 days	1,077 – EE
	Light Liquid VOC	400	TBD	1 st attempt – 5 days	587 – EE
	Non-VOC				
Other	VOC				
	Non-VOC				

¹⁻¹³ See notes on the following page.

Page 5 of 13 Revision 03/2007

Attachment M. Air Pollution Control Device Sheets
Note: No permit application forms for control devices are included in this modification application as none of the control devices are being modified from the current permit.

Attachme	nt N	
Supporting Emission	ns Calculations	

Emissions Summary Total

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Facility Location:	Doddridge County, West Virginia

UNCONTROLLED POTENTIAL EMISSION SUMMARY

	ONCONTROLLED FOTENTIAL EMISSION SOMIWAR T NOX CO VOC SO ₂ PM-10 HAPS Formaldehyde CO ₂ e														
Source		lOx					02		l-10		.Ps	Formal	dehyde	CO₂e	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
<u>Engines</u>															
Compressor Engine 1	50.37	220.62	47.41	207.64	1.52	6.65	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,125
Compressor Engine 2	50.37	220.62	47.41	207.64	1.52	6.65	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,125
Compressor Engine 3	50.37	220.62	47.41	207.64	1.52	6.65	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,125
Compressor Engine 4	50.37	220.62	47.41	207.64	1.52	6.65	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,125
Compressor Engine 5	50.37	220.62	47.41	207.64	1.52	6.65	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,125
Compressor Engine 6	50.37	220.62	47.41	207.64	1.52	6.65	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,125
Compressor Engine 7	50.37	220.62	47.41	207.64	1.52	6.65	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,125
Compressor Engine 8	50.37	220.62	47.41	207.64	1.52	6.65	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,125
Compressor Engine 9	50.37	220.62	47.41	207.64	1.52	6.65	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,125
Compressor Engine 10	50.37	220.62	47.41	207.64	1.52	6.65	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,125
Compressor Engine 11	50.37	220.62	47.41	207.64	1.52	6.65	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,125
Compressor Engine 12	50.37	220.62	47.41	207.64	1.52	6.65	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,125
Compressor Engine 13	50.37	220.62	47.41	207.64	1.52	6.65	0.0082	0.036	0.27	1.18	0.35	1.54	0.19	0.81	9,125
Fuel Conditioning Heater	0.049	0.21	0.041	0.18	0.0027	0.012	0.00029	0.0013	0.0037	0.016	0.00092	0.0040	0.000037	0.00016	257
<u>Turbines</u>															
Microturbine Generator 1	0.08	0.35	0.22	0.96	0.020	0.088	0.0070	0.031	0.014	0.060	0.0021	0.0093	0.0015	0.0064	1,166
Microturbine Generator 2	0.08	0.35	0.22	0.96	0.020	0.088	0.0070	0.031	0.014	0.060	0.0021	0.0093	0.0015	0.0064	1,166
Catalytic Heater for Generator Fuel	0.0024	0.010	0.0020	0.0087	0.00013	0.00057	0.000014	0.000062	0.00018	0.00078	0.000044	0.00019	0.0000018	0.0000077	12
<u>Dehydrator</u>															
TEG Dehydrator 1					65.75	287.99					6.35	27.83			14,621
TEG Dehydrator 2					65.75	287.99					6.35	27.83			14,621
Reboiler 1	0.15	0.64	0.12	0.54	0.0081	0.035	0.00088	0.0039	0.011	0.049	0.0028	0.012	0.00011	0.00048	771
Reboiler 2	0.15	0.64	0.12	0.54	0.0081	0.035	0.00088	0.0039	0.011	0.049	0.0028	0.012	0.00011	0.00048	771
<u>Combustors</u>															
Flare and Pilot															
Hydrocarbon Loading															
Truck Loadout					72.85	7.66					2.19	0.23			28
Venting Emissions															
Venting Emissions						22.50						0.46			2,107
Fugitive Emissions															
Component Leak Emissions					2.18	9.54					0.051	0.22			198
Haul Road Dust Emissions									0.075	0.33					
Storage Tanks															
Produced Water Tanks					1.34E-04	5.86E-04					5.04E-07	2.21E-06			0.023
Settler Tank					157.63	690.43					4.75	20.80			2.483
Condensate Tanks					3.22	14.11					0.10	0.44			4.6
Total Facility PTE =	655.32	2,870.30	617.03	2,702.58	387.18	1,406.95	0.12	0.54	3.64	15.95	24.36	97.87	2.41	10.56	156,834

Emissions Summary Total

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Facility Location:	Doddridge County, West Virginia

CONTROLLED POTENTIAL EMISSION SUMMARY

_	N	Ox	C	0	V	OC	OC SO ₂ PM-10					\Ps	Forma	ldehyde	CO₂e
Source	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	tpy
Engines												.,,			
Compressor Engine 1	1.26	5.52	1.19	5.19	0.24	1.06	0.0082	0.036	0.27	1.18	0.18	0.81	0.019	0.081	8,725
Compressor Engine 2	1.26	5.52	1.19	5.19	0.24	1.06	0.0082	0.036	0.27	1.18	0.18	0.81	0.019	0.081	8,725
Compressor Engine 3	1.26	5.52	1.19	5.19	0.24	1.06	0.0082	0.036	0.27	1.18	0.18	0.81	0.019	0.081	8,725
Compressor Engine 4	1.26	5.52	1.19	5.19	0.24	1.06	0.0082	0.036	0.27	1.18	0.18	0.81	0.019	0.081	8,725
Compressor Engine 5	1.26	5.52	1.19	5.19	0.24	1.06	0.0082	0.036	0.27	1.18	0.18	0.81	0.019	0.081	8,725
Compressor Engine 6	1.26	5.52	1.19	5.19	0.24	1.06	0.0082	0.036	0.27	1.18	0.18	0.81	0.019	0.081	8,725
Compressor Engine 7	1.26	5.52	1.19	5.19	0.24	1.06	0.0082	0.036	0.27	1.18	0.18	0.81	0.019	0.081	8,725
Compressor Engine 8	1.26	5.52	1.19	5.19	0.24	1.06	0.0082	0.036	0.27	1.18	0.18	0.81	0.019	0.081	8,725
Compressor Engine 9	1.26	5.52	1.19	5.19	0.24	1.06	0.0082	0.036	0.27	1.18	0.18	0.81	0.019	0.081	8,725
Compressor Engine 10	1.26	5.52	1.19	5.19	0.24	1.06	0.0082	0.036	0.27	1.18	0.18	0.81	0.019	0.081	8,725
Compressor Engine 11	1.26	5.52	1.19	5.19	0.24	1.06	0.0082	0.036	0.27	1.18	0.18	0.81	0.019	0.081	8,725
Compressor Engine 12	1.26	5.52	1.19	5.19	0.24	1.06	0.0082	0.036	0.27	1.18	0.18	0.81	0.019	0.081	8,725
Compressor Engine 13	1.26	5.52	1.19	5.19	0.24	1.06	0.0082	0.036	0.27	1.18	0.18	0.81	0.019	0.081	8,725
Fuel Conditioning Heater	0.049	0.21	0.041	0.18	0.0027	0.012	0.00029	0.0013	0.0037	0.016	0.00092	0.0040	0.000037	0.00016	257
<u>Turbines</u>															
Microturbine Generator 1	0.08	0.35	0.22	0.96	0.020	0.088	0.0070	0.031	0.014	0.060	0.0021	0.0093	0.0015	0.0064	1,166
Microturbine Generator 2	0.08	0.35	0.22	0.96	0.020	0.088	0.0070	0.031	0.014	0.060	0.0021	0.0093	0.0015	0.0064	1,166
Catalytic Heater for Generator Fuel	0.0024	0.010	0.0020	0.0087	0.00013	0.00057	0.000014	0.000062	0.00018	0.00078	0.000044	0.00019	0.0000018	0.0000077	12
<u>Dehydrator</u>															
TEG Dehydrator 1					1.31	5.76					0.13	0.56			303
TEG Dehydrator 2					1.31	5.76					0.13	0.56			303
Reboiler 1	0.15	0.64	0.12	0.54	0.0081	0.035	0.00088	0.0039	0.011	0.049	0.0028	0.012	0.00011	0.00048	771
Reboiler 2	0.15	0.64	0.12	0.54	0.0081	0.035	0.00088	0.0039	0.011	0.049	0.0028	0.012	0.00011	0.00048	771
<u>Combustors</u>															
Flare and Pilot	0.33	1.44	1.78	7.79	0.00011	0.00047	0.000012	0.000051	0.00015	0.00065	0.000037	0.00016			2,476
Hydrocarbon Loading															
Truck Loadout					72.85	7.66					2.19	0.23			28
<u>Venting Emissions</u>															
Venting Emissions						22.50						0.46			2107
<u>Fugitive Emissions</u>															
Component Leak Emissions					2.18	9.54					0.051	0.22			198
Haul Road Dust Emissions									0.08	0.33					
Storage Tanks															
Produced Water Tanks					2.68E-06	1.17E-05					1.01E-08	4.42E-08			0.00075
Settler Tank					3.15	13.81					0.095	0.42			51
Condensate Tanks					0.064	0.28					0.00200	0.0088			0.10
Total Facility PTE =	17.20	75.35	17.92	78.47	84.09	79.41	0.12	0.54	3.64	15.95	4.95	13.03	0.24	1.07	123,033

HAP Emissions Summary Total

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Facility Location:	Doddridge County, West Virginia

CONTROLLED POTENTIAL EMISSION SUMMARY

	Ben	zene	Toli	uene	Ethylb	enzene	Xyle	enes	n-Hexane		
Source	lb/hr	tpy									
<u>Engines</u>											
Compressor Engine 1	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012			
Compressor Engine 2	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012			
Compressor Engine 3	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012			
Compressor Engine 4	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012			
Compressor Engine 5	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012			
Compressor Engine 6	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012			
Compressor Engine 7	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012			
Compressor Engine 8	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012			
Compressor Engine 9	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012			
Compressor Engine 10	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012			
Compressor Engine 11	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012			
Compressor Engine 12	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012			
Compressor Engine 13	0.022	0.096	0.0078	0.034	0.00035	0.0015	0.0027	0.012			
Fuel Conditioning Heater											
Turbines											
Microturbine Generator 1	0.000025	0.00011	0.00027	0.0012	0.00007	0.00029	0.00013	0.0006			
Microturbine Generator 2	0.000025	0.00011	0.00027	0.0012	0.00007	0.00029	0.00013	0.0006			
Catalytic Heater for Generator Fuel											
<u>Dehydrator</u>											
TEG Dehydrator 1	0.025	0.11	0.056	0.24	0.0035	0.015	0.012	0.053	0.030	0.13	
TEG Dehydrator 2	0.025	0.11	0.056	0.24	0.0035	0.015	0.012	0.053	0.030	0.13	
Reboiler 1											
Reboiler 2											
<u>Combustors</u>											
Flare and Pilot											
Hydrocarbon Loading											
Truck Loadout	0.035	0.0037	0.084	0.0088	0.030	0.0032	0.077	0.0081	1.97	0.21	
Venting Emissions		_						_			
Venting Emissions		0.014		0.025		0.0014		0.0035		0.42	
Fugitive Emissions											
Component Leak Emissions	0.0013	0.0055	0.0025	0.011	0.00037	0.0016	0.00095	0.0042	0.046	0.20	
Haul Road Dust Emissions											
Storage Tanks											
Produced Water Tanks	5.94E-09	2.60E-08	3.01E-09	1.32E-08	3.47E-10	1.52E-09	5.30E-10	2.32E-09	2.56E-10	1.12E-09	
Settler Tank	1.52E-03	6.66E-03	3.62E-03	1.59E-02	1.30E-03	5.70E-03	3.34E-03	1.46E-02	8.52E-02	3.73E-01	
Condensate Tanks	2.13E-05	9.32E-05	5.48E-05	2.40E-04	2.16E-05	9.44E-05	5.03E-05	2.20E-04	1.85E-03	8.12E-03	
Total Facility PTE =	0.37	1.51	0.30	0.99	0.043	0.062	0.14	0.29	2.16	1.48	

Compressor Engine Emission Calculations

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Compressor Engines

Source Information-Per Engine

C-2100 - C-2220		
Waukesha 7044 GSI		
Comp	ression	
Y	NSCR/AFRC	
1,680	hp	
8,289	Btu/(hp-hr)	
13.93	MMBtu/hr	
107.75	MMscf/yr	
12,300	scf/hr	
1,130	Btu/scf	
8,760	hrs/yr	
	Waukesh Comp Y 1,680 8,289 13.93 107.75 12,300 1,130	

Notes:

- 1. Values from Waukesha specification sheet
- 2. Calculated values
- 3. Annual fuel consumption is 100% of maximum fuel consumption at 100% load.

Potential Emissions per Engine

	Uncontrolled						Controlled]	
Pollutant	Emission (Ib/MMBtu)	n Factor (g/bhp-hr)	Est (lb/hr)	imated Emiss (lb/yr)	ions² (tpy)	Emission (lb/MMBtu)	n Factor (g/bhp-hr)	Est (lb/hr)	imated Emissi	ons² (tpy)	Source of Emissions Factors
NOx ^{1,4}		13.6	50.37		220.62		0.34	1.26		5.52	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
CO ^{1,4}		12.8	47.41		207.64		0.32	1.19		5.19	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
VOC ^{1,4}		0.41	1.52		6.65		0.066	0.24		1.06	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
SO ₂	5.88E-04		0.0082		0.036	5.88E-04		0.0082		0.036	AP-42, Chapter 3.2, Table 3.2-3
PM _{2.5} /PM ₁₀	1.94E-02		0.27		1.18	1.94E-02		0.27		1.18	AP-42, Chapter 3.2, Table 3.2-3
Total PM	1.94E-02		0.27		1.18	1.94E-02		0.27		1.18	AP-42, Chapter 3.2, Table 3.2-3
1,1,2,2-Tetrachloroethane	2.53E-05		0.00035	3.09	0.0015	2.53E-05		0.00035	3.09	0.0015	AP-42, Chapter 3.2, Table 3.2-3
1,3-Butadiene	6.63E-04		0.0092	80.88	0.040	6.63E-04		0.0092	80.88	0.040	AP-42, Chapter 3.2, Table 3.2-3
Acetaldehyde	2.79E-03		0.039	340.3	0.17	2.79E-03		0.039	340.3	0.17	AP-42, Chapter 3.2, Table 3.2-3
Acrolein	2.63E-03		0.037	320.8	0.16	2.63E-03		0.037	320.8	0.16	AP-42, Chapter 3.2, Table 3.2-3
Benzene	1.58E-03		0.022	192.7	0.096	1.58E-03		0.022	192.7	0.096	AP-42, Chapter 3.2, Table 3.2-3
Ethylbenzene	2.48E-05		0.00035	3.03	0.0015	2.48E-05		0.00035	3.03	0.0015	AP-42, Chapter 3.2, Table 3.2-3
Formaldehyde ^{1,4}		0.05	0.19	1,622	0.81		0.01	0.019	162.2	0.081	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
Methanol	3.06E-03		0.043	373.3	0.19	3.06E-03		0.043	373.3	0.19	AP-42, Chapter 3.2, Table 3.2-3
Methylene Chloride	4.12E-05		0.00057	5.03	0.0025	4.12E-05		0.00057	5.03	0.0025	AP-42, Chapter 3.2, Table 3.2-3
PAH	1.41E-04		0.0020	17.20	0.0086	1.41E-04		0.0020	17.20	0.0086	AP-42, Chapter 3.2, Table 3.2-3
Toluene	5.58E-04		0.0078	68.07	0.034	5.58E-04		0.0078	68.07	0.034	AP-42, Chapter 3.2, Table 3.2-3
Xylenes	1.95E-04		0.0027	23.79	0.012	1.95E-04		0.0027	23.79	0.012	AP-42, Chapter 3.2, Table 3.2-3
Other HAPs ²	2.10E-04		0.0029	25.59	0.013	2.10E-04		0.0029	25.59	0.013	AP-42, Chapter 3.2, Table 3.2-3
Total HAPS			0.35	3,076	1.54			0.18	1,616	0.81	
Pollutant	Emission (kg/MMBtu)	n Factor (g/bhp-hr)	Est (lb/hr)	imated Emiss (lb/yr)	ions ² (tpy)	Emission (kg/MMBtu)	n Factor (g/bhp-hr)	Est (lb/hr)	imated Emissi (lb/yr)	ons² (tpy)	Source of Emissions Factors
CO ₂ ¹		527	1,952		8,549		527	1,952		8,549	Manufacturer's Specs
CH ₄ ^{1,4}		1.41	5.22		22.87		0.42	1.57		6.86	Manufacturer's Specs - uncontrolled, Catalyst Specs - controlled
N ₂ O	0.0001		0.0031		0.013	0.0001		0.0031		0.013	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e ²			2,083		9,125			1,992		8,725	40 CFR Part 98, Subpart A, Table A-1, effective January 2014

Notes

4. Due to variable load conditions, the catalyst efficiency may vary. The catalyst efficiencies used in the emissions are typical based on expected operating conditions. The catalyst specification sheet shows typical destruction efficiencies that were used in the calculations. The emission factors shown on the catalyst specification sheet are not site specific, so those will vary; however the efficiencies will be the same.

Example Calculations

lb/hr = (g/hp-hr) * (hp) * (1 lb/453.6 g) or (lb/MMBtu) * (MMBtu/hr)

tpy = (lb/hr) * (8,760 hrs/yr) / (2,000 lb/ton)

Natural Gas Fueled Fuel Conditioning Heater Emissions

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Location:	Doddridge County, West Virginia
Source Description:	Fuel Conditioning Heater

Source Information

Emission Unit ID:	FUEL1			
Source Description:	Fuel Conditioning Heater			
Hours of Operation	8,760	hr/yr		
Design Heat Rate	0.50	MMBtu/hr		
Fuel Heat Value	1,020	Btu/scf		
Fuel Use	4.29	MMscf/yr		

Emission Calculations per Heater

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Foliutalit	(lb/MMscf)	(lb/hr)	(tpy)	Source
NO_X	100	0.049	0.21	AP-42 Ch. 1.4 Table 1.4-1
CO	84	0.041	0.18	AP-42 Ch. 1.4 Table 1.4-1
VOC	5.5	0.0027	0.012	AP-42 Ch. 1.4 Table 1.4-2
PM ₁₀	7.6	0.0037	0.016	AP-42 Ch. 1.4 Table 1.4-2
SO ₂	0.6	0.00029	0.0013	AP-42 Ch. 1.4 Table 1.4-2
Formaldehyde	0.075	0.000037	0.00016	AP-42 Ch. 1.4 Table 1.4-3
Total HAPs (including HCHO) ¹	1.9	0.00092	0.0040	AP-42 Ch. 1.4 Table 1.4-3
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Pollutalit	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	58.63	256.8	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.0011	0.0048	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.00011	0.00048	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		58.69	257.1	40 CFR Part 98, Subpart A, Table A-1

^{1.} Only those HAP pollutants above detection thresholds were included.

Sample Calculations:

Microturbine Generator Emission Calculations

Company:	Antero Midstream LLC				
Facility Name:	Tamela Compressor Station				
Facility Location:	Doddridge County, West Virginia				
Source Description:	Microturbine Generators				

Source Information

Emission Unit ID:	G-8000	G-8000 & G-8100			
Make/Model	Capstone	C200 Standard			
Microturbine Rating ²	200	kWe			
Number of Microturbines ²	2	units			
Net Heat Rate	10,300	Btu/kWhe			
Heat Input 1	2.06	MMBtu/hr			
Operating Hours ²	8,760	hrs/yr			

Notes:

2) There will be two (2) generators onsite each rated at 200 kWe. Only 200 kWe will be operational at any time while the other 200 kWe unit will be on standby for the full year. Individual units may switch between primary and standby status depending on their need for maintenance. Emissions were calculated based on both units (400 kWe total) operating at full load for 8,760 hours per year, so as to be conservative.

Potential Emissions per Generator

	Uncontrolled					Controlled							
Pollutant	Emissio	n Factor (lb/MWhe)	Esti (lb/hr)	mated Emissi (lb/yr)	ons ¹ (tpy)	Emissio	n Factor (lb/MWhe)	Esti (lb/hr)	mated Emissi (lb/yr)	ons ¹ (tpy)	Source of Emissions Factors		
NOx		0.40	0.080		0.35		0.40	0.080		0.35	Manufacturer Specifications		
СО		1.10	0.22		0.96		1.10	0.22		0.96	Manufacturer Specifications		
voc		0.10	0.020		0.088		0.10	0.020		0.088	Manufacturer Specifications		
SO ₂	3.40E-03		0.0070		0.031	3.40E-03		0.0070		0.031	AP-42, Chapter 3.1, Table 3.1-2a		
PM _{2.5} /PM ₁₀	6.60E-03		0.014		0.060	6.60E-03		0.014		0.060	AP-42, Chapter 3.1, Table 3.1-2a		
1,3-Butadiene	4.30E-07		8.86E-07	0.0078	3.88E-06	4.30E-07		8.86E-07	0.0078	3.88E-06	AP-42, Chapter 3.1, Table 3.1-3		
Acetaldehyde	4.00E-05		8.24E-05	0.72	3.61E-04	4.00E-05		8.24E-05	0.72	3.61E-04	AP-42, Chapter 3.1, Table 3.1-3		
Acrolein	6.40E-06		1.32E-05	0.12	5.77E-05	6.40E-06		1.32E-05	0.12	5.77E-05	AP-42, Chapter 3.1, Table 3.1-3		
Benzene	1.20E-05		2.47E-05	0.22	1.08E-04	1.20E-05		2.47E-05	0.22	1.08E-04	AP-42, Chapter 3.1, Table 3.1-3		
Ethylbenzene	3.20E-05		6.59E-05	0.58	2.89E-04	3.20E-05		6.59E-05	0.58	2.89E-04	AP-42, Chapter 3.1, Table 3.1-3		
Formaldehyde	7.10E-04		1.46E-03	12.81	6.41E-03	7.10E-04		1.46E-03	12.81	6.41E-03	AP-42, Chapter 3.1, Table 3.1-3		
Naphthalene	1.30E-06		2.68E-06	0.023	1.17E-05	1.30E-06		2.68E-06	0.023	1.17E-05	AP-42, Chapter 3.1, Table 3.1-3		
PAH	2.20E-06		4.53E-06	0.040	1.99E-05	2.20E-06		4.53E-06	0.040	1.99E-05	AP-42, Chapter 3.1, Table 3.1-3		
Propylene Oxide	2.90E-05		5.97E-05	0.52	2.62E-04	2.90E-05		5.97E-05	0.52	2.62E-04	AP-42, Chapter 3.1, Table 3.1-3		
Toluene	1.30E-04		2.68E-04	2.35	1.17E-03	1.30E-04		2.68E-04	2.35	1.17E-03	AP-42, Chapter 3.1, Table 3.1-3		
Xylenes	6.40E-05		1.32E-04	1.15	5.77E-04	6.40E-05		1.32E-04	1.15	5.77E-04	AP-42, Chapter 3.1, Table 3.1-3		
Total HAPS			0.0021	18.54	0.0093			0.0021	18.54	0.0093			
Pollutant	Emissio	n Factor	Esti	mated Emissi	ons ¹	Emissio	n Factor	Estimated Emissions ¹		Estimated Emissions ¹		ons ¹	Source of Emissions Factors
Pollutant	(kg/MMBtu)	(lb/MWhe)	(lb/hr)		(tpy)	(kg/MMBtu)	(lb/MWhe)	(lb/hr)		(tpy)	Source of Emissions Factors		
CO ₂		1,330	266.0		1,165		1,330	266.0		1,165	Manufacturer Specifications		
CH₄	0.001		0.0046		0.020	0.001		0.0046		0.020	40 CFR Part 98, Subpart C, Table C-2		
N ₂ O	0.0001		0.00046		0.0020	0.0001		0.00046		0.0020	40 CFR Part 98, Subpart C, Table C-2		
CO ₂ e			266.2		1,166			266.2		1,166	40 CFR Part 98, Subpart A, Table A-1, effective January 2014		

Example Calculations

lb/hr = (lb/Mwhe) * kWe * (1 MWe/1000 kWe) or (lb/MMBtu) * (MMBtu/hr) or (kg/MMBtu) * (MMBtu/hr) * (2.21 lb/kg)

tpy = (lb/hr) * (hr/yr) * (ton/2000 lb)

¹⁾ Calculated

Natural Gas Fueled Catalytic Heater Emissions

Company:	Antero Midstream LLC				
Facility Name:	Tamela Compressor Station				
Location:	Doddridge County, West Virginia				
Source Description:	Catalytic Heater for Generator Fuel				

Source Information

Emission Unit ID:	CAT	HT1	
Source Description:	Generator Fuel Heater		
Hours of Operation	8,760	hr/yr	
Design Heat Rate	0.024	MMBtu/hr	
Fuel Heat Value	1,020	Btu/scf	
Fuel Use	0.21	MMscf/yr	

Emission Calculations per Heater

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Foliutalit	(lb/MMscf)	(lb/hr)	(tpy)	Source
NO_X	100	0.0024	0.010	AP-42 Ch. 1.4 Table 1.4-1
CO	84	0.0020	0.0087	AP-42 Ch. 1.4 Table 1.4-1
VOC	5.5	0.00013	0.00057	AP-42 Ch. 1.4 Table 1.4-2
PM ₁₀	7.6	0.00018	0.00078	AP-42 Ch. 1.4 Table 1.4-2
SO ₂	0.6	0.000014	0.000062	AP-42 Ch. 1.4 Table 1.4-2
Formaldehyde	0.075	0.000018	0.000077	AP-42 Ch. 1.4 Table 1.4-3
Total HAPs (including HCHO) ¹	1.9	0.000044	0.00019	AP-42 Ch. 1.4 Table 1.4-3
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Pollutarit	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	2.81	12.3	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.000053	0.00023	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.0000053	0.000023	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		2.82	12.3	40 CFR Part 98, Subpart A, Table A-1

^{1.} Only those HAP pollutants above detection thresholds were included.

Sample Calculations:

2,000 (lbs/ton)

Dehydrator Emissions

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Dehydrator Units

Potential Emissions per Dehydrator

	Emission Unit ID: V-3110/V-3210		Emission Unit ID: V-3120/V-3220		
Pollutant	Dehydrato	r Still Vent	Flash Ta	ank Gas	
Pollutant		(tpy)	(lb/hr)	(tpy)	
Uncontrolled Emissions 1					
VOC	16.88	73.93	48.87	214.06	
Total HAPs	5.04	22.10	1.31	5.73	
Benzene	1.18	5.16	0.094	0.41	
Toluene	2.67	11.70	0.12	0.53	
Ethylbenzene	0.17	0.74	0.0039	0.017	
Xylenes	0.59	2.59	0.0087	0.038	
n-Hexane	0.44	1.91	1.08	4.73	
Methane	18.49	80.98	114.94	503.42	
Carbon Dioxide	0.27	1.17	2.27	9.94	
CO ₂ e	462.5	2,026	2,876	12,595	
Controlled Emissions 2,3					
VOC	0.34	1.48	0.98	4.28	
Total HAPs	0.10	0.44	0.026	0.11	
Benzene	0.024	0.10	0.0019	0.0083	
Toluene	0.053	0.23	0.0024	0.011	
Ethylbenzene	0.0034	0.015	0.00010	0.00030	
Xylenes	0.012	0.052	0.00020	0.00080	
n-Hexane	0.0087	0.038	0.022	0.095	
Methane	0.37	1.62	2.30	10.07	
Carbon Dioxide	0.27	1.17	2.27	9.94	
CO ₂ e	9.51	41.66	59.74	261.7	

	Dehydrator Emission Totals		
Pollutant	(lb/hr)	(tpy)	
Uncontrolled Emissions 1			
VOC	65.75	288.0	
Total HAPs	6.35	27.83	
Benzene	1.27	5.58	
Toluene	2.79	12.23	
Ethylbenzene	0.17	0.76	
Xylenes	0.60	2.63	
n-Hexane	1.51	6.63	
Methane	133.4	584.4	
Carbon Dioxide	2.54	11.11	
CO ₂ e	3,338	14,621	
Controlled Emissions 2,3			
VOC	1.31	5.76	
Total HAPs	0.13	0.56	
Benzene	0.025	0.11	
Toluene	0.056	0.24	
Ethylbenzene	0.0035	0.015	
Xylenes	0.012	0.053	
n-Hexane	0.030	0.13	
Methane	2.67	11.69	
Carbon Dioxide	2.54	11.11	
CO ₂ e	69.25	303.3	

¹Output from GRI-GLYCalc 4.0 for both the still vent and flash tank gas emissions

²Controlled emissions assume that the glycol still vent is equipped with a condenser and is controlled by a combustor with 98% control efficiency.

³Flash tank gas is used in the reboiler as the primary fuel source. However, in the case that gas cannot be used in the reboiler, the gas is sent to the primary/backup VRU system via the storage tanks for 98% control.

Natural Gas Fueled Dehydrator Reboiler Emissions

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Location:	Doddridge County, West Virginia
Source Description:	Dehydrator Reboilers

Source Information

Emission Unit ID:	F-3100 & F-3200		
Source Description:	Dehydrator Reboiler		
Hours of Operation	8,760 hr/yr		
Design Heat Rate	1.5 MMBtu/hr		
Fuel Heat Value	1,020	Btu/scf	
Fuel Use	12.9 MMscf/yr		

Emission Calculations per Reboiler

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Foliutant	(lb/MMscf)	(lb/hr)	(tpy)	Source
NO_X	100	0.15	0.64	AP-42 Ch. 1.4 Table 1.4-1
CO	84	0.12	0.54	AP-42 Ch. 1.4 Table 1.4-1
VOC	5.5	0.0081	0.035	AP-42 Ch. 1.4 Table 1.4-2
PM ₁₀	7.6	0.011	0.049	AP-42 Ch. 1.4 Table 1.4-2
SO_2	0.6	0.00088	0.0039	AP-42 Ch. 1.4 Table 1.4-2
Formaldehyde	0.075	0.00011	0.00048	AP-42 Ch. 1.4 Table 1.4-3
Total HAPs (including HCHO)	1.9	0.0028	0.012	AP-42 Ch. 1.4 Table 1.4-3
Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
Foliutarit	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	175.9	770.4	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.0033	0.015	40 CFR Part 98, Subpart C, Table C-2
Nitrous Oxide	0.0001	0.00033	0.0015	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		176.1	771.2	40 CFR Part 98, Subpart A, Table A-1

Sample Calculations:

Fuel Consumption (MMscf/yr) = Heater Size (MMBtu/hr) * Hours of Operation (hrs/yr)

Fuel Heat Value (Btu/scf) * Heater Efficiency

Emissions (tons/yr) = Emission Factor (lbs/MMscf) * Fuel Consumption (MMscf/yr)

2,000 (lbs/ton)

Flare Emissions

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Flare for Dehydrator Still Vent Gas
Emission Unit ID:	FL-1000

Combusted Gas Emissions

Flare Heat Input: 4.80 MMBtu/hr Hours of Operation: 8,760 hr/yr

Pollutant	Emission Factor ¹ (lb/MMBtu) Emissions (lbs/hr)		Emissions (tons/yr)
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	N/A - Smokeless Design		
Nitrogen Oxides (NO _x)	0.068	0.33	1.43
Carbon Monoxide (CO)	0.37	1.78	7.78

¹ Emission Factors from Table 13.5-1 of AP-42 Section 13.5 (Sept 1991)

Pilot Emissions

Pilot Heating Value: 1,214 Btu/scf
Hours of Operation: 8,760 hr/yr
Total Pilot Natural Gas Usage: 1.64E-05 MMscf/hr

Pollutant	Emission Factor (Ib/MMscf)	Emissions (lbs/hr)	Emissions (tons/yr)
Particulate Matter (PM/PM ₁₀ /PM _{2,5}) ²	7.6	1.48E-04	6.50E-04
Nitrogen Oxides (NOx)	100	1.95E-03	8.55E-03
Sulfur Dioxide (SO ₂) ²	0.6	1.17E-05	5.13E-05
Carbon Monoxide (CO) ²	84	1.64E-03	7.18E-03
Volatile Organic Compounds (VOC) ²	5.5	1.07E-04	4.70E-04
Total HAPs ^{2,3}	1.88	3.67E-05	1.61E-04

² Emission Factors from AP-42 Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (7/98).

Total Flare Emissions

Total Flare Lillissions		
Pollutant	Potential Emission Rate	Potential Emission Rate
	(lbs/hr)	(tons/year)
Particulate Matter (PM/PM ₁₀ /PM _{2.5})	1.48E-04	6.50E-04
Nitrogen Oxides (NOx)	0.33	1.44
Sulfur Dioxide (SO ₂)	1.17E-05	5.13E-05
Carbon Monoxide (CO)	1.78	7.79
Volatile Organic Compounds (VOC)	1.07E-04	4.70E-04
Total HAPs	3.67E-05	1.61E-04

Greenhouse Gas Emissions

Pollutant	Emission Factor	Emissions	Emissions	Emission Factor
	(kg/MMBtu)	(lb/hr)	(tpy)	Source
Carbon Dioxide	53.06	565.2	2,476	40 CFR Part 98, Subpart C, Table C-1
Methane	0.001	0.011	0.047	40 CFR Part 98, Subpart C, Table C-2
Nitrogen Dioxide	0.0001	0.0011	0.0047	40 CFR Part 98, Subpart C, Table C-2
CO ₂ e		565.2	2,476	40 CFR Part 98, Subpart A, Table A-1

³ Sum of Emissions Factors published for pollutants classified as "HAPS" under AP-42 Table 1.4-3.

Truck Loading Emissions

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Production Liquids Truck Loadout
Emission Unit ID:	LDOUT1

AP - 42, Chapter 5.2 $L_L = 12.46 \times S \times P \times M / T$

L_L = Loading Loss Emission Factor (lbs VOC/1000 gal loaded)

S = Saturation Factor

P = True Vapor Pressure of the Loaded Liquid (psia)

M = Vapor Molecular Weight of the Loaded Liquid (lbs/lbmol)

T = Temperature of Loaded Liquid (°R)

VOC Emissions (tpy) = L_L (lbs VOC/1000 gal) * 42 gal/bbl * 365 days/year * production (bbl/day)

1000 gal * 2000 lbs/ton

										· ·	Jncontrolle	ed						
				L _L	Production	VOC	Benzene	Toluene	E-Benzene	Xylene	n-Hexane	CO ₂ e						
Source	S ¹	P (psia) ²	M^3	T (°F)4	T (ºR)	(lb/1000 gal)	(bbl/day)	(tpy)	(tpy) ⁵									
Condensate	0.6	12.0	38.6	60	519.67	6.66	150	7.66	0.0037	0.0088	0.0032	0.0081	0.21	27.86				
Produced Water	0.6	0.32	18.2	60	519.67	0.0084	45	0.0029	1.41E-06	3.35E-06	1.20E-06	3.09E-06	7.86E-05	0.011				

Notes:

- 1. Saturation factor from AP-42, Table 5.2-1 (Submerged loading (bottom loading): dedicated normal service)
- 2. True vapor pressure for condensate and produced water is from the ProMax 4.0 model output
- 3. Molecular weight of the liquid vapor for condensate is from the ProMax 4.0 model output and the molecular weight of the liquid vapor for produced water is derived from the produced water working and breathing emissions.
- 4. Temperature is the liquid bulk temperature used in the ProMax 4.0 model
- 5. HAPs and CO₂e emissions are calculated using the flash gas vapor weight percents from the ProMax 4.0 output.

Assume 1 truck loaded per hour, 260 bbl truck, for short term emissions

								Officontrolled						
			LL	Loading	VOC	Benzene	Toluene	E-Benzene	Xylene	n-Hexane	CO ₂ e			
Source	S ¹	P (psia) ²	M ³	T (°F)4	T (ºR)	(lb/1000 gal)	(bbl/hr)	(lb/hr)	(lb/hr) ⁵					
Condensate	0.6	12.0	38.6	60	519.67	6.66	260	72.76	0.035	0.084	0.030	0.077	1.96	264.6
Produced Water	0.6	0.32	18.2	60	519.67	0.0084	260	0.092	4.46E-05	1.06E-04	3.81E-05	9.79E-05	2.49E-03	0.33

Uncontrolled

Storage Tank Flashing Emissions Calculated by ProMax Simulation

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Settling Tank
Emission Unit ID:	TK-9000

Settling Tank Flashing Emissions

Component	Uncontrolled Flashing Emissions ¹ (lb/hr)	Uncontrolled Flashing Emissions (tons/yr)	Controlled Flashing Emissions ^{2,3} (lb/hr)	Controlled Flashing Emissions ^{2,3} (tons/yr)
Methane	22.64	99.18	0.45	1.98
Ethane	47.59	208.43	0.95	4.17
Propane	59.22	259.38	1.18	5.19
i-Butane	15.70	68.74	0.31	1.37
n-Butane	36.40	159.44	0.73	3.19
i-Pentane	13.51	59.18	0.27	1.18
n-Pentane	13.68	59.92	0.27	1.20
2-Methylpentane (Hexanes)	6.70	29.33	0.13	0.59
n-Heptane	3.98	17.45	0.080	0.35
n-Octane	1.51	6.62	0.030	0.13
n-Nonane	0.21	0.92	0.0042	0.018
Decanes+	0.078	0.34	0.0016	0.0069
Benzene	0.075	0.33	0.0015	0.0066
Toluene	0.18	0.79	0.0036	0.016
Ethylbenzene	0.064	0.28	0.0013	0.0056
o-Xylene	0.17	0.72	0.0033	0.014
n-Hexane	4.20	18.41	0.084	0.37
2,2,4-Trimethylpentane	0.00	0.00	0.00	0.00
Water	1.86	8.14	1.86	8.14
Nitrogen	0.087	0.38	0.087	0.38
Carbon Dioxide	0.23	1.00	0.23	1.00
VOC Subtotal	155.68	681.86	3.11	13.64
HAP Subtotal	4.69	20.53	0.094	0.41
CO₂e Subtotal	566.33	2,480.5	11.55	50.59
Total	228.08	998.99	6.69	29.30

Notes:

- 1. Flashing emissions calculated by ProMax 4.0. Flash gas is "Flash Gas" of the associated ProMax simulation. Flashing only occurs in the settling tank as all pressurized fluids flow into the settling tank and then separate out at atmospheric conditions to the condensate and produced water tanks.
- 2. Tanks are controlled by a VRU with assumed 98% capture efficiency; but will likely be higher as vapors are recycled back into the system.
- 3. VRU-100 is the primary VRU to collect storage tank vapors and VRU-200 is the backup VRU in times when the primary VRU is undergoing maintenance or shutdown.

Storage Tank Working and Breathing Emissions

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Condensate, Settling, and Produced Water Tanks
Emission Unit ID:	TK-9000, TK-9100, TK-9110, TK-9200, TK-9210

	Uncontrolled	Uncontrolled						
TANK	VOC	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	CH₄	CO ₂ e
DESCRIPTION	Emissions ¹	Emissions						
	(tons/yr)	(tons/yr)						
400 bbl Hydrocarbon Storage Tank (TK-9200)	7.05	0.0023	0.0060	0.0024	0.0055	0.20	0.093	2.32
400 bbl Hydrocarbon Storage Tank (TK-9210)	7.05	0.0023	0.0060	0.0024	0.0055	0.20	0.093	2.32
500 bbl Settling Tank (TK-9000)	8.57	0.0028	0.0073	0.0029	0.0067	0.25	0.11	2.82
400 bbl Produced Water Storage Tank ² (TK-9100)	2.93E-04	6.50E-07	3.30E-07	3.80E-08	5.80E-08	2.80E-08	4.50E-04	1.14E-02
400 bbl Produced Water Storage Tank ² (TK-9210)	2.93E-04	6.50E-07	3.30E-07	3.80E-08	5.80E-08	2.80E-08	4.50E-04	1.14E-02
TOTAL	22.68	0.0075	0.019	0.0076	0.018	0.65	0.30	7.49

	Controlled							
TANK	VOC	Benzene	Toluene	Ethylbenzene	Xylene	n-Hexane	CH₄	CO ₂ e
DESCRIPTION	Emissions ^{3,4}							
	(tons/yr)							
400 bbl Hydrocarbon Storage Tank (TK-9200)	0.14	4.66E-05	1.20E-04	4.72E-05	1.10E-04	4.06E-03	1.85E-03	5.19E-02
400 bbl Hydrocarbon Storage Tank (TK-9210)	0.14	4.66E-05	1.20E-04	4.72E-05	1.10E-04	4.06E-03	1.85E-03	5.19E-02
500 bbl Settling Tank (TK-9000)	0.17	5.66E-05	1.46E-04	5.74E-05	1.34E-04	4.93E-03	2.25E-03	6.31E-02
400 bbl Produced Water Storage Tank ² (TK-9100)	5.86E-06	1.30E-08	6.60E-09	7.60E-10	1.16E-09	5.60E-10	9.00E-06	3.75E-04
400 bbl Produced Water Storage Tank ² (TK-9210)	5.86E-06	1.30E-08	6.60E-09	7.60E-10	1.16E-09	5.60E-10	9.00E-06	3.75E-04
TOTAL	0.45	1.50E-04	3.86E-04	1.52E-04	3.54E-04	1.31E-02	0.0060	0.17

Notes:

- 1. ProMax 4.0 used to calculated working and breathing emissions.
- 2. Produced water assumed to have no more than 10% hydrocarbon liquid.
- 3. Tanks are controlled by a VRU with assumed 98% capture efficiency; but will likely be higher as vapors are recycled back into the system.
- 4. VRU-100 is the primary VRU to collect storage tank vapors and VRU-200 is the backup VRU in times when the primary VRU is undergoing maintenance or shutdown.

Emissions From Venting Episodes

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Emissions-Venting Episodes
Emission Unit ID:	VENT1

	VOC Venting Emissions							
Type of Event ¹	Number Of Events (event/yr)	Amount Vented per Event (scf/event)	Molecular Weight of Vented Gas (lb/lb-mol)	Total Emissions (ton/yr)	VOC Weight Fraction ⁴	VOC Emissions (ton/yr)		
Compressor Blowdown ²	936	2,236	20.43	56.35	0.17	9.35		
Compressor Startup	936	1,050	20.43	26.46	0.17	4.39		
Plant Shutdown	2	100,000	20.43	5.38	0.17	0.89		
Low Pressure Pig Venting ³	593	516	20.43	8.23	0.17	1.37		
High Pressure Pig Venting ³	520	2,801	20.43	39.21	0.17	6.50		
Total Emissions (tons/yr)						22.50		

	HAPs Venting Emissions									
Type of Event ¹	Benzene Weight Fraction ⁴	Benzene Emissions (tpy)	Toluene Weight Fraction⁴	Toluene Emissions (tpy)	Ethylbenzene Weight Fraction ⁴	Ethylbenzene Emissions (tpy)	Xylene Weight Fraction ⁴	Xylene Emissions (tpy)	n-Hexane Weight Fraction ⁴	n-Hexane Emissions (tpy)
Compressor Blowdown ²	1.03E-04	0.0058	1.85E-04	0.010	1.04E-05	0.00059	2.60E-05	0.0015	3.09E-03	0.17
Compressor Startup	1.03E-04	0.0027	1.85E-04	0.0049	1.04E-05	0.00027	2.60E-05	0.00069	3.09E-03	0.082
Plant Shutdown	1.03E-04	0.00056	1.85E-04	0.0010	1.04E-05	0.000056	2.60E-05	0.00014	3.09E-03	0.017
Low Pressure Pig Venting ³	1.03E-04	0.00085	1.85E-04	0.0015	1.04E-05	0.000086	2.60E-05	0.00021	3.09E-03	0.025
High Pressure Pig Venting ³	1.03E-04	0.0040	1.85E-04	0.0072	1.04E-05	0.00041	2.60E-05	0.0010	3.09E-03	0.12
Total Emissions (tons/yr)		0.014		0.025		0.0014		0.0035		0.42

	GHG Venting Emissions								
	Number	Amount	Molecular						
Type of Event ¹	Of	Vented per	Weight of	CH₄	CO ₂	CH₄	CO ₂	CO₂e	
	Events	Event	Vented Gas	Weight	Weight	Emissions	Emissions	Emissions	
	(event/yr)	(scf/event)	(lb/lb-mol)	Fraction⁴	Fraction ⁴	(ton/yr)	(ton/yr)	(tpy)	
Compressor Blowdown ²	936	2,236	20.43	0.62	0.0040	35.00	0.22	875.28	
Compressor Startup	936	1,050	20.43	0.62	0.0040	16.43	0.11	410.95	
Plant Shutdown	2	100,000	20.43	0.62	0.0040	3.34	0.021	83.63	
Low Pressure Pig Venting ³	593	516	20.43	0.62	0.0040	5.11	0.033	127.90	
High Pressure Pig Venting ³	520	2,801	20.43	0.62	0.0040	24.36	0.16	609.03	
Total Emissions (tons/yr)		-				84.25	0.54	2,106.8	

¹⁾ Estimated number of events and venting per event from engineering. Compressor blowdowns are calculated to be 120.4 lb/event.

²⁾ Total number of compressor blowdowns based on 18 blowdowns per week.

³⁾ Total number of pigging events based on expected operations.

⁴⁾ Weight fractions are from a gas analysis from a nearby, representative compressor station.

Component Fugitive Emissions

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Fugitive Emissions - Component Leaks

VOC Fugitive Emissions							
Equipment Type and Service	Number of Units ¹	Hours of Operation (hours/yr)	THC Emission Factor ² (kg/hr-unit)	VOC Weight Fraction ³	THC Emissions (tpy)	VOC Emissions (tpy)	
Flanges - Gas Service	850	8,760	3.90E-04	0.17	3.21	0.54	
Valves - Gas Service	750	8,760	4.50E-03	0.17	32.67	5.48	
Compressor Seals Gas Service	39	8,760	8.80E-03	0.17	3.32	0.56	
Flanges - Liquid Service	400	8,760	1.10E-04	0.69	0.43	0.29	
Valves - Liquid Service	160	8,760	2.50E-03	0.69	3.87	2.67	
Total Emissions (tons/yr)					43.50	9.54	

	HAPs Fugitive Emissions									
Equipment Type and Service	Benzene Weight Fraction ³	Benzene Emissions (tpy)	Toluene Weight Fraction ²	Toluene Emissions (tpy)	Ethylbenzene Weight Fraction ²	Ethylbenzene Emissions (tpy)	Xylene Weight Fraction ²	Xylene Emissions (tpy)	n-Hexane Weight Fraction ²	n-Hexane Emissions (tpy)
Flanges - Gas Service	1.04E-04	0.00034	1.87E-04	0.00060	1.05E-05	0.000034	2.63E-05	0.000084	3.13E-03	0.010
Valves - Gas Service	1.04E-04	0.0034	1.87E-04	0.0061	1.05E-05	0.00034	2.63E-05	0.00086	3.13E-03	0.10
Compressor Seals Gas Service	1.04E-04	0.00035	1.87E-04	0.00062	1.05E-05	0.000035	2.63E-05	0.000087	3.13E-03	0.010
Flanges - Liquid Service	3.34E-04	0.00014	7.94E-04	0.00034	2.85E-04	0.00012	7.33E-04	0.00031	1.86E-02	0.0079
Valves - Liquid Service	3.34E-04	0.0013	7.94E-04	0.0031	2.85E-04	0.0011	7.33E-04	0.0028	1.86E-02	0.072
Total Emissions (tons/yr)		0.0055	-	0.011		0.0016		0.0042		0.20

¹⁾ Component counts from Engineering Lists.

³⁾ Gas weight fractions from a representative gas analysis and liquid weight fractions from a ProMax 4.0 model run.

GHG Fugitive Emissions								
Equipment Type	Number of	Hours of Operation	Emission Factor ²	CH ₄ Concentration ³	CO ₂ Concentration ³	CH₄ Emissions	CO ₂ Emissions	CO₂e Emissions
	Units ¹	(hours/yr)	(scf/hr-unit)			(tpy)	(tpy)	(tpy)
Flanges	1,250	8,760	0.003	0.98	0.011	0.68	0.021	16.97
Valves - Gas Service	750	8,760	0.027	0.98	0.011	3.66	0.11	91.63
Valves - Liquid Service	160	8,760	0.050	0.98	0.011	1.45	0.045	36.20
Compressor Seals	39	8,760	0.300	0.98	0.011	2.11	0.065	52.94
Total Emissions (tons/yr)						7.90	0.24	197.73

¹⁾ Component counts from Engineering Lists.

²⁾ API average emission factors are for oil and gas production operations - Table 2.4, EPA Protocol for Equipment Leak Emission Estimates - 1995.

²⁾ Emission factors from 40 CFR Part 98 Subpart W, Table W1-A.

³⁾ CH₄ and CO₂ concentrations as defined in 40 CFR Part 98.233(r)

Fugitive Dust Emissions

Company:	Antero Midstream LLC
Facility Name:	Tamela Compressor Station
Facility Location:	Doddridge County, West Virginia
Source Description:	Fugitive Dust Emissions

Gravel Access Road	Loaded Truck Weight ¹	Trips per year ²	Trips per day ²	Distance per round trip (truck in and out) ³		VMT per year ⁴
	tons			feet	miles	miles
Condensate Tank Truck	40.00	365	1.0	4,020	0.76	278
Produced Water Tank Truck	40.00	365	1.0	4,020	0.76	278

Equation Parameter	PM-10/PM2.5	PM-Total	
E , annual size-specific emission factor for PM ₁₀ & PM _{2.5} (upaved industrial roads) extrapolated for natural mitigation ⁶	see table below	see table below	
k , Particle size multiplier for particle size range (PM ₁₀), (lb/VMT) (Source: AP-42 Table 13.2.2-2)	1.5	40	
k , Particle size multiplier for particle size range (PM _{2.5}), (lb/VMT) (Source: AP-42 Table 13.2.2-2)	0.15		
s, surface material silt content, (%) (Source: AP-42 Table 13.2.2-1)	4.8	4.8	
W, mean weight (tons) of the vehicles traveling the road	40.00	40.00	
${f a}$, constant for PM $_{10}$ and PM $_{2.5}$ on industrial roads (Source: AP-42 Table 13.2.2-2)	0.9	0.7	
b , constant for PM_{10} and $PM_{2.5}$ on industrial roads (Source: AP-42 Table 13.2.2-2)	0.45	0.45	
P , number of "wet" days with at least 0.254 mm (0.01 in) of precipitation during the averaging period, based on AP-42 Figure 13.2.2-1.	160	160	

$$E = \left[k \left(\frac{s}{12} \right)^a \times \left(\frac{W}{3} \right)^b \right] \times \left(365 - P/365 \right)$$

Source of Equation: AP-42 Section 13.2.2

PM₁₀ Emissions

Er	mission Factor (lb/VMT)	Vehicle miles traveled (VMT/yr) ⁴	Annual Uncontrolled PM ₁₀ Emissions (tpy)
	1.18	555.80	0.33

PM_{2.5} Emissions (tons/yr)

Emission Factor (lb/VMT)	Vehicle miles traveled (VMT/yr) ⁴	Annual Uncontrolled PM _{2.5} Emissions (tpy)			
0.12	555.80	0.033			

PM- Total Emissions (tons/yr)

Emission Factor (lb/VMT)	Vehicle miles traveled (VMT/yr) ⁴	Annual Uncontrolled PM-Total Emissions (tpy)
4.65	555.80	1.29

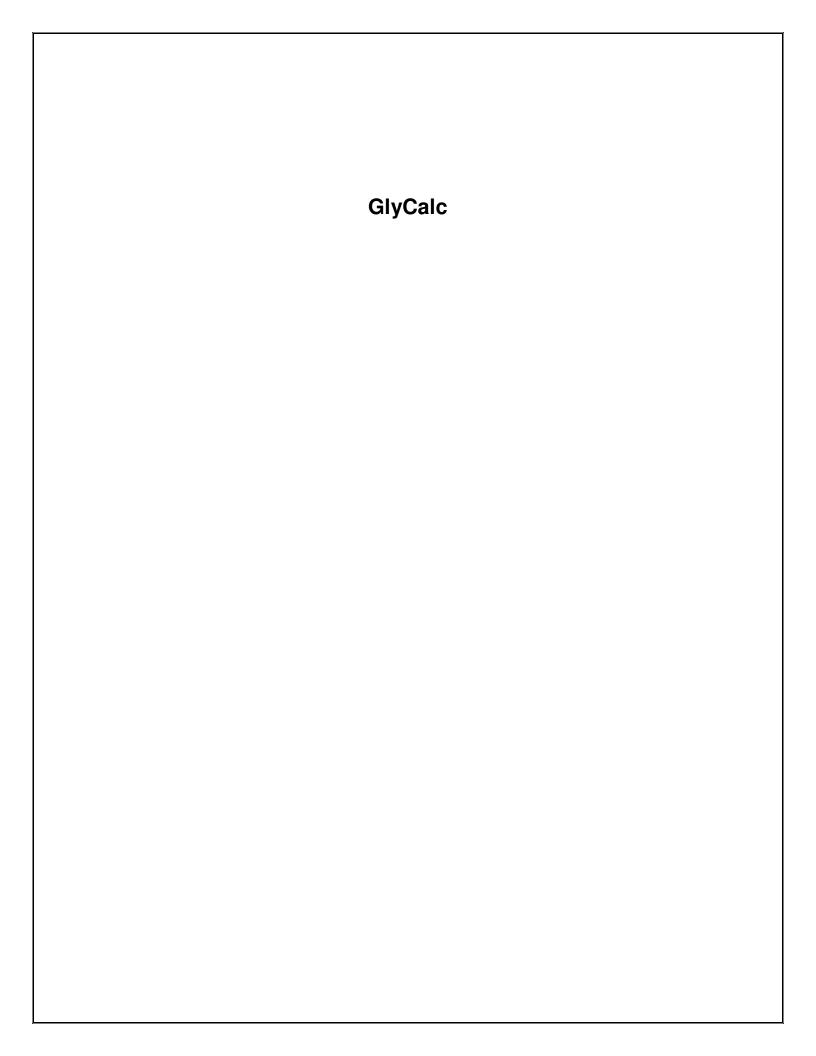
Table Notes

- 1. Loaded truck weight is based on typical weight limit for highway vehicles.
- 2. Based on production, it's assumed a maximum of one condensate truck (260 bbl truck) and one produced water truck (260 bbl truck) will be onsite per day.
- 3. Distance per round trip is based on the site layout. The one way distance is measured as 2,010 feet for the gravel access road.
- 4. $VMT/yr = Trips/yr \times Roundtrip Distance$
- 5. Hourly emissions determined from tons per year calculation using 2,000 lb/ton and 8,760 hours per year.

Facility Gas Analysis

	MOL %	MW	Component Weight Ib/Ib-mol	Wt. Fraction
Methane	79.12	16.04	12.69	0.62
Ethane	13.66	30.07	4.11	0.20
Propane	4.13	44.10	1.82	0.089
i-Butane	0.52	58.12	0.30	0.015
n-Butane	0.96	58.12	0.56	0.027
i-Pentane	0.27	72.15	0.20	0.010
n-Pentane	0.24	72.15	0.17	0.0084
Hexanes	0.13	106.72	0.14	0.0067
Heptanes	0.094	100.20	0.094	0.0046
Octanes	0.023	114.23	0.026	0.0013
Nonanes	0.0052	128.26	0.0067	0.00033
Decanes+	0.00030	142.29	0.00043	0.000021
n-Hexane	0.073	86.18	0.063	0.0031
Benzene	0.0027	78.11	0.0021	0.00010
Toluene	0.0041	92.14	0.0038	0.00018
Ethylbenzene	0.00020	106.17	0.00021	0.000010
Xylenes	0.00050	106.16	0.00053	0.000026
Nitrogen	0.54	28.01	0.15	0.0074
Carbon Dioxide	0.18	44.01	0.081	0.0040
Oxygen	0.029	32.01	0.0092	0.00045
Totals	100.0		20.43	1.00

Heating Value (Btu/scf) Molecular weight	1,213.6 20.43
VOC weight fraction	0.17
Methane weight fraction	0.62
THC weight fraction	0.99
VOC of THC wt fraction	0.17
Methane of THC wt fraction	0.63
Benzene of THC wt fraction	0.00010
Toluene of THC wt fraction	0.00019
E-benzene of THC wt fraction	0.000011
Xylene of THC wt fraction	0.000026
n-Hexane of THC wt fraction	0.0031
THICKARIC OF THO WE HACTION	0.0051


^{1.} Gas analysis is a representative sample from a nearby compressor station.

Facility Tank Vent Gas Analysis

	MOL %	MW	Component Weight	Wt. Fraction
			lb/lb-mol	
Methane	23.89	16.04	3.83	0.10
Ethane	26.79	30.07	8.05	0.21
Propane	22.73	44.10	10.02	0.26
i-Butane	4.57	58.12	2.66	0.069
n-Butane	10.60	58.12	6.16	0.16
i-Pentane	3.17	72.15	2.29	0.059
n-Pentane	3.21	72.15	2.32	0.060
Hexanes	1.32	86.18	1.13	0.029
Heptanes	0.67	100.20	0.67	0.017
Octanes	0.22	114.23	0.26	0.0066
Nonanes	0.028	128.26	0.036	0.00092
Decanes+	0.0087	151.80	0.013	0.00034
n-Hexane	0.83	86.18	0.71	0.018
Benzene	0.016	78.11	0.013	0.00033
Toluene	0.033	92.14	0.030	0.00079
Ethylbenzene	0.010	106.17	0.011	0.00028
Xylenes	0.026	106.17	0.028	0.00073
Nitrogen	0.053	28.01	0.015	0.00038
Carbon Dioxide	0.088	44.01	0.039	0.0010
Water	1.75	18.02	0.31	0.0081
Totals	100.00		38.60	1.00

Molecular weight	38.60
VOC weight fraction	0.68
CH4 weight fraction	0.10
THC weight fraction	0.99
VOC of THC wt fraction	0.69
CH4 of THC wt fraction	0.10
Benzene of THC wt fraction	0.00033
Toluene of THC wt fraction	0.00079
E-benzene of THC wt fraction	0.00029
Xylene of THC wt fraction	0.00073
n-Hexane of THC wt fraction	0.019

^{1.} Tank vent gas analysis retrieved from "Flash Gas" stream from ProMax 4.0 simulation.

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES

Case Name: Tamela Compressor Station

File Name: Z:\20171806 - Antero WV CS Permit Mods\Tamela CS\Attachment N\GLYCalc\Tamela

CS 110MMscfd.ddf

Date: June 11, 2017

DESCRIPTION:

Description: One (1) 110 MMSCFD TEG dehydration unit

Kimray 45015PV glycol pump

Annual Hours of Operation: 8760.0 hours/yr

WET GAS:

Temperature: 120.00 deg. Pressure: 1200.00 psig 120.00 deg. F

Wet Gas Water Content: Saturated

Component	Conc. (vol %)
Carbon Dioxide	0.1844
Nitrogen	0.5688
Methane	79.1226
Ethane	13.6626
Propane	4.1333
Isobutane	0.5231
n-Butane	0.9624
Isopentane	0.2739
n-Pentane	0.2370
n-Hexane	0.0733
Other Hexanes	0.1284
Heptanes	0.0941
Benzene	0.0027
Toluene	0.0041
Ethylbenzene	0.0002
Xylenes	0.0005
C8+ Heavies	0.0290

DRY GAS:

Flow Rate: 110.0 MMSCF/day Water Content: 5.0 lbs. H2O/N

5.0 lbs. H2O/MMSCF

LEAN GLYCOL:

Glycol Type: TEG

1.5 wt% H2O Water Content: 1.5 wt% Flow Rate: 15.0 gpm

PUMP:

Glycol Pump Type: Gas Injection

Gas Injection Pump Volume Ratio: 0.032 acfm gas/gpm glycol

FLASH TANK:

Flash Control: Combustion device
Flash Control Efficiency: 98.00 %
Temperature: 80.0 deg. F
Pressure: 5.0 psig

STRIPPING GAS:

Source of Gas: Dry Gas

Gas Flow Rate: 9.000 scfm

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Condenser

Temperature: 200.0 deg. F Pressure: 14.7 psia

Control Device: Combustion Device

Destruction Efficiency: 98.0 %
Excess Oxygen: 0.0 %
Ambient Air Temperature: 0.0 deg. F

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Tamela Compressor Station

File Name: Z:\20171806 - Antero WV CS Permit Mods\Tamela CS\Attachment N\GLYCalc\Tamela

CS 110MMscfd.ddf

Date: June 11, 2017

DESCRIPTION:

Description: One (1) 110 MMSCFD TEG dehydration unit

Kimray 45015PV glycol pump

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.3698	8.874	1.6196
Ethane	0.1317	3.161	0.5769
Propane	0.0719	1.724	0.3147
Isobutane	0.0147	0.352	0.0643
n-Butane	0.0331	0.795	0.1451
Isopentane	0.0124	0.297	0.0542
n-Pentane	0.0134	0.321	0.0585
n-Hexane	0.0087	0.209	0.0382
Other Hexanes	0.0111	0.267	0.0488
Heptanes	0.0274	0.658	0.1201
Benzene	0.0235	0.565	0.1031
Toluene	0.0534	1.281	0.2338
Ethylbenzene	0.0034	0.081	0.0148
Xylenes	0.0118	0.283	0.0517
C8+ Heavies	0.0527	1.266	0.2310
Total Emissions	0.8390	20.135	3.6747
Total Hydrocarbon Emissions	0.8390	20.135	3.6747
Total VOC Emissions	0.3375	8.100	1.4782
Total HAP Emissions	0.1008	2.420	0.4416
Total BTEX Emissions	0.0921	2.210	0.4034

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	18.4890	443.736	80.9818
Ethane	6.5854	158.049	28.8440
Propane	3.5928	86.227	15.7365
Isobutane	0.7343	17.622	3.2161
n-Butane	1.6563	39.750	7.2544
Isopentane	0.6183	14.839	2.7081
n-Pentane	0.6682	16.038	2.9269
n-Hexane	0.4358	10.459	1.9088
Other Hexanes	0.5568	13.362	2.4386
Heptanes	1.3708	32.899	6.0041
Benzene	1.1786	28.285	5.1621
Toluene	2.6713	64.111	11.7003
Ethylbenzene	0.1687	4.048	0.7388

Xylenes C8+ Heavies	0.5906 2.6367	14.175 63.281	Page: 2 2.5869 11.5488
Total Emissions	41.9534	1006.882	183.7560
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	41.9534 16.8790 5.0449 4.6091	1006.882 405.097 121.079 110.620	183.7560 73.9302 22.0969 20.1881

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	2.2987	55.169	10.0684
Ethane	0.9921	23.811	4.3455
Propane	0.4949	11.877	2.1675
Isobutane	0.0877	2.104	0.3841
n-Butane	0.1796	4.311	0.7868
Isopentane	0.0573	1.374	0.2508
n-Pentane	0.0547	1.313	0.2396
n-Hexane	0.0216	0.518	0.0945
Other Hexanes	0.0351	0.842	0.1536
Heptanes	0.0332	0.796	0.1453
Benzene	0.0019	0.045	
Toluene	0.0024	0.059	
Ethylbenzene	0.0001	0.002	
Xylenes	0.0002	0.004	
C8+ Heavies	0.0089	0.214	
Total Emissions	4.2683	102.439	18.6951
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	4.2683 0.9774 0.0262 0.0046	102.439 23.459 0.628 0.110	

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	114.9363	2758.472	503.4212
Ethane	49.6061	1190.546	217.2746
Propane	24.7431	593.835	108.3749
Isobutane	4.3841	105.219	19.2025
n-Butane	8.9817	215.561	39.3399
Isopentane	2.8626	68.701	12.5380
n-Pentane	2.7353	65.648	11.9808
n-Hexane	1.0789	25.894	4.7256
Other Hexanes	1.7535	42.084	7.6804
Heptanes	1.6584	39.801	7.2636
Benzene	0.0944	2.264	0.4133
Toluene	0.1220	2.928	0.5344
Ethylbenzene	0.0039	0.094	0.0171
Xylenes	0.0087	0.210	0.0383
C8+ Heavies	0.4455	10.692	1.9513
Total Emissions	213.4146	5121.951	934.7560
Total Hydrocarbon Emissions	213.4146	5121.951	934.7560
Total VOC Emissions	48.8722	1172.933	214.0602
Total HAP Emissions	1.3079	31.391	5.7288
Total BTEX Emissions	0.2290	5.497	1.0031

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

·			
Component	lbs/hr	lbs/day	tons/yr
Methane	2.6685	64.044	11.6880
Ethane	1.1238	26.972	4.9224
Propane	0.5667	13.601	2.4822
Isobutane	0.1024	2.457	0.4484
n-Butane	0.2128	5.106	0.9319
Isopentane	0.0696	1.671	0.3049
n-Pentane	0.0681	1.634	0.2982
n-Hexane	0.0303	0.727	0.1327
Other Hexanes	0.0462	1.109	0.2024
Heptanes	0.0606	1.454	0.2654
Benzene	0.0254	0.610	0.1114
Toluene	0.0558	1.340	0.2445
Ethylbenzene	0.0034	0.083	0.0151
Xylenes	0.0120	0.287	0.0525
C8+ Heavies	0.0616	1.479	0.2700
Total Emissions	5.1073	122.574	22.3698
Total Hydrocarbon Emissions	5.1073	122.574	22.3698
Total VOC Emissions	1.3149	31.559	5.7594
Total HAP Emissions	0.1270	3.047	0.5562
Total BTEX Emissions	0.0967	2.320	0.4235

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane		11.6880	98.00
Ethane		4.9224	98.00
Propane		2.4822	98.00
Isobutane		0.4484	98.00
n-Butane		0.9319	98.00
Isopentane	15.2461	0.3049	98.00
n-Pentane	14.9077	0.2982	98.00
n-Hexane	6.6344	0.1327	98.00
Other Hexanes	10.1190	0.2024	98.00
Heptanes	13.2677	0.2654	98.00
Benzene		0.1114	98.00
Toluene		0.2445	98.00
Ethylbenzene		0.0151	98.00
Xylenes		0.0525	98.00
C8+ Heavies		0.2700	98.00
Total Emissions Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	1118.5120	22.3698	98.00
	1118.5120	22.3698	98.00
	287.9904	5.7594	98.00
	27.8256	0.5562	98.00
	21.1912	0.4235	98.00

EQUIPMENT REPORTS:

CONDENSER AND COMBUSTION DEVICE

Condenser Outlet Temperature: 200.00 deg. F
Condenser Pressure: 14.70 psia
Condenser Duty: 2.29e-001 MM BTU/hr
Produced Water: 19.33 bbls/day
Ambient Temperature: 0.00 deg. F
Excess Oxygen: 0.00 %
Combustion Efficiency: 98.00 %

Supplemental Fuel Requirement: 2.29e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane	2.00%	98.00%
Ethane	2.00%	98.00%
Propane	2.00%	98.00%
Isobutane	2.00%	98.00%
n-Butane	2.00%	98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Other Hexanes	2.00%	98.00%
Heptanes	2.00%	98.00%
Benzene	2.00%	98.00%
Toluene	2.00%	98.00%
Ethylbenzene	2.00%	98.00%
Xylenes	2.00%	98.00%
C8+ Heavies	2.00%	98.00%

ABSORBER

Calculated Absorber Stages: 1.68
Specified Dry Gas Dew Point: 5.00 lbs. H2O/MMSCF
Temperature: 120.0 deg. F
Pressure: 1200.0 psig

Dry Gas Flow Rate: 110.0000 MMSCF/day Glycol Losses with Dry Gas: 8.4326 lb/hr

Wet Gas Water Content: Saturated

Calculated Wet Gas Water Content: 89.60 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 2.32 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	5.57%	94.43%
Carbon Dioxide	99.81%	0.19%
Nitrogen	99.98%	0.02%
Methane	99.98%	0.02%
Ethane	99.96%	0.04%
Propane	99.94%	0.06%
Isobutane	99.93%	0.07%
n-Butane	99.91%	0.09%
Isopentane	99.92%	0.08%
n-Pentane	99.91%	0.09%
n-Hexane	99.87%	0.13%
Other Hexanes	99.90%	0.10%
Heptanes	99.80%	0.20%
Benzene	95.07%	4.93%
Toluene	93.95%	6.05%

Ethylbenzene	93.34%	6.66%
Xylenes	90.72%	9.28%
C8+ Heavies	99.55%	0.45%

FLASH TANK

Flash Control: Combustion device
Flash Control Efficiency: 98.00 %
Flash Temperature: 80.0 deg. F
Flash Pressure: 5.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.88%	0.12%
Carbon Dioxide	6.23%	93.77%
Nitrogen	0.34%	99.66%
Methane	0.37%	99.63%
Ethane	1.47%	98.53%
Propane	3.88%	96.12%
Isobutane	6.44%	93.56%
n-Butane	8.75%	91.25%
Isopentane	10.79%	89.21%
n-Pentane	13.72%	86.28%
n-Hexane	24.54%	75.46%
Other Hexanes	19.07%	80.93%
Heptanes	42.94%	57.06%
Benzene	92.94%	7.06%
Toluene	95.97%	4.03%
Ethylbenzene	97.96%	2.04%
Xylenes	98.73%	1.27%
C8+ Heavies	86.81%	13.19%

REGENERATOR

Regenerator Stripping Gas:

Dry Product Gas

Stripping Gas Flow Rate: 9.0000 scfm

Component	Remaining in Glycol	Distilled Overhead
Water	24.60%	75.40%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	2.62%	97.38%
n-Pentane	2.26%	97.74%
n-Hexane	1.40%	98.60%
Other Hexanes	3.35%	96.65%
Heptanes	0.90%	99.10%
Benzene	5.32%	94.68%
Toluene	8.17%	91.83%
Ethylbenzene	10.55%	89.45%
Xylenes	13.05%	86.95%

C8+ Heavies 12.44% 87.56%

```
STREAM REPORTS:
```

WET GAS STREAM

Temperature: 120.00 deg. F Pressure: 1214.70 psia Flow Rate: 4.59e+006 scfh

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	1.89e-001 1.84e-001 5.68e-001 7.90e+001 1.36e+001	9.81e+002 1.92e+003 1.53e+005
Isobutane n-Butane Isopentane	4.13e+000 5.22e-001 9.61e-001 2.73e-001 2.37e-001	3.67e+003 6.76e+003 2.39e+003
Other Hexanes Heptanes Benzene	7.32e-002 1.28e-001 9.39e-002 2.69e-003 4.09e-003	1.34e+003 1.14e+003 2.55e+001
Ethylbenzene Xylenes C8+ Heavies	4.99e-004	6.41e+000
Total Components	100.00	2.47e+005

DRY GAS STREAM

Temperature: 120.00 deg. F Pressure: 1214.70 psia Flow Rate: 4.58e+006 scfh

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	1.05e-002 1.84e-001 5.69e-001 7.91e+001 1.37e+001	9.79e+002 1.92e+003 1.53e+005
Isobutane n-Butane Isopentane	4.13e+000 5.23e-001 9.62e-001 2.74e-001 2.37e-001	3.67e+003 6.75e+003 2.39e+003
Other Hexanes Heptanes Benzene	7.32e-002 1.28e-001 9.39e-002 2.57e-003 3.85e-003	1.34e+003 1.14e+003 2.42e+001

LEAN GLYCOL STREAM

Temperature: 120.00 deg. F Flow Rate: 1.50e+001 gpm

Conc. Loading (wt%) (lb/hr) Component TEG 9.85e+001 8.32e+003 Water 1.50e+000 1.27e+002 Carbon Dioxide 2.18e-012 1.84e-010 Nitrogen 4.56e-013 3.85e-011 Methane 1.03e-017 8.69e-016 Ethane 1.19e-007 1.01e-005 Propane 6.21e-009 5.25e-007 Isobutane 9.03e-010 7.63e-008 n-Butane 1.73e-009 1.46e-007 Isopentane 1.07e-004 9.08e-003 n-Pentane 1.16e-004 9.82e-003 n-Hexane 5.83e-005 4.92e-003 Other Hexanes 1.64e-004 1.39e-002 Heptanes 1.33e-004 1.12e-002 Benzene 7.82e-004 6.61e-002 Toluene 2.81e-003 2.37e-001 Ethylbenzene 2.35e-004 1.99e-002 Xylenes 1.05e-003 8.85e-002 C8+ Heavies 4.32e-003 3.65e-001 ______ ____ Total Components 100.00 8.44e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 120.00 deg. F Pressure: 1214.70 psia Flow Rate: 1.63e+001 gpm

NOTE: Stream has more than one phase.

Component		Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.18e+001 5.69e+000 2.67e-002 1.67e-002 1.27e+000	5.16e+002 2.42e+000 1.51e+000
Propane Isobutane	5.56e-001 2.84e-001 5.17e-002 1.09e-001 3.54e-002	2.57e+001 4.69e+000 9.84e+000
n-Hexane Other Hexanes Heptanes	3.50e-002 1.58e-002 2.39e-002 3.21e-002 1.48e-002	1.43e+000 2.17e+000 2.91e+000

FLASH TANK OFF GAS STREAM

Temperature: 80.00 deg. F Pressure: 19.70 psia Flow Rate: 3.75e+003 scfh

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	3.40e-001 5.21e-001 5.43e-001 7.25e+001 1.67e+001	2.27e+000 1.50e+000 1.15e+002
Isobutane n-Butane Isopentane	5.68e+000 7.64e-001 1.56e+000 4.02e-001 3.84e-001	4.38e+000 8.98e+000 2.86e+000
Other Hexanes Heptanes Benzene	1.27e-001 2.06e-001 1.68e-001 1.22e-002 1.34e-002	1.75e+000 1.66e+000 9.44e-002
Ethylbenzene Xylenes C8+ Heavies	8.34e-004	8.75e-003
Total Components	100.00	2.18e+002

FLASH TANK GLYCOL STREAM

Temperature: 80.00 deg. F Flow Rate: 1.58e+001 gpm

Component		Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.40e+001 5.83e+000 1.70e-003 5.83e-005 4.84e-003	5.15e+002 1.50e-001 5.15e-003
Propane Isobutane	8.38e-003 1.13e-002 3.41e-003 9.74e-003 3.92e-003	1.00e+000 3.02e-001 8.61e-001
n-Hexane Other Hexanes Heptanes	4.92e-003 3.97e-003 4.68e-003 1.41e-002 1.40e-002	3.51e-001 4.13e-001 1.25e+000

Page: 9
Toluene 3.28e-002 2.90e+000

Ethylbenzene 2.13e-003 1.88e-001 Xylenes 7.68e-003 6.78e-001 C8+ Heavies 3.32e-002 2.93e+000

Total Components 100.00 8.84e+003

FLASH GAS EMISSIONS

Flow Rate: 1.40e+004 scfh

Control Method: Combustion Device

Control Efficiency: 98.00

Conc. Loading (vol%) (lb/hr) Component Water 6.25e+001 4.16e+002 Carbon Dioxide 3.68e+001 5.98e+002 Nitrogen 1.45e-001 1.50e+000 Methane 3.88e-001 2.30e+000 Ethane 8.93e-002 9.92e-001 Propane 3.04e-002 4.95e-001 Isobutane 4.08e-003 8.77e-002 n-Butane 8.36e-003 1.80e-001 Isopentane 2.15e-003 5.73e-002 n-Pentane 2.05e-003 5.47e-002 n-Hexane 6.78e-004 2.16e-002 Other Hexanes 1.10e-003 3.51e-002 Heptanes 8.96e-004 3.32e-002 Benzene 6.54e-005 1.89e-003 Toluene 7.17e-005 2.44e-003 Ethylbenzene 2.00e-006 7.83e-005 Xylenes 4.46e-006 1.75e-004 C8+ Heavies 1.42e-004 8.91e-003 _____ ___ Total Components 100.00 1.02e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 8.79e+003 scfh

Component

Conc. Loading (vol%) (lb/hr)

Water 9.30e+001 3.88e+002
Carbon Dioxide 2.60e-002 2.66e-001
Nitrogen 3.57e-002 2.32e-001
Methane 4.97e+000 1.85e+001
Ethane 9.45e-001 6.59e+000

Propane 3.52e-001 3.59e+000
Isobutane 5.45e-002 7.34e-001
n-Butane 1.23e-001 1.66e+000
Isopentane 3.70e-002 6.18e-001
n-Pentane 4.00e-002 6.68e-001

n-Hexane 2.18e-002 4.36e-001
Other Hexanes 2.79e-002 5.57e-001
Heptanes 5.90e-002 1.37e+000
Benzene 6.51e-002 1.18e+000
Toluene 1.25e-001 2.67e+000

Page: 10 Ethylbenzene 6.85e-003 1.69e-001

Xylenes 2.40e-002 5.91e-001 C8+ Heavies 6.68e-002 2.64e+000

Total Components 100.00 4.31e+002

CONDENSER PRODUCED WATER STREAM

._____

Temperature: 200.00 deg. F Flow Rate: 5.64e-001 gpm

Component	Conc. (wt%)	Loading (lb/hr)	(ppm)
Carbon Dioxide Nitrogen Methane		4.59e-006 5.81e-004	999981. 0. 0. 2. 1.
Isobutane n-Butane Isopentane	5.65e-005 5.91e-006 1.62e-005 3.91e-006 4.35e-006	1.67e-005 4.57e-005 1.10e-005	1. 0. 0. 0.
Other Hexanes Heptanes Benzene	2.09e-006 2.28e-006 3.50e-006 4.72e-004 7.80e-004	6.42e-006 9.87e-006 1.33e-003	0. 0. 0. 5. 8.
Ethylbenzene Xylenes C8+ Heavies	1.50e-004	4.24e-004	0. 2. 0.
Total Components	100.00	2.82e+002	1000000.

CONDENSER RECOVERED OIL STREAM

Temperature: 200.00 deg. F

The calculated flow rate is less than 0.000001 #mol/hr. The stream flow rate and composition are not reported.

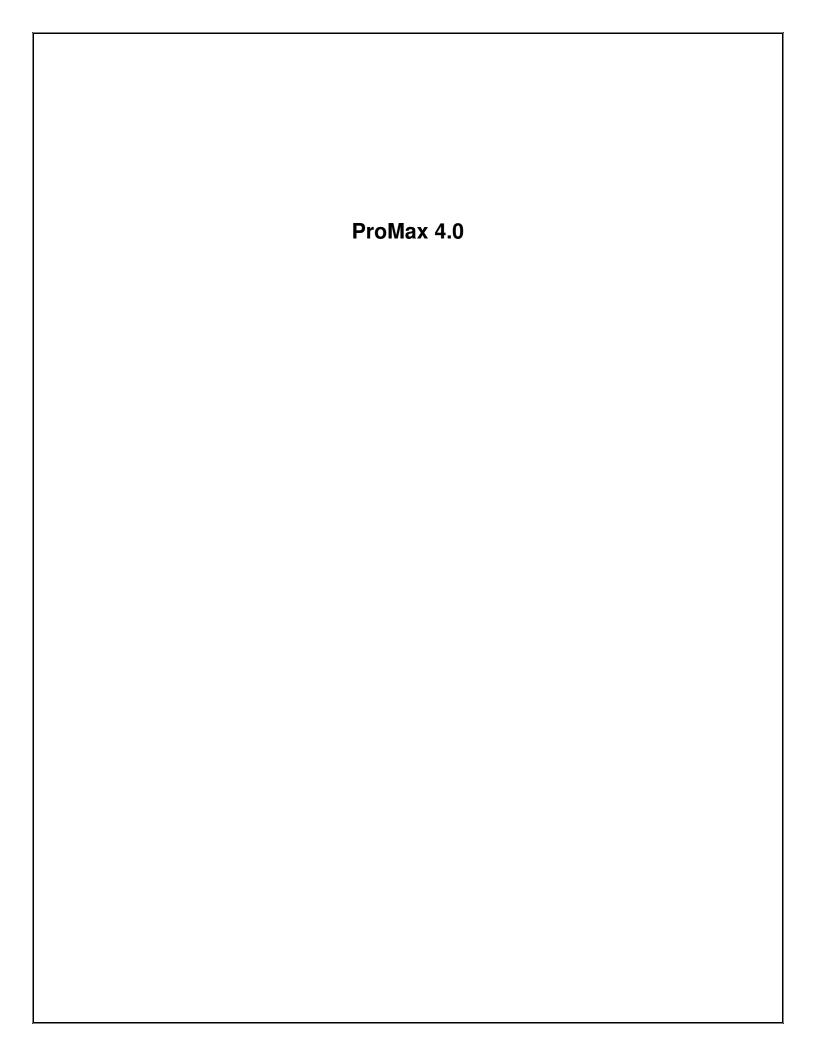
CONDENSER VENT STREAM

Temperature: 200.00 deg. F Pressure: 14.70 psia Flow Rate: 2.85e+003 scfh

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	7.85e+001 8.03e-002 1.10e-001 1.53e+001 2.91e+000	2.66e-001 2.32e-001 1.85e+001
Isobutane n-Butane Isopentane	1.08e+000 1.68e-001 3.79e-001 1.14e-001 1.23e-001	7.34e-001 1.66e+000 6.18e-001

n-Hexane 6.73e-002 4.36e-001
Other Hexanes 8.60e-002 5.57e-001
Heptanes 1.82e-001 1.37e+000
Benzene 2.01e-001 1.18e+000
Toluene 3.86e-001 2.67e+000

Ethylbenzene 2.11e-002 1.69e-001
Xylenes 7.40e-002 5.90e-001
C8+ Heavies 2.06e-001 2.64e+000


Total Components 100.00 1.49e+002

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 1.22e+001 scfh

Component	Conc. (vol%)	
Ethane Propane Isobutane	7.19e+001 1.37e+001 5.08e+000 7.88e-001 1.78e+000	1.32e-001 7.19e-002 1.47e-002
n-Hexane Other Hexanes	5.77e-001 3.15e-001	1.34e-002 8.72e-003 1.11e-002
Toluene Ethylbenzene	3.47e-001	5.34e-002 3.37e-003 1.18e-002
Total Components	100.00	8.39e-001

Simulation Report

Project: Tamela CS.pmx

Licensed to Kleinfelder, Inc. and Affiliates

Client Name: Antero Midstream LLC

Location: Tamela CS

Job:

ProMax Filename: W:\20171806 - Antero WV CS Permit Mods\Tamela CS\Attachment N\ProMax\Tamela CS.pmx

ProMax Version: 4.0.16071.0

Simulation Initiated: 6/9/2017 12:00:32 PM

Bryan Research & Engineering, Inc.

Chemical Engineering Consultants P.O. Box 4747 Bryan, Texas 77805 Office: (979) 776-5220 FAX: (979) 776-4818 maillo:sales@bre.com http://www.bre.com/

Report Navigator can be activated via the ProMax Navigator Toolbar.

An asterisk (*), throughout the report, denotes a user specified value.

A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

"Flash Gas" C3+ Mass Flow =681.9 ton/yr

Annual tank loss calculations for "Condensate".

Total working and breathing losses from the Vertical Cylinder are 11.3 ton/yr.

* All components are reported.

Tank-2

Tank-3

Process Streams				Pressurized Condensate			1
Composition	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total		Settling Tank	Settling Tank		-	Settling Tank	Mixer
	To Block:			Mixer	Mixer		Settling Tank
Mole Fraction		%	%	%	%	%	%
Methane		0.126679	23.8901	6.88593*	0.688599*	0.000645889	2.49580
Ethane		0.975487	26.7851	8.32192*	0.832199*	0.00116388	3.01628
Propane		3.18548	22.7297	8.76091*	0.876099*	0.000704951	3.17539
i-Butane		1.70931	4.57043	2.53197*	0.253200*	0.000109358	0.917714
n-Butane		5.91966	10.6003	7.28193*	0.728199*	0.000298918	2.63933
i-Pentane n-Pentane		4.66063 6.47908	3.16963 3.20928	4.26096* 5.58294*	0.426100* 0.558299*	6.79978E-05 2.36968E-05	1.54438 2.02354
n-Hexane		6.22925	0.825469	4.72495*	0.472500*	4.33783E-06	1.71256
n-Heptane		17.3780	0.672921	12.7179*	1.27180*	2.78217E-06	4.60959
n-Octane		19.7775	0.224015	14.3199*	1.43200*	3.68502E-07	5.19023
n-Nonane		8.49169	0.0277677	6.12894*	0.612899*	5.87557E-08	2.22143
Benzene		0.127935	0.0163426	0.0969990*	0.00969999*	7.55420E-05	0.0351573
Toluene		0.968923	0.0329458	0.707993*	0.0707999*	0.000113099	0.256612
Ethylbenzene		0.987772	0.0102723	0.714993*	0.0714999*	3.35689E-05	0.259149
Nitrogen		8.04022E-05	0.0525408	0.0149999*	0.00150000*	6.92813E-07	0.00543669
p-Xylene		2.57673	0.0263870	1.86498*	0.186500*	5.78723E-05	0.675962
2,2,4-Trimethylpentane		0	0	0*	0*	0	0
2-Methylpentane		6.79210	1.31519	5.26995*	0.526999*	1.44154E-05	1.91009
Carbon Dioxide		0.00140623	0.0875491	0.0259997*	0.00260000*	5.15036E-05	0.00942360
Water		0.0398452	1.74517	0*	89.9999*	99.9966	63.7550
Decanes+ Mass Fraction		13.5725 %	0.00874867 %	9.78590* %	0.978599* %	3.94007E-07 %	3.54690 %
Methane Ethane		0.0199838 0.288433	9.92822 20.8639	1.31213*	0.448462* 1.01586*	0.000575135	0.953307 2.15945
Propane		1.38125	25.9639	2.97227* 4.58870*	1.56833*	0.00194253 0.00172542	3.33384
i-Butane		0.976940	6.88146	1.74802*	0.597438*	0.00172342	1.26999
n-Butane		3.38332	15.9604	5.02728*	1.71823*	0.000964350	3.65248
i-Pentane		3.30657	5.92406	3.65158*	1.24804*	0.000272310	2.65299
n-Pentane		4.59670	5.99816	4.78450*	1.63525*	9.48986E-05	3.47609
n-Hexane		5.27865	1.84275	4.83643*	1.65300*	2.07490E-05	3.51382
n-Heptane		17.1230	1.74671	15.1368*	5.17347*	1.54739E-05	10.9974
n-Octane		22.2152	0.662878	19.4293*	6.64056*	2.33644E-06	14.1160
n-Nonane		10.7096	0.0922564	9.33694*	3.19118*	4.18278E-07	6.78358
Benzene		0.0982678	0.0330688	0.0899972*	0.0307593*	0.000327526	0.0653858
Toluene		0.877877	0.0786363	0.774844*	0.264826*	0.000578414	0.562949
Ethylbenzene		1.03120	0.0282508	0.901629*	0.308159*	0.000197815	0.655062
Nitrogen		2.21481E-05	0.0381280	0.00499111*	0.00170586*	1.07727E-06	0.00362620
p-Xylene		2.69001	0.0725692	2.35180*	0.803799*	0.000341030	1.70866
2,2,4-Trimethylpentane 2-Methylpentane		0 5.75560	0 2.93598	0* 5.39429*	0* 1.84366*	0 6.89523E-05	3.91912
Carbon Dioxide		0.000608567	0.0998112	0.0135913*	0.00464523*	0.000125813	0.00987449
Water		0.00705864	0.814444	0.0133913	65.8220*	99.9924	27.3468
Decanes+		20.2598	0.0344029	17.6448*	6.03065*	3.31983E-06	12.8195
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
Methane		0.304368	22.6442	18.4664*	4.48596*	0.00377577	22.9524
Ethane		4.39305	47.5862	41.8303*	10.1617*	0.0127527	51.9920
Propane		21.0375	59.2184	64.5793*	15.6880*	0.0113274	80.2672
i-Butane		14.8795	15.6952	24.6008*	5.97618*	0.00231615	30.5770
n-Butane		51.5304	36.4023	70.7517*	17.1874*	0.00633098	87.9391
i-Pentane		50.3615	13.5116	51.3907*	12.4841*	0.00178772	63.8748
n-Pentane		70.0112	13.6806	67.3350*	16.3574*	0.000623011	83.6924
n-Hexane		80.3977	4.20292	68.0658*	16.5349*	0.000136217	84.6007
n-Heptane		260.795	3.98389	213.029*	51.7503*	0.000101586	264.779
n-Octane		338.353	1.51189	273.440*	66.4255*	1.53388E-05	339.865
n-Nonane		163.115	0.210418	131.404*	31.9214*	2.74601E-06	163.325
Benzene		1.49669	0.0754232	1.26658*	0.307685*	0.00215022	1.57427
Toluene		13.3707	0.179353	10.9048*	2.64906*	0.00379730 0.00129866	13.5539
Ethylbenzene Nitrogen		15.7059 0.000337333	0.0644342	12.6891*	3.08251* 0.0170638*	0.00129866 7.07227E-06	15.7716 0.0873064
Nitrogen			0.0869620	0.0702427* 33.0982*	0.0170638* 8.04040*	7.07227E-06 0.00223887	
p-Xylene		40.9708 0	0.165515 0	33.0982° 0*	8.04040° 0*	0.00223887	41.1386
		1	-				U
2,2,4-Trimethylpentane		07 6601	6 60607	75.01.00*	* * • • • • • • • • • • • • • • • • • •	0.000450670	01 3500
2-Methylpentane		87.6621	6.69637 0.227649	75.9168* 0.191277*	18.4421*	0.000452673	94.3589
		87.6621 0.00926892 0.107508	6.69637 0.227649 1.85758	75.9168* 0.191277* 0*	18.4421* 0.0464662* 658.417*	0.000452673 0.000825962 656.452	94.3589 0.237744 658.417

Process Streams		Condensate	Flash Gas	Pressurized Condensate F	Pressurized Water	Produced Water	1
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	Settling Tank	Settling Tank			Settling Tank	Mixer
	To Block:			Mixer	Mixer		Settling Tank
Property	Units						_
Temperature	°F	60	60*	120*	120*	60	119.732
Pressure	psig	0	0*	300*	300*	0	300
Mole Fraction Vapor	%	0	100	0.992109	0.0705114	0	0.353642
Mole Fraction Light Liquid	%	100	0	99.0079	9.91117	100	35.9262
Mole Fraction Heavy Liquid	%	0	0	0	90.0183	0	63.7202
Molecular Weight	lb/lbmol	101.694	38.6028	84.1890	24.6327	18.0160	41.9999
Mass Density	lb/ft^3	43.8125	0.103141	37.0269	50.7782	62.3675	41.6361
Molar Flow	lbmol/h	14.9770	5.90837	16.7166	40.6086	36.4399	57.3252
Mass Flow	lb/h	1523.07	228.079	1407.36	1000.30	656.502	2407.66
Vapor Volumetric Flow	ft^3/h	34.7634	2211.34	38.0090	19.6994	10.5263	57.8261
Liquid Volumetric Flow	gpm	4.33414	275.700	4.73878	2.45603	1.31238	7.20949
Std Vapor Volumetric Flow	MMSCFD	0.136405	0.0538111	0.152249	0.369847	0.331880	0.522096
Std Liquid Volumetric Flow	sgpm	4.37500	0.973487	4.30015*	2.36084*	1.31250	6.66099
Compressibility		0.00611652	0.986268	0.115023	0.0245404	0.000761215	0.0510536
Specific Gravity		0.702473	1.33285			0.999976	
API Gravity		69.9314				10.0034	
Enthalpy	Btu/h	-1.37828E+06	-264006	-1.29407E+06	-4.77721E+06	-4.48884E+06	-6.07128E+06
Mass Enthalpy	Btu/lb	-904.934	-1157.52	-919.505	-4775.78	-6837.51	-2521.66
Mass Cp	Btu/(lb*°F)	0.499940	0.409391	0.554457	0.835410	0.983096	0.671001
Ideal Gas CpCv Ratio	, ,	1.05481	1.14491	1.06024	1.22511	1.32631	1.12523
Dynamic Viscosity	cP	0.461549	0.00856267			1.13433	
Kinematic Viscosity	cSt	0.657656	5.18273			1.13543	
Thermal Conductivity	Btu/(h*ft*°F)	0.0708891	0.0114601			0.342241	
Net Ideal Gas Heating Value	Btu/ft^3	5142.72	2017.35	4280.80	428.084	0.0698165	1551.57
Net Liquid Heating Value	Btu/lb	19032.3	19682.5	19139.6	5843.99	-1058.22	13615.7
Gross Ideal Gas Heating Value	Btu/ft^3	5534.79	2197.37	4614.35	506.718	50.3840	1704.54
Gross Liquid Heating Value	Btu/lb	20495.3	21452.2	20643.1	7055.40	1.58105	14997.9

Settling Tank W&B Inputs

	ipato	
Process Stream	Condensate	
Tank Geometry	Vertical Cylinder	
Shell Length	25	ft
Shell Diameter	12	ft
Number of Storage Tanks Employed	1	
Location	Charleston, WV	
Time Frame	Year	
Net Throughput	195	bbl/day
Report Components	All	
Set Bulk Temperature to Stream Temperature?	TRUE	
Use AP42 Raoult's Vapor Pressure?	TRUE	
Maximum Fraction Fill of Tank	90	%
Average Fraction Fill of Tank	50	%
Material Category	Light Organics	
Tank Color	Dark Green	
Shell Paint Condition	Good	
Operating Pressure	0	psig
Breather Vent Pressure	0.03	psig
Breather Vacuum Pressure	-0.03	psig
Roof Type	Dome	
Radius of Domed Roof	6	ft
Roof Color	Dark Green	
Roof Paint Condition	Good	

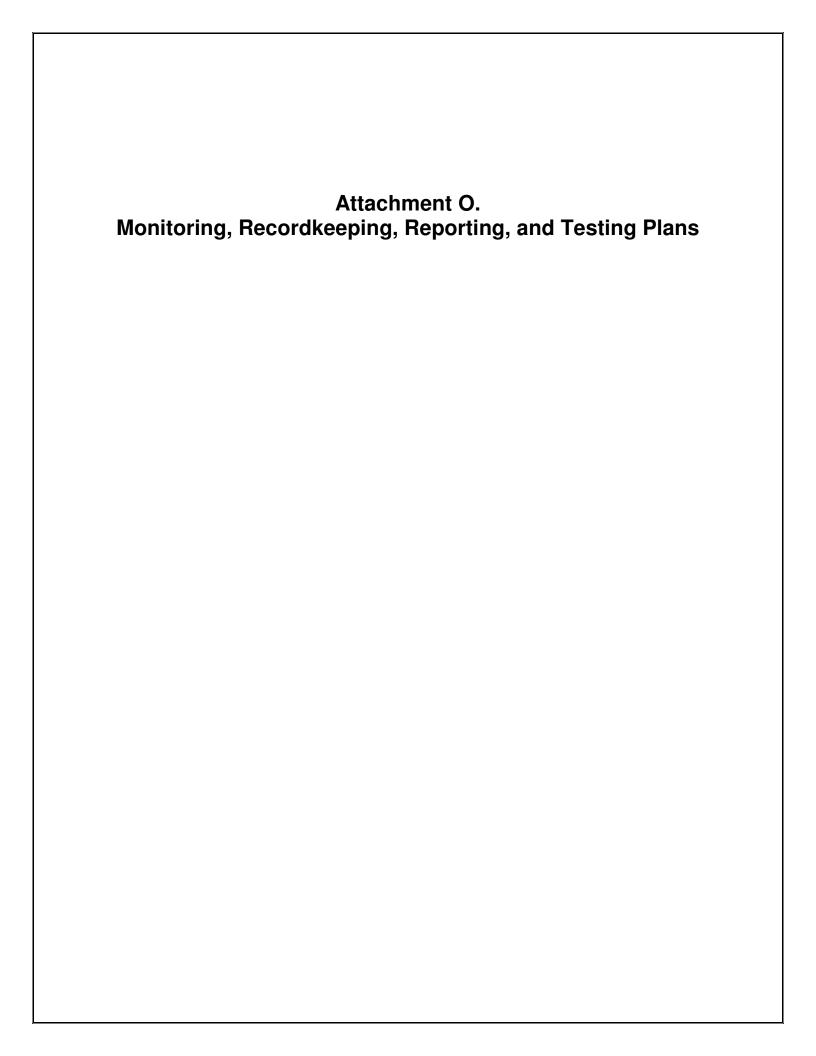
ProMax AP-42 Emissions Report Annual Emissions Settling Tank

		Breathing	Total
	Working Losses	Losses	Losses
Components	(ton/yr)	(ton/yr)	(ton/yr)
Mixture	6.218	5.086	11.3
Methane	0.06192	0.05065	0.1126
Ethane	1.439	1.177	2.616
Propane	1.769	1.447	3.215
i-Butane	0.4678	0.3826	0.8504
n-Butane	1.118	0.9147	2.033
i-Pentane	0.4044	0.3308	0.7352
n-Pentane	0.4151	0.3395	0.7546
n-Hexane	0.1356	0.1109	0.2465
n-Heptane	0.1268	0.1037	0.2305
n-Octane	0.04868	0.03982	0.0885
n-Nonane	0.006964	0.005696	0.01266
Benzene	0.001555	0.001272	0.002828
Toluene	0.004006	0.003277	0.007284
Ethylbenzene	0.001579	0.001292	0.002871
Nitrogen	2.13E-05	1.75E-05	3.88E-05
p-Xylene	0.003683	0.003013	0.006696
2,2,4-Trimethylpentane	0	0	0
2-Methylpentane	0.2086	0.1707	0.3793
Carbon Dioxide	0.003735	0.003055	0.00679
Water	1.87E-05	1.53E-05	3.40E-05
Decanes+	0.00211	0.001726	0.003836

Condensate Tank Inputs

	<u> </u>	
Process Stream	Condensate	
Tank Geometry	Vertical Cylinder	
Shell Length	20	ft
Shell Diameter	12	ft
Number of Storage Tanks Employed	1	
Location	Charleston, WV	
Time Frame	Year	
Net Throughput	75	bbl/day
Report Components	All	
Set Bulk Temperature to Stream Temperature?	TRUE	
Use AP42 Raoult's Vapor Pressure?	TRUE	
Maximum Fraction Fill of Tank	90	%
Average Fraction Fill of Tank	50	%
Material Category	Light Organics	
Tank Color	Dark Green	
Shell Paint Condition	Good	
Operating Pressure	0	psig
Breather Vent Pressure	0.03	psig
Breather Vacuum Pressure	-0.03	psig
Roof Type	Dome	
Radius of Domed Roof	6	ft
Roof Color	Dark Green	
Roof Paint Condition	Good	

ProMax AP-42 Emissions Report Annual Emissions Single Condensate Tank


		Breathing	Total
	Working Losses	Losses	Losses
Components	(ton/yr)	(ton/yr)	(ton/yr)
Mixture	4.22	5.09	9.31
Methane	0.042	0.0507	0.0927
Ethane	0.977	1.18	2.15
Propane	1.2	1.45	2.65
i-Butane	0.318	0.383	0.7
n-Butane	0.759	0.915	1.67
i-Pentane	0.275	0.331	0.605
n-Pentane	0.282	0.34	0.621
n-Hexane	0.0921	0.111	0.203
n-Heptane	0.0861	0.104	0.19
n-Octane	0.0331	0.0398	0.0729
n-Nonane	0.00473	0.0057	0.0104
Benzene	0.00106	0.00127	0.00233
Toluene	0.00272	0.00328	0.006
Ethylbenzene	0.00107	0.00129	0.00236
Nitrogen	1.45E-05	1.75E-05	3.19E-05
p-Xylene	0.0025	0.00301	0.00551
2,2,4-Trimethylpentane	0	0	0
2-Methylpentane	0.142	0.171	0.312
Carbon Dioxide	0.00254	0.00306	0.00559
Water	1.27E-05	1.53E-05	2.80E-05
Decanes+	0.00143	0.00173	0.00316

Produced Water Tank Inputs

Process Stream	Condensate	
Tank Geometry	Vertical Cylinder	
Shell Length	20	ft
Shell Diameter	12	ft
Number of Storage Tanks Employed	1	
Location	Charleston, WV	
Time Frame	Year	
Net Throughput	22.5	bbl/day
Report Components	All	
Set Bulk Temperature to Stream Temperature?	TRUE	
Use AP42 Raoult's Vapor Pressure?	TRUE	
Maximum Fraction Fill of Tank	90	%
Average Fraction Fill of Tank	50	%
Material Category	Light Organics	
Tank Color	Dark Green	
Shell Paint Condition	Good	
Operating Pressure	0	psig
Breather Vent Pressure	0.03	psig
Breather Vacuum Pressure	-0.03	psig
Roof Type	Dome	
Radius of Domed Roof	6	ft
Roof Color	Dark Green	
Roof Paint Condition	Good	

ProMax AP-42 Emissions Report Annual Emissions Single Produced Water Tank

		Breathing	Total
	Working Losses	Losses	Losses
Components	(ton/yr)	(ton/yr)	(ton/yr)
Mixture	0.024	0.023	0.048
Methane	0.00023	0.00022	0.00045
Ethane	0.00065	0.00063	0.0013
Propane	0.00012	0.00012	0.00024
i-Butane	8.20E-06	7.90E-06	1.60E-05
n-Butane	1.60E-05	1.60E-05	3.20E-05
i-Pentane	1.60E-06	1.50E-06	3.10E-06
n-Pentane	2.80E-07	2.70E-07	5.60E-07
n-Hexane	1.40E-08	1.40E-08	2.80E-08
n-Heptane	2.50E-09	2.50E-09	5.00E-09
n-Octane	6.00E-11	5.80E-11	1.20E-10
n-Nonane	3.20E-12	3.10E-12	6.40E-12
Benzene	3.30E-07	3.20E-07	6.50E-07
Toluene	1.70E-07	1.60E-07	3.30E-07
Ethylbenzene	1.90E-08	1.90E-08	3.80E-08
Nitrogen	2.60E-07	2.50E-07	5.10E-07
p-Xylene	3.00E-08	2.90E-08	5.80E-08
2,2,4-Trimethylpentane	0	0	0
2-Methylpentane	9.50E-08	9.10E-08	1.90E-07
Carbon Dioxide	7.40E-05	7.10E-05	0.00015
Water	0.023	0.022	0.045
Decanes+	1.80E-11	1.80E-11	3.60E-11

Monitoring, Recordkeeping, Reporting, and Testing Plans

The following is a summary of the methods to comply with the requirements of West Virginia Division of Air Quality (WVDAQ) 45CSR13 rules and regulations for the Tamela Compressor Station, including federal and state regulatory requirements.

1. Summary of Key Operational Throughput Limits

- a. Maximum dry gas throughput into each Dehydrators: 110 MMscf/day or 40,150 MMscf/year.
- b. Maximum liquids loaded out: 2,989,350 gallons per year.

2. Operational Requirements

- a. Compressor engines will operate with the catalytic converter in place at all times and will be fueled by natural gas only.
- b. Catalysts installed on all compressor engines will be operated per manufacturer instructions.
- c. Reciprocating compressor rod packing will be replaced within 36 months of last packing/startup or within 26,000 operating hours, whichever comes first.
- d. Microturbines will be fueled by natural gas only.
- e. Each Dehydrators Reboiler will operate at no more than 1.5 MMBtu/hr and fueled only by natural gas or offgases from the dehydrator flash tanks.
- f. No fuel-burning unit of any kind will have opacity greater than 10 percent based on a six minute block average observation.
- g. The dehydrator flare capacity will not exceed 4.80 MMBtu/hr, will achieve 98 percent destruction efficiency, will operate at all times that gas is vented to it, will have a flame present at all times, and will have no visible emissions other than for periods not to exceed a total of 5 minutes during any 2 consecutive hours.
- h. The flare will be operated per manufacturer instructions.
- i. Produced water, Condensate, and Settling storage tanks potential emissions will be routed to the VRU with recovery greater than 98 percent at all times.
- j. Storage tanks will be covered and routed to a closed vent system with no detectable emissions.
- k. Liquid loadout trucks will use the submerged-fill method.
- Dehydrator still vents will be controlled by the flare.
- m. Dehydrator flash tank vent gas is to be used in the reboiler as fuel or routed to the VRU system.

3. Monitoring

- a. Non-certified engines will be stack tested within 1 year of startup and every 8,760 hours of operation thereafter.
- b. Catalyst inlet temperature will be monitored.
- c. Compressor run time or number of months since compressor rod repacking will be monitored or tracked.

- d. Rolling 12-month average dry gas throughput for the dehydrators will be monitored.
- e. Initial Method 22 observation of the reboiler exhaust, fuel conditioning heater exhaust, and flare will be conducted for a minimum of 2 hours.
- f. Monthly Method 22 observations of the reboiler exhaust, fuel conditioning heater exhaust, and flare will be conducted for a minimum of 10 minutes each.
- g. Monthly olfactory, visual, and auditory inspections will be conducted of the tanks closed vent and control system (flare) for leaks or defects that could result in emissions. Leaks will be repaired as soon as practicable (no later than 5 days for first attempt).
- h. The presence of flare flame will continuously be monitored.
- i. Monthly and rolling twelve-month average amount of liquids loaded out will be monitored.

4. Recordkeeping

- a. Records will be kept on-site for a minimum of 2 years, and in company records (on or off-site) for a minimum of 5 years.
- b. Records of inspection, observations, preventive maintenance, malfunctions, and shutdowns of all onsite equipment will be kept.
- c. Records of the date, time, duration of each time that a flame is not present at the flare and startup, shutdown, malfunctions of the flare will be kept.
- d. Records of engine maintenance and engine run time will be kept.
- e. Records of catalyst inlet temperature will be kept.
- f. Records of the actual annual average natural gas throughput in the dehydrators will be kept.

5. Notifications and Reports

- a. WVDAQ will be notified within 30 calendar days of commencement of construction.
- b. WVDAQ will be notified within 30 calendar days of startup.
- c. Upon startup, a Certificate to Operate (CTO) application will be filed and fees to WVDAQ will be paid for the period from startup to the following June 30 and then annually renew the CTO and pay fees. CTO will be maintained on-site.
- d. An annual report of compliance with 40 CFR 60 Subpart OOOOa for applicable affected facilities will be submitted within 90 days after one year of operations startup.
- e. For stack testing, a protocol will be filed at least 30 days prior to test and WVDAQ and EPA will be notified of the test at least 15 days prior to test. Results will be reported within 60 days of the test.
- f. If operations are suspended for 60 days or more, WVDAQ will be notified within 2 weeks after the 60th day.

Attachment P. Public Notice

AIR QUALITY PERMIT NOTICE Notice of Application – Tamela Compressor Station

Notice is given that Antero Midstream LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a 45CSR13 Construction Permit Modification for a Natural Gas Compressor Station located northwest of Long Run near West Union, in Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.32611N, 80.84278W.

The applicant estimates the change in potential to discharge of the following Regulated Air Pollutants will be:

Pollutant	Change in Potential Emissions (tons/yr)
Nitrogen Oxides (NOx)	-0.11
Carbon Monoxide (CO)	-0.09
Volatile Organic Compounds (VOC)	24.49
Particulate Matter less than 10 µm (PM ₁₀)	-0.01
Particulate Matter less than 2.5 µm (PM _{2.5})	0.00
Sulfur Dioxide (SO ₂)	0.00
Formaldehyde	0.00
Total HAPs	0.02
Carbon Dioxide equivalent (CO ₂ e)	1,715

Note that a negative change reflects a decrease in potential emissions.

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated the 11th day of July 2017.

By: Antero Midstream LLC Barry Schatz

Senior Environmental and Regulatory Manager

1615 Wynkoop Street Denver, CO 80202

Attachment R.	
Authority/Delegation of Authority	

Attachment R AUTHORITY OF CORPORATION OR OTHER BUSINESS ENTITY (DOMESTIC OR FOREIGN)

TO;	The West Virginia Department of Environmental Protection, Division of Air Quality
DATE:	August 5 , 2015
ATTN.:	Director
Corporation's	s / other business entity's Federal Employer I.D. Number46-5517375
Protection, D	ndersigned hereby files with the West Virginia Department of Environmental Pivision of Air Quality, a permit application and hereby certifies that the said ade name which is used in the conduct of an incorporated business or other ity.
Furthe	er, the corporation or the business entity certifies as follows:
(1)	Luz Slauter and Barry Schatz (is/are) the authorized
	representative(s) and in that represent the interest of the corporation or the business entity and may legally bind the corporation or the business entity.
(2) State of Wes	The corporation or the business entity is authorized to do business in the st Virginia.
Virginia Depa such change	M.M. Girl
Ward McNeill	ly, Vice President - Vice President Reserves Planning & Midstream
(Vice Presid official in cha	Other Authorized Officer lent, Secretary, Treasurer or other arge of a principal business function of on or the business entity)
	resident, then the corporation or the business entity must submit certified ylaws stating legal authority of other authorized officer to bind the corporation ess entity).
Constitution	
Secretary	Antero Midstream LLC
Name of Corporation or business entity	