

625 Liberty Ave, Suite 1700 Pittsburgh PA 15222 www.eqt.com

TEL: (412) 395-3699

R. Alex Bosiljevac Environmental Coordinator

June 7, 2017

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70-D General Permit Registration Application EQT Production Company OXF 43 Natural Gas Production Site

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G70-D General Permit Registration Application for the authority to construct the OXF 43 natural gas production site.

A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (412) 395-3699 or by email at abosiljevac@eqt.com.

Sincerely,

R. Alex Bosiljevac EQT Corporation

Enclosures

EQT Production Company

G70-D General Permit Application

OXF 43 Natural Gas Production Site

Coxs Mills, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

June 2017

INTRODUCTION

EQT Production Company (EQT) submits this G70-D General Permit Application to the WVDEP's Department of Air Quality for the OXF 43 natural gas production site which will be located in Doddridge County, West Virginia. This application addresses the operational activities associated with the production of natural gas and condensates at the OXF 43 site.

FACILITY DESCRIPTION

The EQT OXF 43 natural gas production site will operate in Doddridge County, WV and will consist of ten (10) natural gas wells. Natural gas and liquids (including water and condensates) will be extracted from underground deposits. The natural gas will be transported from the wells to a gas line for compression and additional processing, as necessary. The produced liquids will be stored in storage vessels.

EQT would like to submit this G70-D permit to reflect the following:

- Ten (10) natural gas wells;
- Ten (11) line heaters each rated at 1.54 MMBtu/hr heat input;
- One (1) 100 barrel (bbl) sand trap blowdown tank for storage of condensate and water;
- Ten (10) 400 bbl tanks for storage of condensate and water;
- One (1) enclosed combustion device with a capacity of 19.22 MMBtu/hr heat input;
- One (1) enclosed combustion device with a capacity of 11.66 MMBtu/hr heat input;
- One (1) 110 HP stationary natural gas compressor engine; and
- One (1) 405 HP stationary natural gas compressor engine.

A process flow diagram is included in this application in Attachment D.

STATEMENT OF AGGREGATION

The OXF 43 site is located in Doddridge County, WV and operated by EQT Production Company. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. EQT will operate the OXF 43 site with the same industrial grouping as nearby facilities, and some of these facilities are under common control. EQT, however, is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The OXF 43 site will operate under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells and compressor stations operated by EQT that share the same two-digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the OXF 43 site does share the same SIC codes as the surrounding wells and compressor stations.

EQT Production Company is the sole operator of the OXF 43 site. EQT is also the sole operator of other production sites and compressor stations in the area. Therefore, EQT does qualify as having nearby operations under common control.

On August 18, 2016 the EPA Administrator signed the *Source Determination for Certain Emission Units in the Oil and Natural Gas Sector*. This notice clarified EPA's position regarding how properties in the oil and natural gas sector are determined to be adjacent in order to assist permitting authorities and permit applicants in making consistent source determinations. The following proposed regulatory text defines "adjacent" for the oil and gas sector in terms of proximity.

Pollutant emitting activities shall be considered adjacent if they are located on the same surface site, or on surface sites that are located within 1/4 mile of one another.

There are no EQT owned or operated sites within ¹/₄ mile radius of the OXF 43 site. Nearby sites do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. The operations conducted at the OXF 43 site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

Based on the above reasoning, EQT is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the OXF 43 site and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-D permit application forms.

The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants. The regulatory requirements in reference to OXF 43 are described in detail in the below section.

WEST VIRGINIA STATE AIR REGULATIONS

45 CSR 02 – To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the OXF 43 site will be subject to this requirement. Based on the nature of the process at the site, the presence of objectionable odors is unlikely.

45 CSR 06 – Control of Air Pollution from the Combustion of Refuse

The enclosed combustion devices located on the OXF 43 natural gas production site will be subject to this regulation. Per 45 CSR 6-4.3, opacity of emissions from the enclosed combustion device shall not exceed 20 percent, except as provided by 4.4. Particulate matter emissions from this unit will not exceed the levels calculated in accordance with 6-4.1.

§45-6-4.1 Determination for Maximum Allowable Particulate Emissions

19.22 MMBtu/hr Combustor

Emissions (lb/hr) = F x Incinerator Capacity (tons/hr)

Incinerator Capacity = 0.26 tons per hour or 525 lbs/hr

 ρ_{NG} = 0.042 lb/scf – Density of NG from EPA AP42 – Sections 1.4 and 3.2 (NG combustion)

 $\frac{300,000\,scf}{day}*\frac{1\,day}{24\,hours}*\frac{0.042\,lb}{scf}=\frac{525\,lb}{hr}=\frac{2300\,ton}{year}$

If the Incinerator Capacity is less than 15,000 lbs/hr, then F = 5.43

F = 5.43 * (0.26 tons per hour)

F = 1.43 lbs/hr

The enclosed combustion devices utilize AP-42 Section 1.4 PM emission factors to determine emissions from the combustion of refuse natural gas. Based upon the type of fuel combusted and the emission factors utilized, the PM emissions from the enclosed combustion devices will be well below the maximum allowable particulate emissions mandated by 45 CSR 06.

11.66 MMBtu/hr Combustor

Emissions (lb/hr) = F x Incinerator Capacity (tons/hr)

Incinerator Capacity = 0.12 tons per hour or 245 lbs/hr

 ρ_{NG} = 0.042 lb/scf – Density of NG from EPA AP42 – Sections 1.4 and 3.2 (NG combustion)

 $\frac{140,000\,scf}{day} * \frac{1\,day}{24\,hours} * \frac{0.042\,lb}{scf} = \frac{245\,lb}{hr} = \frac{1,073\,ton}{year}$

If the Incinerator Capacity is less than 15,000 lbs/hr, then F = 5.43

F = 5.43 * (0.12 tons per hour)

F = 0.67 lbs / hour

The enclosed combustion devices utilize AP-42 Section 1.4 PM emission factors to determine emissions from the combustion of refuse natural gas. Based upon the type of fuel combusted and the emission factors utilized, the PM emissions from the enclosed combustion devices will be well below the maximum allowable particulate emissions mandated by 45 CSR 06.

45 CSR 10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The line heaters are indirect heat exchangers that combust natural gas but are exempt since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation, and Operation of Stationary Sources of Air Pollutants

This G70-D permit application is being submitted for the operational activities associated with EQT's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G70-D applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the OXF 43 site will not exceed emission thresholds established by this permitting program. EQT will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45 CSR 16 applies to all registrants that are subject to any of the NSPS requirements described in more detail in the Federal Regulations section. Applicable requirements of NSPS, Subpart JJJJ and OOOOa are included in the G70-D general permit.

This site is expected to contain gas well affected facilities and collection of fugitive components under Subpart OOOOa, as well as a spark ignition internal combustion engine subject to Subpart JJJJ. No additional NSPS are applicable for this site. Additional discussion is provided in the Federal Regulation section of this Introduction.

45 CSR 19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of nonattainment pollutants under Non-Attainment New Source Review (NNSR). The G70-D applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Doddridge County, WV is in attainment for all pollutants with a National Ambient Air Quality Standard (NAAQS) and does not qualify as a source subject to 45 CSR 19. Therefore, this regulation would not apply to the OXF 43 site.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burnt at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants.

The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the OXF 43 site is not a major source for Title V purposes.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. Excluded from G70-D general permit eligibility are any sources that are subject to NESHAP Subpart HHH.

The following NESHAP included in the G70-D permit are subject to the OXF 43 site:

• 40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines).

The following NESHAP included in the G70-D permit are not subject to the OXF 43 facility:

• 40CFR63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).

No additional NESHAP are applicable for this facility. Additional discussion is provided in the Federal Regulations section below.

FEDERAL REGULATIONS

New Source Performance Standards

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines)

Subpart JJJJ sets forth nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compound (VOC) emission limits, fuel requirements, installation requirements, and monitoring requirements based on the year of installation of the subject internal combustion engine.

The Ford CSG-637 is a 110 HP EPA Certified 4 stroke rich burn (4SRB) spark ignition (SI) engine manufactured in 2015. Per 40CFR60.4230(a)(4)(iii), an engine manufactured on or after July 1, 2008 with a maximum engine power less than 500 HP must comply with the provisions of 40 CFR 60 Subpart JJJJ.

Emission standards contained in the EPA Certificate of Conformity issued to this engine conform to 40 CFR 60 Subpart JJJJ Table 1 - NOx, CO, VOC Emissions Standards for Stationary Non-Emergency SI Engines greater than 100 HP. Therefore, per 40CFR60.4243(a)(1), EQT must operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions to ensure applicable emission standards outlined in Part 60 Subpart JJJJ Table 1 are maintained. Additionally, performance testing is not required.

The Caterpillar G3408TA is a 405 HP 4 stroke rich burn (4SRB) spark ignition (SI) engine manufactured in 1999. Since the engine was manufactured in 1999, it is not subject to Subpart JJJJ.

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO2) emissions from affected facilities that commence construction, modification or reconstruction between August 23, 2011 and September 18, 2015. The applicable provisions and requirements of Subpart OOOO are included under the G70-D permit.

Since the OXF 43 site will be constructed after September 18, 2015, the site will not have any affected facilities subject to Subpart OOOO.

40 CFR 60 Subpart OOOOa (Standards of Performance for Crude Oil and Natural Gas Facilities for Which Construction, Modification, or Reconstruction Commenced After September 18, 2015)

The OXF 43 site will commence construction after September 18, 2015 and, therefore, will qualify as an affected facility under Subpart OOOOa. The OXF 43 site will qualify as a collection of fugitive components affected facility. As a fugitive component affected facility, in order to comply, LDAR monitoring at the OXF 43 site must be performed within 60 days of startup of production and then semi-annually thereafter. The OXF 43 site will also qualify as a gas well affected facility for all production wells.

There are several equipment types that will be installed at the OXF 43 site that do not meet the affected facility definitions as specified by EPA. These include:

- <u>Storage vessels</u>: Emissions from each storage vessel were determined to be below 6 tons per year (tpy) of VOC. Therefore, the produced fluid tanks are not affected storage vessels.
- <u>Pneumatic devices:</u> All pneumatic devices installed at the OXF 43 facility are either low-continuous bleed or intermittent bleed and do not qualify as affected sources.

National Emissions Standards for Hazardous Air Pollutants

40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAPs) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This Subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

The Ford CSG-637 is a 110 HP EPA Certified 4 stroke rich burn (4SRB) spark ignition (SI) engine manufactured in 2015. The engine meets the requirements of 40 CFR 60 Subpart JJJJ. Per 40CFR63.6590(c)(1), no further requirements apply for a new stationary RICE located at an area source subject to regulation under 40 CFR 60 Subpart JJJJ.

The Caterpillar G3408TA is a 405 HP 4 stroke rich burn (4SRB) spark ignition (SI) engine manufactured in 1999. Per 40 CFR63.6585(a) A stationary RICE is any internal combustion engine which uses reciprocating motion to convert heat

energy into mechanical work and which is not mobile. A Stationary RICE differs from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

In order to show compliance with Subpart ZZZZ, EQT must do all of the following:

- a. Change oil and filter every 1,440 hours of operation or annually, whichever comes first
- b. Inspect spark plugs every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.
- c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.

No additional NESHAP are expected to be applicable to this facility.

General Permit G70-D will establish an emission cap on the following regulated and hazardous air pollutants:

	Maximum Annual	OXF 43 Potential to	
Pollutant	Emission Limit	Emit	
	(tons/year)	(tons/year)	
Nitrogen Oxides	50	28.99	
Carbon Monoxide	80	27.51	
Volatile Organic	80	56.22	
Compounds	00	56.22	
Particulate Matter – 10/2.5	20	0.53	
Sulfur Dioxide	20	0.12	
Any Single Hazardous Air	8	191 (as Usyana)	
Pollutant	0	1.84 (as Hexane)	
Total Hazardous Air	20	2.50	
Pollutants	20	2.50	

The fugitive emissions of a stationary source shall not be considered in determining whether it is a major stationary source for the purposes of 45CSR30-2.26.b or for eligibility of this General Permit.

dep	west virginia departm	ent of environmental protection	Division of Air Quality 601 57 th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wy.gov
G70-D GI	NERAL PERMIT	F REGISTRATION A	
	RELOCATION, ADMINIST	ION IN REGARD TO THE CONSTR FRATIVE UPDATE AND OPERATIO FACILITIES LOCATED AT THE W	N OF
⊠CONSTR □MODIFIC □RELOCA	JCTION ATION	□CLASS I ADMINISTRATI □CLASS II ADMINISTRAT	VE UPDATE
dalar alkent	SECTION 1.	GENERAL INFORMATION	All and a second second
Name of Applicant (a	s registered with the WV Secreta	ary of State's Office): EQT Producti	on Company
Federal Employer ID	No. (FEIN): 25-0724685		
Applicant's Mailing	ddress: 625 Liberty Avenue	e, Suite 1700	
City: Pittsburgh	State: PA	4	ZIP Code: 15222
Facility Name: OXF	3 Natural Gas Production	Site	
	al Address: Mudlick Run Ro a road, city or town and zip of fac		
City: Coxs Mills	Zip Code	26342	County: Doddridge
Latitude: 39.15703 Longitude: -80.792 SIC Code: 1311	5	DAQ Facility ID No. (For exi	sting facilities)
NAICS Code: 21111	1	N/A	
	CERTIFICA	ATION OF INFORMATION	
Official is a Presider Directors, or Owner, authority to bi Proprietorship. R compliance certi Representative. If a b off and the appro unsigned G70-D Reg utilized,	t, Vice President, Secretary, Tre depending on business structure d the Corporation, Partnership, equired records of daily through ications and all required notific usiness wishes to certify an Aut priate names and signatures enter istration Application will be re the application will be returne	on shall be signed below by a Responsi easurer, General Partner, General Mana . A business may certify an Authorized Limited Liability Company, Associatio put, hours of operation and maintenanc ations must be signed by a Responsible horized Representative, the official agr ered. Any administratively incomplete eturned to the applicant. Furthermor d to the applicant. No substitution of	ger, a member of the Board of Representative who shall have n, Joint Venture or Sole e, general correspondence, Official or an Authorized eement below shall be checked or improperly signed or re, if the G70-D forms are not forms is allowed.
obligate and legally b	rtnership, Limited Liability Con	tative and in that capacity shall represe npany, Association Joint Venture or Sol changes its Authorized Representative nediately.	e Proprietorship) and may
documents appended		G70-D General Permit Registration Ap vledge, true, accurate and complete, and formation possible.	
Responsible Official	Signature: Ma Ida	\sim	
	nael Gavin – Vice Presider	nt Phone: 1/1/1 F	ax:
Email: gavinm@ed	t.com	Date: 6/7/17	
If applicable: Authorized Represen Name and Title:	Ph	none: Fax:	
Email:	Da	ate:	

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-D GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

⊠CONSTRUCTION □MODIFICATION □RELOCATION

□CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE

If applicable:

Environmental Contact

Name and Title: Alex Bosiljevac – Environmental CoordinatorPhone: 412-395-3699Fax:Email: abosiljevac@eqt.comDate:

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: The OXF 43 Natural Gas Production Site will be a new production site containing ten (10) wells and associated well equipment.

Directions to the facility: Traveling North on WV Route 18 in southern Doddridge County, turn left onto Grove Summers Road for 3.4 miles. Turn right onto Mudlick Run Road for approximately 0.5 miles and take a left onto an unnamed service road. Take the unnamed road to the top of the ridge and turn right. The proposed site will then be on the left.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).

 \Box Check attached to front of application.

□ I wish to pay by electronic transfer. Contact for payment (incl. name and email address):

\boxtimes I wish to pay by credit card.	Contact for payment (incl. nat	me and email address):	Alex Bosiljevac –
abosiljevac@eqt.com			

 \boxtimes \$500 (Construction, Modification, and Relocation) \square \$300 (Class II Administrative Update) \boxtimes \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO and/or OOOOa ¹ \boxtimes \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ²

¹ Only one NSPS fee will apply.

² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ.

- NSPS and NESHAP fees apply to new construction or if the source is being modified.
- Responsible Official or Authorized Representative Signature (if applicable)

\boxtimes Single Source Determination Form (must be completed) –	Attachment A
□ Siting Criteria Waiver (if applicable) – Attachment B	🛛 Current Business Certificate – Attachment C

6 11	,		
🛛 Process Flow Diagram – Attachme	nt D	🛛 Process Descri	ption – Attachment E

🛛 Plot Plan – Attachment F 🔅 🖾 Area Map – Attachment G

☐ G70-D Section Applicability Form – Attachment H ☐ Emission Units/ERD Table – Attachment I

🛛 Fugitive Emissions Summary Sheet – Attachment J

 \boxtimes Gas Well Affected Facility Data Sheet (if applicable) – Attachment K

Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-D GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

⊠CONSTRUCTION □MODIFICATION □RELOCATION

□CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE

⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M

⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N

🛛 Tanker Truck/Rail Car Loading Data Sheet (if applicable) - Attachment O

 \Box Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment P

Pneumatic Controllers Data Sheet – Attachment Q

 \boxtimes Pneumatic Pump Data Sheet – Attachment R

 \boxtimes Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment S

🗵 Emission Calculations (please be specific and include all calculation methodologies used) – Attachment T

☑ Facility-wide Emission Summary Sheet(s) – Attachment U

🖾 Class I Legal Advertisement – Attachment V

Solution One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

Attachment A

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM	ATTACHMENT A ·	- SINGLE SOURCE	DETERMINATION	FORM
--	----------------	-----------------	---------------	------

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment	and activities	in the s	same	industrial	grouping	(defined
by SIC code)?						

Yes \Box No \boxtimes

Is there equipment and activities under the control of the same person/people?

Yes \Box No \boxtimes

Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes 🗆	No	\times
-------	----	----------

Attachment B (Not Applicable)

Attachment C

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: EQT PRODUCTION COMPANY 625 LIBERTY AVE 1700 PITTSBURGH, PA 15222-3114

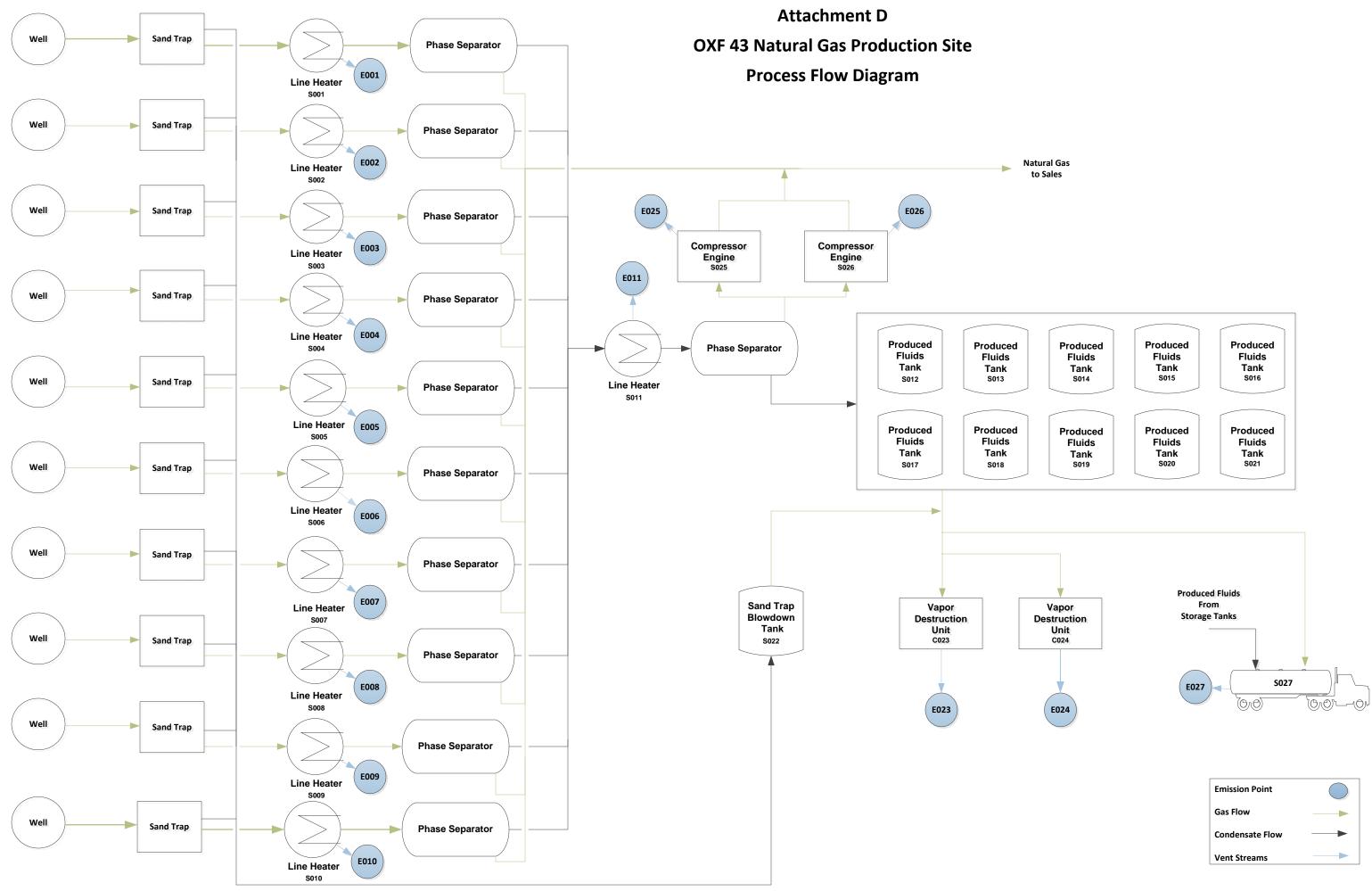
BUSINESS REGISTRATION ACCOUNT NUMBER:

1022-8081

This certificate is issued on: 08/4/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.


This certificate is not transferrable and must be displayed at the location for which issued. This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.3 L0553297664

Attachment D

Emission Point	\bigcirc
Gas Flow	
Condensate Flow	
Vent Streams	>

Attachment E

Attachment E Process Description

This permit application is being filed for EQT Production Company and addresses operational activities associated with the OXF 43 natural gas production site. Incoming raw natural gas from the ten (10) natural gas wells enters the site through a pipeline. The raw gas is first routed through the sand traps to remove any sediment. Fluids from these sand traps are manually blown down to the sand trap blowdown tank (S022), as needed. From the sand traps, raw gas is routed through line heaters (S001-S010) to assist with the phase separation process in the downstream high pressure phase separators. In the high pressure phase separators, produced fluids are removed from the raw gas before being dumped to a second stage of fluid separation. The raw gas is then routed to the sales pipeline.

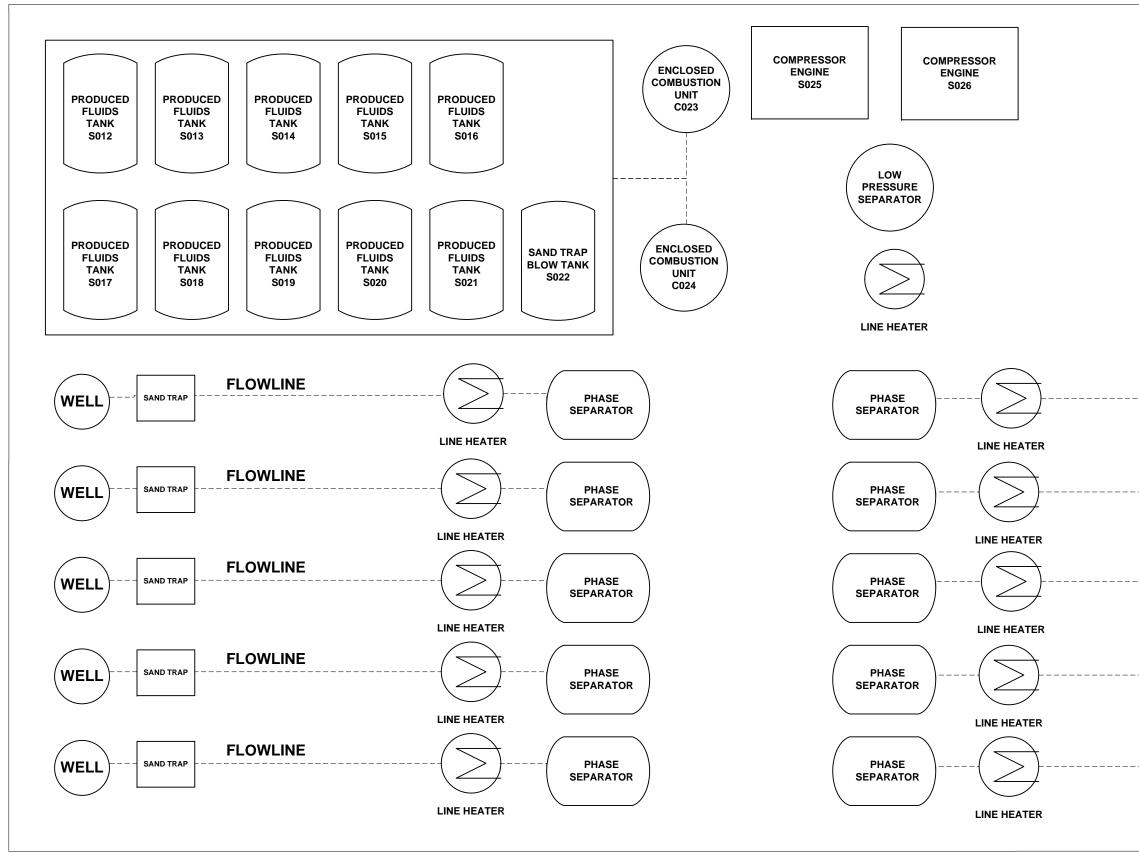
The produced fluids pass through a line heater (S011) to further assist in the separation process. At this low pressure separator, produced fluid pressure is reduced from 435 psig to 30 psig. Vapors realized at the low pressure separator will be directed to one of two compressor engines, one rated at 110 hp (S026) and the other rated at 405 hp (S025), based upon well production and will be routed to the sales gas pipeline. In order to provide a conservative estimate of the potential to emit (PTE) from the OXF 143 site, EQT has included the emissions from both of the engines in this permit application.

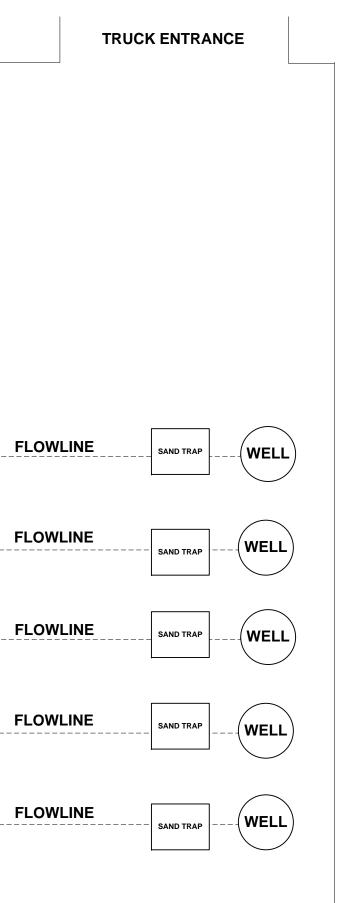
Produced fluids from the low pressure separator are routed to the produced fluids storage tanks (S012-S021). Emissions from the produced fluids tanks and sand trap blowdown tank are directed to one of the two enclosed combustion devices (C023 and C024) where the vapors will be combusted. In order to provide a conservative estimate of the PTE of VOCs from the storage tanks, EQT has modeled tank emissions without the low pressure separator described above.

Produced fluids are pumped into a tank truck (S027) on an as-needed basis and are disposed of off-site. Vapors during truck loading will be directed to either of the two enclosed combustion devices.

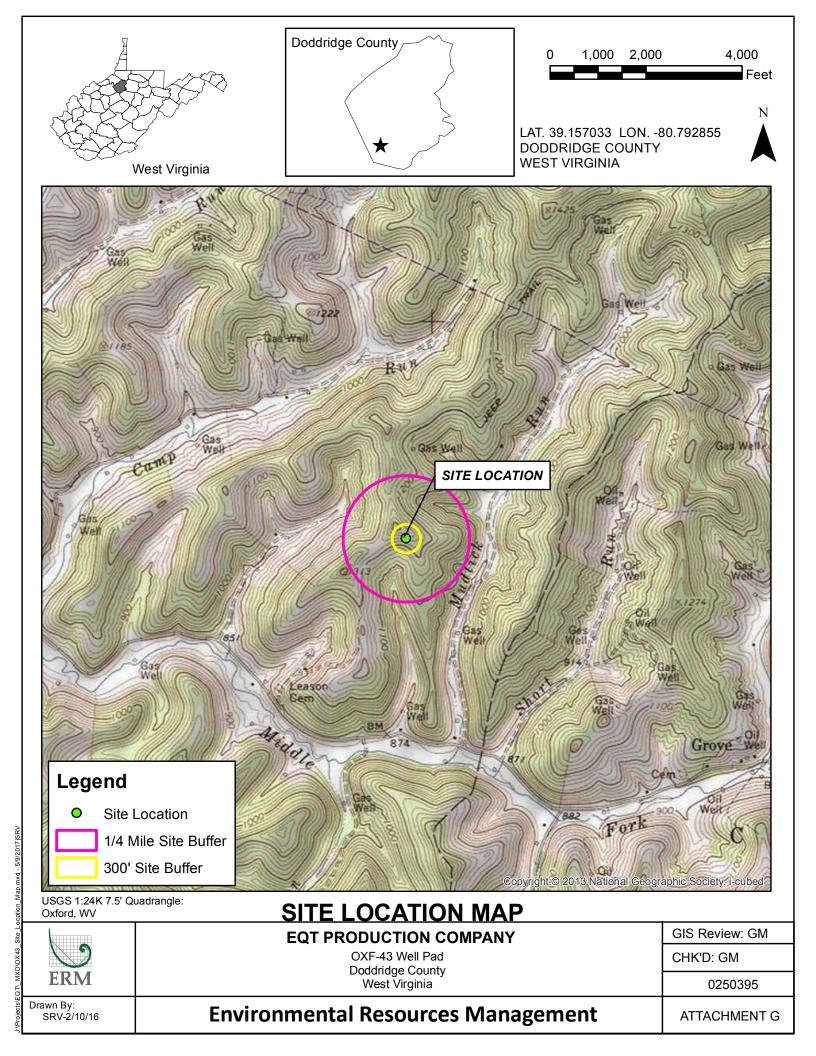
A process flow diagram is included as Attachment D.

Attachment F


Coordinates Latitude: 39.15703 Longitude: -80.79285 Elevation: 1,232 ft Drawn: 05/15/2017


z

Attachment F


Plot Plan

EQT OXF 43 Natural Gas Production Site

Attachment G

Attachment H

ATTACHMENT H – G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERM	GENERAL PERMIT G70-D APPLICABLE SECTIONS					
\boxtimes Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOOa)					
Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹					
□ Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)					
Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH					
Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc					
□ Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)					
□ Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)					
Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)					
Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines					
Section 14.0	Tanker Truck/Rail Car Loading ²					
□ Section 15.0	Glycol Dehydration Units ³					

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts OOOO or OOOOa control requirements or the applicable control device requirements of Section 8.

- 2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 3 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

Attachment I

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

0		· · · ·		-				
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S001	E001	Line Heater	2017	2017	1.54 MMBtu/hr	New	N/A	N/A
S002	E002	Line Heater	2017	2017	1.54 MMBtu/hr	New	N/A	N/A
S003	E003	Line Heater	2017	2017	1.54 MMBtu/hr	New	N/A	N/A
S004	E004	Line Heater	2017	2017	1.54 MMBtu/hr	New	N/A	N/A
S005	E005	Line Heater	2017	2017	1.54 MMBtu/hr	New	N/A	N/A
S006	E006	Line Heater	2017	2017	1.54 MMBtu/hr	New	N/A	N/A
S007	E007	Line Heater	2017	2017	1.54 MMBtu/hr	New	N/A	N/A
S008	E008	Line Heater	2017	2017	1.54 MMBtu/hr	New	N/A	N/A
S009	E009	Line Heater	2017	2017	1.54 MMBtu/hr	New	N/A	N/A
S010	E010	Line Heater	2017	2017	1.54 MMBtu/hr	New	N/A	N/A
S011	E011	Line Heater	2017	2017	1.54 MMBtu/hr	New	N/A	N/A
S012	E023 or E024	Produced Fluids Tank	2017	2017	400 bbl	New	N/A	C023 or C024
S013	E023 or E024	Produced Fluids Tank	2017	2017	400 bbl	New	N/A	C023 or C024

S014	E023 or E024	Produced Fluids Tank	2017	2017	400 bbl	New	N/A	C023 or C024
S015	E023 or E024	Produced Fluids Tank	2017	2017	400 bbl	New	N/A	C023 or C024
S016	E023 or E024	Produced Fluids Tank	2017	2017	400 bbl	New	N/A	C023 or C024
S017	E023 or E024	Produced Fluids Tank	2017	2017	400 bbl	New	N/A	C023 or C024
S018	E023 or E024	Produced Fluids Tank	2017	2017	400 bbl	New	N/A	C023 or C024
S019	E023 or E024	Produced Fluids Tank	2017	2017	400 bbl	New	N/A	C023 or C024
S020	E023 or E024	Produced Fluids Tank	2017	2017	400 bbl	New	N/A	C023 or C024
S021	E023 or E024	Produced Fluids Tank	2017	2017	400 bbl	New	N/A	C023 or C024
S022	E023 or E024	Sand Trap Blowdown Tank	2017	2017	100 bbl	New	N/A	C023 or C024
C023	E023	Vapor Destruction Unit	2017	2017	19.22 MMBtu/hr	New	N/A	N/A
C024	E024	Vapor Destruction Unit	2017	2017	11.66 MMBtu/hr	New	N/A	N/A
S025	E025	Compressor Engine	2017	1999	405 HP	New	N/A	N/A
S026	E026	Compressor Engine	2017	2015	110 HP	New	N/A	N/A
S027	E027	Tank Truck Loading	2017	2017	689,840 bbl/yr	New	Loading Rack	C023 or C024

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.
 ² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.
 ³ When required by rule
 ⁴ New, modification, removal, existing
 ⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.
 ⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Attachment J

				NT J – FUGITIVE EMIS				
		Source		ay include loading operations for each associated sour				ions, etc.
S	Source/Equipm	nent: OXF	43 Natural Gas Production S	Site				
	Leak Detection Method Used		□ Audible, visual, and olfactory (AVO) inspections □ Infrared (FLIR) cameras		⊠ Other (please describe)			□ None required
Component	Closed		Source of Leak Factors	Stream type	Estimated Emissions (tpy)		ssions (tpy)	
Туре	Vent Cour System		(EPA, other (specify))		(gas, liquid, etc.)	VOC	НАР	GHG (methane, CO ₂ e)
Pumps	□ Yes □ No							
Valves	□ Yes ⊠ No	376	EPA		☐ Gas ☐ Liquid ☐ Both	0.36	0.03	1.49, 37.27
Safety Relie Valves	$ f \qquad \Box Yes \\ \boxtimes No $			Gas Liquid Both	0.02	<0.01	0.06, 1.62	
Open Ended Lines	□ Yes ⊠ No	27	ЕРА		⊠ Gas □ Liquid □ Both	0.06	<0.01	0.24, 6.05
Sampling Connections	□ Yes □ No				Gas Liquid Both			
Connections Not sampling		1650		EPA		0.17	0.01	0.73, 18.17
Compressors			40 CFR 98 Subpart W Table W-1B: Default average component counts are used for major equipment. Compressor components (12 valves and 57 connections) are included in valve and connection counts.		⊠ Gas □ Liquid □ Both			
Flanges	□ Yes □ No				□ Gas □ Liquid □ Both			
Other ¹	□ Yes □ No				□ Gas □ Liquid □ Both			

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.): N/A

Please indicate if there are any closed vent by passes (include component): N/A

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck/rail car loading, etc.) N/A

Attachment K

ATTACHMENT K - GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
047-017-06739	TBD	TBD	Green Completion	0000a
047-017-06740	TBD	TBD	Green Completion	0000a
047-017-06741	TBD	TBD	Green Completion	0000a
047-017-06742	TBD	TBD	Green Completion	0000a
047-017-06744	TBD	TBD	Green Completion	0000a
047-017-06745	TBD	TBD	Green Completion	0000a
047-017-06747	TBD	TBD	Green Completion	0000a
047-017-06746	TBD	TBD	Green Completion	0000a
047-017-06748	TBD	TBD	Green Completion	0000a
PLANNED	TBD	TBD	Green Completion	0000a

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 =	State code. The state code for WV is 047.
001 =	County Code. County codes are odd numbers, beginning with 001
	(Barbour) and continuing to 109 (Wyoming).
00001=	Well number. Each well will have a unique well number.

Attachment L

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- ☑ For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - ⊠ Simulation-predicted composition
 - ⊠ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation
- ⊠ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

simulation is used to quantify those emissions

Additional information may be requested if necessary.

1. Bulk Storage Area Name 2. Tank Name **OXF 43 Storage Tank Area** Produced Fluids Tank (S012-S021) 3. Emission Unit ID number **S012-S021** 4. Emission Point ID number E023 or E024 5. Date Installed, Modified or Relocated (for existing 6. Type of change: tanks) \boxtimes New construction \square New stored material \square Other Was the tank manufactured after August 23, 2011 and on □ Relocation or before September 18, 2015? \Box Yes 🖾 No Was the tank manufactured after September 18, 2015? \boxtimes Yes □ No 7A. Description of Tank Modification (*if applicable*) 7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material. □ Ves No No 7C. Was USEPA Tanks simulation software utilized? 🖂 Yes 🗆 No If Yes, please provide the appropriate documentation and items 8-42 below are not required.

GENERAL INFORMATION (REQUIRED)

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.						
10 - 400 bbl tanks						
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20					
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10					
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10					
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume". 400 bbl						
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)					
21,729,968.79	59,534.16					
14. Number of tank turnovers per year	15. Maximum tank fill rate (gal/min) 41.34					
518 (per tank)						
16. Tank fill method \Box Submerged \boxtimes Splash	□ Bottom Loading					
17. Is the tank system a variable vapor space system? \Box	Yes 🗌 No					
If yes, (A) What is the volume expansion capacity of the sys	tem (gal)?					
(B) What are the number of transfers into the system	per year?					
18. Type of tank (check all that apply):						
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat	roof \boxtimes cone roof \square dome roof \square other (describe)					
External Floating Roof pontoon roof dou	ible deck roof					
Domed External (or Covered) Floating Roof						
□ Internal Floating Roof □ vertical column support □ self-supporting						
□ Variable Vapor Space □ lifter roof □ diaphragm						
\Box Pressurized \Box spherical \Box cylindrical						
\Box Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as app	y:								
□ Does Not Apply				Rupture D	Disc (psig)				
□ Inert Gas Blanket of				Carbon A	dsorption ¹				
Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)									
\boxtimes Conservation Vent (psig) \square Condenser ¹									
-0.5 oz Vacuum Setting 14.0 oz Pressure Setting									
Emergency Relief Valve (psig)									
-0.5 oz Vacuum Setting 14.4 oz Pressure Setting									
□ Thief Hatch Weighted	🗆 Yes 🖂	No – A loc	k down	screw hat	tch will b	e installe	d instead o	of a thief ha	atch.
¹ Complete appropriate Air	Pollution	Control Dev	vice Sheet						
20. Expected Emission Ra	te (submit	Test Data of	r Calculat	ions here o	or elsewhe	re in the ap	oplication).		
Material Name	Flashing	g Loss	Breath	ing Loss	Workin	ng Loss	Total Er	nissions	Estimation
							Loss		Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	1
VOC (Pre-Control)	610.41	2673.57	0.05	0.20	0.20	0.87	610.65	2674.64	ProMax
	1		I						

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATION INFORMATION						
21. Tank Shell Construction:						
\Box Riveted \Box Gunite lined \Box Ep	oxy-coated rivets	⊠ Othe	r (describe) W	elded		
21A. Shell Color: Green	21B. Roof Color: G	reen		21C. Year	Last Painted:	
22. Shell Condition (if metal and unlined):						
\square No Rust \square Light Rust \square De	nse Rust 🛛 Not ap	plicabl	e			
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating	; tempera	ature:	22C. If yes	, how is heat provided to tank?	
23. Operating Pressure Range (psig): Must be listed for tanks using VRUs	with closed vent sy	stem.				
24. Is the tank a Vertical Fixed Roof		24A. If yes, for dome roof provide radius 24B. If yes, for cone roof, provide slo				
Tank?	(ft):	F-		(ft/ft):	,, F F	
\boxtimes Yes \Box No	5 ft			NA		
25. Complete item 25 for Floating Roof Ta	\mathbf{nks} Does not ap	oply 🗵				
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (<i>check one</i>):	Metallic (mechanical)	shoe se	eal 🗆 Liqui	d mounted i	resilient seal	
	Vapor mounted resilie		-	r (describe)		
	-					
25C. Is the Floating Roof equipped with a s			No		: : h).	
25D. If yes, how is the secondary seal mour				Other (de	scribe):	
25E. Is the floating roof equipped with a we	eather shield?	s [□ No			
25F. Describe deck fittings:						
26. Complete the following section for Inte	rnal Floating Roof Ta	nks	⊠ Does not	apply		
26A. Deck Type: Bolted	Welded	26B. 1	For bolted deck	s, provide dec	k construction:	
26C. Deck seam. Continuous sheet constru	ction:					
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. v	wide 🛛 5 x 7.5 ft. v	vide 🗆] 5 x 12 ft. wi	de 🗆 othe	r (describe)	
26D. Deck seam length (ft.): 26E. Are	ea of deck (ft ²):	26F. I	For column supp	oorted	26G. For column supported	
		tanks,	# of columns:	1	anks, diameter of column:	
27. Closed Vent System with VRU?	es 🗵 No					
28. Closed Vent System with Enclosed Con	nbustor? 🛛 Yes 🗆 N	lo				
SITE INFORMATION						
29. Provide the city and state on which the c	lata in this section are b	ased:				
30. Daily Avg. Ambient Temperature (°F):		31. A	nnual Avg. Max	timum Tempe	erature (°F):	
32. Annual Avg. Minimum Temperature (°I	F):	33. A	vg. Wind Speed	(mph):		
34. Annual Avg. Solar Insulation Factor (B'	TU/ft ² -day):	35. A	tmospheric Pres	sure (psia):		
LIQUID INFORMATION						
36. Avg. daily temperature range of bulk liquid (°F):	36A. Minimum (°F):			36B. Maxin	mum (°F):	
37. Avg. operating pressure range of tank	37A. Minimum (psig	g):		37B. Maxi	mum (psig):	
(psig):						
38A. Minimum liquid surface temperature ((°F):	38B.	Corresponding	vapor pressur	e (psia):	
39A. Avg. liquid surface temperature (°F):			Corresponding		-	
40A. Maximum liquid surface temperature			Corresponding			
41. Provide the following for each liquid or	gas to be stored in the t	ank. Ad	d additional pag	ges if necessa	ry.	
41A. Material name and composition:						
41B. CAS number:						

41C. Liquid density (lb/gal):		
41D. Liquid molecular weight (lb/lb-		
mole):		
41E. Vapor molecular weight (lb/lb-		
mole):		
41F. Maximum true vapor pressure (psia):		
41G. Maximum Reid vapor pressure		
(psia):		
41H. Months Storage per year.		
From: To:		
42. Final maximum gauge pressure and		
temperature prior to transfer into tank used		
as inputs into flashing emission		
calculations.		

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should be designated T01, T02, T03, etc.

2. Enter storage tank Status using the following:

- EXIST Existing Equipment
 - NEW Installation of New Equipment
 - REM Equipment Removed
- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc.
- 4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample** analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

The following information is **REQUIRED**:

- □ Composition of the representative sample used for the simulation
- □ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- □ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name	2. Tank Name					
OXF 43 Storage Tank Area	Sand Trap Blowdown Tank (S022)					
3. Emission Unit ID number S022	4. Emission Point ID number E023 or E024					
5. Date Installed , Modified or Relocated (for existing	6. Type of change:					
tanks)	\boxtimes New construction \square New stored material \square Other					
Was the tank manufactured after August 23, 2011 and on	□ Relocation					
or before September 18, 2015?						
\Box Yes \boxtimes No						
Was the tank manufactured after September 18, 2015?						
\boxtimes Yes \Box No						
7A. Description of Tank Modification (<i>if applicable</i>)						
7B. Will more than one material be stored in this tank? If s	o, a separate form must be completed for each material.					
\Box Yes \boxtimes No						
7C. Was USEPA Tanks simulation software utilized?						
\boxtimes Yes \square No						
If Yes, please provide the appropriate documentation and items 8-42 below are not required.						

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the	internal cross-sectional area multiplied by internal height.					
5,880 gallons						
9A. Tank Internal Diameter (ft.) 10	9B. Tank Internal Height (ft.) 10					
10A. Maximum Liquid Height (ft.) 8	10B. Average Liquid Height (ft.) 5					
11A. Maximum Vapor Space Height (ft.) 8	11B. Average Vapor Space Height (ft.) 5					
12. Nominal Capacity (specify barrels or gallons). This	is also known as "working volume". 5,880 gallons					
13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)					
905,389.80	2,480.52					
14. Number of tank turnovers per year 154	15. Maximum tank fill rate (gal/min) 4.08					
16. Tank fill method \Box Submerged \boxtimes Splash	□ Bottom Loading					
17. Is the tank system a variable vapor space system?	Yes □ No					
If yes, (A) What is the volume expansion capacity of the						
(B) What are the number of transfers into the syste	em per year?					
18. Type of tank (check all that apply):						
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square f	lat roof \square cone roof \square dome roof \square other (describe)					
□ External Floating Roof □ pontoon roof □	double deck roof					
□ Domed External (or Covered) Floating Roof						
□ Internal Floating Roof □ vertical column support □ self-supporting						
□ Variable Vapor Space □ lifter roof □ diap	□ Variable Vapor Space □ lifter roof □ diaphragm					
□ Pressurized □ spherical □ cylindrical						
\Box Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as ap	ply:								
□ Does Not Apply				Rupture D	visc (psig)				
□ Inert Gas Blanket of				Carbon A	dsorption ¹				
☑ Vent to Vapor Combu	Vent to Vapor Combustion Device ¹ (vapor combustors, flares, thermal oxidizers, enclosed combustors)								
\Box Conservation Vent (psig) \Box Condenser ¹									
Vacuum Setting Pressure Setting									
Emergency Relief Valve (psig)									
-0.5 oz Vacuum Setting 14.4 oz Pressure Setting									
□ Thief Hatch Weighter	l⊠Yes □	No – Two	16 oz. w	eighted e	mergency	/ hatches			
¹ Complete appropriate A	ir Pollution	Control De	vice Sheet	-					
20. Expected Emission F	Rate (submit	Test Data o	r Calculati	ions here c	r elsewher	e in the ap	plication).		
Material Name	Flashing	g Loss	Breath	ing Loss	Working	g Loss	Total E	missions	Estimation
							Loss		Method ¹
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOC (Pre-Control)	25.44	4.64	<0.01	<0.01	<0.01	<0.01	25.45	4.64	ProMax

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

TANK CONSTRUCTION AND OPERA	TION INFORMATIO	N				
21. Tank Shell Construction:						
\Box Riveted \Box Gunite lined \Box E						
21A. Shell Color: Green	21B. Roof Color: G	reen	21C. Year	Last Painted:		
22. Shell Condition (if metal and unlined):	_					
\boxtimes No Rust \square Light Rust \square De						
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating	; temperature:	22C. If yes	, how is heat provided to tank?		
23. Operating Pressure Range (psig): Must be listed for tanks using VRUs	with closed vent sy	stem.				
24. Is the tank a Vertical Fixed Roof	24A. If yes, for dome		24B. If yes	, for cone roof, provide slop		
Tank?	(ft):		(ft/ft):			
\boxtimes Yes \Box No	5 ft		NA			
25. Complete item 25 for Floating Roof T	anks 🗌 Does not aj	pply 🖂				
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one):	Metallic (mechanical)	shoe seal 🛛 Liqu	id mounted	resilient seal		
	Vapor mounted resili	ent seal \Box Other	er (describe)	:		
25C. Is the Floating Roof equipped with a	secondary seal? 🗆 Ye	s 🗆 No				
25D. If yes, how is the secondary seal mou	nted? (check one)	Shoe 🗆 Rim 🛛	☐ Other (de	escribe):		
25E. Is the floating roof equipped with a w	eather shield? 🗌 Yes	s 🗆 No				
25F. Describe deck fittings:						
26. Complete the following section for Int	rnal Floating Poof Ta	nks 🛛 Does no	tannly			
	_			l construction		
26A. Deck Type: Deck T	Welded	26B. For bolted deck	s, provide dec	ck construction:		
26C. Deck seam. Continuous sheet constru						
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft.	wide \Box 5 x 7.5 ft. v	vide \Box 5 x 12 ft. wi	de 🗆 othe	er (describe)		
26D. Deck seam length (ft.): 26E. Ar	ea of deck (ft ²):	26F. For column sup tanks, # of columns:	-	26G. For column supported tanks, diameter of column:		
27. Closed Vent System with VRU? \Box Y	es 🛛 No					
28. Closed Vent System with Enclosed Con	nbustor? 🛛 Yes 🗆 N	lo				
SITE INFORMATION						
29. Provide the city and state on which the	data in this section are b	ased:				
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Ma	ximum Tempe	erature (°F):		
32. Annual Avg. Minimum Temperature (°	F):	33. Avg. Wind Speed (mph):				
34. Annual Avg. Solar Insulation Factor (B	TU/ft ² -day):	35. Atmospheric Pres	ssure (psia):			
LIQUID INFORMATION						
36. Avg. daily temperature range of bulk liquid (°F):	36A. Minimum (°F):		36B. Maxin	mum (°F):		
37. Avg. operating pressure range of tank	37A. Minimum (psig	g):	37B. Maxin	mum (psig):		
(psig):	(psig):					
38A. Minimum liquid surface temperature (°F): 38B. Corresponding vapor pressure (psia):						
39A. Avg. liquid surface temperature (°F):		39B. Corresponding		-		
40A. Maximum liquid surface temperature		40B. Corresponding				
41. Provide the following for each liquid or	gas to be stored in the t	ank. Add additional pa	ges if necessa	ry.		
41A. Material name and composition:						
41B. CAS number:						
41C. Liquid density (lb/gal):						
41D. Liquid molecular weight (lb/lb-						

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

mole):		
41E. Vapor molecular weight (lb/lb-		
mole):		
41F. Maximum true vapor pressure (psia):		
41G. Maximum Reid vapor pressure		
(psia):		
41H. Months Storage per year.		
From: To:		
42. Final maximum gauge pressure and		
temperature prior to transfer into tank used		
as inputs into flashing emission		
calculations.		

Attachment M

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
S001	E001	Line Heater	2017	New	1.54	1,197
S002	E002	Line Heater	2017	New	1.54	1,197
S003	E003	Line Heater	2017	New	1.54	1,197
S004	E004	Line Heater	2017	New	1.54	1,197
S005	E005	Line Heater	2017	New	1.54	1,197
S006	E006	Line Heater	2017	New	1.54	1,197
S007	E007	Line Heater	2017	New	1.54	1,197
S008	E008	Line Heater	2017	New	1.54	1,197
S009	E009	Line Heater	2017	New	1.54	1,197
S010	E010	Line Heater	2017	New	1.54	1,197
S011	E011	Line Heater	2017	New	1.54	1,197

¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

- ³ New, modification, removal.
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

Attachment N

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. Generator(s) and microturbine generator(s) shall also use this form.

Emission Unit I	D#1	SO	25				
Engine Manufacturer/Model		Caterpillar G3408TA					
Manufacturers Rated bhp/rpm		405/1800					
Source Status ²		Ň	IS				
Date Installed/ Modified/Remo	ved/Relocated ³	20	17				
Engine Manufac /Reconstruction		19	99				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 □40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 □40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 □ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 	
Engine Type ⁶		48	RB				
APCD Type ⁷		NS	CR				
Fuel Type ⁸		Р	Q				
H ₂ S (gr/100 scf))						
Operating bhp/r	pm	405/1800					
BSFC (BTU/bhj	p-hr)	8260					
Hourly Fuel Th	roughput	ft ³ /hr gal/hr		ft ³ /hr gal/hr		ft ³ /hr gal/hr	
Annual Fuel Th (Must use 8,760 emergency gene	hrs/yr unless	MMft ³ /yr gal/yr		MMft ³ /yr gal/yr		MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🖂	No 🗆	Yes 🗆	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
MD	NO _x	2.13	9.31				
MD	СО	2.21	9.70				
MD	VOC	0.10	0.43				
AP	SO ₂	<0.01	<0.01				
AP	PM ₁₀	0.06	0.28				
AP	Formaldehyde	0.07	0.30				
AP	Total HAPs	0.08	0.33				
AP	GHG (CO ₂ e)	391.39	1,714.29				

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6 Enter the Engine Type designation(s) using the following codes:

	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRB	Four St	roke Rich Burn			
7	Enter th	e Air Pollution Control Device (APCD) type designa	tion(s) ι	using the fo	llowing codes:			
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precomb Low Emission Co Oxidation Catalys	mbustion	ibers	S
8	Enter th	e Fuel Type using the following codes:						
	PQ	Pipeline Quality Natural Gas RC	3 R	law Natura	I Gas /Production C	las	D	Diesel
9	Enter t	he Potential Emissions Data Reference designa	ation u	sing the f	ollowing codes.	Attach all r	efer	ence data used.
	MD GR	Manufacturer's Data GRI-HAPCalc TM	-	AP AP OT Oth		lease list)		

- 10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# E025, use extra pages as necessary)						
Air Pollution Control Device 1 Yes D	Manufacturer's Data Sheet included? ⊠ No □					
⊠ NSCR □ SCR □ Oxidation Catalyst						
Provide details of process control used for proper mixing/c	control of reducing agent with gas stream:					
Manufacturer: Caterpillar Model #: G3408TA						
Design Operating Temperature: °F	Design gas volume: scfm					
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No					
Volume of gas handled: acfm at °F	Operating temperature range for NSCR/Ox Cat: From °F to °F					
Reducing agent used, if any:	Ammonia slip (ppm):					
Pressure drop against catalyst bed (delta P): inches	of H ₂ O					
Provide description of warning/alarm system that protects						
Is temperature and pressure drop of catalyst required to be \Box Yes \Box No	monitored per 40CFR63 Subpart ZZZ2?					
How often is catalyst recommended or required to be repla	ced (hours of operation)?					
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list ar	ny maintenance required and the applicable sections in					

NSPS/GACT,

ATTACHMENT N - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. Generator(s) and microturbine generator(s) shall also use this form.

Emission Unit I	D#1	SO	26				
Engine Manufacturer/Model		Ford/CSG-637					
Manufacturers H	Rated bhp/rpm	110/	3200				
Source Status ²		N	[S				
Date Installed/ Modified/Remo	ved/Relocated ³	TE	3D				
Engine Manufac /Reconstruction	tured Date ⁴	20	15				
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ☑ 40CFR60 Subpart JJJJ ☑ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 □40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 □ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 	
Engine Type ⁶		48	RB				
APCD Type ⁷		NS	CR				
Fuel Type ⁸		PQ					
H_2S (gr/100 scf))	0.25					
Operating bhp/r	pm	85.5/3,200					
BSFC (BTU/bhj	o-hr)	6,552.9					
Hourly Fuel Th	oughput	686.5 ft ³ /hr gal/hr		ft ³ /hr gal/hr		ft ³ /hr gal/hr	
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	6.01 MMft ³ /yr gal/yr		MMft ³ /yr gal/yr		MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🛛	No 🗆	Yes 🗆	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
MD	NO _x	0.24	1.03				
MD	СО	0.49	2.14				
MD	VOC	0.16	0.71				
AP	SO ₂	<0.01	<0.01				
AP	PM ₁₀	0.02	0.08				
AP	Formaldehyde	0.02	0.08				
AP	Total HAPs	0.02	0.09				
AP	GHG (CO ₂ e)	106.30	465.61				

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion engine/generator engine located at the well site. Multiple engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets. 2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source

- REM Removal of Source
- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

4SRB Four Stroke Rich Burn

Provide a manufacturer's data sheet for all engines being registered.

6	Enter the Engine	Type de	esignation(s)) using the	following codes	5:

2SLBTwo Stroke Lean Burn4SLBFour Stroke Lean Burn

8

9

7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		IR SIPC LEC OxCat	Ignition Retard Screw-in Precombustion C Low Emission Combustion Oxidation Catalyst		s
8	Enter the	e Fuel Type using the following codes:					
	PQ	Pipeline Quality Natural Gas	RG	Raw Natura	l Gas /Production Gas	D	Diesel
)	Enter tl	ne Potential Emissions Data Reference desi	gnation	using the f	ollowing codes. Attach a	all refer	ence data used.
	MD GR	Manufacturer's Data GRI-HAPCalc TM		AP AP OT Oth	-42 her (please list	:)	

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# E026, use extra pages as necessary)					
	ce Manufacturer's Data Sheet included? es ⊠ No □				
⊠ NSCR □	SCR 🗌 Oxidation Catalyst				
Provide details of process control used for proper mixin	ng/control of reducing agent with gas stream:				
Manufacturer: Ford	Model #: CSG-637				
Design Operating Temperature: ^o F	Design gas volume: scfm				
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No				
Volume of gas handled: acfm at °F	Operating temperature range for NSCR/Ox Cat: From °F to °F				
Reducing agent used, if any:	Ammonia slip (ppm):				
Pressure drop against catalyst bed (delta P): incl	hes of H ₂ O				
Provide description of warning/alarm system that protection of the system and pressure drop of catalyst required to Yes \square No	cts unit when operation is not meeting design conditions: be monitored per 40CFR63 Subpart ZZZZ?				
How often is catalyst recommended or required to be re	placed (hours of operation)?				
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list	t any maintenance required and the applicable sections in				

NSPS/GACT,

Date of Manufacture October 7		Engine Cariel Number	CNID02022	Data Madified	Decemetry stad	N/A
Driver Rated HP	<u> </u>	Engine Serial Number	6NB02023	Date Modified/	•	•
		Rated Speed in RPM	1800	Combustion Type		Spark Ignited 4 Stroke
Number of Cylinders		Compression Ratio	9.7:1	Combustion Set		Rich Burr
Displacement, in ³	1099	Fuel Delivery Method	Carburetor	Combustion Air	Treatment	T.C/ Aftercooled
Raw Engine Emissions (920 LHV BTU/SCF Fue	l Gas with little t	o no H2S)				
Fuel Consumption 7509 LHV	/ BTU/bhp-hr o	r 8260 HHV	' BTU/bhp-hr			
Altitude 500 ft						
Maximum Air Inlet Temp 77 F						
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	ТРҮ	
Nitrogen Oxides (NOx)		11.9		10.625	46.538	
Carbon Monoxide (CO)		12.4		11.071	48.493	
Volatile Organic Compounds (VOC or NMNEH	C)		2.96E-02	0.099	0.434	
Formaldehyde (CH2O)			2.05E-02	0.069	0.300	
Particulate Matter (PM) Filterable+Condensable			1.94E-02	0.065	0.284	
Sulfur Dioxide (SO2)			5.88E-04	0.002	0.009	
		g/bhp-hr ¹	lb/MMBTU ²	lb/hr	Metric Tonne/yr	
Carbon Dioxide (CO2)			110.0	368	1462	
Methane (CH4)			0.23	0.769	3.057	
¹ g/bhp-hr are based on Caterpillar Specificati		•	•			
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3)	emissions to allow Fifth Edition, Volu	v for operational flexibility	and fuel gas composition	on variability.	Natural	
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions	emissions to allow Fifth Edition, Volu	v for operational flexibility	and fuel gas composition	on variability.	Natural	
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions Catalytic Converter Make and Model:	emissions to allow Fifth Edition, Volu <i>Miratech</i>	r for operational flexibility ume I, Chapter 3: Stational IQ-14-08	and fuel gas composition	on variability.	Natural	
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type:	emissions to allow Fifth Edition, Volu <i>Miratech</i> <i>NSCR 3-</i> W	r for operational flexibility ume I, Chapter 3: Stational IQ-14-08	and fuel gas composition	on variability.	Natural	
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing:	emissions to allow Fifth Edition, Volu <i>Miratech</i> <i>NSCR 3-W</i> 1	y for operational flexibility ume I, Chapter 3: Stational IQ-14-08 /ay	and fuel gas composition	on variability.	Natural	
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing:	emissions to allow Fifth Edition, Volu <i>Miratech</i> <i>NSCR 3-W</i> 1	r for operational flexibility ume I, Chapter 3: Stational IQ-14-08	and fuel gas composition	on variability.	Natural	
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions Catalytic Converter Make and Model:	emissions to allow Fifth Edition, Volu <i>Miratech</i> <i>NSCR 3-W</i> 1	y for operational flexibility ume I, Chapter 3: Stational IQ-14-08 /ay	and fuel gas composition	on variability.	Natural	
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions <i>Catalytic Converter Make and Model:</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i>	emissions to allow Fifth Edition, Volu <i>Miratech</i> <i>NSCR 3-W</i> 1	y for operational flexibility ume I, Chapter 3: Stational IQ-14-08 /ay ce Controls AFR-9	and fuel gas composition y Internal Combution S	on variability. Gources (Section 3.2		
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx)	emissions to allow Fifth Edition, Volu <i>Miratech</i> <i>NSCR 3-W</i> 1	v for operational flexibility ume I, Chapter 3: Stational IQ-14-08 Yay ce Controls AFR-9 <u>% Reduction</u>	and fuel gas compositio y Internal Combution S 	on variability. Gources (Section 3.2	ТРҮ	
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO)	emissions to allow Fifth Edition, Volu <i>Miratech</i> <i>NSCR</i> 3-W 1 <i>Complian</i>	v for operational flexibility ume I, Chapter 3: Stational IQ-14-08 Yay ce Controls AFR-9 <u>% Reduction</u> 80	and fuel gas composition y Internal Combution S 	on variability. Gources (Section 3.2	<u>трү</u> 9.31	
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMNEH	emissions to allow Fifth Edition, Volu <i>Miratech</i> <i>NSCR</i> 3-W 1 <i>Complian</i>	y for operational flexibility ume I, Chapter 3: Stational IQ-14-08 Yay ce Controls AFR-9 <u>% Reduction</u> 80 80	and fuel gas composition y Internal Combution S <u>g/bhp-hr</u> 2.4 2.5	on variability. Gources (Section 3.2 <u>Ib/hr</u> 2.13 2.21	<u>ТРҮ</u> 9.31 9.70	
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMNEH Formaldehyde (CH2O)	emissions to allow Fifth Edition, Volu <i>Miratech</i> <i>NSCR</i> 3-W 1 <i>Complian</i>	y for operational flexibility ume I, Chapter 3: Stational ////////////////////////////////////	and fuel gas composition y Internal Combution S <u>g/bhp-hr</u> 2.4 2.5 0.11	bon variability. Sources (Section 3.2 Ib/hr 2.13 2.21 0.10	<u>ТРҮ</u> 9.31 9.70 0.43	
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing: Air/Fuel Ratio Control Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMNEH Formaldehyde (CH2O) Particulate Matter (PM)	emissions to allow Fifth Edition, Volu <i>Miratech</i> <i>NSCR</i> 3-W 1 <i>Complian</i>	y for operational flexibility ume I, Chapter 3: Stational /ay ce Controls AFR-9 <u>% Reduction</u> 80 80 0 0	and fuel gas compositions y Internal Combution S <u>g/bhp-hr</u> 2.4 2.5 0.11 0.08	bon variability. Bources (Section 3.2 b/hr 2.13 2.21 0.10 0.07	<u>ТРҮ</u> 9.31 9.70 0.43 0.30	
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions Catalytic Converter Make and Model: Element Type: Number of Elements in Housing:	emissions to allow Fifth Edition, Volu <i>Miratech</i> <i>NSCR</i> 3-W 1 <i>Complian</i>	r for operational flexibility ume I, Chapter 3: Stational /ay ce Controls AFR-9 <u>% Reduction</u> 80 80 0 0 0 0	and fuel gas compositions y Internal Combution S <u>g/bhp-hr</u> 2.4 2.5 0.11 0.08	bon variability. Bources (Section 3.2 b/hr 2.13 2.21 0.10 0.07 6.49E-02	ТРҮ 9.31 9.70 0.43 0.30 2.84E-01	
It is recommended to add a safety margin to e ² Emission Factor obtained from EPA's AP-42, Gas-Fired Reciprocating Engines, Table 3.2-3) Catalytic Converter Emissions <i>Catalytic Converter Make and Model:</i> <i>Element Type:</i> <i>Number of Elements in Housing:</i> <i>Air/Fuel Ratio Control</i> Nitrogen Oxides (NOx) Carbon Monoxide (CO) Volatile Organic Compounds (VOC or NMNEH Formaldehyde (CH2O) Particulate Matter (PM)	emissions to allow Fifth Edition, Volu <i>Miratech</i> <i>NSCR</i> 3-W 1 <i>Complian</i>	y for operational flexibility ume I, Chapter 3: Stational /ay ce Controls AFR-9 <u>% Reduction</u> 80 80 0 0 0 0 0	and fuel gas compositions y Internal Combution S <u>g/bhp-hr</u> 2.4 2.5 0.11 0.08	bon variability. Sources (Section 3.2 b/hr 2.13 2.21 0.10 0.07 6.49E-02 1.97E-03	ТРҮ 9.31 9.70 0.43 0.30 2.84E-01 8.62E-03	

Equipment Specification Report

Engine Data

Number of Engines:	1
Application:	Gas Compression
Engine Manufacturer:	Caterpillar
Model Number:	G 3408 TA
Power Output:	405 bhp
Lubrication Oil:	0.6 wt% sulfated ash or less
Type of Fuel:	Natural Gas
Exhaust Flow Rate:	1587 acfm (cfm)
Exhaust Temperature:	995 F

System Details

Housing Model Number:	IQ-14-08-HSG
Element Model Number:	IQ-RE-14EC
Number of Catalyst Layers:	1
Number of Spare Catalyst Layers:	1
System Pressure Loss:	3.0 inches of WC (Clean)
Exhaust Temperature Limits:	750 – 1250°F (catalyst inlet); 1350°F (catalyst outlet)

NSCR Housing & Catalyst Details

Model Number:	IQ-14-08-EC1
Material:	Carbon Steel
Inlet Pipe Size & Connection:	8 inch FF Flange, 150# ANSI standard bolt pattern
Outlet Pipe Size & Connection:	8 inch FF Flange, 150# ANSI standard bolt pattern
Overall Length:	32 inches
Weight Without Catalyst:	89 lbs
Weight Including Catalyst:	107 lbs
Instrumentation Ports:	2 inlet/2 outlet (1/2" NPT)
Oxygen Sensor Ports:	1 inlet/1 outlet (18mm)

Emission Requirements

Exhaust Gases	Engine Outputs (g/bhp-hr)	Reduction (%)	Warranted Converter Ouputs (g/bhp-hr)	Requested Emissions Targets
NO _x *	11.9	80	2.4	2.4 g/bhp-hr
СО	12.4	80	2.5	2.5 g/bhp-hr
NMNEHC**	0.099			
CH ₂ O	0.24			
PM ₁₀	0			
02	0.4%			
H2O	18.5%			

† MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

*MW referenced as NO₂ **MW referenced as CH₄. Assumed as 100% unsaturated HCs. Average at steady state per EPA 40CFR60 Method 25A for HC or mutually agreed test method.

G3408 TA	Gas Industrial Engine Performance
	end model in engine renormance

CATERPILLAR

Engine Speed (rpm)					NAT GAS	
Compression Antro					920 HPG IMPCO	
Aftersooicr Intol Temperature (*F)			Huel System			
Jacket Water Outlat Temperature (°F)	240		liv Control Requires			
Igalbon System	CIQ	Minimum Eva		20.0 50		
	ATER COOLED		Methane Number at Conditions Shown			
Combustion Bystem Type	CATALYSY	Rated Allitude			5000	
		ct	77'F Design Temp	embune		
Engine Rating Date		% Lead	100%	75%	50%	
Engine Power (w/a fan)		Бир	405	364	203	
Engine Data		1 1				
Specific Fuel Consumption (BSF2) (1)		Blu/thp-hr	7509	7854	B750	
Air Flow (Wet, @771F, 28.6 in Hg)		IMI# '	2468	1943	1485	
Air Mass Flow (Wel)		scim	53B	424	320	
Compressor Out Pressure		in. Hg (ebs)	45.7	42.B	38.3	
Compressor Cut Temperature		-F ;	184	170	147	
In et Manifold Pressure		in. ⊢g (abs)	39.7	31.7	26.2	
In al Manifold Temperature (10)		7F	133	131	129	
Tinting (11)		-BLDC	25	25	25	
Exhaust Stack Temperature		F	995	941	854	
Exhaust Gas Flow (Wet, 🎕 stack tempe	arature, 29.7 in Hg)	CFM	1667	1277	835	
Exhaust Gas Mass Flow (Wet)		le/hr	2620	2061	1553	
Engine Emissions Data		I I				
Nitrous Oxides (NOx as ND2) (9)		g/bhp-hr	11.9	12.2	12.4	
	(Cart. 15% O2)	ppm	872	850	734	
Carbon Manageria (2001-00)				40.4	12.4	
Garbon Monoxide (COI (9)	(Corr. 15% O2)	: g/ohp-hr	12.4 1493	12.1 1391	12.4	
	(601, 15% 62)	opm	1483	1391	1235	
Total Hydrocarbons (THC) (9)		g/blyp-hr	 29	2.9		
	(Corr. 15% O2)	, ppm	616	500	523	
Kon-Methane Hydrocarbons INMHC) (9	0	g/bhp-hr	0.43	0.43	D.44	
	(Cmr. 15% O2)	opm	92	87	78	
Exhaust Oxygen (9)		%	0.4	0.3	0.3	
Lambda		0	1.05	1.05	1.35	
		!	1.00	1.04	1.10	
Engine Heat Balance Data						
Inout Energy LHV (1)		Bhuirnin	50659	39760	29531	
Work Output		Sturmin	17175	12861	8538	
Hest Rejection to Jacket (2) (3)		3Lumin	19152	16084	13357	
Heat Rejection to Almosphere (Radiated Heat Rejection to Luce Cd (S)	07(4)	Btuimin	2028	1590	1131	
Heat Rejection to Lube Cril (5) Total Heat Rejection to Extra 45 3785	5. (2)	Sitivitation Sitivitation	0	0	0	
Total Heat Rejection to Exhaust (to 77°F Heat Relation to Exhaust (t. 84 hp. 2502		Slumin Sture e	11081	8164	55/7	
Heat Rejection to Exhaust (1 HV to 350" Heat Rejection to Alternative '3' (7) (8)	F)(2)	Billimin Billimin	/8/0	5656	3953.8	
Heal Rejection to Altercooler (3) (7) (8)		l acruit. :	582	348	121	
	-EN	GLISH- page 1 of	7 2	DA	15096-00	
CR	2.	Proprint	-			
SB						

G3408

CSG-637 EFI

3.7 Liter 6-Cylinder

Options

Engine Cooling Fans • 14" (355mm) diameter suction • 14" (355mm) diameter pusher Flywheels • 11.5" (292mm) SAE over-center clutch • flat face flywheel **Flywheel Housings** • SAE #3 **Exhaust Manifold** • rear dump down **Power Steering Pump** Air Conditioning Wiring Harnesses **Discrete Speed Switch** Variable Speed Hand Throttle Variable Speed Foot Pedal **Engine Mounts** • Automotive with insulators • Open power unit **Electronic Instrument Panel, Gauges** Three Way Catalyst / Muffler Standard

Transmissions 6R80 electronic shift

Emissions Information

California Air Resources Board (CARB) Environmental Protection Agency (EPA) Emission Certified Packages

Warranty

Contact Engine Distributors, Inc for warranty details.

Powertrain Assemblies & Components Provided By Ford Component Sales

Specifications

Engine Type	V-6
Bore and Stroke	3.7"x 3.4" (94mm x 86mm)
Displacement	3.7L Liter (225.7 CID)
Compression Ratio	10.5:1
Oil Capacity	6 qts. including filter
	355 Lbs. with accessories (161 Kgs.)
Dimensions	L 25.4" x W 29.5" x H 29.4"
	(646 mm x 751 mm x 748 mm)

Gasoline (corrected per SAE J1349)

Unleaded 87 or 89 octane		
Intermittent Power	107 [HP] @ 3200rpm	(80 [kW] @ 3200rpm)
Continuous Power		(72 [kW] @ 3200rpm)
Intermittent Torque		(261 [N-m] @ 2600rpm)
Continuous Torque	173 [ft-lbs] @ 2600rpm	(235 [N-m] @ 3200rpm)

Natural Gas (corrected per SAE J1349)

Fuel Specification	1050 BTU/FT3	
Intermittent Power	110 [HP] @ 3200rpm	(82 [kW] @ 3200rpm)
Continuous Power	99 [HP] @ 3200rpm	(74 [kW] @ 3200rpm)
Intermittent Torque		
Continuous Torque	172 [ft-lbs] @1600rpm	(233 [N-m] @ 1600rpm)

Liquefied Petroleum Gas (corrected per SAE J1349)

Fuel Specification	HD-5	
Intermittent Power	118 [HP] @ 3200rpm	(88 [kW] @ 3200rpm)
Continuous Power		(79 [kW] @ 3200rpm)
Intermittent Torque	209 [ft-lbs] @ 2600rpm	(284 [N-m] @ 2600rpm)
Continuous Torque	188 [ft-lbs] @ 2600rpm	(255 [N-m] @ 2600rpm)

Standard Features / Benefits

Set-for-life valvetrain

Deep skirted, ribbed cylinder block casting for rigidity

150 AMP Alternator

Aluminum cylinder block and heads.

Chain driven dual camshafts with automatic tensioning system

Structural front cover and deep sump oil pan

Alternate fuel ready valvetrain components

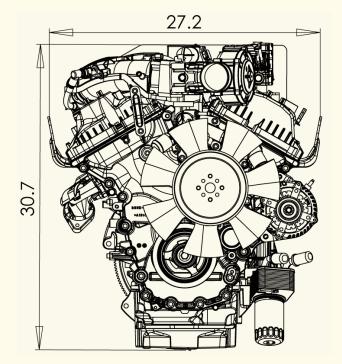
Individual coil on plug electronic ignition

Four main bolts with side bolts through block for strength and durability

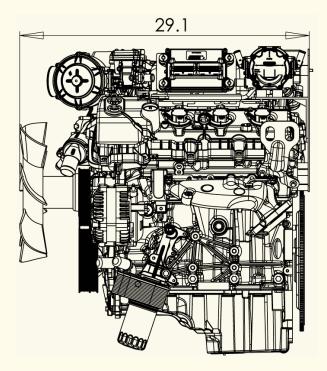
Gasoline Sequential Port Fuel Injection

Closed loop fuel control for all fuels

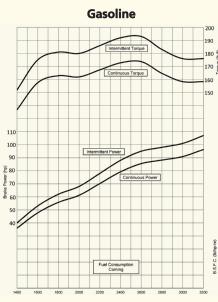
Electronic engine management system with built-in engine protection against detonation, high coolant temperature, low oil pressure, over speed shutdown and starter lockout


Next generation governing – discrete speeds, variable speeds, drive by wire – using the highest quality components.

Variable CAM Timing for intake camshafts - advances or retards timing to maximize engine power and fuel efficiency


Forged steel crankshaft

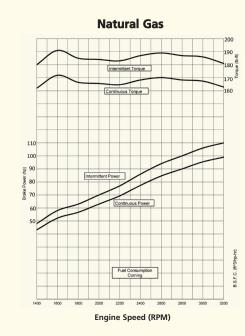
Installation Drawings


Front End View

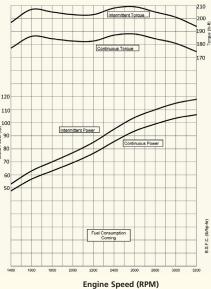
Left Side View

Power Curves (corrected per SAE J1349)

Engine Speed (RPM)


Ford

Powertrain Assemblies


& Components

Provided By Ford Component Sales

Power <u>Produ</u>cts

Liquefied Petroleum Gas

For additional information Contact:

400 University Ct • Blackwood NJ 08012 856/228-7298 • Fax:856/228-5531 www.edi-dist.com

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 60, 40 CFR Part 1048, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60, 40 CFR Part 1048 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60, 40 CFR Part 1048. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60, 40 CFR Part 1048. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1048.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

Attachment O

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: S02	: E027		Year Ins	stalled/M	odified: New				
Emission Unit Description: Tank Truck Loading									
Loading Area Data									
Number of Pumps: 1		Numbe	er of Liquids	Loaded: 1		Max number of trucks/rail cars load at one (1) time: 1			
Are tanker trucks/rail cars pressure tested for leaks at this or any other location? \Box Yes \boxtimes No \Box Not Required If Yes, Please describe:									
Provide description of c	closed vent system	n and an	y bypasses.	Vapors rou	ited to	two VD	Us (C02	23 and C024)	
 Are any of the following truck/rail car loadout systems utilized? Closed System to tanker truck/rail car passing a MACT level annual leak test? Closed System to tanker truck/rail car passing an NSPS level annual leak test? Closed System to tanker truck/rail car not passing an annual leak test and has vapor return? Projected Maximum Operating Schedule (for rack or transfer point as a whole)									
Time	Jan – Ma	•		- Jun	· •			Oct - Dec	
Hours/day	24			24		24		24	
Days/week	7			7		7		7	
		k Lianid		xtra pages a	s necess	•			
Liquid Name	Produc	-							
Max. Daily Throughput (1000 gal/day)	62.01		-						
Max. Annual Throughpt (1000 gal/yr)	^{ut} 22,635	.36							
Loading Method ¹	Loading Method ¹ SP								
Max. Fill Rate (gal/min) 43.07	43.07							
Average Fill Time (min/loading)	120 mi	120 min							
Max. Bulk Liquid Temperature (°F)	57.77 °	F							
True Vapor Pressure ²	0.54 ps	ia							

Cargo Vessel Condition ³		U	
Control Equipment or Method ⁴		ECD	
Max. Collection Efficiency (%)		70	
Max. Control Efficiency (%)		98	
Max.VOC	Loading (lb/hr)	0.24	
Emission Rate	Annual (ton/yr)	1.05	
Max.HAP	Loading (lb/hr)	<0.01	
Emission Rate	Annual (ton/yr)	<0.01	
Estimation N	1ethod ⁵	ProMax	

1	BF	Bottom Fill	SP	Splash Fill	SUB	Submerged Fill
2	At max	timum bulk liquid temperature				
3	В	Ballasted Vessel	С	Cleaned	U	Uncleaned (dedicated service)

4

 D
 Damaster Vesser
 C
 C C Cleared
 C C Cleared
 C C Cleared
 C C C C C Cleared
 C C C C Cleared
 C C C C C Cleared
 C C C C Cleared
 C C C C C Cleared
 C C C C C C Cleared
 C C C C C C C

Thermal Oxidization or Incineration ТО

EPA EPA Emission Factor in AP-42 MB 5 Material Balance

ТМ Test Measurement based upon test data submittal 0 Other (describe) Attachment P (Not Applicable)

Attachment Q

ATTACHMENT Q – PNEUMATIC CONTROLLERS
DATA SHEET

Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?

Please list approximate number.

Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?

Yes	🖂 No
-----	------

Please list approximate number.

Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?

Yes No

Please list approximate number.

Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?

Yes	🔀 No
-----	------

Please list approximate number.

Attachment R

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

🗌 Yes 🛛 🖾 No

Please list.

-	

Attachment S

ATTACHMENT S – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.				
Emission Unit ID: S012-S021, S022, S027	Make/Model:			
Primary Control Device ID: C023	Make/Model: LEED Fabrication/Enclosed Combustor 60"			
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No			
Secondary Control Device ID:	Make/Model:			
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No			

VAPOR COMBUSTION								
(Including Enclosed Combustors)								
			General Ir	nformation				
Control De		Installation Date:2017			Relocated			
Maximum Rated Total Flow Capacity ~12,500 scfh 300,000 scfd				Maximum Design Heat Input (from mfg. spec sheet)Design H 1,500 B'19.22 MMBTU/hr		Design H 1,500 BT	Heat Content TU/scf	
			Control Devic	e Informati	on			
Type of Vapor Combustion Control? Enclosed Combustion Device Elevated Flare Thermal Oxidizer Ground Flare								
	Manufacturer: LEED Fabrication Model: Enclosed Combustor 60"					Hours of operation per year? 8,760		
List the emission units whose emissions are controlled by this vapor control device (Emission Point ID# S012-S021 , S022 , S027)								
Emission Unit ID#	Emission Source Description			Emission Unit ID#	Emissio	on Source Description		
S012- S021								
S022	Sand Trap Blowd	k						
S027	7 Tank Truck Loading Rack							
If this	s vapor combustor c	ontrols en	nissions from more the	an six (6) em	ission un	nits, please	attach additional pages.	
Assist Type (Flares only) Flare Height			Tip Diameter		er	Was the design per §60.18?		
☐ Steam ☐ Air ~30 feet ☐ Pressure ⊠ Non				4 feet			☐ Yes ☐ No Provide determination.	
			Waste Gas 1	Information	l			
			Vaste Gas Stream Exit Vel BTU/ft ³		Exit Vel	ocity of the Emissions Stream (ft/s)		
Provide an attachment with the characteristics of the waste gas stream to be burned.								
Pilot Gas Information								
Number of Pilot LightsFuel Flow Rate to Pilot1Flame per Pilot~30 scfh		Heat Input per Pilot 0.03 BTU/hr			Will automatic re-ignition be used? □ Yes ⊠ No			
If automatic re-ignition is used, please describe the method.								
Is pilot flame equipped with a monitor to detect the presence of the flame? If Yes, what type? ⊠ Thermocouple □ Infrared □ Ultraviolet □ Camera □ Other:								
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). See attached manufacture specification sheet								
Additional information attached? 🛛 Yes 🔲 No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per §60.18 or §63.11(b) and performance testing.								

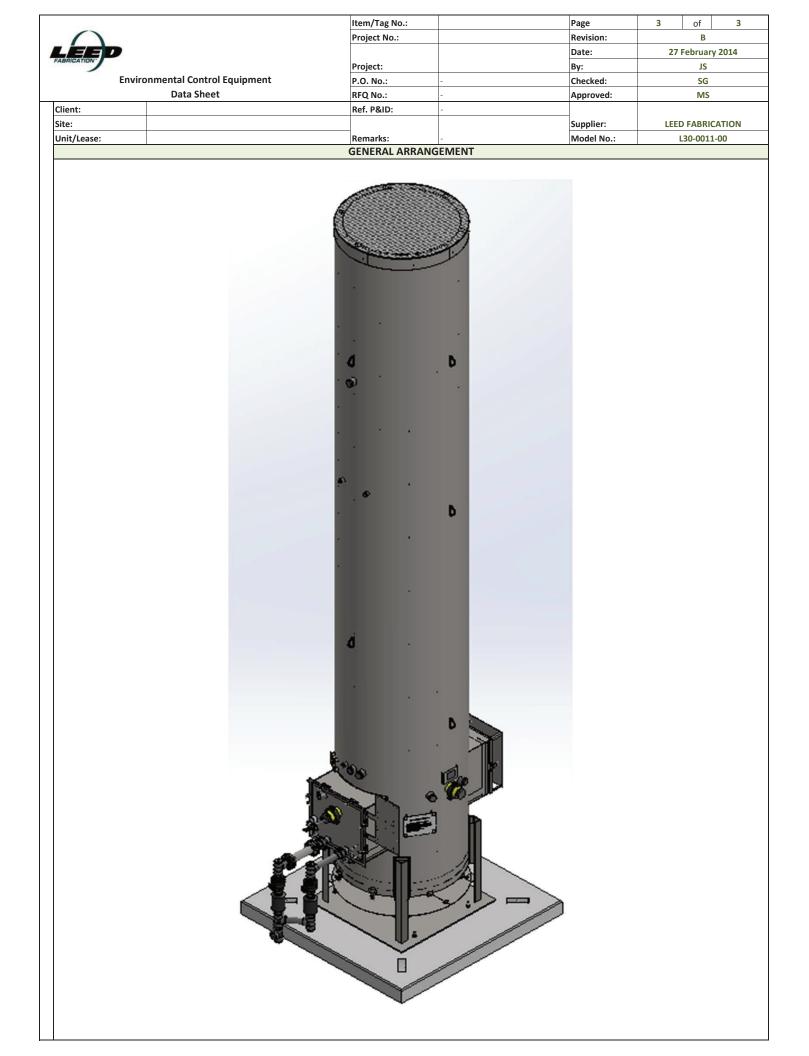
ATTACHMENT S – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.						
Emission Unit ID: S012-021, S022, S029 Make/Model:						
Primary Control Device ID: C024	Make/Model: LEED Fabrication/Enclosed Combustor 48"					
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No					
Secondary Control Device ID:	Make/Model:					
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No					

	VAPOR COMBUSTION (Including Enclosed Combustors)									
	General Information Installation Date: 2017									
Control De	evice ID#: C024			Installation		017 Iodified	Relocated			
Maximum ~ 7,800 scf	Rated Total Flow C h 140,000			Heat Input mfg. spec	Maximum DesignHeat Input (from mfg. spec sheet)Design Heat Content 1,088 BTU/scf11.66 MMBTU/hr					
			Control Devic	e Informati	on					
	ed Combustion Dev 1 Oxidizer	ice	Type of Vapor Co		ontrol?		Ground Flare			
	rer: LEED Fabrica closed Combustor			Hours of o	peration	per year? 8	3,760			
List the en S029)	nission units whose	emissions	are controlled by this	vapor contr	ol device	(Emission	n Point ID# S012-S021, S022,			
Emission Unit ID#	Emission Source Description Emission Source Description									
E012- E021	Produced Fluids	Tanks								
E022	Sand Trap Blowd	lown Tan	k							
E027	Tank Truck Load	ling Rack								
If this	s vapor combustor c	ontrols en	nissions from more the	than six (6) emission units, please attach additional pages.						
Assist Typ	e (Flares only)		Flare Height	Tip Diameter Was the design per §60.1						
Steam Pressu	re 🗌 Air Non		~25 feet		4 feet		☐ Yes ☐ No Provide determination.			
			Waste Gas 1	Information	l					
Maximum	Waste Gas Flow Ra (scfm)	te	Heat Value of W 2013 H		eam	Exit Vel	ocity of the Emissions Stream (ft/s)			
	Provide an	attachme	nt with the characteri	stics of the v	vaste gas	stream to	be burned.			
			Pilot Gas I	nformation						
Number	of Pilot Lights 1		Flow Rate to Pilot lame per Pilot ~ 30 scfh		nput per)3 BTU/h		Will automatic re-ignition be used? □ Yes □ No			
If automatic re-ignition is used, please describe the method.										
_ <u>^</u>	pilot flame equipped with a monitor to detect the resence of the flame?If Yes, what type? \square Thermocouple \square Infrared \square Ultraviolet \square Camera \square Other:									
	escribe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If navailable, please indicate).									
			es 🗆 No lata sheets, drawings,	flame demoi	nstration	per §60.18	or §63.11(b) and			


<u> </u>				. /						
	~			Item/Tag No.:			Page	1 of 3		
	()			Project No.:			Revision:	Α		
10	I EED						Date:	10 November 2014		
-	FABRICATION									
				Project:			By:	JS		
	Envir	omental Control Equipment		P.O. No.:	-		Checked:	SG		
		Data Sheet		RFQ No.:	-		Approved:	MS		
	Client:			Ref. P&ID:						
				Rei. PaiD:	-		-			
	Site:						Supplier:	LEED FABRICATION		
	Unit/Lease:			Remarks:	-		Model No.:	L30-0028-00		
					IERAL					
	Design Codes			ULI.		hung		LEED Fabrication Chandrada		
1	Design Code:					NDE:		LEED Fabrication Standards		
2	Service:					Customer Specs:		Yes		
3	Description:	Standard Dual	Stage 60 High Eff	ficiency Combust	tor			✓ No		
-				-						
				PROCE	SS DATA					
	Gas Composition:			mol %	Process Conditions					
	das composition.			1101 /6	Variable	Valu	ue Uni	ts		
4	Methane				Flow Rate	Up to	300 Msc	fd		
5	Ethane				Pressure	Up to	o 12 oz/i	n2		
6	Propane				Temperatur	e	°F	:		
7	I-Butane				Molecular We	ight				
						-	<u></u>			
8	n-Butane				Process/Waste S			Liquid		
9	I-Pentane				Detailed Process De	escription / Process I	Notes:			
10	n-Pentane				1. Turndown 10:1. I	Based on an expecte	d normal operati	ng rate indicated above.		
						ting at design condit				
11						Drop: Min. 0.12 oz/ii				
12	CO2							CCF unless on a 10 a l h		
13	N2				4. Gas mixture heat	ing value estimated	το pe 1500 BTU/	SCF unless specified by customer		
14										
15	H₂O									
16	C7									
17	C8									
18	C9									
19	C10									
20	C11+									
21		TOTAL								
	Other Components:			PPMV	Available Utilities:					
22	H2S				Fuel / Pilot G	as	Natural Gas /Propane 40-50 SCFH			
23					Instrument A		NA	,,,		
24	Toluene				Power		120 V / 60	20 V / 60 Hz or Solar Power		
25	E-Benzene				Steam NA					
26	Xylene				Purge Gas					
	Ayiene			DECIC	N DATA					
				DESIG	NDATA					
27	Ambient Temperatures	5:			Noise Performance	Requirements:		Under 85 dBA		
28		Low, ^o F	-20	0	Structural Design C	ode:				
29		High, ^o F	12	0	Wind Design Code:			ASCE		
		•		-						
	Design Conditions:	Pressure/Temperature								
31	Max. Relative Humidity	y, %	90)		Pressure/Speed		100 mph		
32	Elevation (ASL), ft					Category				
	Area Classification:		Class I	Div 2	Seismic Design Cod	• /				
					Construct Design COU					
34	Electrical Design Code:		NE			Location				
1				EQUIPMENT	SPECIFICATION					
35	Туре:	Elevated V E	nclosed		Equipment Design:					
36		Above Ground				Component		aterial / Size / Rating / Other		
			Authin In Charl			Jomponent	IVI	ateriar / Size / Natilig / Utiler		
37		Stack N	Nultiple Stack		Burner					
38		Portable / Trailer			Burner Ti	o / Assist Gas Burner		Stainless Steel		
39						urner Body		Carbon Steel		
	Smokeless By:		ecict Air							
40			ssist Air		Pilot					
41		Gas Assist 🗸 S	itaging			Pilot Tip		Stainless Steel		
42						Pilot Line(s)		Carbon Steel		
43		Self Supporting			Firebox / Stack	、 <i>,</i>				
			analasia 🔽	-	INCOUR / SIDEK					
44	Flare Burner:		mokeless	Gas Assist		Shell		Carbon Steel		
45	Pilot:	✓ Intermittent] Continuous			Piping		Carbon Steel		
46	Pilot Air Inspirator:	✓ Local	Remote			Nozzles		Carbon Steel		
		No V		unio)						
47	Pilot Flame Control:		Yes (Thermocou	upie)		Flanges		Carbon Steel		
48						Insulation		Blanket		
49	Pilot Ignition:	Flamefront Generator 🗸] Inspirating Igni	tor	Insulation Pins			Stainless Steel		
50	-	Electronic V	Automatic	Manual		Refractory		NA		
				manual						
51		With Pilot Flame Control			Refr	actory Anchors		NA		
52		With Auto Pilot Re-Ignition		Ladde	rs and Platforms		NA			
53					Stack Sa	mple Connections		Per EPA requirements		
			loso Electri							
54		Manual Specify: i.e P	IEZO-EIECTRIC			Sight Glass		2		
55	1	Battery Pack				Other				

			Here Tee Ne .		Dese		2		<u> </u>	3
	\cap		Item/Tag No.:		Page Revision		2	0	A	3
			Project No.:		Date:	:	10		mber 2	2014
-	FABRICATION		Broject:				10		JS	2014
	Environ	imental Control Equipment	Project: P.O. No.:		By: Checked				SG	
	LIVIIOI	Data Sheet	RFQ No.:		Approve				MS	
	Client:	Data Sheet	Ref. P&ID:	-	Approve	u.			13	
	Site:		Rei. Paid.		Supplier	er: LEED FABRICATION				
	Unit/Lease:		Remarks:		Model N		LCC		028-0	
	Unit/Lease.		EQUIPMENT SPI		NOUEIN	0		130-0	028-00	,
56	Flame Detection:	Thermocouple Ionizatio		ciliary Equipment						
57		UV Scanner		Valves				NA		
	General Configuration:			Blowers				NA		
59				Dampers				NA		
60				Inlet KO / Liquid Seal				NA		
61				Flame / Detonation Arresto	r			Yes		
62			Inc	rumentation & Controls						
63				Solenoids / Shut-Off Valves	;	Check with	Sale	s for a	vailah	le config.
64				Flow Meters		Check with				-
65				Calorimeter				NA		
66				Pressure Switches/Transmitte	ers	Check with	Sale		vailab	le config.
67				Thermocouples		Check with				
68				Temperature Switches/Transmi	tters	Check with				
69		Jacob Contraction of the second		BMS		Check with				
70		G *		CEMS				NA		
71		L'EL		Other				NA		
72										
73										
74										
75										
			FABRICATION AN	DINSPECTION						
76	Special requirements	Skid Mounted 🗸 Concrete Pa	d		Equipment I	nfo				
77		Other		Component		We	ight /	/ Dim	ension	S
78			Bur	ner						
79	Inspection	Vendor Standard		Burner Assembly						
80		Other. Specify:	Sta	ck						
81	Material Certification	✓ Vendor Standard		Stack Assembly		60 " O	D x 3	30 ' H.	7,000	Lbs
82		MTR		Pilot Tip						
83		Certificate of Compliance		Pilot Line(s)						
84		Other (Specify):		Concrete Pad		12'x	12' 1	2". 21	,600 LI	bs
85	NDE	✓ Vendor Standard	Aux	kiliary Equipment						
86		Radiography. Specify:		Blowers						
87		Ultrasonic. Specify:		Inlet KO / Liquid Seal						
88		Liquid Penetrant.		Flame / Detonation Arresto	r					
89		Magnetic Particles.		Skid						
90		PMI. Specify:	Inst	rumentation & Controls						
91		Other. Specify:		BMS						
92	Surface Preparation	Vendor Standard		Control Panel						
93		Other. Specify:								
94	Paint System	Vendor Standard								
95		Other. Specify:								
96	Finished Color	Vendor Standard								
97		Other. Specify:								
98										
99										
1	Additional Notes:									

	rironmental Control Equipment	Item/Tag No.: Project No.: Project: P.O. No.:		Page Revision: Date: By: Checked:	3 of 3 A 10 November 2014 JS SG
	Data Sheet	RFQ No.:	-	Approved:	MS
Client:		Ref. P&ID:	-	_	
Site:				Supplier:	LEED FABRICATION
Unit/Lease:		Remarks: GENERAL ARRANGE	- FMFNT	Model No.:	L30-0028-00

—						1				1		T T	
				Item/Tag No	.:				Page		1	of	2
	\cap			Project No.:					Revision:			В	
30													
	LEED								Date:		27	February	/ 2014
	PABHICATION			Project:					By:			JS	
	Envir	omental Control Equipment		P.O. No.:					Checked:			SG	
	Enviro					-							
		Data Sheet		RFQ No.:		-			Approved	d:		MS	
	Client:			Ref. P&ID:	Ref. P&ID:								
	Site:								Supplier:		LEEI	D FABRIC	ATION
	Unit/Lease:			Remarks:		-			Model N	o.:		L30-0011	-00
				GE	NERAL								
				UL UL									
1	Design Code:						NDE:			LE	ED Fabrica	ition Stai	ndards
2	Service:						Custom	er Specs:			Yes		
3	Description:	Standard Dual	Stage /9 Ligh	Efficiency Combu	ctor						No		
3	Description.	Stalidard Duar	Stage 40 High I										
				PROC	ESS DA	ГА							
					Process	Conditions:							
	Gas Composition:			mol %		Variable		Valu		Unite			
										Units			
4	Methane					Flow Rate		Up to	140	Mscfd	1		
5	Ethane					Pressure		Up to	12	oz/in2	,		
								0000			-		
6	Propane					Temperatur	e			٩P			
7	I-Butane				M	olecular Wei	ght						
8	n-Butane				_	ess/Waste Si	-	√ Gas			Liquid		
					_						Liquiu		
9	I-Pentane							n / Process N					
10	n-Pentane				1. Turno	down 10:1. E	ased on	an expected	l normal o	perating	g rate indic	ated abo	ove.
					2. DRF	98 % onerat	ting at d	esign conditi	ions				
11							-	-					
12	CO2				5. Burn	er Pressure L	orop: IVII	n. 0.10 oz/in	2				
13	N2				7								
					-1								
14	Helium												
15	H₂O												
16	C7				-								
					-								
17	C8												
18	C9												
					-								
19	C10				_								
20	C11+												
21		TOTAL											
			·	DDM/V	Austlah								
	Other Components:			PPMV	Available Utilities:								
22	H2S				Fuel / Pilot Gas Min.					n. 30psig Natural Gas /Propane 40-50 SCF			ne 40-50 SCFH
23	Benzene				1	nstrument A	ir		NA	A			
24	Toluene					Power			120 \	20 V / 60 Hz or Solar Power			
25	E-Benzene					Steam N			NA				
26	Xylene				Purge Gas								
	Ayiche			DECH	GN DATA								
			1	DESIG	GN DAT	A							
27	Ambient Temperatures	s:			Noise P	erformance	Require	ments:			Unde	r 85 dBA	
28		Low, °F		-20	Structu	ral Design Co	ode:						
					-	tural Design Code:					1005		
29		High, °F		120	Wind D	esign Code:					ASCE		
30	Design Conditions:	Pressure/Temperature			1								
31	Max. Relative Humidity		1	90	Pressure/Speed						100 mp	h	
		<i>u</i> ·	1		+						200 1114	· · · · · · · · · · · · · · · · · · ·	
32							Catego	у					
33	Area Classification:		Class	s I Div 2	Seismic	Design Code	e:						
34	Electrical Design Code:		1	NEC	1		Locatio	n					
[]		· · · · · · · · · · · · · · · · · · ·	· · · · ·			ICATION	100000						
1				EQUIPMENT	SPECIF	ICATION							
35	Туре:	Elevated 🗸 I	Enclosed		Equipm	ent Design:							
36		Above Ground				-	ompone	nt		Mat	erial / Size	/ Ratin	g / Other
			Autiple Charle		1_		Sinpone			ividt		.,	5, 00101
37			Aultiple Stack		Burner								
38		Portable / Trailer			1	Burner Tip	/ Assist	Gas Burner			30	04 SS	
39					1		urner Bo		1			on Steel	
			And Ale			D		wy.			CarD	STI JLEEL	
40	Smokeless By:	Steam A	Assist Air		Pilot								
41		🗌 Gas Assist 🗸 S	Staging		1		Pilot Tip)			30	04 SS	
42					1							on Steel	
					1.		ilot Line	131			CdrD	on steel	. <u> </u>
43	Stack:	Self Supporting			Firebox	/ Stack							
44	Flare Burner:	Non-Smokeless 🗸 S	Smokeless	Gas Assist	1		Shell				Carb	on Steel	
45	Pilot:	✓ Intermittent	Continuous	-	1		Piping					on Steel	
			-		+								
46	Pilot Air Inspirator:	✓ Local	Remote		1		Nozzles	5			Carb	on Steel	
47	Pilot Flame Control:	🗌 No 🗸] Yes (Thermoo	couple)	1		Flanges	;			Carb	on Steel	
48					1		-						
	-				1		Insulatio					anket	. <u> </u>
49	Pilot Ignition:	Flamefront Generator	Inspirating Ig	nitor		Ins	ulation	Pins			30	04 SS	
50		Electronic 🗸	Automatic	Manual	1		Refracto	ry				NA	
51		With Pilot Flame Control			1			•					
				+		actory Ar					NA		
52		With Auto Pilot Re-Ignition	l			Ladder	rs and Pl	atforms		NA			
53					1	Stack Sa	mple Co	nnections		Per EPA requirements			ents
			Name Elses 1		1		•						
54		Manual Specify: i.e F	iezo-Electric				Sight Gla	SS				2	
55		Battery Pack			1		Other						

		Item/Tag	No.:	Page	2	of	3
\cap		Project N		Revision:		В	
LEED				Date:	2	7 Februar	y 2014
FABRICATION		Project:		By:		JS	
Enviror	nmental Control Equipme		_	, Checked:		SG	
	Data Sheet	RFQ No.:	_	Approved:		MS	
Client:		Ref. P&I		, the second			
Site:			•	Supplier:		ED FABRIC	
Unit/Lease:		Remarks	_	Model No.		L30-0011	
Officy Lease.			NT SPECIFICATION	woder wo.	•	130-0011	1-00
Flama Datastian	Thormocouple	✓ Ionization Rod					
Flame Detection:	Thermocouple		Auxiliary Equipment				
Concerned Constitutions	UV Scanner		Valves			NA	
General Configuration:			Blowers			NA	
	Comment	8	Dampers			NA	
			Inlet KO / Liquid Seal			NA	
			Flame / Detonation Arres	tor		Yes	
	•		Instrumentation & Controls				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Solenoids / Shut-Off Valv	res (Check with Sale	es for avail	lable conf
			Flow Meters			NA	
		D	Calorimeter			NA	
			Pressure Switches/Transmit	tters		NA	
			Thermocouples		Check with Sale	es for avail	lable conf
	a		Temperature Switches/Transr	mitters		NA	
			BMS	(Check with Sal	es for avail	lable conf
	tran .		CEMS			NA	
			Other			NA	
			Other			NA	
	S REAL		Other			NA	
			Other			NA	
			Other			NA	
		FABRICATIO	Other			NA	
Special requirements	Skid Mounted	-		Equipment Inf	0	NA	
Special requirements			DN AND INSPECTION	Equipment Infr			ions
Special requirements	Skid Mounted	-	DN AND INSPECTION Component	Equipment Infr		/ Dimensi	ions
	Other	-	DN AND INSPECTION Component Burner	Equipment Infr			ions
Special requirements Inspection	Other Vendor Standard	-	DN AND INSPECTION Component Burner Burner Assembly	Equipment Inf			ions
Inspection	Other Vendor Standard Other. Specify:	-	DN AND INSPECTION Component Burner Burner Assembly Stack	Equipment Inf	Weight	/ Dimensi	
	○ Other ✓ Vendor Standard ○ Other. Specify: ✓ Vendor Standard	-	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly	Equipment Inf	Weight		
Inspection	○ Other ○ Vendor Standard ○ Other. Specify: ○ Vendor Standard ○ MTR	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip	Equipment Inf	Weight	/ Dimensi	
Inspection	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s)	Equipment Infr	Weight	/ Dimensi	
Inspection Material Certification	 Other ✓ Vendor Standard Other. Specify: ✓ Vendor Standard MTR Certificate of Com Other (Specify): 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly	Equipment Infr	Weight	/ Dimensi	
Inspection	○ Other ✓ Vendor Standard ○ Other. Specify: ✓ Vendor Standard ○ MTR ○ Certificate of Com ○ Other (Specify): ✓ Vendor Standard	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment	Equipment Infr	Weight	/ Dimensi	
Inspection Material Certification	✓ Other ✓ Vendor Standard ✓ Other. Specify: ✓ Vendor Standard MTR Certificate of Com Other (Specify): ✓ ✓ Vendor Standard Radiography. Specify	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers	Equipment Infr i i i i i i i i i i i i i	Weight	/ Dimensi	
Inspection Material Certification	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal		Weight	/ Dimensi	
Inspection Material Certification	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant.	Concrete Pad	DN AND INSPECTION Component Burner Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arresi		Weight	/ Dimensi	
Inspection Material Certification	Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles.	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid		Weight	/ Dimensi	
Inspection Material Certification	Other Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify:	Concrete Pad	DN AND INSPECTION Component Burner Stack Stack Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arresi		Weight	/ Dimensi	
Inspection Material Certification NDE	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Specify Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid		Weight	/ Dimensi	
Inspection Material Certification	Other Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify:	Concrete Pad	DN AND INSPECTION Component Burner Stack Stack Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls		Weight	/ Dimensi	
Inspection Material Certification NDE	 Other Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Specify Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Other. Specify: Other. Specify: 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Specify Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE Surface Preparation	 Other Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Specify Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Other. Specify: Other. Specify: 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE Surface Preparation	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard Other. Specify: Vendor Standard 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE Surface Preparation Paint System	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify Liquid Penetrant. Magnetic Particles. PMI. Specify: Other. Specify: Vendor Standard Other. Specify: 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	
Inspection Material Certification NDE Surface Preparation Paint System	 Other Vendor Standard Other. Specify: Vendor Standard MTR Certificate of Com Other (Specify): Vendor Standard Radiography. Spec Ultrasonic. Specify: Ultrasonic. Specify: Other. Specify: Other. Specify: Vendor Standard 	Concrete Pad	DN AND INSPECTION Component Burner Burner Assembly Stack Stack Assembly Pilot Tip Pilot Line(s) Stack Assembly Auxiliary Equipment Blowers Inlet KO / Liquid Seal Flame / Detonation Arrest Skid Instrumentation & Controls BMS		Weight	/ Dimensi	

		Pressure			
Flare Size	# of Orifices (N)	(OZ/in^2)	m³/s	mSCFD	MMBTU/hr
18	2	1	0.0021	6.34	0.39
18	2	2	0.0029	8.97	0.56
18	2	3	0.0036	10.99	0.68
18	2	4	0.0042	12.69	0.78
18	2	5	0.0046	14.18	0.88
18	2	6	0.0051	15.54	0.96
18	2	7	0.0055	16.78	1.04
18	2	8	0.0059	17.94	1.11
18	2	9	0.0062	19.03	1.18
18	2	10	0.0066	20.06	1.24
18	2	11	0.0069	21.04	1.30
18	2	12	0.0072	21.97	1.36
18	2	13	0.0075	22.87	1.42
18	2	14	0.0078	23.73	1.47
18	2	15	0.0081	24.57	1.52
18	2	16	0.0083	25.37	1.57
18	2	17	0.0086	26.15	1.62
18	2	18	0.0088	26.91	1.67
24	4	1	0.0042	12.69	0.78
24	4	2	0.0059	17.94	1.11
24	4	3	0.0072	21.97	1.36
24	4	4	0.0083	25.37	1.57
24	4	5	0.0093	28.37	1.76
24	4	6	0.0102	31.08	1.92
24	4	7	0.0110	33.56	2.08
24	4	8	0.0118	35.88	2.22
24	4	9	0.0125	38.06	2.35
24	4	10	0.0131	40.12	2.48
24	4	11	0.0138	42.08	2.60
24	4	12	0.0144	43.95	2.72
24	4	13	0.0150	45.74	2.83
24	4	14	0.0156	47.47	2.94
24	4	15	0.0161	49.13	3.04
24	4	16	0.0166	50.75	3.14
24	4	17	0.0171	52.31	3.24
24	4	18	0.0176	53.82	3.33
36	10	1	0.0104	31.72	1.96
36	10	2	0.0147	44.85	2.78
36	10	3	0.0180	54.93	3.40

§ MMBTU/hr values are calculated based on 1500 BTU/scf gas

 $P_{age} 15$

36	10	4	0.0208	63.43	3.92
36	10	5	0.0232	70.92	4.39
36	10	6	0.0255	77.69	4.81
36	10	7	0.0275	83.91	5.19
36	10	8	0.0294	89.71	5.55
36	10	9	0.0312	95.15	5.89
36	10	10	0.0329	100.29	6.21
36	10	11	0.0345	105.19	6.51
36	10	12	0.0360	109.87	6.80
36	10	13	0.0375	114.35	7.08
36	10	14	0.0389	118.67	7.34
36	10	15	0.0403	122.83	7.60
36	10	16	0.0416	126.86	7.85
36	10	17	0.0429	130.77	8.09
36	10	18	0.0441	134.56	8.33
48	14	1	0.0146	44.40	2.75
48	14	2	0.0206	62.79	3.89
48	14	3	0.0252	76.91	4.76
48	14	4	0.0291	88.80	5.49
48	14	5	0.0325	99.29	6.14
48	14	6	0.0356	108.76	6.73
48	14	7	0.0385	117.48	7.27
48	14	8	0.0412	125.59	7.77
48	14	9	0.0437	133.21	8.24
48	14	10	0.0460	140.41	8.69
48	14	11	0.0483	147.27	9.11
48	14	12	0.0504	153.81	9.52
48	14	13	0.0525	160.09	9.91
48	14	14	0.0545	166.14	10.28
48	14	15	0.0564	171.97	10.64
48	14	16	0.0582	177.61	10.99
48	14	17	0.0600	183.07	11.33
48	14	18	0.0617	188.38	11.66

 $\frac{1}{2}$

Attachment T

Line Heaters S001 - S010

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	0.03
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	0.11	0.47
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	0.13	0.56
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	0.03
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	0.04
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	1.54	1,197	8,760	180.14	789.03
CH ₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	1.54	1,197	8,760	<0.01	0.015
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	1.54	1,197	8,760	<0.01	<0.01
Total HAPs							<0.01	0.01
Total CO ₂ e							180.33	789.85

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all line heaters are diplayed in the Total Site Emissions Table.

- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

⁻ Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Line Heaters S011

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	0.03
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	0.11	0.47
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	0.13	0.56
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	0.03
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	0.04
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.54	1,197	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	1.54	1,197	8,760	180.14	789.03
CH ₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	1.54	1,197	8,760	<0.01	0.015
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	1.54	1,197	8,760	<0.01	<0.01
Total HAPs		· · · · ·					<0.01	0.01
Total CO ₂ e							180.33	789.85

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all line heaters are diplayed in the Total Site Emissions Table.

- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

⁻ Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

Natural Gas Compressor Engine S025

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Engine Rating (kW)	Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours		Annual Emissions (tpy)
VOC's	0.11	g/bhp-hr	Vendor Guarantee	405.00	302.01	8,260.00	1,196.65	8,760.00	0.10	0.43
Formaldehyde	0.02	lb/MMBtu	AP-42 Chapter 3.2	405.00	302.01	8,260.00	1,196.65	8,760.00	0.07	0.30
Benzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	405.00	302.01	8,260.00	1,196.65	8,760.00	<0.01	0.02
Toluene	0.00	lb/MMBtu	AP-42 Chapter 3.2	405.00	302.01	8,260.00	1,196.65	8,760.00	<0.01	<0.01
Ethylbenzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	405.00	302.01	8,260.00	1,196.65	8,760.00	<0.01	<0.01
Xylene	0.00	lb/MMBtu	AP-42 Chapter 3.2	405.00	302.01	8,260.00	1,196.65	8,760.00	<0.01	<0.01
СО	2.48	g/bhp-hr	Vendor Guarantee	405.00	302.01	8,260.00	1,196.65	8,760.00	2.21	9.70
NO _x	2.38	g/bhp-hr	Vendor Guarantee	405.00	302.01	8,260.00	1,196.65	8,760.00	2.13	9.31
PM _{Filterable}	0.01	lb/MMBtu	AP-42 Chapter 3.2	405.00	302.01	8,260.00	1,196.65	8,760.00	0.03	0.14
PM _{Condensable}	0.01	lb/MMBtu	AP-42 Chapter 3.2	405.00	302.01	8,260.00	1,196.65	8,760.00	0.03	0.15
PM _{Total}	0.02	lb/MMBtu	AP-42 Chapter 3.2	405.00	302.01	8,260.00	1,196.65	8,760.00	0.06	0.28
SO ₂	0.00	lb/MMBtu	AP-42 Chapter 3.2	405.00	302.01	8,260.00	1,196.65	8,760.00	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	405.00	302.01	8,260.00	1,196.65	8,760.00	391.39	1,714.29
CH ₄	0.00	kg CH ₄ / MMBtu	40 CFR Subpart C	405.00	302.01	8,260.00	1,196.65	8,760.00	<0.01	0.03
N ₂ O	0.00	kg N ₂ O / MMBtu	40 CFR Subpart C	405.00	302.01	8,260.00	1,196.65	8,760.00	<0.01	<0.01
Total HAPs				•				·	0.08	0.33
Total CO ₂ e									391.80	1,716.06

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one NG compressor.

- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 3.2, Table 3.2-3 - Uncontrolled Emission Factors for 4-Stroke Rich Burn Engines

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

- Vendor Guarantee Emissions are listed in Attachment S

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Fuel Consumption Rating (Btu/bhp-hr) x Engine Rating (bhp) x (1 MMBtu/10⁶ Btu)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (g/bhp-hr) x Engine Rating (bhp) x (1 lb/453.6 g)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (kg/MMBtu) x Engine Rating (bhp) x (2.205 lb/kg) x Fuel Consumption Rating (Btu/bhp-hr) x (1 MMBtu/10⁶ Btu)

Natural Gas Compressor Engine S026

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Engine Rating (kW)	Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Hourly Emissions (Ib/hr)	Annual Emissions (tpy)
VOC's	0.67	g/bhp-hr	Vendor Guarantee	110.00	82.03	8,260.00	1,196.65	8,760.00	0.16	0.71
Formaldehyde	0.02	lb/MMBtu	AP-42 Chapter 3.2	110.00	82.03	8,260.00	1,196.65	8,760.00	0.02	0.08
Benzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	110.00	82.03	8,260.00	1,196.65	8,760.00	<0.01	<0.01
Toluene	0.00	lb/MMBtu	AP-42 Chapter 3.2	110.00	82.03	8,260.00	1,196.65	8,760.00	<0.01	<0.01
Ethylbenzene	0.00	lb/MMBtu	AP-42 Chapter 3.2	110.00	82.03	8,260.00	1,196.65	8,760.00	<0.01	<0.01
Xylene	0.00	lb/MMBtu	AP-42 Chapter 3.2	110.00	82.03	8,260.00	1,196.65	8,760.00	<0.01	<0.01
со	2.01	g/bhp-hr	Vendor Guarantee	110.00	82.03	8,260.00	1,196.65	8,760.00	0.49	2.14
NO _x	0.97	g/bhp-hr	Subpart JJJJ Table 1	110.00	82.03	8,260.00	1,196.65	8,760.00	0.24	1.03
PM _{Filterable}	0.01	lb/MMBtu	AP-42 Chapter 3.2	110.00	82.03	8,260.00	1,196.65	8,760.00	<0.01	0.04
PM _{Condensable}	0.01	lb/MMBtu	AP-42 Chapter 3.2	110.00	82.03	8,260.00	1,196.65	8,760.00	<0.01	0.04
PM _{Total}	0.02	lb/MMBtu	AP-42 Chapter 3.2	110.00	82.03	8,260.00	1,196.65	8,760.00	0.02	0.08
SO ₂	0.00	lb/MMBtu	AP-42 Chapter 3.2	110.00	82.03	8,260.00	1,196.65	8,760.00	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	110.00	82.03	8,260.00	1,196.65	8,760.00	106.30	465.61
CH_4	0.00	kg CH ₄ / MMBtu	40 CFR Subpart C	110.00	82.03	8,260.00	1,196.65	8,760.00	<0.01	<0.01
N ₂ O	0.00	kg N ₂ O / MMBtu	40 CFR Subpart C	110.00	82.03	8,260.00	1,196.65	8,760.00	<0.01	<0.01
Total HAPs		•							0.02	0.09
Total CO ₂ e									106.41	466.09

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one NG compressor.

- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 3.2, Table 3.2-3 - Uncontrolled Emission Factors for 4-Stroke Rich Burn Engines

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

- Vendor Guarantee Emissions are listed in Attachment S

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/MMBtu) x Fuel Consumption Rating (Btu/bhp-hr) x Engine Rating (bhp) x (1 MMBtu/10⁶ Btu) Max. Hourly Emission Rate (lb/hr) = Emission Factor (g/bhp-hr) x Engine Rating (bhp) x (1 lb/453.6 g)

Max. Hourly Emission Rate (lb/hr) = Emission Factor (kg/MMBtu) x Engine Rating (bhp) x (2.205 lb/kg) x Fuel Consumption Rating (Btu/bhp-hr) x (1 MMBtu/10⁶ Btu)

Produced Fluids Tanks S012 - S021

Pollutant	Max. Hourly Emissions using ProMax (Ib/hr)	Max. Yearly Emissions using ProMax (tons/yr)
VOCs	610.65	2,674.64
HAPs	22.27	97.56
Hexane	19.73	86.43
Benzene	0.06	0.26
Toluene	1.27	5.54
Ethylbenzene	0.05	0.20
Xylene	0.38	1.67
CO ₂	2.04	8.94
CH ₄	101.45	444.36
Total CO ₂ e	2,538.36	11,118.03

Notes:

- Emission rates for Produced Fluid Tanks S012 - S021 were calculated using ProMax software. ProMax output sheets for the OXF 43 site are attached.

- The emission rates displayed above are pre-control device emissions.

- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

- For emission calculation purposes, the total throughput for tanks S012 - S021 is modeled as being received through a single tank. The throughput value represents the total throughput for all ten (10) 400-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the well pad. Actual throughput for each tank will vary based on operations.

Sand Trap Blow Tank S022

Pollutant	Max. Hourly Emissions using ProMax (Ib/hr)	Max. Yearly Emissions using ProMax (tons/yr)
VOCs	25.45	4.64
HAPs	0.93	0.17
Hexane	0.82	0.15
Benzene	<0.01	<0.01
Toluene	0.05	<0.01
Ethylbenzene	<0.01	<0.01
Xylene	0.02	<0.01
CO ₂	0.09	0.02
CH ₄	4.23	0.77
Total CO ₂ e	105.77	19.30

Notes:

- Blowdown operations are conducted on the OXF 43 pad daily to allow for the removal of fluids from the sand traps. Based on available operational information, blowdowns are assummed to occur for one hour per day (365 days per year).

- Emissions from the Sand Trap Blowdown Tank are routed to an enclosed combustion device. The values displayed above a pre-control emission rates.

- Emission rates for the Sand Trap Blowdown Tank were calculated using ProMax software. ProMax output sheets for the OXF 43 site are attached.

- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1. GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Tank Unloading Operations S027

Pollutant	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)	Loading Rack Collection Efficiency	Enclosed Combustion Device Combusion Efficiency	Post-Control Max. Yearly Emissions (Ib/hr)	Post-Control Max. Yearly Emissions (tons/yr)	Max. Hourly Emissions Not Collected by Loading Rack (Ib/hr)	Max. Hourly Emissions Not Collected by Loading Rack (tons/yr)
VOCs	0.80	3.50	0.70	0.98	0.01	0.05	0.24	1.05
HAPs	<0.01	0.01	0.70	0.98	<0.01	<0.01	<0.01	<0.01
CO ₂	<0.01	0.02	0.70	0.98	2.81	12.29	<0.01	<0.01
CH ₄	0.05	0.21	0.70	0.98	<0.01	<0.01	0.01	0.06
Total CO ₂ e	1.22	5.35			2.82	12.37	0.37	1.61

Total Emissions from Tank Unloading Operations

- CO₂ and CH₄ emissions solved for using emissions rates (lb/hr) of load out fluids from ProMax summary sheets.

Notes:

- Emission rates for liquid unloading operations were calculated using ProMax software. ProMax summary sheets are attached.

- Vapors from tank unloading operations are vapor-balanced to the produced fluid tanks and realized at one of the two enclosed combustion devices. AP-42 calculation methods were used to estimate the collection efficiency from tank unloading operations. Emissions that are not collected during the unloading events are realized at the Loading Rack Emission Point, E027.

Enclosed Ground Flare (C023) - 19.22 MMBtu/hr

		Emissions from Ta	anks				Gas Composition of	f Vent Gas	-
Input to Enclosed Combustion Device	Pollutant	Amount of Gas Sent to Enclosed Combustion Device (Ibs/hr)	Amount of Gas Sent to Enclosed Combustion Device (tons/year)	Enclosed Combustion Device Combustion Efficiency	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)	Gas Stream	Mole Fraction	
	VOCs	305.32	1337.32	98%	6.11	26.75	Methane	0.28	
	HAPs	11.14	48.78	98%	0.22	0.98	Ethane	0.23	
Produced Fluids Tanks S012-S021 Sand Trap Blowdown Tank - S022 Truck Loading - S029	Hexane	9.87	43.21	98%	0.20	0.86	Propane	0.19	
	Benzene	0.03	0.13	98%	<0.01	<0.01	Butane	0.16	
	Toluene	0.63	2.77	98%	0.01	0.06	Pentanes	0.08	
	Ethylbenzene	0.02	0.10	98%	<0.01	<0.01	Carbon Dioxide	0.002	1
	Xylene	0.19	0.83	98%	<0.01	0.02			
	CO ₂	1.02	4.47	98%	1,153.44	5,052.06	Vent	Gas Properties	
	CH ₄	50.73	222.18	98%	1.01	4.44			
	VOCs	12.72	2.32	98%	0.25	0.05	Vent Gas Properties	Mass Flow Rate (lb/hr)	Density (lb/ft ³)
	HAPs	0.46	0.08	98%	<0.01	<0.01		(ib/nr)	
	Hexane	0.41	0.08	98%	<0.01	<0.01	Produced Fluids Tank	440.05	0.10
	Benzene	<0.01	<0.01	98%	<0.01	<0.01	Blowdown Tank	18.34	0.10
Sand Trap Blowdown Tank - S022	Toluene	0.03	<0.01	98%	<0.01	<0.01		•	•
	Ethylbenzene	<0.01	<0.01	98%	<0.01	<0.01			
	Xylene	<0.01	<0.01	98%	<0.01	<0.01			
	CO ₂	0.04	<0.01	98%	48.06	210.52			
	CH ₄	2.11	0.39	98%	0.04	<0.01			
	VOCs	0.40	1.75	98%	0.01	0.05			
To all has live Oppo	HAPs	<0.01	<0.01	98%	<0.01	<0.01			
I ruck Loading - S029	CO ₂	<0.01	0.01	98%	2.81	12.29			
	CH₄	0.02	0.11	98%	<0.01	<0.01			
	VOCs	318.45	1341.39		6.37	26.84			
	HAPs	11.60	48.87		0.23	0.98			
	Hexane	10.28	43.29		0.21	0.87			
	Benzene	0.03	0.13		<0.01	<0.01			
	Toluene	0.66	2.78		0.01	0.06			
Totals	Ethylbenzene	0.02	0.10		<0.01	<0.01]		
	Xylene	0.20	0.83		<0.01	0.02			
	CO ₂	1.07	4.49		1,204.31	5,274.87			
	CH ₄	52.86	222.67		1.06	4.45			
	CO2e	1,322.68	5,571.34		1230.75	5,386.23	1		

Pollutant	Emission Factor (Ib/10 ⁶ scf)	Emission Factors (kg XX/MMBtu)	Heat Value of Natural Gas (Btu/scf)	Enclosed Ground Flare Pilot Rating (Btu/hr)	Enclosed Ground Flare Burner Rating (Btu/hr)	Pilot Max. Hourly Emissions (Ib/yr)	Pilot Max. Hourly Emissions (tons/yr)	Burner Max.Hourly Emissions (lb/hr)	Burner Max.Hourly Emissions (tons/hr)	Max. Hourly Emissions (lb/hr)	Max Emi (to
VOCs	5.50		1,088	30,000	19,220,000	<0.01	<0.01			<0.01	<
Hexane	1.80		1,088	30,000	19,220,000	<0.01	<0.01			<0.01	<
Formaldehyde	0.075		1,088	30,000	19,220,000	<0.01	<0.01			<0.01	<
СО	84		1,088	30,000	19,220,000	<0.01	0.01	1.48	6.50	1.49	6
NO _x	100		1,088	30,000	19,220,000	<0.01	0.01	1.77	7.74	1.77	7
PM _{Condensable}	5.70		1,088	30,000	19,220,000	<0.01	<0.01	0.10	0.44	0.10	(
PM _{Filterable}	1.90		1,088	30,000	19,220,000	<0.01	<0.01	0.03	0.15	0.03	(
PM _{Total}	7.60		1,088	30,000	19,220,000	<0.01	<0.01	0.13	0.59	0.13	(
SO ₂	0.60		1,088	30,000	19,220,000	<0.01	<0.01	0.01	0.05	0.01	(
CO ₂	120,000	53.06	1,088	30,000	19,220,000	3.51	15.37	2,248.30	9,847.56	2,251.81	9,8
CH ₄	2.3	0.001	1,088	30,000	19,220,000	<0.01	<0.01	0.04	0.19	0.04	(
N ₂ O	2.2	<0.001	1,088	30,000	19,220,000	<0.01	<0.01	<0.01	0.02	<0.01	(
Total HAPs										<0.01	<
CO ₂ e										2,254.14	9,8

Max. Yearly Emissions (tons/yr)
<0.01
<0.01
<0.01
6.51
7.75
0.44
0.15
0.59
0.05
9,862.93
0.19
0.02
<0.01
9,873.11

Total Enclosed Combustion Device Emissions

Pollutant	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)
VOCs	6.37	26.84
HAPs	0.23	0.98
CO	1.49	6.51
NO _x	1.77	7.75
PM _{Condensable}	0.10	0.44
PM _{Filterable}	0.03	0.15
PM _{Total}	0.13	0.59
SO ₂	0.01	0.05
CO ₂	3,456.12	15,137.80
CH ₄	1.10	4.64
N ₂ O	<0.01	0.02
CO ₂ e	3,484.88	15,259.35

Notes:

- Emissions from Enclosed Combustion Device Operations from AP-42, Chapter 1.4 references are from the July 1998 revision.

- Greenhouse Gas Emissions from the Enclosed Combustion Device Pilot and Burner calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Calculations:

- Emissions from Tanks VOCs (lb/hr) = Amount of Gas sent to Enclosed Combustion Device (lb/hr) x 0.02 = Max. Hourly Emissions (lb/hr)

- Emissions from Enclosed Combustion Device Operations (lb/hr) = Emission factor (lb/106 Btu) x Heat Value of Natural Gas (Btu/scf) ÷ 1,000,000 x Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 ÷ 24 - Emissions from Enclosed Combustion Device Vapor Destruction CO2 Methodologies shown below sample equation

- Emissions from Enclosed Combustion Device Operations CO2 (tons/yr) = ((Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Methane x Number of Carbon Atoms in Methane) + ... + (Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Pentanes-plus x Number of Carbon Atoms in Pentanes-plus)) x .0526 (kg/ft3) CO2 x .001 x 1.102 tons/tonnes

$E_{a,CH4}(un-combusted) = V_a^*(1-\eta) * X_{CH4}$	(Eq. W-19)
$E_{a,CO2}$ (un-combusted) = $V_a * X_{CO2}$	(Eq. W-20)
$E_{a,CO2} (combusted) = \sum_{j=1}^{5} (\eta * V_a * Y_j * R_j)$	(Eq. W-21)

Where:

 Ea,CH_4 (un-combusted) = Contribution of annual un-combusted CH4 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions. Ea,CO_2 (un-combusted) = Contribution of annual un-combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO₂(combusted) = Contribution of annual combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Va = Volume of gas sent to Enclosed Combustion Device in cubic feet, during the year.

η = Fraction of gas combusted by a burning Enclosed Combustion Device (default is 0.98). For gas sent to an unlit Enclosed Combustion Device, η is zero.

XCH4 = Mole fraction of CH4 in gas to the Enclosed Combustion Device.

XCO2 = Mole fraction of CO2 in gas to the Enclosed Combustion Device.

Y_i = Mole fraction of gas hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus).

R_i = Number of carbon atoms in the gas hydrocarbon constituent j: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes plus).

Enclosed Ground Flare (C024) - 11.66 MMBtu/hr

		Emissions from Ta	anks				Gas Composition of	of Vent Gas	
Input to Enclosed Combustion Device	Pollutant	Amount of Gas Sent to Enclosed Combustion Device (Ibs/hr)	Amount of Gas Sent to Enclosed Combustion Device (tons/year)	Enclosed Combustion Device Combustion Efficiency	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)	Gas Stream	Mole Fraction	
	VOCs	305.32	1337.32	98%	6.11	26.75	Methane	0.28	
	HAPs	11.14	48.78	98%	0.22	0.98	Ethane	0.23	
	Hexane	9.87	43.21	98%	0.20	0.86	Propane	0.19	
	Benzene	0.03	0.13	98%	<0.01	<0.01	Butane	0.16	
Produced Fluids Tanks S012-S021	Toluene	0.63	2.77	98%	0.01	0.06	Pentanes	0.08	
	Ethylbenzene	0.02	0.10	98%	<0.01	<0.01	Carbon Dioxide	0.002	
	Xylene	0.19	0.83	98%	<0.01	0.02			
	CO ₂	1.02	4.47	98%	1,153.44	5,052.06	Vent	Gas Properties	
	CH ₄	50.73	222.18	98%	1.01	4.44			
	VOCs	12.72	2.32	98%	0.25	0.05	Vent Gas Properties	Mass Flow Rate (Ib/hr)	Density (lb/ft ³)
	HAPs	0.46	0.08	98%	<0.01	<0.01		(15/11)	
	Hexane	0.41	0.08	98%	<0.01	<0.01	Produced Fluids Tank	440.05	0.10
	Benzene	<0.01	<0.01	98%	<0.01	<0.01	Blowdown Tank	18.34	0.10
Sand Trap Blowdown Tank - S022	Toluene	0.03	<0.01	98%	<0.01	<0.01			
	Ethylbenzene	<0.01	<0.01	98%	<0.01	<0.01]		
	Xylene	<0.01	<0.01	98%	<0.01	<0.01			
	CO ₂	0.04	<0.01	98%	48.06	210.52]		
	CH_4	2.11	0.39	98%	0.04	<0.01			
	VOCs	0.40	1.75	98%	0.01	0.05			
Truck Loading - S029	HAPs	<0.01	<0.01	98%	<0.01	<0.01			
Truck Loading - S029	CO ₂	<0.01	0.01	98%	2.81	12.29			
	CH_4	0.02	0.11	98%	<0.01	<0.01]		
	VOCs	318.45	1341.39		6.37	26.84			
	HAPs	11.60	48.87		0.23	0.98			
	Hexane	10.28	43.29		0.21	0.87			
	Benzene	0.03	0.13		<0.01	<0.01]		
Totals	Toluene	0.66	2.78		0.01	0.06			
IOTAIS	Ethylbenzene	0.02	0.10		<0.01	<0.01			
	Xylene	0.20	0.83		<0.01	0.02	1		
	CO ₂	1.07	4.49		1,204.31	5,274.87			
	CH_4	52.86	222.67		1.06	4.45			
	CO2e	1,322.68	5,571.34		1230.75	5,386.23			

			E	missions from Pilot C	perations						
Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factors (kg XX/MMBtu)	Heat Value of Natural Gas (Btu/scf)	Enclosed Ground Flare Pilot Rating (Btu/hr)	Enclosed Ground Flare Burner Rating (Btu/hr)	Pilot Max. Hourly Emissions (Ib/yr)	Pilot Max. Hourly Emissions (tons/yr)	Burner Max.Hourly Emissions (lb/hr)	Burner Max.Hourly Emissions (tons/hr)	Max. Hourly Emissions (lb/hr)	Max. Yearly Emissions (tons/yr)
VOCs	5.50		1,088	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01
Hexane	1.80		1,088	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01
Formaldehyde	0.075		1,088	30,000	11,660,000	<0.01	<0.01			<0.01	<0.01
CO	84		1,088	30,000	11,660,000	<0.01	0.01	0.90	3.94	0.90	3.95
NO _x	100		1,088	30,000	11,660,000	<0.01	0.01	1.07	4.69	1.07	4.71
PM _{Condensable}	5.70		1,088	30,000	11,660,000	<0.01	<0.01	0.06	0.27	0.06	0.27
PM _{Filterable}	1.90		1,088	30,000	11,660,000	<0.01	<0.01	0.02	0.09	0.02	0.09
PM _{Total}	7.60		1,088	30,000	11,660,000	<0.01	<0.01	0.08	0.36	0.08	0.36
SO ₂	0.60		1,088	30,000	11,660,000	<0.01	<0.01	<0.01	0.03	<0.01	0.03
CO ₂	120,000	53.06	1,088	30,000	11,660,000	3.51	15.37	1,363.95	5,974.12	1,367.46	5,989.49
CH ₄	2.3	0.001	1,088	30,000	11,660,000	<0.01	<0.01	0.03	0.11	0.03	0.11
N ₂ O	2.2	<0.001	1,088	30,000	11,660,000	<0.01	<0.01	<0.01	0.01	<0.01	0.01
Total HAPs										<0.01	<0.01
CO ₂ e										1,368.88	5,995.67

Total Enclosed Combustion Device Emissions

Pollutant	Max. Hourly Emissions (Ib/hr)	Max. Yearly Emissions (tons/yr)
VOCs	6.37	26.84
HAPs	0.23	0.98
CO	0.90	3.95
NO _x	1.07	4.71
PM _{Condensable}	0.06	0.27
PM _{Filterable}	0.02	0.09
PM _{Total}	0.08	0.36
SO ₂	<0.01	0.03
CO ₂	2,571.77	11,264.36
CH ₄	1.08	4.57
N ₂ O	<0.01	0.01
CO ₂ e	2,599.62	11,381.91

Notes:

- Emissions from Enclosed Combustion Device Operations from AP-42, Chapter 1.4 references are from the July 1998 revision.

- Greenhouse Gas Emissions from the Enclosed Combustion Device Pilot and Burner calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO2 equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO2=1, GWP CH4=25, GWP N2O=298

Example Calculations:

- Emissions from Tanks VOCs (lb/hr) = Amount of Gas sent to Enclosed Combustion Device (lb/hr) x 0.02 = Max. Hourly Emissions (lb/hr)

- Emissions from Enclosed Combustion Device Operations (lb/hr) = Emission factor (lb/106 Btu) x Heat Value of Natural Gas (Btu/scf) ÷ 1,000,000 x Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 ÷ 24

- Emissions from Enclosed Combustion Device Vapor Destruction CO2 Methodologies shown below sample equation

- Emissions from Enclosed Combustion Device Operations CO2 (tons/yr) = ((Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Methane x Number of Carbon Atoms in Methane) + ... + (Enclosed Combustion Device Pilot Gas Usage (mcfd) x 1,000 x 365 x Fraction of Gas Combusted by Enclosed Combustion Device x Mole Fraction of Pentanes-plus x Number of Carbon Atoms in Pentanes-plus)) x .0526 (kg/ft3) CO2 x .001 x 1.102 tons/tonnes

$$\begin{split} E_{a,CH4}(un-combusted) &= V_a * (1-\eta) * X_{CH4} & (Eq. W-19) \\ \\ E_{a,CO2}(un-combusted) &= V_a * X_{CO2} & (Eq. W-20) \\ \\ E_{a,CO2}(combusted) &= \sum_{J=1}^{5} (\eta * V_a * Y_J * R_J) & (Eq. W-21) \end{split}$$

Where:

 Ea, CH_4 (un-combusted) = Contribution of annual un-combusted CH4 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions. Ea, CO_2 (un-combusted) = Contribution of annual un-combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Ea,CO₂(combusted) = Contribution of annual combusted CO2 emissions from Enclosed Combustion Device stack in cubic feet, under actual conditions.

Va = Volume of gas sent to Enclosed Combustion Device in cubic feet, during the year.

 η = Fraction of gas combusted by a burning Enclosed Combustion Device (default is 0.98). For gas sent to an unlit Enclosed Combustion Device, η is zero.

XCH4 = Mole fraction of CH4 in gas to the Enclosed Combustion Device.

XCO2 = Mole fraction of CO2 in gas to the Enclosed Combustion Device.

 Y_i = Mole fraction of gas hydrocarbon constituents j (such as methane, ethane, propane, butane, and pentanes-plus).

R_i = Number of carbon atoms in the gas hydrocarbon constituent j: 1 for methane, 2 for ethane, 3 for propane, 4 for butane, and 5 for pentanes plus).

Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial Roads										
Constant	PM	PM-10	PM-2.5								
k (lb/VMT)	4.90	1.50	0.15								
а	0.70	0.90	0.90								
b	0.45	0.45	0.45								
where											
k		Particle size m	ultiplier ¹								

Particle size multiplier Silt content of road surface material (%)² 4.80 Number of days per year with precipitation >0.01 in.³ 150.00

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)		PM Emissions (tons/yr)	PM-10 Emissions (Ibs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (Ibs/hr)	PM-2.5 Emissions (tons/yr)
1.00	Liquids Hauling	14.00	30.00	10.00	1.00	1.00	5,389.37	NA	NA	4.28	11.54	1.09	2.94	0.11	0.29
2.00	Employee Vehicles	4.00	3.00	10.00	1.00	1.00	200.00	NA	NA	1.52	0.15	0.39	0.04	0.04	<0.01
									Totals:	5.80	11.69	1.48	2.98	0.15	0.30

s

р

Notes: ¹ - Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006 ¹ - Cond and Gravel Processing Plant R

² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in³ found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Example Calculations:

Emissions (lb/Vehicle Mile Traveled) - $E = k \times (s/12)^{a} \times (W/3)^{b}$

Size Specific Emissions (Ib/VMT) - $E_{ext} = E[(365-p)/365]$

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

Fugitive Leaks

Default Average C	Default Average Component Counts for Major Onshore Natural Gas Production Equipment ¹											
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relief Valves								
Wellheads	8.00	38.00	0.50	0.00								
Separators	1.00	6.00	0.00	0.00								
Meters/Piping	12.00	45.00	0.00	0.00								
Compressors	12.00	57.00	0.00	0.00								
In-line Heaters	14.00	65.00	2.00	1.00								
Dehydrators	24.00	90.00	2.00	2.00								

Well Specific Equipment Counts										
Facility Equipment										
Туре	Count on Site									
Wellheads	10.00									
Separators	10.00									
Meters/Piping	11.00									
Compressors	2.00									
In-line Heaters	11.00									
Dehydrators	0.00									

¹- Table W-1B to 40CFR98 Subpart W

		Gas Composition				
Emissions from Flaring Operations	Propane	Butane	Pentanes	Hexanes+	CO ₂	CH ₄
Mole %	3.82	1.45	0.46	0.29	0.10	80.77
MW	44.00	58.00	72.00	86.00	44.00	16.00

					Fugitive	Emissions									
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (Ibs/hr)	VOCs (tons/yr)	Hexane (Ibs/hr)	Hexane (tons/yr)	HAPs (Ibs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH₄ (Ibs/hr)	CH ₄ (tons/yr)	Total CO ₂ e (Ibs/hr)	Total CO ₂ e (tons/yr)
Valves	376.00	0.03	8,760.00	0.08	0.36	< 0.01	0.03	<0.01	0.03	<0.01	<0.01	0.34	1.49	8.51	37.27
Connectors	1,650.00	0.00	8,760.00	0.04	0.17	< 0.01	0.01	<0.01	0.01	<0.01	<0.01	0.17	0.73	4.15	18.17
Open-ended Lines	27.00	0.06	8,760.00	0.01	0.06	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	0.06	0.24	1.38	6.05
Pressure Relief Valves	11.00	0.04	8,760.00	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.06	0.37	1.62
			Total Emissions:	0.14	0.61	0.01	0.05	0.01	0.05	<0.01	<0.01	0.58	2.52	14.41	63.10

²- Table W-1A to 40CFR98 Subpart W

Notes:

-Gas Composition data for PUL-96 site was unavailable. Gas composition was used to determine fugitive emissions based upon a nearby similar natural gas production site operated by EQT.

Example Equations: Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's

Total OXF 43 Site Emission Levels

	VC	DCs	H/	APs	C	:0	N	0 _x	PN	1 _{Total}	PM _F	ilterable	PM _{Cor}	ndensable	S	02	C	20 ₂	C	H ₄	N	20	C	:O ₂ e
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (E001)	< 0.01	0.03	< 0.01	0.01	0.11	0.47	0.13	0.56	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	< 0.01	180.14	789.03	< 0.01	0.01	< 0.01	<0.01	180.33	789.85
Line Heater (E002)	< 0.01	0.03	< 0.01	0.01	0.11	0.47	0.13	0.56	<0.01	0.04	< 0.01	0.01	< 0.01	0.03	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (E003)	< 0.01	0.03	<0.01	0.01	0.11	0.47	0.13	0.56	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (E004)	< 0.01	0.03	<0.01	0.01	0.11	0.47	0.13	0.56	< 0.01	0.04	< 0.01	0.01	<0.01	0.03	<0.01	<0.01	180.14	789.03	< 0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (E005)	< 0.01	0.03	<0.01	0.01	0.11	0.47	0.13	0.56	< 0.01	0.04	< 0.01	0.01	<0.01	0.03	<0.01	<0.01	180.14	789.03	< 0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (E006)	< 0.01	0.03	< 0.01	0.01	0.11	0.47	0.13	0.56	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	< 0.01	<0.01	180.33	789.85
Line Heater (E007)	< 0.01	0.03	< 0.01	0.01	0.11	0.47	0.13	0.56	<0.01	0.04	< 0.01	0.01	< 0.01	0.03	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (E008)	< 0.01	0.03	< 0.01	0.01	0.11	0.47	0.13	0.56	<0.01	0.04	< 0.01	0.01	< 0.01	0.03	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (E009)	< 0.01	0.03	< 0.01	0.01	0.11	0.47	0.13	0.56	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	<0.01	<0.01	180.14	789.03	<0.01	0.01	<0.01	<0.01	180.33	789.85
Line Heater (E010)	< 0.01	0.03	< 0.01	0.01	0.11	0.47	0.13	0.56	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	<0.01	<0.01	180.14	789.03	< 0.01	0.01	< 0.01	<0.01	180.33	789.85
Line Heater (E011)	< 0.01	0.03	< 0.01	0.01	0.11	0.47	0.13	0.56	< 0.01	0.04	< 0.01	0.01	< 0.01	0.03	< 0.01	<0.01	180.14	789.03	< 0.01	0.01	<0.01	<0.01	180.33	789.85
VDU - 19.22 MMBtu/hr (C023)	6.37	26.84	0.23	0.98	1.49	6.51	1.77	7.75	0.13	0.59	0.03	0.15	0.10	0.44	0.01	0.05	3,456.12	15,137.80	1.10	4.64	<0.01	0.02	3,484.88	15,259.35
VDU - 11.66 MMBtu/hr (C024)	6.37	26.84	0.23	0.98	0.90	3.95	1.07	4.71	0.08	0.36	0.02	0.09	0.06	0.27	< 0.01	0.03	2,571.77	11,264.36	1.08	4.57	<0.01	0.01	2,599.62	11,381.91
Compressor Engine (E025)	0.10	0.43	0.08	0.33	2.21	9.70	2.13	9.31	0.06	0.28	0.03	0.14	0.03	0.15	< 0.01	< 0.01	391.39	1,714.29	< 0.01	0.03	< 0.01	<0.01	391.80	1,716.06
Compressor Engine (E026)	0.16	0.71	0.02	0.09	0.49	2.14	0.24	1.03	0.02	0.08	0.01	0.04	0.01	0.04	< 0.01	< 0.01	106.30	465.61	< 0.01	< 0.01	< 0.01	<0.01	106.41	466.09
*Tank Truck Loading Operations (E027)	0.24	1.05	< 0.01	< 0.01													<0.01	< 0.01	0.01	0.06			0.37	1.61
Haul Roads									5.80	11.69	5.80	11.69												
Fugitives Leaks	0.14	0.61	0.01	0.05													<0.01	<0.01	0.58	2.52			14.41	63.10
Totals	13.46	56.83	0.60	2.55	6.28	27.51	6.62	28.99	6.21	13.47	5.92	12.23	0.28	1.25	0.03	0.12	8,507.18	37,261.46	2.82	12.00	0.01	0.05	8,581.13	37,576.46

*Emissions from Tank Truck Loading Operations are routed to the vapor combustion unit. The collection efficiency of the vapors has been calculated using AP-42 methodologies. Emissions that are not collected and routed the VDU are realized at the Tank Truck Loading Operations Emission Point.

Total OXF 43 Site Emission Levels - HAP Speciation

	Total	HAPs	Forma	dehyde	He	xane	Ben	zene	Tol	uene	Ethylb	enzene	Xyl	lene
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr								
Line Heater (E001)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E002)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E003)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E004)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E005)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E006)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E007)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E008)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E009)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E010)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E011)	<0.01	0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
VDU - 19.22 MMBtu/hr (E023)	0.23	0.98	<0.01	<0.01	0.21	0.87	<0.01	<0.01	0.01	0.06	<0.01	<0.01	<0.01	0.02
VDU - 11.66 MMBtu/hr (E024)	0.23	0.98	<0.01	<0.01	0.21	0.87	<0.01	<0.01	0.01	0.06	<0.01	<0.01	<0.01	0.02
Compressor Engine (E025)	0.08	0.33	0.07	0.30	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Compressor Engine (E026)	0.02	0.09	0.02	0.08	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Tank Truck Loading Activities (E027)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Haul Roads														
Fugitives Leaks	0.01	0.05	<0.01	<0.01	0.01	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals	0.60	2.55	0.09	0.39	0.42	1.89	<0.01	0.03	0.03	0.12	<0.01	<0.01	<0.01	0.04

			owsheet1 Schematic		
Client Name: EC				Job: Produced	Fluid Tanks, 50% Contingency, 20% Condensate
	XF 43				
Flowsheet: Flo	owsheet1				
		Temperature 110° F Pressure 435° psig Std Liquid Volumetric Flow 1134.78 bb/d	DXF 43 Fluid Tanks tringency indensate Stream Flash Gas C3+ Mass Flow =610.4 lb/h Flash Gas Visst-100 V	.465 Ib/t	

		All S	reams Report treams oy Total Phase			
Client Name:	EQT			Job: Produ 20% Conde	ced Fluid Tanks, 50 ensate	0% Contingency,
Location: Flowsheet:	OXF 43 Flowsheet1					
				Į		
		Conr	ections			
		Flash Gas	OXF 43 Condensate	Produced Fluids	Produced Water	Stable Liquid
From Block		VSSL-100		MIX-100		VSSL-100
To Block			MIX-100	VSSL-100	MIX-100	
			OMPOSITION OXF 43	Draduaad	Dreduced	Ctoble Linuid
Mole Fraction		Flash Gas %	Condensate %	Produced Fluids %	Produced Water %	Stable Liquid %
Nitrogen		0	0 *	0	0 *	0
Methane		27.8189	12.828 *	0.657735	0 *	0.00505053
Carbon Dioxide		0.203987	0.097 *	0.00497352	0 *	0.000191219
Ethane Propane		22.8408	10.896 * 10.116 *	0.558675	0 *	0.0232342
Propane Isobutane		4.63775	10.116 *	0.518681	0 *	0.0698988
n-Butane		10.9503	7.83 *	0.40147	0 *	0.147983
Isopentane		4.15634	4.739 *	0.242984	0 *	0.148946
n-Pentane		4.00245	5.433 *	0.278568	0 *	0.189083
Isohexane		1.35967	3.719 *	0.190686	0 *	0.162595
n-Hexane 2,2,4-Trimethylpe	ntano	1.00737 0.00232655	3.757 * 0.024 *	0.192634	0 *	0.173056
Benzene		0.00232033	0.024	0.00871647	0 *	0.00785782
Heptane		0.909608	10.112 *	0.518476	0 *	0.509077
Toluene		0.0604393	0.73 *	0.0374296	0 *	0.0368766
Octane		0.267738	9.545 *	0.489404	0 *	0.494731
Ethylbenzene o-Xylene		0.00189478 0.0157569	0.075 * 0.78 *	0.0038455 0.0399932	0 *	0.00389238 0.0405756
Nonane		0.0157589	1.901 *	0.0399932	0 *	0.099423
Decane		0.0385978	14.313 *	0.733876	0 *	0.750583
Water		2.47083	0 *	94.8727	100 *	97.0931
Molar Flow		Flash Gas	OXF 43 Condensate Ibmol/h	Produced Fluids Ibmol/h	Produced Water Ibmol/h	Stable Liquid
Nitrogen		0	0 *	0	0 *	0
Methane		6.32311	6.37088 *	6.37088	0 *	0.047772
Carbon Dioxide		0.0463652	0.0481739 *	0.0481739	0 *	0.0018087
Ethane		<u>5.1916</u> 4.36284	5.41137 *	5.41137	0 *	0.219768
Propane		4.36284	5.02399 * 1.45763 *	5.02399 1.45763	0 *	0.661159 0.403497
Isobutane		1.03414	1.70/00		0 *	1.39974
		2.48894		3.88868	U	
n-Butane		2.48894 0.944717	3.88868 * 2.35357 *	3.88868 2.35357	0 *	1.40885
n-Butane Isopentane n-Pentane		2.48894 0.944717 0.909738	3.88868 * 2.35357 * 2.69824 *	2.35357 2.69824	0 *	1.7885
n-Butane Isopentane n-Pentane Isohexane		2.48894 0.944717 0.909738 0.309046	3.88868 * 2.35357 * 2.69824 * 1.847 *	2.35357 2.69824 1.847	0 * 0 * 0 *	1.7885 1.53795
n-Butane Isopentane n-Pentane Isohexane n-Hexane	ntano	2.48894 0.944717 0.909738 0.309046 0.22897	3.88868 * 2.35357 * 2.69824 * 1.847 * 1.86587 *	2.35357 2.69824 1.847 1.86587	0 * 0 * 0 *	1.7885 1.53795 1.6369
n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe	entane	2.48894 0.944717 0.909738 0.309046 0.22897 0.000528814	3.88868 * 2.35357 * 2.69824 * 1.847 * 1.86587 * 0.0119193 *	2.35357 2.69824 1.847 1.86587 0.0119193	0 * 0 * 0 *	1.7885 1.53795
n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene	entane	2.48894 0.944717 0.909738 0.309046 0.22897	3.88868 * 2.35357 * 2.69824 * 1.847 * 1.86587 *	2.35357 2.69824 1.847 1.86587	0 * 0 * 0 * 0 *	1.7885 1.53795 1.6369 0.0113905
n-Butane Isopentane Isohexane In-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene	entane	2.48894 0.944717 0.909738 0.309046 0.22897 0.000528814 0.0101031 0.206749 0.0137376	3.88868 * 2.35357 * 2.69824 * 1.847 * 1.86587 * 0.0119193 * 0.0844285 * 5.02201 * 0.362546 *	2.35357 2.69824 1.847 1.86587 0.0119193 0.0844285 5.02201 0.362546	0 * 0 * 0 * 0 * 0 * 0 * 0 *	1.7885 1.53795 1.6369 0.0113905 0.0743255 4.81526 0.348809
n-Butane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane	entane	2.48894 0.944717 0.909738 0.309046 0.22897 0.000528814 0.0101031 0.206749 0.0137376 0.0608557	3.88868 * 2.35357 * 2.69824 * 1.847 * 1.86587 * 0.0119193 * 0.0844285 * 5.02201 * 0.362546 * 4.74041 *	2.35357 2.69824 1.847 1.86587 0.0119193 0.0844285 5.02201 0.362546 4.74041	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	1.7885 1.53795 1.6369 0.0113905 0.0743255 4.81526 0.348809 4.67956
n-Butane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene	entane	2.48894 0.944717 0.909738 0.309046 0.22897 0.000528814 0.0101031 0.206749 0.0137376 0.0608557 0.000430675	3.88868 * 2.35357 * 2.69824 * 1.847 * 1.86587 * 0.0119193 * 0.0844285 * 0.362546 * 4.74041 * 0.0372479 *	2.35357 2.69824 1.847 1.86587 0.0119193 0.0844285 5.02201 0.362546 4.74041 0.0372479	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	1.7885 1.53795 1.6369 0.0113905 0.0743255 4.81526 0.348809 4.67956 0.0368172
n-Butane Isopentane Isohexane N-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	entane	2.48894 0.944717 0.909738 0.309046 0.22897 0.000528814 0.0101031 0.206749 0.0137376 0.0608557 0.000430675 0.000358148	3.88868 * 2.35357 * 2.69824 * 1.847 * 1.86587 * 0.0119193 * 0.0844285 * 5.02201 * 0.362546 * 4.74041 * 0.0372479 * 0.387378 *	2.35357 2.69824 1.847 1.86587 0.0119193 0.0844285 5.02201 0.362546 4.74041 0.0372479 0.387378	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	1.7885 1.53795 1.6369 0.0113905 0.0743255 4.81526 0.348809 4.67956 0.0368172 0.383797
n-Butane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	entane	2.48894 0.944717 0.909738 0.309046 0.22897 0.000528814 0.0101031 0.206749 0.0137376 0.0608557 0.000430675	3.88868 * 2.35357 * 2.69824 * 1.847 * 1.86587 * 0.0119193 * 0.0844285 * 5.02201 * 0.362546 * 4.74041 * 0.0372479 * 0.387378 *	2.35357 2.69824 1.847 1.86587 0.0119193 0.0844285 5.02201 0.362546 4.74041 0.0372479	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	1.7885 1.53795 1.6369 0.0113905 0.0743255 4.81526 0.348809 4.67956 0.0368172
n-Butane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	2.48894 0.944717 0.909738 0.309046 0.22897 0.000528814 0.0101031 0.206749 0.0137376 0.0608557 0.000430675 0.000430675 0.000358148 0.00358148	3.88868 * 2.35357 * 2.69824 * 1.847 * 1.86587 * 0.0119193 * 0.0844285 * 0.362546 * 4.74041 * 0.0372479 * 0.387378 * 0.94411 *	2.35357 2.69824 1.847 1.86587 0.0119193 0.0844285 5.02201 0.362546 4.74041 0.0372479 0.387378 0.94411	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	1.7885 1.53795 1.6369 0.0113905 0.0743255 4.81526 0.348809 4.67956 0.0368172 0.383797 0.940422
n-Butane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	2.48894 0.944717 0.909738 0.309046 0.22897 0.000528814 0.0101031 0.226749 0.0137376 0.000430675 0.000358148 0.00358148 0.00358148 0.00358148 0.00358148 0.0036874 0.0036874	3.88868 * 2.35357 * 2.69824 * 1.847 * 1.86587 * 0.0119193 * 0.0844285 * 5.02201 * 0.362546 * 4.74041 * 0.0372479 * 0.387378 * 0.94411 * 7.10839 * 0 *	2.35357 2.69824 1.847 1.86587 0.0119193 0.0844285 5.02201 0.362546 4.74041 0.0372479 0.387378 0.94411 7.10839 918.945	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	1.7885 1.53795 1.6369 0.0113905 0.0743255 4.81526 0.348809 4.67956 0.0368172 0.383797 0.940422 7.09961 918.384
Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Mass Fraction	entane	2.48894 0.944717 0.909738 0.309046 0.22897 0.000528814 0.0101031 0.206749 0.0137376 0.0608557 0.000430675 0.000430675 0.00358148 0.00358148 0.0036874	3.88868 * 2.35357 * 2.69824 * 1.847 * 1.86587 * 0.0119193 * 0.0844285 * 0.362546 * 4.74041 * 0.0372479 * 0.387378 * 0.94411 * 7.10839 *	2.35357 2.69824 1.847 1.86587 0.0119193 0.0844285 5.02201 0.362546 4.74041 0.0372479 0.387378 0.94411 7.10839	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	1.7885 1.53795 1.6369 0.0113905 0.0743255 4.81526 0.348809 4.67956 0.0368172 0.383797 0.940422 7.09961

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

r

		All S	reams Report treams by Total Phase			
Client Name:	EQT	<u></u>		Job: Produ 20% Conde	L ced Fluid Tanks, 50 ensate	% Contingency,
Location:	OXF 43					
Flowsheet:	Flowsheet1					
		Flash Gas	OXF 43 Condensate	Produced Fluids	Produced Water	Stable Liquid
Mass Fraction		%	%	%	%	%
Methane		11.5257	2.72736 *	0.50341	0 *	0.00394587
Carbon Dioxide		0.231848	0.0565758 *	0.0104426	0 *	0.000409838
Ethane		17.7372	4.34209 *	0.801454	0 *	0.0340238
Propane		21.8589	5.91176 *	1.09118	0 *	0.150107
Isobutane		6.96151	2.2608 *	0.417294	0 *	0.120748
n-Butane		16.437	6.03137 *	1.11326	0 *	0.418877
Isopentane		7.74453	4.53136 *	0.836388	0 *	0.523351
n-Pentane		7.45778	5.19495 *	0.958872	0 *	0.66438
Isohexane		3.02601	4.24739 *	0.783974	0 *	0.682378
n-Hexane	-1	2.24195	4.29079 *	0.791984	0 *	0.72628
2,2,4-Trimethylpe	entane	0.00686345	0.0363327 *	0.00670622	0 *	0.0066991
Benzene		0.0896674	0.175986 *	0.0324831	0 *	0.0298919
Heptane Toluene		2.35388	13.4284 *	2.47859	0 *	2.48424
Octane		0.143819 0.789841	0.891407 *	0.164534 2.66712	0 *	0.165473
Ethylbenzene		0.789841	0.105525 *	0.0194776	0 *	0.0201248
o-Xylene		0.0432024	1.09746 *	0.202567	0 *	0.209788
Nonane		0.0432024	3.23124 *	0.596415	0 *	0.621007
Decane		0.141829	26.9893 *	4.98163	0 *	5.20095
Water		1.14958	20.9093	81.5422	100 *	85.1851
Water		1.14950	0	01.0422	100	05.1051
		Flash Gas	OXF 43	Produced	Produced	Stable Liquid
		Flash Gas	Condensate	Fluids	Water	
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen		0	0 *	0	0 *	0
Methane		101.438	102.205 *	102.205	0 *	0.76638
Carbon Dioxide		2.04051	2.12011 *	2.12011	0 *	0.0796
Ethane		156.107	162.715 *	162.715	0 *	6.60821
Propane		192.382	221.536 *	221.536	0 *	29.1542
Isobutane		61.2688	84.7209 *	84.7209	0 *	23.4521
n-Butane		144.663	226.019 *	226.019	0 *	81.3558
Isopentane		68.1602	169.807 *	169.807	0 *	101.647
n-Pentane		65.6365	194.674 *	194.674	0 *	129.038
Isohexane		26.6321	159.166 *	159.166	0 *	132.534
n-Hexane		19.7316	160.792 *	160.792	0 *	141.061
2,2,4-Trimethylpe	entane	0.0604057	1.36153 *	1.36153	0 *	1.30112
Benzene		0.789169	6.59487 *	6.59487	0 *	5,8057

2,2,4-Trimetnyipentane	0.0604057	1.30153	1.36153	0 "	1.30112
Benzene	0.789169	6.59487 *	6.59487	0 *	5.8057
Heptane	20.7167	503.215 *	503.215	0 *	482.498
Toluene	1.26576	33.4044 *	33.4044	0 *	32.1387
Octane	6.95145	541.491 *	541.491	0 *	534.539
Ethylbenzene	0.0457226	3.95442 *	3.95442	0 *	3.9087
o-Xylene	0.380227	41.126 *	41.126	0 *	40.7458
Nonane	0.472928	121.087 *	121.087	0 *	120.614
Decane	1.24825	1011.39 *	1011.39	0 *	1010.14
Water	10.1175	0 *	16555.1	16555.1 *	16544.9

Stream Properties									
Property	Units	Flash Gas	OXF 43 Condensate	Produced Fluids	Produced Water	Stable Liquid			
Temperature	°F	69.9729	110 *	110.047	110 *	69.9729			
Pressure	psia	14.6959	449.696 *	449.696	449.696 *	14.6959 *			
Mole Fraction Vapor	%	100	4.15317	0.160672	0	0			
Mole Fraction Light Liquid	%	0	95.8468	4.91808	100	2.90514			
Mole Fraction Heavy Liquid	%	0	0	94.9212	0	97.0949			
Molecular Weight	lb/lbmol	38.7209	75.4549	20.9604	18.0153	20.5336			
Mass Density	lb/ft^3	0.101432	31.3533	53.2282	61.8438	58.5255			
Molar Flow	lbmol/h	22.7295	49.6638	968.609	918.945	945.88			
Mass Flow	lb/h	880.107	3747.38	20302.4	16555.1	19422.3			

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

		All S	treams Report Streams I by Total Phase			
Client Name: EQ	ĮΤ			Job: Produ 20% Cond	iced Fluid Tanks, 5	0% Contingency,
Location: OX	(F 43			2070 00110		
Flowsheet: Flo	wsheet1					
		Stream	Properties			
Property	Units	Flash Gas	OXF 43 Condensate	Produced Fluids	Produced Water	Stable Liquid
Vapor Volumetric Flow	ft^3/h	8676.78	119.521	381.423	267.692	331.861
Liquid Volumetric Flow	gpm	1081.78	14.9014	47.554	33.3745	41.3749
Std Vapor Volumetric Flo			0.452319	8.82172	8.3694	8.61471
Std Liquid Volumetric Flo	ow sgpm	3.70497	11.9534 *	* 45.0481	33.0948 *	41.3432
Compressibility		0.987006	0.177026	0.0289637	0.0214278	0.000907135
Specific Gravity		1.33693			0.991579	0.938374
API Gravity					9.94617	18.9601
Enthalpy	Btu/h	-1.03433E+06	-3.70466E+06	-1.16075E+08	-1.1237E+08	-1.15658E+08
Mass Enthalpy	Btu/lb	-1175.24	-988.6	-5717.29	-6787.67	-5954.87
Mass Cp	Btu/(lb*°		0.562843	0.903758	0.980145	0.912488
Ideal Gas CpCv Ratio		1.14171	1.06762	1.27122	1.32394	1.28233
Dynamic Viscosity	cP	0.00874484			0.634356	0.889196
Kinematic Viscosity	cSt	5.38213			0.640348	0.948487
Thermal Conductivity	Btu/(h*ft	*°F) 0.0119824			0.363956	0.292234
Surface Tension	lbf/ft				0.00473609	0.00430704 ?
Net Ideal Gas Heating V		2013.14	3859.25	197.877	0	154.256
Net Liquid Heating Value		19580.2	19255.1	2689.91	-1059.76	1924.54
Gross Ideal Gas Heating		2192.97	4169.64	261.522	50.3101	215.109
Gross Liquid Heating Va	lue Btu/lb	21342.6	20816.2	3842.2	0	3049.19

Remarks

			M	ocks X-100 Ditter Report		
Client Name:	EQT				20% Condensate	anks, 50% Contingency,
Location: Flowsheet:	OXF 43 Flowsheet1				Modified: 5:14 PM, 7/2 Status: Solved 3:15 PM	
nowsneet.	riowsneetr				Status. Solved 5.15 Fit	1, 3/13/2017
			Conr	nections		
Stream	Connecti	on Type	Other Block	Stream	Connection Type	Other Block
Produced Water	Inl	et		OXF 43 Condensate	Inlet	
Produced Fluids	Out	let	VSSL-100			
			Block F	Parameters		
Pressure Drop			0 psi	Fraction to PStream Produced Fluids		100 %
Remarks						

				cks 100 or Report			
Client Name:	EQT				Job: Produc 20% Conde	ed Fluid Tanks, 50	% Contingency,
Location:	OXF 43				Modified: 1:	57 PM, 5/13/2017	
Flowsheet:	Flowsheet1				Status: Solv	red 3:15 PM, 5/15/	2017
			Conne	ctions			
Stream	Connect	ion Type	Other Block	Stream	Connecti	on Type	Other Block
Produced Fluids	Inl	let	MIX-100	Flash Gas	Vapor	Outlet	
Stable Liquid	Light Liqu	uid Outlet		Q-1	Ene	rgy	
			Block Pa	rameters			
Pressure Drop		435	psi	Main Liquid Phase		Light Liquid	
Mole Fraction Vap	or	2.34661	%	Heat Duty		-617000	Btu/h
Mole Fraction Ligh		2.83697	%	Heat Release Curve Ty	/pe	Plug Flow	
Mole Fraction Hea	vy Liquid	94.8164	%	Heat Release Curve		10	
				Increments			
Remarks							

		F		Environment onment1			
Client Name:	EQT				Job: Produced 20% Condensa	Fluid Tanks, 50% Co	ontingency
Location:	OXF 43				20 % Condense		
Flowsheet:	Flowsheet1						
	ł				4		
			Environm	ent Settings			
Number of Poynt		0		Phase Tolerance		1 %	
Gibbs Excess Mo		77 °F		Emulsion Enabled		False	
Evaluation Temp							
Freeze Out Temp		10 °F					
Threshold Differe	ence						
			0				
Component Name		Henry's Law	Phase	OONENTS Component Name		Henry's Law	Phase
somponent Name	:	Component	Initiator	Component Name		Component	Initiato
Nitrogen		False	False	2,2,4-Trimethylpentane		False	False
						1 0100	
		False	False	Benzene		False	False
Methane		False False	False False	Benzene Heptane		False False	
Methane Carbon Dioxide							False False False
Methane Carbon Dioxide Ethane		False	False	Heptane		False	False
Methane Carbon Dioxide Ethane Propane		False False	False False	Heptane Toluene		False False	False False False
Methane Carbon Dioxide Ethane Propane Isobutane		False False False	False False False	Heptane Toluene Octane		False False False	False False False
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane		False False False False False	False False False False	Heptane Toluene Octane Ethylbenzene		False False False False False	False False False False
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane		False False False False False False False	False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene		False False False False False False	False False False False False
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane		False False False False False False False False	False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		False False False False False False	False False False False False False
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane		False False False False False False False	False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		False False False False False False False	False False False False False False False
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane		False False False False False False False False False	False False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		False False False False False False False	False False False False False False False
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane		False False False False False False False False False False	False False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		False False False False False False False False	False False False False False False True
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane Liquid Molar Volum		False False False False False False False False False False False	False False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Serty Method Sets Overall Package		False False False False False False False False Peng-Robins	False False False False False False True
Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane Liquid Molar Volum Stability Calculatior Light Liquid Packad	า	False False False False False False False False False False	False False False False False False False False False Sical Prope	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		False False False False False False False False	False False False False False False False True

		Eı	nvironm	ents Report			
Client Name: EQ1	Г				Job: Produ 20% Conde	L ced Fluid Tanks, 50% Co ensate	ontingency
Location: OXF	F 43						
					•		
		Р	roject-Wi	de Constants			
Atmospheric Pressure		14.6959	psia	Ideal Gas Reference Pre	ssure	14.6959	psia
Ideal Gas Reference Terr	nperature	60		Ideal Gas Reference Vol	ume	379.484	ft^3/lbmol
Liquid Reference Temper	rature	60	°F				
		Env	ironment	[Environment1]			
			Environm	ent Settings			
Number of Poynting Int	ervals	0		Phase Tolerance		1 %	
Gibbs Excess Model		77 °F		Emulsion Enabled		False	
Evaluation Temperature	e						
Freeze Out Temperatur	re	10 °F					
		10 1					
Threshold Difference		10 1					
		10 1					
Threshold Difference				oonents			
Threshold Difference		Henry's Law Component	Comp Phase Initiator	Component Name		Henry's Law Component	Phase Initiator
Threshold Difference Component Name Nitrogen		Henry's Law Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane		Component False	Initiator False
Threshold Difference Component Name Nitrogen Methane		Henry's Law Component False False	Phase Initiator False False	Component Name 2,2,4-Trimethylpentane Benzene		Component False False	Initiator False False
Threshold Difference Component Name Nitrogen Methane Carbon Dioxide		Henry's Law Component False False False	Phase Initiator False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane		Component False False False	Initiator False False False
Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane		Henry's Law Component False False False False False	Phase Initiator False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene		Component False False False False False	Initiator False False False False
Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane		Henry's Law Component False False False False False False	Phase Initiator False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane		Component False False False False False False	Initiator False False False False False
Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane		Henry's Law Component False False False False False False False	Phase Initiator False False False False False False	Component Name2,2,4-TrimethylpentaneBenzeneHeptaneTolueneOctaneEthylbenzene		Component False False False False False False False	Initiator False False False False False False
Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane		Henry's Law Component False False False False False False False False	Phase Initiator False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene		Component False False False False False False False False	Initiator False False False False False False False
Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane		Henry's Law Component False False False False False False False False False	Phase Initiator False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		Component False False False False False False False False False	Initiator False False False False False False False False False
Threshold Difference		Henry's Law Component False False False False False False False False False False False	Phase Initiator False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		Component False False False False False False False False False False	Initiator False False False False False False False False False
Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane		Henry's Law Component False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		Component False False False False False False False False False	Initiator False False False False False False False False False
Threshold Difference		Henry's Law Component False False False False False False False False False False False	Phase Initiator False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		Component False False False False False False False False False False	Initiator False False False False False False False False False
Threshold Difference		Henry's Law Component False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		Component False False False False False False False False False False	Initiator False False False False False False False False False
Threshold Difference		Henry's Law Component False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water erty Method Sets		Component False False False False False False False False False False	Initiato False False False False False False False False True
Threshold Difference		Henry's Law Component False False False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water erty Method Sets Overall Package		Component False False False False False False False False False False	Initiator False False False False False False False False True
		Henry's Law Component False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water erty Method Sets		Component False False False False False False False False False False	Initiator False False False False False False False False True

		Calcula	ator Report			
			•			
Client Name:	EQT			Job: Produ 20% Conde	ced Fluid Tanks, 50% Conti	ngency,
Location:	OXF 43					
		Simpl	e Solver 1			
			rce Code			
Residual Error (for C	V1) = TotalFlow-	1417.48				
Source Moniker	ProMax ProM	Calculated ax!Project!Flowsheets!Flowsheet1!P	Variable [CV1]	atelPhasesIT	tallProperties Std Liquid V/	olumetric
	Flow		Streams:OXT 45 Condens			Jumetric
Value	409.83					
Unit						
		Measured Va	riable [TotalFlow]			
Source Moniker	ProMax:ProMa	ax!Project!Flowsheets!Flowsheet1!P		ases!Total!Pro	perties!Std Liquid Volumetri	c Flow
Value	1417.48		•		L L	
Unit						
		Solver	Properties		Status: Solved	
Error		4.13199E-08	Iterations		3	
Calculated Value		11.9534 sgpm	Max Iterations		20	
Lower Bound		sgpm	Weighting		1	
Upper Bound Step Size		sgpm sgpm	Priority Solver Active		0 Active	
Is Minimizer		False	Group		Active	
Algorithm		Default	Skip Dependency Ch	neck	False	
		Simpl	e Solver 2			
			rce Code			
Residual Error (for C	V1) = PercentWa	ater-80				
		Calculated	Variable [CV1]			
Source Moniker	ProMax:ProMa	ax!Project!Flowsheets!Flowsheet1!P	Streams!Produced Water!	Phases!Total!	Properties!Std Liquid Volum	etric Flow
Value	1134.68					
Unit						
		Magazina di Maria	h la [Danaamt]Matan]			_
Source Moniker	ProMax:ProM	Measured Varia ax!Project!Flowsheets!Flowsheet1!P	able [PercentWater]	asesITotallCon	nnositionIStd Liquid Volume	etric
	Fraction!Wate		Subama:Stable Liquid!File			
Value	80					
Unit						
		Salvar	Properties		Status: Solved	
Error		7.62199E-08	Iterations		3	
Calculated Value		33.0948 sgpm	Max Iterations		20	
Lower Bound		sgpm	Weighting		1	
Upper Bound		sgpm	Priority Solver Active		0 A otivo	
Step Size Is Minimizer		sgpm False	Solver Active Group		Active	
Algorithm		Default	Skip Dependency Ch	neck	False	
			· · · ·			
Remarks						

		Calcu	Ilator Report		
Client Name:	EQT			Job: Produce 20% Conde	ced Fluid Tanks, 50% Contingency,
Location:	OXF 43				

			User Value	Sets Report		
Client Name:	EQT					ced Fluid Tanks, 50% Contingency,
Location:	OXF 43				20% Conde	ensate
				ow/Frac.		
* Parameter		610.404	User value [lb/h	CnPlusSum] Upper Bound		
Lower Bound		010.404	lb/h	* Enforce Bounds		False
Remarks						
	t was programmat	tically generated. G	iUID={E867C485-	3D3C-49CB-BC24-EA160	96DB2B1}	
			Tank I	Losses		
				ShellLength]		
* Parameter		20	ft	Upper Bound		
* Lower Bound		0	ft	* Enforce Bounds		False
			Lisor Value	[ShellDiam]		
* Parameter		12	ft	Upper Bound		
* Lower Bound		0		* Enforce Bounds		False
			··· ···			
* Deremeter		0.02		[BreatherVP] Upper Bound		
* Parameter Lower Bound		0.03	psig	* Enforce Bounds		False
				BreatherVacP]		
 Parameter Lower Bound 		-0.03	psig	Upper Bound * Enforce Bounds		False
Lower Bound				Enloree Bounds		1 4150
			User Value [DomeRadius]		
Parameter			ft	Upper Bound		ft
Lower Bound			ft	* Enforce Bounds		False
			User Value	e [OpPress]		
* Parameter		0	psig	Upper Bound		
Lower Bound				* Enforce Bounds		False
			lleor Value [A	vgPercentLiq]		
* Parameter		50		Upper Bound		
Lower Bound			%	* Enforce Bounds		False
* Desemeter				laxPercentLiq] Upper Bound		
* Parameter Lower Bound		90	%	* Enforce Bounds		False
				[AnnNetTP]		
 * Parameter * Lower Bound 		1414.31	bbl/day bbl/day	Upper Bound * Enforce Bounds		False
		0	bbi/uay			
			User Valu	ue [OREff]		
* Parameter		0	%	Upper Bound		
Lower Bound			%	* Enforce Bounds		False
			Lisor Value L	AtmPressure]		
* Parameter		14.1085	psia	Upper Bound		
Lower Bound				* Enforce Bounds		False

		User Val	ue Sets Report	
Client Name:	EQT			Job: Produced Fluid Tanks, 50% Contingency,
Location:	OXF 43			20% Condensate
Location.				
* 5			Value [TVP]	
* Parameter Lower Bound		0.536198 psia	Upper Bound * Enforce Bounds	False
Lower Bound			Enioros Boarias	1 4100
		User Value	[AvgLiqSurfaceT]	
* Parameter		57.7675 °F	Upper Bound	
Lower Bound			* Enforce Bounds	False
		Llsor Valuo	[MaxLiqSurfaceT]	
* Parameter		66.3119 °F	Upper Bound	
Lower Bound			* Enforce Bounds	False
			ue [TotalLosses]	
* Parameter Lower Bound		0.464975 lb/h lb/h	Upper Bound * Enforce Bounds	False
Lower Bound		ID/II	Efficice Bounds	Faise
		User Value	[WorkingLosses]	
* Parameter		0.165528 ton/yr	Upper Bound	
Lower Bound		ton/yr	* Enforce Bounds	False
* Parameter		0.0381309 ton/yr	[StandingLosses] Upper Bound	
Lower Bound		ton/yr	* Enforce Bounds	False
		User Value	[RimSealLosses]	
* Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
		Liser Value	[WithdrawalLoss]	
* Parameter		0 ton/yr	Upper Bound	
Lower Bound		- ····/	* Enforce Bounds	False
			[LoadingLosses]	
* Parameter Lower Bound		1.46849 lb/h lb/h	Upper Bound * Enforce Bounds	False
Lower Bound		10/11	Enloree Bounds	1 000
		User Value [DeckFittingLosses]	
* Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
* Parameter		User Value 0 ton/yr	[DeckSeamLosses] Upper Bound	
Lower Bound		0 1017/91	* Enforce Bounds	False
		User Value	[FlashingLosses]	
* Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
			[GasMoleWeight]	
* Parameter		0.031691 kg/mol	Upper Bound	
Lower Bound			* Enforce Bounds	False
Remarks				

This User Value Set was programmatically generated. GUID={B57AFC7E-AAE8-4873-921B-7B4031991004}

	Flowsheet1 Plant Schematic	
Client Name: EQT		Job: Blowdown Tank, 50% Contingency, 20% Condensate
Location: OXF 43		
Flowsheet: Flowsheet1		
	EQT OXF 43 Blowdown Tank 50% Contingency 20% Condensate	e 0.01861 lb/h.

		Flash (OMPOSITION OXF 43 Condensate	Produced Fluids	Produced Water	Stable Liquid
Mole Fraction Nitrogen		%	0	<mark>%</mark> 0 *	<mark>%</mark> 0	<mark>%</mark>	%
Methane			.8173	12.828 *	0.657753	0 *	0.00004001
Carbon Dioxide			03976	0.097 *	0.00497366	0 *	0.000191189
Ethane Propane			.8396 9.194	<u> </u>	0.55869 0.518696	0 *	0.0232307 0.0698869
Isobutane		4	.6378	2.935 *	0.150492	0 *	0.0426516
n-Butane			.9507	7.83 *	0.401482	0 *	0.147961
Isopentane n-Pentane			15684 00303	4.739 * 5.433 *	0.242991 0.278576	0 *	0.148933 0.189069
Isohexane			35996	3.719 *	0.190691	0 *	0.162591
n-Hexane			00762	3.757 *	0.19264	0 *	0.173054
2,2,4-Trimethylpe Benzene	entane	0.002	32725 14598	0.024 *	0.0012306 0.00871672	0 *	0.00120424 0.00785773
Heptane			90989	10.112 *	0.518491	0 *	0.509085
Toluene			04578	0.73 *	0.0374306	0 *	0.0368772
			67834	9.545 *	0.489418	0 *	0.494743
Ethylbenzene o-Xylene		0.001	57626	0.075 * 0.78 *	0.00384561 0.0399944	0 *	0.00389248 0.0405767
Nonane			62295	1.901 *	0.0974734	0 *	0.0994259
Decane			36146	14.313 *	0.733897	0 *	0.750606
Water		2.4	47168	0 *	94.8725	100 *	97.0931
		Flash)as	OXF 43 Condensate	Produced Fluids	Produced Water	Stable Liquid
				Ibmol/h	Ibmol/h	Ibmol/h	Ibmol/h
		Ibmo	0		0		0
Nitrogen			0 63471	0 * 0.265461 *	0.265461	0 *	0.00199027
Nitrogen Methane Carbon Dioxide		0.2	63471 93196	0.265461 * 0.00200731 *	0.00200731	0 *	7.53508E-05
Nitrogen Methane Carbon Dioxide Ethane		0.2 0.001 0.2	63471 93196 16325	0.265461 * 0.00200731 * 0.225481 *	0.00200731 0.225481	0 * 0 * 0 *	7.53508E-05 0.00915558
Nitrogen Methane Carbon Dioxide Ethane Propane		0.2 0.001 0.2 0.2 0.2 0.1	63471 93196 16325 81796	0.265461 * 0.00200731 * 0.225481 * 0.209339 *	0.00200731 0.225481 0.209339	0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane		0.2 0.001 0.2 0.2 0.1 0.2 0.1	63471 93196 16325	0.265461 * 0.00200731 * 0.225481 *	0.00200731 0.225481	0 * 0 * 0 *	7.53508E-05 0.00915558
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane		0.2 0.001 0.2 0.1 0.1 0.04 0.1 0.03	63471 93196 16325 31796 39269 03719 93714	0.265461 * 0.00200731 * 0.225481 * 0.209339 * 0.0607366 * 0.162033 * 0.0980684 *	0.00200731 0.225481 0.209339 0.0607366 0.162033 0.0980684	0 * 0 * 0 * 0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436 0.0168097 0.058314 0.0586969
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane		0.2 0.001 0.2 0.1 0.4 0.1 0.04 0.1 0.03 0.03 0.03	63471 93196 16325 31796 39269 93719 93714 79147	0.265461 * 0.00200731 * 0.225481 * 0.209339 * 0.0607366 * 0.162033 * 0.0980684 * 0.11243 *	0.00200731 0.225481 0.209339 0.0607366 0.162033 0.0980684 0.11243	0 * 0 * 0 * 0 * 0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436 0.0168097 0.058314 0.0586969 0.0745153
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane		0.2 0.001 0.2 0.1 0.4 0.1 0.04 0.1 0.03 0.03 0.03	53471 93196 16325 31796 39269 93719 93714 79147 28809	0.265461 * 0.00200731 * 0.225481 * 0.209339 * 0.0607366 * 0.162033 * 0.0980684 *	0.00200731 0.225481 0.209339 0.0607366 0.162033 0.0980684	0 * 0 * 0 * 0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436 0.0168097 0.058314 0.0586969 0.0745153 0.0640797
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe	entane	0.2 0.001 0.2 0.1 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.009 0.009 0.22042	53471 93196 16325 31796 39269 93719 93714 79147 28809 54365 55E-05	0.265461 * 0.00200731 * 0.225481 * 0.209339 * 0.0607366 * 0.162033 * 0.0980684 * 0.11243 * 0.0769606 * 0.077747 * 0.000496654 *	0.00200731 0.225481 0.209339 0.0607366 0.162033 0.0980684 0.11243 0.0769606 0.077747 0.000496654	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436 0.0168097 0.058314 0.0586969 0.0745153 0.0640797 0.0682033 0.000474611
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Bentane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene	entane	0.2 0.001 0.2 0.1 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.009 2.2042 0.0004	53471 93196 16325 31796 39269 03719 93714 79147 28809 54365 5E-05 21101	0.265461 * 0.00200731 * 0.225481 * 0.209339 * 0.0607366 * 0.162033 * 0.0980684 * 0.01243 * 0.0769606 * 0.077747 * 0.000496654 * 0.00351796 *	0.00200731 0.225481 0.209339 0.0607366 0.162033 0.0980684 0.11243 0.0769606 0.077747 0.000496654 0.00351796	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436 0.0168097 0.058314 0.0586969 0.0745153 0.0640797 0.0682033 0.000474611 0.00309686
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Bentane Isopentane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane	entane	0.2 0.001 0.001 0.2 0.1 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.009 2.2042 0.0004 0.004 0.004 0.009 0.00	53471 93196 16325 31796 39269 93714 79147 28809 54365 5E-05 21101 51801	0.265461 * 0.00200731 * 0.225481 * 0.209339 * 0.0607366 * 0.162033 * 0.0980684 * 0.01243 * 0.0769606 * 0.077747 * 0.000496654 * 0.00351796 * 0.209257 *	0.00200731 0.225481 0.209339 0.0607366 0.162033 0.0980684 0.11243 0.0769606 0.077747 0.000496654 0.00351796 0.209257	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436 0.0168097 0.058314 0.0586969 0.0745153 0.0640797 0.0682033 0.000474611 0.00309686 0.200639
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isohexane 2,2,4-Trimethylpe Benzene Heptane Toluene	entane	0.2 0.001 0.2 0.01 0.2 0.1 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.009 2.2042 0.0004 0.008 0.008 0.0005	53471 93196 16325 31796 39269 93714 79147 28809 54365 5E-05 21101 51801	0.265461 * 0.00200731 * 0.225481 * 0.209339 * 0.0607366 * 0.162033 * 0.0980684 * 0.01243 * 0.0769606 * 0.077947 * 0.000496654 * 0.00351796 *	0.00200731 0.225481 0.209339 0.0607366 0.162033 0.0980684 0.11243 0.0769606 0.077747 0.000496654 0.00351796	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436 0.0168097 0.058314 0.0586969 0.0745153 0.0640797 0.0682033 0.000474611 0.00309686
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isopentane Sohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene	entane	0.2 0.001 0.2 0.1 0.04 0.1 0.03 0.03 0.03 0.03 0.03 0.01 0.009 2.2042 0.0004 0.008 0.008 0.0005 0.002	53471 93196 16325 31796 39269 93719 93714 79147 28809 54365 55-05 21101 51801 72625 53679 7E-05	0.265461 * 0.00200731 * 0.225481 * 0.209339 * 0.0607366 * 0.162033 * 0.0980684 * 0.11243 * 0.0769606 * 0.077747 * 0.000496654 * 0.00351796 * 0.209257 * 0.0151065 * 0.197523 * 0.00155204 *	0.00200731 0.225481 0.209339 0.0607366 0.162033 0.0980684 0.11243 0.0769606 0.077747 0.000496654 0.00351796 0.209257 0.0151065 0.197523 0.00155204	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436 0.0168097 0.058314 0.0586969 0.0745153 0.0640797 0.0682033 0.000474611 0.00309686 0.200639 0.0145339 0.194986 0.00153409
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	entane	0.2 0.001 0.02 0.1 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.009 2.2042 0.0004 0.008 0.008 0.008 0.002 1.7952 0.0001	33471 93196 16325 31796 39269 03719 93714 79147 28809 54365 5E-05 21101 51801 72625 53679 7E-05 49295	0.265461 * 0.00200731 * 0.225481 * 0.209339 * 0.0607366 * 0.162033 * 0.0980684 * 0.0769606 * 0.077747 * 0.000496654 * 0.00351796 * 0.209257 * 0.0151065 * 0.197523 * 0.00155204 * 0.0161412 *	0.00200731 0.225481 0.209339 0.0607366 0.162033 0.0980684 0.11243 0.0769606 0.077747 0.000496654 0.00351796 0.209257 0.0151065 0.197523 0.00155204 0.0161412	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436 0.0168097 0.058314 0.0586969 0.0745153 0.0640797 0.0682033 0.000474611 0.00309686 0.200639 0.0145339 0.194986 0.00153409 0.0159919
Molar Flow Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	0.2 0.001 0.02 0.1 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.01 0.009 2.2042 0.0004 0.008 0.0005 0.005 0.005 0.005 0.005 0.0001 0.0001 0.0001	33471 93196 16325 31796 39269 93714 79147 28809 54365 5E-05 21101 53801 72625 53679 7E-05 49295 53717	0.265461 * 0.00200731 * 0.225481 * 0.209339 * 0.0607366 * 0.162033 * 0.0980684 * 0.0152066 * 0.077747 * 0.000496654 * 0.00351796 * 0.209257 * 0.0151065 * 0.197523 * 0.00155204 * 0.00155204 * 0.0161412 * 0.0393391 *	0.00200731 0.225481 0.209339 0.0607366 0.162033 0.0980684 0.11243 0.0769606 0.077747 0.000496654 0.00351796 0.209257 0.0151065 0.197523 0.00155204 0.00155204 0.0161412 0.0393391	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436 0.0168097 0.058314 0.0586969 0.0745153 0.0640797 0.0682033 0.000474611 0.00309686 0.20639 0.0145339 0.194986 0.00153409 0.0159919 0.0391854
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	0.2 0.001 0.02 0.1 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.009 2.2042 0.0004 0.009 2.2042 0.0004 0.008 0.0005 0.005 0.0005 0.0001 0.00001 0.0001	33471 93196 16325 31796 39269 93714 79147 28809 54365 5E-05 21101 53801 72625 53679 7E-05 49295 53717	0.265461 * 0.00200731 * 0.225481 * 0.209339 * 0.0607366 * 0.162033 * 0.0980684 * 0.0769606 * 0.077747 * 0.000496654 * 0.00351796 * 0.209257 * 0.0151065 * 0.197523 * 0.00155204 * 0.0161412 *	0.00200731 0.225481 0.209339 0.0607366 0.162033 0.0980684 0.11243 0.0769606 0.077747 0.000496654 0.00351796 0.209257 0.0151065 0.197523 0.00155204 0.0161412	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436 0.0168097 0.058314 0.0586969 0.0745153 0.0640797 0.0682033 0.000474611 0.00309686 0.200639 0.0145339 0.194986 0.00153409 0.0159919
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	entane	0.2 0.001 0.02 0.1 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.009 2.2042 0.0004 0.009 2.2042 0.0004 0.008 0.0005 0.005 0.0005 0.0001 0.00001 0.0001	33471 93196 16325 31796 39269 93714 79147 28809 54365 5E-05 21101 53801 72625 53679 7E-05 49295 53717 55738	0.265461 * 0.00200731 * 0.225481 * 0.209339 * 0.0607366 * 0.162033 * 0.0980684 * 0.0152066 * 0.077747 * 0.000496654 * 0.00351796 * 0.209257 * 0.0151065 * 0.197523 * 0.00155204 * 0.00155204 * 0.0161412 * 0.0393391 * 0.296192 *	0.00200731 0.225481 0.209339 0.0607366 0.162033 0.0980684 0.11243 0.0769606 0.077747 0.000496654 0.00351796 0.209257 0.0151065 0.197523 0.00155204 0.00155204 0.0161412 0.0393391 0.296192	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436 0.0168097 0.058314 0.0586969 0.0745153 0.0640797 0.0682033 0.000474611 0.00309686 0.20639 0.0145339 0.194986 0.00153409 0.0159919 0.0391854 0.295826
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isohexane n-Hexane 2,2,4-Trimethylpe Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	entane	0.2 0.001 0.02 0.1 0.04 0.04 0.03 0.03 0.03 0.03 0.01 0.009 2.2042 0.0004 0.009 2.2042 0.0004 0.008 0.0005 0.005 0.0005 0.0001 0.00001 0.0001	33471 93196 16325 31796 39269 93714 79147 28809 54365 55-05 21101 53679 7E-05 49295 53717 55738 34105	0.265461 * 0.00200731 * 0.225481 * 0.209339 * 0.0607366 * 0.162033 * 0.0980684 * 0.0152066 * 0.077747 * 0.000496654 * 0.00351796 * 0.209257 * 0.0151065 * 0.197523 * 0.00155204 * 0.00155204 * 0.0161412 * 0.0393391 * 0.296192 *	0.00200731 0.225481 0.209339 0.0607366 0.162033 0.0980684 0.11243 0.0769606 0.077747 0.000496654 0.00351796 0.209257 0.0151065 0.197523 0.00155204 0.00155204 0.0161412 0.0393391 0.296192	0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	7.53508E-05 0.00915558 0.0275436 0.0168097 0.058314 0.0586969 0.0745153 0.0640797 0.0682033 0.000474611 0.00309686 0.20639 0.0145339 0.194986 0.00153409 0.0159919 0.0391854 0.295826

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

r

		All S	reams Report treams by Total Phase			
Client Name:	EQT			Job: Blowd Condensat	down Tank, 50% Co te	ontingency, 20%
Location:	OXF 43			Condensa		
Flowsheet:	Flowsheet1					
		Flash Gas	OXF 43 Condensate	Produced Fluids	Produced Water	Stable Liquid
Mass Fraction		%	%	%	%	%
Methane		11.5246	2.72736 *	0.503423	0 *	0.00394542
Carbon Dioxide		 0.231828	0.0565758 *	0.0104429	0 *	0.000409774
Ethane		17.7357	4.34209 *	0.801474	0 *	0.0340185
Propane		21.8576	5.91176 *	1.09121	0 *	0.150081
Isobutane		6.96137	2.2608 *	0.417304	0 *	0.120729
n-Butane		16.437	6.03137 *	1.11329	0 *	0.418817
Isopentane		7.7452	4.53136 *	0.836409	0 *	0.523304
n-Pentane		7.45862	5.19495 *	0.958896	0 *	0.66433
Isohexane		3.02657	4.24739 *	0.783993	0 *	0.68236
n-Hexane		2.24244	4.29079 *	0.792003	0 *	0.72627
2,2,4-Trimethylpe	entane	0.00686528	0.0363327 *	0.00670639	0 *	0.00669919
Benzene		0.0896861	0.175986 *	0.0324839	0 *	0.0298915
Heptane		2.35454	13.4284 *	2.47865	0 *	2.48428
Toluene		0.143858	0.891407 *	0.164538	0 *	0.165475
Octane		0.790098	14.4498 *	2.66719	0 *	2.75225
Ethylbenzene		0.00519678	0.105525 *	0.019478	0 *	0.0201253
o-Xylene		0.0432164	1.09746 *	0.202572	0 *	0.209794
Nonane		0.0537551	3.23124 *	0.59643	0 *	0.621024
Decane		0.141886	26.9893 *	4.98176	0 *	5.2011
Water		1.14994	0 *	81.5418	100 *	85.1851
		Flash Gas	OXF 43 Condensate	Produced Fluids	Produced Water	Stable Liquid
Mass Flow		lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen		0	0 *	0	0 *	0
Methane		4.22672	4.25865 *	4.25865	0 *	0.0319289
Carbon Dioxide		0.0850245	0.0883406 *	0.0883406	0 *	0.00331615
Ethane		6.50469	6.77999 *	6.77999	0 *	0.2753
Propane		8.0164	9.23095 *	9.23095	0 *	1.21455
Isobutane		2.55313	3.53014 *	3.53014	0 *	0.977017
n-Butane		6.02839	9.41773 *	9.41773	0 *	3.38934
laanantana		0.0400	7 07554 *	7 07554	0 *	4 00 4 0 4

Isopentane	2.8406	7.07551 *	7.07551	0 *	4.23491
n-Pentane	2.7355	8.11168 *	8.11168	0 *	5.37619
Isohexane	1.11001	6.63211 *	6.63211	0 *	5.52209
n-Hexane	0.822428	6.69987 *	6.69987	0 *	5.87745
2,2,4-Trimethylpentane	0.00251789	0.056732 *	0.056732	0 *	0.0542141
Benzene	0.032893	0.274795 *	0.274795	0 *	0.241902
Heptane	0.863542	20.9679 *	20.9679	0 *	20.1044
Toluene	0.0527607	1.39189 *	1.39189	0 *	1.33913
Octane	0.289773	22.5628 *	22.5628	0 *	22.273
Ethylbenzene	0.00190595	0.164773 *	0.164773	0 *	0.162867
o-Xylene	0.0158499	1.71363 *	1.71363	0 *	1.69778
Nonane	0.019715	5.04544 *	5.04544	0 *	5.02573
Decane	0.0520378	42.1427 *	42.1427	0 *	42.0906
Water	0.421747	0 *	689.794	689.794 *	689.373

		Stream	Properties			
Property	Units	Flash Gas	OXF 43 Condensate	Produced Fluids	Produced Water	Stable Liquid
Temperature	°F	69.9829	110 *	110.047	110 *	69.9829
Pressure	psia	14.6959	449.696 *	449.696	449.696 *	14.6959 *
Mole Fraction Vapor	%	100	4.15317	0.160679	0	0
Mole Fraction Light Liquid	%	0	95.8468	4.91822	100	2.90511
Mole Fraction Heavy Liquid	%	0	0	94.9211	0	97.0949
Molecular Weight	lb/lbmol	38.7222	75.4549	20.9605	18.0153	20.5336
Mass Density	lb/ft^3	0.101434	31.3533	53.228	61.8438	58.5253
Molar Flow	lbmol/h	0.947149	2.06939	40.3588	38.2894	39.4116
Mass Flow	lb/h	36.6756	156.146	845.94	689.794	809.264

* User Specified Values ? Extrapolated or Approximate Values

Licensed to The ERM Group, Inc. and Affiliates

3049.19

0

			All S	reams Report treams by Total Phase			
Client Name: E	QT					down Tank, 50% Co	ontingency, 20%
					Condensa	te	
	XF 43						
Flowsheet: Fl	owsheet1						
			Stream	Properties			
Property		Units	Flash Gas	OXF 43 Condensate	Produced Fluids	Produced Water	Stable Liquid
Vapor Volumetric Flow		ft^3/h	361.572	4.9802	15.8928	11.1538	13.8276
Liquid Volumetric Flow		gpm	45.0791	0.620908	1.98144	1.39061	1.72396
Std Vapor Volumetric F	low	MMSCFD	0.00862626	0.0188472	0.367572	0.348725	0.358946
Std Liquid Volumetric F	low	sgpm	0.154389	0.498072 *	1.87702	1.37895 *	1.72263
Compressibility		01	0.987006	0.177026	0.028964	0.0214278	0.00090712
Specific Gravity			1.33697			0.991579	0.938372
API Gravity						9.94617	18.9601
Enthalpy		Btu/h	-43102.2	-154366	-4.83646E+06	-4.68209E+06	-4.81906E+06
Mass Enthalpy		Btu/lb	-1175.23	-988.6	-5717.26	-6787.67	-5954.86
Mass Cp		Btu/(lb*°F)	0.416009	0.562843	0.903757	0.980145	0.912488
Ideal Gas CpCv Ratio			1.1417	1.06762	1.27122	1.32394	1.28233
Dynamic Viscosity		cP	0.00874492			0.634356	0.88909
Kinematic Viscosity		cSt	5.38211			0.640348	0.948377
Thermal Conductivity		Btu/(h*ft*°F)	0.0119826			0.363956	0.292237
Surface Tension		lbf/ft				0.00473609	0.00430698
Net Ideal Gas Heating		Btu/ft^3	2013.2	3859.25	197.882	0	154.256
Net Liquid Heating Valu		Btu/lb	19580.1	19255.1	2690	-1059.76	1924.55
Gross Ideal Gas Heatin	g Value	Btu/ft^3	2193.02	4169.64	261.528	50.3101	215.11

21342.4

Btu/lb

20816.2

3842.3

Remarks

Gross Liquid Heating Value

Simulation Initiated on 5/15/	/2017 3:28:49 PM		OXF 43_Blowdown Tar	nk 50% Contingency.pmx			Page 1 of 1
			MIX	ocks -100 tter Report			
Client Name:	EQT				Condensate	e	Contingency, 20%
Location: Flowsheet:	OXF 43 Flowsheet1					:14 PM, 7/24/20 ved 3:25 PM, 5	
				ections			
Stream	Connect	ion Type	Other Block	Stream	Connect	ion Type	Other Block
Produced Water	In	let		OXF 43 Condensate	In	let	
Produced Fluids	Ou	tlet	VSSL-100				
			Block Pa	arameters			
Pressure Drop			0 psi	Fraction to PStream Produced Fluids			100 %
Remarks							

Client Name:			Separato	100 or Report			
	EQT				Job: Blowdo Condensate	own Tank, 50% Cor	ntingency, 20%
ocation:	OXF 43				Modified: 1:	57 PM, 5/13/2017	
Flowsheet:	Flowsheet1					red 3:25 PM, 5/15/2	2017
			Conne	ctions			
Stream	Connection Type		Other Block	Stream	Connecti	on Type	Other Block
Produced Fluids	Inlet		MIX-100	Flash Gas	Vapor	Outlet	
Stable Liquid	Light Liquid Outlet			Q-1	Ene	rgy	
			Block Pa	rameters			
Pressure Drop		435	psi	Main Liquid Phase		Light Liquid	
Mole Fraction Vapo	r	2.34682		Heat Duty		-25700	Btu/h
Mole Fraction Light	Liquid	2.83694	%	Heat Release Curve Ty	/pe	Plug Flow	
Mole Fraction Heav	y Liquid	94.8162	%	Heat Release Curve		10	
				Increments			
Remarks							

		F		Environment onment1			
Client Name:	EQT				Job: Blowdown	n Tank, 50% Continge	ency, 20%
Location:	OXF 43				Condensate		
Flowsheet:	Flowsheet1						
					4		
			Environm	ent Settings			
Number of Poynti	ng Intervals	0		Phase Tolerance		1 %	
Gibbs Excess Mo	del	77 °F		Emulsion Enabled		False	
Evaluation Tempe							
Freeze Out Temp		10 °F					
Threshold Differer	nce						
			Comp	oonents			
Component Name		Henry's Law	Phase	Component Name		Henry's Law	
•		Component	Phase Initiator	Component Name		Component	Initiato
Nitrogen		Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane		Component False	Initiato False
Nitrogen Methane		Component	Phase Initiator	Component Name		Component	Initiato
Nitrogen Methane Carbon Dioxide		Component False False	Phase Initiator False False	Component Name 2,2,4-Trimethylpentane Benzene		Component False False	False False
Nitrogen Methane Carbon Dioxide Ethane		Component False False False False	Phase Initiator False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane		Component False False False	Initiato False False False
Nitrogen Methane Carbon Dioxide Ethane Propane		Component False False False False False False	Phase Initiator False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene		Component False False False False False False	Initiator False False False False False False
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane		Component False False False False False False False	Phase Initiator False False False False False False False	Component Name2,2,4-TrimethylpentaneBenzeneHeptaneTolueneOctaneEthylbenzeneo-Xylene		Component False False False False False False False	Initiator False False False False False False False
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane		Component False False False False False False False False False	Phase Initiator False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		Component False False False False False False False False	Initiato False False False False False False False False
Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane		Component False False False False False False False False False False	Phase Initiator False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		Component False False False False False False False False False False	Initiator False False False False False False False False False
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane		Component False False False False False False False False False False False	Phase Initiator False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		Component False False False False False False False False	Initiator False False False False False False False False
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane		Component False False False False False False False False False False	Phase Initiator False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		Component False False False False False False False False False False	Initiator False False False False False False False False False
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane		Component False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		Component False False False False False False False False False False	Initiator False False False False False False False False False
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane		Component False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water erty Method Sets		Component False False False False False False False False False False	Initiator False False False False False False False False True
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane n-Hexane Liquid Molar Volume	2	Component False False False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water erty Method Sets Overall Package		Component False False False False False False False False False False	Initiator False False False False False False False False True
Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane		Component False False False False False False False False False False False False	Phase Initiator False False False False False False False False False False False False Sical Prope	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water erty Method Sets		Component False False False False False False False False False False	Initiator False False False False False False False False True

		Eı	nvironm	ents Report			
Client Name: EQT	-				Job: Blowd Condensat	l own Tank, 50% Conting e	ency, 20%
Location: OXF	43				Condenied	•	
					•		
		Р	roject-Wi	de Constants			
Atmospheric Pressure		14.6959		Ideal Gas Reference Pre	ssure	14.6959	
deal Gas Reference Tem	perature		°F	Ideal Gas Reference Vol	ume	379.484	ft^3/lbmol
Liquid Reference Tempera	ature	60	°F				
		Env	ironment	[Environment1]			
			Environm	ent Settings			
Number of Poynting Intervals 0				Phase Tolerance		1 %	
runnber of r bynning mic			Emulsion Enabled		False		
Gibbs Excess Model							
Gibbs Excess Model Evaluation Temperature							
Gibbs Excess Model		10 °F					
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature							
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature			Com	ponents			
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference		10 °F		Component Name		Henry's Law	Phase
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference			Comp Phase Initiator	Component Name		Henry's Law Component	
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference		10 °F	Phase				
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen		10 °F Henry's Law Component	Phase Initiator	Component Name 2,2,4-Trimethylpentane Benzene		Component	Initiato
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane		10 °F Henry's Law Component False False False	Phase Initiator False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane		Component False	Initiato False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane		10 °F Henry's Law Component False False False False False	Phase Initiator False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene		Component False False False False False	Initiato False False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane		10 °F Henry's Law Component False False False False False False	Phase Initiator False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane		Component False False False False False False	Initiato False False False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane		10 °F Henry's Law Component False	Phase Initiator False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene		Component False False False False False False False	Initiato False False False False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane		10 °F Henry's Law Component False	Phase Initiator False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene		Component False False False False False False False False	Initiato False False False False False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane		10 °F Henry's Law Component False	Phase Initiator False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		Component False False False False False False False False False	Initiato False False False False False False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane		10 °F	Phase Initiator False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		Component False False False False False False False False False False	Initiato False False False False False False False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane Isohexane		10 °F	Phase Initiator False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		Component False False False False False False False False False	False False False False False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isopentane Isopentane Isopentane		10 °F	Phase Initiator False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		Component False False False False False False False False False False	Initiato False False False False False False False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane Butane sopentane n-Pentane sohexane		10 °F	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		Component False False False False False False False False False False	Initiato False False False False False False False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isopentane Isopentane Isopentane Isohexane n-Hexane		10 °F Henry's Law Component False	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water erty Method Sets		Component False False False False False False False False False False	Initiato False False False False False False False False True
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane Isopentane		10 °F	Phase Initiator False False False False False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		Component False False False False False False False False False False	Initiato False False False False False False False False True

		Calcul	lator Report			
Client Name:	EQT			Job: Blowd	lown Tank, 50% Contingenc	v. 20%
				Condensat		, <u>20</u> 70
Location:	OXF 43					
	ļ					
		Sim	ole Solver 1			
			urce Code			
Residual Error (for C	V1) = TotalFlow-	59.06166772				
		Calculate	d Variable [CV1]			
Source Moniker	ProMax:ProMa	ax!Project!Flowsheets!Flowsheet1	PStreams!OXF 43 Condens	ate!Phases!To	otal!Properties!Std Liquid Vo	olumetric
	Flow					
Value Unit	17.0768					
		Measured V	ariable [TotalFlow]			
Source Moniker		ax!Project!Flowsheets!Flowsheet1		ases!Total!Pro	perties!Std Liquid Volumetri	c Flow
Value Unit	59.0617					
Offic						
		Solve	er Properties		Status: Solved	
Error		8.71579E-08	Iterations		3	
Calculated Value		0.498072 sgpm	Max Iterations		20	
Lower Bound Upper Bound		sgpm	Weighting Priority		<u> </u>	
Step Size		sgpm sgpm	Solver Active		Active	
Is Minimizer		False	Group		//01/0	
Algorithm		Default	Skip Dependency Ch	neck	False	
		Sim	ole Solver 2			
			urce Code			
Residual Error (for C	CV1) = PercentWa	ater-80				
		Calculate	d Variable [CV1]			
Source Moniker		ax!Project!Flowsheets!Flowsheet1	PStreams!Produced Water!	Phases!Total!I	Properties!Std Liquid Volum	etric Flow
Value	47.2782					
Unit						
		Measured Var	iable [PercentWater]			
Source Moniker	ProMax:ProMa	ax!Project!Flowsheets!Flowsheet1	PStreams!Stable Liquid!Pha	ses!Total!Cor	mposition!Std Liquid Volume	tric
	Fraction!Wate					
Value	80					
Unit						
		Solve	er Properties		Status: Solved	
Error		3.89103E-06	Iterations		3	
Calculated Value		1.37895 sgpm	Max Iterations		20	
Lower Bound		sgpm	Weighting		1	
Upper Bound		sgpm	Priority		0	
Step Size		sgpm	Solver Active		Active	
Is Minimizer Algorithm		False Default	Group Skip Dependency Ch	neck	False	
					1 4100	
Remarks						

^{*} User Specified Values ? Extrapolated or Approximate Values

		Calculator Report		
Client Name:	EQT		Job: Blowd Condensate	own Tank, 50% Contingency, 20%
Location:	OXF 43			

		l	User Value	Sets Report		
Client Name:	EQT				Job: Blowd Condensate	own Tank, 50% Contingency, 20%
Location:	OXF 43				Condensati	G
			Cn+ Flo	ow/Frac.		
				CnPlusSum]		
* Parameter		25.4375	lb/h	Upper Bound		
Lower Bound			lb/h	* Enforce Bounds		False
Remarks This User Value Set	was programmat	ically generated. G	GUID={E867C485-	3D3C-49CB-BC24-EA160	96DB2B1}	
			Tank	Losses		
				ShellLength]		
* Parameter		10		Upper Bound		
* Lower Bound		0	ft	* Enforce Bounds		False
			Lloor Voluo	[ShallDiam]		
* Parameter		10		[ShellDiam] Upper Bound		
* Lower Bound		0		* Enforce Bounds		False
			· · · · · · ·			
* Parameter		0.02		[BreatherVP] Upper Bound		
Lower Bound		0.03	psig	* Enforce Bounds		False
				BreatherVacP]		
* Parameter Lower Bound		-0.03	psig	Upper Bound * Enforce Bounds		False
Lower Bodrid				Emoroo Boando		i diou
			User Value [DomeRadius]		
Parameter Lower Bound			ft	Upper Bound * Enforce Bounds		ft
Lower Bound			ft	Enforce Bounds		False
			User Value	e [OpPress]		
* Parameter		0	psig	Upper Bound		
Lower Bound				* Enforce Bounds		False
			Lisor Valuo [A	vgPercentLiq]		
* Parameter		50		Upper Bound		
Lower Bound			%	* Enforce Bounds		False
* Parameter		90		laxPercentLiq] Upper Bound		
Lower Bound			%	* Enforce Bounds		False
* •		50.0005		[AnnNetTP]		
 * Parameter * Lower Bound 		<u>58.9295</u> 0	bbl/day bbl/day	Upper Bound * Enforce Bounds		False
				ue [OREff]		
* Parameter		0		Upper Bound		
Lower Bound			%	* Enforce Bounds		False
			User Value [AtmPressure]		
* Parameter		14.1085	psia	Upper Bound		
Lower Bound				* Enforce Bounds		False

		User Valu	ue Sets Report	
Client Name:	EQT			Job: Blowdown Tank, 50% Contingency, 20% Condensate
Location:	OXF 43			
		User	Value [TVP]	
* Parameter		0.536154 psia	Upper Bound	
Lower Bound			* Enforce Bounds	False
		User Value	[AvgLiqSurfaceT]	
* Parameter		57.7675 °F	Upper Bound	
Lower Bound			* Enforce Bounds	False
		Lloor Value	[MoxLigSurfaceT]	
* Parameter		66.3119 °F	[MaxLiqSurfaceT]	
Lower Bound		00.3113 1	* Enforce Bounds	False
			ie [TotalLosses]	
* Parameter		0.0186069 lb/h	Upper Bound	E.L.
Lower Bound		lb/h	* Enforce Bounds	False
		Liser Value	[WorkingLosses]	
* Parameter		0.0625451 ton/yr	Upper Bound	
Lower Bound		ton/yr	* Enforce Bounds	False
_		User Value	[StandingLosses]	
* Parameter		0.0189529 ton/yr	Upper Bound * Enforce Bounds	Foloo
Lower Bound		ton/yr		False
		User Value	[RimSealLosses]	
* Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
			[WithdrawalLoss]	
* Parameter		0 ton/yr	Upper Bound	
Lower Bound		0 (01// 91	* Enforce Bounds	False
			[LoadingLosses]	
* Parameter Lower Bound		0.0611809 lb/h lb/h	Upper Bound * Enforce Bounds	False
Lower Bouria		10/11	Efficice Boullus	Faise
		User Value []	DeckFittingLosses]	
* Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
* Donomotor			DeckSeamLosses]	
* Parameter Lower Bound		0 ton/yr	Upper Bound * Enforce Bounds	False
Lower Bound			Enforce Bounde	1 4100
		User Value	[FlashingLosses]	
* Parameter		0 ton/yr	Upper Bound	
Lower Bound			* Enforce Bounds	False
* Parameter		0.0316904 kg/mol	[GasMoleWeight] Upper Bound	
Lower Bound		0.0316904 kg/mol	* Enforce Bounds	False
Remarks				

This User Value Set was programmatically generated. GUID={B57AFC7E-AAE8-4873-921B-7B4031991004}

Certificate of Analysis :

13050161-001A

Company: Well: Field: Sample of: Conditions: Sampled by:	Gas Analytica OXF 152 Pad EQT Productio Condensate-S 435 @ N.G. GR-GAS	on		For:	Ala PO Bric	n Ball Box 1028	al Services 3 /V, 26330
Sample date:	5/14/2013			Report Da	te:	5	5/28/2013
Remarks:	Cylinder No.: (GAS					
Remarks:							
Analysis: (GPA	2186M)	Mol. %	MW	Wt. %	Sn	Gravity	L.V. %
Nitrogen	2,000, ,	0.000	28.013	0.000		0.8094	0.000
Methane		12.828	16.043	2.662		0.3000	5.771
Carbon Dioxide		0.097	44.010	0.055		0.8180	0.044
Ethane		10.896	30.070	4.238		0.3562	7.730
Propane		10.116	44.097	5.771		0.5070	7.393
Iso-butane		2.935	58.123	2.207		0.5629	2.548
N-butane		7.830	58.123	5.887		0.5840	6.552
lso-pentane		4.739	72.150	4.423		0.6244	4.603
N-pentane		5.433	72.150	5.071		0.6311	5.222
i-Hexanes		3.719	86.177	4.092		0.6795	4.009
n-Hexane		3.757	85.684	4.195		0.6640	4.086
2,2,4 trimethylper	ntane	0.024	114.231	0.035		0.6967	0.033
Benzene		0.170	78.114	0.132		0.8846	0.127
Heptanes		10.112	97.409	12.820		0.7048	11.816
Toluene		0.730	92.141	0.672		0.8719	0.651
Octanes		9.545	107.484	13.615		0.7487	11.751
E-benzene		0.075	106.167	0.046		0.8718	0.078
M-,O-,P-xylene		0.780	106.167	1.072		0.8731	0.804
Nonanes		1.901	117.323	3.065		0.7990	2.521
Decanes Plus		14.313	161.720	29.94Ż		0.8021	24.261
		100.000	9 5	100.000			100.000

Calculated Values Total Sample Decanes Plus Specific Gravity at 60 °F 0.6499 0.8021 Api Gravity at 60 °F 86.221 44.905 **Molecular Weight** 77.303 161.720 Pounds per Gallon (in Vacuum) 5.419 6.688 Pounds per Gallon (in Air) 5.413 6.680 Cu. Ft. Vapor per Gallon @ 14.73 psia 26.662 15.657

Southern Petroleum Laboratories, Inc.

Certificate of Analysis : 13050161-001A

Company: Well:	Gas Analytical Services OXF 152 Pad	For:	Gas Analytical Alan Ball	Services
Field:	EQT Production		PO Box 1028	
Sample of:	Condensate-Spot			
Conditions:	435 @ N.G.		Bridgeport, W	V , 26330
Sampled by:	GR-GAS			
Sample date:	5/14/2013	Report Da	ite: 5	5/28/2013
Remarks:	Cylinder No.: GAS			
Remarks:				

Analysis: (GPA 2103M)	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %
Nitrogen	0.000	28.013	0.000	0.8094	0.000
Methane	12.828	16.043	2.662	0.3000	5.771
Carbon Dioxide	0.097	44.010	0.055	0.8180	0.044
Ethane	10.896	30.070	4.238	0.3562	7.730
Propane	10.116	44.097	5.771	0.5070	7.393
lso-butane	2.935	58.123	2.207	0.5629	2.548
N-butane	7.830	58.123	5.887	0.5840	6.552
lso-pentane	4.739	72.150	4.423	0.6244	4.603
N-pentane	5.433	72.150	5.071	0.6311	5.222
Hexanes	7.476	85.684	8.287	0.6654	8.095
Heptanes Plus	37.650	97.409	61.399	0.7048	52.042
	100.000	-	100.000		100.000

Calculated Values	Total Sample	Heptanes Plus
Specific Gravity at 60 °F	0.6499	0.7689
Api Gravity at 60 °F	86.221	52.528
Molecular Weight	77.303	126.064
Pounds per Gallon (in Vacuum)	5.419	6.411
Pounds per Gallon (in Air)	5.413	6.404
Cu. Ft. Vapor per Gallon @ 14.73 psia	26.662	19.342
Standing-Katz Density (lb. / ft ³)		

aspa

Southern Petroleum Laboratories, Inc.

Alan Ball Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Station Name: OXF 152 Pad Station Number: 512496 Station Location: EQT Production Sample Point: Wellhead Certificate of Analysis Number: 2030-13050161-001A Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

May 22, 2013

Sampled By:GR-GASSample Of:CondensateSpotSample Date:05/14/2013 14:00Sample Conditions:435 psigCylinder No:GAS

Analytical Data

Test	Method	Result	Units	Detection Limit	Lab Tech.	Analysis Date
Color-Visual	Proprietary	L STRAW			AR	05/22/2013
API Gravity @ 60° F	ASTM D-5002	66.58	0		AR	05/22/2013
Specific Gravity @ 60/60° F	ASTM D-5002	0,7144			AR	05/22/2013
Density @ 60° F	ASTM D-5002	0.7137	g/ml		AR	05/22/2013
Shrinkage Factor	Proprietary	0.7761	-		AR	05/22/2013
Flash Factor	Proprietary	508.5845 C	u. Ft./S.T. Bbl		AR	05/22/2013

Pater S. Perro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Gas Analytical

Report Date:	Sep 12, 2016	8:21a
Report Dute.	JCP 12, 2010	0.210

Client:	EQT PRODUCTION
Client Code:	0555
Site:	OXF 114 512415
Field:	520-GLEN MCCONNELL
Meter:	512415
Source Laboratory	Stonewood, WV
Lab File No:	516571983
Cylinder No:	478
Sample Type:	Spot
Reviewed By:	ashters Free

Analysis Status: good

Component	Mol %	Gal/MSCF			
H2S					
Methane	80.7683	0.0000			
Ethane	12.4936	3.3514			
Propane	3.8198	1.0555			
I-Butane	0.5407	0.1775			
N-Butane	0.9063	0.2866 0.0914			
I-Pentane	0.2492				
N-Pentane	0.2070	0.0753			
Nitrogen	0.6181	0.0000			
Oxygen					
Carbon Dioxide	0.1034	0.0000			
Hexanes+	0.2936	0.1278			
TOTAL	100.0000	5.1655			

Date Sampled:	Aug 25, 2016
Analysis Date:	Sep 8, 2016 12:00a
Collected By:	D SMITH
Date Effective:	Sep 1, 2016 12:00a
Sample Pressure (PSI):	120.0
Sample Temp (°F):	60
Field H2O (lb/MMSCFD):	
Field H2S (PPM):	

Analytical Results at Base Conditions (Real)											
1,217.4193 BTU/ft ³											
1,196.6532 BTU/ft ³											
14.696 PSI											
60.0 °F											
0.99674											
0.99635											

Analytical Results at Contract Conditions (Real)										
BTU/SCF (Dry):	1,220.2451 BTU/ft ³									
BTU/SCF (Saturated):	1,199.4799 BTU/ft ³									
PSIA:	14.730 PSI									
Temperature (°F):	60.0 °F									
Z Factor (Dry):	0.99674									
Z Factor (Saturated):	0.99635									

Calculated Specific Gravities												
Ideal Gravity:	Ideal Gravity: 0.6926 Real Gravity: 0.6946											
Molecular Wt:	20.0607	lb/lbmol										

Gross Heating Values are Based on: GPA 2145-09, 2172 Compressibility is Calculated using AGA-8.

Source

Date Notes

<MDL = Less than Method Detection Limits, NG = Not Given, NT = Not Tested

Attachment U

	A	ГТАСІ	HMEN	T U –	FACIL	LITY-V	VIDE (CONTE	ROLLE	ED EM	IISSIO	NS SU	JMMA	RY SH	IEET	
List all sou	rces of	f emiss	ions in	this ta	ble. U	se extra	a pages	if nece	essary.							
Emission	N	O _x	C	co	v	C	S	O ₂	PM	I ₁₀	PM	2.5	C	RY SHEET H4 GHG (C tpy Ib/hr 0.01 180.33 0 0.01 180.33 0 0.01 180.33 0 0.01 180.33 0 0.01 180.33 0 0.01 180.33 0 0.01 180.33 0 0.01 180.33 0 0.01 180.33 0 0.01 180.33 0 0.01 180.33 0 0.01 180.33 0		G (CO ₂ e)
Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (E001)	0.13	0.56	0.11	0.47	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E002)	0.13	0.56	0.11	0.47	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E003)	0.13	0.56	0.11	0.47	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E004)	0.13	0.56	0.11	0.47	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E005)	0.13	0.56	0.11	0.47	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E006)	0.13	0.56	0.11	0.47	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E007)	0.13	0.56	0.11	0.47	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E008)	0.13	0.56	0.11	0.47	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E009)	0.13	0.56	0.11	0.47	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E010)	0.13	0.56	0.11	0.47	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
Line Heater (E011)	0.13	0.56	0.11	0.47	<0.01	0.03	<0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	0.01	180.33	789.85
VDU (E023)	1.77	7.75	1.49	6.51	6.37	26.84	0.01	0.05	0.03	0.15	0.03	0.15	1.10	4.64	3,484.88	15,259.35
VDU (E024)	1.07	4.71	0.90	3.95	6.37	26.84	<0.01	0.03	0.01	0.04	0.01	0.04	1.08	4.57	2,599.62	11,381.91
Compressor Engine (E025)	2.13	9.31	2.21	9.70	0.10	0.43	<0.01	<0.01	0.03	0.14	0.03	0.15	<0.01	0.03	383.24	1,678.59

Compressor Engine (E026)	0.24	1.03	0.49	2.14	0.16	0.71	<0.01	<0.01	0.01	0.04	0.01	0.04	<0.01	<0.01	104.09	455.91
Tank Truck Loading Operations (E027)					0.24	1.05							0.01	0.06	0.37	1.61
TOTAL	6.62	28.99	6.28	27.51	13.32	56.22	0.03	0.12	0.12	0.53	0.12	0.53	2.24	9.48	8,566.72	37,513.35

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATT	ATTACHMENT U – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET														
List all sources	List all sources of emissions in this table. Use extra pages if necessary.														
Emission Point ID#	Formal	dehyde	Ben	zene	Tolı	ıene	Ethylb	enzene	Xyl	enes	Hex	ane	Tota	Total HAPs	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Line Heater (E001)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	
Line Heater (E002)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	
Line Heater (E003)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	
Line Heater (E004)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	
Line Heater (E005)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	
Line Heater (E006)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	
Line Heater (E007)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	
Line Heater (E008)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	
Line Heater (E009)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	
Line Heater (E010)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	
Line Heater (E011)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	
VDU (C023)	<0.01	<0.01	<0.01	<0.01	0.01	0.06	<0.01	<0.01	<0.01	0.02	0.21	0.87	0.23	0.98	
VDU (C024)	<0.01	<0.01	<0.01	<0.01	0.01	0.06	<0.01	<0.01	<0.01	0.02	0.21	0.87	0.23	0.98	
Compressor Engine (E025)	0.07	0.30	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.08	0.33	

Compressor Engine (E026)	0.02	0.08	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	0.09
Tank Truck Loading Operations (E027)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TOTAL	0.09	0.39	<0.01	0.03	0.03	0.12	<0.01	<0.01	<0.01	0.04	0.41	1.84	0.59	2.50

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Attachment V

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that EQT Production Company has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit Registration for the OXF 43 natural gas production site located in Coxs Mills, Doddridge County, West Virginia. The latitude and longitude coordinates are: 39.15703 and -80.79285.

The applicant estimates the potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Carbon Monoxide (CO) = 27.51 tpy Nitrogen Oxides (NO_x) = 28.99 tpy Particulate Matter (Filterable) = 12.23 tpy Particulate Matter (Condensate) = 1.25 tpy Sulfur Dioxide (SO₂) = 0.12 tpy Volatile Organic Compounds (VOC) = 56.83 tpy Formaldehyde = 0.39 tpy Hexane = 1.89 tpy Hazardous Air Pollutants (HAPs) = 2.55 tpy Carbon Dioxide Equivalents (CO₂e) = 37,576.46 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 17th day of May, 2017.

By: EQT Production Company Michael Gavin Vice President 625 Liberty Avenue, Suite 1700 Pittsburgh, PA 15222