

Arsenal Resources

G70-D General Permit Registration Application

Palleta Natural Gas Production Site

Clarksburg, West Virginia

Prepared By:

ENVIRONMENTAL RESOURCES MANAGEMENT, Inc. Hurricane, West Virginia

May 2017

May 18, 2017

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G70-D General Permit Registration Application Arsenal Resources Palleta Natural Gas Production Site

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G70-D General Permit Registration Application for the authority to construct the Palleta natural gas production site located in Harrison County, West Virginia.

A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (724) 940-1112 or by email at myingling@arsenalresources.com.

Sincerely,

Meghan M.B. Yingling Environmental Compliance Manager Arsenal Resources

Enclosures

1.0 INTRODUCTION NARRATIVE

Arsenal Resources, LLC (Arsenal) submits this G70-D General Permit application to the West Virginia Department of Environmental Protection's Department of Air Quality (WVDAQ) for the Palleta Wellpad (Palleta) site located in Harrison County, West Virginia. This application addresses the operational activities associated with the production of natural gas and produced water at the Palleta site.

Arsenal currently has the following equipment constructed at the Palleta site:

- Five (5) Natural Gas Wells;
- Five (5) Gas Production Units/Heaters each rated at 1.00 MMBtu/hr input;
- One (1) 210 bbl Blowdown Tank;
- Five (5) 400 bbl Produced Fluids Tank;
- One (1) Produced Fluids Loadout; and
- One (1) Thermoelectric Generator.

Arsenal would like to submit a G70-D Class II General permit to reflect the following equipment at the Palleta site:

- Eight (8) Natural Gas Wells;
- Eight (8) Gas Production Units/Heaters each rated at 1.00 MMBtu/hr input;
- One (1) 210 bbl Blowdown Tank;
- Eight (8) 400 bbl Produced Fluids Tank;
- Two (2) Produced Fluids Loadout; and
- One (1) Thermoelectric Generator.

Statement of Aggregation

The Palleta pad is located in Harrison County, WV and operated by Arsenal. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. Arsenal operates the Palleta with the same industrial grouping as nearby facilities, and some of these facilities are under common control. However, the Paleta site is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The Palleta pad operates under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding wells operated by Noble that share the same two digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the Palleta pad does share the same SIC codes as the surrounding wells and compressor stations.

Arsenal is the sole operator of the Palleta pad. Arsenal is also the sole operator of other production sites and compressor stations in the area. Therefore, Arsenal does qualify as having nearby operations under common control.

On August 18, 2016 the EPA Administrator signed the *Source Determination for Certain Emission Units in the Oil and Natural Gas Sector*. This notice clarified EPA's position regarding how properties in the oil and natural gas sector are determined to be adjacent in order to assist permitting authorities and permit applicants in making consistent source determinations. The following proposed regulatory text defines "adjacent" for the oil and gas sector in terms of proximity.

Pollutant emitting activities shall be considered adjacent if they are located on the same surface site, or on surface sites that are located within ½ mile of one another.

There are no Arsenal owned or operated sites with a ¼ mile radius of the Palleta pad. Nearby sites do not meet the definition of contiguous or adjacent properties since they are not in contact and do not share a common boundary. The operations conducted at the Palleta site do not rely on or interact with other sites. Furthermore, operations separated by this distance do not meet the common sense notion of a "plant."

Based on the above reasoning, Arsenal is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

2.0 REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the Palleta pad and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G70-D permit application forms. The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants.

The regulatory requirements in reference to Palleta are described in detail in the below section.

West Virginia State Air Regulations

45 CSR 02 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

The line heaters associated with gas production units are indirect heat exchangers that combust natural gas but are exempt from this regulation since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the Palleta well pad are subject to this requirement. Based on the nature of the process at the well pad, the presence of objectionable odors is unlikely.

45 CSR 06 – Control of Air Pollution from the Combustion of Refuse

The Palleta Wellpad does not have a combustion device and is therefore not subject to this rule.

45 CSR 10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The line heaters are indirect heat exchangers that combust natural gas but are exempt from this regulation since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants

This G70-D permit application is being submitted for the operational activities associated with Arsenal's production of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G70-D applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the Palleta pad will not exceed emission thresholds established by this permitting program. Arsenal will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45 CSR 16 applies to all registrants that are subject to any of the NSPS requirements described in more detail in the Federal Regulations section.

45 CSR 19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of nonattainment pollutants under Non-Attainment New Source Review (NNSR). The G70-D applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Harrison County, WV is in attainment for all pollutants with a National Ambient Air Quality Standard (NAAQS). Therefore, this regulation would not apply to the Palleta site.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burned at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds for the Title V operating permit program regulations are 10 tons per year (tpy) of a single hazardous air pollutant (HAP), 25 tpy of any combination of HAPs, or 100 tpy of all other regulated pollutants.

The potential emissions of all regulated pollutants at the proposed facility are below the corresponding major source threshold(s). Therefore, the Palleta wellpad will not be a major source under the Title V program.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. The NESHAP Rules are discussed further in the Federal Regulation section of this document.

Federal Regulations

New Source Performance Standards

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction between August 23, 2011 and September 18, 2015. The applicable provisions and requirements of Subpart OOOO are included under the G70-D permit.

The Palleta Wellpad does not have any affected facilities subject to Subpart OOOO.

Subpart OOOOa (Standards Of Performance For Crude Oil And Natural Gas Facilities For Which Construction, Modification, Or Reconstruction Commenced After September 18, 2015)

The Palleta facility commenced construction after September 18, 2015 and, therefore, will qualify as an affected facility under OOOOa. The Palleta site will qualify as a collection of Fugitive Components Affected Facility. As a Fugitive Component Affected Facility, in order to comply, LDAR monitoring at the Palleta site must be performed within 60 days of startup of

production and then semi-annually thereafter. The Palleta site will also qualify as a gas well affected facility for all production wells.

There are several equipment types that have been installed at Palleta that do not meet the affected facility definitions as specified by EPA. These include:

- Storage vessels: Emissions from each storage vessel were determined to be below 6 tons per year (tpy) of VOC. Therefore, the produced water tanks are not affected storage vessels.
- Pneumatic devices: All pneumatic devices installed at the Palleta facility are either low-continuous bleed or intermittent bleed and do not qualify as affected sources

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines)

The Palleta facility does not operate any engines and, therefore, will not be subject to 40 CFR 60 Subpart JJJJ.

No additional NSPS are expected to be applicable to this facility.

National Emissions Standards for Hazardous Air Pollutants

The following NESHAP included in the G70-D permit are not applicable to the Palleta facility:

- 40 CFR 63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).
- 40CFR63 Subpart ZZZZ (National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines)

No additional NESHAP are expected to be applicable to this facility.

General Permit G70-D will establish an emission cap on the following regulated and hazardous air pollutants (consistent with the PTE of the facility):

Regulated Pollutant	Potential Annual Emissions (tpy)	Maximum Annual Emission Limit (tpy)		
СО	2.89	80		
NOx	3.44	50		
PM	< 0.01	20		
PM-10	< 0.01	20		
SO ₂	< 0.01	20		
VOC	38.33	80		
Total HAPs	1.43	20		

The fugitive emissions of a stationary source shall not be considered in determining whether it is a major stationary source for the purposes of 45CSR30-2.26.b or for eligibility of this General Permit.

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-D GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE

⊠CONSTRUCTION □MODIFICATION	□CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE							
□RELOCATION								
SECTION 1. GENERAL INFORMATION								
Name of Applicant (as registered with the WV Secretary of State's Office): Arsenal Resources, LLC								
Federal Employer ID No. (FEIN): 47-1919654								
Applicant's Mailing Address: 65 Professional Place Suite 200								
City: Bridgeport	State: WV			ZIP Code: 26330				
Facility Name: Palleta Natural Gas Proc	luction Site							
Operating Site Physical Address: 633 Quiet If none available, list road, city or town and		rksburg, West Virg	ginia 26301					
City: Clarksburg	Zip Code: 26301			County: Harrison				
Latitude & Longitude Coordinates (NAD83 Latitude: 39.20971 Longitude: -80.36708	, Decimal Degrees	to 5 digits):						
SIC Code: 1331		DAQ Facility ID N	No. (For exist	ing facilities)				
NAICS Code: 211111								
C	CERTIFICATION O	OF INFORMATION						
This G70-D General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered								
I hereby certify that is an Auth business (e.g., Corporation, Partnership, Limay obligate and legally bind the business. shall notify the Director of the Division of	mited Liability Con If the business cha	mpany, Association anges its Authorized	Joint Venture	e or Sole Proprietorship) and				
I hereby certify that all information contain documents appended hereto is, to the best o have been made to provide the most compre	f my knowledge, t	rue, accurate and co						
Responsible Official Signature:Name and Title: Email:		Phone: Date:		Fax:				
If applicable: Authorized Representative Signature: Name and Title: Meghan M.B. Yingling, E Email: myingling@arsenalresources.com		npliance Manager ate: 5/18/17	Phone: 724-9	940-1112 Fax:				
If applicable: Environmental Contact Name and Title: Meghan M.B. Yingling, E Email: myingling@arsenalresources.com		mpliance Manager ate: 5/18/17	Phone: 724 -	940-1112 Fax:				

OPERATING SITE INFORMATION Briefly describe the proposed new operation and/or any change(s) to the facility: Construction of three (3) new wells and associated well equipment at the site. Directions to the facility: Take WV-270 E/Main St to Liberty Street in West Milford for 0.9 Miles. Continue on Liberty Street/Poling Rd/Alpha Rd for 2.4 miles - turn right at Mine Hollow Road (access road to the wellpad). ATTACHMENTS AND SUPPORTING DOCUMENTS I have enclosed the following required documents: Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22). \square Check attached to front of application. ☐ I wish to pay by electronic transfer. Contact for payment (incl. name and email address): ☑ I wish to pay by credit card. Contact for payment (incl. name and email address): **Meghan Yingling**, myingling@aresenalresources.com ⊠\$500 (Construction, Modification, and Relocation) □\$300 (Class II Administrative Update) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ, OOOO and/or OOOOa ¹ □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH² ¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified. ☐ Responsible Official or Authorized Representative Signature (if applicable) ⊠ Single Source Determination Form (must be completed) – Attachment A ☐ Siting Criteria Waiver (if applicable) – Attachment B □ Current Business Certificate – Attachment C □ Process Flow Diagram – Attachment D □ Process Description – Attachment E □ Plot Plan – Attachment F □ Area Map – Attachment G ☐ G70-D Section Applicability Form – Attachment H ⊠ Emission Units/ERD Table - Attachment I ☑ Fugitive Emissions Summary Sheet – Attachment J ☐ Gas Well Affected Facility Data Sheet (if applicable) – Attachment K Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) - Attachment L ⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment ☐ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment ☐ Tanker Truck/Rail Car Loading Data Sheet (if applicable) – Attachment O ☐ Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc[™] input and output reports and information on reboiler if applicable) - Attachment P □ Pneumatic Controllers Data Sheet – Attachment Q □ Pneumatic Pump Data Sheet – Attachment R ☐ Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) - Attachment S 🗵 Emission Calculations (please be specific and include all calculation methodologies used) - Attachment T ☐ Facility-wide Emission Summary Sheet(s) – Attachment U

All attachments must be identified by name, divided into sections, and submitted in order.

☑ One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

□ Class I Legal Advertisement – Attachment V

ATTACHMENT A SINGLE SOURCE DETERMINATION

ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ½ mile of each other.

by SIC code)?	
Yes □ No ⊠	
Is there equipment and activities under the control of the same person/people? Yes □ No ⊠	
Is there equipment and activities located on the same site or on sites that share equipment and are within ¼ mile of each other? Yes □ No ☒	

ATTACHMENT B SITTING CRITERIA WAIVER (NOT APPLICABLE)

ATTACHMENT C BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT

BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:

ARSENAL RESOURCES LLC 6031 WALLACE ROAD EXT 300 WEXFORD, PA 15090-3430

BUSINESS REGISTRATION ACCOUNT NUMBER:

2247-4512

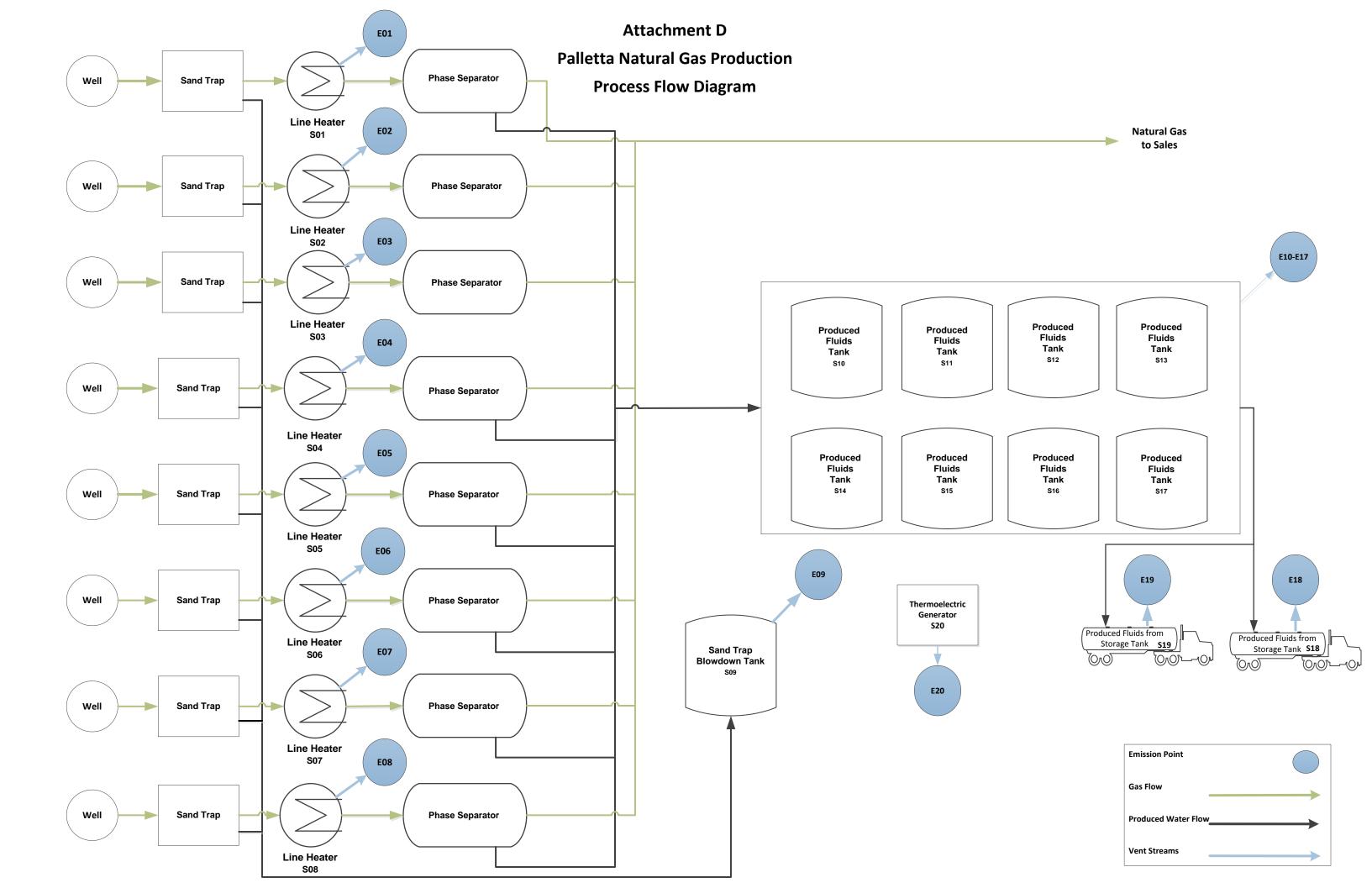
This certificate is issued on:

03/8/2017

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued

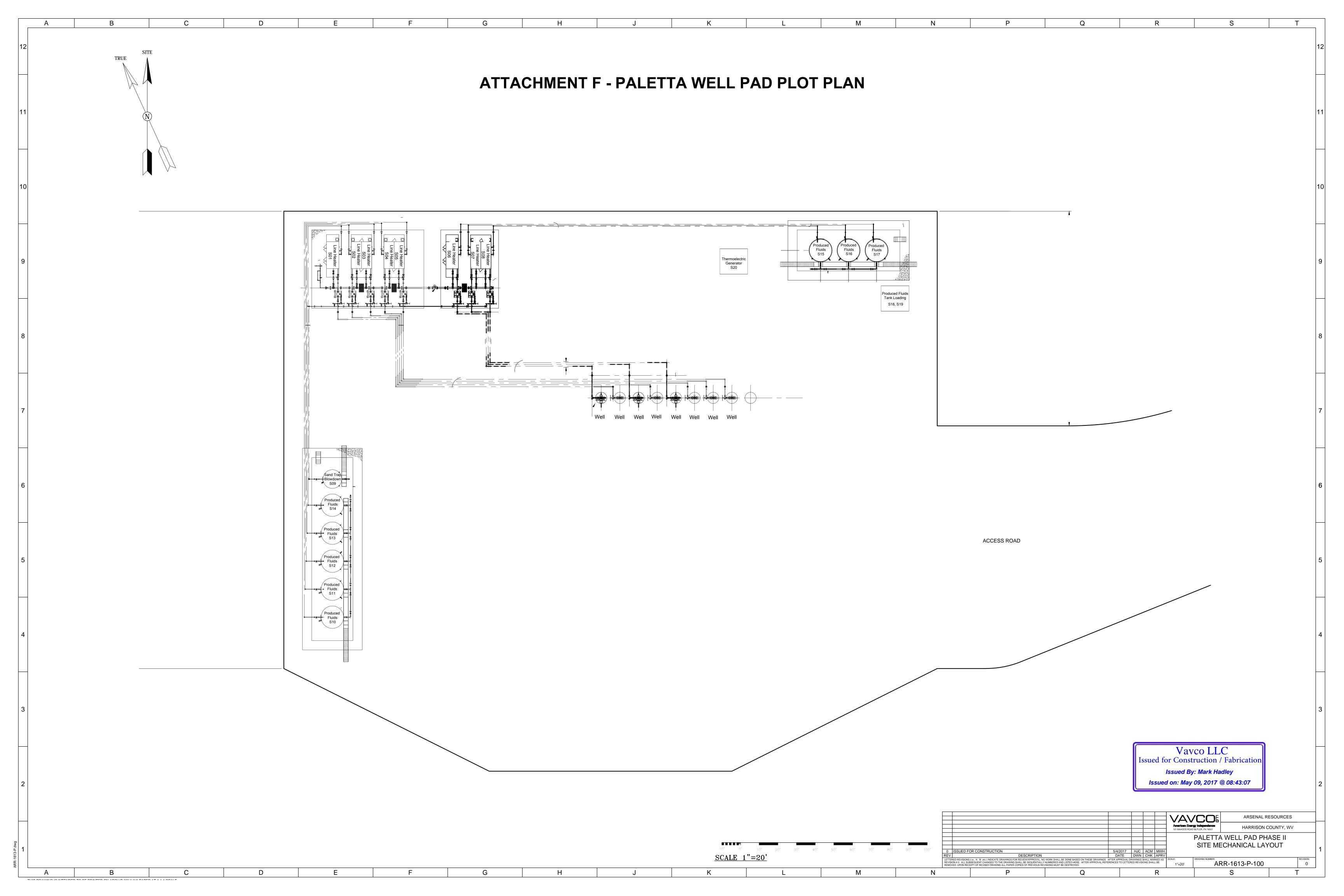

This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

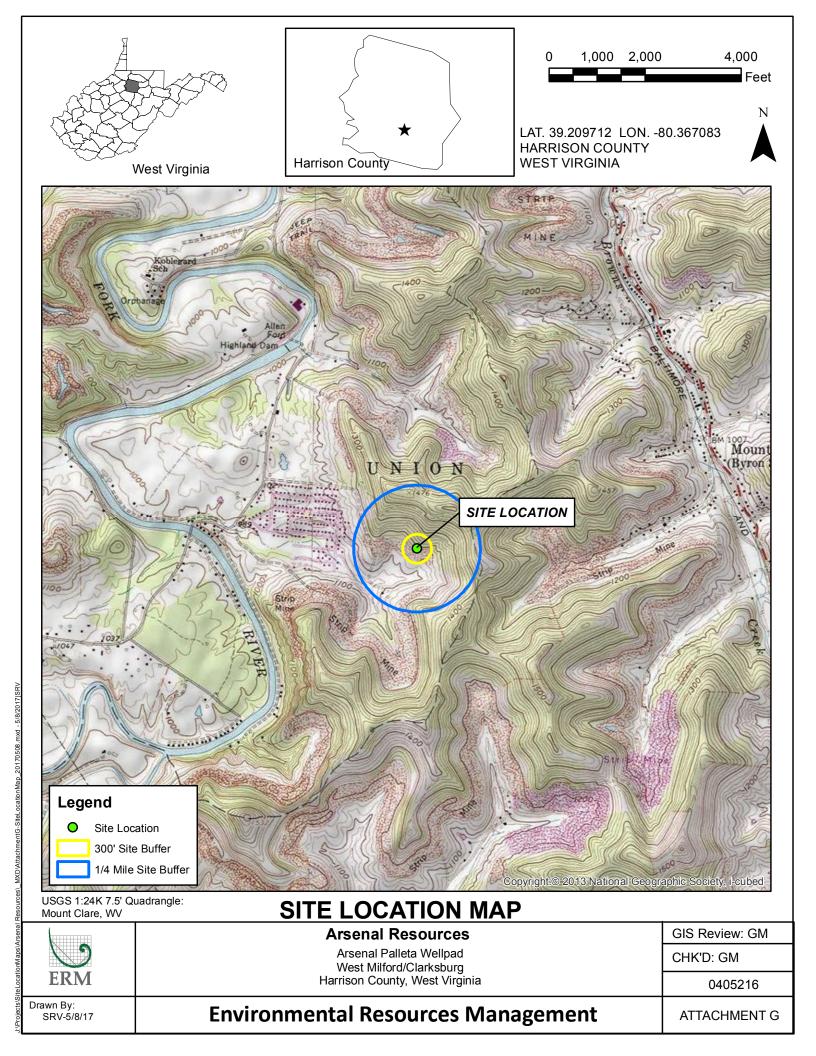
TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L1096398016

ATTACHMENT D PROCESS FLOW DIAGRAM


ATTACHMENT E PROCESS DESCRIPTION

Attachment E – Process Description


This permit application is being filed for Arsenal Resources, LLC and addresses operational activities associated with the Palleta Wellpad natural gas production site. Natural gas flows from the eight (8) wellheads that were drilled and completed on the Paletta pad. The raw gas is first routed through the sand traps to remove any sediment. Fluids from these sand traps are blowndown to the sand trap blowdown tank (S09), as needed. From the sand traps, raw gas is routed through line heaters (S01-S08) to assist with the phase separation process in the downstream separators. In the separator, produced fluids are removed from the raw gas before being dumped to produced fluids tank (S10-17). The separated gas is then sent off site via a sales pipeline. The produced fluids are pumped into a tank truck (S18) on an as needed basis and are disposed of off-site. Power to the site is provided by a thermoelectric generator (S19).

A Process Flow Diagram is included as Attachment D.

ATTACHMENT F PLOT PLAN

ATTACHMENT G AREA MAP

ATTACHMENT H G70-D SECTION APPLICABILITY FORM

ATTACHMENT H - G70-D SECTION APPLICABILITY FORM

General Permit G70-D Registration Section Applicability Form

General Permit G70-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, pneumatic pumps, reciprocating internal combustion engines (RICEs), tank truck/rail car loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERM	MIT G70-D APPLICABLE SECTIONS
⊠ Section 5.0	Gas and Oil Well Affected Facility (NSPS, Subpart OOOO/OOOa)
⊠ Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
☐ Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOa)
☐ Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH
⊠ Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
☐ Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOa)
☐ Section 11.0	Pneumatic Pump Affected Facility (NSPS, Subpart OOOOa)
⊠ Section 12.0	Fugitive Emissions GHG and VOC Standards (NSPS, Subpart OOOOa)
☐ Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines
⊠ Section 14.0	Tanker Truck/Rail Car Loading ²
☐ Section 15.0	Glycol Dehydration Units ³

- 1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subparts 0000 or 0000a control requirements or the applicable control device requirements of Section 8.
- 2 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 3 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I EMISSION UNITS

ATTACHMENT I - EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
S01	E01	Line Heater	2016	2016	1.0 MMBtu/hr	Existing	N/A	N/A
S02	E02	Line Heater	2016	2016	1.0 MMBtu/hr	Existing	N/A	N/A
S03	E03	Line Heater	2016	2016	1.0 MMBtu/hr	Existing	N/A	N/A
S04	E04	Line Heater	2016	2016	1.0 MMBtu/hr	Existing	N/A	N/A
S05	E05	Line Heater	2016	2016	1.0 MMBtu/hr	Existing	N/A	N/A
S06	E06	Line Heater	2017	2017	1.0 MMBtu/hr	New	N/A	N/A
S07	E07	Line Heater	2017	2017	1.0 MMBtu/hr	New	N/A	N/A
S08	E08	Line Heater	2017	2017	1.0 MMBtu/hr	New	N/A	N/A
S09	E09	Sand Trap Blowdown Tank	2016	2016	210 bb1	Existing	N/A	N/A
S10	E10	Produced Fluids Tank	2016	2016	400 bb1	Existing	N/A	N/A
S11	E11	Produced Fluids Tank	2016	2016	400 bb1	Existing	N/A	N/A
S12	E12	Produced Fluids Tank	2016	2016	400 bb1	Existing	N/A	N/A
S13	E13	Produced Fluids Tank	2016	2016	400 bb1	Existing	N/A	N/A
S14	E14	Produced Fluids Tank	2016	2016	400 bb1	Existing	N/A	N/A
S15	E15	Produced Fluids Tank	2017	2017	400 bb1	New	N/A	N/A
S16	E16	Produced Fluids Tank	2017	2017	400 bb1	New	N/A	N/A
S17	E17	Produced Fluids Tank	2017	2017	400 bb1	New	N/A	N/A
S18	E18	Produced Fluids Loadout	2016	2016	554,122 bbl/yr	Modified	N/A	N/A
S19	E19	Produced Fluids Loadout	2017	2017	332,473 bbl/yr	New	N/A	N/A
S19	E19	Thermoelectric Generator	2016	2016	0.0007 MMBTU/hr	Existing	N/A	N/A

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

⁴ New, modification, removal, existing

³ When required by rule

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J FUGITIVE EMISSIONS

			ATTACHMEN	T J – FUGITIVE EMIS	SIONS SUMM	ARY SHEI	ET				
	Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary.										
			1 0	s for each associated source	ce or equipmen	t if necessar	ry.				
			ta site equipment								
	Leak Detection Method Used		☐ Audible, visual, and olfactory (AVO) inspections	☐ Infrared (FLIR) cameras	☑ Other (please	describe)		☐ None required			
Compone	Closed		Source of	Leak Factors	Stream type		Estimated Emis	ssions (tpy)			
Туре	Vent System	Count		er (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (methane, CO ₂ e)			
Pumps	□ Yes □ No				□ Gas □ Liquid ⊠ Both						
Valves	□ Yes ⊠ No	292	E	PA	⊠ Gas □ Liquid □ Both	0.01	<0.01	34.36			
Safety Rel Valves		8	E	PA	⊠ Gas □ Liquid □ Both	<0.01	<0.01	1.39			
Open End Lines	ed ⊠ Yes □ No	20	E	PA .	⊠ Gas □ Liquid □ Both	<0.01	<0.01	5.32			
Samplin Connection											
Connection (Not sample		1277	E	PA .	⊠ Gas □ Liquid □ Both	0.01	<0.01	16.70			
Compress	ors				□ Gas □ Liquid □ Both						
Flanges	☐ Yes ☐ No				□ Gas □ Liquid □ Both						
Other ¹	□ Yes □ No				□ Gas □ Liquid □ Both						
1 Other eq	uipment types n	nay include	compressor seals, relief valves, o	liaphragms, drains, meters, etc.							
Please pro	vide an explana	tion of the	sources of fugitive emissions (e.g	g. pigging operations, equipment	blowdowns, pneum	atic controllers	, etc.):				

Please indicate if there are any closed vent bypasses (include component):

N/A

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck/rail car loading, etc.)

N/A

ATTACHMENT K GAS WELL AFFECTED FACILITY DATA SHEET

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device	Subject to OOOO or OOOOa?
047-033-05766	NA	~6/16/2017	Green Completion	Yes
047-033-05767	NA	~6/16/2017	Green Completion	Yes
047-033-05768	NA	~6/16/2017	Green Completion	Yes
047-033-05769	11/27/2015	2/16/2016	Green Completion	Yes
047-033-05771	11/27/2015	8/23/2016	Green Completion	Yes
047-033-05772	11/27/2015	8/23/2016	Green Completion	Yes
047-033-05773	11/27/2015	8/23/2016	Green Completion	Yes
047-033-05774	11/27/2015	8/23/2016	Green Completion	Yes

Note: If future wells are planned and no API number is available please list as PLANNED.

If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where.

047 = State code. The state code for WV is 047.

001 = County Code. County codes are odd numbers, beginning with 001

(Barbour) and continuing to 109 (Wyoming).

00001= Well number. Each well will have a unique well number.

ATTACHMENT L STORAGE VESSEL DATA SHEET

ATTACHMENT L - STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

supporting documents where applicable.
The following information is REQUIRED:
☐ Composition of the representative sample used for the simulation
☐ For each stream that contributes to flashing emissions:
☐ Temperature and pressure (inlet and outlet from separator(s))
☐ Simulation-predicted composition
□ Molecular weight
□ Flow rate
☐ Resulting flash emission factor or flashing emissions from simulation
□ Working/breathing loss emissions from tanks and/or loading emissions if
simulation is used to quantify those emissions
Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

Bulk Storage Area Name	2. Tank Name						
Produced Fluids Storage Battery	Produced Fluids Tank						
3. Emission Unit ID number S10-17	4. Emission Point ID number E10-17						
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:						
NA	⊠ New construction □ New stored material □ Other						
Was the tank manufactured after August 23, 2011 and on or	☐ Relocation						
before September 18, 2015?							
□ Yes □ No							
Was the tank manufactured after September 18, 2015?							
⊠ Yes □ No							
7A. Description of Tank Modification (if applicable)							
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.						
☐ Yes ⊠ No							
7C. Was USEPA Tanks simulation software utilized?							
☐ Yes ⊠ No							
If Yes, please provide the appropriate documentation and items 8-42 below are not required.							

TANK INFORMATION

8. Design Capacity (specify	y barrels	or gallon	s). Use th	e internal	cross-sect	ional area	multiplied	l by intern	al height.		
400 bbl											
	Tank Internal Diameter (ft.) 12						9B. Tank Internal Height (ft.) 20				
10A. Maximum Liquid He	Iaximum Liquid Height (ft.) 12					10B. Average Liquid Height (ft.) 10					
11A. Maximum Vapor Spa				or Space I)					
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume". 400 bbl											
13A. Maximum annual throughput (gal/yr) 34,944,000 13B. Maximum daily throughput (gal/day) 95.737								•			
14. Number of tank turnovers per year 2080 15. Maximum tank fill rate (gal/min) 66.48											
16. Tank fill method □ Submerged □ Splash □ Bottom Loading											
17. Is the tank system a variable vapor space system? ☐ Yes ☒ No											
If yes, (A) What is the volu	_	_	-	-	_						
(B) What are the nur			to the sys	tem per ye	ear?						
18. Type of tank (check all	that app	ly):									
☐ Fixed Roof ☐ ☑ ve	ertical	☐ horizo	ontal \square	flat roof	\boxtimes cone	roof \square	dome roo	f 🗆 oth	ner (describe)		
☐ External Floating Roof		☐ pontoon		double d	eck roof						
☐ Domed External (or Co	vered) F	loating Ro	oof								
☐ Internal Floating Roof		☐ vertical	column su	ipport [☐ self-sup	porting					
☐ Variable Vapor Space		lifter roo	of 🗆 dia	phragm							
☐ Pressurized		spherica	ıl □ cyl	indrical							
☐ Other (describe)											
PRESSURE/VACUUM O	CONTR	OL DAT	TA								
19. Check as many as appl	y:										
□ Does Not Apply				☐ Ruptu	re Disc (p	sig)					
☐ Inert Gas Blanket of				☐ Carbo	n Adsorpt	ion ¹					
☐ Vent to Vapor Combus	tion Devi	ice ¹ (vapo	r combust	ors, flares	, thermal c	oxidizers,	enclosed c	ombustors	s)		
☐ Conservation Vent (psignature)				☐ Conde							
Vacuum Setting	<i>5</i> /	Pressure	Setting								
☐ Emergency Relief Valv	e (psig)		C								
Vacuum Setting	(1 8)	Pressure	Setting								
☐ Thief Hatch Weighted	□ Yes □										
¹ Complete appropriate Air			Device Sh	ieet							
Tourpoon appropriate											
20. Expected Emission Rat	te (submi	it Test Dat	a or Calcu	ılations he	ere or elsev	where in the	he applicat	ion).			
Material Name		ng Loss	Breathi		Workin		Total	*	Estimation Method ¹		
		•		=			Emissio	ns Loss			
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr tpy				
	•		S	See Attac	hment U			•			
				-							
			1		1						
	l	İ	I	1				I			

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATION	ON INFORMATION									
21. Tank Shell Construction:										
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☒ Other (describe) Welded										
21A. Shell Color: Olive Vine 21B. Roof Color: Olive Vine 21C. Year Last Painted:										
22. Shell Condition (if metal and unlined):										
⊠ No Rust □ Light Rust □ Dense Rust □ Not applicable										
22A. Is the tank heated? \square Yes \boxtimes No	22A. Is the tank heated? ☐ Yes ☒ No 22B. If yes, operating temperature: 22C. If yes, how is heat provided to tank?									
23. Operating Pressure Range (psig): 0 psig	•		•							
Must be listed for tanks using VRUs with closed vent system.										
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provi	de radius (ft):	24B. If yes	s, for cone roof, provide slop (ft/ft):					
⊠ Yes □ No				0.06						
25. Complete item 25 for Floating Roof Tanks	Does not apply	\boxtimes								
25A. Year Internal Floaters Installed:										
25B. Primary Seal Type (check one): Met	allic (mechanical) sho	e seal	☐ Liquid moı	ınted resilie	ent seal					
• • • • • • • • • • • • • • • • • • • •	oor mounted resilient s		☐ Other (des							
		□ No								
25C. Is the Floating Roof equipped with a seco			n							
25D. If yes, how is the secondary seal mounted	? (check one)		Rim Oth	ier (describ	e):					
25E. Is the floating roof equipped with a weath	er shield? Yes)							
25F. Describe deck fittings:										
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes I	Does not apply	7						
26A. Deck Type: ☐ Bolted ☐ W	/elded	26B. Fe	or bolted decks,	provide decl	k construction:					
26C. Deck seam. Continuous sheet construction	n:									
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide □	other (de	scribe)					
	of deck (ft ²):		or column suppo		26G. For column supported					
3 (1)		tanks, # of columns:			tanks, diameter of column:					
27. Closed Vent System with VRU? ☐ Yes	⊠ No									
28. Closed Vent System with Enclosed Combus	stor? □ Yes ⊠ No									
SITE INFORMATION										
29. Provide the city and state on which the data	in this section are based:	:								
30. Daily Avg. Ambient Temperature (°F):			nual Avg. Maxi	mum Tempe	rature (°F):					
32. Annual Avg. Minimum Temperature (°F):		1	g. Wind Speed (_	. ,					
34. Annual Avg. Solar Insulation Factor (BTU/	ft²-day):	1 7	nospheric Pressi							
LIQUID INFORMATION		1								
36. Avg. daily temperature range of bulk	36A. Minimum (°F):			36B. Maxi	imum (°F):					
liquid (°F):										
37. Avg. operating pressure range of tank	37A. Minimum (psig):	: 0.0		37B. Maxi	imum (psig): 0.0					
(psig): 0.0		T								
38A. Minimum liquid surface temperature (°F)	:	1	orresponding va	* *	*					
39A. Avg. liquid surface temperature (°F):			orresponding va orresponding va							
40A. Maximum liquid surface temperature (°F) 41. Provide the following for each liquid or gas					e (psia):					
41A. Material name and composition:	to be stored in the tank.	Add addi	tional pages ii ii	lecessary.						
41B. CAS number:										
41C. Liquid density (lb/gal):										
41D. Liquid molecular weight (lb/lb-mole):		+								
41E. Vapor molecular weight (lb/lb-mole):										
41F. Maximum true vapor pressure (psia):		+								
41G. Maximum Reid vapor pressure (psia):		+								
41H. Months Storage per year.										
From: To:										
42. Final maximum gauge pressure and										
temperature prior to transfer into tank used as										
inputs into flashing emission calculations.										

ATTACHMENT L - STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.

supporting documents where applicable.								
The following information is REQUIRED:								
 □ Composition of the representative sample used for the simulation □ For each stream that contributes to flashing emissions: □ Temperature and pressure (inlet and outlet from separator(s)) □ Simulation-predicted composition □ Molecular weight □ Flow rate □ Resulting flash emission factor or flashing emissions from simulation □ Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions 								
Additional information may be requested if necessary.								

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name 2. Tank Name								
Blowdown Storage Vessel	Sand Trap Blowdown							
3. Emission Unit ID number S09	4. Emission Point ID number E09							
5. Date Installed , Modified or Relocated (for existing tanks)	6. Type of change:							
Was the tank manufactured after August 23, 2011 and on or	⊠ New construction □ New stored material ⊠ Other							
before September 18, 2015?	☐ Relocation							
☐ Yes ☐ No								
Was the tank manufactured after September 18, 2015?								
⊠ Yes □ No								
7A. Description of Tank Modification (if applicable) N/A								
7B. Will more than one material be stored in this tank? If so, a s	separate form must be completed for each material.							
□ Yes ⊠ No								
7C. Was USEPA Tanks simulation software utilized?								
☐ Yes								
If Yes, please provide the appropriate documentation and items	If Yes, please provide the appropriate documentation and items 8-42 below are not required.							

TANK INFORMATION

8. Design Capacity (specification 210 bbl)	y barrels	or gallon	s). Use th	ne internal	cross-sect	ional area	multiplied	l by intern	al height.
9A. Tank Internal Diameter (ft.) 12					9B. Tanl	Internal	Height (ft.) 12	
10A. Maximum Liquid Height (ft.) 12 10B. Average Liquid Height (ft.) 6									
11A. Maximum Vapor Sp							or Space I)
12. Nominal Capacity (spe	ecify barr	els or gal	lons). Thi	is is also k	nown as "	working v	olume". 2	10 bbl	
13A. Maximum annual th	roughput	(gal/yr) 2	2,293,200		13B. Ma	ximum da	aily throug	hput (gal/c	lay) 6,283
14. Number of tank turnov	ers per y	ear 260			15. Max	imum tan	k fill rate (gal/min) 4	.36
16. Tank fill method □	Submerg	ed [⊠ Splash		Bottom	Loading			
17. Is the tank system a va	riable vaj	por space	system?	☐ Yes	⊠ No				
If yes, (A) What is the volu	ıme expa	nsion cap	acity of the	e system (gal)?				
(B) What are the nu	mber of t	ransfers ii	nto the sys	stem per ye	ear?				
18. Type of tank (check al	l that app	ly):							
	ertical	☐ horize	ontal \square	flat roof	⊠ cone	roof [dome roo	of \square oth	ner (describe)
☐ External Floating Roof		☐ pontoor	n roof 🗆	double d	leck roof				
☐ Domed External (or Co	vered) F	loating Ro	oof						
☐ Internal Floating Roof		☐ vertical	column sı	upport [□ self-sup	porting			
☐ Variable Vapor Space		lifter ro	of 🗆 dia	aphragm					
☐ Pressurized		spherica	al 🗆 cy	lindrical					
☐ Other (describe)									
PRESSURE/VACUUM (CONTR	OL DA	ΓΑ						
19. Check as many as app	ly:								
☐ Does Not Apply				☐ Ruptu	re Disc (p	sig)			
☐ Inert Gas Blanket of				☐ Carbo	n Adsorpt	ion ¹			
☐ Vent to Vapor Combus	tion Devi	ce1 (vapo	r combust	ors, flares	, thermal o	oxidizers,	enclosed c	ombustors	s)
☐ Conservation Vent (psi	g)			☐ Conde	enser ¹				
Vacuum Setting		Pressure	Setting						
☐ Emergency Relief Valv	e (psig)								
Vacuum Setting	4 0,	Pressure	Setting						
☐ Thief Hatch Weighted	□ Yes □								
¹ Complete appropriate Air			Device Sh	neet					
20. Expected Emission Ra	te (submi	t Test Da	ta or Calcı	ulations he	ere or else	where in t	he applica	tion).	
Material Name	Flashi	ng Loss	Breathi	ing Loss	Workin	g Loss	Total		Estimation Method ¹
							Emissio	ns Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
See Attachment U									
	T	ı	Т	1	1	T	1		T

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION									
21. Tank Shell Construction:										
☐ Riveted ☐ Gunite lined ☐ Epoxy-coated rivets ☒ Other (describe) Welded										
21A. Shell Color: Olive Vine 21B. Roof Color: Olive Vine 21C. Year Last Painted:										
22. Shell Condition (if metal and unlined):										
⊠ No Rust □ Light Rust □ Dense	Rust ☐ Not applica	able								
22A. Is the tank heated? ☐ Yes ☒ No	22B. If yes, operating t	emperat	ure:	22C. If yes	s, how is heat provided to tank?					
23. Operating Pressure Range (psig): 0 psig										
Must be listed for tanks using VRUs with	th closed vent system	l .								
24. Is the tank a Vertical Fixed Roof Tank ? 24A. If yes, for dome roof provide radius (ft): 24B. If yes, for cone roof, provide slop (ft/ft)										
Yes □ No 24A. If yes, for doine foot provide fading (it). 24B. If yes, for come foot, provide stop (it it). 0.06										
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply	\boxtimes								
25A. Year Internal Floaters Installed:	11.5									
25B. Primary Seal Type (check one): ☐ Met	allic (mechanical) sho	e seal	☐ Liquid mo	unted resili	ent seal					
• • • •	or mounted resilient se		☐ Other (des							
			□ Other (des	cribe).						
25C. Is the Floating Roof equipped with a second	-	□ No								
25D. If yes, how is the secondary seal mounted				ner (describ	e):					
25E. Is the floating roof equipped with a weather	er shield? Yes		О							
25F. Describe deck fittings:										
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes	Does not apply	/						
26A. Deck Type: ☐ Bolted ☐ W	Velded	26B. 1	For bolted decks,	provide dec	k construction:					
26C. Deck seam. Continuous sheet constructio										
\square 5 ft. wide \square 6 ft. wide \square 7 ft. wide				*	, , , , , , , , , , , , , , , , , , ,					
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):		For column suppo	orted	26G. For column supported					
		tanks,	# of columns:		tanks, diameter of column:					
	✓ N									
27. Closed Vent System with VRU? Yes										
28. Closed Vent System with Enclosed Combus	stor? 🗵 Yes 🗆 No									
SITE INFORMATION										
29. Provide the city and state on which the data	in this section are based:									
30. Daily Avg. Ambient Temperature (°F):			nnual Avg. Maxi		rature (°F):					
32. Annual Avg. Minimum Temperature (°F):	c2 1 \		vg. Wind Speed (
34. Annual Avg. Solar Insulation Factor (BTU/	Itday):	33. A	mospheric Press	ure (psia):						
LIQUID INFORMATION	264 Minimum (9E).			26D May	(%F).					
36. Avg. daily temperature range of bulk liquid (°F):	36A. Minimum (°F):			36B. Max	illiulii (F):					
37. Avg. operating pressure range of tank	37A. Minimum (psig):	0.0		37B. Max	imum (psig): 0.0					
(psig): 0.0	(16)				(13.8).					
38A. Minimum liquid surface temperature (°F):		38B. (Corresponding va	apor pressure	(psia):					
39A. Avg. liquid surface temperature (°F):		39B. (Corresponding va	apor pressure	(psia):					
40A. Maximum liquid surface temperature (°F)			Corresponding va		e (psia):					
41. Provide the following for each liquid or gas	to be stored in the tank.	Add add	litional pages if r	necessary.						
41A. Material name and composition:										
41B. CAS number:										
41C. Liquid density (lb/gal):										
41D. Liquid molecular weight (lb/lb-mole):										
	41E. Vapor molecular weight (lb/lb-mole):									
41F. Maximum true vapor pressure (psia):										
41G. Maximum Reid vapor pressure (psia):										
41H. Months Storage per year. From: To:										
42. Final maximum gauge pressure and										
temperature prior to transfer into tank used as										
inputs into flashing emission calculations.										

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
None	None	None	None

- 1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the well site. Tanks should be designated T01, T02, T03, etc.
- 2. Enter storage tank Status using the following:

EXIST Existing Equipment
NEW Installation of New Equipment NEW

REM Equipment Removed

- Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.
- Enter the maximum design storage tank volume in gallons.

ATTACHMENT M SMALL HEATERS AND REBOILERS

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description Installed/ Type and Date of		Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵	
S01	E01	Line Heater	2016	Existing	1.00	1,020
S02	E02	Line Heater	2016	Existing	1.00	1,020
S03	E03	Line Heater	2016	Existing	1.00	1,020
S04	E04	Line Heater	2016	Existing	1.00	1,020
S05	E05	Line Heater	2016	Existing	1.00	1,020
S06	E06	Line Heater	2017	New	1.00	1,020
S07	E07	Line Heater	2017	New	1.00	1,020
S08	E08	Line Heater	2017	New	1.00	1,020
S20	E20	TEG	2016	Existing	0.0007	1,020

¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

³ New, modification, removal

⁴ Enter design heat input capacity in MMBtu/hr.

⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N INTERNAL COMBUSTION ENGINE DATA SHEET (NOT APPLICABLE)

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: S18		Emissi	Emission Point ID#: E18			Year Installed/Modified: 2017 Modified					
Emission Unit Description: Tanker Truck load out for produced water tanks											
Loading Area Data											
Number of Pumps: 1		Numbe	er of Liquids	Loaded: 1		Max number of trucks/rail cars loading at one (1) time: 1					
Are tanker trucks/rail cars pressure tested for leaks at this or any other location? Yes No Not Required If Yes, Please describe:											
Provide description of clos	sed vent sys	tem and any	bypasses. N	/A							
Are any of the following truck/rail car loadout systems utilized? Closed System to tanker truck/rail car passing a MACT level annual leak test? Closed System to tanker truck/rail car passing a NSPS level annual leak test? Closed System to tanker truck/rail car not passing an annual leak test and has vapor return?											
Proj	ected Maxi	mum Operat	ing Schedul	e (for rack o	r transfe	er point as a wh	ole)				
Time	Jan -	- Mar	Apr - Jun		Jul – Sept		Oct - Dec				
Hours/day	2	4	24		24		24				
Days/week		7	7		7		7				
		Bulk Liquid	Data (use ex	xtra pages a	s necessa	ary)					
Liquid Name	Proc	luced Fluids									
Max. Daily Throughput (1 gal/day)	000 102.	02									
Max. Annual Throughput (1000 gal/yr)	37,2	37									
Loading Method ¹	BF										
Max. Fill Rate (gal/min)	70.8	5									
Average Fill Time (min/loading)	NA										
Max. Bulk Liquid Temperature (°F)	60										
True Vapor Pressure ²	essure ² NA										
Cargo Vessel Condition ³	U										
Control Equipment or Method ⁴	Non	e									

Max. Collection Efficiency (%)		NA	
Max. Control Et	ficiency (%)	NA	
Max.VOC	Loading (lb/hr)	0.04	
Emission Rate	Annual (ton/yr)	0.16	
Max.HAP	Loading (lb/hr)	<0.01	
Emission Rate	Annual (ton/yr)	<0.01	
Estimation Method ⁵		O - ProMax	

1	BF	Bottom Fill	SP Splash Fill			SUB	Submerged Fill	
2	At maxin	num bulk liquid temperature						
3	В	Ballasted Vessel	C	Cleaned			U	Uncleaned (dedicated service)
	O	Other (describe)						
4	List as n	nany as apply (complete and s	ubmit app	ropriate A	Air Polluti	ion Contr	ol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicate	ed Vapor	Balance (c	closed system)
	ECD	Enclosed Combustion Devic	e	F	Flare			
	TO	Thermal Oxidization or Inci	neration					
5	EPA	EPA Emission Factor in AP-	-42			MB	Material	Balance
	TM	Test Measurement based upo	on test dat	a submitt	al	O	Other (de	scribe)

ATTACHMENT O TANKER TRUCK/RAIL CAR LOADING

ATTACHMENT O – TANKER TRUCK/RAIL CAR LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks/rail cars. Use extra pages if necessary.

Truck/Rail Car Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck/rail car loadout are allowed:

- For tanker trucks/rail cars passing the MACT level annual leak test 99.2%
- For tanker trucks/rail cars passing the NSPS level annual leak test 98.7%
- For tanker trucks/rail cars not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking/rail car company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: S18		Emission Point ID#: E18 Year In Modifi							Modified: 2017		
Emission Unit Description: Tanker Truck load out for produced water tanks											
Loading Area Data											
Number of Pumps: 2			Numbe	r of Liquids	Loaded: 1		Max num at one (1)		trucks/rail cars loading 1		
Are tanker trucks/rail cars pressure tested for leaks at this or any other location? Yes No Not Required If Yes, Please describe:											
Provide description of closed vent system and any bypasses. N/A											
Are any of the following truck/rail car loadout systems utilized? □ Closed System to tanker truck/rail car passing a MACT level annual leak test? □ Closed System to tanker truck/rail car passing a NSPS level annual leak test? □ Closed System to tanker truck/rail car not passing an annual leak test and has vapor return?											
Proj	ected	Maximum (Operat	ing Schedul	e (for rack o	r transfe	er point as	a who	ole)		
Time		Jan – Mar		Apr	- Jun	ın Jul – Sept			Oct - Dec		
Hours/day		24		2	24		24		24		
Days/week		7		-	7		7		7		
		Bulk	Liquid	Data (use e	xtra pages a	s necessa	ry)				
Liquid Name		Prod	uced Fl	uids*	Produ	ced Flui	ds*				
Max. Daily Throughput (1 gal/day)	1000		63.76			38.26					
Max. Annual Throughput (1000 gal/yr)			23,273			13,964					
Loading Method ¹			BF			BF					
Max. Fill Rate (gal/min)			70.85			70.85					
Average Fill Time (min/loading)			NA			NA					
Max. Bulk Liquid Temperature (°F)		60		60							
True Vapor Pressure ²		NA				NA					
Cargo Vessel Condition ³			U			U					
Control Equipment or Method ⁴			None			None					

Max. Collection (%)	Efficiency	NA	NA NA				
Max. Control Et	Max. Control Efficiency (%) NA NA						
Max.VOC	Loading (lb/hr)	0.	0.04				
Emission Rate	Annual (ton/yr)	0.	0.16				
Max.HAP	Loading (lb/hr)	<0	.01				
Emission Rate	Annual (ton/yr)						
Estimation Method ⁵ O - ProMax O - ProMax							

^{*}Arsenal Resources is providing estimates of fluid throughputs from tank unloading activities based upon expected operations. The types of fluids are identified between loading racks, so it is requested that a single permit limitation is placed on total fluid throughputs for the site.

1	BF	Bottom Fill	SP Splash Fill			SUB	Submerged Fill	
2	At maxin	num bulk liquid temperature						
3	В	Ballasted Vessel	C	Cleaned			U	Uncleaned (dedicated service)
	O	Other (describe)						
4	List as n	nany as apply (complete and s	submit app	ropriate A	Air Polluti	ion Contr	ol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicate	ed Vapor	Balance (c	closed system)
	ECD	Enclosed Combustion Devic	e	F	Flare			
	TO	Thermal Oxidization or Inci	neration					
5	EPA	EPA Emission Factor in AP-	-42			MB	Material	l Balance
	TM	Test Measurement based up	on test dat	a submitt	al	O	Other (de	escribe)

ATTACHMENT P GLYCOL DEHYDRATION UNIT DATA SHEET (NOT APPLICABLE)

ATTACHMENT Q PNEUMATIC CONTROLLERS DATA SHEET

ATTACHMENT Q – PNEUMATIC CONTROLLERS **DATA SHEET** Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015? Yes ⊠ No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after **September 18, 2015?** Yes \boxtimes No Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015? No No Yes Please list approximate number. Are there any continuous bleed natural gas driven pneumatic controllers at this

Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?

☐ Yes ⊠ No

Please list approximate number.

ATTACHMENT R PNEUMATIC PUMP DATA SHEET

ATTACHMENT R – PNEUMATIC PUMP DATA SHEET

Are there any natural gas-driven diaphragm pumps located at a well site that commenced construction, modification or reconstruction after September 18, 2015?

☐ Yes ☐ No

Please list.

Source ID#	Date	Pump Make/Model	Pump Size

ATTACHMENT S AIR POLLUNTION CONTROL DEVICE/EMISSION REDUCTION DEVICE SHEETS (NOT APPLICABLE)

ATTACHMENT T EMISSION CALCULATIONS

Attachment T - Emission Calculations Line Heaters S01 - S08

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	0.02
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020 8,760		<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	0.08	0.36
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	0.10	0.43
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	0.02
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	0.03
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,020	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	1.00	1,020	8,760	116.98	512.36
CH₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.00	1,020	8,760	<0.01	<0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	1.00	1,020	8,760	<0.01	<0.01
Total HAPs							<0.01	<0.01
Total CO ₂ e							117.10	512.89

Notes

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

⁻Emission rates displayed above represent the max. hourly and max. annual emissions for one line heater. Cumulative emission rates for all 8 line heaters are diplayed in the Total Site Emissions Table.

⁻Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻AP-42, Chapter 1.4 references are from the July 1998 revision.

Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

⁻CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Attachment T - Emission Calculations Sand Trap Blowdown Tank S09

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	0.35	1.53
Total HAPs	0.01	0.05
Hexane	0.01	0.05
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01
CO_2	<0.01	<0.01
CH₄	0.18	0.78
Total CO₂e	4.48	19.61

Notes:

- -Blowdown operations are conducted on the Palleta pad daily to allow for the removal of fluids from the sand traps. Based on available operational information, blowdowns are assummed to occur for one hour per day.
- -Emission rates for the Sand Trap Blowdown Tank were calculated using ProMax software. ProMax output sheets for the Palleta Pad are attached.
- $-CO_2 \ equivalency \ solved \ for \ using \ Global \ Warming \ Potentials \ found \ in \ 40CFR98 \ Table \ A-1. \ GWP \ CO_2=1, \ GWP \ CH_4=25, \ GWP \ N_2O=298$

Attachment T - Emission Calculations Produced Fluids Tanks S10 - S17

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	8.37	36.66
Total HAPs	0.30	1.31
Hexane	0.26	1.13
Benzene	<0.01	0.03
Toluene	0.03	0.12
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	0.01
CO ₂	0.03	0.11
CH ₄	4.30	18.82
Total CO₂e	107.46	470.67

Notes:

- -Emission rates for Produced Fluid Tanks S10 S17 were calculated using ProMax software. ProMax output sheets for the Palleta Pad are attached.
- -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298
- -For emission calculation purposes, the total throughput for tanks S10 S17 is modeled as being received through a single tank. The throughput value represents the total throughput for all eight (8) 400-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located on the well pad. Actual throughput for each tank will vary based on operations.
- -Arsenal Resources will operate the Palleta Site in Harrison county where the produced hydrocarbon condensate is expected to be minimal. A representative analysis was used in order to find a conservative esitmate of emissions from condensate. In order to comply with the permit, Arsenal will collect and analyze a pressurized tank liquid sample within 30 days of production start up.

Attachment T - Emission Calculations Liquids Unloading (S18/S19)

Pollutant	Max. Hourly Emissions using ProMax (lb/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	0.04	0.16
Total HAPs	<0.01	<0.01
Hexane	<0.01	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01
CO ₂	<0.01	0.01
CH₄	0.03	0.12
Total CO₂e	0.70	3.06

Notes:

⁻Emission rates for Liquids Unloading was calculated using ProMax software. ProMax output sheets for the Palleta Pad are attached.

⁻CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO_2 =1, GWP CH_4 =25, GWP N_2O =298

Attachment T - Emission Calculations TEG (S20)

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (lb/hr)	Max. Annual Emissions. (tpy)
VOC's	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
СО	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
NOx	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.0007	1,020	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	0.0007	1,020	8,760	0.08	0.36
CH₄	0.001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.0007	1,020	8,760	<0.01	<0.01
N ₂ O	0.0001	kg CO ₂ / MMBtu	40 CFR Subpart C	0.0007	1,020	8,760	<0.01	<0.01
Total HAPs							<0.01	<0.01
Total CO ₂ e							0.08	0.36

Notes

Example Equations:

Max. Hourly Emission Rate (Ib/hr) = Emission Factor (Ib/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr)

⁻Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

⁻AP-42, Chapter 1.4 references are from the July 1998 revision.

⁻Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

⁻CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Attachment T - Emission Calculations Fugitive Leaks

Default Average Co	Default Average Component Counts for Major Onshore Natural Gas Production Equipment										
Facility Equipment Type	Valves	Connectors	Open-ended Lines	Pressure Relief Valves							
Wellheads	8	38	0.5	0							
Separators	1	6	0	0							
Meters/Piping	12	45	0	0							
Compressors	12	57	0	0							
In-line Heaters	14	65	2	1							
Dehydrators	24	90	2	2							

Well Specific Equipment Counts								
Facility Equipment Type	Count on Site							
Wellheads	8							
Separators	8							
Meters/Piping	9							
Compressors	0							
In-line Heaters	8							
Dehydrators	0							

⁻ Table W-1B to 40CFR98 Subpart W

Gas Composition Gas Composition														
	Propane	Butane	Pentanes	Heptane	Octanes	Nonanes	Decanes	Hexane	Benzene	Toluene	Ethylbenzene	Xylene	CO ₂	CH ₄
Mole %	0.20	0.02	0.002	<0.01	< 0.001	< 0.001	< 0.001	0.0046	< 0.001	< 0.001	< 0.001	< 0.001	0.11	96.12
MW	44	58	72	100	114	128	142	86.00	78.00	92.00	106.00	106.00	44.00	16.00

				Fugitive	Emissions								
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (lbs/hr)	VOCs (tons/yr)	HAPs (lbs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH ₄ (lbs/hr)	CH ₄ (tons/yr)	Total CO₂e (lbs/hr)	Total CO ₂ e (tons/yr)
Valves	292	0.027	8760	0.00	0.01	<0.001	<0.001	0.002	0.007	0.31	1.38	7.86	34.45
Connectors	1277	0.003	8760	0.00	0.00	<0.001	<0.001	< 0.001	0.003	0.15	0.67	3.82	16.74
Open-ended Lines	20	0.06	8760	<0.001	0.00	<0.001	<0.001	< 0.001	0.001	0.05	0.21	1.22	5.33
Pressure Relief Valves	8	0.04	8760	<0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	0.01	0.06	0.32	1.40
			Total Emissions:	<0.01	0.02	<0.01	<0.01	<0.01	0.01	0.53	2.32	13.22	57.92

⁻ Table W-1A to 40CFR98 Subpart W

Example Equations:
Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's

Attachment T - Emission Calculations Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial Roads								
Constant	PM	PM-10	PM-2.5						
k (lb/VMT)	4.9	1.5	0.15						
а	0.7	0.9	0.9						
b	0.45	0.45	0.45						

where

k Patricle size multiplier¹
s 4.8 Silt content of road surface material (%)
p 150 Number of days per year with precipitation

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)	PM Emissions (lbs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (lbs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (lbs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	1.17	10,400	NA	NA	5.01	26.06	1.28	6.64	0.13	0.66
2	Employee Vehicles	4	3	1.17	200	NA	NA	1.78	0.18	0.45	0.05	0.05	0.005
							Totals:	6.79	26.24	1.73	6.69	0.17	0.67

Notes:

Example Calculations:

Emissions (lb/Vehicle Mile Traveled) - $E = k \times (s/12)^a \times (W/3)^b$

Equation 1a from AP-42 13.2.2 - Final Version 11/2006

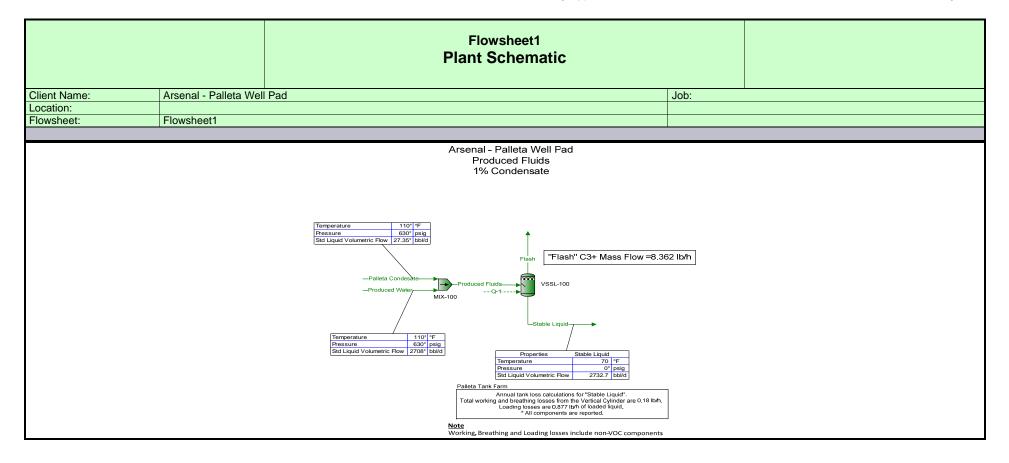
Size Specific Emissions (lb/VMT) - $E_{ext} = E[(365-p)/365]$

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

¹ - Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006

² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in 3 found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006


Attachment T - Emission Calculations Palleta Site Emission Levels

	,	VOCs	НА	APs	C	ю	N	IO _x	PM -	Total	PM -	10/2.5	PM -	CON	s	O ₂	c	CO ₂	C	CH₄	N	I ₂ O	Co	O ₂ e
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (E01)	<0.01	0.02	<0.01	<0.01	0.0824	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Line Heater (E02)	<0.01	0.02	<0.01	<0.01	0.0824	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Line Heater (E03)	<0.01	0.02	<0.01	<0.01	0.0824	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Line Heater (E04)	<0.01	0.02	<0.01	<0.01	0.0824	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Line Heater (E05)	<0.01	0.02	<0.01	<0.01	0.0824	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Line Heater (E06)	<0.01	0.02	<0.01	<0.01	0.0824	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Line Heater (E07)	<0.01	0.02	<0.01	<0.01	0.0824	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Line Heater (E08)	<0.01	0.02	<0.01	<0.01	0.0824	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89
Blowdown Tank (E09)	0.35	1.53	0.01	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	0.18	0.78	<0.01	<0.01	4.48	19.61
Fluids Tank (E10-E17)	8.37	36.66	0.30	1.31	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	0.03	0.11	4.30	18.82	<0.01	<0.01	107.46	470.67
Tank Truck Loading Activities (E18E19)	0.04	0.16	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	0.01	0.03	0.12	<0.01	<0.01	0.70	3.06
TEG (E20)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.08	0.36	<0.01	<0.01	<0.01	<0.01	0.08	0.36
Haul Roads									6.79	26.24	6.79	26.24												
Fugitives Leaks	<0.01	0.02	<0.01	<0.01													<0.01	0.01	0.53	2.32			13.22	57.92
Totals	8.75	38.35	0.33	1.43	0.66	2.89	0.78	3.44	6.79	26.50	6.79	26.24	<0.01	0.20	<0.01	<0.01	935.93	4099.38	5.03	22.04	<0.01	<0.01	1062.72	4654.72

Attachment T - Emission Calculations Palleta Site Emission Levels - HAP Speciation

	Total	HAPs	Formal	dehyde	Hex	rane	Ben	zene	Tolu	uene	Ethylb	enzene	Xyl	lene
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Line Heater (E01)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E02)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E03)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E04)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E05)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E06)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E07)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Line Heater (E08)	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Blowdown Tank (E09)	0.01	0.05	<0.01	<0.01	0.01	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluids Tanks (E10-E17)	0.30	1.31	<0.01	<0.01	0.26	1.13	<0.01	0.03	0.03	0.12	<0.01	<0.01	<0.01	0.01
Tank Truck Loading Activities (E18/E19)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
TEG (E20)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Haul Roads														
Fugitives Leaks	0.000	0.000	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Totals	0.33	1.43	<0.01	<0.01	0.28	1.25	0.01	0.03	0.03	0.13	<0.01	<0.01	<0.01	0.01

ATTACHMENT T SUPPORTING INFORMATION

Process Streams Report All Streams Tabulated by Total Phase

Client Name:	Arsenal - Palleta Well Pad	Job:	
Location:			
Flowsheet:	Flowsheet1		

Connections

	Condesate	Fluids	Water	
100		MIX-100	-	VSSL-100
	MIX-100	VSSL-100	MIX-100	
	100	100	100 MIX-100	100 MIX-100

Stream Composition

	Oti Calii C	omposition			
	Flash	Palleta Condesate	Produced Fluids	Produced Water	Stable Liquid
Mole Fraction	%	%	%	%	%
Nitrogen	0	0 *	0	0 *	0
Methane	49.3185	10.674 *	0.0136845	0 *	0.00150213
Carbon Dioxide	0.106726	0.065 *	8.33327E-05	0 *	5.69832E-05
Ethane	21.6056	5.377 *	0.00689354	0 *	0.00155687
Propane	11.8735	3.736 *	0.00478971	0 *	0.00185714
Isobutane	2.96065	1.359 *	0.0017423	0 *	0.0010112
n-Butane	4.77322	2.754 *	0.00353074	0 *	0.00235223
Isopentane	2.1106	2.508 *	0.00321536	0 *	0.00269466
n-Pentane	1.50745	2.25 *	0.00288459	0 *	0.00251284
i-Hexane	1.36364	4.742 *	0.00607944	0 *	0.00574401
n-Hexane	0.55268	2.718 *	0.00348459	0 *	0.00334889
2,2,4-Trimethylpentane	0.0012568	0.018 *	2.30768E-05	0 *	2.27719E-05
Benzene	0.0138494	0.109 *	0.000139743	0 *	0.000136355
Heptane	0.850963	13.22 *	0.0169486	0 *	0.0167425
Toluene	0.0563531	1.097 *	0.0014064	0 *	0.00139282
Octane	0.30782	15.626 *	0.0200332	0 *	0.0199621
Ethylbenzene	0.00332532	0.2 *	0.000256408	0 *	0.00025565
o-Xylene	0.00484914	0.368 *	0.000471791	0 *	0.00047071
Nonane	0.0691724	11.599 *	0.0148704	0 *	0.014857
Decane	0.0403203	21.58 *	0.0276665	0 *	0.0276633
Water	2.47956	0 *	99.8718	100 *	99.8959

	Flash	Palleta	Produced	Produced	Stable Liquid
Molar Flow	lbmol/h	Condesate Ibmol/h	Fluids lbmol/h	Water Ibmol/h	lbmol/h
Nitrogen	0	0 *	0	0 *	0
Methane	0.267527	0.300504 *	0.300504	0 *	0.0329777
Carbon Dioxide	0.000578931	0.00182994 *	0.00182994	0 *	0.00125101
Ethane	0.117199	0.151378 *	0.151378	0 *	0.0341795
Propane	0.0644076	0.105179 *	0.105179	0 *	0.0407718
Isobutane	0.01606	0.0382598 *	0.0382598	0 *	0.0221999
n-Butane	0.0258922	0.0775332 *	0.0775332	0 *	0.051641
Isopentane	0.0114489	0.0706076 *	0.0706076	0 *	0.0591587
n-Pentane	0.0081771	0.0633441 *	0.0633441	0 *	0.055167
i-Hexane	0.00739704	0.133501 *	0.133501	0 *	0.126104
n-Hexane	0.002998	0.0765197 *	0.0765197	0 *	0.0735217
2,2,4-Trimethylpentane	6.81746E-06	0.000506753 *	0.000506753	0 *	0.000499935
Benzene	7.51258E-05	0.00306867 *	0.00306867	0 *	0.00299354
Heptane	0.00461602	0.372182 *	0.372182	0 *	0.367566
Toluene	0.000305686	0.0308838 *	0.0308838	0 *	0.0305781
Octane	0.00166976	0.439918 *	0.439918	0 *	0.438248
Ethylbenzene	1.80381E-05	0.00563059 *	0.00563059	0 *	0.00561255
o-Xylene	2.6304E-05	0.0103603 *	0.0103603	0 *	0.010334
Nonane	0.000375224	0.326546 *	0.326546	0 *	0.326171
Decane	0.000218716	0.60754 *	0.60754	0 *	0.607322
Water	0.0134503	0 *	2193.13	2193.13 *	2193.12

Mass Fraction	Flash %	Palleta Condesate %	Produced Fluids %	Produced Water %	Stable Liquid %
Nitrogen	0	0 *	0	0 *	0
Methane	26.0964	1.79018 *	0.012119	0 *	0.0013305

Process Streams Report All Streams Tabulated by Total Phase

Arsenal - Palleta Well Pad Job: Client Name:

Location: Flowsheet: Flowsheet1

	Flash	Palleta Condesate	Produced Fluids	Produced Water	Stable Liquid
Mass Fraction	%	%	%	%	%
Carbon Dioxide	0.154923	0.029906 *	0.000202455	0 *	0.000138462
Ethane	21.4282	1.69028 *	0.0114427	0 *	0.0025847
Propane	17.2693	1.72227 *	0.0116593	0 *	0.00452146
Isobutane	5.67583	0.825773 *	0.00559023	0 *	0.00324502
n-Butane	9.15068	1.67342 *	0.0113285	0 *	0.0075485
Isopentane	5.02266	1.89171 *	0.0128063	0 *	0.0107343
n-Pentane	3.58733	1.69711 *	0.0114889	0 *	0.01001
i-Hexane	3.876	4.27212 *	0.028921	0 *	0.0273298
n-Hexane	1.57093	2.44868 *	0.0165768	0 *	0.0159339
2,2,4-Trimethylpentane	0.00473521	0.0214954 *	0.000145518	0 *	0.000143619
Benzene	0.0356819	0.0890107 *	0.000602576	0 *	0.000588067
Heptane	2.81246	13.8486 *	0.093751	0 *	0.0926265
Toluene	0.171261	1.05669 *	0.00715345	0 *	0.00708558
Octane	1.15977	18.6604 *	0.126325	0 *	0.125898
Ethylbenzene	0.0116444	0.221978 *	0.00150273	0 *	0.00149853
o-Xylene	0.0169803	0.40844 *	0.00276502	0 *	0.00275914
Nonane	0.292622	15.5523 *	0.105284	0 *	0.105207
Decane	0.189222	32.0996 *	0.217305	0 *	0.217316
Water	1.47338	0 *	99.323	100 *	99.3635

	Flash	Palleta	Produced	Produced	Stable Liquid
Mass Flow	lb/h	Condesate lb/h	Fluids lb/h	Water lb/h	lb/h
Nitrogen	0	0 *	0	0 *	0
Methane	4.29179	4.82083 *	4.82083	0 *	0.529044
Carbon Dioxide	0.0254785	0.0805348 *	0.0805348	0 *	0.0550563
Ethane	3.52406	4.5518 *	4.5518	0 *	1.02775
Propane	2.84009	4.63795 *	4.63795	0 *	1.79786
Isobutane	0.93344	2.22375 *	2.22375	0 *	1.29031
n-Butane	1.50491	4.5064 *	4.5064	0 *	3.00149
Isopentane	0.826022	5.09425 *	5.09425	0 *	4.26823
n-Pentane	0.589968	4.5702 *	4.5702	0 *	3.98023
i-Hexane	0.637443	11.5045 *	11.5045	0 *	10.8671
n-Hexane	0.258353	6.59411 *	6.59411	0 *	6.33576
2,2,4-Trimethylpentane	0.000778748	0.0578856 *	0.0578856	0 *	0.0571069
Benzene	0.00586821	0.239699 *	0.239699	0 *	0.233831
Heptane	0.462534	37.2933 *	37.2933	0 *	36.8308
Toluene	0.0281654	2.84558 *	2.84558	0 *	2.81742
Octane	0.190734	50.2512 *	50.2512	0 *	50.0604
Ethylbenzene	0.00191502	0.597771 *	0.597771	0 *	0.595856
o-Xylene	0.00279257	1.0999 *	1.0999	0 *	1.09711
Nonane	0.0481243	41.8812 *	41.8812	0 *	41.8331
Decane	0.0311193	86.4419 *	86.4419	0 *	86.4107
Water	0.242311	0 *	39509.8	39509.8 *	39509.6

	Stream Properties									
Property	Units	Flash	Palleta Condesate	Produced Fluids	Produced Water	Stable Liquid				
Temperature	°F	70.0022	110 *	110.004	110 *	70.0022				
Pressure	psia	14.6959	644.696 *	644.696	644.696 *	14.6959 *				
Mole Fraction Vapor	%	100	0	0	0	0				
Mole Fraction Light Liquid	%	0	100	0.112466	100	0.101263				
Mole Fraction Heavy Liquid	%	0	0	99.8875	0	99.8987				
Molecular Weight	lb/lbmol	30.318	95.6535	18.1148	18.0153	18.1118				
Mass Density	lb/ft^3	0.0790203	41.7451	61.661	61.8554	62.1172				
Molar Flow	lbmol/h	0.542447	2.81529	2195.94	2193.13	2195.4				
Mass Flow	lb/h	16.4459	269.293	39779.1	39509.8	39762.7				
Vapor Volumetric Flow	ft^3/h	208.122	6.45089	645.126	638.745	640.124				
Liquid Volumetric Flow	gpm	25.9477	0.804267	80.4313	79.6357	79.8076				

		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	Arsenal - Palleta	a Well Pad	Job:	
Location:				
Flowsheet:	Flowsheet1			

Stream Properties						
Property	Units	Flash	Palleta Condesate	Produced Fluids	Produced Water	Stable Liquid
Std Vapor Volumetric Flow	MMSCFD	0.0049404	0.0256406	19.9998	19.9742	19.9949
Std Liquid Volumetric Flow	sgpm	0.0780088	0.797808 *	79.7808	78.983 *	79.7028
Compressibility		0.991947	0.241637	0.0309805	0.0307136	0.000753836
Specific Gravity		1.0468	0.669324	0.988648	0.991765	0.995963
API Gravity			72.1924	10.3431	9.9226	10.3689
Enthalpy	Btu/h	-22219.6	-253208	-2.68412E+08	-2.68158E+08	-2.70012E+08
Mass Enthalpy	Btu/lb	-1351.07	-940.27	-6747.55	-6787.13	-6790.59
Mass Cp	Btu/(lb*°F)	0.435804	0.541859	0.976934	0.979728	0.979194
Ideal Gas CpCv Ratio		1.178	1.05294	1.32183	1.32394	1.32392
Dynamic Viscosity	cP	0.00947713	0.324899	0.632971	0.636007	0.991516
Kinematic Viscosity	cSt	7.48717	0.485873	0.640844	0.641894	0.996477
Thermal Conductivity	Btu/(h*ft*°F)	0.0140865	0.0683226	0.360881	0.363956	0.344607
Surface Tension	lbf/ft		0.000915441	0.0046988	0.00473609	0.00500006 ?
Net Ideal Gas Heating Value	Btu/ft^3	1595.95	4863.26	6.23491	0	5.84211
Net Liquid Heating Value	Btu/lb	19847.5	19138.5	-923.024	-1059.76	-931.614
Gross Ideal Gas Heating Value	Btu/ft^3	1745.93	5246.17	56.9714	50.3101	56.5541
Gross Liquid Heating Value	Btu/lb	21724.7	20657.6	139.846	0	130.918

Remarks

Blocks MIX-100

Mixer/Splitter Report

Client Name:	Arsenal - Palleta Well Pad	Job:
Location:		Modified: 10:45 AM, 5/11/2017
Flowsheet:	Flowsheet1	Status: Solved 11:40 AM 5/11/2017

Connections					
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
Produced Water	Inlet		Palleta Condesate	Inlet	
Produced Fluids	Outlet	VSSL-100			

Block Parameters

Pressure Drop	0 psi	Fraction to PStream	100 %
	- 1	Produced Fluids	

Remarks

Blocks VSSL-100

Separator Report

Client Name:	Arsenal - Palleta Well Pad	Job:
Location:		Modified: 11:52 AM, 5/11/2017
Flowsheet:	Flowsheet1	Status: Solved 11:56 AM, 5/11/2017

Connections					
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
Produced Fluids	Inlet	MIX-100	Flash	Vapor Outlet	
Stable Liquid	Light Liquid Outlet		Q-1	Energy	
· · -					

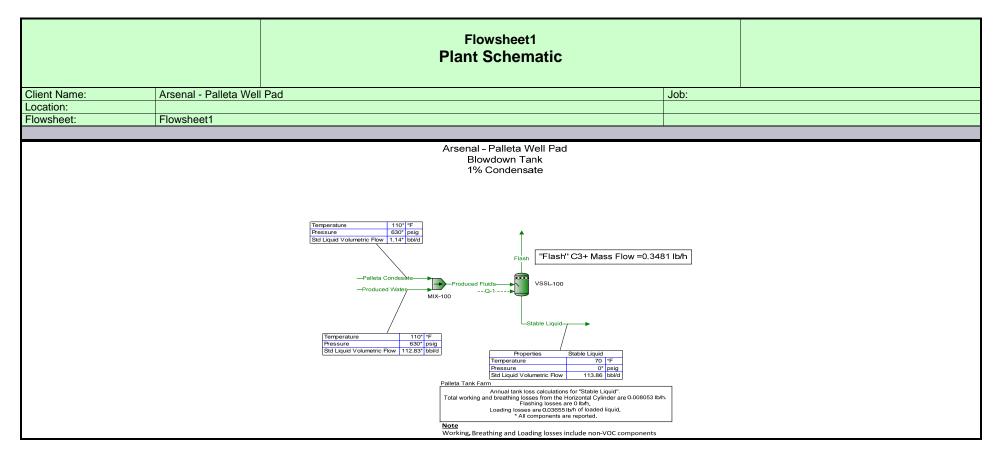
Block Parameters				
Pressure Drop	630 psi	Main Liquid Phase	Light Liquid	
Mole Fraction Vapor	0.0247022 %	Heat Duty	-1.6229E+06 Btu/h	
Mole Fraction Light Liquid	0.101238 %	Heat Release Curve Type	Plug Flow	
Mole Fraction Heavy Liquid	99.8741 %	Heat Release Curve	10	
		Increments		

Remarks

Simulation Initiated on		Flowsh	eet Environment vironment1		Page 1 of
Client Name:	Arsenal - Palleta	a Well Pad		Job:	
Location:					
Flowsheet:	Flowsheet1				
		Enviro	onment Settings		
Number of Poy	nting Intervals	0	Phase Tolerance		1 %
Gibbs Excess N	Model	77 °F	Emulsion Enabled		False
Evaluation Tem	nperature				
Freeze Out Temperature 10 °F					
Threshold Diffe	rence				

Components								
Component Name	Henry's Law Component	Phase Initiator	Component Name	Henry's Law Component	Phase Initiator			
Nitrogen	False	False	2,2,4-Trimethylpentane	False	False			
Methane	False	False	Benzene	False	False			
Carbon Dioxide	False	False	Heptane	False	False			
Ethane	False	False	Toluene	False	False			
Propane	False	False	Octane	False	False			
Isobutane	False	False	Ethylbenzene	False	False			
n-Butane	False	False	o-Xylene	False	False			
Isopentane	False	False	Nonane	False	False			
n-Pentane	False	False	Decane	False	False			
i-Hexane	False	False	Water	False	True			
n-Hexane	False	False						

Physical Property Method Sets						
Liquid Molar Volume	COSTALD	Overall Package	Peng-Robinson			
Stability Calculation	Peng-Robinson	Vapor Package	Peng-Robinson			
Light Liquid Package	Peng-Robinson	Heavy Liquid Package	Peng-Robinson			


Simulation Initiated on 5/11/2017 5:52:39 F	PM Palleta	Produced Fluid 7	Tanks 20% Contingency.pmx		Page 1 o
	E	nvironm	ents Report		
Client Name: Arsenal - F	Palleta Well Pad		Job:		
_ocation:	uncta vven r da		005.		
	P	roject-Wie	de Constants		
Atmospheric Pressure	14.6959	psia	Ideal Gas Reference Pressure	14.6959	psia
deal Gas Reference Temperatu			Ideal Gas Reference Volume	379.484	ft^3/lbmol
_iquid Reference Temperature	60	°F			
	Env	rironment	[Environment1]		
		Environm	ent Settings		
Number of Poynting Intervals	0		Phase Tolerance	1 %	
	77 °F		Emulsion Enabled	False	
Gibbs Excess Model	• • • •				
Gibbs Excess Model Evaluation Temperature					
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature	10 °F				
Gibbs Excess Model Evaluation Temperature					
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature		0.000			
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference	10 °F		ponents	Hannile I av	Dhasa
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference	10 °F	Phase	Component Name	Henry's Law Component	Phase Initiator
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name	10 °F Henry's Law Component	Phase Initiator	Component Name	Henry's Law Component False	Phase Initiator False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name	10 °F	Phase		Component	Initiator
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane	Henry's Law Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane	Component False	Initiator False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide	Henry's Law Component False False	Phase Initiator False False	Component Name 2,2,4-Trimethylpentane Benzene	Component False False	Initiator False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane	Henry's Law Component False False False	Phase Initiator False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane	Component False False False	Initiator False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane	Henry's Law Component False False False False False	Phase Initiator False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene	Component False False False False False	Initiator False False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane	Henry's Law Component False False False False False False False	Phase Initiator False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene	Component False False False False False False	Initiator False False False False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane	Henry's Law Component False False False False False False False False	Phase Initiator False False False False False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane	Component False	Initiator False False False False False False False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane	Henry's Law Component False	Phase Initiator False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	Component False	Initiator False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane n-Pentane	Henry's Law Component False	Phase Initiator False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	Component False	Initiator False False False False False False False False False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane Isobutane In-Butane Isopentane In-Pentane Isopentane In-Pentane Isopentane Isopen	Henry's Law Component False	Phase Initiator False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	Component False	Initiator False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane n-PentaneHexane	Henry's Law Component False	Phase Initiator False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	Component False	Initiator False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane n-PentaneHexane	Henry's Law Component False	Phase Initiator False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	Component False	Initiator False
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature Threshold Difference Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane n-Pentane -Hexane n-Hexane	Henry's Law Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	Component False	Initiator False True
Gibbs Excess Model Evaluation Temperature Freeze Out Temperature	Henry's Law Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	False	Initiator False True

Simulation Initiated on 5/	/11/2017 5:52:39 PM	Palleta_P	oduced Fluid Tanks 20% Continger	ncy.pmx	Page 1 of 4
		Use	r Value Sets Rep	ort	
Client Name:	Arsenal - Palleta	Well Pad		Job:	
Location:	7.1.00.101 7 0.11010			0001	
			Palleta Tank Farm		
		Use	er Value [ShellLengt	h]	
* Parameter		20 ft	Upper Bou	nd	ft
* Lower Bound		0 ft	* Enforce Bo	unds	False
				_	
			er Value [ShellDiam		
Parameter Lower Bound		12 ft 0 ft	Upper Boul * Enforce Bo		ft False
Lower Bouria		U II	Enlorce Bo	unus	raise
		l la	or Value [Breether]/	DI	
* Parameter		0.03 psig	er Value [BreatherVI Upper Bou		psig
Lower Bound		psig	* Enforce Bo		False
Lower Bound		poig	Emoroc Bo	drido	T dioc
		llea	r Value [BreatherVa	cP1	
Parameter		-0.03 psig	Upper Bou	nd	psig
Lower Bound		psig	* Enforce Bo		False
		, ,			
		Use	r Value [DomeRadiu	ısl	
Parameter		ft	Upper Bou		ft
Lower Bound		ft	* Enforce Bo		False
		U	ser Value [OpPress]		
Parameter		0 psig	Upper Bou		psig
Lower Bound		psig	* Enforce Bo	unds	False
		User	Value [AvgPercentl	Liq]	
* Parameter		50 %	Upper Bou	nd	%
Lower Bound		%	* Enforce Bo	unds	False
			Value [MaxPercentl		
* Parameter		90 %	Upper Bour		%
Lower Bound		%	* Enforce Bo	unds	False
				_	
			ser Value [AnnNetTP		
Parameter Lower Bound		2732.38 bbl/d			bbl/day False
Lower Bouria		0 bbl/d	ay Enlorce Bo	unus	raise
			Hear Value [ODE#1		
* Parameter		0 %	User Value [OREff] Upper Bou	nd	%
Lower Bound			* Enforce Bo	ounds	False
LOWER Dound		70	Lilloice Bo	unus	i disc
		11	ser Value [MaxAvgT	1	
Parameter		59.9 °F	Upper Bou		°F
Lower Bound			* Enforce Bo		False
		•			
			ser Value [MinAvgT]	1	
Parameter		40.7 °F	Upper Boul		°F
Lower Bound		°F	* Enforce Bo		False
		U	ser Value [BulkLiqT]		
Parameter		54.64 °F	Upper Boul		°F
Lower Bound		°F	* Enforce Bo	unds	False
			User Value [AvgP]		
Parameter		14.1085 psia	Upper Bou		psia
Lower Bound		psia	* Enforce Bo		False

		User Val	ue Sets Report		
lient Name:	Arsenal - Palleta	Well Pad		Job:	
ocation:					
		User V	/alue [Therml]		
Parameter		1069 Btu/ft^2/day	Upper Bound		Btu/ft^2/day
Lower Bound		Btu/ft^2/day	* Enforce Bounds		False
		Hear Value	e [AvgWindSpeed]		
Parameter		9.1 mi/h	Upper Bound		mi/h
Lower Bound		mi/h	* Enforce Bounds		False
Dorow -t-c		User Value [Ma	axHourlyLoadingRate]		L t. t. h
Parameter Lower Bound		113.849 bbl/hr 0 bbl/hr	Upper Bound * Enforce Bounds		bbl/hr False
<u> </u>		0 00,111	Elliotoo Boarido		raise
		User Value	[EntrainedOilFrac]		
Parameter		1 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
		Hear Volu	o [TurnoverPetel		
Parameter		343.788	Le [TurnoverRate] Upper Bound		
Lower Bound			* Enforce Bounds		False
			[LLossSatFactor]		
Parameter Lower Bound		1.45	Upper Bound * Enforce Bounds		False
Lower Bound			Efficice Bourius		r aise_
		User Valu	ie [AtmPressure]		
Parameter		14.1085 psia	Upper Bound		psia
Lower Bound		psia	* Enforce Bounds		False
		Hoor	Value [TVP]		
Parameter		0.280327 psia	Upper Bound		psia
Lower Bound		psia	* Enforce Bounds		False
			[AvgLiqSurfaceT]		
Parameter Lower Bound		60.2465 °F °F	Upper Bound * Enforce Bounds		°F False
Lower Bouria		<u>'</u>	Efficice Bourius		r aise
		User Value	[MaxLiqSurfaceT]		
Parameter		70.3624 °F	Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False
		Hoor Vol	us [Tetall esses]		
Parameter		0.180018 lb/h	ue [TotalLosses] Upper Bound		lb/h
Lower Bound		lb/h	* Enforce Bounds		False
			[WorkingLosses]		
Parameter Lower Bound		0.0190737 lb/h lb/h	Upper Bound * Enforce Bounds		lb/h False
LOWEL BOULIU		ID/II	Eniforce Bourius		i aist
		User Value	[StandingLosses]		
Parameter		0.00342856 lb/h	Upper Bound		lb/h
Lower Bound		lb/h	* Enforce Bounds		False
			-		
Danama at : ::			[RimSealLosses]		1 L
Parameter		0 ton/yr	Upper Bound		ton/yr

	User Value Sets Report	
	·	
Client Name:	Arsenal - Palleta Well Pad	Job:
Location:		
	·	
	User Value [RimSealLosses]	
Lower Bound	ton/yr * Enforce Bounds	False
	Hans Walter PAPAL January and	
* Parameter	User Value [WithdrawalLoss] 0 ton/yr Upper Bound	ton/yr
Lower Bound	ton/yr * Enforce Bounds	False
	User Value [LoadingLosses]	
* Parameter	0.877029 lb/h Upper Bound	lb/h
Lower Bound	lb/h * Enforce Bounds	False
	User Value [MaxHourlyLoadingLoss]	
* Parameter	0.877029 lb/hr Upper Bound	lb/hr
Lower Bound	lb/hr * Enforce Bounds	False
Danstrate	User Value [PStar]	
Parameter Lower Bound	Upper Bound * Enforce Bounds	False
Lower Boaria	Efficie Bounds	1 0130
	User Value [DeckFittingLosses]	
* Parameter	0 ton/yr Upper Bound	ton/yr
Lower Bound	ton/yr * Enforce Bounds	False
	Hoor Value [DeakSeam] ecose]	
* Parameter	User Value [DeckSeamLosses] 0 ton/yr Upper Bound	ton/yr
Lower Bound	ton/yr * Enforce Bounds	False
	User Value [FlashingLosses]	
* Parameter Lower Bound	0 lb/h Upper Bound lb/h * Enforce Bounds	lb/h False
Lower Bouria	ID/II Elliote Boulius	i disc
	User Value [TotalResidual]	
* Parameter	174160 ton/yr Upper Bound	ton/yr
Lower Bound	ton/yr * Enforce Bounds	False
	Haan Value TO a Mala Mata La	
* Parameter	User Value [GasMoleWeight] 0.0188286 kg/mol Upper Bound	kg/mol
Lower Bound	kg/mol * Enforce Bounds	False
	· ·	
	User Value [VapReportableFrac]	
* Parameter	100 % Upper Bound	% False
Lower Bound	% * Enforce Bounds	False
	User Value [LiqReportableFrac]	
* Parameter	100 % Upper Bound	%
Lower Bound	% * Enforce Bounds	False
* Doromotor	User Value [FlashReportableFrac]	%
* Parameter Lower Bound	0 % Upper Bound % * Enforce Bounds	% False
	, a Limotos Baarida	. 3.00
	User Value [BlockReady]	
* Parameter	1 Upper Bound	
Lower Bound	* Enforce Bounds	False

	User Value	Sets Report					
Client Name:	Arsenal - Palleta Well Pad	Job:					
Location:							
Remarks This User Value Set	was programmatically generated. GUID={3843DD0/		}				
	Tank	Losses					
	User Value	[BlockReady]					
* Parameter	1	Upper Bound					
Lower Bound		* Enforce Bounds	False				
Remarks This User Value Set was programmatically generated. GUID={3843DD0A-6AE9-40D0-99C6-A976AAF7621C}							
Cn+ Flow/Frac.							
User Value [CnPlusSum]							
* Parameter	8.36226 lb/h	Upper Bound					
Lower Bound		* Enforce Bounds	False				
Remarks This User Value Set	Remarks This User Value Set was programmatically generated. GUID={51458694-C13A-4E3B-ABA8-E2C3EE2A851B}						

Process Streams Report All Streams

Tabulated by Total Phase

Arsenal - Palleta Well Pad Client Name: Job: Location: Flowsheet: Flowsheet1

Connections

	Flash	Palleta Condesate	Produced Fluids	Produced Water	Stable Liquid
From Block	VSSL-100		MIX-100		VSSL-100
To Block		MIX-100	VSSL-100	MIX-100	

Strea	m Co	ompo	sition

Stream Composition								
	Flash	Palleta Condesate	Produced Fluids	Produced Water	Stable Liquid			
Mole Fraction	%	%	%	%	%			
Nitrogen	0	0 *	0	0 *	0			
Methane	49.331	10.674 *	0.0136846	0 *	0.00150298			
Carbon Dioxide	0.106695	0.065 *	8.3333E-05	0 *	5.69994E-05			
Ethane	21.6084	5.377 *	0.00689356	0 *	0.0015579			
Propane	11.8728	3.736 *	0.00478973	0 *	0.00185828			
Isobutane	2.95963	1.359 *	0.0017423	0 *	0.00101169			
n-Butane	4.771	2.754 *	0.00353076	0 *	0.00235317			
Isopentane	2.10892	2.508 *	0.00321537	0 *	0.00269525			
n-Pentane	1.50612	2.25 *	0.0028846	0 *	0.0025133			
i-Hexane	1.36214	4.742 *	0.00607947	0 *	0.00574451			
n-Hexane	0.552014	2.718 *	0.0034846	0 *	0.00334911			
2,2,4-Trimethylpentane	0.00125508	0.018 *	2.30768E-05	0 *	2.27725E-05			
Benzene	0.0138336	0.109 *	0.000139743	0 *	0.000136361			
Heptane	0.84976	13.22 *	0.0169487	0 *	0.0167429			
Toluene	0.0562764	1.097 *	0.00140641	0 *	0.00139285			
Octane	0.307326	15.626 *	0.0200333	0 *	0.0199623			
Ethylbenzene	0.00332006	0.2 *	0.000256409	0 *	0.000255653			
o-Xylene	0.00484136	0.368 *	0.000471793	0 *	0.000470714			
Nonane	0.0690478	11.599 *	0.0148705	0 *	0.0148571			
Decane	0.0402409	21.58 *	0.0276666	0 *	0.0276635			
Water	2.47545	0 *	99.8718	100 *	99.8959			

	Flash	Palleta	Produced	Produced	Stable Liquid
Molar Flow	lbmol/h	Condesate Ibmol/h	Fluids lbmol/h	Water Ibmol/h	lbmol/h
Nitrogen	0	0 *	0	0 *	0
Methane	0.0111462	0.0125211 *	0.0125211	0 *	0.00137486
Carbon Dioxide	2.41076E-05	7.62479E-05 *	7.62479E-05	0 *	5.21403E-05
Ethane	0.00488236	0.00630746 *	0.00630746	0 *	0.00142509
Propane	0.00268263	0.00438249 *	0.00438249	0 *	0.00169987
Isobutane	0.000668721	0.00159417 *	0.00159417	0 *	0.000925446
n-Butane	0.001078	0.00323056 *	0.00323056	0 *	0.00215257
Isopentane	0.000476505	0.00294199 *	0.00294199	0 *	0.00246549
n-Pentane	0.000340303	0.00263935 *	0.00263935	0 *	0.00229905
i-Hexane	0.000307773	0.00556258 *	0.00556258	0 *	0.0052548
n-Hexane	0.000124726	0.00318833 *	0.00318833	0 *	0.00306361
2,2,4-Trimethylpentane	2.83583E-07	2.11148E-05 *	2.11148E-05	0 *	2.08312E-05
Benzene	3.12567E-06	0.000127862 *	0.000127862	0 *	0.000124736
Heptane	0.000192001	0.0155076 *	0.0155076	0 *	0.0153156
Toluene	1.27155E-05	0.00128683 *	0.00128683	0 *	0.00127411
Octane	6.94396E-05	0.01833 *	0.01833	0 *	0.0182605
Ethylbenzene	7.50159E-07	0.000234609 *	0.000234609	0 *	0.000233859
o-Xylene	1.09389E-06	0.00043168 *	0.00043168	0 *	0.000430586
Nonane	1.56012E-05	0.0136061 *	0.0136061	0 *	0.0135905
Decane	9.09235E-06	0.0253143 *	0.0253143	0 *	0.0253052
Water	0.000559321	0 *	91.3805	91.3805 *	91.3799

Mass Fraction	Flash %	Palleta Condesate %	Produced Fluids %	Produced Water %	Stable Liquid %
Nitrogen	0	0 *	0	0 *	0
Methane	26.1084	1.79018 *	0.012119	0 *	0.00133126

Process Streams Report All Streams Tabulated by Total Phase

Arsenal - Palleta Well Pad Job: Client Name:

Location: Flowsheet: Flowsheet1

	Flash	Palleta Condesate	Produced Fluids	Produced Water	Stable Liquid
Mass Fraction	%	%	%	%	%
Carbon Dioxide	0.154911	0.029906 *	0.000202456	0 *	0.000138502
Ethane	21.4354	1.69028 *	0.0114427	0 *	0.00258641
Propane	17.2718	1.72227 *	0.0116593	0 *	0.00452423
Isobutane	5.67505	0.825773 *	0.00559025	0 *	0.00324659
n-Butane	9.14832	1.67342 *	0.0113286	0 *	0.00755151
Isopentane	5.01972	1.89171 *	0.0128064	0 *	0.0107366
n-Pentane	3.5849	1.69711 *	0.011489	0 *	0.0100118
i-Hexane	3.87254	4.27212 *	0.0289211	0 *	0.0273322
n-Hexane	1.56936	2.44868 *	0.0165769	0 *	0.015935
2,2,4-Trimethylpentane	0.00472973	0.0214954 *	0.000145518	0 *	0.000143623
Benzene	0.0356486	0.0890107 *	0.000602578	0 *	0.000588091
Heptane	2.80907	13.8486 *	0.0937513	0 *	0.0926289
Toluene	0.171064	1.05669 *	0.00715348	0 *	0.00708572
Octane	1.15815	18.6604 *	0.126326	0 *	0.125899
Ethylbenzene	0.0116283	0.221978 *	0.00150273	0 *	0.00149855
o-Xylene	0.0169566	0.40844 *	0.00276503	0 *	0.00275916
Nonane	0.292156	15.5523 *	0.105285	0 *	0.105207
Decane	0.188889	32.0996 *	0.217305	0 *	0.217317
Water	1.47124	0 *	99.323	100 *	99.3635

	Flash	Palleta	Produced	Produced	Stable Liquid
Mass Flow	lb/h	Condesate lb/h	Fluids lb/h	Water lb/h	lb/h
Nitrogen	0	0 *	0	0 *	0
Methane	0.178813	0.200869 *	0.200869	0 *	0.0220561
Carbon Dioxide	0.00106096	0.00335563 *	0.00335563	0 *	0.00229467
Ethane	0.146808	0.189659 *	0.189659	0 *	0.0428512
Propane	0.118292	0.193249 *	0.193249	0 *	0.0749566
Isobutane	0.0388676	0.0926565 *	0.0926565	0 *	0.0537889
n-Butane	0.0626555	0.187767 *	0.187767	0 *	0.125112
Isopentane	0.0343793	0.212261 *	0.212261	0 *	0.177882
n-Pentane	0.0245525	0.190426 *	0.190426	0 *	0.165873
i-Hexane	0.0265224	0.479357 *	0.479357	0 *	0.452835
n-Hexane	0.0107483	0.274756 *	0.274756	0 *	0.264007
2,2,4-Trimethylpentane	3.23932E-05	0.00241191 *	0.00241191	0 *	0.00237952
Benzene	0.000244152	0.00998752 *	0.00998752	0 *	0.00974337
Heptane	0.0192389	1.5539 *	1.5539	0 *	1.53466
Toluene	0.00117159	0.118566 *	0.118566	0 *	0.117395
Octane	0.00793199	2.09381 *	2.09381	0 *	2.08588
Ethylbenzene	7.96406E-05	0.0249072 *	0.0249072	0 *	0.0248276
o-Xylene	0.000116133	0.0458293 *	0.0458293	0 *	0.0457132
Nonane	0.00200093	1.74506 *	1.74506	0 *	1.74306
Decane	0.00129367	3.60176 *	3.60176	0 *	3.60047
Water	0.0100763	0 *	1646.24	1646.24 *	1646.23

		Stream F	Properties			
Property	Units	Flash	Palleta Condesate	Produced Fluids	Produced Water	Stable Liquid
Temperature	°F	69.9535	110 *	110.004	110 *	69.9535
Pressure	psia	14.6959	644.696 *	644.696	644.696 *	14.6959 *
Mole Fraction Vapor	%	100	0	0	0	0
Mole Fraction Light Liquid	%	0	100	0.112466	100	0.101268
Mole Fraction Heavy Liquid	%	0	0	99.8875	0	99.8987
Molecular Weight	lb/lbmol	30.3117	95.6535	18.1148	18.0153	18.1118
Mass Density	lb/ft^3	0.0790111	41.7451	61.661	61.8554	62.1177
Molar Flow	lbmol/h	0.0225948	0.117304	91.4978	91.3805	91.4752
Mass Flow	lb/h	0.684885	11.2206	1657.47	1646.24	1656.78
Vapor Volumetric Flow	ft^3/h	8.66822	0.268788	26.8803	26.6144	26.6716
Liquid Volumetric Flow	gpm	1.08071	0.0335113	3.35131	3.31816	3.3253

		Process Streams Report All Streams Tabulated by Total Phase		
Client Name:	Arsenal - Palleta	a Well Pad	Job:	
Location:				
Flowsheet:	Flowsheet1			

		Stream I	Properties			
Property	Units	Flash	Palleta Condesate	Produced Fluids	Produced Water	Stable Liquid
Std Vapor Volumetric Flow	MMSCFD	0.000205784	0.00106836	0.833326	0.832258	0.833121
Std Liquid Volumetric Flow	sgpm	0.00324911	0.0332421 *	3.3242	3.29096 *	3.32096
Compressibility		0.991948	0.241637	0.0309805	0.0307136	0.0007539
Specific Gravity		1.04658	0.669324	0.988648	0.991765	0.99597
API Gravity			72.1924	10.3431	9.9226	10.369
Enthalpy	Btu/h	-925.388	-10550.4	-1.11838E+07	-1.11733E+07	-1.12506E+07
Mass Enthalpy	Btu/lb	-1351.16	-940.27	-6747.55	-6787.13	-6790.64
Mass Cp	Btu/(lb*°F)	0.435797	0.541859	0.976934	0.979728	0.979197
Ideal Gas CpCv Ratio		1.17804	1.05294	1.32183	1.32394	1.32392
Dynamic Viscosity	cP	0.00947683	0.324899	0.632971	0.636007	0.992128
Kinematic Viscosity	cSt	7.4878	0.485873	0.640844	0.641894	0.997084
Thermal Conductivity	Btu/(h*ft*°F)	0.0140862	0.0683226	0.360881	0.363956	0.344584
Surface Tension	lbf/ft		0.000915441	0.0046988	0.00473609	0.00500042 ?
Net Ideal Gas Heating Value	Btu/ft^3	1595.68	4863.26	6.23493	0	5.84233
Net Liquid Heating Value	Btu/lb	19848.3	19138.5	-923.023	-1059.76	-931.61
Gross Ideal Gas Heating Value	Btu/ft^3	1745.64	5246.17	56.9714	50.3101	56.5543
Gross Liquid Heating Value	Btu/lb	21725.7	20657.6	139.846	0	130.923

Blocks VSSL-100 Separator Report

Client Name:	Arsenal - Palleta Well Pad	Job:
Location:		Modified: 11:52 AM, 5/11/2017
Flowsheet:	Flowsheet1	Status: Solved 3:09 PM, 5/11/2017

		Conne	ections		
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
Produced Fluids	Inlet	MIX-100	Flash	Vapor Outlet	
Stable Liquid	Light Liquid Outlet		Q-1	Energy	

	Bloc	k Parameters	
Pressure Drop	630 psi	Main Liquid Phase	Light Liquid
Mole Fraction Vapor	0.0246943 %	Heat Duty	-67700 Btu/h
Mole Fraction Light Liquid	0.101243 %	Heat Release Curve Type	Plug Flow
Mole Fraction Heavy Liquid	99.8741 %	Heat Release Curve	10
		Increments	

Simulation Initiated on 5/	/11/2017 3:16:44 PM	Palle	ta_Blowdown Tar	nk 20% Contingency.pmx			Page 1 of 1
		F		Environment nment1			
Client Name:	Arsenal - Palleta	a Well Pad			Job:		
Location:							
Flowsheet:	Flowsheet1						
			Environme	ent Settings			
Number of Poyn	ting Intervals	0		Phase Tolerance		1 %	
Gibbs Excess M		77 °F		Emulsion Enabled		False	
Evaluation Temp							
Freeze Out Tem		10 °F					
Threshold Differ	ence						
			Comp	onents			
Component Name	e	Henry's Law	Phase	Component Name		Henry's Law	Phase
		Component	Initiator			Component	Initiator
Nitrogen		False	False	2,2,4-Trimethylpentane		False	False
Methane		False	False	Benzene		False	False
Carbon Dioxide		False	False	Heptane		False	False
Ethane		False	False	Toluene		False	False
Propane		False	False	Octane		False	False
Isobutane		False	False	Ethylbenzene		False	False

	Physical Pro	operty Method Sets	
Liquid Molar Volume	COSTALD	Overall Package	Peng-Robinson
Stability Calculation	Peng-Robinson	Vapor Package	Peng-Robinson
Light Liquid Package	Peng-Robinson	Heavy Liquid Package	Peng-Robinson

o-Xylene

Nonane

Decane

Water

False

Remarks

n-Butane

i-Hexane

n-Hexane

Isopentane n-Pentane

False

False

False

True

False

False

False

False

		Er	nvironm	ents Report		
Client Name: A	Arsenal - Palleta We	ell Pad		Job:		
ocation:						
				de Constants		
Atmospheric Pressure		14.6959	osia	Ideal Gas Reference Pressure	14.6959	
deal Gas Reference T iquid Reference Tem		60 °		Ideal Gas Reference Volume	379.484	ft^3/lbmol
Iquid Reference Terri	perature	60	Г			
		Env	ironment	[Environment1]		
			Environm	ent Settings		
Number of Poynting		0		Phase Tolerance	1 %	
Gibbs Excess Model		77 °F		Emulsion Enabled	False	
Evaluation Tempera						
Franza Out Tampara	atura	1∩ ∘⊑				
Freeze Out Tempera Threshold Difference		10 °F				
		10 °F				
Threshold Difference				ponents		
		Henry's Law	Phase	Component Name	Henry's Law	Phase
Threshold Difference		Henry's Law Component	Phase Initiator	Component Name	Component	Initiator
Threshold Difference Component Name Nitrogen		Henry's Law	Phase		Henry's Law Component False False	
Component Name Nitrogen Methane		Henry's Law Component False False	Phase Initiator False False	Component Name 2,2,4-Trimethylpentane Benzene	Component False	Initiator False
Component Name Nitrogen Methane Carbon Dioxide		Henry's Law Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane	Component False False	Initiator False False
Component Name Nitrogen Methane Carbon Dioxide Ethane		Henry's Law Component False False False	Phase Initiator False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane	Component False False False	Initiator False False False
Component Name Sitrogen Methane Carbon Dioxide Ethane Propane		Henry's Law Component False False False False	Phase Initiator False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene	Component False False False False False	Initiator False False False False
Component Name Sitrogen Methane Carbon Dioxide Ethane Propane Sobutane		Henry's Law Component False False False False False False	Phase Initiator False False False False False False False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane	Component False False False False False False	Initiator False False False False False
Component Name Sitrogen Methane Carbon Dioxide Ethane Propane sobutane I-Butane		Henry's Law Component False False False False False False False	Phase Initiator False False False False False False False False False	2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene	Component False False False False False False False False	Initiator False False False False False False False
Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane		Henry's Law Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene	Component False	Initiator False False False False False False False False False
Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane n-PentanePentaneHexane		Henry's Law Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane	Component False	Initiator False
Threshold Difference		Henry's Law Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane	False	Initiator False
Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane n-PentanePentaneHexane		Henry's Law Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	False	Initiator False
Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane I-Butane sopentane I-Pentane I-Hexane I-Hexane		Henry's Law Component False	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	False	Initiator False True
Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane n-Pentane -Hexane n-Hexane iquid Molar Volume		Henry's Law Component False COSTALD	Phase Initiator False	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water erty Method Sets Overall Package	Component False	Initiator False True
Component Name Nitrogen Methane Carbon Dioxide Ethane Propane sobutane n-Butane sopentane n-Pentane -Hexane n-Hexane		Henry's Law Component False	Phase Initiator False Folse Folse Folse Folse Folse Folse Folse	Component Name 2,2,4-Trimethylpentane Benzene Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water	False	Initiator False True

Simulation initiated on 5	/11/2017 3.10.44 FW	Falleta_blowdow	it rank 20% Contingency.pmx		rage 1012
		User Val	ue Sets Report		
Client Name:	Arsenal - Palleta	Well Pad		Job:	
ocation:	7 ti oci idi Ti dilote	77011 44		OCD.	
		Pallot	ta Tank Farm		
			ue [ShellLength]		
Parameter		10 ft	Upper Bound		ft
Lower Bound		0 ft	* Enforce Bounds		False
		User Va	lue [ShellDiam]		
Parameter		10 ft	Upper Bound		ft
Lower Bound		0 ft	* Enforce Bounds		False
		Hear Val	ue [BreatherVP]		
Parameter		0.03 psig	Upper Bound		neia
Lower Bound			* Enforce Bounds	-	psig False
Lower Bouria		psig	Efficice Bourius		raise
			e [BreatherVacP]		
Parameter		-0.03 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds		False
		llser Valu	ue [DomeRadius]		
Parameter		ft	Upper Bound		ft
Lower Bound		ft	* Enforce Bounds		False
LOWER BOURIE		Tr.	Efficice Bodinas		T di3C
		11 V			
			alue [OpPress]		
Parameter		0 psig	Upper Bound		psig
Lower Bound		psig	* Enforce Bounds		False
		User Value	e [AvgPercentLiq]		
Parameter		50 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
		User Value	e [MaxPercentLiq]		
Parameter		90 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
Lower Bound		,,	Emerce Bearing		- Gloo
		Heer Va	lue [AmmNetTD]		
			lue [AnnNetTP]		
Parameter		113.849 bbl/day	Upper Bound		bbl/day
Lower Bound		0 bbl/day	* Enforce Bounds		False
		User \	Value [OREff]		
Parameter		0 %	Upper Bound		%
Lower Bound		%	* Enforce Bounds		False
		Heer Va	lue [MaxAvgT]		
Davasatas		TO O OF	liue [WaxAvg1]		°F
Parameter Lower Bound		59.9 °F °F	Upper Bound * Enforce Bounds		•
Lower bound		<u>``F</u>	Enlorce Bounds		False
		User Va	alue [MinAvgT]		
Parameter		40.7 °F	Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False
		User Va	alue [BulkLiqT]		
Parameter		54.64 °F	Upper Bound		°F
Lower Bound		°F	* Enforce Bounds		False
LOWGI DOGING		I	Emoree Dourius		1 4100
		.,	V-1 [AD]		
		User '	Value [AvgP]		
Parameter		14.1085 psia	Upper Bound		psia
Lower Bound		psia	* Enforce Bounds		False
Llear Specified Values		D	May 4.0.16071.0	Discussion T	he EPM Group, Inc. and Affiliates

	User V	/alue Sets Report	
Client Name:	Arsenal - Palleta Well Pad		Job:
Location:			
	-		
* Parameter	1069 Btu/ft^2/c	er Value [Therml] day Upper Bound	Btu/ft^2/day
Lower Bound	Btu/ft^2/c		False
	Haan Wa	les CAssalAtin d'On e e d'I	
* Parameter	9.1 mi/h	ulue [AvgWindSpeed] Upper Bound	mi/h
Lower Bound	mi/h	* Enforce Bounds	False
	Hoor Volus	[May Haurly Leading Date]	
* Parameter	4.74372 bbl/hr	[MaxHourlyLoadingRate] Upper Bound	bbl/hr
* Lower Bound	0 bbl/hr	* Enforce Bounds	False
	115- 37-1	··· [Futual	
* Parameter	User Val	ue [EntrainedOilFrac] Upper Bound	%
Lower Bound	%	* Enforce Bounds	False
* Parameter	330.037	alue [TurnoverRate] Upper Bound	
Lower Bound	330.037	* Enforce Bounds	False
* D		lue [LLossSatFactor]	
* Parameter Lower Bound	1.45	Upper Bound * Enforce Bounds	False
		alue [AtmPressure]	
* Parameter Lower Bound	14.1085 psia psia	Upper Bound * Enforce Bounds	psia False
201101 200110	pola	20.00 20440	. 4.00
		ser Value [TVP]	
* Parameter Lower Bound	0.28034 psia psia	Upper Bound * Enforce Bounds	psia False
Lower Bound	pola	Emoree Bounds	i disc
		lue [AvgLiqSurfaceT]	
* Parameter Lower Bound	60.2465 °F °F	Upper Bound * Enforce Bounds	°F
Lower Bound	· F	Eniorce Bounds	False
	User Va	lue [MaxLiqSurfaceT]	
* Parameter	70.3624 °F	Upper Bound	°F
Lower Bound	°F	* Enforce Bounds	False
	User \	/alue [TotalLosses]	
* Parameter	0.00805262 lb/h	Upper Bound	lb/h
Lower Bound	lb/h	* Enforce Bounds	False
	llser Va	lue [WorkingLosses]	
* Parameter	0.00644937 lb/h	Upper Bound	lb/h
Lower Bound	lb/h	* Enforce Bounds	False
	Hear Va	lue [StandingLosses]	
* Parameter	0.00160325 lb/h	Upper Bound	lb/h
Lower Bound	lb/h	* Enforce Bounds	False
		lue (Dim Carllana	
* Parameter	User Va 0 ton/yr	llue [RimSealLosses] Upper Bound	ton/yr
i didilictei	O ton/yi	Oppor Bouriu	tori/yr

Client Name: Arsenal - Palleta Well Pad Job: Location: Job:	
Client Name: Arsenal - Palleta Well Pad Job: Location:	
Client Name: Arsenal - Palleta Well Pad Job: Location:	
Location:	
Location:	
User Value [RimSealLosses]	
Lower Bound ton/yr * Enforce Bounds False	
,,	
User Value [WithdrawalLoss]	
* Parameter 0 ton/yr Upper Bound	ton/yr
Lower Bound ton/yr * Enforce Bounds False	
User Value [LoadingLosses]	
* Parameter 0.0365453 lb/h Upper Bound	lb/h
Lower Bound	
* Parameter 0.0365452 lb/br Llaner Round	lb/br
* Parameter 0.0365453 lb/hr Upper Bound Lower Bound lb/hr * Enforce Bounds False	lb/hr
2010.00.00.00.00	
User Value [PStar]	
Parameter Upper Bound	
Lower Bound * Enforce Bounds False	
User Value [DeckFittingLosses]	
* Parameter 0 ton/yr Upper Bound	ton/yr
Lower Bound ton/yr * Enforce Bounds False	
* Parameter User Value [DeckSeamLosses] * User Value [DeckSeamLosses] * Upper Bound	ton/yr
Lower Bound ton/yr * Enforce Bounds False	•
User Value [FlashingLosses]	
* Parameter 0 lb/h Upper Bound Lower Bound lb/h * Enforce Bounds False	lb/h
Edward Bounds 12/11	
User Value [TotalResidual]	
* Parameter 7256.66 ton/yr Upper Bound	ton/yr
Lower Bound ton/yr * Enforce Bounds False	
User Value [GasMoleWeight]	
* Parameter 0.018829 kg/mol Upper Bound	kg/mol
Lower Bound kg/mol * Enforce Bounds False	
User Value [VapReportableFrac]	0/
* Parameter 100 % Upper Bound Lower Bound	%
7. Tulbe	
User Value [LiqReportableFrac]	
* Parameter 100 % Upper Bound	%
Lower Bound % * Enforce Bounds False	
User Value [FlashRenortableFrac]	
* Parameter	%
* Parameter 0 % Upper Bound Lower Bound % Enforce Bounds False	
* Parameter 0 % Upper Bound Lower Bound	
* Parameter 0 % Upper Bound Lower Bound	
* Parameter 0 % Upper Bound Lower Bound	

		U	ser Value	Sets Report			
Client Name:	Arsenal - Palleta	Well Pad			Job:		
Location:							
Remarks This User Value Set	was programmat	ically generated. GUI	ID={3843DD0A-	6AE9-40D0-99C6-A976A	AF7621C}		
							
				Losses			
		l	Jser Value [BlockReady]			
* Parameter		1		Upper Bound			
Lower Bound				* Enforce Bounds		False	
Remarks This User Value Set	was programmat	ically generated. GUI	ID={3843DD0A-	6AE9-40D0-99C6-A976A	AF7621C}		
			Cn+ Flo	ow/Frac.			
			Jser Value [CnPlusSum]			
* Parameter		0.348127 lb		Upper Bound			
Lower Bound				* Enforce Bounds		False	-
Remarks This User Value Set	was programmat	ically generated. GUI	ID={51458694-0	C13A-4E3B-ABA8-E2C3E	E2A851B}		

Certificate of Analysis Number: 2030-14100210-001A Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Oct. 27, 2014

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Field: Station N Station Number: Sample Point:

Analyzed:

10/23/2014 14:04:51 by GR

Sampled By:

GR-SPL

Sample Of: Sample Date: Condensate

Spot

mple Date: 10/08/2014 15:00

Sample Conditions: 630 psig

Method:

GPA-2186M/GPA-2103

Analytical Data

Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	NIL	28.013	NIL	0.807	NIL	
Methane	10.674	16.043	1.735	0.300	4.055	
Carbon Dioxide	0.065	44.010	0.029	0.817	0.025	
Ethane	5.377	30.069	1.638	0.356	3.224	
Propane	3.736	44.096	1.669	0.507	2.308	
Iso-Butane	1,359	58.122	0.800	0.563	0.997	
n-Butane	2.754	58.122	1.622	0.584	1.947	
Iso-Pentane	2.508	72.149	1.833	0.625	2.056	
n-Pentane	2.250	72.149	1.645	0.631	1.829	
i-Hexanes	4.742	85.172	4.092	0.667	4.303	
n-Hexane	2.718	86.175	2.373	0.664	2.506	
2,2,4-Trimethylpentane	0.018	114.231	0.021	0.697	0.021	
Benzene	0.109	78.114	0.086	0.885	0.068	
Heptanes	13.220	98.287	13.166	0.700	13.187	
Toluene	1.097	92.141	1.024	0.872	0.823	
Octanes	15.626	110.146	17.442	0.732	16.710	
Ethylbenzene	0.200	106.167	0.215	0.872	0.173	
Xylenes	0.368	106.167	0.396	0.885	0.314	
Nonanes	11.599	124,568	14.638	0.744	13.792	
Decanes Plus	21.580	162.726	35.576	0.788	31.662	
		1021120		0.700		
	100.000		100.000		100.000	
Physical Properties			Total	C10+		
Specific Gravity at 60°F		0.7	7012	0.7879		
API Gravity at 60°F		70	.284	48.091		
Molecular Weight			.699	162.726		
Pounds per Gallon (in Vacuu	ım)	5	.846	6.569		
Pounds per Gallon (in Air)	Service and the service of the servi	5	.840	6.562		
Cu. Ft. Vapor per Gallon @	14.73 psia	22	.427	15.283		

Tata O. Jews

Certificate of Analysis Number: 2030-14100210-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Oct. 27, 2014

Field:

Station Name: Station Number: Sample Point:

Analyzed:

10/23/2014 14:04:51 by GR

Sampled By:

GR-SPL

Sample Of: Sample Date: Condensate

Spot

10/08/2014 15:00

Sample Conditions: 630 psig

Method:

GPA-2186M/GPA-2103

Analytical Data

				ny trour Dute		
Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	NIL	28.013	NIL	0.807	NIL	
Carbon Dioxide	0.065	44.010	0.029	0.817	0.025	
Methane	10.674	16.043	1.735	0.300	4.055	
Ethane	5.377	30.069	1.638	0.356	3.224	
Propane	3.736	44.096	1.669	0.507	2.308	
Iso-butane	1.359	58.122	0.800	0.563	0.997	
n-Butane	2.754	58.122	1.622	0.584	1.947	
Iso-pentane	2.508	72.149	1.833	0.625	2.056	
n-Pentane	2.250	72.149	1.645	0.631	1.829	
Hexanes	7.460	85.537	6.465	0,666	6.809	
Heptanes Plus	63.817	127.692	82.564	0.754	76.750	
	100.000		100.000		100.000	
Physical Properties			To	tal	C7+	
Specific Gravity at 60)°F		0.70	12 (0.7543	
API Gravity at 60°F		70.2	84 (56.084		
Molecular Weight			98.6	99 12	27.692	
Pounds per Gallon (i			5.8	46	6.289	
Pounds per Gallon (i			5.8	40	6.282	
Cu. Ft. Vapor per Ga	llon @ 14.73	psia	22,42	27 1	18.647	

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis Number: 2030-14100210-001A Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520

Gary Vermillion Gas Analytical Services PO Box 1028 Bridgeport, WV 26330

Oct. 27, 2014

Field:

Station Name: . Station Number: Sample Point:

Sampled By:

GR-SPL

Sample Of:

Condensate

Spot

Sample Date:

10/08/2014 15:00

Sample Conditions: 630 psig

Analytical Data

Test	Method	Result	Units	Detection Limit	Lab Tech.	Analysis Date
Color Visual API Gravity @ 60° F Specific Gravity @ 60/60° F Density @ 60° F Shrinkage Factor Flash Factor	Proprietary ASTM D-5002 ASTM D-5002 ASTM D-5002 Proprietary Proprietary	Straw 60.59 0.7366 0.7359 0.9173	⊽ g/ml cu, Ft./S.T. Bbl		CM CM CM CM CM	10/23/2014 10/23/2014 10/23/2014 10/23/2014 10/23/2014 10/23/2014

Gas Analytical

Stonewood, West Virginia 8444 Water Street Stonewood, WV 26301-8006

Report Date: Jan 17, 2017 10:05a

Client: MOUNTAINEER KEYSTONE Date Sampled: Jan 13, 2017

Client Code: 5764 Analysis Date: Jan 16, 2017 12:00a

Site: PALETTA 8 Collected By: JM

Field: 190-WEST VIRGINIA Date Effective: Feb 1, 2017 12:00a

Meter: 5203 Sample Pressure (PSI): 45.0
Source Laboratory Stopewood WV Sample Temp (°EV): 60

Source Laboratory Stonewood, WV Sample Temp (°F): 60 **Lab File No:** 516613903 Field H2O (lb/MMSCFD):

Cylinder No: 5857
Analysis Status: good
Sample Type: Spot

Measurement Analyst: ASMESS Tree

Component	Mol %	GPM @Contract PSIA
H2S		
Methane	96.1193	0.0000
Ethane	3.2990	0.8839
Propane	0.1964	0.0542
I-Butane	0.0072	0.0024
N-Butane	0.0133	0.0042
I-Pentane	0.0015	0.0005
N-Pentane	0.0007	0.0003
Nitrogen	0.2453	0.0000
Oxygen		
Carbon Dioxide	0.1127	0.0000
Helium	0.0000	
Hexanes+	0.0046	0.0020
TOTAL	100.0000	0.9475

Analytical Results at Base Conditions (Real)				
BTU/SCF (Dry):	1,037.3348 BTU/ft ³			
BTU/SCF (Saturated):	1,019.5843 BTU/ft ³			
PSIA:	14.696 PSI			
Temperature (°F):	60.0 °F			
Z Factor (Dry):	0.99787			
Z Factor (Saturated):	0.99752			

Analytical Results at Contract Conditions (Real)				
BTU/SCF (Dry):	1,039.7399 BTU/ft³			
BTU/SCF (Saturated):	1,021.9901 BTU/ft³			
PSIA:	14.730 PSI			
Temperature (°F):	60.0 °F			
Z Factor (Dry):	0.99787			
Z Factor (Saturated):	0.99752			

Calculated Specific Gravities				
Ideal Gravity:	0.5743	Real Gravity:	0.5753	
Molecular Wt:	16.6346	lb/lbmol		

Methods, standards, and uncertainties based on GPA 2261-13.

Analytical Calculations performed in accordance with GPA 2172-09.

Source	Date	Notes
--------	------	-------

ATTACHMENT U FACILITY-WIDE CONTOLLER EMISSIONS SUMMARY SHEET

ATTACHMENT U - FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point ID#	NO _x		СО		VOC		SO ₂		PM ₁₀		PM _{2.5}		CH ₄		GHG (CO ₂ e)	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (E01)	0.10	0.43	0.08	0.36	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	117.10	512.89
Line Heater (E02)	0.10	0.43	0.08	0.36	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	117.10	512.89
Line Heater (E03)	0.10	0.43	0.08	0.36	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	117.10	512.89
Line Heater (E04)	0.10	0.43	0.08	0.36	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	117.10	512.89
Line Heater (E05)	0.10	0.43	0.08	0.36	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	117.10	512.89
Line Heater (E06)	0.10	0.43	0.08	0.36	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	117.10	512.89
Line Heater (E07)	0.10	0.43	0.08	0.36	< 0.01	0.02	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	117.10	512.89
Line Heater (E08)	0.10	0.43	0.08	0.36	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	117.10	512.89
Blowdown (E09)	< 0.01	< 0.01	< 0.01	< 0.01	0.35	1.53	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.18	0.78	4.48	19.61
Fluids Tank (E10-E17)	< 0.01	< 0.01	< 0.01	< 0.01	8.37	36.66	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	4.30	18.82	107.46	470.67
Tank Truck Loading Activities (E18/E019)	< 0.01	< 0.01	<0.01	< 0.01	0.04	0.16	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	0.03	0.12	0.70	3.06
TEG (E20)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	0.08	0.36
TOTAL	0.78	3.44	0.66	2.89	8.75	38.33	<0.01	<0.01	<0.01	<0.01	< 0.01	0.20	4.50	19.73	1,049.50	4,596.81

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U - FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of emissions in this table. Use extra pages if necessary.

Emission Point ID#	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Line Heater (E01)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (E02)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (E03)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (E04)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (E05)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (E06)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (E07)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Line Heater (E08)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Blowdown Tank (E09)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.05	0.01	0.05
Fluids Tank (E10-E17)	< 0.01	< 0.01	< 0.01	0.03	0.03	0.12	< 0.01	< 0.01	< 0.01	0.01	0.26	1.13	0.30	1.31
Tank Truck Loading Activities (E18/E19)	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
TEG (E20)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01
TOTAL	< 0.01	<0.01	0.01	0.03	0.03	0.13	< 0.01	< 0.01	<0.01	0.01	0.28	1.25	0.33	1.43

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V CLASS 1 LEGAL ADVERTISMENT

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Arsenal Resources, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G70-D General Permit for a natural gas production operation located in Harrison County, West Virginia. The latitude and longitude coordinates are: 39.20971 and -80.36708.

The applicant estimates the maximum potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Particulate Matter (PM) = 26.50 tpy Sulfur Dioxide (SO_2) = <0.01 tpy Volatile Organic Compounds (VOC) = 38.35 tpy Carbon Monoxide (CO) = 2.89 tpy Nitrogen Oxides (NO_x) = 3.44 tpy Total Hazardous Air Pollutants (HAPs) = 1.36 tpy Formaldehyde (HCHO) = <0.01 tpy Hexane (C_8H_{14}) = 1.25 tpy Carbon Dioxide Equivalents (CO_2e) = 4,596.81 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 18th day of May 2017.

By: Arsenal Resources
Meghan M.B. Yingling
Environmental Compliance Manager
6031 Wallace Road Ext. Suite 300
Wexford, PA 15090