

Williams Ohio Valley Midstream LLC Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh, PA 15275 (412) 787-7300 (412) 787-6002 fax

November 1, 2017 (Sent Via Federal Express)

Beverly McKeone New Source Review Program Manager Division of Air Quality West Virginia Department of Environmental Protection 601 57th Street SE Charleston, WV 25304

Subject: Application for Class II Administrative Update (R13-3070A) Williams Ohio Valley Midstream LLC OAK GROVE GAS PLANT (Facility ID 051-00157) Marshall County, West Virginia

Dear Ms. McKeone:

Williams Ohio Valley Midstream LLC (OVM) is submitting one (1) original paper copy and two (2) CD-ROMs of an Application for 45CSR13 New Source Review (NSR) Class II Administrative Update for the existing Oak Grove Gas Plant, located at 5258 Fork Ridge Rd in Moundsville, Marshall County, West Virginia.

This application has been prepared and submitted to request the following updates to the facility's current air quality permit (R13-3070A, issued 01/05/16):

- Decrease the estimated Volatile Organic Compound (VOC) and Hazardous Air Pollutant (HAP) emissions resulting from improvements to LDAR control efficiency estimates; significantly offset by a more accurate count of the Piping and Equipment Fugitive components, plus a 15% contingency (FUG/15E). (Also, n-Hexane in fugitives was speciated from BTEX.)
- Decrease the estimated Methane (CH4) (and, consequentially, CO2 Equivalent (CO2e)) emissions resulting from correction to the emission factor previously used (H-01/1E, H-02/2E, H-04/4E, H-05/5E, H-06/6E, H-07/7E, and GEN-01).

Facility-Wide Emissions Summary [Tons per Year]						
Critoria Ballutanta	Potential Emissions (Including Fugitives)					
Criteria Poliutants	Current Permit	Change [*]	New Permit			
Nitrogen Oxides (NOX)	121.26		121.26			
Carbon Monoxide (CO)	192.66		192.66			
Volatile Organic Compounds (VOC)	112.00	(11.29)	100.71			
Sulfur Dioxide (SO2)	0.76		0.76			
Particulate Matter (PM10/2.5)	10.68		10.68			

EMISSIONS SUMMARY SHEET

Beverly McKeone WVDEP – Division of Air Quality November 1, 2017 Page 02 of 02

	Potential Emissions (Including Fugitives)					
nazardous Air Poliutants (HAP)	Current Permit	Change*	New Permit			
Benzene	1.86	(0.08)	1.78			
Ethylbenzene	2.04	(0.08)	1.96			
Formaldehyde (HCHO)	0.12		0.12			
n-Hexane	3.70	0.28	3.98			
Toluene	1.96	(0.09)	1.87			
2,2,4-Trimethylpentane (TMP)	2.10	(0.09)	2.01			
Xylenes	2.05	(0.09)	1.96			
Other HAP (Methanol (MeOH), etc.)	0.01		0.01			
Total HAP	13.83	(0.15)	13.68			
Crearbourge Cases (CHC)	Potential Emissions (Including Fugitives)					
Greenhouse Gases (GHG)	Current Permit	Change"	New Permit			
Carbon Dioxide (CO2)	218,331		218,331			
Methane (CH4)	374	(199)	175			
Nitrous Oxide (N2O)	1		1			
CO2 Equivalent (CO2e)	227,955	(4,972)	222,983			

The facility continues to qualify as a Major Source under Title V operating Permits and a Minor Source under Non-Attainment New Source Review (NNSR) and Prevention of Significant Deterioration (PSD) Permits. The facility also remains an Area Source for Hazardous Air Pollutants (HAP) under the National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations.

If you have any questions concerning this submittal or need additional information, please contact me at (412) 787-4259 or danell.zawaski@williams.com.

Sincerely,

Zowasti

R. Danell Zawaski, P.E. Environmental Specialist

Enclosures: Application for Class II Administrative Update Attachments A through S Check for Application Fee

APPLICATION FOR CLASS II ADMINISTRATIVE UPDATE (R13-3070A)

For the:

Williams Ohio Valley Midstream LLC OAK GROVE NATURAL GAS PROCESSING PLANT

Marshall County, West Virginia

Submitted to:

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY

Submitted by:

Williams Ohio Valley Midstream LLC 100 Teletech Drive Moundsville, WV 26041

EcoLogic Environmental Consultants, LLC 864 Windsor Court Santa Barbara, CA 93111

November 2017

APPLICATION FOR CLASS II ADMINISTRATIVE UPDATE (R13-3070A)

Williams Ohio Valley Midstream LLC OAK GROVE NATURAL GAS PROCESSING PLANT

Marshall County, West Virginia

TABLE OF CONTENTS

COVER LETTER

APPLICATION FOR NSR MODIFICATION PERMIT

ATTACHMENTS TO APPLICATION

- ATTACHMENT A Business Certificate
- ATTACHMENT B Location/Topographic Map
- ATTACHMENT C Installation and Start-Up Schedule
- ATTACHMENT D Regulatory Discussion
- ATTACHMENT E Plot Plan
- ATTACHMENT F Detailed Process Flow Diagram (PFD)
- ATTACHMENT G Process Description
- ATTACHMENT H Safety Data Sheets (SDS)
 - (And Representative Extended Gas Analysis)
 - ATTACHMENT I Emission Units Table
- ATTACHMENT J Emission Points Data Summary Sheet(s)
- ATTACHMENT K Fugitive Emissions Data Summary Sheet(s)
- ATTACHMENT L Emissions Unit Data Sheet(s)
- ATTACHMENT M Air Pollution Control Device Sheet(s)
- ATTACHMENT N Supporting Emissions Calculations
- ATTACHMENT O Monitoring/Recordkeeping/Reporting/Testing Plans
- ATTACHMENT P Public Notice (Class I Legal Advertisement)
- ATTACHMENT Q Business Confidential Claims (NOT APPLICABLE)
- ATTACHMENT R Authority Forms (NOT APPLICABLE)
 - ATTACHMENT S Title V Permit Revision Information

APPLICATION FEE

APPLICATION FOR CLASS II ADMINISTRATIVE UPDATE (R13-3070A)

GENERAL INSTRUCTIONS - Application forms are to be completed for any facility which emits the following regulated pollutants: Carbon Monoxide (CO), Lead, Nitrogen Oxides (NOx), Particulate Matter (PM), Particulate Matter less than 10 microns (PM10), Sulfur Dioxide (SO2), and Volatile Organic Compounds (VOCs) not listed as Hazardous Air Pollutants (HAPs) or Toxic Air Pollutants (TAPs) in accordance with Section '112 of the Clean Air Act or Rule 45CSR27.

- Section I. General
- Section II. Additional Attachments and Supporting Documents
- Section III. Certification of Information

APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)
PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY):
□ SIGNIFICANT MODIFICATION □ NOT APPLICABLE IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION

FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision Guidance" in order to determine your Title V Revision options (Appendix A, "Title V Permit Revision Flowchart") and ability to operate with the changes requested in this Permit Application.

	Section I. General								
1.	Name of applicant (as registered with the WV Secretary of WILLIAMS OHIO VALLEY MIDSTREAM LLC	State's Office):	2. Federal Employer ID No. (FEIN): 27-0856707						
3.	Name of facility (if different from above): OAK GROVE GAS PLANT (OGGP)	4. The applicant is the: ☐ OWNER ☐ OPERATOR ⊠ BOTH							
5A.	Applicant's mailing address: 100 TELETECH DRIVE, SUITE 2 MOUNDSVILLE, WV 26041	present physical address: RK RIDGE ROAD WILLE, WV 26041							
6.	 West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? YES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 								
7.	If applicant is a subsidiary corporation, please provide the r	name of parent cor	poration: THE WILLIAMS COMPANIES, INC.						
8.	 Does the applicant own, lease, have an option to buy, or otherwise have control of the <i>proposed site?</i> YES NO If YES, please explain: APPLICANT OWNS THE PROPERTY If NO, you are not eligible for a permit for this source. 								
9.	Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.):10.North American Industry Classification System (NAICS) code for the facility: 211112 – NATURAL GAS LIQUID EXTRACTION								
11A.	 A. DAQ Plant ID No. (existing facilities): 0 5 1 - 0 0 1 5 7 11B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (existing facilities): R13-3070A (OAK GROVE) - 01/05/16 R30-05100157(MM02) (OAK GROVE) - 05/02/17 R13-3289A (FRANCIS CS) - 01/25/17 PD15-057 (INDEPENDENCE CS) - 08/12/15 								
12A.	Directions to the facility:								
	 For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road; For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road, include a MAP as Attachment B. 								
	FROM LAFAYETTE AVE IN MOUNDSVILLE: A. HEAD EAST ONTO 12TH ST ~1.1 MI; C. ENTRANCE TO SITE IS ON THE LEFT. B. CONTINUE ONTO FORK RIDGE RD ~5.4 MI;								
All of	the required forms and additional information can be found un	der the Permitting	Section of DAQ's website, or requested by phone.						
	Williams Ohio Valley Midstream LLC OAK GROVE GAS PLANT (OGGP) Application for Class II Administrative Update (R13-3070A)								

12.B.	New site address (if applicable): NA	12C.	Nearest city or town: MOUNDSVILLE	12D.	County: MARSHALL				
12.E.	UTM Northing (KM): 4,414.1 KM NORTHING	12F.	UTM Easting (KM): 525.9 KM EASTING	12G.	UTM Zone: 17S				
13.	 Briefly describe the proposed change(s) at the facility: THIS APPLICATION IS PREPARED AND SUBMITTED TO: DECREASE THE ESTIMATED VOLATILE ORGANIC COMPOUND (VOC) AND HAZARDOUS AIR POLLUTANT (HAP) EMISSIONS RESULTING FROM IMPROVEMENTS TO LDAR CONTROL EFFICIENCY ESTIMATES; SIGNIFICANTLY OFFSET BY A MORE ACCURATE COUNT OF THE PIPING AND EQUIPMENT FUGITIVE COMPONENTS, PLUS A 15% CONTINGENCY (FUG/15E). (ALSO, N-HEXANE IN FUGITIVES WAS SPECIATED FROM BTEX.) DECREASE THE ESTIMATED METHANE (CH4) (AND, CONSEQUENTIALLY, CO2 EQUIVALENT (CO2E)) EMISSIONS RESULTING FROM CORRECTION OF THE EMISSION FACTOR PREVIOUSLY USED (H-01/1E, H-02/2E, H-04/4E, H-05/5E, H-06/6E, H-07/7E, AND GEN-01). 								
14A.	 A. Provide the date of anticipated installation or change: If this is an After-The-Fact permit application, provide the date upon which the proposed change did happen: NA 14B. Date of anticipated Start-Up if a permit is granted: NA 								
14C.	Provide a Schedule of the planned Installation of/Change to and Start-Up of each of the units proposed in this permit application as Attachment C (if more than one unit is involved).								
15.	Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day: 24 Days Per Week: 7 Weeks Per Year: 52								
16.	Is demolition or physical renovation at an ex	isting f	acility involved? 🗌 YES 🖾 NO						
17.	Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U.S. EPA Region III.								
18.	Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the proposed process <i>(if known)</i> . A list of possible applicable requirements is also included in Attachment S of this application (Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance <i>(if known)</i> . Provide this information as Attachment D .								
_	Section II. Additiona	al atta	achments and supporting	doc	uments.				
19.	 Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13). 								

- 20. Include a **Table of Contents** as the first page of your application package.
- 21. Provide a Plot Plan, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to *Plot Plan Guidance*).

- Indicate the location of the nearest occupied structure (e.g. church, school, business, residence).

- 22. Provide a Detailed Process Flow Diagram(s) showing each proposed or modified emissions unit, emission point and control device as Attachment F.
- 23. Provide a Process Description as Attachment G.

- Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

- 24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.
- For chemical processes, provide a MSDS for each compound emitted to the air.
- 25. Fill out the Emission Units Table and provide it as Attachment I.
- 26. Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.

27. Fill out the Fugitive Emissions Data Summary Sheet and provide it as Attachment K.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

28.	Check all applicable Emissions Unit Data Sheets listed below:										
	Bulk Liquid Transfer Operations (TL-1)	Haul Road Emissions	Quarry								
	Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling								
	Concrete Batch Plant	Incinerator	and Storage Facilities								
	Grey Iron and Steel Foundry	Indirect Heat Exchanger	⊠ Storage Tanks								
	🛛 General Emission Unit, specify:										
	 NATURAL GAS FIRED HEATER (H-01 (1E) THRU TK-07 (7E)) STANDBY GENERATOR (GEN-1 (9E)) 										
	Fill out and provide the Emissions Unit Data S	Sheet(s) as Attachment L.									
29.	Check all applicable Air Pollution Control	Device Sheets listed below:									
	Absorption Systems	Baghouse	⊠ Flare (FLR-1)								
	Adsorption Systems	☐ Condenser	Mechanical Collector								
	Afterburner	Electrostatic Precipitator	Wet Collecting System								
	Other Collectors, specify: NA		_ 0,,								
	Fill out and provide the Air Pollution Control D	evice Sheet(s) as Attachment M.									
30.	Provide all Supporting Emissions Calculations as Attachment N, or attach the calculations directly to the forms listed in Items 28 through 31.										
	Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.										
31.	Monitoring, Recordkeeping, Reporting and testing plans in order to demonstrate complia application. Provide this information as Attac	d Testing Plans. Attach proposed monomous of the proposed emissions limits hment O.	nitoring, recordkeeping, reporting and s and operating parameters in this permit								
31. >	Monitoring, Recordkeeping, Reporting and testing plans in order to demonstrate complia application. Provide this information as Attac Please be aware that all permits must be pra- measures. Additionally, the DAQ may not be are proposed by the applicant, DAQ will deve	d Testing Plans. Attach proposed monce with the proposed emissions limits hment O. ctically enforceable whether or not the able to accept all measures proposed lop such plans and include them in the	onitoring, recordkeeping, reporting and s and operating parameters in this permit applicant chooses to propose such I by the applicant. If none of these plans e permit.								
31. ≻ 32.	Monitoring, Recordkeeping, Reporting and testing plans in order to demonstrate complia application. Provide this information as Attac Please be aware that all permits must be pra- measures. Additionally, the DAQ may not be are proposed by the applicant, DAQ will deve Public Notice. At the time that the applicat circulation in the area where the source is of <i>Advertisement</i> for details). Please submit the	d Testing Plans. Attach proposed monce with the proposed emissions limits hment O. ctically enforceable whether or not the able to accept all measures proposed lop such plans and include them in the solution is submitted, place a Class I Legar will be located (See 45CSR§13-8.3 a Affidavit of Publication as Attachment	applicant chooses to propose such by the applicant. If none of these plans permit. Al Advertisement in a newspaper of general through 45CSR§13-8.5 and <i>Example Legal</i> t P immediately upon receipt.								
31. ≻ 32. 33.	Monitoring, Recordkeeping, Reporting and testing plans in order to demonstrate complia application. Provide this information as Attac Please be aware that all permits must be pra- measures. Additionally, the DAQ may not be are proposed by the applicant, DAQ will deve Public Notice. At the time that the applicat circulation in the area where the source is of Advertisement for details). Please submit the Business Confidentiality Claims. Does this	d Testing Plans. Attach proposed monoce with the proposed emissions limits hment O. ctically enforceable whether or not the able to accept all measures proposed lop such plans and include them in the sion is submitted, place a Class I Legar will be located (See 45CSR§13-8.3 e Affidavit of Publication as Attachments application include confidential inform	applicant chooses to propose such by the applicant. If none of these plans permit. Al Advertisement in a newspaper of general through 45CSR§13-8.5 and <i>Example Legal</i> t P immediately upon receipt.								
31. ≻ 32. 33.	Monitoring, Recordkeeping, Reporting and testing plans in order to demonstrate complia application. Provide this information as Attac Please be aware that all permits must be pra- measures. Additionally, the DAQ may not be are proposed by the applicant, DAQ will deve Public Notice. At the time that the applicat circulation in the area where the source is of <i>Advertisement</i> for details). Please submit the Business Confidentiality Claims. Does this	d Testing Plans. Attach proposed monce with the proposed emissions limits hment O. ctically enforceable whether or not the able to accept all measures proposed lop such plans and include them in the ion is submitted, place a Class I Legar will be located (See 45CSR§13-8.3 a Affidavit of Publication as Attachments application include confidential inform	applicant chooses to propose such by the applicant. If none of these plans permit. Al Advertisement in a newspaper of general through 45CSR§13-8.5 and <i>Example Legal</i> t P immediately upon receipt.								
31. > 32. 33. >	Monitoring, Recordkeeping, Reporting and testing plans in order to demonstrate complia application. Provide this information as Attack Please be aware that all permits must be pra- measures. Additionally, the DAQ may not be are proposed by the applicant, DAQ will deve Public Notice. At the time that the applicat circulation in the area where the source is of <i>Advertisement</i> for details). Please submit the Business Confidentiality Claims. Does this U YES If YES, identify each segment of information of segment claimed confidential, including the c <i>Notice – Claims of Confidentiality"</i> guidance f	d Testing Plans. Attach proposed monce with the proposed emissions limits hment O. ctically enforceable whether or not the able to accept all measures proposed lop such plans and include them in the ion is submitted, place a Class I Legar will be located (See 45CSR§13-8.3 a Affidavit of Publication as Attachment s application include confidential inform S NO on each page that is submitted as contributed in the General Instructions as Attachment action in the General Instructions as Attachment and a statement	applicant chooses to propose such applicant chooses to propose such by the applicant. If none of these plans e permit. Al Advertisement in a newspaper of general through 45CSR§13-8.5 and <i>Example Legal</i> t P immediately upon receipt. nation (per 45CSR31)? fidential and provide justification for each cordance with the DAQ's <i>"Precautionary</i> tachment Q.								
31. > 32. 33. >	Monitoring, Recordkeeping, Reporting and testing plans in order to demonstrate complia application. Provide this information as Attack Please be aware that all permits must be pra- measures. Additionally, the DAQ may not be are proposed by the applicant, DAQ will deve Public Notice. At the time that the applicat circulation in the area where the source is of <i>Advertisement</i> for details). Please submit the Business Confidentiality Claims. Does this DYES If YES, identify each segment of information of <i>Notice – Claims of Confidentiality"</i> guidance for Section I	d Testing Plans. Attach proposed monce with the proposed emissions limits hment O. ctically enforceable whether or not the able to accept all measures proposed lop such plans and include them in the ion is submitted, place a Class I Legar will be located (See 45CSR§13-8.3 a Affidavit of Publication as Attachment is application include confidential inform S application include confidential inform S NO on each page that is submitted as contriteria under 45CSR§31-4.1, and in action in the <i>General Instructions</i> as Attachment II. Certification of Information	applicant chooses to propose such by the applicant. If none of these plans e permit. Al Advertisement in a newspaper of general through 45CSR§13-8.5 and <i>Example Legal</i> t P immediately upon receipt. nation (per 45CSR31)? fidential and provide justification for each cordance with the DAQ's <i>"Precautionary</i> tachment Q.								
31. > 32. 33. > 34.	Monitoring, Recordkeeping, Reporting and testing plans in order to demonstrate complia application. Provide this information as Attack Please be aware that all permits must be pra- measures. Additionally, the DAQ may not be are proposed by the applicant, DAQ will deve Public Notice. At the time that the applicat circulation in the area where the source is of <i>Advertisement</i> for details). Please submit the Business Confidentiality Claims. Does this U YES If YES, identify each segment of information of segment claimed confidential, including the c <i>Notice – Claims of Confidentiality"</i> guidance f Authority/Delegation of Authority. Only ref Check applicable Authority Form below:	the the proposed emissions limits hment O. tically enforceable whether or not the able to accept all measures proposed lop such plans and include them in the ion is submitted, place a Class I Legar r will be located (See 45CSR§13-8.3 ± Affidavit of Publication as Attachment s application include confidential inform ⊠ NO on each page that is submitted as contriteria ound in the <i>General Instructions</i> as Att <i>II. Certification of Informate</i> quired when someone other than the r NA	applicant chooses to propose such by the applicant. If none of these plans e permit. Al Advertisement in a newspaper of general through 45CSR§13-8.5 and <i>Example Legal</i> t P immediately upon receipt. Ination (per 45CSR31)? fidential and provide justification for each cordance with the DAQ's <i>"Precautionary</i> tachment Q.								
31. > 32. 33. > 34.	Monitoring, Recordkeeping, Reporting and testing plans in order to demonstrate complia application. Provide this information as Attack Please be aware that all permits must be pray measures. Additionally, the DAQ may not be are proposed by the applicant, DAQ will devere Public Notice. At the time that the applicate circulation in the area where the source is on Advertisement for details). Please submit the Business Confidentiality Claims. Does this in YES. If YES, identify each segment of information as egment claimed confidential, including the confidentiality "guidance for the confidentiality" and the confidentiality of Corporation or Other Business	d Testing Plans. Attach proposed monce with the proposed emissions limits hment O. ctically enforceable whether or not the able to accept all measures proposed lop such plans and include them in the ion is submitted, place a Class I Legar will be located (See 45CSR§13-8.3 a Affidavit of Publication as Attachment is application include confidential inform S application include confidential inform S no on each page that is submitted as contriteria under 45CSR§31-4.1, and in action in the General Instructions as Attachment in the General Instructions as Attachment is application of Information of Information of the Source of the submitted when someone other than the rest of the submitted is a submitted when someone other than the rest of the submitted of the submitted of the submitted of the submitted when someone other than the rest of the submitted is a submitted when someone other than the rest of the submitted is a submitted when someone other than the rest of the submitted is a submitted of the submitted is a submitted when someone other than the rest of the submitted is a submitted in the submitted is a submitted in the submitted is a submitted when someone other than the rest of the submitted is a submitted in the submitted is submitted is a submitted in the submitted is a submitted	applicant chooses to propose such by the applicant. If none of these plans e permit. Al Advertisement in a newspaper of general through 45CSR§13-8.5 and <i>Example Legal</i> t P immediately upon receipt. Ination (per 45CSR31)? fidential and provide justification for each cordance with the DAQ's <i>"Precautionary</i> tachment Q. tion								
31. > 32. 33. > 34.	Monitoring, Recordkeeping, Reporting and testing plans in order to demonstrate complia application. Provide this information as Attack Please be aware that all permits must be pra- measures. Additionally, the DAQ may not be are proposed by the applicant, DAQ will deve Public Notice. At the time that the applicat circulation in the area where the source is of <i>Advertisement</i> for details). Please submit the Business Confidentiality Claims. Does this	d Testing Plans. Attach proposed monce with the proposed emissions limits thment O. ctically enforceable whether or not the able to accept all measures proposed lop such plans and include them in the ion is submitted, place a Class I Legar will be located (See 45CSR§13-8.3 a Affidavit of Publication as Attachment is application include confidential inform S no s application include confidential inform S no on each page that is submitted as contribution in the General Instructions as Attachment in the General Instructins as Attachment in the General Instructins a	applicant chooses to propose such applicant chooses to propose such by the applicant. If none of these plans a permit. Al Advertisement in a newspaper of general through 45CSR§13-8.5 and <i>Example Legal</i> t P immediately upon receipt. Ination (per 45CSR31)? fidential and provide justification for each cordance with the DAQ's <i>"Precautionary</i> tachment Q. Fion esponsible official signs the application. Inership ted Partnership								
31. > 32. 33. > 34.	Monitoring, Recordkeeping, Reporting and testing plans in order to demonstrate complia application. Provide this information as Attack Please be aware that all permits must be pra- measures. Additionally, the DAQ may not be are proposed by the applicant, DAQ will deve Public Notice. At the time that the applicat circulation in the area where the source is of <i>Advertisement</i> for details). Please submit the Business Confidentiality Claims. Does this [] YES If YES, identify each segment of information of segment claimed confidential, including the c <i>Notice – Claims of Confidentiality</i> " guidance for Authority/Delegation of Authority. Only rea Check applicable Authority Form below: [] Authority of Governmental Agency Submit completed and signed Authority Form	d Testing Plans. Attach proposed monce with the proposed emissions limits hment O. ctically enforceable whether or not the able to accept all measures proposed lop such plans and include them in the ion is submitted, place a Class I Legar will be located (See 45CSR§13-8.3 a Affidavit of Publication as Attachment is application include confidential inform	applicant chooses to propose such by the applicant. If none of these plans e permit. Al Advertisement in a newspaper of general through 45CSR§13-8.5 and <i>Example Legal</i> t P immediately upon receipt. Ination (per 45CSR31)? fidential and provide justification for each cordance with the DAQ's <i>"Precautionary</i> tachment Q. tion esponsible official signs the application. nership ted Partnership								

35A. Certification of Information. To certify this permit application, a Responsible Official (45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE: Yau Min

DATE: 10/3//2017

(Flease use blue link)					(Fiedde ude blue link)	
35B.	Printed name of signee: PAUL HUNTER	35C.	Title: VICE PRESIDENT			
35D.	E-mail: PAULV.HUNTER@WILLIAMS.COM	35E.	Phone: (412) 787-5561	35F.	FAX: (412) 787-6002	
36A.	Printed name of contact person: R. DANELL ZAWASKI, P.E. JOE MARECIC	36B.	B. Title: ENVIRONMENTAL SPECIALIST SUPERVISOR, EH&S			
36C.	E-mail: <u>DANELL.ZAWASKI@WILLIAMS.COM</u> <u>JOE.MARECIC@WILLIAMS.COM</u>	36D.	Phone: (412) 787-4259 (304) 843-3188	36E.	FAX: (412) 787-6002 (304) 843-3196	

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION:							
Attachment A: Business Certificate	Attachment K: Fugitive Emissions Data Summary Sheet						
Attachment B: Map(s)	Attachment L: Emissions Unit Data Sheet(s)						
Attachment C: Installation and Start Up Schedule	Attachment M: Air Pollution Control Device Sheet(s)						
Attachment D: Regulatory Discussion	Attachment N: Supporting Emissions Calculations						
Attachment E: Plot Plan	Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans						
Attachment F: Detailed Process Flow Diagram(s)	🛛 Attachment P: Public Notice						
Attachment G: Process Description	Attachment Q: Business Confidential Claims) (NA)						
Attachment H: Safety Data Sheets (SDS)	Attachment R: Authority Forms) (NA)						
Attachment I: Emission Units Table	Attachment S: Title V Permit Revision Information)						
Attachment J: Emission Points Data Summary Sheet	Application Fee						

Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:

☐ Forward 1 copy of the application to the Title V Permitting Group and
☐ For Title V Administrative Amendments:
NSR permit writer should notify Title V permit writer of draft permit
For Title V Minor Modifications:
Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
NSR permit writer should notify Title V permit writer of draft permit.
☐ For Title V Significant Modifications processed in parallel with NSR Permit revision:
NSR permit writer should notify a Title V permit writer of draft permit,
Public notice should reference both 45CSR13 and Title V permits,
EPA has 45-day review period of a draft permit.
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.
······································

ATTACHMENT A

Business Certificate

"6. **West Virginia Business Registration**. Provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A."

• Certificate of Amendment to the Certificate of Authority

From: CAIMAN EASTERN MIDSTREAM, LLC

To: WILLIAMS OHIO VALLEY MIDSTREAM LLC

Date: May 15, 2012

• Certificate of Authority of a Foreign Limited Liability Company

To: CAIMAN EASTERN MIDSTREAM, LLC

Date: September 11, 2009

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

the attached true and exact copy of the Articles of Amendment to the Articles of Organization of

CAIMAN EASTERN MIDSTREAM, LLC

are filed in my office, signed and verified, as required by the provisions of West Virginia Code §31B-2-204 and conform to law. Therefore, I issue this

CERTIFICATE OF AMENDMENT TO THE CERTIFICATE OF AUTHORITY

changing the name of the limited liability company to

WILLIAMS OHIO VALLEY MIDSTREAM LLC

Given under my hand and the Great Seal of the State of West Virginia on this day of May 15, 2012

talil E. Yerre

Secretary of State

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

CAIMAN EASTERN MIDSTREAM, LLC

Control Number: 99GIS

a limited liability company, organized under the laws of the State of Texas

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of September 11, 2009, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of September 11, 2009

Secretary of State

ATTACHMENT B

Location/Topographic Map

"12A. For **Modifications, Administrative Updates** or **Temporary** permits at an existing facility, please provide directions to the present location of the facility from the nearest state road. Include a MAP as Attachment B."

• Address:

5258 Fork Ridge Rd ~3.7 Miles Southeast of Moundsville North side of Fork Ridge Rd Moundsville, Marshall County, WV 26041

• Latitude and Longitude:

39°52'37.0" North x -80°41'56.5" West (39.8769° North x -80.6990° West)

UTM: 525.74 km Easting x 4,414.14 km Northing x Zone 17S

• Directions:

From Lafayette Ave/WV-2 in Moundsville:

- a. Head east onto 12th St ~1.1 Mile;
- b. Continue onto Fork Ridge Rd ~5.4 Mile;
- c. Entrance to site is on the left.
- USGS:

7.5" Topographic - Moundsville WV-OH – 1997 7.5" Topographic – Glen Easton WV – 1960

• Elevation:

~1,200'

Williams Ohio Valley Midstream LLC (OVM) OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP) Application for Class II Administrative Update (R13-3070A)

Attachment B

LOCATION (TOPO) MAP

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

ATTACHMENT C

Installation and Start-Up Schedule

"14C. Provide a **Schedule** of the planned **Installation** of/**Change** to and **Start-Up** of each of the units proposed in this permit application as Attachment C."

The OVM Oak Grove Gas Plant is an existing operation (w/ ongoing, permitted, construction and production). This application is prepared and submitted to:

- Decrease the estimated Volatile Organic Compound (VOC) and Hazardous Air Pollutant (HAP) emissions due to a more accurate count of the Piping and Equipment Fugitive components (FUG/15E), improvements to LDAR control efficiency estimates, plus a 15% contingency. (Also, n-Hexane in fugitives was speciated from BTEX.)
- Decrease the estimated Methane (CH4) (and, consequentially, CO2 Equivalent (CO2e)) emissions due to correction of the emission factor previously used (H-01/1E, H-02/2E, H-04/4E, H-05/5E, H-06/6E, H-07/7E, and GEN-01).

There are no proposed additional installations or changes to the subject facility.

ATTACHMENT D

Regulatory Discussion

"18. **Regulatory Discussion**. List all Federal and State air pollution control regulations that you believe are applicable to the proposed process (if known). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this information as Attachment D."

Regulatory Discussion

- A. Applicability of New Source Review (NSR) Regulations
- B. Applicability of Federal Regulations
- C. Applicability of Source Aggregation
- D. Applicability of State Regulations

Williams Ohio Valley Midstream LLC OAK GROVE NATURAL GAS PROCESSING FACILITY

Application for Class II Administrative Update (R13-3070A)

Attachment D **REGULATORY DISCUSSION**

A. Applicability of New Source Review (NSR) Regulations

The following New Source Review (NSR) regulations are potentially applicable to natural gas processing facilities (aka: gas plants). Applicability to the subject facility has been determined as follows:

1. Prevention of Significant Deterioration (PSD) [Not Applicable]

This rule does not apply. The facility is a "PSD Minor Source" for each regulated pollutant, as follows:

- NOx: • PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- CO: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- VOC: PSD Synthetic Minor Source with Controlled PTE < 250 tpy
- SO2: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy
- PM10/2.5: PSD Natural Minor Source with Pre-Controlled PTE < 250 tpy

2. Non-Attainment New Source Review (NNSR)

This rule does not apply. The facility location is designated as either "Maintenance" or "Attainment/Unclassified" for all criteria pollutants.

3. Major Source of Hazardous Air Pollutants (HAPs)

This rule does not apply. The facility qualifies as a "HAP Area Source" for each regulated pollutant. as follows:

- Each HAP: HAP Area Source with Controlled Individual HAP PTE < 10 tpy
- Total HAPs: HAP Area Source with Controlled Total of All HAPs PTE < 25 tpy

4. Title V Operating Permit (TVOP)

This rule does apply. The facility qualifies as a "Major Source" as follows:

- NOx: TVOP Major Source with Controlled PTE > 100 tpy
- CO: TVOP Major Source with Controlled PTE > 100 tpy
- VOC: TVOP Synthetic Minor Source with Controlled PTE < 100 tpy
- SO2: TVOP Natural Minor Source with Pre-Controlled PTE < 100 tpy
- PM10/2.5: TVOP Natural Minor Source with Pre-Controlled PTE < 100 tpy
- Each HAP: TVOP Synthetic Area Source with Controlled PTE < 10 tpy
- Total HAPs: TVOP Synthetic Area Source with Controlled PTE < 25 tpy

(Note: WVDEP requires that fugitive emissions be included in major source determinations at gas plants.)

[Applicable]

[Not Applicable]

[Not Applicable]

B. Applicability of Federal Regulations

The following federal regulations are potentially applicable to gas plants. Applicability to the facility has been determined as follows:

1. NSPS A, General Provisions

40CFR§60.1-§60.19

This rule <u>does apply</u> to all sources subject to an NSPS (unless a specific provision is excluded within the source NSPS). Requirements may include:

- a. Notification (§60.7)
- b. Recordkeeping and Reporting (§60.7)
- c. Source Testing (§60.8, §60.11)
- d. Control Device Requirements (§60.18)

2. NSPS Dc, Steam Generating Units

40CFR§60.40c-§60.48c

This rule <u>does apply</u> to the TXP1 Heat Medium Heater (H-01 (1E)), TXP2 & TXP3 Regen Gas Heaters (H-03 (3E) and H-04 (4E)), De-Ethanizer Hot Oil Heaters (H-05 (5E) and H-06 (6E)), and Amine Process Regen Gas Heater (H-07 (7E) because each has a maximum design heat input (MDHI) capacity \geq 10 MMBtu/hr and \leq 100 MMBtu/hr (§60.40c(a)).

Requirements include recording and maintaining records of the amount of natural gas fuel combusted during each calendar month ($\S60.48c(g)(2)$).

This rule <u>does not apply</u> to the TXP1 Regen Gas Heater (H-02 (2E)) because it has a MDHI capacity < 10 MMBtu/hr (§60.40c(a)).

3. NSPS Kb, Volatile Organic Liquid Storage Vessels

40CFR§60.110b-§60.117b

This rule <u>does not apply</u> because there is no tank with capacity \geq 75 m3 (471.7 bbl or 19,813 gal) that is used to store volatile organic liquids (VOL) at the facility (§60.110b(a)).

4. NSPS GG, Stationary Gas Turbines

40CFR§60.330-§60.335

This rule <u>does not apply</u> because there is no stationary gas turbine at the facility (§60.330).

5. NSPS KKK, Leaks from Natural Gas Processing Plants 40CFR§60.630-§60.636 [Not Applicable]

This rule <u>does not apply</u> because plant construction commenced after 08/23/11 (§60.630). (However, see Section 10. - NSPS OOOO, below.)

6. NSPS LLL, Onshore Natural Gas Processing: SO2 Emissions 40CFR§60.640-§60.648

[Not Applicable]

[Applicable]

[Not Applicable]

[Not Applicable]

This rule <u>does not apply</u> because there is no gas sweetening operation at the facility (§60.640(a)).

7. NSPS IIII, Compression Ignition Reciprocating Internal Combustion Engines 40CFR§60.4200-§60.4219 [Not Applicable]

This rule <u>does not apply</u> because there is no stationary compression ignition engine at the facility (§60.4200(a)).

8. NSPS JJJJ, Stationary Spark Ignition (SI) Internal Combustion Engines (ICE) 40CFR§60.4230-§60.4248 [Applicable]

This rule <u>does apply</u> to the Standby Generator Engine (GEN-1 (8E)) because it was constructed (ordered), modified, or reconstructed after 06/12/06, is an emergency engine manufactured on or after 01/01/09, and has a maximum engine power > 19 KW (25 HP (§60.4230(a)(4)(iii)).

The Standby Emergency Generator Engine is EPA Certified and will be operated and maintained according to the manufacturer's emission related written instructions. As such, no emission testing is required ($\S60.4243(a)(1)$).

9. NSPS KKKK, Stationary Combustion Turbines

40CFR§60.4300-§60.4420

This rule <u>does not apply</u> because there is no stationary combustion turbine at the facility (§60.4300).

10. NSPS OOOO, Crude Oil and Natural Gas Production

40CFR§60.5360-§60.5430

This rule <u>does apply</u> because the facility is a natural gas processing plant constructed, reconstructed, or modified after August 23, 2011.

Affected facilities include reciprocating compressors and equipment leaks.

Requirements include replacement of the reciprocating compressor rod packing before the compressor has operated 26,000 hours or prior to 36 months from the date of the most recent rod packing replacement. Additional requirements include monitoring and expeditious repair of valves, flanges, connectors, pumps, pressure relief devices and open-ended valves or lines. The equipment leak standards are specified in §60.5400. Also notification, recordkeeping, and reporting as specified in §60.5420.

11. NESHAP A, General Provisions

40CFR§63.1§63.16

This rule <u>does not apply</u> because the facility is not subject to any Subpart under 40CFR§63 National Emission Standards for Hazardous Air Pollutant for Source Categories.

(Note: The Standby Emergency Generator Engine (GEN-1 (8E)) complies with NESHAP ZZZZ by compliance with NSPS JJJJ (§63.6590(a)(2)(iii)), no other requirements apply.)

[Not Applicable]

[Not Applicable]

12. NESHAP HH, Oil and Natural Gas Production Facilities

40CFR§63.760-§63.779

This rule does not apply because the facility is an area source of HAPs and does not operate a triethylene glycol dehydration unit (§63.760(b)(2)).

13. NESHAP HHH, Natural Gas Transmission and Storage Facilities

40CFR§63.1270-§63.1289

This rule does not apply because the facility is NOT a natural gas transmission or storage facility transporting or storing natural gas prior to local distribution (§63.1270(a)).

14. NESHAP YYYY, Stationary Combustion Turbines

40CFR§63.6080-§63.6175

This rule does not apply because there is no stationary gas turbine at the facility (§63.6080).

15. NESHAP ZZZZ, Stationary Reciprocating Internal Combustion Engines (RICE) 40CFR§63.6580-§63.6675 [Applicable]

This rule <u>does apply</u> to the Standby Generator Engine (GEN-1 (9E)). However, because the engine is "new" or "reconstructed"; i.e., commenced construction or reconstruction on or after 06/12/06, the only requirement is compliance with 40CFR§60.4230-§60.4248 (NSPS JJJJ) for Spark Ignition Internal Combustion Engines (§63.6590(a)(2)(iii)).

16. NESHAP DDDDD, Industrial, Commercial, and Institutional Boilers and Process Heaters – Major Sources

40CFR§63.7480 - §63.7575

This rule does not apply because the facility is NOT a major source of HAP (§63.7485).

17. NESHAP JJJJJJ, Industrial, Commercial, and Institutional Boilers and Process Heaters – Area Sources

40CFR§63.11193 - §63.11237

[Not Applicable]

[Applicable]

[Not Applicable]

This rule does not apply because gas-fired boilers are not subject to the requirements of this subpart (§63.11195(e)). Specifically, "boiler" is defined as an enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or hot water.

18. Chemical Accident Prevention Provisions (RMP)

40CFR§68.1-§68.220

This rule does apply because the facility stores more than a threshold quantity of regulated substance in a process (§68.115).

[Not Applicable]

[Not Applicable]

[Not Applicable]

19. Compliance Assurance Monitoring (CAM)

40CFR§64.1-§64.10

[Not Applicable]

This rule <u>does not apply</u>. Although there are pollutant specific emission units subject to an emissions limitation and a control device is used to achieve compliance, the potential pre-control emissions do not exceed 100 tpy.

20. Mandatory Greenhouse Gases (GHG) Reporting

40CFR§98.1-§98.9

[Potentially Applicable]

This rule <u>potentially applies</u>. The facility is not subject to a listed source category; however, the aggregate maximum heat input capacity of the stationary fuel combustion units is \geq 30 MMBtu/hr and the facility has the potential to emit \geq 25,000 metric ton/yr (27,558 tpy) of CO2e/yr from all stationary fuel combustion sources combined (§98.2(a)).

Records must be kept of actual CO2, CH4 and N2O emissions to determine the actual CO2e emissions. If such emissions exceed the 25,000 metric ton/yr threshold then an annual report must be submitted no later than March 31st of each calendar year thereafter.

C. Applicability of Source Aggregation

For New Source Review (NSR) and Title V permitting, the three-part regulatory analysis used to determine whether emissions from two or more facilities should be aggregated and treated as a single source is whether the activities:

- i) Belong to the same major industrial grouping; and
- ii) Are located on one or more contiguous or adjacent properties; and
- iii) Are under common control.

i) Same Industrial Grouping

The subject facility will operate under SIC code 1321 (Natural Gas Liquids Extraction). The upstream gas production wells will operate under SIC code 1311 (Crude Petroleum and Natural Gas). Therefore, the subject facility shares the same two-digit major SIC code of 13 as the upstream gas production wells and additionally any other Williams facility in West Virginia.

ii) Contiguous or Adjacent

The determination of whether two or more facilities are "contiguous" or "adjacent" is made on a case-by-case basis. This determination is proximity based and, according to the courts, should meet the common sense meaning of the terms "contiguous" and "adjacent." It is important to focus on this criteria and whether two contiguous or adjacent facilities, considered as a single source, meet the common sense notion of a plant. The functional interrelationship of the two or more facilities is not a relevant inquiry in determining whether the facilities are "contiguous" or "adjacent" according to the preamble of the Clean Air Act and recent court decisions.

Neither West Virginia nor federal regulations define the terms "contiguous" or "adjacent" It is clear, however, that the determination of whether two or more facilities are 'contiguous" or "adjacent" is based on the plain meaning of the terms "adjacent" and "contiguous", which consider the physical distance between the facilities. The term contiguous is defined in the dictionary as being in actual contact; touching along a boundary or at a point. The term "adjacent" is defined in the dictionary as not distant, nearby, having a common endpoint or border.

The closest Williams-owned facility to the Oak Grove Processing Plant is the Taylor Compression Station, which is over ½ mile away as the crow flies. Taylor Compressor Station does not meet the common sense definition for being "contiguous" with or "adjacent" to the Oak Grove Processing Plant.

The Oak Grove Processing Plant processes gas produced from multiple upstream production wells located in northern West Virginia and Eastern Ohio. The subject facility is located on a parcel that is directly adjacent to a pre-existing upstream production wellpad operated by Chevron (the "Francis Wellpad") and is located less than half a mile from that wellpad. Other upstream production wells from which gas is processed at the Oak Grove Processing Plant are located further from the facility.

The location of the subject facility was chosen because of suitable characteristics for construction and operation, such as the availability of a reasonably flat grade and accessibility for large trucks and equipment. Williams' business model is to construct scalable capacity that contemplates additional production from multiple operators. The subject facility does not need to be located in the immediate vicinity of the Francis Wellpad in order to operate properly nor does it need to be located by Taylor. Indeed, the Chevron Wellpad has not produced any of the gas processed at the Oak Grove Processing Plant and the subject facility is located further from other upstream production wells even though those wells provide a larger volume of the gas that is processed at the facility. Had suitable land been available elsewhere, the subject facility could have been located further from the Francis Wellpad and could theoretically be moved further from this wellpad without affecting operations. Therefore, despite the fact that the subject facility is located in close proximity to one of many upstream production sources, aggregation of the Oak Grove Processing Plant does not meet the common sense notion of a plant.

iii) Common Control

Williams OVM operates under its parent company The Williams Companies, Inc. (Williams) and is the sole operator of the subject facility. The closest Williams-operated facility to the subject facility is the Taylor compressor station, which is located approximately 1.5 miles away. This facility is the closest to Oak Grove to have common ownership but it is not "contiguous" with or "adjacent" to the Oak Grove facility.

The production wells, including the Chevron Wellpad, that can send natural gas to the subject facility are owned and operated by other companies, which are unaffiliated with Williams. Williams has no ownership stake in the Chevron wellpad or in any other production well or company in West Virginia. It is Williams' understanding that the well produced before the Oak Grove Plant was built but has not produced during or after the plant was built and that decision of Chevron's to produce Francis or not was unrelated to Williams' building of the plant. It is the current understanding of Williams that the production of Francis will not require Oak Grove to operate but this is better understood by Chevron.

Furthermore, neither Williams OVM, nor Williams, exercise operational control over any equipment owned or operated by any natural gas producer upstream of the subject facility. All employees at the plant are under the exclusive direction of Williams and are not under the control of any other entity. Similarly, Williams has no authority over employees of the production wells. These companies operate wholly independent of one another. No employees are expected to shuttle back and forth between the subject facility and any production well.

At this time, contracts are in place for the subject facility to process natural gas produced from multiple upstream production wells located throughout the region. Williams will not have ownership or control of any future wellhead facilities. The producers are, and will be responsible for, any decisions to produce or shut-in wellhead facilities and have no control over the equipment installed, owned, and operated by Williams. Similarly, Williams cannot control the installation or operation of any equipment located at a well site that may be considered an air contamination source. For the reasons above it is clear that Williams does not have common control of any production wells including Francis.

Summary

The subject facility, Taylor, and the upstream production wells should not be aggregated and treated as a single source of emissions because the subject facility is not under common control with any of the upstream wells and is not "contiguous" or "adjacent" to Taylor. Additionally, the subject facility and the upstream production wells, considered together, do not meet the common sense notion of a plant because the subject facility is expected to service multiple production wells and because the location of the facility was selected for reasons unrelated to the location of the production wells. Accordingly, the subject facility should not be aggregated with the upstream wells in determining major source or PSD status.

ATTACHMENT D - Regulatory Discussion – Page 8 of 10

D. Applicability of State Regulations

The following State regulations are potentially applicable to gas plants. Applicability to the facility has been determined as follows:

1. Particulate Air Pollution from Combustion of Fuel 45CSR2

This rule does apply to the natural gas fired heaters (H-01 thru H-07); limiting opacity to 10% based on a six minute block average.

Because the heat input \geq 10 MMBtu/hr, these units (except H-02) are also subject to Sections 4 (emission standard), 5 (control of fugitive particulate matter), 6 (registration), 8 (testing, monitoring, recordkeeping, reporting) and 9 (startups, shutdowns, malfunctions.

2. Prevent and Control of Objectionable Odors

45CSR4

This rule does apply and states that an objectionable odor is an odor that is deemed objectionable when in the opinion of a duly authorized representative of the Air Pollution Control Commission (Division of Air Quality), based upon their investigations and complaints, such odor is objectionable. No odors have been deemed objectionable.

3. Control of Air Pollution from Combustion of Refuse 45CSR6

This rule does apply to the Process Flare (FL-1 (8E)). The flare is required to be smokeless except for periods not to exceed a total of 5 minutes during any 2 consecutive hours. The particulate matter emissions should be negligible and the flare will comply with the applicable emission standard. The facility will demonstrate compliance by maintaining records of the amount of waste gas consumed by the flare and the hours of operation. The facility will also monitor the flare pilot flame and record any malfunctions that may cause no flame to be present during facility operation.

4. Prevent and Control Air Pollution – Sulfur Oxides 45CSR10

This rule does apply to the gas-fueled heaters w/ a Maximum Design Heat Input (MDHI) rating > 10 MMBtu/hr (H-01, and H-03 thru H-07) (§45-10-10.1). Requirements are specified in 45CSR10 Sections 3 (emission standard), 6 (registration), 7 (permits), and 8 (testing, monitoring, recordkeeping, reporting).

5. Permits for Construction, Modification, Relocation and Operation 45CSR13

This rule does apply. Williams OVM has received a 45CSR13 Permit for the subject facility.

[Applicable]

[Applicable]

[Applicable]

[Applicable]

6. Permits for Construction and Modification of Major Stationary Sources for the **Prevention of Significant Deterioration** [Not Applicable]

45CSR14

The rule does not apply because the facility is neither a new PSD major source of pollutants nor is the proposed modification a modification to an existing PSD major source.

7. Standards of Performance for New Stationary Sources (40 CFR Part 60) 45CSR16

This rule does apply to this source by reference of §40CFR60 Subparts Dc and OOOO. Williams is subject to the recordkeeping, monitoring, and testing required of these Subparts.

8. Permits for Construction and Modification (Non-Attainment) 45CSR19

This rule does not apply because the facility is in an area designated as attainment for all regulated air pollutants.

9. Regulation of Volatile Organic Compounds (VOC) 45CSR21

This rule does not apply because the facility is not located in Putnam County, Kanawha County, Cabell County, Wayne County, or Wood County

10. Air Quality Management Fees Program

45CSR22

This rule does apply. It establishes a program to collect fees for certificates to operate and for permits to construct, modify or relocate sources of air pollution.

11. Prevent and Control Emissions of Toxic Air Pollutants 45CSR27

This rule does not apply because equipment is used in the production and distribution of petroleum products is exempt, provided that the product contains no more than 5% benzene by weight (§45-22-2.4).

12. Air Pollution Emissions Banking and Trading

45CSR28

This rule <u>does not apply</u>. The facility does not choose to participate in the voluntarily statewide air pollutant emissions trading program.

[Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

[Not Applicable]

13. Emission Statements for VOC and NOX

45CSR29

This rule <u>does not apply</u> because facility is not located in Putnam, Kanawha, Cabell, Wayne, Wood, or Greenbrier Counties (§45-29-1).

14. Requirements for Operating Permits

45CSR30

This rule <u>does apply</u>. The facility qualifies as a "Major Source" as follows:

- NOx: TVOP Major Source with Controlled PTE > 100 tpy
- CO: TVOP Major Source with Controlled PTE > 100 tpy
- VOC: TVOP Synthetic Minor Source with Controlled PTE < 100 tpy
- SO2: TVOP Natural Minor Source with Pre-Controlled PTE < 100 tpy
- PM10/2.5: TVOP Natural Minor Source with Pre-Controlled PTE < 100 tpy
- Each HAP: TVOP Synthetic Area Source with Controlled PTE < 10 tpy
- Total HAPs: TVOP Synthetic Area Source with Controlled PTE < 25 tpy

(Note: WVDEP requires that fugitive emissions be included in major source determinations at gas plants.)

15. Emission Standards for Hazardous Air Pollutants (HAP)

45CSR34

[Not Applicable]

This rule <u>does not apply</u> because the facility is not subject to any Subpart under 40CFR§61 (MACT) or 40CFR§63 (NESHAP)

(Note: The Standby Emergency Generator Engine (GEN-1 (8E)) complies with NESHAP ZZZZ by compliance with NSPS JJJJ (§63.6590(a)(2)(iii)), no other requirements apply.)

[Not Applicable]

ATTACHMENT E

Plot Plan

"21. Provide a **Plot Plan**, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E."

- Plot Plan Williams OVM Oak Grove Gas Plant
- Aerial View Williams OVM Oak Grove Gas Plant

Williams Ohio Valley Midstream LLC OAK GROVE NATURAL GAS PROCESSING PLANT Class II Administrative Update Attachment E

PLOT PLAN

Williams Ohio Valley Midstream LLC (OVM) OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP) Application for Class II Administrative Update (R13-3070A) Attachment E'

AERIAL VIEW

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

ATTACHMENT F

Detailed Process Flow Diagram

"22. Provide a **Detailed Process Flow Diagram(s)** showing each proposed or modified emissions unit, emission point and control device as Attachment F."

• Process Flow Diagram (PFD) – Williams OVM Oak Grove Gas Plant

Williams Ohio Valley Midstream LLC (OVM)

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment F

PROCESS FLOW DIAGRAM (PFD)

Application for Class II Administrative Update (R13-3070A)

ATTACHMENT G

Process Description

"23. Provide a **Process Description** as Attachment G. Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable). "

• Process Description

- A. Project Overview
- B. Stabilizer
- C. Molecular Sieve Dehydration Unit
- D. Cryogenic Turboexpansion (TXP) Process
- E. Heaters
- F. Process Flare
- G. Standby Generator Engine
- H. Storage Tanks
- I. Truck Load-Out
- J. Amine Treatment Unit
- K. Compressor Rod Packing and Dry Gas Seal Leaks

Williams Ohio Valley Midstream LLC OAK GROVE NATURAL GAS PROCESSING FACILITY

Application for Class II Administrative Update (R13-3070A)

Attachment G PROCESS DESCRIPTION

A. Project Overview

Williams Ohio Valley Midstream LLC owns and operates the Oak Grove Gas Plant in Marshall County (See Appendix B – Site Location Map). The facility is designed to process 600 MMscfd of natural gas received via pipeline. Three product streams are generated:

- 1. Residue Gas (i. e., dry, "clean", methane (CH4)) is compressed for off-site shipment via natural gas transmission pipeline.
- 2. Ethane (C2H6) Liquid (amine treated to remove CO2) is pumped for off-site shipment via liquid pipeline.
- 3. Natural Gas Liquids (NGL (C3+), including stabilized condensate) are also pumped for off-site shipment via liquid pipeline.
- B. Stabilizer

The facility operations commence with a slug catcher to remove free liquids from the inlet natural gas. The raw condensate stream enters the stabilizer unit where it is heated to remove the lighter end hydrocarbons (methane, ethane and propane). These lighter end hydrocarbons are compressed and commingled with raw inlet gas for further processing. The stabilized condensate liquids are commingled with other natural gas liquid (NGL) product for off-site shipment.

The stabilizer is a totally enclosed system, so the only emissions are fugitives from piping and equipment. These emissions are controlled by implementation of a leak detection and repair (LDAR) program.

C. Molecular Sieve Dehydration Unit

Mole sieves are used to remove water from the inlet gas stream as requisite for the following cryogenic processes. The operation starts with the wet gas entering the adsorption tower at the top which contains the molecular sieve desiccant. The gas exits the bottom of the vessel dry. While one tower is adsorbing, the other tower is regenerating. For regeneration, gas is heated up to 550 °F and is sent to the tower in regeneration to extract the water from the molecular sieves. As the saturated gas leaves the top of the vessel, it is cooled in a condenser and then the condensed water is separated. The two towers switch between adsorbing and regenerating on a fixed cycle.

The mole sieves are totally enclosed systems, so the only emissions are fugitives from piping and equipment. These emissions are controlled by implementation of a leak detection and repair (LDAR) program.

D. Cryogenic Turboexpansion (TXP) Process

The cryogenic process utilizes an expansion turbine to drop the temperature of the Inlet Gas to approximately minus 120 degrees Fahrenheit. This rapid temperature drop condenses much of the ethane (C2H6) and most of the other hydrocarbons (primarily propane (C3H8) and butane (C4H10), with de-minimis hexane, benzene, toluene, ethyl-benzene, xylene, etc. (together C5+)), while maintaining methane (CH4) in gaseous form.

The TXPs are totally enclosed systems, so the only emissions are fugitives from piping and equipment. These emissions are controlled by implementation of a leak detection and repair (LDAR) program.

E. <u>Heaters</u>

Natural gas-fueled heaters are used at the facility in the various gas processing segments. Emissions are generated by combustion of natural gas.

F. Process Flare

The process flare is used to safely combust waste gas streams generated during routine operations, general maintenance activities, and in the event of an upset. The amount of gas routed to the flare during a given event will vary widely. Emissions are of two types:

- 1) Combustion byproducts estimated as per EPA AP-42 emission factors, plus
- 2) Incomplete combustion of waste gas estimated at 99% control efficiency.

G. Standby Generator Engine

A standby generator is used to provide electrical power for various activities at the site in the event of loss of purchase power.

H. Storage Tanks

There are numerous tanks at the facility used to store various materials such as slop oil/condensate, produced water, lube oil, heat medium (oil), amine, diesel fuel, and motor gasoline. The slop oil/condensate tanks are the only tanks with significant emissions to the atmosphere. All other storage tanks at the site have de-minimis emissions.

I. Truck Load-Out

There are emissions from loading of slop oil/condensate into tanker trucks.

J. Amine Process Unit

The ethane product stream is further processed in an amine treatment unit to remove carbon dioxide (CO2) prior to off-site shipment via pipeline.

K. Compressor Rod Packing and Dry Gas Seal Leaks

Emissions result from reciprocating and centrifugal compressors that are utilized throughout the plant. The compressors generate emissions from the wear of mechanical joints, seals, and rotating surfaces over time.

ATTACHMENT H

Safety Data Sheets (SDS)

(And Representative Gas Analysis)

"24. Provide **Safety Data Sheets (SDS)** for all materials processed, used or produced as Attachment H. For chemical processes, provide a MSDS for each compound emitted to the air."

- INLET GAS ANALYSIS SUMMARY
- INLET GAS CERTIFICATE OF ANALYSIS
- RESIDUAL GAS ANALYSIS SUMMARY
- ETHANE GAS ANALYSIS SUMMARY
- NATURAL GAS LIQUIDS (NGL) ANALYSIS SUMMARY
- WASTE GAS ANALYSIS SUMMARY
- WASTE GAS BTU ANALYSIS
- SAFETY DATA SHEETS (SDS):

(SDS's are available upon request)

- Inlet Natural Gas
- Residue Natural Gas
- Ethane
- Natural Gas Liquids

Williams Ohio Valley Midstream LLC (OVM) OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP) Application for Class II Administrative Update (R13-3070A)

ATTACHMENT H - Inlet Gas Summary

Inlet Gas - Design Basis - (Ft Beeler Gas Plant)

Component	CAS	Formula	Molecular Weight	Mole % (Vol %)	Mole Fraction	Weighted Sum	Weight %	lb/MMscf
Nitrogen	7727-37-9	N2	32.00	0.4955	0.004955	0.1586	0.738	417.82
Hydrogen Sulfide	2148-87-8	H2S	34.08					
Carbon Dioxide	124-38-9	CO2	44.01	0.1887	0.001887	0.0830	0.386	218.84
Methane*	75-82-8	CH4	16.04	73.4443	0.734453	11.7824	54.831	31,048.71
Ethane*	74-84-0	C2H6	30.07	17.2512	0.172514	5.1873	24.140	13,669.52
Propane**	74-98-6	C3H8	44.10	6.0946	0.060947	2.6875	12.507	7,081.99
i-Butane**	75-28-5	C4H10	58.12	0.5849	0.005849	0.3400	1.582	895.86
n-Butane**	106-97-8	C4H10	58.12	1.3036	0.013036	0.7577	3.526	1,996.65
Cyclopentane**	287-92-3	C5H10	70.13					
i-Pentane**	78-78-4	C5H12	72.15	0.2148	0.002148	0.1550	0.721	408.39
n-Pentane**	109-66-0	C5H12	72.15	0.2357	0.002357	0.1701	0.791	448.13
Cyclohexane**	110-82-7	C6H12	84.16	0.0112	0.000112	0.0094	0.044	24.84
Other Hexanes**	varies	C6H14	86.18	0.0750	0.000750	0.0646	0.301	170.32
Methylcyclohexane**	varies	C7H14	98.19	0.0062	0.000062	0.0061	0.028	16.04
Heptanes**	varies	C7H16	100.20	0.0287	0.000287	0.0288	0.134	75.78
C8+ Heavies**	varies	C8H18	114.5 est	0.0087	0.000087	0.0100	0.046	26.25
Benzene***	71-43-2	C6H6	78.11	0.0008	0.000008	0.0006	0.003	1.65
Ethylbenzene***	100-41-4	C8H10	106.17	0.0001	0.000001	0.0001	0.000	0.14
n-Hexane***	110-54-3	C6H14	86.18	0.0518	0.000518	0.0446	0.208	117.63
Toluene***	108-88-3	C7H8	92.14	0.0013	0.000013	0.0012	0.006	3.16
2,2,4-TMP***	540-84-1	C8H18	114.23	0.0001	0.000001	0.0001	0.000	0.15
Xylenes***	1330-20-7	C8H10	106.17	0.0016	0.000016	0.0017	0.008	4.48

Totals:	100.00	1.00	21.49	100.00	56,626
Total THC:	99.31	0.99	21.25	98.88	55,990
Total VOC:	8.62	0.09	4.28	19.90	11,271
Total HAP:	0.06	0.001	0.05	0.22	127

* = Hydrocarbon (HC)
 ** = also Volatile Organic Compound (VOC)
 *** = also Hazardous Air Pollutant (HAP)
 *UGC (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 °F and 14.696 psia.
 Pound "X"/scf = M% of "X" * MW of "X" / UGC

Component	CAS	Formula	Representative Gas Analysis			Worst-Case (120% Min)		
			Mole %	Wgt %	lb/MMscf	Mole %	Wgt %	lb/MMscf
Carbon Dioxide	124-38-9	CO2	0.189	0.386	219	0.259	0.530	300
Methane	75-82-8	CH4	73.444	54.831	31,049	88.231	65.870	37,300
Ethane	74-84-0	C2H6	17.251	24.140	13,670	20.823	29.138	16,500
VOC	Various	C3+	8.619	19.905	11,271	10.400	24.017	13,600
Benzene	71-43-2	C6H6	0.001	0.003	2	0.005	0.018	10
Ethylbenzene	110-54-3	C8H10	0.000	0.000	0	0.004	0.018	10
n-Hexane	100-41-4	C6H14	0.052	0.208	118	0.066	0.265	150
Toluene	108-88-3	C7H8	0.001	0.006	3	0.004	0.018	10
2,2,4-TMP	540-84-1	C8H18	0.000	0.000	0	0.003	0.018	10
Xylenes	1330-20-7	C8H10	0.002	0.008	4	0.004	0.018	10
Total HAP	Various	C6+	0.056	0.225	127	0.087	0.353	200

ATTACHMENT H - Inlet Gas Summary
Williams Ohio Valley Midstream LLC (OVM) OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

ATTACHMENT H - Inlet Gas Composition - Design Basis

Legacy Measurement Solutions

Shreveport, LA 318-226-7237

	0.	0-220-1201		
Customer	: 2259 - WILLIAMS	Dat	e Sampled	: 11/01/2013
Station ID	: 5001	Dat	e Analyzed	: 11/11/2013
Cylinder ID	: 5203	Effe	ective Date	: 12/01/2013
Producer		Cyl	Pressure	: 900
Lease	: FORT BEELER 12 INCH	Ter	np	: 60
Area	: 500 - OHIO VALLEY MID	Cyl	inder Type	: Spot
State	: WV	Sar	nple By	: JM
	COMPONENT	MOL%	GPM@14.73(PSIA)	
	Oxygen	0.0030	0.000	
	Nitrogen	0.4955	0.000	
	Methane	73.4443	0.000	
	Carbon-Dioxide	0.1887	0.000	
	Ethane	17.2512	4.630	
	Propane	6.0946	1.685	
	Iso-Butane	0.5849	0.192	
	Normal-Butane	1.3036	0.412	
	Iso-Pentane	0.2148	0.079	
	Normai-Pentane	0.2357	0.086	
	2,2-Dimethylbutane	0.0045	0.002	
	2,3-Dimethylbutane/CycloC5	0.0087	0.003	
	2-methylpentane	0.0393	0.016	
	3-methylpentane	0.0225	0.009	
	Normal-Hexane	0.0518	0.021	
	2,2-Dimethylpentane	0.0004	0.000	
	Methylcyclopentane	0.0062	0.002	
	BENZENE	0.0008	0.000	
	3,3-Dimethylpentane	0.0006	0.000	
	CYCLOHEXANE	0.0050	0.002	
	2-Methylhexane	0.0075	0.003	
	2,3-Dimethylpentane	0.0019	0.001	
	3-Methylhexane	0.0075	0.003	
	1,t2-DMCYC5 / 2,2,4-TMC5	0.0001	0.000	
	1,t3-Dimethylcyclopentane	0.0002	0.000	
	N-Heptane	0.0108	0.005	
	METHYLCYCLOHEXANE	0.0059	0.003	
	2,5-Dimethylhexane	0.0005	0.000	
	2,3-Dimethylhexane	0.0007	0.000	
	TOLUENE	0.0013	0.000	
	2-Methylheptane	0.0017	0.001	
	4-Methylheptane	0.0007	0.000	
	3-Methylheptane	0.0014	0.001	
	1,t4-Dimethylcyclohexane	0.0007	0.000	
	N-OCTANE / 1,T2-DMCYC6	0.0022	0.001	
	1,t3-DMCYC6/1,C4- DMCYC6/1,C2,C3-TMCYC5	0.0000	0.000	
	2,4,4 TMC6	0.0000	0.000	

ATTACHMENT H - Residue Gas Summary

Residue Gas Composition

Component	CAS	Formula	Molecular Weight	Mole % (Vol %)	Mole Fraction	Weighted Sum	Weight %	lb/MMscf
Nitrogen	7727-37-9	N2	32.00					
Hydrogen Sulfide	2148-87-8	H2S	34.08					
Carbon Dioxide	124-38-9	CO2	44.01					
Methane*	75-82-8	CH4	16.04	95.3860	0.953822	15.3016	91.571	40,322.46
Ethane*	74-84-0	C2H6	30.07	4.4760	0.044758	1.3458	8.054	3,546.51
Propane**	74-98-6	C3H8	44.10	0.1420	0.001420	0.0626	0.375	165.00
i-Butane**	75-28-5	C4H10	58.12					
n-Butane**	106-97-8	C4H10	58.12					
Cyclopentane**	287-92-3	C5H10	70.13					
i-Pentane**	78-78-4	C5H12	72.15					
n-Pentane**	109-66-0	C5H12	72.15					
Cyclohexane**	110-82-7	C6H12	84.16					
Other Hexanes**	varies	C6H14	86.18					
Methylcyclohexane**	varies	C7H14	98.19					
Heptanes**	varies	C7H16	100.20					
C8+ Heavies**	varies	C8H18	114.5 est					
Benzene***	71-43-2	C6H6	78.11					
Ethylbenzene***	100-41-4	C8H10	106.17					
n-Hexane***	110-54-3	C6H14	86.18					
Toluene***	108-88-3	C7H8	92.14					
2,2,4-TMP***	540-84-1	C8H18	114.23					
Xylenes***	1330-20-7	C8H10	106.17					

Totals:	100.00	1.00	16.71	100.00	44,034
Total THC:	100.00	1.00	16.71	100.00	44,034
Total VOC:	0.14	0.00	0.06	0.37	165
Total HAP:	0.00	0.000	0.00	0.00	0

* = Hydrocarbon (HC)
 ** = also Volatile Organic Compound (VOC)
 *** = also Hazardous Air Pollutant (HAP)
 *UGC (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 °F and 14.696 psia.
 Pound "X"/scf = M% of "X" * MW of "X" / UGC

To be conservative, and to account for	potential future changes in	the gas guality, the following	"worst-case" values were assumed:
· · · · · · · · · · · · · · · · · · ·			

Component	CAS	Formula	Representative Gas Analysis			Worst-Case (120% Min)		
Component	CAS	Formula	Mole %	Wgt %	lb/MMscf	Mole %	Wgt %	lb/MMscf
Carbon Dioxide	124-38-9	CO2						
Methane	75-82-8	CH4	95.386	91.571	40,322	100.005	96.005	42,275
Ethane	74-84-0	C2H6	4.476	8.054	3,547	5.427	9.765	4,300
VOC	Various	C3+	0.142	0.375	165	0.172	0.454	200
Benzene	71-43-2	C6H6						
Ethylbenzene	110-54-3	C8H10						
n-Hexane	100-41-4	C6H14						
Toluene	108-88-3	C7H8						
2,2,4-TMP	540-84-1	C8H18						
Xylenes	1330-20-7	C8H10						
Total HAP	Various	C6+						

ATTACHMENT H - Residue Gas Summary

ATTACHMENT H - Ethane Product Summary

Ethane Product

Component	CAS	Formula	Molecular Weight	Mole % (Vol %)	Mole Fraction	Weighted Sum	Weight %	lb/MMscf
Nitrogen	7727-37-9	N2	32.00					
Hydrogen Sulfide	2148-87-8	H2S	34.08					
Carbon Dioxide	124-38-9	CO2	44.01	0.0697	0.000697	0.0307	0.100	80.84
Methane*	75-82-8	CH4	16.04	3.0000	0.030001	0.4813	1.565	1,268.28
Ethane*	74-84-0	C2H6	30.07	93.3274	0.933301	28.0635	91.228	73,952.04
Propane**	74-98-6	C3H8	44.10	1.0000	0.010000	0.4410	1.433	1,162.03
i-Butane**	75-28-5	C4H10	58.12	1.0000	0.010000	0.5812	1.889	1,531.66
n-Butane**	106-97-8	C4H10	58.12	1.0000	0.010000	0.5812	1.889	1,531.66
Cyclopentane**	287-92-3	C5H10	70.13					
i-Pentane**	78-78-4	C5H12	72.15					
n-Pentane**	109-66-0	C5H12	72.15					
Cyclohexane**	110-82-7	C6H12	84.16					
Other Hexanes**	varies	C6H14	86.18					
Methylcyclohexane**	varies	C7H14	98.19					
Heptanes**	varies	C7H16	100.20					
C8+ Heavies**	varies	C8H18	114.5 est					
Benzene***	71-43-2	C6H6	78.11	0.1000	0.001000	0.0781	0.254	205.84
Ethylbenzene***	100-41-4	C8H10	106.17	0.1000	0.001000	0.1062	0.345	279.77
n-Hexane***	110-54-3	C6H14	86.18	0.1000	0.001000	0.0862	0.280	227.09
Toluene***	108-88-3	C7H8	92.14	0.1000	0.001000	0.0921	0.300	242.81
2,2,4-TMP***	540-84-1	C8H18	114.23	0.1000	0.001000	0.1142	0.371	301.02
Xylenes***	1330-20-7	C8H10	106.17	0.1000	0.001000	0.1062	0.345	279.77

Totals:	100.00	1.00	30.76	100.00	81,063
Total THC:	99.93	1.00	30.73	99.90	80,982
Total VOC:	3.60	0.04	2.19	7.11	5,762
Total HAP:	0.60	0.006	0.58	1.90	1,536

* = Hydrocarbon (HC)
 ** = also Volatile Organic Compound (VOC)
 *** = also Hazardous Air Pollutant (HAP)
 *UGC (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 °F and 14.696 psia.
 Pound "X"/scf = M% of "X" * MW of "X" / UGC

To be conservative, and to account for	potential future changes in	the gas guality, the following	"worst-case" values were assumed:
· · · · · · · · · · · · · · · · · · ·			

			Representative Gas Analysis			Worst-Case (120% Min)		
Component	CAS	Formula	Mole %	Wgt %	lb/MMscf	Mole %	Wgt %	lb/MMscf
Carbon Dioxide	124-38-9	CO2	0.070	0.100	81	0.086	0.123	100
Methane	75-82-8	CH4	3.000	1.565	1,268	3.785	1.974	1,600
Ethane	74-84-0	C2H6	93.327	91.228	73,952	100.001	97.751	79,240
VOC	Various	C3+						
Benzene	71-43-2	C6H6	0.100	0.254	206	0.121	0.308	250
Ethylbenzene	110-54-3	C8H10	0.100	0.345	280	0.122	0.419	340
n-Hexane	100-41-4	C6H14	0.100	0.280	227	0.123	0.345	280
Toluene	108-88-3	C7H8	0.100	0.300	243	0.124	0.370	300
2,2,4-TMP	540-84-1	C8H18	0.100	0.371	301	0.123	0.456	370
Xylenes	1330-20-7	C8H10	0.100	0.345	280	0.122	0.419	340
Total HAP	Various	C6+	0.600	1.895	1,536	0.734	2.319	1,880

ATTACHMENT H - Ethane Product Summary

Williams Ohio Valley Midstream LLC (OVM) OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

ATTACHMENT H - Natural Gas Liquids (NGL) Summary

Natural Gas Liquids (NGL) Composition (Inlet Gas w/CH4 and C2H6 Removed)

Component	CAS	Formula	Molecular Weight	Mole % (Vol %)	Mole Fraction	Weighted Sum	Weight %	lb/MMscf
Nitrogen	7727-37-9	N2	32.00					
Hydrogen Sulfide	2148-87-8	H2S	34.08					
Carbon Dioxide	124-38-9	CO2	44.01					
Methane*	75-82-8	CH4	16.04					
Ethane*	74-84-0	C2H6	30.07					
Propane**	74-98-6	C3H8	44.10	70.7112	0.707112	31.1806	62.831	82,166.09
i-Butane**	75-28-5	C4H10	58.12	6.7862	0.067862	3.9443	7.948	10,393.83
n-Butane**	106-97-8	C4H10	58.12	15.1247	0.151247	8.7908	17.714	23,165.32
Cyclopentane**	287-92-3	C5H10	70.13					
i-Pentane**	78-78-4	C5H12	72.15	2.4922	0.024922	1.7981	3.623	4,738.22
n-Pentane**	109-66-0	C5H12	72.15	2.7347	0.027347	1.9730	3.976	5,199.25
Cyclohexane**	110-82-7	C6H12	84.16	0.1299	0.001299	0.1094	0.220	288.19
Other Hexanes**	varies	C6H14	86.18	0.8702	0.008702	0.7499	1.511	1,976.04
Methylcyclohexane**	varies	C7H14	98.19	0.0719	0.000719	0.0706	0.142	186.12
Heptanes**	varies	C7H16	100.20	0.3330	0.003330	0.3337	0.672	879.25
C8+ Heavies**	varies	C8H18	114.5 est	0.1009	0.001009	0.1156	0.233	304.56
Benzene***	71-43-2	C6H6	78.11	0.0093	0.000093	0.0073	0.015	19.11
Ethylbenzene***	100-41-4	C8H10	106.17	0.0006	0.000006	0.0006	0.001	1.62
n-Hexane***	110-54-3	C6H14	86.18	0.6010	0.006010	0.5179	1.044	1,364.79
Toluene***	108-88-3	C7H8	92.14	0.0151	0.000151	0.0139	0.028	36.62
2,2,4-TMP***	540-84-1	C8H18	114.23	0.0006	0.000006	0.0007	0.001	1.75
Xylenes***	1330-20-7	C8H10	106.17	0.0186	0.000186	0.0197	0.040	51.93

Totals:	100.00	1.00	49.63	100.00	130,773
Total THC:	100.00	1.00	49.63	100.00	130,773
Total VOC:	100.00	1.00	49.63	100.00	130,773
Total HAP:	0.65	0.006	0.56	1.13	1,476

* = Hydrocarbon (HC) ** = also Volatile Organic Compound (VOC) *** = also Hazardous Air Pollutant (HAP) [#]UGC (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 °F and 14.696 psia. Pound "X"/scf = M% of "X" * MW of "X" / UGC

To be conservative, and to accourt	nt for potential future ch	anges in the gas o	quality, the following	"worst-case" value	es were assumed:
------------------------------------	----------------------------	--------------------	------------------------	--------------------	------------------

Component	CAS	Formula	Represe	entative Gas /	Analysis	Wors	st-Case (120%	Min)
Component	CAS	Formula	Mole %	Wgt %	lb/MMscf	Mole %	Wgt %	lb/MMscf
Carbon Dioxide	124-38-9	CO2						
Methane	75-82-8	CH4						
Ethane	74-84-0	C2H6						
VOC	Various	C3+	100.000	100.000	130,773	100.000	100.000	130,800
Benzene	71-43-2	C6H6	0.009	0.015	19	0.015	0.023	30
Ethylbenzene	110-54-3	C8H10	0.001	0.001	2	0.004	0.008	10
n-Hexane	100-41-4	C6H14	0.601	1.044	1,365	0.722	1.254	1,640
Toluene	108-88-3	C7H8	0.015	0.028	37	0.021	0.038	50
2,2,4-TMP	540-84-1	C8H18	0.001	0.001	2	0.003	0.008	10
Xylenes	1330-20-7	C8H10	0.019	0.040	52	0.025	0.054	70
Total HAP	Various	C6+	0.645	1.129	1,476	0.791	1.384	1,810

ATTACHMENT H - Natural Gas Liquids (NGL) Summary

Williams Ohio Valley Midstream LLC (OVM) OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

ATTACHMENT H - Waste Gas Summary

Waste Gas (Blended Streams to Flare (FLR-1 (8E))

Component	CAS	Formula	Molecular Weight	Mole % (Vol %)	Mole Fraction	Weighted Sum	Weight %	lb/MMscf
Nitrogen	7727-37-9	N2	32.00	0.0724	0.000724	0.0232	0.081	61.04
Hydrogen Sulfide	2148-87-8	H2S	34.08					
Carbon Dioxide	124-38-9	CO2	44.01	0.0829	0.000829	0.0365	0.127	96.10
Methane*	75-82-8	CH4	16.04	18.7110	0.187114	3.0018	10.490	7,910.18
Ethane*	74-84-0	C2H6	30.07	76.8294	0.768312	23.1024	80.734	60,878.77
Propane**	74-98-6	C3H8	44.10	1.8182	0.018182	0.8018	2.802	2,112.78
i-Butane**	75-28-5	C4H10	58.12	0.8910	0.008910	0.5179	1.810	1,364.63
n-Butane**	106-97-8	C4H10	58.12	1.0108	0.010108	0.5875	2.053	1,548.22
Cyclopentane**	287-92-3	C5H10	70.13					
i-Pentane**	78-78-4	C5H12	72.15	0.0358	0.000358	0.0258	0.090	68.11
n-Pentane**	109-66-0	C5H12	72.15	0.0393	0.000393	0.0284	0.099	74.74
Cyclohexane**	110-82-7	C6H12	84.16	0.0019	0.000019	0.0016	0.005	4.14
Other Hexanes**	varies	C6H14	86.18	0.0125	0.000125	0.0108	0.038	28.41
Methylcyclohexane**	varies	C7H14	98.19	0.0010	0.000010	0.0010	0.004	2.68
Heptanes**	varies	C7H16	100.20	0.0048	0.000048	0.0048	0.017	12.64
C8+ Heavies**	varies	C8H18	114.5 est	0.0015	0.000015	0.0017	0.006	4.38
Benzene***	71-43-2	C6H6	78.11	0.0795	0.000795	0.0621	0.217	163.59
Ethylbenzene***	100-41-4	C8H10	106.17	0.0793	0.000794	0.0842	0.294	221.99
n-Hexane***	110-54-3	C6H14	86.18	0.0880	0.000880	0.0758	0.265	199.79
Toluene***	108-88-3	C7H8	92.14	0.0796	0.000796	0.0733	0.256	193.17
2,2,4-TMP***	540-84-1	C8H18	114.23	0.0793	0.000794	0.0906	0.317	238.85
Xylenes***	1330-20-7	C8H10	106.17	0.0796	0.000796	0.0845	0.295	222.72

Totals:	100.00	1.00	28.62	100.00	75,407
Total THC:	99.84	1.00	28.56	99.79	75,250
Total VOC:	4.30	0.04	2.45	8.57	6,461
Total HAP:	0.49	0.005	0.47	1.64	1,240

*** = also Hazardous Air Pollutant (HAP) [#]UGC (Universal Gas Constant) = 379.482 scf/lb-mol @ 60 °F and 14.696 psia. Pound "X"/scf = M% of "X" * MW of "X" / UGC

To be conservative, and to account f	or potential future changes i	n the gas quality, th	ne following "worst-case"	values were assumed:
--------------------------------------	-------------------------------	-----------------------	---------------------------	----------------------

Component	CAS	Formula	Represe	entative Gas /	Analysis	Wors	st-Case (120%	Min)
Component	CAS	Formula	Mole %	Wgt %	lb/MMscf	Mole %	Wgt %	lb/MMscf
Carbon Dioxide	124-38-9	CO2	0.083	0.127	96	0.129	0.199	150
Methane	75-82-8	CH4	18.711	10.490	7,910	22.472	12.598	9,500
Ethane	74-84-0	C2H6	76.829	80.734	60,879	92.253	96.941	73,100
VOC	Various	C3+	4.302	8.568	6,461	5.194	10.344	7,800
Benzene	71-43-2	C6H6	0.079	0.217	164	0.097	0.265	200
Ethylbenzene	110-54-3	C8H10	0.079	0.294	222	0.097	0.358	270
n-Hexane	100-41-4	C6H14	0.088	0.265	200	0.106	0.318	240
Toluene	108-88-3	C7H8	0.080	0.256	193	0.099	0.318	240
2,2,4-TMP	540-84-1	C8H18	0.079	0.317	239	0.096	0.385	290
Xylenes	1330-20-7	C8H10	0.080	0.295	223	0.097	0.358	270
Total HAP	Various	C6+	0.485	1.645	1,240	0.591	2.002	1,510

ATTACHMENT H - Waste Gas Summary

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

ATTACHMENT H - Waste Gas Btu Analysis

Based on Streams Disposed in Flare (FLR-1 (8E))

					Inlet	Gas	Residu	le Gas	Ethane	Product	NG	iLs	Waste	e Gas
		Molecula	Comp	onent	Flow: 92.1	MMscf/yr	Flow: 37.0	MMscf/yr	#######	*##########	Flow: 1.1	MMscf/yr	########	<i> #######</i> #
Component	Formula	r Weight	Btu	/scf	Flow: 10,	509 scf/hr	Flow: 4,2	25 scf/hr	Flow: 57,	078 scf/hr	Flow: 12	28 scf/hr	Flow: 71,	940 scf/hr
		(MW)			14.	6%	5.9	9%	79.	3%	0.2	2%	100	.0%
			LHV	HHV	Mole %	Btu/scf	Mole %	Btu/scf	Mole %	Btu/scf	Mole %	Btu/scf	Mole %	Btu/scf
Nitrogen	N2	28.013			0.4955								0.072	
Hydrogen Sulfide	H2S	34.086	586.8	637.1										
Carbon Dioxide	CO2	44.010			0.1887				0.070				0.083	
Methane*	CH4	16.042	909.4	1,010.0	73.4443	667.902	95.3860	867.4	3.000	27.3			18.711	170.2
Ethane*	C2H6	30.069	1,618.7	1,769.7	17.2512	279.245	4.4760	72.5	93.327	1510.7			76.829	1243.6
Propane**	C3H8	44.096	2,314.9	2,516.2	6.0946	141.084	0.1420	3.3	1.000	23.1	70.711	1636.9	1.818	42.1
i-Butane**	C4H10	58.122	3,000.4	3,252.0	0.5849	17.549			1.000	30.0	6.786	203.6	0.891	26.7
n-Butane**	C4H10	58.122	3,010.8	3,262.4	1.3036	39.249			1.000	30.1	15.125	455.4	1.011	30.4
Cyclopentane**	C5H10	70.100	3,512.0	3,763.6										
i-Pentane**	C5H12	72.149	3,699.0	4,000.9	0.2148	7.945					2.492	92.2	0.036	1.3
n-Pentane**	C5H12	72.149	3,706.9	4,008.7	0.2357	8.737					2.735	101.4	0.039	1.5
Cyclohexane**	C6H12	84.159	4,179.7	4,481.6	0.0112	0.468					0.130	5.4	0.002	0.1
Other Hexanes**	C6H14	86.175	4,394.8	4,746.9	0.0750	3.296					0.870	38.2	0.013	0.5
Methylcyclohexane**	C7H14	98.186	4,863.7	5,215.9	0.0062	0.302					0.072	3.5	0.001	0.1
Heptanes**	C7H16	100.202	5,100.0	5,502.5	0.0287	1.464					0.333	17.0	0.005	0.2
C8+ Heavies**	C8+	114.5 est	5,815 est	6,255 est	0.0087	0.506					0.101	5.9	0.001	0.1
Benzene***	C6H6	78.112	3,590.9	3,741.9	0.0008	0.029			0.100	3.6	0.009	0.3	0.079	2.85
Ethylbenzene***	C8H10	106.165	4,970.4	5,222.0	0.0001	0.002			0.100	5.0	0.001	0.0	0.079	3.9
n-Hexane***	C6H14	86.175	4,403.8	4,756.0	0.0518	2.281			0.100	4.4	0.601	26.5	0.088	3.9
Toluene***	C7H8	92.138	4,273.7	4,474.9	0.0013	0.056			0.100	4.3	0.015	0.6	0.080	3.40
2,2,4-TMP***	C8H18	114.229	5,778.8	6,231.6	0.0001	0.003			0.100	5.8	0.001	0.0	0.079	4.6
Xylenes***	C8H10	106.165	4,957.2	5,208.9	0.0016	0.079			0.100	5.0	0.019	0.9	0.080	3.9
					100.00	_	100.00		100.00	_	100.00		100.00	
				Btu/s	cf (LHV):	1,170		943		1,649		2,588		1,539
				Lŀ	IV/HHV:	91.0%		90.1%		91.5%		90.7%		91.4%
				Btu/se	cf (HHV):	1,286		1,047		1,802		2,852		1,685
					1									
				MMBtu/I	nr (LHV):	12.30		3.98		94.13		0.33		110.75
				MMBtu/h	nr (HHV):	13.52		4.42		102.84		0.37		121.22

Application for Class II Administrative Update (R13-3070A)

ATTACHMENT I

Emission Units Table

"25. Fill out the Emission Units Table and provide it as Attachment I."

• Emissions Unit Table

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment I EMISSION UNITS TABLE

(Include all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status.)

Emission Unit ID ¹	Emission Point ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
		Point Sources	;			
H-01	01E	TXP1 Heat Medium Heater	2013/2016	26.26 MMBtu/hr	Existing	na
H-02	02E	TXP1 Regeneration Gas Heater	2013/2016	9.40 MMBtu/hr	Existing	na
H-03	03E	TXP2 Regeneration Gas Heater	2014/2016	20.30 MMBtu/hr	Existing	na
H-04	04E	TXP3 Regeneration Gas Heater	2015/2016	20.30 MMBtu/hr	Existing	na
H-05	05E	DeC2 Hot Oil Heater	2013/2016	68.33 MMBtu/hr	Existing	na
H-06	06E	DeC2 Hot Oil Heater	2013/2016	68.33 MMBtu/hr	Existing	na
H-07	07E	DeC2 Regeneration Gas Heater	2013/2016	10.44 MMBtu/hr	Existing	na
FLR-1	08E	Process Flare	2013/2016	630.19 MMscf/yr	Existing	na
GEN-1	09E	Standby Generator	2013/2016	224 bhp	Existing	na
TK-1	10E	Slop Oil/Condensate Tank	2013/2016	400 bbl	Existing	na
TK-2	11E	Slop Oil/Condensate Tank	2013/2016	400 bbl	Existing	na
TK-3	12E	Slop Oil/Condensate Tank	2013/2016	400 bbl	Existing	na
TK-4	13E	Slop Oil/Condensate Tank	2013/2016	400 bbl	Existing	na
TLO-1	14E	Truck Load-Out - Slop Oil/Condensate	2013/2016	4,000,000 gal/yr	Existing	na
V-01	16E	Amine Process Unit Vent	2013/2016	44,000 bbl/day	Existing	FLR-1
RPC-1	17E	Rod Packing - Reciprocating Compressors	2013/2016	3 Recips	Existing	na
DGS	18E	Dry Gas Seals - Centrifugal Compressors	2013/2016	8 Centrifugal	Existing	na
		Fugitive Source	es			
FUG-G	15E	Piping and Equipment Fugitives - Gas	2013/2017		Modified	LDAR
FUG-L	15E	Piping and Equipment Fugitives - Light Liquid	2013/2017		Modified	LDAR
FUG-M	15E	Piping and Equipment Fugitives - Mix Gas/Liq	2013/2017		Modified	LDAR

¹ For Emission Units (or <u>Sources</u>) use the following numbering system: 1S, 2S, 3S, ... or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³New, modification, removal, etc.

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C, ... or other appropriate designation.

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment I EMISSION UNITS TABLE - Continued

(Include all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status.)

Emission Unit ID ¹	Emission Point ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
		Insignificant Sources (Misc	ellaneous Ta	anks)		
		00-V-823 Common Closed Drain Vessel	2014	2,200 gal	Existing	na
		00-V-817 Flare Knockout Vessel	2014	25,000 gal	Existing	na
		21-ST-810 Lube Oil Day Tank	2014	300 gal	Existing	na
		21-V-809 Closed Drain Vessel	2014	4,500 gal	Existing	na
		21-V-701 Hot Oil Surge Tank	2014	2,300 gal	Existing	na
		21-V-828 De-Ethanizer Surge Tank	2014	70,000 gal	Existing	na
		21-ST-801 De-Ionized Water Storage Tank	2014	16,800 gal	Existing	na
		21-ST-802 Amine Storage Tank	2014	4,200 gal	Existing	na
		21-ST-803 Raw Regen Water Storage Tank	2014	16,800 gal	Existing	na
		21-ST-806 Used Amine Storage Tank	2014	25,000 gal	Existing	na
		21-HTR-703 Hot Oil Heater	2014	2,662 gal	Existing	na
		21-HTR-704 Hot Oil Heater	2014	2,662 gal	Existing	na
		31-ST-980 Lube Oil Day Tank	2014	300 gal	Existing	na
		32-ST-980 Lube Oil Day Tank	2014	300 gal	Existing	na
		31-V-801 Feed Separator	2014	1,700 gal	Existing	na
		32-V-801 Feed Separator	2014	1,700 gal	Existing	na
		01-ST-863 Residue Compressor Lube Oil	2014	335 gal	Existing	na
		01-ST-884 Turbo Expander Bullet Tank	2014	60 gal	Existing	na
		01-V-868 Closed Drain Vessel	2014	370 gal	Existing	na
		01-V-403 Cold Drain Tank	2014	3,500 gal	Existing	na
		01-V-860 Inlet Gas Separator	2014	380 gal	Existing	na
		01-V-402 Cold Separator	2014	7,500 gal	Existing	na
		Diesel tank	2014	500 gal	Existing	na
		Gasoline tank	2014	500 gal	Existing	na

¹ For Emission Units (or <u>S</u>ources) use the following numbering system: 1S, 2S, 3S, ... or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³New, modification, removal, etc.

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C, ... or other appropriate designation.

ATTACHMENT J

Emission Points Data Summary Sheet

"26. Fill out the **Emission Points Data Summary Sheet** (Table 1 and Table 2) and provide it as Attachment J."

- Table 1 Emissions Data
 - TXP1 Heat Medium Heater (H-01 (1E)) (MODIFIED CO2)
 - TXP1 Regeneration Gas Heater (H-02 (2E)) (MODIFIED CO2)
 - TXP2 Regeneration Gas Heater (H-03 (3E))
 - TXP3 Regeneration Gas Heater (H-04 (4E))
 - De-Ethanizer Hot Oil Heater (H-05 (5E)) (MODIFIED CO2))
 - De-Ethanizer Hot Oil Heater (H-06 (6E)) (MODIFIED (CO2)
 - Amine Process Regeneration Gas Heater (H-07 (7E)) (MODIFIED (CO2)
 - Process Flare (FL-1 (8E))
 - Standby Generator Engine (Gen-1 (9E)) (MODIFIED (CO2)
 - Slop Oil/Condensate Storage Tanks (T-01 (10E) thru T-04 (13E))
 - o Truck Load-Out (TL-1 (14E))
 - Amine Process Vent (V-01 (16E))
 - Rod Packing/Crankcase Leaks (RPC (17E))
 - Dry Gas Seal Leaks (DGS (18E))
 - FUG-G (15E) Gas (MODIFIED VOC and HAP)
 - FUG-L (15E) Liquid (MODIFIED VOC and HAP)
 - FUG-M (15E) Mixed (MODIFIED VOC and HAP)
 - FUG-TOT (15E) Total (MODIFIED VOC and HAP)
 - Total Plant-Wide (Including Fugitives)
- Table 2 Release Parameter Data

						Та	ble 1: Emis	sions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissi Vented This (Must Emissic Table & F	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Po Control (Must Emissic Table & F	llution Device match on Units Plot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit mical res only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxi Pote Uncor Emise	mum ential htrolled sions ⁴	Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	d finit by	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX	2.57	11.28	2.57	11.28	Gas	AP-42	
								CO	2.16	9.47	2.16	9.47	Gas	AP-42	
		TXP1 H	eat Medium	Heater (H-	01 (1E))			VOC	0.15	0.64	0.15	0.64	Gas	AP-42	
								SO2	0.02	0.07	0.02	0.07	Gas	AP-42	
								PM10/2.5	0.20	0.86	0.20	0.86	Solid/Gas	AP-42	
								Benzene	5.4E-05	2.4E-04	5.4E-05	2.4E-04	Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								HCHO	1.9E-03	0.01	1.9E-03	0.01	Gas	AP-42	
H-01	Upward	H-01	H-01					n-Hexane	0.05	0.20	0.05	0.20	Gas	AP-42	
(1E)	Vertical	(1E)	(1E)	=) na	na	С	8,760	Toluene	8.8E-05	3.8E-04	8.8E-05	3.8E-04	Gas	AP-42	
	Stack	('⊑)	()					2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
								Other HAP	4.9E-05	2.1E-04	4.9E-05	2.1E-04	Gas	AP-42	
								Total HAP	0.05	0.21	0.05	0.21	Gas	AP-42	
								CO2e	3,075	13,470	3,075	13,470	Gas	EPA	
								NOX	0.92	4.04	0.92	4.04	Gas	AP-42	
								CO	0.77	3.39	0.77	3.39	Gas	AP-42	
		TXP1 I	Regen Gas	Heater (H-0	2 (2E))			VOC	0.05	0.23	0.05	0.23	Gas	AP-42	
								SO2	0.01	0.02	0.01	0.02	Gas	AP-42	
								PM10/2.5	0.07	0.31	0.07	0.31	Solid/Gas	AP-42	
								Benzene	1.9E-05	8.5E-05	1.9E-05	8.5E-05	Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								HCHO	6.9E-04	3.0E-03	6.9E-04	3.0E-03	Gas	AP-42	
11.00	Upward		11.00					n-Hexane	0.02	0.07	0.02	0.07	Gas	AP-42	
H-02	Vertical	H-02	H-02	na	na	С	8,760	Toluene	3.1E-05	1.4E-04	3.1E-05	1.4E-04	Gas	AP-42	
(2E)	Stack	(20)	(20)					2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
								Other HAP	1.7E-05	7.7E-05	1.7E-05	7.7E-05	Gas	AP-42	
								Total HAP	0.02	0.08	0.02	0.08	Gas	AP-42	
								CO2e	1,101	4,821	1,101	4,821	Gas	EPA	
															sion 2/11

						Та	ble 1: Emis	sions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissi Vented This <i>(Must Emissic</i> Table & F	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Po Control (Must Emissic Table & F	llution Device match on Units Plot Plan)	Vent Time for Emission Unit (Chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxi Pote Uncon Emiss	mum ential trolled sions ⁴	Maxi Pote Conti Emiss	mum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	d / // d Oj	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX	0.73	3.20	0.73	3.20	Gas	Vendor	30
								CO	0.81	3.56	0.81	3.56	Gas	Vendor	50
		TXP2 I	Regen Gas	Heater (H-0	3 (3E))			VOC	0.39	1.69	0.39	1.69	Gas	Vendor	15
						-		SO2	0.01	0.05	0.01	0.05	Gas	AP-42	
								PM10/2.5	0.26	1.16	0.26	1.16	Solid/Gas	Vendor	15
								Benzene	4.2E-05	1.8E-04	4.2E-05	1.8E-04	Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								НСНО	1.5E-03	0.01	1.5E-03	0.01	Gas	AP-42	
H-03 U (3E) S	Upward	H-03	H-03					n-Hexane	0.04	0.16	0.04	0.16	Gas	AP-42	
	Vertical	(3E)	(3E)	na	na	С	8,760	Toluene	6.8E-05	3.0E-04	6.8E-05	3.0E-04	Gas	AP-42	
	Stack		(02)					2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
								Other HAP	3.8E-05	1.7E-04	3.8E-05	1.7E-04	Gas	AP-42	
								Total HAP	0.04	0.16	0.04	0.16	Gas	AP-42	
								CO2e	2,380	10,422	2,380	10,422	Gas	EPA	
								NOX	0.73	3.20	0.73	3.20	Gas	Vendor	30
								CO	0.81	3.56	0.81	3.56	Gas	Vendor	50
		TXP3 F	Regen Gas I	Heater (H-0	4 (4E))			VOC	0.39	1.69	0.39	1.69	Gas	Vendor	15
								SO2	0.01	0.05	0.01	0.05	Gas	AP-42	
								PM10/2.5	0.26	1.16	0.26	1.16	Solid/Gas	Vendor	15
								Benzene	4.2E-05	1.8E-04	4.2E-05	1.8E-04	Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								HCHO	1.5E-03	0.01	1.5E-03	0.01	Gas	AP-42	
H_04	Upward	H-04	H-04					n-Hexane	0.04	0.16	0.04	0.16	Gas	AP-42	
(4F)	Vertical	(4F)	(4F)	na	na	С	8,760	Toluene	6.8E-05	3.0E-04	6.8E-05	3.0E-04	Gas	AP-42	
(4E)	Stack	(12)	(12)					2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
								Other HAP	3.8E-05	1.7E-04	3.8E-05	1.7E-04	Gas	AP-42	
								Total HAP	0.04	0.16	0.04	0.16	Gas	AP-42	
								CO2e	2,380	10,422	2,380	10,422	Gas	EPA	
															2/11

						Та	ble 1: Emis	sions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissi Vented This <i>(Must Emissic</i> Table & F	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Po Control (Must Emissic Table & F	llution Device match on Units Plot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit mical res only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxi Pote Uncor Emis:	mum ential htrolled sions ⁴	Maxi Pote Conti Emiss	mum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	d finit by	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX	2.46	10.77	2.46	10.77	Gas	Vendor	30
								CO	2.53	11.07	2.53	11.07	Gas	Vendor	50
		De-Etha	nizer Hot O	il Heater (H	-05 (5E))			VOC	0.38	1.67	0.38	1.67	Gas	AP-42	
								SO2	0.04	0.18	0.04	0.18	Gas	AP-42	
								PM10/2.5	0.51	2.23	0.51	2.23	Solid/Gas	AP-42	
								Benzene	1.4E-04	6.2E-04	1.4E-04	6.2E-04	Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								НСНО	0.01	0.02	0.01	0.02	Gas	AP-42	
H-05 (5E)	Upward	H-05	H-05					n-Hexane	0.12	0.53	0.12	0.53	Gas	AP-42	
	Vertical	(5E)	(5E)	(5E) na	na	С	8,760	Toluene	2.3E-04	1.0E-03	2.3E-04	1.0E-03	Gas	AP-42	
	Stack	()	()					2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
								Other HAP	1.3E-04	5.6E-04	1.3E-04	5.6E-04	Gas	AP-42	
								Total HAP	0.13	0.55	0.13	0.55	Gas	AP-42	
								CO2e	8,001	35,044	8,001	35,044	Gas	EPA	
								NOX	2.46	10.77	2.46	10.77	Gas	Vendor	30
								CO	2.53	11.07	2.53	11.07	Gas	Vendor	50
		De-Etha	nizer Hot O	il Heater (H	-06 (6E))			VOC	0.38	1.67	0.38	1.67	Gas	AP-42	
						1		SO2	0.04	0.18	0.04	0.18	Gas	AP-42	
								PM10/2.5	0.51	2.23	0.51	2.23	Solid/Gas	AP-42	
								Benzene	1.4E-04	6.2E-04	1.4E-04	6.2E-04	Gas	AP-42	
								Etnylbenzene					Gas	AP-42	
	Llaurand								0.01	0.02	0.01	0.02	Gas	AP-42	
H-06	Upward	H-06	H-06	20	20	C	9,760	n-Hexane	0.12	0.53	0.12	0.53	Gas	AP-42	
H-06 (6E)	Stock	(6E)	(6E)	na	na	C	8,760		2.3E-04	1.0E-03	2.3E-04	1.0E-03	Gas	AP-42	
	Slack							Z,Z,4-TIVIP					Gas	AP-42	
								Aylenes			1 25 04	 5 65 04	Gas	AP-42	
									0.12	0.55	1.3⊑-04 0.12	0.55	Gas	AP-42	
									0.13	0.00	0.13	0.00	Gas		
								0028	0,001	35,044	0,001	35,044			2/11

						Та	ble 1: Emis	sions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissi Vented This <i>(Must Emissic</i> Table & F	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Po Control (Must Emissic Table & F	llution Device match on Units Plot Plan)	Vent Time for Emission Unit (Chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxi Pote Uncor Emise	mum ential itrolled sions⁴	Maxi Pote Conti Emiss	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ ($ppmv$ or mg/m^3)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	a na oj	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX	1.02	4.48	1.02	4.48	Gas	AP-42	
								CO	0.86	3.77	0.86	3.77	Gas	AP-42	
		Amine Proc	cess Regen	Gas Heater	· (H-07 (7E))			VOC	0.06	0.25	0.06	0.25	Gas	AP-42	
			-			-		SO2	0.01	0.03	0.01	0.03	Gas	AP-42	
								PM10/2.5	0.08	0.34	0.08	0.34	Solid/Gas	AP-42	
								Benzene	2.1E-05	9.4E-05	2.1E-05	9.4E-05	Gas	AP-42	
								Ethylbenzene					Gas	AP-42	
								НСНО	7.7E-04	3.4E-03	7.7E-04	3.4E-03	Gas	AP-42	
H-07 (7E)	Upward	H-07	H-07					n-Hexane	0.02	0.08	0.02	0.08	Gas	AP-42	
	Vertical	(7E)	(7E)	na	na	С	8,760	Toluene	3.5E-05	1.5E-04	3.5E-05	1.5E-04	Gas	AP-42	
	Stack							2,2,4-TMP					Gas	AP-42	
								Xylenes					Gas	AP-42	
									Other HAP	1.9E-05	8.5E-05	1.9E-05	8.5E-05	Gas	AP-42
									Total HAP	0.02	0.08	0.02	0.08	Gas	AP-42
								CO2e	1,223	5,356	1,223	5,356	Gas	EPA	
								NOX			638	73.27	Gas	AP-42	
		_						CO			1,274	146.28	Gas	AP-42	
		Pr	rocess Flare	e (FLR-1 (8E	=))			VOC	17,730	2,036	177.30	20.36	Gas	AP-42	
				-				SO2			1.54	0.19	Gas	AP-42	
								PM10/2.5			19.50	2.39	Solid/Gas	AP-42	
								Benzene	448.93	51.55	4.49	0.52	Gas	AP-42	
								Ethylbenzene	609.20	69.95	6.09	0.70	Gas	AP-42	
	I I a constant										0.34	0.04	Gas	AP-42	
FLR-1	Upward	FLR-1	FLR-1	20	20	C	9 760	n-Hexane	548.28	62.95	5.48	0.63	Gas	AP-42	
(8E)	Stock	(8E)	(8E)	na	na	C	8,760		530.10	60.87	5.30	0.61	Gas	AP-42	
(01)	Slack							Z,Z,4-TIVIP	000.47	70.20	0.00	0.75	Gas	AP-42	
									011.18	70.18	0.11		Gas	AP-42	
									3 402	301	3/ 39	9.9⊑-04 3.05	Gas	ΛΓ-42 ΛΡ_42	
									5403	62 212	34.30 730 625	3.90 83.903	Gas		
						I		0026	J42,001	02,312	100,000	00,090			2/11

						Та	ble 1: Emis	sions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissi Vented This <i>(Must Emissic</i> Table & F	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Po Control (Must Emissic Table & F	Ilution Device match on Units Plot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit mical es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxi Pote Uncon Emise	mum ential htrolled sions ⁴	Maxi Pote Conti Emiss	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ ($ppmv$ or mg/m^3)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	d finit by	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX	0.99	4.33	0.99	0.25	Gas	AP-42	
								CO	1.98	8.66	1.98	0.49	Gas	AP-42	
		Standby	Generator	Engine (Ge	n-1 (9E))			VOC	0.54	2.36	0.54	0.13	Gas	AP-42	
								SO2	0.00	0.01	0.00	0.00	Gas	AP-42	
								PM10/2.5	0.04	0.19	0.04	0.01	Solid/Gas	AP-42	
								Benzene	3.5E-03	0.02	3.5E-03	8.7E-04	Gas	AP-42	
								Ethylbenzene	5.4E-05	2.4E-04	5.4E-05	1.4E-05	Gas	AP-42	
						Intermit-		НСНО	0.04	0.20	0.04	0.01	Gas	AP-42	
Con 1	Upward	Con 1	Con 1			tent		n-Hexane					Gas	AP-42	
Gen-1 (9E)	Vertical Stack		Gen-1	na	na	Venting	500	Toluene	1.2E-03	0.01	1.2E-03	3.1E-04	Gas	AP-42	
		(96)	(32)			(As		2,2,4-TMP					Gas	AP-42	
						Needed)	ed) 2,2,4-1 MP Xylenes 4.3E-04 1.9E-03 4.3E-04 1.1E-04	1.1E-04	Gas	AP-42					
						Other HAP 0.02 0.09 0.02 0.01 G Total HAP 0.07 0.31 0.07 0.02 G	Gas	AP-42							
								Total HAP	0.07	0.31	0.07	0.02	Gas	AP-42	
								CO2e	305	1,337	305	76	Gas	EPA	
								NOX							
		Slan O)il/Condono	ata Staraga	Tanka			CO							
		Siop 0 /т	04 (10E) th					VOC	4.33	18.96	4.33	18.96	Gas	AP-42	
		()	-01 (10E) th	ru 1-04 (13	⊏))			SO2							
								PM10/2.5							
								Benzene	0.14	0.63	0.14	0.63	Gas	AP-42	
								Ethylbenzene	0.14	0.63	0.14	0.63	Gas	AP-42	
T-01		T-01	T-01					НСНО							
(10E)	Upward	(10E)	(10E)					n-Hexane	0.14	0.63	0.14	0.63	Gas	AP-42	
thru	Vertical	thru	thru	na	na	С	8,760	Toluene	0.14	0.63	0.14	0.63	Gas	AP-42	
T-04	Stack	T-04	T-04					2,2,4-TMP	0.14	0.63	0.14	0.63	Gas	AP-42	
(13E)		(13E)	(13E)					Xylenes	0.14	0.63	0.14	0.63	Gas	AP-42	
								Other HAP							
								Total HAP	0.87	3.79	0.87	3.79	Gas	AP-42	
								CO2e							
													WVDEP-D	AQ Revis	sion 2/11

						Ta	ble 1: Emis	sions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissi Vented This <i>(Must Emissic</i> Table & F	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Po Control (Must Emissic Table & F	Ilution Device match on Units Plot Plan)	Vent T Emissi <i>(Che.</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxi Pote Uncor Emis	imum ential htrolled sions ⁴	Maxi Pote Cont Emis	mum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ ($ppmv$ or mg/m^3)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	a nini oj	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX							
								CO							
		Tru	ck Load-Ou	t (TLO-1 (14	4E))			VOC		18.09		18.09	Gas	AP-42	
								SO2							
								PM10/2.5							
								Benzene		0.60		0.60	Gas	AP-42	
								Ethylbenzene		0.60		0.60	Gas	AP-42	
						Intermit-		HCHO							
TL O-1	Upward		TI O-1			tent		n-Hexane		0.60		0.60	Gas	AP-42	
(14F)	Vertical	(14F)	(14F)	na	na	Venting		Toluene		0.60		0.60	Gas	AP-42	
1LO-1 (14E)	Stack	(14)	(112)			(As		2,2,4-TMP		0.60		0.60	Gas	AP-42	
						Needed)		Xylenes		0.60		0.60	Gas	AP-42	
								Other HAP							
								Total HAP		3.62		3.62	Gas	AP-42	
								CO2e							
								NOX							
								CO							
		Amin	e Process V	Vent (V-01 (16E))			VOC	0.11	0.49	0.11	0.49	Gas	EE	
								SO2							
								PM10/2.5							
								Benzene							
								Ethylbenzene							
								НСНО							
14.04	Upward	14.04	14.04					n-Hexane							
V-01 (165)	Vertical	V-01 (16E)	V-01 (165)	na	na	С	8,760	Toluene							
(10E)	Stack	(16E)	(16E)					2,2,4-TMP							
								Xylenes							
								Other HAP							
								Total HAP							
								CO2e	4,738	20,751	4,738	20,751	Gas	EPA	
<u></u>			8			-				-		-	WVDFP-D	AQ Revis	sion 2/11

						Та	ble 1: Emis	sions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissi Vented This <i>(Must Emissic</i> Table & I	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Po Control (Must Emissic Table & F	Ilution Device match on Units Plot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxi Pote Uncor Emise	mum ential htrolled sions ⁴	Maxi Pote Cont Emiss	mum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ ($ppmv$ or mg/m^3)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	a nin oj	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX							
								CO							
		Rod Packi	ing/Crankca	se Leaks (F	RPC (17E))			VOC	0.17	0.30	0.17	0.30	Gas	EE	
						-		SO2							
								PM10/2.5							
								Benzene	2.4E-03	6.1E-04	2.4E-03	6.1E-04	Gas	EE	
								Ethylbenzene	2.4E-03	6.1E-04	2.4E-03	6.1E-04	Gas	EE	
								НСНО							
RPC		RPC	Compress					n-Hexane	2.4E-03	6.1E-04	2.4E-03	6.1E-04	Gas	EE	
RPC (17E)	na	(17E)	ors and	na	na	С	C 8,760 Toluene 2.4E-03 6.1E-04 2.4E-03 6.1E-04 Gas 2,2,4-TMP 2.4E-03 6.1E-04 2.4E-03 6.1E-04 Gas	Gas	EE						
			Engines					Gas	EE						
								Xylenes	2.4E-03	6.1E-04	2.4E-03	6.1E-04	Gas	EE	
								Other HAP							
								Total HAP	0.01	3.7E-03	0.01	3.7E-03	Gas	EE	
								CO2e	391	1,453	391	1,453	Gas	EE	
								NOX							
		Dura													
		Dry	Gas Seal Le	aks (DGS (18E))			V0C	0.76	3.33	0.76	3.33	Gas	EE	
		-			1	1		502 DM10/2 F							
								PIVITU/2.5	1 0E 02	 9 2E 02	1.0E.02	 9 2E 02	Gas		
								Ethylhonzono	1.92-03	0.22-03	1.92-03	0.22-03	Gas		
									1.92-03	0.01	1.92-03	0.01			
			Contrifugal					n-Heyane	1 0F-03	0.01	1 0E-03	0.01	Gas	FF	
DGS	na	DGS	Compress	na	na	С	8 760	Toluene	1.9E-03	8.2E-03	1.0E-03	8.2E-03	Gas	FF	
(18E)	na	(18E)	ors	na	na	Ũ	0,100	2.2.4-TMP	1.9E-03	0.01	1.9E-03	0.01	Gas	FF	
								Xvlenes	1.9E-03	0.01	1.0E-00	0.01	Gas	FF	
								Other HAP							
								Total HAP	0.47	2.08	0.01	0.05	Gas	EF	
								CO2e	347	1.522	347	1.522	Gas	EF	
					<u>.</u>	1			.	.,===	•	.,===		AO Revis	sion 2/11

Attachment J FUGITIVE EMISSIONS DATA SUMMARY SHEET

						Ta	ble 1: Emis	sions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissi Vented This <i>(Must Emissic</i> Table & F	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Po Control (Must Emissio Table & F	Ilution Device match on Units Plot Plan)	Vent T Emissi <i>(Che</i> process	ime for on Unit mical es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncon Emise	mum ential trolled sions ⁴	Maxi Pote Conti Emiss	mum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
The than		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	a nar oj	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX							
								CO							
		FUG	6-G (15E) - O	Bas (MODIF	IED)			VOC	19.25	84.34	2.35	10.31	Gas	AP-42	
			-			-		SO2							
								PM10/2.5							
								Benzene	0.01	0.06	1.7E-03	7.6E-03	Gas	AP-42	
								Ethylbenzene	0.01	0.06	1.7E-03	7.6E-03	Gas	AP-42	
								НСНО							
								n-Hexane	0.21	0.93	0.03	0.11	Gas	AP-42	
15E	FUG-G			LDAR	LDAR		8,760	Toluene	0.01	0.06	1.7E-03	7.6E-03	Gas	AP-42	
15E								2,2,4-TMP	0.01	0.06 1.7E-03 7.6E 0.06 1.7E-03 7.6E 0.06 1.7E-03 7.6E	7.6E-03	Gas	AP-42		
								Xylenes	0.01	0.06	1.7E-03	7.6E-03	Gas	AP-42	
								Other HAP							
									0.28	1.24	0.03	0.15	Gas	AP-42	
									1,321	5,784	101	/0/	Gas	EPA	
		EUG-L (15E) - Light	Liquid (MC					34.24	1/0.95	4 75	20.82	Gas	ΔD_12	
		100-L (isc) - cigin					\$00 \$02	34.24	143.33	4.75	20.02	Gas	AF -42	
						1		PM10/2 5							
								Benzene	0.01	0.04	1 2E-03	54E-03	Gas	AP-42	
								Ethylbenzene	0.01	0.04	1.2E-03	5.4E-03	Gas	AP-42	
								НСНО							
								n-Hexane	0.43	1.88	0.06	0.26	Gas	AP-42	
15E	FUG-L			LDAR	LDAR		8,760	Toluene	0.01	0.04	1.2E-03	5.4E-03	Gas	AP-42	
							,	2.2.4-TMP	0.01	0.04	1.2E-03	5.4E-03	Gas	AP-42	
								Xylenes	0.01	0.04	1.2E-03	5.4E-03	Gas	AP-42	
								Other HAP							
								Total HAP	0.47	2.08	0.07	0.29	Gas	AP-42	
								CO2e							
															100 2/11

Attachment J FUGITIVE EMISSIONS DATA SUMMARY SHEET

						Table 1: Emi		sions Data							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissi Vented This <i>(Must Emissic</i> Table & F	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Po Control (Must Emissio Table & F	Ilution Device match on Units Plot Plan)	Vent T Emissi (Che process	ime for on Unit mical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs & HAPS)	Maxi Pote Uncor Emiss	mum ential itrolled sions ⁴	Maxi Pote Cont Emiss	mum ential rolled sions⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	a na oj	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX							
								CO							
		FUG-	M (15E) - M	ixed (MODI	FIED)			VOC	0.15	0.64	0.02	0.07	Gas	AP-42	
						-		SO2							
								PM10/2.5							
								Benzene	3.8E-05	2E-04	4.3E-06	1.9E-05	Gas	AP-42	
								Ethylbenzene	3.8E-05	2E-04	4.3E-06	1.9E-05	Gas	AP-42	
								НСНО							
								n-Hexane	1.8E-03	0.01	2.1E-04	9.2E-04	Gas	AP-42	
15E	FUG-M			LDAR	LDAR		8,760	Toluene	3.8E-05	1.7E-04	4.3E-06	1.9E-05	Gas	AP-42	
								2,2,4-TMP	3.8E-05	1.7E-04	4.3E-06	1.9E-05	Gas	AP-42	
ISE								Xylenes	3.8E-05	1.7E-04	4.3E-06 1.9E-0 4.3E-06 1.9E-0	1.9E-05	Gas	AP-42	
								Other HAP							
								Total HAP	2.0E-03	0.01	2.3E-04	1.0E-03	Gas	AP-42	
								CO2e	2	11	0.3	1	Gas	EPA	
								NOX							
								CO							
		FUG-TO	OTAL (15E)	- Total (MO	DIFIED)			VOC	53.64	234.93	7.12	31.21	Gas	AP-42	
								SO2							
								PM10/2.5							
								Benzene	0.02	0.10	3E-03	0.01	Gas	AP-42	
								Ethylbenzene	0.02	0.10	3E-03	0.01	Gas	AP-42	
								HCHO							
								n-Hexane	0.64	2.82	0.09	0.38	Gas	AP-42	
15E	FUG-TOT			LDAR	LDAR		8,760	Toluene	0.02	0.10	3.0E-03	0.01	Gas	AP-42	
								2,2,4-TMP	0.02	0.10	3.0E-03	0.01	Gas	AP-42	
								Xylenes	0.02	0.10	3.0E-03	0.01	Gas	AP-42	
								Other HAP							
								Total HAP	0.76	3.32	0.10	0.44	Gas	AP-42	
								CO2e	1,323	5,795	162	708	Gas	EPA	
															2/11

Williams Ohio Valley Midstream LLC (OVM) OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment J EMISSION POINTS DATA SUMMARY SHEET - Continued

						Table 1:	Emissions	Data - Continued							
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissio Vented This <i>(Must Emissic</i> Table & F	on Unit Through Point <i>match</i> on Units Plot Plan)	Air Po Control (Must Emissic Table & F	llution Device match n Units Plot Plan)	Vent Ti Emissi (Chei process	ime for on Unit mical es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maxi Pote Uncor Emis	mum ential htrolled sions⁴	Maxi Pote Conti Emise	mum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid, Liquid	Est. Method Used ⁶	Emission Concen- tration ⁷ (ppmv or mg/m ³)
Thot Than		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAT 3)	lb/hr	ton/yr	lb/hr	ton/yr	or Gas/Vapor)		
								NOX	11.89	52.08	650.01	121.26	Gas	Varies	
			Total Di	ant-Wido				CO	12.45	54.55	1,286.38	192.66	Gas	Varies	
			(Including	Eugitivos)				VOC	17,791	2,322.10	192.13	100.71	Gas	Varies	
			(including	Tugitives)				SO2	0.13	0.58	1.67	0.76	Gas	Varies	
								PM10/2.5	1.93	8.46	21.43	10.68	Solid/Gas	Varies	
								Benzene	449.11	52.91	4.64	1.78	Gas	Varies	
								Ethylbenzene	609.37	71.29	6.24	1.96	Gas	Varies	
								HCHO	0.06	0.27	0.40	0.12	Gas	Varies	
								n-Hexane	549	69	6.11	3.98	Gas	Varies	
Varies	Varies	Varies	Varies	Varies	Varies	Varies	Varies	Toluene	530.27	62.22	5.45	1.87	Gas	Varies	
								2,2,4-TMP	655.64	76.61	6.71	2.01	Gas	Varies	
								Xylenes	611.36	71.52	6.26	1.96	Gas	Varies	
								Other HAP	0.02	0.09	0.03	0.01	Gas	Varies	
								Total HAP	3,406	406	35.86	13.68	Gas	Varies	
								CO2e	575,946	207,750	762,738	222,983	Gas	Varies	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

- 1 Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.
- 2 Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).
- 3 List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.
- 4 Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 5 Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- 6 Indicate method used to determine emission rate as follows:

MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

7 Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment J EMISSION POINTS DATA SUMMARY SHEET - Continued

			Table 2:	Release Param	eter Data			
Emission			Exit Gas		Emission Poir	t Elevation (ft)	UTM Coord	inates (km)
Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Temp. (oF)	Volumetric Flow ¹ (acfm) (At operating conditions)	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (<i>Release</i> height of emissions above ground level)	Northing	Easting
01E	3.5	750	14,098	24.4	~1,150	19	4,414.07	525.79
02E	2.5	830	5,737	19.5	~1,150	16.5	4,414.07	525.79
03E	2.5	520	7,208	24.5	~1,150	26.3	4,414.07	525.79
04E	2.5	520	7,208	24.5	~1,150	26.3	4,414.07	525.79
05E	4.0	476	22,893	31.0	~1,150	24.8	4,414.07	525.79
06E	4.0	476	22,893	31.0	~1,150	24.8	4,414.07	525.79
07E	2.5	714	3,916	13.3	~1,150	16.5	4,414.07	525.79
08E	2.0	1,000	70	1	~1,150	170	4,414.07	525.79
09E	0.5	1,550	1,507 (scfm)	na	~1,150	10	4,414.07	525.79
10E					~1,150		4,414.07	525.79
11E					~1,150		4,414.07	525.79
12E					~1,150		4,414.07	525.79
13E					~1,150		4,414.07	525.79
14E					~1,150		4,414.07	525.79
16E					~1,150		4,414.07	525.79
17E					~1,150		4,414.07	525.79
18E					~1,150		4,414.07	525.79

¹ Give at operating conditions. Include inerts.

2 Release height of emissions above ground level.

ATTACHMENT K

Fugitive Emissions Data Summary Sheet

"27. Fill out the Fugitive Emissions Data Summary Sheet and provide it as Attachment K."

- Application Forms Checklist
- Fugitive Emissions Summary
- Leak Source Data Sheet

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

		APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be	e haul road activities?
	□ Yes	☑ No
	□ If Yes, the	en complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be	e Storage Piles?
	□ Yes	☑ No
	□ If Yes, the	en complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be	e Liquid Loading/Unloading Operations?
	⊠ Yes	□ No ((Note: Truck Load-Out (TLO-1 (14E)) is included in the Point Source Emissions))
	☑ If Yes, th	nen complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be	e emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes	☑ No
	□ If Yes, the	en complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.) sa	Will there be mpling conne	e Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, ctions, flanges, agitators, cooling towers, etc.)?
	⊠ Yes	□ No
	🗹 If Yes, th	en complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS
	DATA SH	EET.
6.)	Will there be	e General Clean-up VOC Operations?
	□ Yes	☑ No
	□ If Yes, the	en complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be	e any other activities that generate fugitive emissions?
	□ Yes	☑ No
	□ If Yes, the	en complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	If you answe	ered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions Summary."

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET - Continued

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions.

	All Regulated Pollutants	Maximum Bro-Controllo	Potential	Maximum	Potential	Est. Method
FUGITIVE EMISSIONS SUMMART	Chemical Name/CAS ¹	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Paved Haul Roads	na					
Unpaved Haul Roads	na					
Storage Pile Emissions	na					
Loading/Unloading Operations	((Note: Truc	k Load-Out (TLO-1	(14E)) is included i	n the Point Source	Emissions))	
Wastewater Treatment	na					
	VOC	53.64	234.93	7.12	31.21	O - AP-42
	Benzene	0.02	0.10	0.00	0.01	O - AP-42
	Ethylbenzene	0.02	0.10	0.00	0.01	O - AP-42
	Formaldehyde					
	n-Hexane	0.64	2.82	0.09	0.38	O - AP-42
MODIFIED	Toluene	0.02	0.10	0.00	0.01	O - AP-42
Process and Piping Fugitives	2,2,4-TMP	0.02	0.10	0.00	0.01	O - AP-42
(FUG-G (15E), FUG-L (15E), and FUG-M (15E))	Xylenes	0.02	0.10	0.00	0.01	O - AP-42
(Total Combined)	Other HAP					
	Total HAP	0.76	3.32	0.10	0.44	O - AP-42
	CO2					
	CH4					
	N2O					
General Clean-up VOC Emissions Other	CO2e	1,323	5,795	162	708	O - GWP
	na					
	na					

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂,

VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases, etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in min (e.g. 5 lb VOC/20 min batch).

⁴ Indicate method used to determine emission rate as follows:

MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET - Continued

LEAK SOURCE DATA SHEET

Soure Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (Days) ³	Estimated Annual Emission Rate (lb/yr) ⁴
Pumps⁵	Light Liquid VOC ^{6,7}				
	Heavy Liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC				
	Light Liquid VOC				
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC				
	Light Liquid VOC				
	Non-VOC		FU	G (15E)	
Open Ended Lines ¹²	Gas VOC		5	P (
	Light Liquid VOC		Please	Reference:	
	Non-VOC		Allachment J - Process	Piping Fugilive Emissio	Shoot
Sampling Connections ¹³	Gas VOC	A	tachinent K - Fugitive El	and	Sheet
	Light Liquid VOC		Attachment N - Process	Piping Fugitive Emissio	ns
	Non-VOC			· · · · · · · · · · · · · · · · · · ·	
Compressors	Gas VOC				
	Non-VOC				
Flanges	Gas VOC				
	Light Liquid VOC				
	Non-VOC				
Other (Connectors)	Gas VOC				
	Light Liquid VOC				
	Non-VOC				
				TOTAL (lb/yr)	7.12
				TOTAL (tpy)	31.21

Williams Ohio Valley Midstream LLC (OVM) OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment K FUGITIVE EMISSIONS DATA SUMMARY SHEET - Continued

Notes for Leak Source Data Sheet

1. For VOC sources include components on streams and equipment that contain greater than 10% VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.

2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in visual or soap-bubble leak detection ppm. Do not include monitoring by methods. "M/Q(M)/Q/SA/A/0" means the time period between inspections as follows: Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category valves, gas service: 0/50/0/75/0/50 (bimonthly).

3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.

4. Note the method used: MB - material balance; EE - engineering estimate; EPA - emission factors established by EPA (cite document used); 0 - other method, such as in-house emission factor (specify).

5. Do not include in the equipment count seal-less pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)

6. Volatile organic compounds (VOC) means the term as defined in 40 CFR. 51.100 (s).

7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20°C, then the fluid is defined as a light liquid.

8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°c. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20°C. then the fluid is defined as a heavy liquid.

9. LIST CO, H2S, mineral acids, NO, NO, SO, etc. DO NOT LIST CO, H, H2O, N, O, and Noble Gases.

10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.

- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12. Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.

13. Do not include closed-purge sampling connections.

ATTACHMENT L

Emissions Unit Data Sheet(s)

"28. Fill out the Emissions Unit Data Sheet(s) as Attachment L."

- HEATER DATA SHEET
 - TXP1 Heat Medium Heater (H-01 (1E))
 - TXP1 Regeneration Gas Heater (H-02 (2E))
 - TXP2 and TXP3 Regeneration Gas Heaters (H-03 (3E) and H-04 (4E))
 - De-Ethanizer Hot Oil Heaters (H-05 (5E) and H-06 (6E))
 - Amine Process Regeneration Gas Heater (H-07 (7E))
- EMERGENCY GENERATOR ENGINE DATA SHEET (GEN-1 (9E))
- STORAGE TANK DATA SHEET (TK-01 (10E) thru TK-04 (13E)
- BULK LIQUID TRANSFER OPERATIONS (TL-1)

Attachment L **EMISSIONS UNIT DATA SHEET** GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*):

H-01 (1E) 1. Name or type and model of proposed affected source: **TXP1 HEAT MEDIUM HEATER (H-01 (1E))** 2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants. 3. Name(s) and maximum amount of proposed process material(s) charged per hour: 26.26 MMBTU/HR NATURAL GAS-FIRED HEAT MEDIUM HEATER 4. Name(s) and maximum amount of proposed material(s) produced per hour:

26.26 MMBTU/HR NATURAL GAS-FIRED HEAT MEDIUM HEATER

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

NA

The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

6.	Combustion Data (if applied	cable):			
	(a) Type and amount in a	ppropriate units of	fuel(s) to be	ourned:	
	26.26 MMBTU/HR NAT	URAL GAS-FIR	RED HEAT M	IEDIUM HEAT	TER
	(b) Chemical analysis of p and ash:	proposed fuel(s), e	xcluding coal,	including maxim	num percent sulfur
	COMMERCIAL NATU	RAL GAS W/ NI	EGLIGIBLE	SULFUR AND	ASH
	(c) Theoretical combustio	n air requirement	(ACF/unit of f	uel):	
	@		°F and		psia.
	(d) Percent excess air:	5%			
	(e) Type and BTU/hr of be	urners and all othe	er firing equipr	nent planned to	be used:
	26.26 MMBTU/HR NAT (f) If coal is proposed as coal as it will be fired:	CURAL GAS-FIR a source of fuel, ic	ED HEAT M	IEDIUM HEAT	TER
	NA (g) Proposed maximum d	esign heat input:		26.26	× 10 ⁶ BTU/hr.
7.	Projected operating sched	Jule:		1	
Но	ours/Day 24	Days/Week	7	Weeks/Year	52

8.	Projected amount of polluta devices were used:	ants that would be	emitted from	m this affected source if	no control
a.	NO _X	2.57	lb/hr	g	rains/ACF
b.	SO ₂	0.02	lb/hr	g	rains/ACF
C.	СО	2.16	lb/hr	g	rains/ACF
d.	PM ₁₀	0.20	lb/hr	g	rains/ACF
e.	Hydrocarbons	0.25	lb/hr	g	rains/ACF
f.	VOCs	0.15	lb/hr	g	rains/ACF
g.	Pb	NA	lb/hr	g	rains/ACF
h.	Specify other(s)		·		
	N-HEXANE	0.05	lb/hr	g	rains/ACF
	TOTAL HAP	0.05	lb/hr	g	rains/ACF
	CO2E	3,225	lb/hr	g	rains/ACF
			lb/hr	g	rains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING 			
FUEL CONSUMPTION	FUEL CONSUMPTION		
REPORTING	TESTING		
NA	NA		
MONITORING. PLEASE LIST AND DESCRIBE THI PROPOSED TO BE MONITORED IN ORDER TO DEMO THIS PROCESS EQUIPMENT OPERATION/AIR POLLU	E PROCESS PARAMETERS AND RANGES THAT ARE ONSTRATE COMPLIANCE WITH THE OPERATION OF TION CONTROL DEVICE.		
RECORDKEEPING. PLEASE DESCRIBE THE PROTIED THE MONITORING.	OPOSED RECORDKEEPING THAT WILL ACCOMPANY		
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	POSED FREQUENCY OF REPORTING OF THE		
TESTING. PLEASE DESCRIBE ANY PROPOSEQUIPMENT/AIR POLLUTION CONTROL DEVICE.	SED EMISSIONS TESTING FOR THIS PROCESS		
10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty			
NA			

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form):

H-02 (2E)

1. Name or type and model of proposed affected source:

TXP1 REGENERATION GAS HEATER (H-02 (2E))

 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.

3. Name(s) and maximum amount of proposed process material(s) charged per hour:

9.40 MMBTU/HR NATURAL GAS-FIRED REGENERATION GAS HEATER

4. Name(s) and maximum amount of proposed material(s) produced per hour:

9.40 MMBTU/HR NATURAL GAS-FIRED REGENERATION GAS HEATER

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

NA

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Combustion Data (if applied	cable):			
	(a) Type and amount in appropriate units of fuel(s) to be burned:				
	9.40 MMBTU/HR NATU	JRAL GAS-FIRI	ED REGENE	RATION GAS	HEATER
	(b) Chemical analysis of p and ash:	roposed fuel(s), e	xcluding coal,	, including maxim	ium percent sulfur
	COMMERCIAL NATU	RAL GAS W/ NI	EGLIGIBLE	SULFUR AND	ASH
\vdash	(c) Theoretical combustio	n air requirement	(ACF/unit of f	uel):	
	@		°F and		psia.
	(d) Percent excess air:	5%			
	(e) Type and BTU/hr of bu	urners and all othe	er firing equip	ment planned to	be used:
	9.40 MMBTU/HR NATU	JRAL GAS-FIRE	ED REGENE	RATION GAS	HEATER
	(f) If coal is proposed as a coal as it will be fired:	3 SOURCE OF TUEL, 10	lentity supplie	r and seams and	I give sizing or the
	NA				
	(g) Proposed maximum d	esign heat input:		9.40	× 10 ⁶ BTU/hr.
7.	Projected operating schec	Jule:			
Hc	ours/Day 24	Days/Week	7	Weeks/Year	52

8.	Projected amount of polluta devices were used:	ants that would be	emitted fro	m this affected source if	no control
a.	NO _X	0.92	lb/hr	g	rains/ACF
b.	SO ₂	0.01	lb/hr	g	rains/ACF
C.	СО	0.77	lb/hr	g	rains/ACF
d.	PM ₁₀	0.07	lb/hr	g	rains/ACF
e.	Hydrocarbons	0.08	lb/hr	g	rains/ACF
f.	VOCs	0.05	lb/hr	g	rains/ACF
g.	Pb	NA	lb/hr	g	rains/ACF
h.	Specify other(s)				
	N-HEXANE	0.02	lb/hr	g	rains/ACF
	TOTAL HAP	0.02	lb/hr	g	rains/ACF
	CO2E	1,154	lb/hr	g	rains/ACF
			lb/hr	g	rains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

 9. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING RECORDKEEPING 		
FUEL CONSUMPTION	FUEL CONSUMPTION	
RFPORTING	TESTING	
NA	NΔ	
1 1/2 🕱	1 12	
MONITORING. PLEASE LIST AND DESCRIBE TH PROPOSED TO BE MONITORED IN ORDER TO DEMO THIS PROCESS EQUIPMENT OPERATION/AIR POLLUT	E PROCESS PARAMETERS AND RANGES THAT ARE ONSTRATE COMPLIANCE WITH THE OPERATION OF TION CONTROL DEVICE.	
RECORDKEEPING. PLEASE DESCRIBE THE PROTIED THE MONITORING.	OPOSED RECORDKEEPING THAT WILL ACCOMPANY	
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE	
TESTING. PLEASE DESCRIBE ANY PROPOS	SED EMISSIONS TESTING FOR THIS PROCESS	
EQUIPMENT/AIR POLLUTION CONTROL DEVICE.		
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to	
NA		

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): H-03 (3E) AND H-04 (4E)

1.	Name or type and model of proposed affected source:
	TXP2 AND TXP3 REGEN GAS HEATER (H-03 (3E) AND H-04 (4E))
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour:
	20.30 MMBTU/HR NATURAL GAS-FIRED REGEN GAS HEATERS (EACH)
4.	Name(s) and maximum amount of proposed material(s) produced per hour:
	20.30 MMBTU/HR NATURAL GAS-FIRED REGEN GAS HEATER (EACH)
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
	NA

^{*} The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.
6.	6. Combustion Data (if applicable):						
	(a) Type and amount in appropriate units of fuel(s) to be burned:						
	20.30 MMBTU/HR NAT	URAL GAS-FIR	ED REGEN (GAS HEATER	(EACH)		
	(b) Chemical analysis of sulfur and ash:	proposed fuel(s)	, excluding cc	al, including r	naximum percent		
	COMMERCIAL NATURAL GAS W/ NEGLIGIBLE SULFUR AND ASH						
	(c) Theoretical combustion	n air requirement (ACF/unit of fu	el):			
	@		°F and		psia.		
	(d) Percent excess air:	5%					
	(e) Type and BTU/hr of bu	Irners and all othe	r firing equipm	ent planned to	be used:		
	20.30 MMBTU/HR NATURAL GAS-FIRED REGEN GAS HEATER (EACH)						
	(f) If coal is proposed as a source of fuel, identify supplier and seams and give sizing of the coal as it will be fired:						
	NA						
	(g) Proposed maximum de	esign heat input:		20.30	× 10 ⁶ BTU/hr.		
7.	Projected operating sched	ule:		1			
Hc	urs/Day 24	Days/Week	7	Weeks/Year	52		

8.	Projected amount of pollut devices were used:	ants that would be	emitted from	m this affected source	e if no control
a.	NO _X	0.73	lb/hr		grains/ACF
b.	SO ₂	0.01	lb/hr		grains/ACF
C.	СО	0.81	lb/hr		grains/ACF
d.	PM ₁₀	0.26	lb/hr		grains/ACF
e.	Hydrocarbons	0.50	lb/hr		grains/ACF
f.	VOCs	0.39	lb/hr		grains/ACF
g.	Pb	NA	lb/hr		grains/ACF
h.	Specify other(s)		1		
	N-HEXANE	0.04	lb/hr		grains/ACF
	TOTAL HAP	0.04	lb/hr		grains/ACF
	CO2E	2,380	lb/hr		grains/ACF
			lb/hr		grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING 				
FUEL CONSUMITION	FUEL CONSUMPTION			
REPORTING	TESTING			
NA	NA			
MONITORING. PLEASE LIST AND DESCRIBE TH	E PROCESS PARAMETERS AND RANGES THAT ARE			
PROPOSED TO BE MONITORED IN ORDER TO DEMI	ONSTRATE COMPLIANCE WITH THE OPERATION OF			
	TION CONTROL DEVICE.			
RECORDKEEPING. PLEASE DESCRIBE THE PR	OPOSED RECORDKEEPING THAT WILL ACCOMPANY			
THE MONITORING.				
REPORTING. PLEASE DESCRIBE THE PRO	DPOSED FREQUENCY OF REPORTING OF THE			
RECORDKEEPING.				
TESTING. PLEASE DESCRIBE ANY PROPOS	SED EMISSIONS TESTING FOR THIS PROCESS			
EQUIPMENT/AIR POLLUTION CONTROL DEVICE.				
10. Describe all operating ranges and mainter	nance procedures required by Manufacturer to			
maintain warranty				
NA				

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): H-05 (5E) AND H-06 (6E)

1.	Name or type and model of proposed affected source:
	DE-ETHANIZER HOT OIL HEATERS (H-05 (5E) AND H-06 (6E))
2.	On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3.	Name(s) and maximum amount of proposed process material(s) charged per hour:
	68.33 MMBTU/HR NATURAL GAS-FIRED HOT OIL HEATERS (EACH)
4.	Name(s) and maximum amount of proposed material(s) produced per hour:
	68.33 MMBTU/HR NATURAL GAS-FIRED HOT OIL HEATERS (EACH)
5.	Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
	NA

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	. Combustion Data (if applicable):						
	(a) Type and amount in appropriate units of fuel(s) to be burned:						
	68.33 MMBTU/HR NATURAL GAS-FIRED HOT OIL HEATERS (EACH)						
	(b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulfur and ash:						
	COMMERCIAL NATURAL GAS W/ NEGLIGIBLE SULFUR AND ASH						
	(c) Theoretical combustion	n air requirement (ACF/unit of	fuel):			
	@		°F and		psia.		
	(d) Percent excess air:	5%					
	(e) Type and BTU/hr of bu	Irners and all other	firing equip	ment planned to	be used:		
	68.33 MMBTU/HR NATURAL GAS-FIRED HOT OIL HEATERS (EACH)						
	(f) If coal is proposed as a source of fuel, identify supplier and seams and give sizing of the coal as it will be fired:						
	NA						
	(g) Proposed maximum de	esign heat input:		68.33	× 10 ⁶ BTU/hr.		
7.	Projected operating sched	ule:					
Hc	ours/Day 24	Days/Week	7	Weeks/Year	52		

8.	Projected amount of polluta devices were used:	ants that would be	emitted froi	m this affected source	if no control
a.	NO _X	2.46	lb/hr		grains/ACF
b.	SO ₂	0.04	lb/hr		grains/ACF
C.	СО	2.53	lb/hr		grains/ACF
d.	PM ₁₀	0.51	lb/hr		grains/ACF
e.	Hydrocarbons	0.50	lb/hr		grains/ACF
f.	VOCs	0.38	lb/hr		grains/ACF
g.	Pb	NA	lb/hr		grains/ACF
h.	Specify other(s)	1	1		
	N-HEXANE	0.12	lb/hr		grains/ACF
	TOTAL HAP	0.13	lb/hr		grains/ACF
	CO2E	8,390	lb/hr		grains/ACF
			lb/hr		grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING 					
FUEL CONSUMPTION	FUEL CONSUMPTION				
FUEL CONSUMILION					
REPORTING	TESTING				
NA	NA				
MONITORING. PLEASE LIST AND DESCRIBE TH PROPOSED TO BE MONITORED IN ORDER TO DEM THIS PROCESS EQUIPMENT OPERATION/AIR POLLU	E PROCESS PARAMETERS AND RANGES THAT ARE ONSTRATE COMPLIANCE WITH THE OPERATION OF TION CONTROL DEVICE.				
RECORDKEEPING. PLEASE DESCRIBE THE PR THE MONITORING.	OPOSED RECORDKEEPING THAT WILL ACCOMPANY				
REPORTING. PLEASE DESCRIBE THE PRO	DPOSED FREQUENCY OF REPORTING OF THE				
EQUIPMENT/AIR POLLUTION CONTROL DEVICE.	SED EMISSIONS LESTING FOR THIS PROCESS				
10. Describe all operating ranges and mainter	nance procedures required by Manufacturer to				
maintain warranty					
NA					

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form):

H-07 (7E)

1. Name or type and model of proposed affected source:

AMINE PROCESS REGENERATION GAS HEATER

 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.

3. Name(s) and maximum amount of proposed process material(s) charged per hour:

10.44 MMBTU/HR NATURAL GAS-FIRED REGERATION GAS HEATER

4. Name(s) and maximum amount of proposed material(s) produced per hour:

10.44 MMBTU/HR NATURAL GAS-FIRED REGERATION GAS HEATER

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

NA

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Со	mbustion Da	ata (if applic	cable):			
	(a)	Type and a	mount in ap	ppropriate units o	of fuel(s) to be b	urned:	
	10.	44 MMBTU	U /HR NAT	'URAL GAS-FII	RED REGERA	TION GAS H	EATER
	(b)	Chemical a and ash:	nalysis of p	roposed fuel(s), e	excluding coal, i	ncluding maxim	um percent sulfur
	COMMERCIAL NATURAL GAS W/ NEGLIGIBLE SULFUR AND ASH						
	(c)	Theoretical	combustio	n air requirement	(ACF/unit of fu	el):	
			@		°F and		psia.
	(d)	Percent exc	cess air:	5%			
	(e)	Type and B	งTU/hr of bเ	urners and all oth	er firing equipm	ent planned to	be used:
	10.	44 MMBTU	U /HR NAT	'URAL GAS-FII	RED REGERA	TION GAS H	EATER
	(f)	If coal is pro coal as it w	oposed as a ill be fired:	a source of fuel, in	dentify supplier	and seams and	give sizing of the
	NA	L					
	(g)	Proposed n	naximum de	esign heat input:		10.44	× 10 ⁶ BTU/hr.
7.	Pro	jected operation	ating sched	lule:		1	
Но	ours/	Day	24	Days/Week	7	Weeks/Year	52

8.	Projected amount of polluta devices were used:	ants that would be o	emitted froi	m this affected source	if no control
a.	NO _X	1.02	lb/hr		grains/ACF
b.	SO ₂	0.03	lb/hr		grains/ACF
C.	СО	0.86	lb/hr		grains/ACF
d.	PM ₁₀	0.08	lb/hr		grains/ACF
e.	Hydrocarbons	0.10	lb/hr		grains/ACF
f.	VOCs	0.06	lb/hr		grains/ACF
g.	Pb	NA	lb/hr		grains/ACF
h.	Specify other(s)	1	1		
	N-HEXANE	0.02	lb/hr		grains/ACF
	TOTAL HAP	0.02	lb/hr		grains/ACF
	CO2E	1,282	lb/hr		grains/ACF
			lb/hr		grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING 					
FUEL CONSUMPTION	FUEL CONSUMPTION				
REPORTING	TESTING				
NA	NA				
MONITORING. PLEASE LIST AND DESCRIBE THI	E PROCESS PARAMETERS AND RANGES THAT ARE				
THIS PROCESS EQUIPMENT OPERATION/AIR POLLU	FION CONTROL DEVICE.				
RECORDKEEPING. PLEASE DESCRIBE THE PRO	OPOSED RECORDKEEPING THAT WILL ACCOMPANY				
THE MONITORING.					
REPORTING. PLEASE DESCRIBE THE PRO	POSED FREQUENCY OF REPORTING OF THE				
RECORDKEEPING.					
TESTING. PLEASE DESCRIBE ANY PROPOS	SED EMISSIONS TESTING FOR THIS PROCESS				
10 Describe all operating ranges and mainten	ance procedures required by Manufacturer to				
maintain warranty					
NA					

OAK GROVE GAS PLANT

45CSR13 NSR – Modification Permit

Attachment L

EMERGENCY GENERATOR ENGINE DATA SHEET

Source Identification Number ¹		GEN-	1 (9E)				
Engine Manufac	Engine Manufacturer and Model		G150LG2				
Manufacturer's Rated bhp/rpm		224 / 1,800					
Source	Status ²	E	S				
Date Installed/Mo	odified/Removed ³	20	16				
Manufactured/Rec	construction Date4	> 07/	01/10				
Certified Engine? (4	0CFR60 NSPS IIII) ⁵	n	a				
Certified Engine? (40	0CFR60 NSPS JJJJ) ⁶	Y	es				
	Engine Type ⁷	RE	84S				
	APCD Type ⁸	-					
	Fuel Type ⁹	Prop	bane				
Engine Evel and	H ₂ S (gr/100 scf)	≤ 0	.25				
Combustion Data	Operating bhp/rpm	224 /	1,800				
	BSFC (Btu/bhp-hr)	9,794					
	Fuel (ft ³ /hr)	878					
	Fuel (MMft ³ /yr)	0.44					
	Operation (hrs/yr)	500					
Reference ¹⁰	PTE ¹¹	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
NSPS	NOX	0.99	0.25				
NSPS	CO	1.98	0.49				
AP	VOC	0.54	0.13				
AP	SO2	1.3E-03	3.2E-04				
AP	PM10/2.5	0.04	0.01				
AP	Benzene	3.5E-03	8.7E-04				
AP	Ethylbenzene	5.4E-05	1.4E-05				
AP	Formaldehyde	0.04	0.01				
AP	n-Hexane						
AP	Toluene	1.2E-03	3.1E-04				
AP	2,2,4-TMP						
AP	Xylenes	4.3E-04	1.1E-04				
			0.04	I		I	
AP	Other HAPs	0.02	0.01				
AP AP	Other HAPs Tot HAP	0.02	0.01				
AP AP AP/40CFR98	Other HAPs Tot HAP CO2e	0.02 0.07 305	0.01 0.02 76				

Williams Ohio Valley Midstream LLC OAK GROVE GAS PLANT 45CSR13 NSR – Modification Permit Attachment L EMERGENCY GENERATOR ENGINE DATA SHEET

Notes to ATTACHMENT L - EMERGENCY GENERATOR ENGINE DATA SHEET

1. Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. If more than three (3) engines exist, please use additional sheets.

2. Enter the Source Status using the following codes:	
NS = Construction of New Source (installation)	ES = Existing Source
MS = Modification of Existing Source	RS = Removal of Source

3. Enter the date (or anticipated date) of the engine's installation (construction of source), modification or removal.

4. Enter the date that the engine was manufactured, modified or reconstructed.

5. Is the engine a certified stationary compression ignition internal combustion engine according to 40CFR60 Subpart IIII. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4210 as appropriate.

6. Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart JJJJ. If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance according to 40CFR§60.4243a(2)(i) through (iii), as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

7. Enter the Engine Type designation(s)	using the following codes:	
LB2S = Lean Burn Two Stroke	LB4S = Lean Burn Four Stroke	RB4S = Rich Burn Four Stroke
8. Enter the Air Pollution Control Device	(APCD) type designation(s) using the	e following codes:
A/F = Air/Fuel Ratio	IR = Ignition R	etard
HEIS = High Energy Ignition System	SIPC = Screw-in Pre-c	combustion Chambers
PSC = Pre-stratified Charge	LEC = Low Emission	n Combustion
NSCR = Non-Selective Catalytic Red	uction SCR = Lean Burn & Sele	ective Catalytic Reduction
0. Enter the Eucl Type using the following	a oodoo.	

9. Enter the Fuel Type using the following codes: PQ = Pipeline Quality Natural Gas RG = Raw Natural Gas

10. Enter the Potential Emissions Data Reference designation using the following codes. Attach all referenced data to this Compressor/Generator Data Sheet(s).

MD = Manufacturer's Data	AP = AP-42
GR = GRI-HAPCalcTM	OT = Other (please list)

11. Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the Emissions Summary Sheet.

Application for Class II Administrative Update (R13-3070A)

ATTACHMENT L - STORAGE TANK DATA SHEET

Source ID	Status	Contents	Volume (gal)	Diam (ft)	Thru-Put (gal/yr)	Orientation	Ave Liq Hght (ft)
TK-1	Exist	Slop Oil/Condensate	16,800	12.0	1,000,000	Vert	8.0
TK-2	Exist	Slop Oil/Condensate	16,800	12.0	1,000,000	Vert	8.0
TK-3	Exist	Slop Oil/Condensate	16,800	12.0	1,000,000	Vert	8.0
TK-4	Exist	Slop Oil/Condensate	16,800	12.0	1,000,000	Vert	8.0
		Also the following insig	nificant Stor	age Tanks:			
	Exist	Produced Water/Oil	2,200		26,400		
	Exist	Produced Water/Oil	25,000		300,000		
	Exist	Lube Oil	300		3,600		
	Exist	Produced Water/Oil	4,500		54,000		
	Exist	Heat Medium (Oil)	2,300		27,600		
	Exist	21-V-828 De-Ethanizer Surge Tank	70,000		840,000		
	Exist	De-Ionized Water	16,800		201,600		
	Exist	Amine	4,200		50,400		
	Exist	Raw Regen Water	16,800		403,200		
	Exist	Used Amine	25,000		300,000		
	Exist	Hot Oil	2,662		31,944		
	Exist	Hot Oil	2,662		31,944		
	Exist	Lube Oil	300		3,600		
	Exist	Lube Oil	300		3,600		
	Exist	31-V-801 Feed Separator	1,700		20,400		
	Exist	32-V-801 Feed Separator	1,700		20,400		
	Exist	Lube Oil	335		4,020		
	Exist	01-ST-884 Turbo Expander Bullet	60		720		
	Exist	Produced Water/Oil	370		4,440		
	Exist	01-V-403 Cold Drain Tank	3,500		42,000		
	Exist	01-V-860 Inlet Gas Separator	380		4,560		
	Exist	01-V-402 Cold Separator	7,500		90,000		
	Exist	Diesel	500		6,000		
	Exist	Gasoline	500		6,000		

Notes to STORAGE TANK DATA SHEET

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc.

- 2. Enter storage tank Status using the following:
 - EXIST Existing Equipment
 - NEW Installation of New Equipment
 - REM Equipment Removed
- 3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, etc.
- 4. Enter storage tank volume in gallons.
- 5. Enter storage tank diameter in feet.
- 6. Enter storage tank throughput in gallons per year.
- 7. Enter storage tank orientation using the following:
 - VERT Vertical Tank
 - HORZ Horizontal Tank
- 8. Enter storage tank average liquid height in feet.

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form): TL-1											
1. Loading Area N	1. Loading Area Name: OAK GROVE GAS PLANT										
2. Type of cargo v	2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply): Drums Marine Vessels Rail Tank Cars Tank Trucks										
3. Loading Rack or Transfer Point Data:											
Number of pum	ps	1									
Number of liqui	ds loaded	1									
Maximum num tank trucks, tar loading at one	ber of marine ve nk cars, and/or dr time	ssels, 1 ⁻ ums									
4. Does ballasting	g of marine vessels No	s occur at this load s not apply	ng area?								
5. Describe clean point: NA	ing location, compo	ounds and procedu	e for cargo vess	els using this transfer							
6. Are cargo vess	 6. Are cargo vessels pressure tested for leaks at this or any other location? NA ☐ Yes ☐ No										
7. Projected Max	kimum Operating S	Schedule (for rack	or transfer point	as a whole):							
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.							
hours/day	24	24	24	24							
days/week	7	7	7	7							
weeks/quarter	13	13	13	13							

8. Bulk Liqu	u id Data (add pages as	necessary):							
Pump ID No.		1							
Liquid Name		Slop Oil/Cond.							
Max. daily three	oughput (1000 gal/day)	10.96							
Max. annual t	hroughput (1000 gal/yr)	40,000							
Loading Meth	od ¹	SP							
Max. Fill Rate	(gal/min)	200							
Average Fill T	ïme (min/loading)	60							
Max. Bulk Liq	uid Temperature (°F)	60							
True Vapor P	True Vapor Pressure ²								
Cargo Vessel	Condition ³	U							
Control Equip	ment or Method ⁴	None							
Minimum cont	trol efficiency (%)								
Maximum	Loading (lb/hr)	27.13							
Emission Rate (VOC)	Annual (lb/yr)	36,180							
Estimation Me	ethod ⁵	EPA							
¹ BF = Bottom Fi	II SP = Splash Fill SUB	s = Submerged Fi	ill		·		·		
² At maximum bu	Ik liquid temperature								
³ B = Ballasted V	essel, C = Cleaned, U = Unclea	aned (dedicated s	ervice)	, O = other	(describe)				
⁴ List as many as CA = Carbon A Compressor-Re Refrigeration-C	 ⁴ List as many as apply (complete and submit <i>Air Pollution Control Device Sheets</i>): CA = Carbon Adsorption, LOA = Lean Oil Adsorption, CO = Condensation, SC = Scrubber (Absorption), CRA = Compressor-Refrigeration-Absorption, TO = Thermal Oxidation or Incineration, CRC = Compression-Refrigeration-Condensation, VB = Dedicated Vapor Balance (closed system), O = other (describe) 								
⁵ EPA = EPA En MB = Material TM = Test Mea O = other (desc	nission Factor as stated in AP-4 Balance Isurement based upon test data cribe)	12 I submittal							

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING Monitor volume of liquids loaded	RECORDKEEPING Maintain records of volume of liquids loaded
REPORTING	TESTING
na	na
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PA MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH TH POLLUTION CONTROL DEVICE.	RAMETERS AND RANGES THAT ARE PROPOSED TO BE E OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED REC	ORDKEEPING THAT WILL ACCOMPANY THE MONITORING.
REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENC	Y OF REPORTING OF THE RECORDKEEPING.
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TES DEVICE.	TING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL
10. Describe all operating ranges and mainter	nance procedures required by Manufacturer to

maintain warranty.

NA

ATTACHMENT M

Air Pollution Control Device Sheet(s)

"29. Fill out the Air Pollution Control Device Sheet(s) as Attachment M."

• PROCESS FLARE DATA SHEET (FL-1 (8E))

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table):

PROCESS FLARE (FL-1 (8E))

	Equipmer	nt Inf	nformation
1.	Manufacturer: ZEECO Model No.	2.	Method: Elevated flare Ground flare Other Describe
3.	Provide diagram(s) of unit describing capture sys capacity, horsepower of movers. If applicable, stat	tem e ho	n with duct arrangement and size of duct, air volum lood face velocity and hood collection efficiency.
4.	Method of system used:		
	Steam-assisted Air-assisted		Pressure-assisted Non-assisted
5.	Maximum capacity of flare: 208,000 LB/HR 4.645 MMBTU/HR	6.	Dimensions of stack: Diameter 2.0 FT Height 170 FT
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: 99%	8.	Fuel used in burners: Natural Gas Fuel Oil, Number
	Minimum guaranteed: 99%		Other, Specify:
9.	Number of burners: 1	11.	I. Describe method of controlling flame:
	Rating: 4,645 MMBTU/HR		WILL MONITOR THE PILOT FLAME AN
10.	Will preheat be used? Yes No		AUTOMATICALLY INITIATE A RE-LIGH PROCEDURE IN THE EVENT OF A PILOT FLAM OUTAGE
12.	Flare height: 170 FT	14.	4. Natural gas flow rate to flare pilot flame per pilot: 1.25 SCF/MIN 75 00 SCF/IIP
13.			/5.00 SCF/HK
15.	Number of pilot lights: 3	16.	5. Will automatic re-ignition be used?
	Total 0.24 MMBTU/HR	_	
17.	It automatic re-ignition will be used, describe the m PRESENCE OF FLAME MONITORED I FLAME FAILURE, THE PILOT WILL	etho BY ' AU	od: THERMOCOUPLE. IN THE EVENT OF UTOMATICALLY BE RE-LIT.
18.	Is pilot flame equipped with a monitor? If yes, what type? Thermocouple Infr Ultra Violet Ca Other, Describe:	s ra-Re mera	No Red ra with monitoring control room
10	Hours of unit operation per year: 8,760		

PROCESS FLARE (FL-02 (5S))

	Steam	injection	
20. Will steam injection be used?	🗌 Yes 🛛 No	21. Steam pressure Minimum Expected: Design Maximum:	PSIG
22. Total Steam flow rate:	LB/hr	23. Temperature:	°F
24. Velocity	ft/sec	25. Number of jet streams	
26. Diameter of steam jets:	in	27. Design basis for steam injected: LB steam/LB hydr	ocarbon
28. How will steam flow be controlle	d if steam injection	is used?	

Characteristics of the Waste Gas Stream to be Burned 29. Quantity Quantity Source of Material Name Grains of H₂S/100 ft³ (LB/hr, ft³/hr, etc) NATURAL GAS **NEGLIGIBLE** 10,509 SCFH - AVE **BLOWDOWN ETHANE NEGLIGIBLE** 57,078 SCFH - AVE **ETHANE** NGL **NEGLIGIBLE BLOWDOWN 128 SCFH - AVE RESIDUE GAS NEGLIGIBLE** 4,225 SCFH - AVE **PURGE/PILOT** TOTAL **NEGLIGIBLE** 71,940 SCFH - AVE 5,425 LB/HR (AVE) 30. Estimate total combustible to flare: (Maximum mass flow rate of waste gas) 208,000 LB/HR (MAX) 31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.: 71,940 SCF/HR (AVE) 2,624,950 SCF/HR (MAX) 630.19 MMSCF/YR 32. Give composition of carrier gases: NA 33. Temperature of emission stream: 34. Identify and describe all auxiliary fuels to be burned. °F NA BTU/scf Heating value of emission stream: BTU/scf 1,685 BTU/SCF (AVE) BTU/scf Mean molecular weight of emission stream: BTU/scf MW =~28.6 LB/LB-MOLE VARIES °F 1,199 SCFM (AVE) 35. Temperature of flare gas: 36. Flare gas flow rate: 37. Flare gas heat content: 1,685 BTU/SCF (AVE) 38. Flare gas exit velocity: 0.60 FT/SEC 39. Maximum rate during emergency for one major piece of equipment or process unit: 2,624,950 SCFH 40. Maximum rate during emergency for one major piece of equipment or process unit: 4,645 MMBTU/HR 41. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): NA 42. Describe the collection material disposal system: NA 43. Have you included *Flare Control Device* in the Emissions Points Data Summary Sheet? YES

44. Proposed Monitor Please propose mo operating paramete	ring, Recordkeeping, Reporting, nitoring, recordkeeping, and report ers.	and Testing ting in order to demonstrate compliance with the proposed
MONITORING: MONITOR PRESE	NCE OF A PILOT FLAME	RECORDKEEPING: MAINTAIN RECORDS OF DATE AND DURATION OF PILOT FLAME OUTAGES
REPORTING: NA		TESTING: OPERATE FLARE IN ACCORDANCE WITH REQUIREMENTS OF 40 CFR 60.18 (GENERAL CONTROL DEVICE REQUIREMENTS)
MONITORING:	Please list and describe the pro- monitored in order to demonstrate	ccess parameters and ranges that are proposed to be e compliance with the operation of this process equipment
RECORDKEEPING: REPORTING:	Please describe the proposed re Please describe any proposed er control device	cordkeeping that will accompany the monitoring. nissions testing for this process equipment on air pollution
TESTING:	Please describe any proposed er control device.	nissions testing for this process equipment on air pollution
45. Manufacturer's Gua NA – ASSUME 1	aranteed Capture Efficiency for ea	ch air pollutant.
46. Manufacturer's Gua 99% VOC AND	aranteed Control Efficiency for eac	h air pollutant.
47. Describe all operati NA	ing ranges and maintenance proce	dures required by Manufacturer to maintain warranty.

Г

ATTACHMENT J

Emission Points Data Summary Sheet

"26. Fill out the **Emission Points Data Summary Sheet** (Table 1 and Table 2) and provide it as Attachment J."

- Table 1 Emissions Data
 - TXP1 Heat Medium Heater (H-01 (1E)) (MODIFIED CO2e)
 - TXP1 Regeneration Gas Heater (H-02 (2E)) (MODIFIED CO2e)
 - o TXP2 Regeneration Gas Heater (H-03 (3E))
 - o TXP3 Regeneration Gas Heater (H-04 (4E))
 - o De-Ethanizer Hot Oil Heater (H-05 (5E)) (MODIFIED CO2e)
 - De-Ethanizer Hot Oil Heater (H-06 (6E)) (MODIFIED (CO2e)
 - Amine Process Regeneration Gas Heater (H-07 (7E)) (MODIFIED (CO2e)
 - o Process Flare (FL-1 (8E))
 - o Standby Generator Engine (Gen-1 (9E)) (MODIFIED (CO2e)
 - o Slop Oil/Condensate Storage Tanks (T-01 (10E) thru T-04 (13E))
 - o Truck Load-Out (TL-1 (14E))
 - o Amine Process Vent (V-01 (16E))
 - o Rod Packing/Crankcase Leaks (RPC (17E))
 - Dry Gas Seal Leaks (DGS (18E))
 - FUG-G (15E) Gas (MODIFIED VOC and HAP)
 - FUG-L (15E) Liquid (MODIFIED VOC and HAP)
 - FUG-M (15E) Mixed (MODIFIED VOC and HAP)
 - FUG-TOT (15E) Total (MODIFIED VOC and HAP)
 - Total Plant-Wide (Including Fugitives)
- Table 2 Release Parameter Data

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment N

Potential to Emit (PTE) – CRITERIA – CONTROLLED

Unit	Point	Description	Sito Pating	N	XC	CC	C	VC	C	S	02	PM1)/2.5
ID	ID	Description	Site Rating	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
H-01	01E	TXP1 Heat Medium Heater	26.26 MMBtu/hr	2.57	11.28	2.16	9.47	0.15	0.64	0.02	0.07	0.20	0.86
H-02	02E	TXP1 Regeneration Gas Heater	9.40 MMBtu/hr	0.92	4.04	0.77	3.39	0.05	0.23	0.01	0.02	0.07	0.31
H-03	03E	TXP2 Regeneration Gas Heater	20.30 MMBtu/hr	0.73	3.20	0.81	3.56	0.39	1.69	0.01	0.05	0.26	1.16
H-04	04E	TXP3 Regeneration Gas Heater	20.30 MMBtu/hr	0.73	3.20	0.81	3.56	0.39	1.69	0.01	0.05	0.26	1.16
H-05	05E	DeC2 Hot Oil Heater	68.33 MMBtu/hr	2.46	10.77	2.53	11.07	0.38	1.67	0.04	0.18	0.51	2.23
H-06	06E	DeC2 Hot Oil Heater	68.33 MMBtu/hr	2.46	10.77	2.53	11.07	0.38	1.67	0.04	0.18	0.51	2.23
H-07	07E	DeC2 Regeneration Gas Heater	10.44 MMBtu/hr	1.02	4.48	0.86	3.77	0.06	0.25	0.01	0.03	0.08	0.34
FLR-1	08E	Process Flare	630.19 MMscf/yr	638.12	73.27	1,273.93	146.28	177.30	20.36	1.54	0.19	19.50	2.39
GEN-1	09E	Standby Generator	224 bhp	0.99	0.25	1.98	0.49	0.54	0.13	1.3E-03	3.2E-04	0.04	0.01
TK-1	10E	Slop Oil/Condensate Tank	400 bbl					1.08	4.74				
TK-2	11E	Slop Oil/Condensate Tank	400 bbl					1.08	4.74				
TK-3	12E	Slop Oil/Condensate Tank	400 bbl					1.08	4.74				
TK-4	13E	Slop Oil/Condensate Tank	400 bbl					1.08	4.74				
TLO-1	14E	Truck Load-Out - Slop Oil/Condensate	4,000,000 gal/yr					27.13	18.09				
V-01	16E	Amine Process Unit Vent	44,000 bbl/day					0.11	0.49				
RPC-1	17E	Rod Packing - Reciprocating Compressors	3 Recips					0.17	0.30				
DGS	18E	Dry Gas Seals - Centrifugal Compressors	8 Centrifugal					0.76	3.33				
		TOTAL POIN	T SOURCE EMISSIONS:	650.01	121.26	1,286.38	192.66	212.13	69.50	1.67	0.76	21.43	10.68
FUG-G	15E	Piping and Equipment Fugitives - Gas						2.35	10.31				
FUG-L	15E	Piping and Equipment Fugitives - Light Liquid						4.75	20.82				
FUG-M	15E	Piping and Equipment Fugitives - Mix Gas/Liq						0.02	0.07				
		TOTAL	FUGITIVE EMISSIONS:					7.12	31.21				

TOTAL FACILITY-WIDE EMISSIONS:	650.01	121.26	1,286.38	192.66	219.26	100.71	1.67	0.76	21.43	10.68	
WV NSR THRESHOLD:	6 lb/hr <u>A/</u>	6 lb/hr <u>AND</u> 10 tpy		6 lb/hr <u>AND</u> 10 tpy		6 lb/hr <u>AND</u> 10 tpy		6 lb/hr <u>AND</u> 10 tpy		6 lb/hr <u>AND</u> 10 tpy	
TVOP THRESHOLD:		100 tpy		100 tpy		100 tpy		100 tpy		100 tpy	

Notes: 1 - Emissions are based on operation at 100% of rated load for 8,760 hr/yr.

2 - VOC is volatile organic compounds, as defined by EPA, and includes HCHO (formaldehyde).

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

4 - HCHO is formaldehyde; Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), 2,2,4-TMP (i-octane), acetaldehyde, acrolein, and methanol.

	NC	X	C	C	VOC		SO2		PM10/2.5	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CURRENT TOTAL FACILITY-WIDE EMISSIONS:	650.01	121.26	1,286.38	192.66	225.56	112.00	1.67	0.76	21.43	10.68
HANGE TO TOTAL FACILITY-WIDE EMISSIONS:	0.00	0.00	0.00	0.00	-6.30	-11.30				
ROPOSED TOTAL FACILITY-WIDE EMISSIONS:	650.01	121.26	1,286.38	192.66	219.26	100.71	1.67	0.76	21.43	10.68
	0%	0%	0%	0%	-3%	-11%				

CH

P

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment N

Potential to Emit (PTE) – HAZARDOUS AIR POLLUTANTS – CONTROLLED

		Bena	zene	Ethylb	enzene	Formal	dehyde	n-He	xane	Tolu	ene	2,2,4	-TMP	Xyle	enes				
Unit	Point	CAS: 7	1-43-2	CAS: 12	21-69-16	CAS: 12	1-69-26	CAS: 12	21-69-34	CAS: 12	1-69-87	CAS: 12	21-69-94	CAS: 12	21-69-99	Other	HAP	Total	HAP
ID	ID	MW: 78.11	l lb/lb-mol	MW: 106.1	7 lb/lb-mol	MW: 30.03	B lb/lb-mol	MW: 86.18	3 lb/lb-mol	MW: 92.14	lb/lb-mol	MW: 114.2	3 lb/lb-mol	MW: 106.1	7 lb/lb-mol				
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
H-01	01E	5.4E-05	2.4E-04			1.9E-03	0.01	0.05	0.20	8.8E-05	3.8E-04					4.9E-05	2.1E-04	0.05	0.21
H-02	02E	1.9E-05	8.5E-05			6.9E-04	3.0E-03	0.02	0.07	3.1E-05	1.4E-04					1.7E-05	7.7E-05	0.02	0.08
H-03	03E	4.2E-05	1.8E-04			1.5E-03	0.01	0.04	0.16	6.8E-05	3.0E-04					3.8E-05	1.7E-04	0.04	0.16
H-04	04E	4.2E-05	1.8E-04			1.5E-03	0.01	0.04	0.16	6.8E-05	3.0E-04					3.8E-05	1.7E-04	0.04	0.16
H-05	05E	1.4E-04	6.2E-04			0.01	0.02	0.12	0.53	2.3E-04	1.0E-03					1.3E-04	5.6E-04	0.13	0.55
H-06	06E	1.4E-04	6.2E-04			0.01	0.02	0.12	0.53	2.3E-04	1.0E-03					1.3E-04	5.6E-04	0.13	0.55
H-07	07E	2.1E-05	9.4E-05			7.7E-04	3.4E-03	0.02	0.08	3.5E-05	1.5E-04					1.9E-05	8.5E-05	0.02	0.08
FLR-1	08E	4.49	0.52	6.09	0.70	0.34	0.04	5.48	0.63	5.30	0.61	6.55	0.75	6.11	0.70	8.6E-03	9.9E-04	34.38	3.95
GEN-1	09E	3.5E-03	8.7E-04	5.4E-05	1.4E-05	0.04	0.01			1.2E-03	3.1E-04			4.3E-04	1.1E-04	0.02	0.01	0.07	0.02
TK-1	10E	0.04	0.16	0.04	0.16			0.04	0.16	0.04	0.16	0.04	0.16	0.04	0.16			0.22	0.95
TK-2	11E	0.04	0.16	0.04	0.16			0.04	0.16	0.04	0.16	0.04	0.16	0.04	0.16			0.22	0.95
TK-3	12E	0.04	0.16	0.04	0.16			0.04	0.16	0.04	0.16	0.04	0.16	0.04	0.16			0.22	0.95
TK-4	13E	0.04	0.16	0.04	0.16			0.04	0.16	0.04	0.16	0.04	0.16	0.04	0.16			0.22	0.95
TLO-1	14E	0.90	0.60	0.90	0.60			0.90	0.60	0.90	0.60	0.90	0.60	0.90	0.60			5.43	3.62
V-01	16E																		
RPC-1	17E	2.4E-03	6.1E-04	2.4E-03	6.1E-04			2.4E-03	6.1E-04	2.4E-03	6.1E-04	2.4E-03	6.1E-04	2.4E-03	6.1E-04			0.01	3.7E-03
DGS	18E	1.9E-03	0.01	1.9E-03	0.01			1.9E-03	0.01	1.9E-03	0.01	1.9E-03	0.01	1.9E-03	0.01			0.01	0.05
TOTA	L POINT:	5.55	1.76	7.14	1.94	0.40	0.12	6.93	3.60	6.36	1.86	7.61	2.00	7.17	1.95	0.03	0.01	41.18	13.23
FUG-G	15E	1.7E-03	0.01	1.7E-03	0.01			0.03	0.11	1.7E-03	0.01	1.7E-03	0.01	1.7E-03	0.01			0.03	0.15
FUG-L	15E	1.2E-03	0.01	1.2E-03	0.01			0.06	0.26	1.2E-03	0.01	1.2E-03	0.01	1.2E-03	0.01			0.07	0.29
FUG-M	15E	4.3E-06	1.9E-05	4.3E-06	1.9E-05			2.1E-04	9.2E-04	4.3E-06	1.9E-05	4.3E-06	1.9E-05	4.3E-06	1.9E-05			2.3E-04	1.0E-03
TOTAL FU	IGITIVES:	3.0E-03	0.01	3.0E-03	0.01			0.09	0.38	3.0E-03	0.01	3.0E-03	0.01	3.0E-03	0.01			0.10	0.44

TOTAL FACILITY:	5.55	1.78	7.15	1.96	0.40	0.12	7.02	3.98	6.36	1.87	7.61	2.01	7.17	1.96	0.03	0.01	41.28	13.68
NSR THRESHOLD:	2 lb/hr <u>O</u>	<u>R</u> 0.5 tpy	2 lb/hr <u>C</u>	<u>) R</u> 5 tpy	2 lb/hr <u>O</u>	<u>R</u> 0.5 tpy	2 lb/hr <u>(</u>	0 <u>R</u> 5 tpy	2 lb/hr <u>(</u>	<u>DR</u> 5 tpy	2 lb/hr <u>(</u>	<u>DR</u> 5 tpy	2 lb/hr <u>(</u>	<u>DR</u> 5 tpy	2 lb/hr <u>C</u>	D <u>R</u> 5 tpy	2 lb/hr <u>(</u>	<u>DR</u> 5 tpy
TVOP THRESHOLD:		10 tpy		10 tpy		10 tpy		10 tpy		10 tpy		10 tpy		10 tpy		10 tpy		25 tpy

Notes: 1 - Emissions are based on operation at 100% of rated load for 8,760 hrs/yr.

2 - VOC is volatile organic compounds, as defined by EPA, and includes HCHO (formaldehyde).

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

4 - HCHO is formaldehyde; Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), 2,2,4-TMP (i-octane), acetaldehyde, acrolein, and methanol.

	Ben	zene	Ethylbe	enzene	Formal	dehyde	n-He	xane	Tolu	iene	2,2,4	-TMP	Xyle	nes	Other	HAP	Total	HAP
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CURRENT PTE:	5.57	1.86	7.17	2.04	0.40	0.12	6.95	3.70	6.38	1.96	7.63	2.1	7.19	2.05	0.03	0.01	41.3	13.83
CHANGE TO PTE:	(0.02)	(0.08)	(0.02)	(0.08)	1.4E-03	2.2E-03	0.07	0.28	(0.02)	(0.09)	(0.02)	(0.09)	(0.02)	(0.09)	(3.1E-04)	(2.0E-03)	(0.02)	(0.15)
PROPOSED PTE:	5.55	1.78	7.15	1.96	0.40	0.12	7.02	3.98	6.36	1.87	7.61	2.01	7.17	1.96	0.03	0.01	41.28	13.68
	0%	-5%	0%	-4%	0%	2%	1%	7%	0%	-5%	0%	-5%	0%	-5%	-1%	-25%	0%	-1%

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment N

Potential to Emit (PTE) - GREENHOUSE GASES (GHG) - CONTROLLED

			lle et le suit	Hours of	kg/MMBtu:	53.06	kg/MMBtu:	1.00E-03	kg/MMBtu:	1.00E-04	ΤΟΤΑΙ
Unit	Point	Description	MMBtu/hr	Operation	GWP:	1	GWP:	25	GWP:	298	CO2e
ID	ID	2000.000	(HHV)		CO2	CO2e	CH4	CO2e	N2O	CO2e	
				hr/yr	tpy	tpy	tpy	tpy	tpy	tpy	tpy
H-01	01E	TXP1 Heat Medium Heater	26.26	8,760	13,456	13,456	0.25	6	0.03	8	13,470
H-02	02E	TXP1 Regeneration Gas Heater	9.40	8,760	4,816	4,816	0.09	2	0.01	3	4,821
H-03	03E	TXP2 Regeneration Gas Heater	20.30	8,760	10,401	10,401	0.62	16	0.02	6	10,422
H-04	04E	TXP3 Regeneration Gas Heater	20.30	8,760	10,401	10,401	0.62	16	0.02	6	10,422
H-05	05E	DeC2 Hot Oil Heater	68.33	8,760	35,008	35,008	0.66	16	0.07	20	35,044
H-06	06E	DeC2 Hot Oil Heater	68.33	8,760	35,008	35,008	0.66	16	0.07	20	35,044
H-07	07E	DeC2 Regeneration Gas Heater	10.44	8,760	5,350	5,350	0.10	3	0.01	3	5,356
FLR-1	08E	Process Flare	121.22	8,760	83,066	83,066	25	623	0.68	204	83,893
GEN-1	09E	Standby Generator	2.19	500	76	76	3.6E-03	0.09	7.3E-04	0.22	76
TK-1	10E	Slop Oil/Condensate Tank		8,760							
TK-2	11E	Slop Oil/Condensate Tank		8,760							
TK-3	12E	Slop Oil/Condensate Tank		8,760							
TK-4	13E	Slop Oil/Condensate Tank		8,760							
TLO-1	14E	Truck Load-Out - Slop Oil/Condensate									
V-01	16E	Amine Process Unit Vent		8,760	20,732	20,732	0.74	19			20,751
RPC-1	17E	Rod Packing - Reciprocating Compressors		8,760	16	16	57	1,437			1,453
DGS	18E	Dry Gas Seals - Centrifugal Compressors		8,760	0.07	0.07	61	1,522			1,522
		TOTA	AL POINT SOURC	E EMISSIONS:	218,331	218,331	147	3,676	0.90	268	222,275
FUG-G	15E	Piping and Equipment Fugitives - Gas		8,760	0.23	0.23	28	707			707
FUG-L	15E	Piping and Equipment Fugitives - Light Liquid		8,760							
FUG-M	15E	Piping and Equipment Fugitives - Mix Gas/Liq		8,760	3.9E-04	3.9E-04	0.05	1.20			1.20
			TOTAL FUGITIV	E EMISSIONS:	0.23	0.23	28	708			708

TOTAL FACILITY-WIDE PTE (w/o FUG): PSD Threshold: 218,331

na

- OR -

0.90

na

222,983 na na

Title V Major Source Threshold:

Notes: 1 - Emissions are based on operation at 100% of rated load.

2 - Engine CO2 and CH4 emissions are based on vendor specifications.

3 - Fugitive CH4 emissions are based on EPA Fugitive Emission Factors for Oil and Gas Production Operations. 4 - All other GHG emissions are based on default values in 40CFR98, Subpart C, Table C-1.

175

na

5 - High Heat Value (HHV) = Low Heat Value (LHV) / 0.90.

OR -

6 - PSD Thresholds and Title V Major Source Thresholds are only applicable if other regulated air pollutants exceed the corresponding Thresholds.

- AND -

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment N

Potential to Emit (PTE) – PRE-CONTROLLED

Unit	Point	Description	N	XC	C	:0	VC	C	n-He	xane	TOTA	L HAP	CO	2E
ID	ID	Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
H-01	01E	TXP1 Heat Medium Heater	2.57	11.28	2.16	9.47	0.15	0.64	0.05	0.20	0.05	0.21	3,075	13,470
H-02	02E	TXP1 Regeneration Gas Heater	0.92	4.04	0.77	0.77	0.05	0.23	0.02	0.07	0.02	0.08	1,101	4,821
H-03	03E	TXP2 Regeneration Gas Heater	0.73	3.20	0.81	3.56	0.39	1.69	0.04	0.16	0.04	0.16	2,380	10,422
H-04	04E	TXP3 Regeneration Gas Heater	0.73	3.20	0.81	3.56	0.39	1.69	0.04	0.16	0.04	0.16	2,380	10,422
H-05	05E	DeC2 Hot Oil Heater	2.46	10.77	2.53	11.07	0.38	1.67	0.12	0.53	0.13	0.55	8,001	35,044
H-06	06E	DeC2 Hot Oil Heater	2.46	10.77	2.53	11.07	0.38	1.67	0.12	0.53	0.13	0.55	8,001	35,044
H-07	07E	DeC2 Regeneration Gas Heater	1.02	4.48	0.86	3.77	0.06	0.25	0.02	0.08	0.02	0.08	1,223	5,356
FLR-1	08E	Process Flare	638	73	1,274	146	17,730	2,036	548	63	3,403	391	542,681	62,312
GEN-1	09E	Standby Generator	0.99	4.33	1.98	8.66	0.54	2.36			0.07	0.31	305	1,337
TK-1	10E	Slop Oil/Condensate Tank					1.08	4.74	0.04	0.16	0.22	0.95		
TK-2	11E	Slop Oil/Condensate Tank					1.08	4.74	0.04	0.16	0.22	0.95		
TK-3	12E	Slop Oil/Condensate Tank					1.08	4.74	0.04	0.16	0.22	0.95		
TK-4	13E	Slop Oil/Condensate Tank					1.08	4.74	0.04	0.16	0.22	0.95		
TLO-1	14E	Truck Load-Out - Slop Oil/Condensate						18.09		0.60		3.62		
V-01	16E	Amine Process Unit Vent					0.11	0.49					4,738	20,751
RPC-1	17E	Rod Packing - Reciprocating Compressors					0.17	0.30	2.4E-03	6.1E-04	0.01	3.7E-03	391	1,453
DGS	18E	Dry Gas Seals - Centrifugal Compressors					0.76	3.33	1.9E-03	0.01	0.01	0.05	347	1,522
	TOTAL	PRE-CONTROLLED POINT SOURCE EMISSIONS:	650	125	1,286	198	17,738	2,087	548.82	66	3,405	400	574,623	201,955
FUG-G	15E	Piping and Equipment Fugitives - Gas					19.25	84.34	0.21	0.93	0.28	1.24	1,321	5,784
FUG-L	15E	Piping and Equipment Fugitives - Light Liquid					34.24	149.95	0.43	1.88	0.47	2.08		
FUG-M	15E	Piping and Equipment Fugitives - Mix Gas/Liq					0.15	0.64	1.8E-03	0.01	2.0E-03	0.01	2.41	10.57
		TOTAL PRE-CONTROLLED FUGITIVE EMISSIONS:					53.64	234.93	0.64	2.82	0.76	3.32	1,323	5,795

TOTAL PRE-CONTROLLED EMISSIONS:	650	125	1,286	198	17,791	2,322	549	69	3,405	404	575,946	207,750
WV NSR THRESHOLD:	6 lb/hr <u>A/</u>	<u>VD</u> 10 tpy	6 lb/hr <u>A/</u>	<u>VD</u> 10 tpy	6 lb/hr <u>A/</u>	<u>VD</u> 10 tpy	2 lb/hr (<u>OR</u> 5 tpy	2 lb/hr <u>(</u>	D <u>R</u> 5 tpy	-	
TVOP THRESHOLD:		100 tpy		100 tpy		100 tpy		10 tpy		25 tpy		

Notes: 1 - Emissions are based on operation at 100% of rated load for 8,760 hr/yr.

2 - VOC is volatile organic compounds, as defined by EPA, and includes HCHO (formaldehyde).

3 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

4 - HCHO is formaldehyde; Total HAP includes HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylene), 2,2,4-TMP (i-octane), acetaldehyde, acrolein, and methanol.

Application for Class II Administrative Update (R13-3070A)

TXP1 Heat Medium Heater Emissions

Unit ID	Description	Reference	Pollutant	Emis Fac	ssion ctor	Pre-Co Emis	ntrolled sions	Control Efficiency	Conti Emis	olled sions
				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
		EPA AP-42 Table 1.4-1	NOX	100.00	0.10	2.57	11.28		2.57	11.28
	TXP1	EPA AP-42 Table 1.4-1	CO	84.00	0.0824	2.16	9.47		2.16	9.47
	Heat Medium Heater	EPA AP-42 Table 1.4-2	VOC	5.68	5.6E-03	0.15	0.64		0.15	0.64
		EPA AP-42 Table 1.4-2	SO2	0.60	5.9E-04	0.02	0.07		0.02	0.07
	23.69 MMBtu/hr (LHV)	EPA AP-42 Table 1.4-2	PM10/2.5	7.60	0.01	0.20	0.86		0.20	0.86
	26.26 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-3	Benzene	2.10E-03	2.06E-06	5.4E-05	2.4E-04		5.4E-05	2.4E-04
		EPA AP-42 Table 1.4-3	Ethylbenzene							
	8,760 hr/yr	EPA AP-42 Table 1.4-3	НСНО	7.50E-02	7.35E-05	1.9E-03	0.01		1.9E-03	0.01
H-01 (1E)		EPA AP-42 Table 1.4-3	n-Hexane	1.80E+00	1.76E-03	0.05	0.20		0.05	0.20
	920 Btu/scf (LHV)	EPA AP-42 Table 1.4-3	Toluene	3.40E-03	3.33E-06	8.8E-05	3.8E-04		8.8E-05	3.8E-04
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	2,2,4-TMP							
		EPA AP-42 Table 1.4-3	Xylenes							
	207,509 MMBtu/yr (LHV)	EPA AP-42 Table 1.4-3	Other HAP	1.90E-03	1.86E-06	4.9E-05	2.1E-04		4.9E-05	2.1E-04
	230,064 MMBtu/yr (HHV)	SUM	Tot HAP	1.88E+00	1.85E-03	0.05	0.21		0.05	0.21
		40CFR98 - Table C-1	CO2	119,317	1.17E+02	3,072	13,456		3,072	13,456
	25,748 scf/hr	40CFR98 - Table C-2	CH4	2.25	2.20E-03	0.06	0.25		0.06	0.25
	225.55 MMscf/yr	40CFR98 - Table C-2	N2O	2.25E-01	2.20E-04	5.8E-03	0.03		5.8E-03	0.03
		40CFR98 - Table A-1	CO2e	119,440	117.10	3,075	13,470		3,075	13,470

Notes: 1 - The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

2 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

3 - HCHO is formaldehyde; Total HAP includes, but not limited to, HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylenes), 2,2,4-TMP (iso-octane), acetaldehyde, acrolein, and methanol (MeOH).

Application for Class II Administrative Update (R13-3070A)

TXP1 Regen Gas Heater Emissions

Unit ID	Description	Reference	Pollutant	Emis Fac	ssion ctor	Pre-Co Emis	ntrolled sions	Control Efficiency	Conti Emis	rolled sions
				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
		EPA AP-42 Table 1.4-1	NOX	100.00	0.10	0.92	4.04		0.92	4.04
	TXP1	EPA AP-42 Table 1.4-1	CO	84.00	0.08	0.77	3.39		0.77	3.39
	Regen Gas Heater	EPA AP-42 Table 1.4-2	VOC	5.68	5.6E-03	0.05	0.23		0.05	0.23
		EPA AP-42 Table 1.4-2	SO2	0.60	5.9E-04	0.01	0.02		0.01	0.02
	8.48 MMBtu/hr (LHV)	EPA AP-42 Table 1.4-2	PM10/2.5	7.60	0.01	0.07	0.31		0.07	0.31
	9.40 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-3	Benzene	2.10E-03	2.06E-06	1.9E-05	8.5E-05		1.9E-05	8.5E-05
		EPA AP-42 Table 1.4-3	Ethylbenzene							
	8,760 hr/yr	EPA AP-42 Table 1.4-3	НСНО	7.50E-02	7.35E-05	6.9E-04	0.00		6.9E-04	3.0E-03
H-02 (2E)		EPA AP-42 Table 1.4-3	n-Hexane	1.80E+00	1.76E-03	0.02	0.07		0.02	0.07
	920 Btu/scf (LHV)	EPA AP-42 Table 1.4-3	Toluene	3.40E-03	3.33E-06	3.1E-05	1.4E-04		3.1E-05	1.4E-04
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	2,2,4-TMP							
		EPA AP-42 Table 1.4-3	Xylenes							
	74,271 MMBtu/yr (LHV)	EPA AP-42 Table 1.4-3	Other HAP	1.90E-03	1.86E-06	1.7E-05	7.7E-05		1.7E-05	7.7E-05
	82,344 MMBtu/yr (HHV)	SUM	Tot HAP	1.88E+00	1.85E-03	0.02	0.08		0.02	0.08
		40CFR98 - Table C-1	CO2	119,317	1.17E+02	1,100	4,816		1,100	4,816
	9,216 scf/hr	40CFR98 - Table C-2	CH4	2.25	2.20E-03	0.02	0.09		0.02	0.09
	80.73 MMscf/yr	40CFR98 - Table C-2	N2O	2.25E-01	2.20E-04	2.1E-03	0.01		2.1E-03	0.01
		40CFR98 - Table A-1	CO2e	119,440	117.10	1,101	4,821		1,101	4,821

Notes: 1 - The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

2 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

3 - HCHO is formaldehyde; Total HAP includes, but not limited to, HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylenes), 2,2,4-TMP (iso-octane), acetaldehyde, acrolein, and methanol (MeOH).

Application for Class II Administrative Update (R13-3070A)

TXP2 & TXP3 Regen Gas Heater Emissions

Unit ID	Description	Reference	Pollutant	Emis Fac	ssion ctor	Pre-Co Emis	ntrolled sions	Control Efficiency	Conti Emis	olled sions
				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
		Vendor Data	NOX	36.72	0.04	0.73	3.20		0.73	3.20
	TXP2 & TXP3 Pogon Gas Hoators	Vendor Data	CO	40.80	0.04	0.81	3.56		0.81	3.56
	(each)	Vendor Data	VOC	19.38	1.9E-02	0.39	1.69		0.39	1.69
		EPA AP-42 Table 1.4-2	SO2	0.60	5.9E-04	0.01	0.05		0.01	0.05
	18.31 MMBtu/hr (LHV)	Vendor Data	PM10/2.5	13.26	0.01	0.26	1.16		0.26	1.16
	20.30 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-3	Benzene	2.10E-03	2.06E-06	4.2E-05	1.8E-04		4.2E-05	1.8E-04
		EPA AP-42 Table 1.4-3	Ethylbenzene							
H-03 (3E)	8,760 hr/yr	EPA AP-42 Table 1.4-3	НСНО	7.50E-02	7.35E-05	1.5E-03	0.01		1.5E-03	0.01
and		EPA AP-42 Table 1.4-3	n-Hexane	1.80E+00	1.76E-03	0.04	0.16		0.04	0.16
(each)	920 Btu/scf (LHV)	EPA AP-42 Table 1.4-3	Toluene	3.40E-03	3.33E-06	6.8E-05	3.0E-04		6.8E-05	3.0E-04
()	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	2,2,4-TMP							
		EPA AP-42 Table 1.4-3	Xylenes							
	160,394 MMBtu/yr (LHV)	EPA AP-42 Table 1.4-3	Other HAP	1.90E-03	1.86E-06	3.8E-05	1.7E-04		3.8E-05	1.7E-04
	177,828 MMBtu/yr (HHV)	SUM	Tot HAP	1.88E+00	1.85E-03	0.04	0.16		0.04	0.16
		40CFR98 - Table C-1	CO2	119,317	116.98	2,375	10,401		2,375	10,401
	19,902 scf/hr	Vendor Data	CH4	7.14	0.01	0.14	0.62		0.14	0.62
	174.34 MMscf/yr	40CFR98 - Table C-2	N2O	0.22	2.2E-04	4.5E-03	0.02		4.5E-03	0.02
		40CFR98 - Table A-1	CO2e	119,562	117.22	2,380	10,422		2,380	10,422

Notes: 1 - The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

2 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

3 - HCHO is formaldehyde; Total HAP includes, but not limited to, HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylenes), 2,2,4-TMP (iso-octane), acetaldehyde, acrolein, and methanol (MeOH).

ZEECO BURNER DATA SHEETS						
BASIS OF EMISSIONS INFORMATION						Rev.
Furnace Temperature (°F)		1,508				
Excess Combustion Air (%)		15% G	as			
Combustion Air Temperature (°F)		100				
Relative Humidity (%)		70%				
Heat Release for Guarantee (MM Btu/hr)		18.200	to	9.100 LHV		1
EMISSIONS INFORMATION	PRED	ICTED		GUAR	ANTEED	
	(ppmv)	(#/MMBtu)		(ppmv)	(#/MMBtu)	
NOx Design	9	0.011		30	0.036	
NOx Rich Rjctn	9	0.011		30	0.036	
	0	0.000		50	0.040	
<u>00-0as</u>	0	0.000			0.040	
UHC - Gas	1	0.001		15	0.007	
Particulate - Gas	2	0.002		(15)	0.013	
VOC - Gas	0	0.000		<mark>-15</mark>	0.019	

Application for Class II Administrative Update (R13-3070A)

De-Ethanizer Hot Oil Heater Emissions

Unit ID	Description	Reference	Pollutant	Emis Fac	sion tor	Pre-Co Emis	ntrolled sions	Control Efficiency	Contr Emis	olled sions
				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
		Vendor Data	NOX	36.72	0.04	2.46	10.77		2.46	10.77
	De-Ethanizer	Vendor Data	CO	37.74	0.04	2.53	11.07		2.53	11.07
	(each)	EPA AP-42 Table 1.4-2	VOC	5.68	5.6E-03	0.38	1.67		0.38	1.67
		EPA AP-42 Table 1.4-2	SO2	0.60	5.9E-04	0.04	0.18		0.04	0.18
	61.63 MMBtu/hr (LHV)	EPA AP-42 Table 1.4-2	PM10/2.5	7.60	0.01	0.51	2.23		0.51	2.23
	68.33 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-3	Benzene	2.10E-03	2.06E-06	1.4E-04	6.2E-04		1.4E-04	6.2E-04
		EPA AP-42 Table 1.4-3	Ethylbenzene							
H-05 (5E)	8,760 hr/yr	EPA AP-42 Table 1.4-3	НСНО	7.50E-02	7.35E-05	5.0E-03	0.02		5.0E-03	0.02
		EPA AP-42 Table 1.4-3	n-Hexane	1.80E+00	1.76E-03	0.12	0.53		0.12	0.53
(each)	920 Btu/scf (LHV)	EPA AP-42 Table 1.4-3	Toluene	3.40E-03	3.33E-06	2.3E-04	1.0E-03		2.3E-04	1.0E-03
()	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	2,2,4-TMP							
		EPA AP-42 Table 1.4-3	Xylenes							
	539,864 MMBtu/yr (LHV)	EPA AP-42 Table 1.4-3	Other HAP	1.90E-03	1.86E-06	1.3E-04	5.6E-04		1.3E-04	5.6E-04
	598,545 MMBtu/yr (HHV)	SUM	Tot HAP	1.88E+00	1.85E-03	0.13	0.55		0.13	0.55
		40CFR98 - Table C-1	CO2	119,317	1.17E+02	7,993	35,008		7,993	35,008
	66,987 scf/hr	40CFR98 - Table C-2	CH4	2.25	2.20E-03	0.15	0.66		0.15	0.66
	586.81 MMscf/yr	40CFR98 - Table C-2	N2O	2.25E-01	2.20E-04	1.5E-02	0.07		1.5E-02	0.07
		40CFR98 - Table A-1	CO2e	119,440	117.10	8,001	35,044		8,001	35,044

Notes: 1 - The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

1.

2 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

3 - HCHO is formaldehyde; Total HAP includes, but not limited to, HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylenes), 2,2,4-TMP (iso-octane), acetaldehyde, acrolein, and methanol (MeOH).

4 - Emission factors in AP-42 are NOT EPA-recommended emission limits. Because emission factors essentially represent an average of a range of emission rates, a permit limit using an AP-42 emission factor would result in half of the sources being in noncompliance.

FABER BURNER COMPANY #13011 BURNER DATA Page 3 of 4

F. Gas Pilot Data: Natural Gas at 1000 BTU/SCF & 0.6 S.G., 630 SCFH required at 1 PSIG at the pilot.

- G. Turndown Data:
 10:1 on Natural Gas
 4:1 on Natural Gas (with emissions guarantee)
- H. Excess Air Design Data:
 15% on Natural Gas @ MCR

EMISSION GUARANTEES

Not to Exceed:	Natural (Gas
	Lbs/MMBTU	PPM
NOX	0.036	30
CO	0.037	50

Application for Class II Administrative Update (R13-3070A)

DeC2 Regeneration Gas Heater Emissions

Unit ID	Description	Reference	Pollutant	Emis Fac	ssion ctor	Pre-Cor Emis	ntrolled sions	Control Efficiency	Cont Emis	rolled sions
				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
		EPA AP-42 Table 1.4-1	NOX	100.00	9.80E-02	1.02	4.48		1.02	4.48
	DeC2	EPA AP-42 Table 1.4-1	CO	84.00	8.24E-02	0.86	3.77		0.86	3.77
	Regen Gas Heater	EPA AP-42 Table 1.4-2	VOC	5.68	5.56E-03	0.06	0.25		0.06	0.25
		EPA AP-42 Table 1.4-2	SO2	0.60	5.88E-04	0.01	0.03		0.01	0.03
	9.42 MMBtu/hr (LHV)	EPA AP-42 Table 1.4-2	PM10/2.5	7.60	7.45E-03	0.08	0.34		0.08	0.34
	10.44 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-3	Benzene	2.10E-03	2.06E-06	2.1E-05	9.4E-05		2.1E-05	9.4E-05
		EPA AP-42 Table 1.4-3	Ethylbenzene							
	8,760 hr/yr	EPA AP-42 Table 1.4-3	HCHO	7.50E-02	7.35E-05	7.7E-04	3.4E-03		7.7E-04	3.4E-03
H-07 (7E)		EPA AP-42 Table 1.4-3	n-Hexane	1.80E+00	1.76E-03	0.02	0.08		0.02	0.08
	920 Btu/scf (LHV)	EPA AP-42 Table 1.4-3	Toluene	3.40E-03	3.33E-06	3.5E-05	1.5E-04		3.5E-05	1.5E-04
	1,020 Btu/scf (HHV)	EPA AP-42 Table 1.4-3	2,2,4-TMP							
		EPA AP-42 Table 1.4-3	Xylenes							
	82,504 MMBtu/yr (LHV)	EPA AP-42 Table 1.4-3	Other HAP	1.90E-03	1.86E-06	1.9E-05	8.5E-05		1.9E-05	8.5E-05
	91,472 MMBtu/yr (HHV)	SUM	Tot HAP	1.88E+00	1.85E-03	0.02	0.08		0.02	0.08
		40CFR98 - Table C-1	CO2	119,317	1.17E+02	1,221	5,350		1,221	5,350
	10,237 scf/hr	40CFR98 - Table C-2	CH4	2.25	2.20E-03	0.02	0.10		0.02	0.1
	89.68 MMscf/yr	40CFR98 - Table C-2	N2O	2.25E-01	2.20E-04	2.3E-03	0.01		2E-03	0.01
		40CFR98 - Table A-1	CO2e	119,440	117.10	1,223	5,356		1,223	5,356

Notes: 1 - The fuel heating value will vary, 920 Btu/scf (LHV) is at the low end of the range and results in a high (conservative) fuel consumption estimate.

2 - PM10/2.5 is filterable and condensable particulate matter; including PM10 and PM2.5.

3 - HCHO is formaldehyde; Total HAP includes, but not limited to, HCHO, n-hexane, BTEX (benzene, toluene, ethylbenzene, xylenes), 2,2,4-TMP (iso-octane), acetaldehyde, acrolein, and methanol (MeOH).

Application for Class II Administrative Update (R13-3070A)

Process Flare Emissions

Unit ID	Description	Reference	Pollutant	Emis Fac	sion tor	Pre-Cor Emiss	ntrolled sions	Control Efficiency	Controlled Emissions	
				lb/MMscf	lb/MMBtu	lb/hr	tpy	%	lb/hr	tpy
	Brosses Flore 01	TCEQ 2010 Flare Study	NOX	Varies	1.38E-01				638.12	73.27
	FIDCESS FIATE-01	TCEQ 2010 Flare Study	CO	Varies	2.76E-01				1,273.93	146.28
	Peak (Hourly)	Mass Balance	VOC	6,461	3.83	17,729.97	2,035.80	99%	177.30	20.36
	208,000 lb/hr (Peak)	EPA AP-42 Table 1.4-2	SO2	0.60	3.33E-04				1.54	0.19
	2,566,068 scf/hr (Peak)	EPA AP-42 Table 1.4-2	PM10/2.5	7.60	4.22E-03				19.50	2.39
	4,624 MMBtu/hr (HHV)	Mass Balance	Benzene	163.59	0.10	448.93	51.55	99%	4.49	0.52
	1,802 Btu/scf (HHV)	Mass Balance	Ethylbenzene	221.99	0.13	609.20	69.95	99%	6.09	0.70
		EPA AP-42 Table 1.4-3	НСНО	0.12	7.35E-05				0.34	0.04
FLR-1 (8E)	8,760 hr/yr	Mass Balance	n-Hexane	199.79	0.12	548.28	62.95	99%	5.48	0.63
		Mass Balance	Toluene	193.17	0.11	530.10	60.87	99%	5.30	0.61
	Average (Annual)	Mass Balance	2,2,4-TMP	238.85	0.14	655.47	75.26	99%	6.55	0.75
	71,940 scf/hr (Average)	Mass Balance	Xylenes	222.72	0.13	611.18	70.18	99%	6.11	0.70
	121.22 MMBtu/hr (HHV)	EPA AP-42 Table 1.4-3	Other HAP	3.1E-03	1.86E-06				8.6E-03	9.9E-04
	1,061,889 MMBtu/yr	Sum	Tot HAP	1,240.25	0.74	3,403.17	390.76	99%	34.38	3.95
	630.19 MMscf/yr	40CFR98 Table C-1	CO2	263,621	156.45				723,433	83,066
	1,685 Btu/scf (HHV)	Mass Balance	CH4	7,910	4.69	21,707	2,492	99%	217	25
		40CFR98 - Table C-2	N2O	2.17	1.29E-03				6	1
		40CFR98 - Table A-1	CO2e	462,022	274.19	542,681	62,312		730,635	83,893

Notes: 1 - Flare design peak and short-term (lb/hr) emissions are based on an emergency ethane release Flow rate = 208,000 lb/hr, MW = 30.76 lb/lb-mol, and heating value = 1,802 Btu/scf (HHV).

2 - Heat Input (See 'Att H - Waste Gas Summary' and	d 'Att H - Waste Gas Btu Analysis' spreadsheets):
---	---

Component			Waste Gas (to Flare	e)	
component	Mol% (Vol%)	MMscf/yr	scf/hr (ave)	Btu/scf (HHV)	lb/MMscf
Nitrogen	0.1%	0.46	52.07		61
CO2	0.1%	0.52	59.61		96
Methane	18.7%	117.92	13,460.69	189	7,910
Ethane	76.8%	484.17	55,271.11	1,244	60,879
VOC	4.3%	27.11	3,094.90	252	6,461
Benzene	0.08%	0.50	57.17	2.9	164
E-Benzene	0.08%	0.50	57.08	3.9	222
n-Hexane	0.09%	0.55	63.29	3.9	200
Toluene	0.08%	0.50	57.23	3.4	193
2,2,4-TMP	0.08%	0.50	57.08	4.6	239
Xylenes	0.08%	0.50	57.27	3.9	223
TOTAL	100.0%	630.19	71,938	1,685	75,407
		vs. 85.5		vs. 1,300	

3 - CO2e Emission Factor (See 'Att H - Waste Gas Summary'):

40CFR98	kg/MMBtu	lb/MMBtu	Wgt%	lb/MMBtu
Methane	53.06	116.98	12.6%	14.74
Ethane	59.60	131.40	96.9%	127.38
VOC	62.87	138.60	10.3%	14.34
	Consei	119.9%	156.45	

4 - Waste Gas volumes to the flare are conservatively estimated as as follows:

Stream Description	Estimated Gas Volume to Process Flare (FLR-1 (8E))	scf/hr (ave)	MMscf/yr
	TXP Blowdowns	2,146	18.80
	TXP Start-Up and Dry-out	2,383	20.88
	Balance of Plant Volumes	197	1.73
	Filters Change-Out	43	0.38
Inlot Gao	Compressor Maintenance	2,493	21.84
iniet Gas	Amine Unit Flash Gas	1,297	4.54
	Gas Pig Trap Blowdown	920	8.06
	Compressor Dry Gas Seals	56	0.49
	Other/Misc/Contingency (20%)	1,752	15.34
	SubTotal:	10,509	92.06
Ethano	Ethane	57,078	500.00
Ethane	SubTotal:	57,078	500.00
	Liquid Pig Trap Blowdown	6	0.06
NGI	TXP Tanks Liquid Dry-Out	100	0.88
NGL	Pump Maintenance	22	0.19
	SubTotal:	128	1.12
	Purge Gas	4,000	35.04
Residue Gas	Pilot Gas	225	1.971
	SubTotal:	4,225	37.01
	Grand-Total:	71,940	630.19
		5,425 lb/hr	

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Standby Generator Engine Emissions

Unit ID (Point ID)	Description	Reference	Pollutant		Pre-Cor Emiss	ntrolled sions		Control		Contr Emiss	olled sions	
(Foline ID)				g/bhp-hr	lb/MMBtu	lb/hr	tpy	Enciency	g/bhp-hr	lb/MMBtu	lb/hr	tpy
	Generator Engine	NSPS JJJJ	NOx	2.00	0.45	0.99	4.33	na	2.00	0.45	0.99	0.25
	(Propane)	NSPS JJJJ	CO	4.00	0.90	1.98	8.66	na	4.00	0.90	1.98	0.49
	(EPA Certified)	NMHC+CH4	THC	1.23	0.28	0.61	2.66	na	1.23	0.28	0.61	0.15
	Olympian G150LG2	NMNEHC*120%	NMHC	1.20	0.27	0.59	2.60	na	1.20	0.27	0.59	0.15
	224 bhp	NSPS JJJJ	NMNEHC	1.00	0.23	0.49	2.16	na	1.00	0.23	0.49	0.12
	150 ekW	NMNEHC + HCHO	VOC	1.09	0.25	0.54	2.36	na	1.09	0.25	0.54	0.13
	Manufactured ≥ 07/01/10	AP-42 Table 3.2-3	SO2	2.61E-03	5.88E-04	1.3E-03	0.01	na	2.61E-03	5.88E-04	1.3E-03	3.2E-04
	NSPS JJJJ Affected	AP-42 Table 3.2-3	PM10/2.5	8.62E-02	1.94E-02	0.04	0.19	na	8.62E-02	1.94E-02	0.04	0.01
		AP-42 Table 3.2-3	Benzene	6.74E-03	1.58E-03	3.5E-03	0.02	na	0.01	1.6E-03	3.5E-03	8.7E-04
	500 hr/yr	AP-42 Table 3.2-3	Ethylbenzene	1.06E-04	2.48E-05	5.4E-05	2.4E-04	na	1.1E-04	2.5E-05	5.4E-05	1.4E-05
GEN-1 (9E)		AP-42 Table 3.2-3	НСНО	8.74E-02	2.05E-02	0.04	0.20	na	0.09	0.02	0.04	0.01
	8,815 Btu/bhp-hr (LHV)	AP-42 Table 3.2-3	n-Hexane					na				
	9,794 Btu/bhp-hr (HHV)	AP-42 Table 3.2-3	Toluene	2.38E-03	5.58E-04	1.2E-03	0.01	na	2.4E-03	5.6E-04	1.2E-03	3.1E-04
		AP-42 Table 3.2-3	2,2,4-TMP					na				
	2.19 MMBtu/hr (HHV)	AP-42 Table 3.2-3	Xylenes	8.32E-04	1.95E-04	4.3E-04	1.9E-03	na	8.3E-04	2.0E-04	4.3E-04	1.1E-04
		AP-42 Table 3.2-3	Other HAP	4.02E-02	9.42E-03	0.02	0.09	na	0.04	0.01	0.02	0.01
	878 scf/hr	SUM	Total HAP	1.38E-01	3.23E-02	0.07	0.31	0.0%	0.14	0.03	0.07	0.02
	0.44 MMscf/yr	40CFR98 - Table C-1	CO2	616	138.60	304	1,332	na	616	139	304	76
		40CFR98 - Table C-2	CH4	0.03	6.61E-03	0.01	0.06	na	0.03	0.01	0.01	3.6E-03
	2,250 Btu/scf (LHV)	40CFR98 - Table C-2	N2O	5.88E-03	1.32E-03	2.9E-03	0.01	na	0.01	1.3E-03	2.9E-03	7.3E-04
	2,500 Btu/scf (HHV)	40CFR98 - Table A-1	CO2e	618	139	305	1,337	na	618	139	305	76

Notes: 1 - The emissions are based on operation at 100% of rated load.

2 - Pre-Controlled emissions assume 8,760 hr/hr and Controlled emissions are based on 500 hr/yr.

Table 1 to Subpart JJJJ of Part 60—NO_x, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines >100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP

			Emi	ssio	n stan	dard	dards ^a					
	Maximum					ppn	nvd a	at 15%				
Engine type	engine	Manufacture	g/HF	₽-hr		O ₂						
and fuel	power	date	NOx	CO	V0C ^d	NOx	C0	VOCd				
Non-Emergency SI Natural Gas ^p and Non-Emergency SI	100≤HP<500	7/1/2008	2.0	4.0	1.0	160	540	86				
Lean Burn LPG ^b												
		1/1/2011	1.0	2.0	0.7	82	270	60				
Non-Emergency SI Lean Burn Natural Gas and LPG	500≤HP<1,350	1/1/2008	2.0	4.0	1.0	160	540	86				
		7/1/2010	1.0	2.0	0.7	82	270	60				
Non-Emergency SI Natural Gas and Non-Emergency SI Lean Burn LPG (except lean burn 500≤HP<1,350)	HP≥500	7/1/2007	2.0	4.0	1.0	160	540	86				
	HP≥500	7/1/2010	1.0	2.0	0.7	82	270	60				
Landfill/Digester Gas (except lean burn 500≤HP<1,350)	HP<500	7/1/2008	3.0	5.0	1.0	220	610	80				
		1/1/2011	2.0	5.0	1.0	150	610	80				
	HP≥500	7/1/2007	3.0	5.0	1.0	220	610	80				
		7/1/2010	2.0	5.0	1.0	150	610	80				
Landfill/Digester Gas Lean Burn	500≤HP<1,350	1/1/2008	3.0	5.0	1.0	220	610	80				
		7/1/2010	2.0	5.0	1.0	150	610	80				
Emergency	25 <hp<130< td=""><td>1/1/2009</td><td>¢10</td><td>387</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></hp<130<>	1/1/2009	¢10	387	N/A	N/A	N/A	N/A				
	HP≥130		2.0	4.0	1.0	160	540	86				

^aOwners and operators of stationary non-certified SI engines may choose to comply with the emission standards in units of either g/HP-hr or ppmvd at 15 percent O_2

^bOwners and operators of new or reconstructed non-emergency lean burn SI stationary engines with a site rating of greater than or equal to 250 brake HP located at a major source that are meeting the requirements of 40 CFR part 63, subpart ZZZZ, Table 2a do not have to comply with the CO emission standards of Table 1 of this subpart.

 $^{
m c}$ The emission standards applicable to emergency engines between 25 HP and 130 HP are in terms of NO_x + HC.

^dFor purposes of this subpart, when calculating emissions of volatile organic compounds, emissions of formaldehyde should not be included.

[76 FR 37975, June 28, 2011]

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Slop Oil/Condensate Storage Tank Emissions

Storage Tank PTE Calculations - Working, Breathing and Flashing Emissions

Unit ID	Tank ID	Material Stored	Сара	acity	Turnovers per Year	s Throughput		Throughput Working Losses		Flashing Losses	Total Losses	otal VOC sses 100%		Hex, BTEX, TMP (Ea) 3.33%		Total HAP 20.00%	
			gal	bbl		gal/yr	bbl/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
TK-1	10E	Slop Oil/Condensate	16,800	400	60	1,000,000	23,810	6,840	2,644	0	9,484	1.08	4.74	0.04	0.16	0.22	0.95
TK-2	11E	Slop Oil/Condensate	16,800	400	60	1,000,000	23,810	6,840	2,644	0	9,484	1.08	4.74	0.04	0.16	0.22	0.95
TK-3	12E	Slop Oil/Condensate	16,800	400	60	1,000,000	23,810	6,840	2,644	0	9,484	1.08	4.74	0.04	0.16	0.22	0.95
TK-4	13E	Slop Oil/Condensate	16,800	400	60	1,000,000	23,810	6,840	2,644	0	9,484	1.08	4.74	0.04	0.16	0.22	0.95
								_									
		Total:	67,200	1,600	60	4,000,000	95,238					4.33	18.96	0.14	0.63	0.87	3.79

Notes: 1 - EPA TANKS 4.0.9d was used to determine the Slop Oil/Condensate Tank Working and Breathing (Standing) Losses.

2 - The ProMax process simulation software was used to estimate Flashing Losses from the slop oil/condensate storage tanks. The process simulation shows no flashing losses from the storage tanks.

Oak Grove TK-01 thru TK-04 - Vertical Fixed Roof Tank Moundsville, West Virginia

the set Common and	lineth	Dail) Temps	/ Liquid Sur erature (deg	f. (F)	Liquid Bulk Temp	Vapo	r Pressure (psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
iture Component	Month	Aug.	Min.	Mdx.	(000 P)	10g.	Mn.	MAX.	weight.	Pract.	Praci.	wegn	Calculations
op Hydrocarbon Liquids	AL	56.69	48.70	64.69	52.55	8.3448	7.2610	9.5477	51.3324			96.32	
2-Dimethylbutane						3.9522	3.2597	4.7496	86.1770	0.0031	0.0027	86.18	Option 1: VP50 = 3.355 VP60 = 4.247
Methylpentane						2.5136	2.0480	3.0623	86.1800	0.0345	0.0195	86.18	Option 2: A=6.8391, B=1135.41, C=226.57
Methylpentane						2.2529	1.8262	2.7524	86.1770	0.0235	0.0119	86.18	Option 1: VP50 = 1.884 VP60 = 2.435
enzene						1.0648	0.8464	1.3282	78.1100	0.0014	0.0003	78.11	Option 2: A 6.905, B 1211.033, C 220.79
lyclohexane						1.1069	0.8846	1.3736	84.1600	0.0126	0.0031	84.16	Option 2: A - 6.841, B - 1201.53, C - 222.65
copentane						3.8828	3.1865	4.6754	70.1300	0.0044	0.0038	70.13	Option 1: VP50 = 3.287 VP60 = 4.177
Decane (-n)						0.0310	0.0257	0.0372	142.2900	0.0336	0.0002	142.29	Option 1: VP50 = .026411 VP60 = .033211
thane						477.7593	431.8129	527.0337	30.0700	0.0005	0.0516	30.07	Option 1: VP50 = 438.71 VP60 = 497.04
leptane (-n)						0.5535	0.4327	0.7028	100.2000	0.2499	0.0311	100.20	Option 3: A=37358, B=8.2585
lexane (-n)						1.7546	1.4148	2.1588	86.1700	0.0787	0.0310	86.17	Option 2: A -6.876, B -1171.17, C -224.41
so-Butane						36.1072	31.2831	41,4341	58.1300	0.0088	0.0715	58.13	Option 1: VP50 = 31.982 VP60 = 38.144
so-Pentane						8.8178	7.3924	10.4372	72.1500	0.0250	0.0495	72.15	Option 1: VP50 = 7.592 VP60 = 9.423
/ethylcyclopentane						1.5933	1.2851	1.9601	84.1600	0.0105	0.0038	84.16	Option 2: A=6.8628, B=1186.059, C=226.04
Butane						24.6056	21.0778	28.5399	58.1300	0.0335	0.1854	58.13	Option 1: VP50 = 21.583 VP60 = 26.098
konane (-n)						0.0607	0.0499	0.0736	128.2600	0.1096	0.0015	128.26	Option 1: VP50 = .051285 VP60 = .065278
Octane (-n)						0.1345	0.1091	0.1655	114.2300	0.3096	0.0094	114.23	Option 1: VP50 = .112388 VP60 = .145444
entane (-n)						6.3491	5.2897	7.5784	72.1500	0.0407	0.0580	72.15	Option 3: A=27691, B=7.558
ropane						103.0798	90.9417	116.2827	44.1100	0.0201	0.4654	44.11	Option 1: VP50 = 92.73 VP60 = 108.19

Emissions Report for: Annual

Oak Grove TK-01 thru TK-04 - Vertical Fixed Roof Tank Moundsville, West Virginia

		Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions						
Slop Hydrocarbon Liquids	6,840.14	2,644.02	9,484.17						
Propane	3,183.55	1,230.58	4,414.13						
Nonane (-n)	10.23	3.95	14.18						
Decane (-n)	1.60	0.62	2.22						
iso-Butane	489.26	189.12	678.39						
n-Butane	1,268.18	490.21	1,758.39						
iso-Pentane	338.92	131.01	469.93						
Pentane (-n)	396.96	153.44	550.40						
Cyclopentane	26.22	10.13	36.35						
2,2-Dimethylbutane	18.78	7.26	26.04						
2-Methylpentane	133.54	51.62	185.15						
3-Methylpentane	81.57	31.53	113.10						
Hexane (-n)	212.25	82.04	294.29						
Methylcyclopentane	25.83	9.98	35.81						
Benzene	2.26	0.87	3.13						
Cyclohexane	21.45	8.29	29.74						
Heptane (-n)	212.77	82.24	295.01						
Octane (-n)	64.06	24.76	88.83						
Ethane	352.72	136.34	489.06						

Meterological Data used in Emissions Calculations: Pittsburgh, Pennsylvania (Avg Atmospheric Pressure = 14.11 psia)

Oak Grove TK-01 thru TK-04 Moundsville West Virginia Williams Ohio Valley Midstream Vertical Fixed Roof Tank 400 bbl slop liquids storage tank

Ν

Gray/Light Good Gray/Light

Good

Cone

20.00 12.00

20.00 10.00 16,800.00

> 0.00 0.06

> -0.03 0.03

59.52

Pressure Settings (psig)

Identification User Identification: City: State:

Company: Type of Tank: Description: Tank Dimensions Shell Height (ft): Diameter (ft):

Paint Characteristics Shell Color/Shade: Shell Condition

Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)

Breather Vent Settings Vacuum Settings (psig)

Roof Color/Shade: Roof Condition:

Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons):

Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Truck Load-Out

Unit ID	Description	S	Ρ	MW	т	CE	L	T-Put	VOC AP-42 Sect 5.2		Hex, BTEX, TMP (ea) 3.33% of VOC		Total HAP 20.0% of VOC	
		sat. fac.	psia	lb/lb-mol	°R	%	lb/Mgal	Mgal/yr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
TLO-1 (14E)	Slop Oil/Condensate	1.45	5.00	51.33	512.55		9.05	4,000	27.13	18.09	0.90	0.60	5.43	3.62

Notes: 1 - Emission factors and formulas are from AP-42 Section 5.2 "Transportation and Marketing of Petroleum Liquids":

L_L = 12.46 x S x P x MW / T x (1 - CE)

where:

- L_L = Loading loss, lb/1000 gal of liquid loaded.
 - S = Saturation factor, use 1.45 for "splash loading".
 - P = True vapor pressure of liquid loaded, psia. Estimated as shown.
- MW = molecular weight of vapors, lb/lb-mol. Obtained from EPA TANKS 4.0.
- T = Temperature of bulk liquid loaded, °R = °F + 460. Obtained from EPA TANKS 4.0.
- CE = Overall emission reduction efficiency (collection efficiency x control efficiency).
- 5 Estimated load-out at: 50 gpm; which results in: 1,334 hr/yr of operation.
- 6 Emission factors in AP-42 are NOT EPA-recommended emission limits. Because emission factors essentially represent an average of a range of emission rates, a permit limit using an AP-42 emission factor would result in half of the sources being in noncompliance.

Application for Class II Administrative Update (R13-3070A)

Amine Process Unit (V-01)

Unit ID	Description	Flow Rate				VOC (Propane) 0.456%		CO2 1.271%		CH4 1.204%		CO2e CH4 GWP: 25		
		MMscfd	lb/hr	Safety	lb/hr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
V-01 (16E)	Flash Gas	0.0124	40.65	2.50	101.63	NA - See Process Flare (FLR-1 (8E))								
		Pre-Control:					NA - See Process Flare (FLR-1 (8E))							
Flash Gas Control:							9%			99	%	-	-	
					Controlled:	NA - See Process Flare (FLR-1 (8E))								

Unit ID	Description	Flow Rate				VOC (Propane) 0.002%		CO2 95.942%		CH4 0.003%		CO2e CH4 GWP: 25	
V-01 (16E)	Acid Gas	0.4305	1,973.44	2.50	4,933.59	0.11	0.49	4,733	20,732	0.17	0.74	4,738	20,751
					Total:	0.11	0.49	4,733	20,732	0.17	0.74	4,738	20,751

Notes: 1 - Amine unit emissions based on process simulation done by the Dow Chemical Company Gas Treating Technology Group.

2 - The amine unit flash gas will either be used as fuel gas or burned in the flare. Worst-case assumption is the flash gas is sent to the flare for destruction.

0il & Gas

Simulation Summary

Williams Oak Grove Deethanizer

Outlet Streams

STREAM-ID		2	5	9
Stream Name		Treated Gas	Flash Gas	
Outlet Block		Treated Gas	Flash Gas	Acid Gas
Temperature	deg F	125.3454	116.0635	120.0000
Pressure	Psi (g)	642.4893	75.0000	6.4336
Vapor Fraction (mol/mol)	•	1.0000	1.0000	1.0000
Flowrate	<mark>lb/hr</mark>	2.1313E+05	40.6516	1973.4357
Volume Flow (Liquid)	USgal/min		$\left(\right)$	$\left(\right.$
Volume Flow (Vapor)	MMSCFD @60F	65.2285	1.2448E-02	0.4305
)
Water	mass %	0.1622	0.8945	3.5978
Carbon Dioxide	<mark>mass %</mark>	1.8544E-03	1.2709	<mark>95.9423</mark>
Nitrogen	mass %	0.0000	0.0000	0.0000
Methane	<mark>mass %</mark>	1.2983	1.2035	3.4323E-03
Ethane	mass %	97.9399	96.1749	0.4541
Propane	mass %	0.5948	0.4559	2.2814E-03
TOTAL	mass %	100.0000	100.0000	100.0000

Williams Ohio Valley Midstream LLC (OVM)

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Reciprocating Compressors - Rod Packing Leaks (RPC)

	No. of	Cvl per			Total	VC	C	HCI	ю	Hex,BTEX	(,TMP(Ea)	Total	HAP	CO	2	CH	14	CO	2e
	Recip	Recip	scfh per	Contin-	Leak	20	00		-	-		-			-	42,2	275	CH4 GV	VP = 25
Unit Description	Comp-	Comp-	Cylinder	gency	Rate	lb/M	Mscf	lb/MI	Mscf	lb/M	Mscf	lb/MI	Mscf	lb/MN	lscf	lb/MI	Nscf	lb/MI	Mscf
	ressors	ressor			MMscf/yr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Rod Packing - Residue	3	6.0	15	15%	2.72	0.06	0.27									13.13	57.49	328	1,437

Crankcase Emissions (Combustion Ga	as)	Operating hr/yr:	500														
		Leak Rate		V	DC	н	сно	Hex,BTE	X,TMP(Ea)	Tota	I HAP	CC	D 2	CI	14	cc)2e
Unit Description	GEN-1 Horsepower	0.50	Safety	22	.70	1	.89	0.	.50	2	.98	12,	803		1	CH4 G	NP = 25
Unit Description		scf/bhp-hr	Factor	lb/M	Mscf	lb/N	Mscf	lb/M	Mscf	lb/M	Mscf	lb/M	Mscf	lb/M	Mscf	lb/M	Mscf
	(bhp)	MMscf/yr		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Crankcase - GEN-1	224	0.98	250%	0.11	0.03	0.01	2.3E-03	2.4E-03	6.1E-04	0.01	3.7E-03	63	16	0.00	0.00	63	16
	I Plant-Wide RPC Em	issions:	0.17	0.30	0.01	2.3E-03	2.4E-03	6.1E-04	0.01	3.7E-03	62.81	15.70	13.13	57.49	391	1.453	

Total Plant-Wide RPC Emissions:

Notes:

- 1 Misc. equipment leaks is a broad category covering leaks of natural gas from sealed surfaces, such as packing and gaskets, resulting from the wear of mechanical joints, seals, and rotating surfaces over time. It also includes the crankcase emissions from reciprocating engines.
- 2 Rod packing leaks include three (3) TXP1 residue gas recipricating copressors. Note that the rod packing leaks from the stabilized gas recirocating compressors are routed to the Flare.
- 3 To be conservative, and to account for potential future changes, the following "worst-case" Residue gas characteristics were assumed:

Pollutant	Representative Gas Analysis	Worst-Case Assumption
CO2	lb/MMscf	lb/MMscf
CH4	40,322 lb/MMscf	42,275 lb/MMscf
VOC	lb/MMscf	200 lb/MMscf
Total HAP	lb/MMscf	lb/MMscf

- 4 Estimates of Recip Compressor Leaks are based on vendor data w/ an appropriate contingency.
- 5 Engine crankcase emissions are based on vendor data: "As a general rule, blow-by (i.e., crankcase emissions) on a new engine is approximately 0.5 scf/bhp-hr." A "safety factor" is used to account for increasing blow-by as the engines "wear".

6 - Crankcase emissions , from standby generator (GEN-1), are estimated as follows:

(Data from Olympian G150LG2 Data Sheet and Emissions Calculation Spreadsheet.)

Tot Engine Exhaust (TEEx) (Vol)	1,507 acf/min	12 MMscf/yr TEEx*
Pollutant	GEN-1 PTE	Crankcase Emission Factor**
Crankcase THC emissions (Mass)	0.15 tpy THC	25.58 lb THC / MMscf TEEx
Crankcase VOC emissions (Mass)	0.13 tpy VOC	22.70 lb VOC / MMscf TEEx
Crankcase HCHO emissions (Mass)	0.01 tpy HCHO	1.89 lb HCHO / MMscf TEE>
Crankcase H,BTEX,T (ea) emissions (M	Mass) 0.001 tpy BTEX	0.22 lb BTEX / MMscf TEEx
Crankcase HAP (tot) emissions (Mass)	0.02 tpy HAP	2.98 lb HAP / MMscf TEEx
Crankcase CO2 emissions (Mass)	76 tpy CO2	12,803 lb CO2 / MMscf TEEx
Crankcase CH4 emissions (Mass)	0.00 tpy CH4	1 lb CH4 / MMscf TEEx
Crankcase CH4 emissions (Mass)	0.00 tpy N2O	0 lb CH4 / MMscf TEEx
Crankcase CO2e emissions (Mass)	76 tpy CO2e	12,854 lb CO2e /MMscf TEEx

* Conversion from acf/min to scf/yr based on 500 hr/yr, 1,550 oF exhaust temp, and 68 oF std temp.

** Crankcase EmFact = PTE (tpy) from a G150LG2 Engine ÷ Tot Engine Exhaust (TEEx) (MMsf/yr).

Williams Ohio Valley Midstream LLC (OVM)

OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Centrifugal Compressor - Dry Gas Seal Leaks (DGS)

Unit Description	No. of Turbine Compres	Leak F Cent Comp	Rate Per rifugal pressor	Contin- gency	Total Leak Rate	VC 13,6 Ib/MI	OC 600 Mscf	HCH na Ib/MM	10 a Ascf	Hex,BTEX 33 Ib/MM	,TMP-Ea 3 /Iscf	Total 20 Ib/MI	HAP 10 Mscf	CC 30 Ib/MI)2 0 Mscf	CH 37,3 Ib/MI	14 300 Mscf	CO CH4 GV Ib/MI	'2e VP = 25 Mscf
	sors	scf/hr	MMscf/yr		MMscf/yr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Compressors - Inlet	3	16.2	0.14	15%	0.49	0.76	3.33			1.9E-03	0.01	0.01	0.05	0.02	0.07	2	9	52	228

	No. of Turbine	Leak F Cent	Rate Per rifugal	Contin-	Total	vc)C 	HCI n	HO a	Hex,BTEX	(,TMP-Ea 	Total -	HAP 	cc)2 	CH 42,2	14 275	CC CH4 GV	/2e NP = 25
Unit Description	Compres	Comp	oressor	gency	Leak Nate	lb/MI	Viscf	lb/M	Mscf	lb/MI	VIscf	lb/M	Mscf	lb/MI	VIscf	lb/MI	Mscf	lb/M	Mscf
	sors	scf/hr	MMscf/yr		MMscf/yr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Compressors - Residue	5	48.6	0.43	15%	2.45											12	52	295	1,294

TOTAL DRY GAS SEAL LEAKS:	0.76	3.33	 	1.9E-03	0.01	0.01	0.05	0.02	0.07	14	61	347	1,522

Notes: 1 - Centrifugal compressors in inlet gas service include mole sieve regeneration gas compressors.

2 - Centrifugal compressors in residue gas service include TXP1, TXP2, and TXP3 expander/compressors and TXP2/TXP3 residue gas compressors.

3 - To be conservative, and to account for potential future changes, t	the following "worst-case" Gas characteristics were assumed:
--	--

Inlet Gas	Representative Gas Analysis	Worst-Case Assumption	Residue Gas	Representative Gas Analysis	Worst-Case Assumption
CO2	219 lb/MMscf	300 lb/MMscf	CO2	Ib/MMscf	lb/MMscf
CH4	31,049 lb/MMscf	37,300 lb/MMscf	CH4	40,322 lb/MMscf	42,275 lb/MMscf
VOC	11,271 lb/MMscf	13,600 lb/MMscf	VOC	Ib/MMscf	200 lb/MMscf
Total HAP	127 lb/MMscf	200 lb/MMscf	Total HAP	Ib/MMscf	Ib/MMscf

Williams Ohio Valley Midstream LLC (OVM) OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment N

Process Piping Fugitive Emissions (FUG/15E) (MODIFIED) - Page 01 of 02

11-14			Component	11-16	THC	LDAR	THC	VC	00	n-He	xane	BTEX,T	MP (Ea)	Total	HAP	C	02	CI	-14	CO	2e
Unit	Descri	ption	(Unit) Type	Count	Factor	Control	Emission	24.017	Wgt%	0.265	Wgt%	0.018	Wgt%	0.353	Wgt%	0.530	Wgt%	65.870	Wgt%	GWP	= 25
			(Gas/Vapor)	Count	lb/hr/Unit	Credit	lb/hr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
			Valves	5,887	0.00992	92%	4.67	1.12	4.92	0.01	0.05	8.3E-04	3.6E-03	0.02	0.07	0.02	0.1	3	13	77	337
			Pump Seals		na																
FUG/15E Fugitives	Piping	Pressure Relief	187	0.01940		3.63	0.87	3.82	0.01	0.04	6.4E-04	2.8E-03	0.01	0.06	0.02	0.1	2	10	60	262	
	Fugiti	ves	Connectors	34,021	0.00044	93%	1.05	0.25	1.10	2.8E-03	0.01	1.9E-04	8.1E-04	3.7E-03	0.02	5.6E-03	0.02	0.7	3	17	76
	(Gas/V	apor)	Flanges	3,363	0.00086	93%	0.20	0.05	0.21	5.4E-04	2.3E-03	3.6E-05	1.6E-04	7.1E-04	3.1E-03	1.1E-03	4.7E-03	0.1	0.6	3	15
			Open-ended lines	27	0.00441		0.12	0.03	0.13	3.2E-04	1.4E-03	2.1E-05	9.2E-05	4.2E-04	1.8E-03	6E-04	3E-03	0.1	0.3	2	9
			Compressors	17	0.00750		0.13	0.03	0.13	3.4E-04	1.5E-03	2.3E-05	9.9E-05	4.5E-04	2.0E-03	7E-04	3E-03	0.08	0.4	2	9
Current Permit:	Pormit:	15.009	SubTotal	42 502	Sub	Total (Con	trolled):	2.35	10.31	0.03	0.11	1.7E-03	7.6E-03	0.03	0.15	0.05	0.2	6	28	161	707
	13,030	Sub Fotal.	43,502	SubTotal	(PRE-Con	trolled):	19.25	84.34	0.21	0.93	0.01	0.06	0.28	1.24	0.42	1.86	53	231	1,321	5,784	

			Component	11	THC	LDAR	THC	V	0C	n-He	xane	BTEX,T	MP (Ea)	Total	HAP	C	02	CI	H4	CO)2e
Unit	Description	1	(Unit) Type	Count	Factor	Control	Emission	100.000	Wgt%	1.254	Wgt%	0.026	Wgt%	1.384	Wgt%		Wgt%		Wgt%	GWP	= 25
			(Light Liquid)	Count	lb/hr/Unit	Credit	lb/hr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
			Valves	5,001	0.00551	88%	3.31	3.31	14.49	0.04	0.18	8.6E-04	3.8E-03	0.05	0.20						
			Pump Seals	68	0.02866	69%	0.60	0.60	2.65	7.6E-03	0.03	1.6E-04	6.9E-04	8.4E-03	0.04						
Process Piping		Pressure Relief	31	0.01653		0.51	0.51	2.25	0.01	0.03	1.3E-04	5.8E-04	0.01	0.03							
FUG/15E	Fugitives	Ŭ	Connectors	7,142	0.00046	93%	0.23	0.23	1.01	2.9E-03	0.01	6.0E-05	2.6E-04	3.2E-03	0.01						
FUG/15E Fugitives (Light Oil)			Flanges	3,575	0.00024	93%	0.06	0.06	0.27	7.6E-04	3.3E-03	1.6E-05	6.9E-05	8.4E-04	3.7E-03						
	(=.g.n 0.i)		Open-ended lines	12	0.00309		0.04	0.04	0.16	4.6E-04	2.0E-03	9.6E-06	4.2E-05	5.1E-04	2.2E-03						
			Compressors		0.01653																
Current Permit:	Pormit: 7.6	80	SubTotal	15 829	Sub	Total (Con	trolled):	4.75	20.82	0.06	0.26	1.2E-03	5.4E-03	0.07	0.29						
		03	Sub rotal.	13,023	SubTotal	(PRE-Con	trolled):	34.24	149.95	0.43	1.88	0.01	0.04	0.47	2.08						

Notes: 1 - Assumed 8,760 hours per year of fugitive emissions.

2 - Updated component counts from recent LDAR monitoring w/: 15% Contingency

3 - Gas/Vapor emissions calculated using EPA Protocol for Equipment Leak Emission Estimates, 1995, EPA-453/R-95-017

TABLE 2.4	Gas/V	/apor	Ligh	t Oil
O&G PROD (AVE)	kg/hr	lb/hr	kg/hr	lb/hr
Valves	4.50E-03	0.00992	2.50E-03	0.00551
Pump Seals	na	na	1.30E-02	0.02866
Other ⁽⁴⁾	8.80E-03	0.01940	7.50E-03	0.01653
Connectors	2.00E-04	0.00044	2.10E-04	0.00046
Flanges	3.90E-04	0.00086	1.10E-04	0.00024
Open-ended lines	2.00E-03	0.00441	1.40E-03	0.00309

4 - "Other" components include compressor seals, relief valves, diaphragms, drains, meters, etc.

5 - THC = total hydrocarbons, including methane (CH4) and ethane (C2H6).

6 - VOC = non-methane/non-ethane THC (C3+).

7 - HAP = hazardous air pollutants as designated by EPA, primarily n-hexane/BTEX.

8 - The following gas characteristics were assumed:

Dellutent	Gas/Vapor	Light Oil	Dollutont	Gas/Vapor	Light Oil
Pollulani	Estimated	Estimated	Pollulani	Estimated	Estimated
Carbon Dioxide	0.530 Wgt%	Wgt%	Toluene	0.018 Wgt%	0.038 Wgt%
Methane	65.870 Wgt%	Wgt%	Ethylbenzene	0.018 Wgt%	0.008 Wgt%
VOC (Propane)	24.017 Wgt%	100.000 Wgt%	Xylenes	0.018 Wgt%	0.054 Wgt%
n-Hexane	0.265 Wgt%	1.254 Wgt%	2,2,4-TMP	0.018 Wgt%	0.008 Wgt%
Benzene	0.018 Wat%	0.023 Wat%	Total HAP:	0.353 Wat%	1.384 Wat%

9 - LDAR Control Credit from "Leak Detection and Repair Compliance Assistance Guidance —A Best Practices Guide" Table 4-1, w/ Quarterly Monitoring and 500 ppm Leak Definition.

	Control Effectiveness (% Reduction)						
Equipment Type and Service	Monthly Monitoring 10,000 ppmv Leak Definition	Quarterly Monitoring 10,000 ppmv Leak Definition	500 ppm Leak Definition ^a				
Chemical Process Unit							
Valves – Gas Service ^b	87	67	92				
Valves – Light Liquid Service ^c	84	61	88				
Pumps – Light Liquid Service ^c	69	45	75				
Connectors – All Services			93				

Process Piping Fugitive Emissions (FUG/15E) (MODIFIED) - Page 01 of 02 Att N - Emission Estimates - Page 17 of 18

Williams Ohio Valley Midstream LLC (OVM) OAK GROVE NATURAL GAS PROCESSING PLANT (OGGP)

Application for Class II Administrative Update (R13-3070A)

Attachment N

Process Piping Fugitive Emissions (FUG/15E) (MODIFIED) - Page 02 of 02

			Component	11-14	THC	LDAR	THC	V)C	n-He	xane	BTEX,T	MP (Ea)	Total	HAP	C	02	C	H4	CO	2e
Unit	Descri	ption	(Unit) Type	Count	Factor	Control	Emission	100.000	Wgt%	1.254	Wgt%	0.026	Wgt%	1.384	Wgt%	0.530	Wgt%	65.870	Wgt%	GWP	= 25
			(Light Liquid)	oount	lb/hr/Unit	Credit	lb/hr	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
			Valves	13	0.00992	88%	0.02	0.02	0.07	1.9E-04	8.5E-04	4.0E-06	1.8E-05	2.1E-04	9.4E-04	8.2E-05	3.6E-04	0.01	0.0	0.3	1
			Pump Seals		0.02866	69%															
	Process	Piping	Pressure Relief		0.01940																
FUG/15E	Fugit	ives	Connectors	21	0.00046	93%	6.8E-04	6.8E-04	3.0E-03	8.5E-06	3.7E-05	1.8E-07	7.8E-07	9.4E-06	4.1E-05	4E-06	1.6E-05	4E-04	2E-03	0.01	0.05
	(Mixt	ure)	Flanges	9	0.00086	93%	5.4E-04	5.4E-04	2.4E-03	6.8E-06	3.0E-05	1.4E-07	6.2E-07	7.5E-06	3.3E-05	3E-06	1.3E-05	4E-04	2E-03	0.01	0.04
			Open-ended lines		0.00441																
			Compressors		0.01940																
Curront	Pormit:	0	SubTotal	13	Sub	Total (Con	trolled):	0.02	0.07	2.1E-04	9.2E-04	4.3E-06	1.9E-05	2.3E-04	1.0E-03	8.8E-05	3.9E-04	0.01	0.05	0.3	1
Guilein	rennu.	Ũ	oubrotai.		SubTotal	(PRE-Con	trolled):	0.15	0.64	1.8E-03	0.01	3.8E-05	1.7E-04	2.0E-03	0.01	7.8E-04	3.4E-03	0.1	0.4	2	11
					-																
CU	CURRENT		UPDATED	59 374	т	OTAL (Con	trolled):	7.12	31.21	0.09	0.38	2.97E-03	0.01	0.10	0.44	0.05	0.23	6	28	162	708
PERMIT:		22,707	PERMIT: 59,374	00,074	TOTAL	(PRE-Con	trolled):	53.64	234.93	0.64	2.82	0.02	0.10	0.76	3.32	0.43	1.86	53	232	1,323	5,795

Notes: 1 - Assumed 8,760 hours per year of fugitive emissions.

2 - Updated component counts from recent LDAR monitoring w/: 15.0% Safety Margin

3 - Gas/Vapor emissions calculated using EPA	Protocol for Equipment Leak Emission Estimates,
1995, EPA-453/R-95-017	

TABLE 2.4	Mixture (Max)				
O&G PROD (AVE)	kg/hr	lb/hr			
Valves	4.50E-03	0.00992			
Pump Seals	1.30E-02	0.02866			
Other ⁽⁴⁾	8.80E-03	0.01940			
Connectors	2.10E-04	0.00046			
Flanges	3.90E-04	0.00086			
Open-ended lines	2.00E-03	0.00441			

4 - "Other" components include compressor seals, relief valves, diaphragms, drains, meters, etc.

5 - THC = total hydrocarbons, including methane (CH4) and ethane (C2H6).

6 - VOC = non-methane/non-ethane THC (C3+).

7 - HAP = hazardous air pollutants as designated by EPA, primarily n-hexane/BTEX.

8 - The following gas characteristics were assumed:

Dellutent	Mixture (Max)	Dellutent	Mixture (Max)
Pollutant	Estimated	Pollutant	Estimated
Carbon Dioxide	0.530 Wgt%	Toluene	0.038 Wgt%
Methane	65.870 Wgt%	Ethylbenzene	0.018 Wgt%
VOC (Propane)	100.000 Wgt%	Xylenes	0.054 Wgt%
n-Hexane	1.254 Wgt%	2,2,4-TMP	0.018 Wgt%
Benzene	0.023 Wgt%	Total HAP:	1.384 Wgt%

9 - LDAR Control Credit from "Leak Detection and Repair Compliance Assistance Guidance —A Best Practices Guide" Table 4-1, w/ Quarterly Monitoring and 500 ppm Leak Definition.

Table 4.1 – Control effectiveness for an LDAR program at a chemical process unit and a refinery.

	Control Effectiveness (% Reduction)						
Equipment Type and Service	Monthly Monitoring 10,000 ppmv Leak Definition	Quarterly Monitoring 10,000 ppmv Leak Definition	500 ppm Leak Definition ^a				
Chemical Process Unit							
Valves – Gas Service ^b	87	67	92				
Valves – Light Liquid Service ^c	84	61	88				
Pumps – Light Liquid Service ^c	69	45	75				
Connectors – All Services			93				

Source: Protocol for Equipment Leak Emission Estimates, EPA-453/R-95-017, Nov 1995.

^a Control effectiveness attributable to the HON-negotiated equipment leak regulation (40 CFR 63, Subpart H) is estimated based on equipment-specific leak definitions and performance levels. However, pumps subject to the HON at existing process units have a 1,000 to 5,000 ppm leak definition, depending on the type of process.

^b Gas (vapor) service means the material in contact with the equipment component is in a gaseous state at the process operating conditions.

c Light liquid service means the material in contact with the equipment component is in a liquid state in which the sum of the concentration of individual constituents with a vapor pressure above 0.3 kilopascals (kPa) at 20°C is greater than or equal to 20% by weight.

Potentially Applicable AP-42 and GHG EMISSION FACTORS (Preferentially use test data or vendor data where available)

			GAS-FIRED ENGINES	3	(GAS-FIRED TURBINE	S	
	Pollutant	<u>AP-42 T</u>	able 3.2-1; 3.2-2; 3.2-3	<u>3 07/00</u>	AP-42 Table 3.1-1; 3.1-2a; 3.1-3 04/00			
	Pollutant	2SLB	4SLB	4SRB	Uncontrolled	Water Injection	Lean Pre-Mix#	
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	
	NOX (≥ 90% Load)	3.17E+00	4.08E+00	2.21E+00	3.20E-01	1.30E-01	9.90E-02	
	CO (≥ 90% Load)	3.86E-01	3.17E-01	3.72E+00	8.20E-02	3.00E-02	1.50E-02	
≤	THC (TOC)	1.64E+00	1.47E+00	3.58E-01	1.10E-02	1.10E-02	1.10E-02	
ER	NMHC (THC-CH4)	1.90E-01	2.20E-01	1.28E-01	2.40E-03	2.40E-03	2.40E-03	
RIT	NMNEHC (NMHC-C2H6)	1.19E-01	1.15E-01	5.76E-02	2.10E-03	2.10E-03	2.10E-03	
Ū	VOC	1.20E-01	1.18E-01	2.96E-02	2.10E-03	2.10E-03	2.10E-03	
	SO2*** (2,000 gr-S/MMscf)	5.88E-04	5.88E-04	5.88E-04	5.88E-04	5.88E-04	5.88E-04	
	PM10/2.5 (Filter+Cond)	4.83E-02	9.99E-03	1.94E-02	6.60E-03	6.60E-03	6.60E-03	
	Benzene	1.94E-03	4.40E-04	1.58E-03	1.20E-05	1.20E-05	9.10E-07	
	Ethylbenzene	1.08E-04	3.97E-05	2.48E-05	3.20E-05	3.20E-05	3.20E-05	
	Formaldehyde (HCHO)	5.52E-02	5.28E-02	2.05E-02	7.10E-04	7.10E-04	2.00E-05	
Ps	n-Hexane	4.45E-04	1.11E-03					
ΗA	Toluene	9.63E-04	4.08E-04	5.58E-04	1.30E-04	1.30E-04	1.30E-04	
	TMP, 2,2,4- (i-Octane)	8.46E-04	2.50E-04					
	Xylenes	2.68E-04	1.84E-04	1.95E-04	6.40E-05	6.40E-05	6.40E-05	
	Other HAPs	1.96E-02	1.69E-02	9.42E-03	1.06E-04	1.06E-04	1.06E-04	
	CO2 (GWP=1)	1.17E+02	1.17E+02	1.17E+02	1.17E+02	1.17E+02	1.17E+02	
Ŷ	CH4 (GWP=25)	1.45E+00	1.25E+00	2.30E-01	8.60E-03	8.60E-03	8.60E-03	
Ġ	N2O (GWP=298)	2.20E-04	2.20E-04	2.20E-04	3.00E-03	3.00E-03	3.00E-03	
	CO2e	1.53E+02	1.48E+02	1.23E+02	1.18E+02	1.18E+02	1.18E+02	
					(#Lean Pre-Mix - aka: Di	y Low Emissions (DLE o	r DLN) and SoLoNOX)	

		GAS-FIR	ED EXTERNAL COMI	BUSTION	FLARES	DIESEL ENGINES
	Pollutant	AP-42 Table 1.4-	<u>1; 1.4-2; 1.4-3 (<100 N</u>	<u>13.5-1 12/16</u>	<u>3.3-1; 3.3-2 10/96</u>	
Poliutant		Uncontrolled	LoNOX Burners	Flue Gas Recirc	(Combustion)	Uncontrolled
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMBtu
	NOX	9.80E-02	4.90E-02	3.14E-02	External Combustion	4.41E+00
	CO	8.24E-02	8.24E-02	8.24E-02	3.10E-01	9.50E-01
₹	THC (TOC)	1.08E-02	1.08E-02	1.08E-02		3.60E-01
ER	NMHC (THC-CH4)	8.53E-03	8.53E-03	8.53E-03		3.53E-01
RIT	NMNEHC (NMHC-C2H6)	5.49E-03	5.49E-03	5.49E-03		3.50E-01
Ö	VOC	5.56E-03	5.56E-03	5.56E-03		3.60E-01
	SO2 (2,000 gr-S/MMscf)	5.88E-04	5.88E-04	5.88E-04		2.90E-01
	PM10/2.5 (Filter+Condense)	7.45E-03	7.45E-03	7.45E-03	<u>USE</u>	3.10E-01
	Benzene	2.06E-06	2.06E-06	2.06E-06		9.33E-04
	Ethylbenzene				≥98% DRE	
	HCHO (Formaldehyde)	7.35E-05	7.35E-05	7.35E-05	OR	1.18E-03
Ps	n-Hexane	1.76E-03	1.76E-03	1.76E-03	<u>011</u>	
ΗA	Toluene	3.33E-06	3.33E-06	3.33E-06	External Combustion	4.09E-04
	2,2,4-TMP (i-Octane)					
	Xylenes				<u>AS APPLICABLE</u>	2.85E-04
	Other HAPs	1.86E-06	1.86E-06	1.86E-06		1.05E-03
	CO2 (GWP=1)	1.18E+02	1.18E+02	1.18E+02		1.64E+02
Ϋ́	CH4 (GWP=25)	2.25E-03	2.25E-03	2.25E-03		6.61E-03
Ģ	N2O (GWP=298)	2.16E-03	6.27E-04	6.27E-04		1.32E-03
	CO2e	1.18E+02	1.18E+02	1.18E+02		1.65E+02

40 CFR 98 - DEFAULT EMISSION FACTORS							
	Table C-1 to Sub	part C of Part 98	Table C-2 to Subpart C of Part 98				
Fuel Type		Carbon Dioxide	Methane	Nitrous Oxide			
		lb CO2/MMBtu	lb CH4/MMBtu	lb N2O/MMBtu			
Fuel Oil No. 2 (Diesel)	0.138 MMBtu/gal	1.61E+02	6.61E-03	1.32E-03			
Propane	91,000 Btu/gal	1.39E+02	6.61E-03	1.32E-03			
Natural Gas	1,026 Btu/scf	1.17E+02	2.20E-03	2.20E-04			

Global Warming Potential (100 Yr) (GWP)							
Table A-1 to Subpart A of Part 98							
CO2	CH4*	N2O#					
1	25	298					

Conv	er	sion Factors
1.0 lb	=	453.592 g
1.0 kg	=	2.2046226 lb
1.0 hp	=	2,544.433 Btu/hr
1.0 hp	=	745.700 Watt
1.0 kW	=	3,412.142 Btu/hr
1.0 kW-hr	=	1.340 hp-hr
1.0 ft3	=	7.481 gal
1.0 gal H2O	=	8.338 lb
1.0 cf H2O	=	62.371 gal
1.0 m	=	3.281 ft
1.0 km	=	0.621 mi
1.0 acre	=	43,560.174 ft2
1.0 °F	=	(°C*9/5)+32
1.0 °R	=	°F+459.67
UGC (stp)	=	379.482 scf/lb-mol

ATTACHMENT O

Monitoring/Recordkeeping/Reporting/Testing Plans

"31. **Monitoring, Recordkeeping, Reporting and Testing Plans**. Attach proposed monitoring, recordkeeping, reporting, and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O."

Williams OVM does NOT propose any changes to the monitoring, recordkeeping, reporting, and testing plans as provided in the current permit (R13-3070A).

ATTACHMENT P Public Notice

"32. **Public Notice**. At the time that the application is submitted, place a **Class I Legal Advertisement** in a newspaper of general circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal Advertisement for details). Please submit the **Affidavit of Publication** as Attachment P immediately upon receipt."

The applicant shall cause such legal advertisement to appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

Types and amounts of pollutants discharged must include all regulated pollutants (PM, PM10, VOC, SO2, Xylene, etc.) and their potential to emit or the permit level being sought in units of tons per year (including fugitive emissions).

- Legal Advertisement (as shown) will be placed in a newspaper of general circulation in the area where the source is located (See 45CSR§13-8.3 thru 45CSR§13-8.5).
- An Affidavit of Publication shall be submitted immediately upon receipt.

AIR QUALITY PUBLIC NOTICE Notice of Application

Notice is given that Williams Ohio Valley Midstream LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a 45CSR13 New Source Review (NSR) Class II Administrative Update for the existing Oak Grove Gas Plant, located ~3.7 Miles Southeast of Moundsville, and North of Fork Ridge Road, in Marshall County, West Virginia.

Latitude and longitude coordinates are 39.8758 degrees North and -80.6959 degrees West, respectively.

The applicant estimates the increase/(decrease) in the potential to discharge the following regulated air pollutants will be:

- --- tons of nitrogen oxides per year
- --- tons of carbon monoxide per year
- (11.29) tons of volatile organic compounds per year
 - --- tons of sulfur dioxide per year
 - --- tons of particulate matter per year
 - (0.08) tons of benzene per year
 - (0.08) tons of ethylbenzene per year
 - --- tons of formaldehyde per year
 - 0.28 tons of n-hexane per year
 - (0.09) tons of toluene per year
 - (0.09) tons of 2,2,4-trimethylpentane per year
 - (0.09) tons of xylenes per year
 - (0.15) tons of total hazardous air pollutants per year
- (4,972) tons of carbon dioxide equivalent (CO2e) per year

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the _____ day of _____ 2017.

By: Williams Ohio Valley Midstream LLC Paul V. Hunter Vice President Park Place Corporate Center 2 2000 Commerce Drive Pittsburgh, PA 15275

ATTACHMENT Q Business Confidential Claims (NOT APPLICABLE)

also

ATTACHMENT R Authority Forms (NOT APPLICABLE)

ATTACHMENT S

Title V Permit Revision Information

Williams Ohio Valley Midstream LLC OAK GROVE GAS PLANT (OGGP) Application for Class II Administrative Update (R13-3070A)

Attachment S

Title V Permit Revision Information

1. New Applicable Requirements Summary			
Mark all applicable requirements associated with the changes involved with this permit revision:			
] SIP			
Minor source NSR (45CSR13)	D PSD (45CSR14)		
NESHAP (45CSR15)	Nonattainment NSR (45CSR19)		
Section 111 NSPS (Subpart(s) A and OOOO)	Section 112(d) MACT standards (Subpart(s))		
Section 112(g) Case-by-case MACT	112(r) RMP		
Section 112(i) Early reduction of HAP	Consumer/commercial prod. reqts., section 183(e)		
Section 129 Standards/Reqts	Stratospheric ozone (Title VI)		
Tank vessel reqts, section 183(f)	Emissions cap 45CSR§30-2.6.1		
NAAQS, increments or visibility (temp. sources)	45CSR27 State enforceable only rule		
45CSR4 State enforceable only rule (Odors)	Acid Rain (Title IV, 45CSR33)		
Emissions Trading and Banking (45CSR28)	Compliance Assurance Monitoring (40CFR64) ⁽¹⁾		
NO _x Budget Trading Program Non-EGUs (45CSR1)	NO _x Budget Trading Program EGUs (45CSR26)		
(1) If this box is checked, please include Compliance Assurance Monitoring (CAM) Form(s) for each Pollutants Specific Emission Unit (PSEU) (See Attachment H to Title V Application). If this box is not checked, please explain why Compliance Assurance Monitoring is not applicable:			
NA			

2. Non-Applicability Determinations

List all requirements, which the source has determined not applicable to this permit revision and for which a permit shield is requested. The listing shall also include the rule citation and a rationale for the determination. **NA**

Permit Shield Requested (*not applicable to Minor Modifications*)

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

3. Suggested Title V Draft Permit Language

Are there any changes involved with this Title V Permit revision outside of the scope of the NSR Permit revision? \Box Yes \boxtimes No If Yes, describe the changes below.

Also, please provide **Suggested Title V Draft Permit language** for the proposed Title V Permit revision (including all applicable requirements associated with the permit revision and any associated monitoring /recordkeeping/ reporting requirements), OR attach a marked up pages of current Title V Permit. Please include appropriate citations (Permit or Consent Order number, condition number and/or rule citation (e.g. 45CSR§7-4.1)) for those requirements being added / revised.

1.1 Emission Units: FUG-M | 15E | Piping and Equip Fugitives (Mixed Service) | 2013 | n/a | LDAR

4. Active NSR Permits/Permit Determinations/Consent Orders Associated With This Permit Revision				
Permit or Consent Order Number	Date of Issuance	Permit/Consent Order Condition Number		
R13-3070A	01/05/2016	1.0 Emission Units: FUG-M 15E Piping and Equip Fugitives (Mixed Service) 2013 n/a LDAR		

5. Inactive NSR Permits/Obsolete Permit or Consent Orders Conditions Associated With This Revision				
Permit or Consent Order Number	Date of Issuance	Permit/Consent Order Condition Number		
NA	NA	NA		

6. Change in Potential Emissions (vs. R13-3070A)			
Pollutant	Change in Potential Emissions (+ or -), TPY		
NOx	NA		
СО	NA		
VOC	(11.29)		
РМ	NA		
SO2	NA		
HAPs	(0.15)		
CO2e	(4,972)		
All of the required forms and additional information c	an be found under the Permitting Section of DAQ's website, or requested by		

Note:	This certification must be signed by a responsible official. Applications without a signed certification will be returned as incomplete. The criteria for allowing the use of Mino Modification Procedures are as follows:			
i.	Proposed changes do not violate any applicable requirement;			
ii.	Proposed changes do not involve significant changes to existing monitoring, reporting, or record keeping requirements in the permit:			
iii.	Proposed changes do not require or change a case-by-case determination of an emission limitation or other standard, or a source-specific determination for temporary sources of ambient air quality impacts or a visibility increment analysis:			
iv.	Proposed changes do not seek to establish or change a permit term or condition for which ther is no underlying applicable requirement and which permit or condition has been used to avoid an applicable requirement to which the source would otherwise be subject (synthetic minor) Such terms and conditions include, but are not limited to a federally enforceable emissions cap used to avoid classification as a modification under any provision of Title I or any alternative emissions limit approved pursuant to regulations promulgated under § 112(j)(5) of the Clean Air Act:			
v.	Property in Act, Property in the Clean Air Act or			
vi.	45CSR14 and 45CSR19; Proposed changes are not required under any rule of the Director to be processed as a significant modification;			
Notwithsta procedures permits, en procedures the State In operating p	anding subparagraph 45CSR§30-6.5.a.1.A. (items i through vi above), minor permit modification a may be used for permit modifications involving the use of economic incentives, marketable missions trading, and other similar approaches, to the extent that such minor permit modification are explicitly provided for in rules of the Director which are approved by the U.S. EPA as a part of mplementation Plan under the Clean Air Act, or which may be otherwise provided for in the Title V permit issued under 45CSR30.			
Pursuant of Minor J permit mo	to 45CSR§30-6.5.a.2.C., the proposed modification contained herein meets the criteria for use permit modification procedures as set forth in Section 45CSR§30-6.5.a.1.A. The use of Minor dification procedures are hereby requested for processing of this application.			
anad);	You Date: 12 1 3/ 10013			

Note:	Note: Please check if the following included (if applicable):		
	Compliance Assurance Monitoring Form(s)		
	Suggested Title V Draft Permit Language		
All of t	he required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.		

APPLICATION FEE

Include a check payable to WVDEP – Division of Air Quality.

As per WV Rule 22 (45CSR22) filed on May 6, 1991, a **minimum fee of** ... **\$300 for each Class II administrative update application** filed with the WVDEP-DAQ.

- Additional charges may apply, depending on the nature of the application as outlined in Section 3.4.b. of Regulation 22, and shown below:
 - NSPS Requirements: \$1,000 Applicable
 - NESHAP Requirements: \$2,500 Not Applicable
 - New Major Source: \$10,000 Not Applicable
 - Major Modifications: \$5,000 Not Applicable
- Total application fee is **\$1,300** [= \$300 minimum fee + \$1,000 additional charges]

MA1353 (6/11)

WILLIAMS FIELD SERVICES GROUP LLC PO BOX 21218 TULSA, OK 74121-1218

COMPANY NUMBER: 4000

CHECK NUMBER: 4000180806

PAY DATE SUPPLIER NO. S		SUPPLIER NAM	SUPPLIER NAME		CHECK TOTAL	
02-AUG-17	401733	STATE OF WEST VIRGINIA			1,300.00	
Invoice Date	Invoice	Or Credit Memo /	Gross	Discount	Net	
Invoice Date 31-JUL-17 31-JU	Invoice Invo	ce Description RNIGHT TO REQU	Gross 1,300.00	0.00	Net 1,300.00	
S	Supplier Support 1-866-778	3-2665	Page Totals	0.00	1,300.00	
VERIFY THE AUTHEN	WILLIAMS FIELD SERVICE PO BOX 21218 TULSA, OK 74121-1218 Company Number: 4000	OCUMENT. CHECK BACKGROUND AF	REA CHANGES COLOR GRAD	70-2322/719 k Number Check Dat	:: 4000180806 e: 02-AUG-17	
Pay To The Ord STATE OF WE DIVISION OF / 601 57TH ST S CHARLESTON	ler Of: EST VIRGINIA AIR QUALITY SE N, WV 25304 United States		PAY (USD)	- Cho d Signature	\$1,300.00 ~ppe(
11 ⁰ 1	4000180806# . :07	14535561: 0100	13157"			

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

***** End of Application for Class II Administrative Update ****