August 29, 2017

Director WVDEP – Division of Air Quality 601 57th Street SE Charleston, WV 25304

Tracking No. 1Z 865 F5F 01 9044 9582

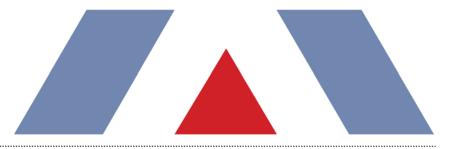
RE: DTE Appalachia Gathering, LLC Daybrook Compressor Station (Facility ID No. 049-00138, Permit No. G35-C064E) G35-D Construction Application

To Whom It May Concern:

On behalf of DTE Appalachia Gathering, LLC (DTE)¹, we are submitting this G35-D Construction Application to convert the Daybrook Compressor Station's current G35-C permit into a G35-D and correct details regarding source information.

Enclosed are one (1) original hard copy and two (2) CDs with PDFs of the application, along with a check for the application fee in the amount of \$4,000. The affidavit of publication for the Class I Legal Advertisement will be forwarded upon receipt.

DTE appreciates your review of this submittal. If you have any questions or comments about the attached information, please contact me at (724) 935-2611 x104.


Respectfully,

Jomenic a. L'édeno

Domenic Tedesco Senior Consultant Trinity Consultants

Attachments

¹ DTE Appalachia Holdings, LLC purchased 100% of M3 Appalachia Gathering, LLC (M3) and retained the company's Federal Employer Identification Number (FEIN). Subsequently, M3's name was changed to DTE Appalachia Gathering, LLC (DTE). DTE sent a concurrent notification to WVDEP regarding this change.

PROJECT REPORT DTE Appalachia Gathering, LLC Daybrook Compressor Station

G35-D Permit Application

TRINITY CONSULTANTS 4500 Brooktree Drive Suite 103 Wexford, PA 15090 (724) 935-2611

August 2017

EHS Solutions Delivered Uncommonly Well

1. INTRODUCTION	4
1.1. Facility and Project Description	4
1.2. Source Status	4
1.3. G35-D Application Organization	6
2. SAMPLE EMISSION SOURCE CALCULATIONS	7
3. REGULATORY DISCUSSION	8
3.1. PSD and NNSR Source Classification	8
3.2. Title V Operating Permit Program	8
3.3. New Source Performance Standards	9
3.3.1. NSPS Subparts D, Da, Db, and Dc – Steam Generating Units	9
3.3.2. NSPS Subparts K, Ka, and Kb – Storage Vessels for Petroleum Liquids/Volatile Organic L	
3.3.3. NSPS Subpart GG – Stationary Gas Turbines	9
3.3.4. NSPS Subpart JJJJ – Stationary Spark Ignition Internal Combustion Engines	9
3.3.5. NSPS Subpart KKKK – Stationary Combustion Turbines	10
3.3.6. NSPS Subpart 0000 — Crude Oil and Natural Gas Production, Transmission, and Distrib	oution 10
3.3.7. NSPS Subpart 0000a — Crude Oil and Natural Gas Facilities	10
3.3.8. Non-Applicability of All Other NSPS	11
3.4. National Emission Standards for Hazardous Air Pollutants	11
3.4.1. NESHAP Subpart HH – Oil and Natural Gas Production Facilities	11
3.4.2. NESHAP Subpart ZZZZ – Stationary Reciprocating Internal Combustion Engines	11
3.4.3. NESHAP JJJJJJ – Industrial, Commercial, and Institutional Boilers	11
3.5. West Virginia SIP Regulations	11
3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in In	ndirect Heat
Exchangers	12
3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Cause	
to an Objectionable Odor 3.5.3. 45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse	12 12
3.5.4. 45 CSR 0: To Prevent and Control Air Pollution from the Emission of Sulfur Oxides	12
3.5.5. 45 CSR 16: To Trevent and control All Fonduon non-the Emission of Sunth Oxides 3.5.5. 45 CSR 16: Standards of Performance for New Stationary Sources	12
3.5.6. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Hand	
Storage and Other Sources of Fugitive Particulate Matter	g, 110purution, 12
3.5.7. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks	13
3.5.8. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants	13
3.5.9. Non-Applicability of Other SIP Rules	13
4. G35-D APPLICATION FORMS	14
ATTACHMENT A SINGLE SOURCE DETERMINATION FORM	
ATTACHMENT B SITING CRITERIA WAIVER (NOT APPLICABLE)	
ATTACHMENT C CURRENT BUSINESS CERTIFICATE	

ATTACHMENT D	PROCESS FLOW DIAGRAM
ATTACHMENT E	PROCESS DESCRIPTION
ATTACHMENT F	PLOT PLAN
ATTACHMENT G	AREA MAP
ATTACHMENT H	G35-D SECTION APPLICABILITY FORM
ATTACHMENT I	EMISSION UNITS/ERD TABLE
ATTACHMENT J	FUGITIVE EMISSIONS SUMMARY
ATTACHMENT K	STORAGE VESSEL(S) DATA SHEET
ATTACHMENT L	NATURAL GAS FIRED FUEL BURNING UNIT(S) DATA SHEET
ATTACHMENT M	INTERNAL COMBUSTION ENGINE DATA SHEET(S)
ATTACHMENT N	TANKER TRUCK LOADING DATA SHEET
ATTACHMENT O	GLYCOL DEHYDRATION UNIT DATA SHEET(S)
ATTACHMENT P	PNEUMATIC CONTROLLERS DATA SHEET(S)
ATTACHMENT Q	CENTRIFUGAL COMPRESSOR DATA SHEET(S)
ATTACHMENT R	RECIPROCATING COMPRESSOR DATA SHEET(S)
ATTACHMENT S	BLOWDOWN AND PIGGING OPERATIONS DATA SHEET(S)
ATTACHMENT T	AIR POLLUTION CONTROL DEVICE
ATTACHMENT U	EMISSION CALCULATIONS
ATTACHMENT V	FACILITY-WIDE EMISSION SUMMARY SHEET(S)
ATTACHMENT W	CLASS I LEGAL ADVERTISEMENT

DTE Appalachia Gathering, LLC (DTE), which is owned by DTE Energy Company, is submitting this G35-D Permit application to the West Virginia Department of Environmental Protection (WVDEP) for an existing natural gas compressor station located in Marion County, West Virginia (Daybrook Compressor Station or 'Daybrook Station'). The Daybrook Station is currently operating under G35-C permit number G35-C064E. This general permit application seeks to replace the current G35-C permit with a G35-D permit and correct details regarding source information.

DTE is noting that this facility was recently purchased under a multi-asset acquisition. Subsequent to the purchase, DTE completed a comprehensive on-site emissions source verification, and reviewed all available historical permitting files and emission source information. The emissions calculations and information in this permit application represents the best currently available data and the best currently accepted calculation methodology (taking into account DTE's preferences for conservatism and using a current fuel/process gas analysis) for all sources. Therefore, certain discrepancies may exist between the information reflected in the current permit and this application. DTE is requesting that WVDEP issue a G35-D permit which reflects the information contained in this application, which has been certified by the Responsible Official to be true, accurate and complete based on reasonable efforts to provide the most comprehensive and up-to-date information possible.

1.1. FACILITY AND PROJECT DESCRIPTION

The Daybrook Station is an existing natural gas compressor station covered under standard industrial code (SIC) 1311. The station compresses natural gas from nearby wells for transportation across the pipeline.

The station currently consists of the following equipment:

- > Two (2) Caterpillar G3516 compressor engines (CE-1 and CE-2), each rated at 1,380 bhp;
- > One (1) Caterpillar G3612 compressor engine (CE-3)¹, rated at 3,750 bhp;
- > Two (2) Caterpillar G3616 compressor engines (CE-4 and CE-5), each rated at 5,000 bhp;
- > One (1) Caterpillar G3608 compressor engine (CE-6), rated at 2,370 bhp;
- > One (1) 125 million standard cubic feet per day (MMscfd) triethylene glycol dehydration unit (RSV-1) with associated flash tank, and 1.5 MMBtu/hr reboiler (RBV-1); and
- > Several miscellaneous tanks².

A process flow diagram is included as Attachment D.

1.2. SOURCE STATUS

WVDEP must make stationary source determinations on a case-by-case basis using the guidance under the Clean Air Act (CAA) and EPA's and WVDEP's implementing regulations. The definition of stationary source in 40 CFR 51.166(b) includes the following:

¹ This source is permitted under the current G35C permit but has yet to be installed. DTE is also noting that a slightly different unit will be installed than that currently listed in the existing G35C permit; therefore, this application also seeks to correct that source's information prior to installation.

 $^{^{2}}$ Several small exempt tanks will be added at the same time that CE-3 is installed. This application contains a complete listing of all tanks to be located at the station.

"(6) Building, structure, facility, or installation means all of the pollutant emitting activities which belong to the same industrial grouping, are located on or more contiguous or adjacent properties, and are under control of the same person (or persons under common control)."

Other additional pollutant emitting facilities should be aggregated with the Daybrook Station for air permitting purposes if, and only if, all three elements of the "stationary source" definition above are fulfilled. WVDEP previously determined that the Daybrook Station is a separate stationary source when the current permit was issued, and no other facilities are currently located within a quarter-mile radius of the facility.

1.3. G35-D APPLICATION ORGANIZATION

This West Virginia G35-D permit application is organized as follows:

- > Section 2: Sample Emission Source Calculations;
- > Section 3: Regulatory Discussion;
- > Section 4: G35-D Application Form;
- > Attachment A: Single Source Determination Form
- > Attachment B: Siting Criteria Waiver (not applicable)
- > Attachment C: Current Business Certificate
- > Attachment D: Process Flow Diagram
- > Attachment E: Process Description
- > Attachment F: Plot Plan
- > Attachment G: Area Map
- > Attachment H: G35-D Section Applicability Form
- > Attachment I: Emission Units/ERD Table
- > Attachment J: Fugitive Emission Summary Sheet(s)
- > Attachment K: Storage Vessels Data Sheet(s)
- > Attachment L: Natural Gas Fired Fuel Burning Unit Data Sheet(s)
- > Attachment M: Internal Combustion Engine Data Sheet(s)
- > Attachment N: Tanker Truck Loading Data Sheet
- > Attachment 0: Glycol Dehydration Unit Data Sheet(s)
- > Attachment P: Pneumatic Controller Data Sheet(s)
- > Attachment Q: Centrifugal Compressor Data Sheet(s)
- > Attachment R: Reciprocating Compressor Data Sheet(s)
- > Attachment S: Blowdown and Pigging Operation Data Sheet(s)
- > Attachment T: Air Pollution Control Device Data Sheet(s)
- > Attachment U: Emission Calculations
- > Attachment V: Facility-wide Emission Summary Sheet(s)
- > Attachment W: Class I Legal Advertisement

The characteristics of air emissions from the facility, along with the methodology for calculating emissions, are briefly described in this section of the application. Detailed emission calculations are presented in Attachment U of this application.

Emissions at this facility will result from combustion of natural gas in the engines, operation of the dehydration unit, operation of the storage tanks, as well as piping blowdowns and fugitive emissions from components leaks and the facility roadway. The methods by which emissions from each of these source types is calculated are summarized below.

- Compressor Engines: Potential emissions of nitrogen oxides (NO_X), carbon monoxide (CO), volatile organic compounds (VOC), and formaldehyde (HCHO) are calculated using factors provided by the engine and catalyst manufacturer. Potential emissions of sulfur dioxide (SO₂), particulate matter (PM/PM₁₀/PM_{2.5}), and all other hazardous air pollutants (HAPs) are calculated using U.S. EPA's AP-42 factors for four-stroke leanburn engines.
- > TEG Dehydration Unit: Potential emissions of hazardous air pollutants (HAPs), volatile organic compounds (VOC), and methane from the dehydration unit are calculated using GRI-GLYCalc v4.0 and a site-specific gas analysis.
- Storage Tanks and Liquid Loading: Working, breathing and flashing emissions of VOC and HAPs from the waste fluid tanks are calculated using E&P TANK v2.0 software. Working and breathing emissions from all other tanks, along with the waste fluid loading emissions, were calculated using EPA Tanks 4.0.9d and AP-42 methodology.
- Fugitive Emissions: Emissions from fugitive equipment leaks are calculated using published EPA emission factors and 40 CFR Part 98, Subpart W emission factors. Emissions from blowdown events are calculated using engineering estimates of the amount of gas vented. Site specific gas analyses were used to speciate VOC, HAP, and GHG emissions.
- > Haul Roads: Fugitive dust emitted from facility roadways has been estimated using projected vehicle miles traveled along with U.S. EPA's AP-42 factors for unpaved haul roads.³

Potential emissions of greenhouse gas pollutants (GHGs) are calculated using manufacturer's data as available (CO₂ and CH₄ in this case) and U.S. EPA's emission factors from 40 CFR Part 98, Subpart C for all others.

³ U.S. EPA, AP 42, Fifth Edition, Volume I, Section 13.2.2, Unpaved Roads, November 2006.

This section documents the applicability determinations made for Federal and State air quality regulations. In this section, applicability or non-applicability of the following regulatory programs is addressed:

- > Prevention of Significant Deterioration (PSD) permitting;
- > Non-attainment New Source Review (NNSR) permitting;
- > Title V of the 1990 Clean Air Act Amendments;
- > New Source Performance Standards (NSPS);
- > National Emission Standards for Hazardous Air Pollutants (NESHAP); and
- > West Virginia State Implementation Plan (SIP) regulations.

This review is presented to supplement and/or add clarification to the information provided in the WVDEP G35-D operating permit application forms.

In addition to providing a summary of applicable requirements, this section of the application also provides nonapplicability determinations for certain regulations, allowing the WVDEP to confirm that identified regulations are not applicable to the facility. Note that explanations of non-applicability are limited to those regulations for which there may be some question of applicability specific to the operations at the station. Regulations that are categorically nonapplicable are not discussed (e.g., NSPS Subpart J, Standards of Performance for Petroleum Refineries).

3.1. PSD AND NNSR SOURCE CLASSIFICATION

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration and new and modified sources of non-attainment pollutants under Non-Attainment New Source Review. PSD regulations apply when a new source is constructed in which emissions exceed major source thresholds, an existing minor source undergoes a modification in which emission increases exceed PSD major source thresholds, or an existing major source undergoes a modification in which emission increases exceed PSD significant emission rates. The facility will remain a minor source with respect to the NSR program after the project since potential emissions are below all the PSD thresholds. As such, PSD permitting is not triggered by this construction activity. NNSR regulations only apply in areas designated as non-attainment. The facility is located in Marion County, which is designated as attainment/unclassifiable for all criteria pollutants.⁴ Therefore, NNSR regulations do not apply to the facility.

3.2. TITLE V OPERATING PERMIT PROGRAM

Title 40 of the Code of Federal Regulations Part 70 (40 CFR 70) establishes the federal Title V operating permit program. West Virginia has incorporated the provisions of this federal program in its Title V operating permit program in West Virginia Code of State Regulations (CSR) 45-30. The major source thresholds with respect to the West Virginia Title V operating permit program regulations are 10 tons per year (tpy) of a single HAP, 25 tpy of any combination of HAP, and 100 tpy of all other regulated pollutants. The potential emissions of all regulated pollutants are below the corresponding threshold(s) at this facility after the proposed project. Therefore, the facility is not a major source for Title V purposes.

⁴ U.S. EPA Green Book, <u>http://www.epa.gov/airquality/greenbook/anayo_wv.html</u>, as of February 13, 2017.

3.3. NEW SOURCE PERFORMANCE STANDARDS

New Source Performance Standards, located in 40 CFR 60, require new, modified, or reconstructed sources to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. Moreover, any source subject to an NSPS is also subject to the general provisions of NSPS Subpart A, except where expressly noted. The following is a summary of applicability and non-applicability determinations for NSPS regulations of relevance to the facility. Besides 40 CFR 60 Subpart A (NSPS Subpart A), which is similar to 40 CFR 63 Subpart A (NESHAP Subpart A), the following NSPS could potentially apply to the facility:

- > 40 CFR Part 60 Subparts D, Da, Db, and Dc Steam Generating Units
- > 40 CFR Part 60 Subparts K, Ka, and Kb Storage Vessels for Petroleum Liquids/Volatile Organic Liquids
- > 40 CFR Part 60 Subpart GG Stationary Gas Turbines
- > 40 CFR Part 60 Subpart JJJJ Stationary Spark Ignition Internal Combustion Engines
- > 40 CFR Part 60 Subpart KKKK Stationary Combustion Turbines
- > 40 CFR Part 60 Subpart 0000 Crude Oil and Natural Gas Production, Transmission, and Distribution
- > 40 CFR Part 60 Subpart 0000a Crude Oil and Natural Gas Facilities

3.3.1. NSPS Subparts D, Da, Db, and Dc - Steam Generating Units

These subparts apply to steam generating units of various sizes, all greater than 10 MMBtu/hr. The proposed project does not include any steam generating units with a heat input greater than 10 MMBtu/hr, therefore the requirements of these subparts do not apply.

3.3.2. NSPS Subparts K, Ka, and Kb - Storage Vessels for Petroleum Liquids/Volatile Organic Liquids

These subparts apply to storage tanks of certain sizes constructed, reconstructed, or modified during various time periods. Subpart K applies to storage tanks constructed, reconstructed, or modified prior to 1978, and Subpart Ka applies to those constructed, reconstructed, or modified prior to 1984. Both Subparts K and Ka apply to storage tanks with a capacity greater than 40,000 gallons. Subpart Kb applies to volatile organic liquid (VOL) storage tanks constructed, reconstructed, or modified after July 23, 1984 with a capacity equal to or greater than 75 m³ (~19,813 gallons). All of the tanks at the facility have a capacity of 19,813 gallons or less. As such, Subparts K, Ka, and Kb do not apply to the storage tanks at the facility.

3.3.3. NSPS Subpart GG - Stationary Gas Turbines

Subpart GG, Standards of Performance for Stationary Gas Turbines, applies to all gas turbines with a heat input at peak load greater than or equal to 10 MMBtu/hr based on the lower heating value of the fuel fired. This standard was promulgated in 1979. The applicability of Subpart KKKK, promulgated in 2006, is similar to that of Subpart GG and applies to stationary combustion turbines that commence construction after February 18, 2005. There are no gas turbines located at the facility.

3.3.4. NSPS Subpart JJJJ - Stationary Spark Ignition Internal Combustion Engines

Subpart JJJJ, Standards of Performance for Stationary Spark Ignition Internal Combustion Engines, applies to manufacturers, owners and operators of stationary spark ignition (SI) engines. The requirements for SI engines with a maximum power rating greater than or equal to 500 hp (except lean burn engines 500 hp \leq hp < 1,350) apply to owner/operators of such engines ordered on or after July 1, 2007. All compressor engines are 4-stroke, lean burn spark ignition RICE, and rated anywhere from 1,380 to 5,000 bhp. As such, the engines are subject to the emissions standards per Table 1 to NSPS Subpart JJJJ (for non-emergency use engines), as well as performance testing every 8,760 hours of operation or three (3) years, and associated notification and reporting requirements.

3.3.5. NSPS Subpart KKKK - Stationary Combustion Turbines

Subpart KKKK, Standards of Performance for Stationary Combustion Turbines, applies to stationary combustion units with a heat input at peak load equal to or greater than 10 MMBtu/hr, based on the higher heating value of the fuel, commencing construction after February 18, 2005. There are no turbines at the facility.

3.3.6. NSPS Subpart OOOO – Crude Oil and Natural Gas Production, Transmission, and Distribution

Subpart OOOO – *Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution,* applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011 and before September 18, 2015. With the exception of the compressor engine yet to be installed (CE-3), all reciprocating compressors are subject to this rule. The reciprocating compressors are required to change rod packing every 26,000 hours of operation or every 36 months, or collect the methane and VOC emissions using a rod packing collection system which operates under negative pressure. The compressors are also subject to the recordkeeping and annual reporting requirements of the rule. There are no other facilities subject to this regulation (pneumatic controllers are either intermittent or low bleed, and storage tank emissions are less than 6 tpt VOC).

3.3.7. NSPS Subpart OOOOa - Crude Oil and Natural Gas Facilities

Subpart OOOOa, Standards of Standards of Performance for Crude Oil and Natural Gas Facilities, will apply to affected facilities that commenced construction, reconstruction, or modification after September 18, 2015. The regulation was published final in the Federal Register on June 3, 2016. The rule includes provisions for the following facilities:

- > Hydraulically fractured wells;
- Centrifugal compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Reciprocating compressors located between the wellhead and the point of custody transfer to the natural gas distribution segment;
- Continuous bleed natural gas-driven pneumatic controllers with a bleed rate of > 6 scfh located in the production, gathering, processing, or transmission and storage segments (excluding natural gas processing plants);
- > Continuous bleed natural gas-driven pneumatic controllers located at natural gas processing plants;
- > Pneumatic pumps located in the production and processing segments;
- > Storage vessels located in the production, gathering, processing, or transmission and storage segments;
- > The collection of fugitive emissions components at a well site;
- > The collection of fugitive emissions components at a compressor station; and
- > Sweetening units located onshore that process natural gas produced from either onshore or offshore wells.

The reciprocating compressor associated with CE-3 will be required to change rod packing every 26,000 hours of operation or every 36 months, or collect the methane and VOC emissions using a rod packing collection system which operates under negative pressure. The compressor will also be subject to the recordkeeping and annual reporting requirements of the rule.

As a result of the installation of an additional compressor, the applicant will be required to monitor all fugitive emission components (ex. connectors, flanges, etc.) with an optical gas imaging (OGI) device, and repair all sources of fugitive emissions in accordance with the rule. The applicant must also develop a monitoring plan, conduct surveys on a quarterly basis, and will be subject to the applicable recordkeeping and reporting requirements of the rule.

All pneumatic controllers currently at or proposed to be located at the facility are intermittent or low-bleed. Therefore, they will not be subject to any pneumatic controller requirements under Subpart 0000a. As currently proposed, there are no other affected source categories under the rule that will apply to the proposed equipment involved in this project.

3.3.8. Non-Applicability of All Other NSPS

NSPS are developed for particular industrial source categories. Other than NSPS developed for natural gas processing plants (Subparts 0000 and 0000a) and associated equipment (Subpart K-Kb), the applicability of a particular NSPS to the facility can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the proposed project.

3.4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

Part 63 NESHAP allowable emission limits are established on the basis of a maximum achievable control technology (MACT) determination for a particular major source. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. The facility is an area (minor) source of HAP since its potential emissions of HAP are less than the 10/25 major source thresholds. Besides 40 CFR 63 Subpart A (NESHAP Subpart A), which is similar to 40 CFR 60 Subpart A (NSPS Subpart A), the following NESHAP could potentially apply to the facility:

- > 40 CFR Part 63 Subpart HH Oil and Natural Gas Production Facilities
- > 40 CFR 63 Subpart ZZZZ Stationary Reciprocating Internal Combustion Engines
- > 40 CFR Part 63 Subpart JJJJJJ Industrial, Commercial, and Institutional Boilers

3.4.1. NESHAP Subpart HH - Oil and Natural Gas Production Facilities

This MACT standard contains requirements for both major and area sources of HAP. The benzene emissions from the dehydrator vent will be less than 0.90 megagrams per year (1 tpy), therefore, the facility is exempt from the requirements of NESHAP Subpart HH pursuant to 40 CFR §63.764(e)(1)(ii), except for the requirement to keep records of the actual average natural gas flow rate or actual average benzene emissions from the dehydrator, per 40 CFR §63.774(d)(1). The applicant will continue to comply with the requirements of Subpart HH.

3.4.2. NESHAP Subpart ZZZZ - Stationary Reciprocating Internal Combustion Engines

Stationary reciprocating internal combustion engines (RICE) at both area and major sources of HAP emissions are potentially subject to Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines (RICE). Per §63.6590(a)(2)(iii), a stationary RICE located at an area source of HAP emissions is new if you commenced construction of the stationary reciprocating internal combustion engine (RICE) on or after 6/12/2006. The compressor engines have or will have commenced construction after this date, and are therefore new RICE under Subpart ZZZZ. Per §63.6590(c), "[...] An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 Subpart JJJJJ, for spark ignition engines. No further requirements apply for such engines under this part." Specifically, §63.6590(c)(1) includes "a new or reconstructed stationary RICE located at an area source"; the compressor engines and generator engines fall into this category. Therefore, the engines have no applicable Subpart ZZZZ requirements, other than to comply with any applicable 40 CFR 60 Subpart JJJJJ requirements.

3.4.3. NESHAP JJJJJJ - Industrial, Commercial, and Institutional Boilers

This MACT standard applies to industrial, commercial, and institutional boilers of various sizes and fuel types at area sources. The reboiler is fueled by natural gas and thus exempt from this subpart, and there are no other boilers at the facility, therefore this subpart does not apply.

3.5. WEST VIRGINIA SIP REGULATIONS

The facility is potentially subject to regulations contained in the West Virginia Code of State Regulations, Chapter 45 (Code of State Regulations). The Code of State Regulations fall under two main categories: those regulations that are

generally applicable (e.g., permitting requirements), and those that have specific applicability (e.g., PM standards for manufacturing equipment).

3.5.1. 45 CSR 2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2 applies to fuel burning units, defined as equipment burning fuel "for the primary purpose of producing heat or power by indirect heat transfer". The reboiler is a fuel burning unit and therefore must comply with this regulation. Per 45 CSR 2-3, opacity of emissions from units shall not exceed 10 percent, based on a six-minute block average. Note that as the reboiler is less than 10 MMBtu/hr, it is exempt from PM emission limits.

3.5.2. 45 CSR 4: To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

According to 45 CSR 4-3:

No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor at any location occupied by the public.

The facility is generally subject to this requirement. However, due to the nature of the process at the station, production of objectionable odor during normal operation is unlikely.

3.5.3. 45 CSR 6: To Prevent and Control the Air Pollution from the Combustion of Refuse

45 CSR 6 applies to activities involving incineration of refuse, defined as "the destruction of combustible refuse by burning in a furnace designed for that purpose. For the purposes of this rule, the destruction of any combustible liquid or gaseous material by burning in a flare or flare stack, thermal oxidizer or thermal catalytic oxidizer stack shall be considered incineration." There are no control devices at the facility that utilize 'incineration'.

3.5.4. 45 CSR 10: To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

This rule potentially applies to fuel burning units, including glycol dehydration unit reboilers. Per 45 CSR 10-10.1, units rated less than 10 MMBtu/hr are exempt from the SO₂ emission limitations and testing, monitoring, recordkeeping, and reporting requirements of this rule. The reboiler is rated less than 10 MMBtu/hr and as such is exempt from this rule.

3.5.5. 45 CSR 16: Standards of Performance for New Stationary Sources

45 CSR 16-1 incorporates the federal Clean Air Act (CAA) standards of performance for new stationary sources set forth in 40 CSR Part 60 by reference. As such, by complying with all applicable requirements of 40 CFR Part 60 at the facility, the applicant will be complying with 45 CSR 16.

3.5.6. 45 CSR 17: To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage and Other Sources of Fugitive Particulate Matter

According to 45 CSR 17-3.1:

No person shall cause, suffer, allow or permit fugitive particulate matter to be discharged beyond the boundary lines of the property lines of the property on which the discharge originates or at any public or residential location, which causes or contributes to statutory air pollution.

Due to the nature of the activities at the facility, it is unlikely that fugitive particulate matter emissions will be emitted under normal operating conditions. However, the applicant will take measures to ensure any fugitive particulate matter emissions will not cross the property boundary should any such emissions occur.

3.5.7. 45 CSR 21-28: Petroleum Liquid Storage in Fixed Roof Tanks

45 CSR 21-28 applies to any fixed roof petroleum liquid storage tank with a capacity greater than 40,000 gallons located in Putnam County, Kanawha County, Cabell County, Wayne County, and Wood County. The capacity of each storage tank at the facility is less than 40,000 gallons and the facility is not located in the listed counties. Therefore, 45 CSR 21-28 does not apply to the storage tanks at this station.

3.5.8. 45 CSR 34: Emissions Standards for Hazardous Air Pollutants

45 CSR 34-1 incorporates the federal Clean Air Act (CAA) national emissions standards for hazardous air pollutants (NESHAPs) as set forth in 40 CPR Parts 61 and 63 by reference. As such, by complying with all applicable requirements of 40 CFR Parts 61 and 63 at the facility, the applicant will be complying with 45 CSR 34.

3.5.9. Non-Applicability of Other SIP Rules

A thorough examination of the West Virginia SIP rules with respect to applicability at the facility reveals many SIP regulations that do not apply or impose additional requirements on operations. Such SIP rules include those specific to a particular type of industrial operation that is categorically not applicable to the facility.

The WVDEP permit application forms contained in this application include all applicable G35-D application forms including the required attachments.

dep	west virginia department	Division of Air Quality 601 57 th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov	
G35-D GE	NERAL PERMIT F	REGISTRATION AI	· · · · ·
	RELOCATION, ADMINISTRA	IN REGARD TO THE CONSTRU FIVE UPDATE AND OPERATION AND/OR DEHYDRATION FACILI	OF
⊠CONSTRU □MODIFICA □RELOCAT	TION	□CLASS I ADMINISTRATIV □CLASS II ADMINISTRATIV	
	SECTION 1. GEN	VERAL INFORMATION	
Name of Applicant (as	registered with the WV Secretary o	f State's Office): DTE Appalachia	Gathering, LLC
Federal Employer ID N	o. (FEIN): 45-0718671		
	dress: 333 Technology Drive, Su	ite 255	
City: Canonsburg	State: PA		ZIP Code: 15317
Facility Name: Daybro	k Compressor Station		
Operating Site Physical If none available, list r	Address: See lat/long oad, city or town and zip of facility.		
City: Fairview	Zip Code: 265		County: Marion
Latitude & Longitude C Latitude: 39.57751 Longitude: -80.20288	oordinates (NAD83, Decimal Degre	ees to 5 digits):	
SIC Code: 1311		DAQ Facility ID No. (For exist	ing facilities)
NAICS Code: 211111		049-00138	
	CERTIFICATIO	N OF INFORMATION	
Official is a President, Directors, or Owner, de authority to bind Proprietorship. Req compliance certific Representative. If a bus off and the appropr unsigned G35-D Regis utilized, th	Vice President, Secretary, Treasure pending on business structure. A bu- the Corporation, Partnership, Limit uired records of daily throughput, h ations and all required notifications- iness wishes to certify an Authorized iate names and signatures entered. Tration Application will be returne e application will be returned to t	all be signed below by a Responsible er, General Partner, General Manage usiness may certify an Authorized Re- ted Liability Company, Association, lours of operation and maintenance, s must be signed by a Responsible O ed Representative, the official agreer Any administratively incomplete o ed to the applicant. Furthermore, he applicant. No substitution of fo	r, a member of the Board of epresentative who shall have Joint Venture or Sole general correspondence, fficial or an Authorized ment below shall be checked r improperly signed or if the G35-D forms are not orms is allowed.
obligate and legally bin	ership, Limited Liability Company	and in that capacity shall represent , Association Joint Venture or Sole 3 ges its Authorized Representative, a ely.	Proprietorship) and may
documents appended he	information contained in this G35-I reto is, to the best of my knowledge ide the most comprehensive informa-	D General Permit Registration Appli- e, true, accurate and complete, and the fon possible.	cation and any supporting aat all reasonable efforts
Responsible Official Si Name and Title: Kennet Phone: (724) 416-7263 Email: Kenneth.Magyar	h Magyar, VP, Project Developmen	Business Development Fax: n/a Date: Aucust	25, 2017
If applicable: Authorized Representat: Name and Title: Email:	ve Signature:Phone: Date:	. Fax:	
If applicable: Environmental Contact Name and Title: Ian Con Email: ian.connelly@dt	L Cully anelly, Gas Pipeline Engineer cenergy.com	Phone: (724) 916-4938 Fax: Date: August 25, 2017	

OPERATING SITE INFORMATION

Briefly describe the proposed new operation and/or any change(s) to the facility: Addition of compression and ancillary equipment to the facility.

Directions to the facility:

From 601 57th St SE, Charleston, WV 25304: head northeast on 57th St SE toward Washington Ave SE (travel 0.1 mi). Turn left onto MacCorkle Ave SE (travel 1.8 mi). Turn right onto 36th St SE (travel 0.2 mi). Continue onto 36th St Southeast Bridge (travel 0.2 mi). Use the right lane to take the ramp onto I-64 W/I-77 N (travel 0.1 mi). Merge onto I-64 W/I-77 N (travel 2.5 mi). Use the right 2 lanes to take the Interstate 77 N/Interstate 79 N exit toward Parkersburg (travel 0.5 mi). Continue onto I-77 N (travel 1.4 mi). Keep right at the fork to continue on I-79 N, follow signs for Clarksburg (travel 135 mi). Take exit 136 toward Stoney Rd (travel 0.4 mi). Turn left onto Fairmont Gateway Connector N (travel 0.8 mi). At the traffic circle, take the 2nd exit and stay on Fairmont Gateway Connector N (travel 0.2 mi). Continue onto Jackson St (travel 0.1 mi). Keep right to stay on Jackson St. Turn right onto US-250 N/Cleveland Ave (travel 1.7 mi). Turn right onto Barrackville Rd (travel 0.2 mi). Continue onto Pike St (travel 1.6 mi). Continue onto Monumental Rd (travel 4.3 mi). Slight left onto Paw Paw Creek Rd (travel 0.6 mi). Turn right onto Toothman Run (travel 0.7 mi). The entrance of the facility will be on the right side.

ATTACHMENTS AND SUPPORTING DOCUMENTS

I have enclosed the following required documents:

Check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR13 and 45CSR22).

 \boxtimes Check attached to front of application.

□ I wish to pay by electronic transfer. Contact for payment (incl. name and email address):

□ I wish to pay by credit card. Contact for payment (incl. name and email address):

S500 (Construction, Modification, and Relocation)
 S300 (Class II Administrative Update)
 \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO and/or OOOOa ¹
 \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ²

¹ Only one NSPS fee will apply.

² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ.

NSPS and NESHAP fees apply to new construction or if the source is being modified.

Responsible Official or Authorized Representative Signature (if applicable)

⊠ Single Source Determination Form (must be completed in its entirety) – Attachment A

□ Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C

☑ Process Flow Diagram – Attachment D
 ☑ Process Description – Attachment E
 ☑ Plot Plan – Attachment F
 ☑ Area Map – Attachment G

 ☑ G35-D Section Applicability Form – Attachment H
 ☑ Emission Units/ERD Table – Attachment I

⊠ Fugitive Emissions Summary Sheet – Attachment J

⊠ Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment K

🛛 Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applic.) – Attachment L

🖾 Internal Combustion Engine Data Sheet(s) (include manuf. performance data sheet(s) if applicable) – Attachment M

 \boxtimes Tanker Truck Loading Data Sheet (if applicable) – Attachment N

 \boxtimes Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalcTM input and output reports and information on reboiler if applicable) – Attachment O

 \boxtimes Pneumatic Controllers Data Sheet – Attachment P

🖾 Centrifugal Compressor Data Sheet – Attachment Q

Reciprocating Compressor Data Sheet – Attachment R

Blowdown and Pigging Operations Data Sheet – Attachment S

🖾 Air Pollution Control Device/Emission Reduction Device(s) Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment T

 \boxtimes Emission Calculations (please be specific and include all calculation methodologies used) – Attachment U

Security-wide Emission Summary Sheet(s) – Attachment V

⊠ Class I Legal Advertisement – Attachment W

Sone (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

Single Source Determination Form

A TTA CULLENIT A	CINCLE	COUDCE	DETEDMEN		FODM
ATTACHMENT A -	SINGLE	SUUKCE	DEIEKMII	NATION	rukin

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment and activities in the same industrial grouping (defined by SIC code)?

Yes \Box No \boxtimes

Is there equipment and activities under the control of the same person/people?

 $Yes \square \qquad No \boxtimes$

Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes 🗌 🛛 No 🖂

ATTACHMENT A: SINGLE SOURCE DETERMINATION MAP

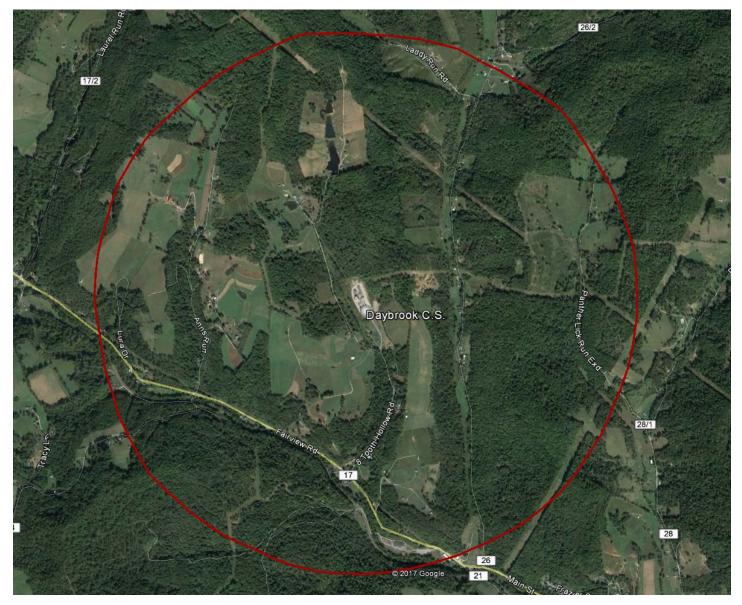


Figure 1 - Map of Location with 1 Mile Radius Circle

<u>Coordinates:</u> Latitude: 39° 34' 36" N, Longitude: -80° 12' 08" W

Siting Criteria Waiver (not applicable)

ATTACHMENT B – SITING CRITERIA WAIVER – NOT APPLICABLE

If applicable, please complete this form and it must be notarized.

G35-D General Permit Siting Criteria Waiver

WV Division of Air Quality 300' Waiver

	T	h	ereby
	1	Print Name h	cicoy
ac			
ue	knowledge and agree that _	General Permit Applicant's Name	\\\\\\
cor		t a natural gas compressor and/or dehydratio within 300' of my dwelling and/or business.	n facility
		a to the West Virginia Department of Environission to construct, install and operate in suc	
		Signed:	
	Signature		Date
	Signature		Date
	Taken, subscribed a	and sworn before me this day of	f
		, 20	
	My commiss	ion expires:	
	SEAL	Notary Public	_
		Notary Public	

Current Business Certificate

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: DTE APPALACHIA GATHERING, LLC ONE ENERGY PLAZA, 2055 WCB DETROIT, MI 48226-0000

BUSINESS REGISTRATION ACCOUNT NUMBER:

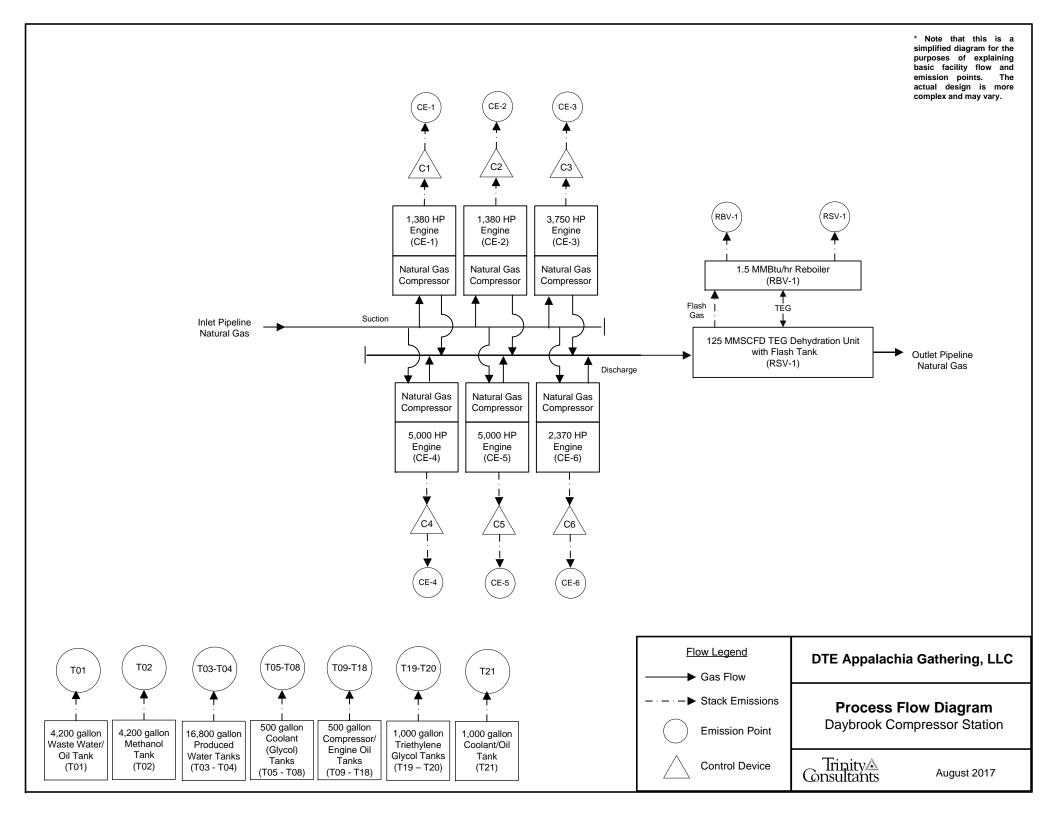
2252-1954

This certificate is issued on: 05/5/2017

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued


This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

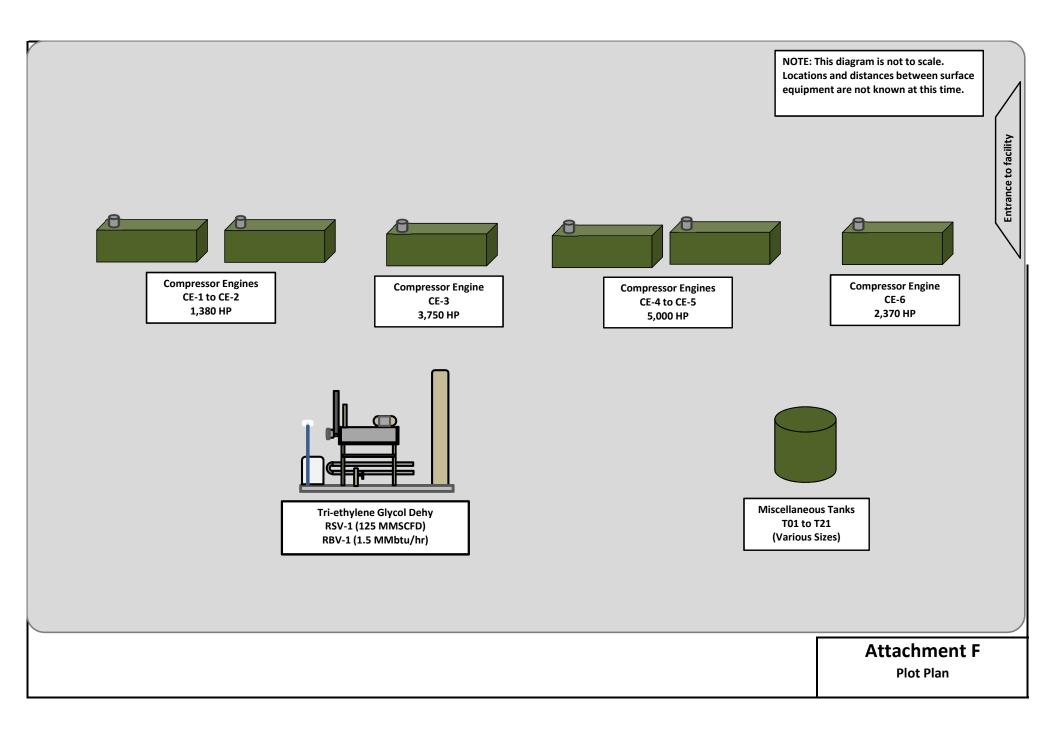
Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L2060078272

Process Flow Diagram

Process Description


ATTACHMENT E: PROCESS DESCRIPTION

The Daybrook Compressor Station compresses and dehydrates natural gas from production wells prior to transmission along the pipeline system. Reciprocating compressors utilize the power created by reciprocating internal combustion engines (RICE) to compress (raise the pressure of) the incoming gas stream. Subsequently, the gas stream passes through triethylene glycol (TEG) dehydration unit, will introduces TEG to the stream in a contact tower to absorb water vapor from the gas to meet customer specifications. The TEG is then sent to the natural gas-fired reboiler, which uses heat to evaporate entrained water from the TEG. The TEG is then discharged back to the contact tower for reuse. The natural gas stream from the contact tower flows into the pipeline to be transported further along the pipeline system. The compressor engines' exhaust streams are controlled by oxidation catalysts.

A process flow diagram is included as Attachment D.

ATTACHMENT F

Plot Plan

Area Map

ATTACHMENT G: AREA MAP

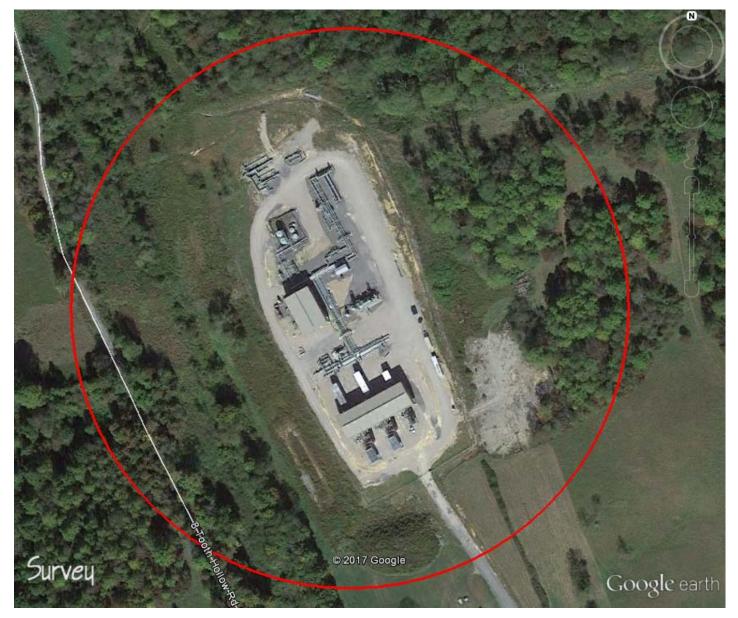


Figure 1 - Map of Location with 300 foot Boundary Circle

UTM Northing (KM): 4,381.091

UTM Easting (KM): 568.495

G35-D Section Applicability Form

ATTACHMENT H – G35-D SECTION APPLICABILITY FORM

General Permit G35-D Registration Section Applicability Form

General Permit G35-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G35-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G35-D APPLICABLE SECTIONS					
Section 5.0	Storage Vessels Containing Condensate and/or Produced Water ¹				
□ Section 6.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)				
Section 7.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH				
Section 8.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc				
Section 9.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)				
Section 10.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²				
Section 11.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²				
Section 12.0	Reciprocating Internal Combustion Engines, Generator Engines. Microturbine Generators				
Section 13.0	Tanker Truck Loading ³				
Section 14.0	Glycol Dehydration Units ⁴				
Section 15.0	Blowdown and Pigging Operations				
Section 16.0	Fugitive Emission Components (NSPS, Subpart OOOOa)				

1 Applicants that are subject to Section 5 may also be subject to Section 6 if the applicant is subject to the NSPS, Subpart OOOO/OOOOa control requirements or the applicable control device requirements of Section 7.

2 Applicants that are subject to Section 10 and 11 may also be subject to the applicable RICE requirements of Section 12.

- 3 Applicants that are subject to Section 13 may also be subject to control device and emission reduction device requirements of Section 7.
- 4 Applicants that are subject to Section 14 may also be subject to the requirements of Section 8 (reboilers). Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 7.

Emission Units/ERD Table

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment K table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
CE-1	CE-1	Caterpillar G3516 Compressor Engine	2012	2012	1,380 HP	Existing	C1	
CE-2	CE-2	Caterpillar G3516 Compressor Engine	2012	2012	1,380 HP	Existing	C2	
CE-3	CE-3	Caterpillar G3612 Compressor Engine	TBD	TBD	3,750 HP	New*	C3	
CE-4	CE-4	Caterpillar G3616 Compressor Engine	2014	2014	5,000 HP	Existing	C4	
CE-5	CE-5	Caterpillar G3616 Compressor Engine	2014	2014	5,000 HP	Existing	C5	
CE-6	CE-6	Caterpillar G3608 Compressor Engine	2014	2014	2,370 HP	Existing	C6	
RSV-1	RSV-1	125 MMSCFD Dehydration Unit	2012	2012	125 MMSCFD	Existing	RBV-1	
RBV-1	RBV-1	1.5 MMBtu/hr Reboiler	2012	2012	1.5 MMBTU/hr	Existing	None	
T01	T01	Waste Water/Oil Tank	2012	2012	4,200 Gallons	Existing	None	
T02	T02	Methanol Tank	2012	2012	4,200 Gallons	Existing	None	
T03	T03	Produced Water Tank	2012	2012	16,800 Gallons	Existing	None	
T04	T04	Produced Water Tank	2012	2012	16,800 Gallons	Existing	None	
T05-T21	T05-T21	De Minimis Storage Tanks**	Varies	Varies	Varies	Varies	None	
L01	L01	Liquid Loading			453,600 Gallons	Existing	None	
		Fugitives				Existing	None	
		Haul Roads				Existing	None	

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

* Although currently listed in the permit, this source has yet to be installed. Therefore, since this application seeks a new permit, the status is noted as 'New'.

** See 'STORAGE TANK DATA TABLE' for details on all de minimis tanks

Fugitive Emission Summary Sheet(s)

	Sources	s of fug			loading operations, equipme associated source or equipm			ons, etc.	
Source/Equipm	ent: Fugitiv	e Emissi		se entra pages for each	ussociated source of equipm		· · ·		
Leak Detection Method Used □ Audible, visual, and olfactory (AVO) inspections					⊠ Infrared (FLIR) cameras	□ Other (pleas	e describe)		□ None required
Is the facility s	ubject to qua	arterly L	DAR m	onitoring under 40CFR60 S	Subpart OOOOa? 🛛 Yes 🗆 N	No. If no, why?			
Component	Closed			Source	of Leak Factors	Stream type	Estin	nated Emissior	ıs (tpy)
Туре	Vent System	Cou	nt		other (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)
Pumps	□ Yes ⊠ No	1		Protocol for Equipment Le	Quality Planning and Standards. ak Emission Estimates. Table 2-1. 'R-95-017, 1995).	□ Gas ⊠ Liquid □ Both	0.19	6.8E-04	0.04
Valves	□ Yes ⊠ No	16	8	U.S. EPA. Office of Air (Protocol for Equipment Le (EPA-453/	⊠ Gas □ Liquid □ Both	0.25	8.7E-04	19.48	
Safety Relief Valves	□ Yes ⊠ No	11		U.S. EPA. Office of Air (Protocol for Equipment Le (EPA-453/	⊠ Gas □ Liquid □ Both	0.28	9.9E-04	1.89	
Open Ended Lines	□ Yes ⊠ No	3		U.S. EPA. Office of Air (Protocol for Equipment Le (EPA-453/	⊠ Gas □ Liquid □ Both	1.3E-03	4.4E-06	0.79	
Sampling Connections	□ Yes ⊠ No				□ Gas □ Liquid □ Both				
Connections (Not sampling)	□ Yes ⊠ No	75	2	U.S. EPA. Office of Air (Protocol for Equipment Le (EPA-453/	⊠ Gas □ Liquid □ Both	0.34	1.2E-03	9.68	
Compressors	□ Yes ⊠ No	6		U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (EPA-453/R-95-017, 1995).			0.34	1.2E-03	107.46
Flanges	□ Yes □ No		-	(included in connections)					
Other ¹	□ Yes ⊠ No	41		Pneumatic Controllers 40 CFR 98 Subpart W Gas 1.27 4.5E-03 Both				1,077.00	
¹ Other equipm	ent types ma	y includ	e comp	ressor seals, relief valves, o	diaphragms, drains, meters, etc.				
Please indicate	if there are	any close	ed vent	bypasses (include compone	ent):				

Storage Vessel Data Sheet(s)

ATTACHMENT K – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- ⊠ Composition of the representative sample used for the simulation
- \boxtimes For each stream that contributes to flashing emissions:
 - \boxtimes Temperature and pressure (inlet and outlet from separator(s))
 - Simulation-predicted composition
 - ☑ Molecular weight
 - \boxtimes Flow rate
- ⊠ Resulting flash emission factor or flashing emissions from simulation

 \boxtimes Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name
Daybrook Compressor Station	Waste Water/Oil Tank
3. Emission Unit ID number	4. Emission Point ID number
T01	T01
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:
Was the tank manufactured after August 23, 2011?	□ New construction
\boxtimes Yes \square No	\Box New stored material
	⊠ Other
	□ Relocation
7A. Description of Tank Modification (<i>if applicable</i>) N/A	
7B. Will more than one material be stored in this tank? If so, a separate form must be	e completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
\Box Yes \boxtimes No	
If Yes, please provide the appropriate documentation and items 8-42 below are not r	equired.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the international statements of the second statement of the second statem	l cross-sectional area multiplied by internal height.				
4,200 gallons					
9A. Tank Internal Diameter (ft.) 9.5	9B. Tank Internal Height (ft.) 8				
10A. Maximum Liquid Height (ft.) 8	10B. Average Liquid Height (ft.) 4				
11A. Maximum Vapor Space Height (ft.) 8	11B. Average Vapor Space Height (ft.) 4				
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume".				
4,200 gallons					
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached				
emissions calculations for all throughput values	emissions calculations for all throughput values				
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions				
emissions calculations for all throughput values	calculations for all throughput values				
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading				
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No				
If yes, (A) What is the volume expansion capacity of the system	(gal)?				
(B) What are the number of transfers into the system per y	year?				
18. Type of tank (check all that apply):					
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat roof	\boxtimes cone roof \square dome roof \square other (describe)				
\Box External Floating Roof \Box pontoon roof \Box double	deck roof				
Domed External (or Covered) Floating Roof					
□ Internal Floating Roof □ vertical column support	□ self-supporting				
□ Variable Vapor Space □ lifter roof □ diaphragm					
\Box Pressurized \Box spherical \Box cylindrical					
\Box Other (describe)					
· · · · ·					

PRESSURE/VACUUM CONTROL DATA

19. Check as many as app	oly:								
Does Not Apply	☑ Does Not Apply			🗆 Ruptu	re Disc (ps	sig)			
□ Inert Gas Blanket of □ Ca				□ Carbo	n Adsorpti	ion ¹			
□ Vent to Vapor Combu	stion Devi	ce1 (vapor	r combust	ors, flares,	thermal o	xidizers, e	enclosed c	ombustors)
□ Conservation Vent (ps	sig)			□ Conde	nser ¹				
Vacuum Setting		Pressure	Setting						
□ Emergency Relief Val	□ Emergency Relief Valve (psig)								
Vacuum Setting		Pressure	Setting						
□ Thief Hatch Weighted	\Box Thief Hatch Weighted \Box Yes \Box No								
¹ Complete appropriate A	¹ Complete appropriate Air Pollution Control Device Sheet								
20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).									
Material Name	Flashing	g Loss	Breathi	ng Loss	Workin	g Loss	Total		Estimation Method ¹
							Emissio	ns Loss	
	lb/hr	tpy	lb/hr	Тру	lb/hr	tpy	lb/hr	tpy	
Produced Water Tank	0.052	0.229	<0.01	< 0.01	<0.01	< 0.01	0.052	0.229	E&P TANK v2.0

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

*Emissions values are on a per-tank basis

TANK CONSTRUCTION AND OPERATIO	N INFORMATION				
21. Tank Shell Construction:					
\boxtimes Riveted \square Gunite lined \square Epox	y-coated rivets \Box O	ther (describe)			
21A. Shell Color:	21B. Roof Color:		21C. Year	Last Painted:	
22. Shell Condition (if metal and unlined):			1		
🗆 No Rust 🛛 Light Rust 🗆 Dense	Rust 🛛 Not applic	able			
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperature:	22C. If yes	, how is heat provided to tank?	
23. Operating Pressure Range (psig): zero (no	pressure, atmospheric	2)			
Must be listed for tanks using VRUs wi					
24. Is the tank a Vertical Fixed Roof Tank?		roof provide radius (ft):	24B. If yes	, for cone roof, provide slop (ft/ft):	
🖾 Yes 🗆 No			0.00		
25. Complete item 25 for Floating Roof Tanks	\square Does not apply	\boxtimes			
25A. Year Internal Floaters Installed:					
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal 🛛 Liquid mo	unted resilie	nt seal	
	or mounted resilient s	-			
1			,01100).		
25C. Is the Floating Roof equipped with a seco					
25D. If yes, how is the secondary seal mounted	? (check one) \Box Sho		her (describe	»):	
25E. Is the floating roof equipped with a weath	er shield? 🛛 Yes	□ No			
25F. Describe deck fittings:					
26. Complete the following section for Interna	l Floating Roof Tanks	☑ Does not appl	у		
26A. Deck Type: 🗆 Bolted 🗆 W	/elded	26B. For bolted decks	, provide deck	construction:	
26C. Deck seam. Continuous sheet construction	n:				
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wid	e 🗆 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide	□ other (des	cribe)	
	of deck (ft ²):	26F. For column supp		26G. For column supported	
		tanks, # of columns: tanks, diameter of column:			
27. Closed Vent System with VRU? \Box Yes	🛛 No	•			
28. Closed Vent System with Enclosed Combu-	stor? 🗆 Yes 🖾 No				
SITE INFORMATION - Not Applicable:		erformed using E&P	TANK softs	vare	
29. Provide the city and state on which the data					
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Max	imum Temper	ature (°F):	
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed	-		
34. Annual Avg. Solar Insulation Factor (BTU/	ft ² -day):	35. Atmospheric Press	sure (psia):		
LIQUID INFORMATION - Not Applicab	le: Tank calculations	performed using E&	&P TANK so	oftware	
36. Avg. daily temperature range of bulk	36A. Minimum (°F):		36B. Maxin	num (°F):	
liquid (°F):					
37. Avg. operating pressure range of tank	37A. Minimum (psig)		37B. Maxin	num (psig):	
(psig): 38A. Minimum liquid surface temperature (°F)		38B. Corresponding v		(main)	
39A. Avg. liquid surface temperature (°F):	•				
40A. Maximum liquid surface temperature (°F).	•	39B. Corresponding vapor pressure (psia): 40B. Corresponding vapor pressure (psia):			
40A. Maximum liquid surface temperature (°F): 40B. Corresponding vapor pressure (psia): 41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.					
41A. Material name and composition:		ridu duditional pages in	lieeessarji		
41B. CAS number:					
41C. Liquid density (lb/gal):					
41D. Liquid molecular weight (lb/lb-mole):					
41E. Vapor molecular weight (lb/lb-mole):					
41F. Maximum true vapor pressure (psia):					
41G. Maximum Reid vapor pressure (psia):					
41H. Months Storage per year.					
From: To:					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as					
inputs into flashing emission calculations.	1	1			

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name				
Daybrook Compressor Station	Methanol				
3. Emission Unit ID number	4. Emission Point ID number				
T02	T02				
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:				
Was the tank manufactured after August 23, 2011?	\Box New construction				
\boxtimes Yes \Box No	□ New stored material				
	⊠ Other				
	□ Relocation				
7A. Description of Tank Modification (if applicable) N/A					
7B. Will more than one material be stored in this tank? If so, a separate form	n must be completed for each material.				
🗆 Yes 🛛 No					
7C. Was USEPA Tanks simulation software utilized?					
\boxtimes Yes \square No					
If Yes, please provide the appropriate documentation and items 8-42 below	are not required.				

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.					
4,200 gallons						
9A. Tank Internal Diameter (ft.) 9.5	9B. Tank Internal Height (ft.) 8					
10A. Maximum Liquid Height (ft.) 8	10B. Average Liquid Height (ft.) 4					
11A. Maximum Vapor Space Height (ft.) 8	11B. Average Vapor Space Height (ft.) 4					
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume".					
4,200 gallons						
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached					
emissions calculations for all throughput values	emissions calculations for all throughput values					
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions					
emissions calculations for all throughput values	calculations for all throughput values					
16. Tank fill method \Box Submerged \boxtimes Splash	Bottom Loading					
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No					
If yes, (A) What is the volume expansion capacity of the system	(gal)?					
(B) What are the number of transfers into the system per y	/ear?					
18. Type of tank (check all that apply):						
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat roof	\boxtimes cone roof \square dome roof \square other (describe)					
□ External Floating Roof □ pontoon roof □ double	□ External Floating Roof □ pontoon roof □ double deck roof					
Domed External (or Covered) Floating Roof						
□ Internal Floating Roof □ vertical column support □ self-supporting						
\Box Variable Vapor Space \Box lifter roof \Box diaphragm						
□ Pressurized □ spherical □ cylindrical						
□ Other (describe)						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:		
☑ Does Not Apply		□ Rupture Disc (psig)
□ Inert Gas Blanket of		\Box Carbon Adsorption ¹
□ Vent to Vapor Combustion Dev	ice1 (vapor combus	stors, flares, thermal oxidizers, enclosed combustors)
□ Conservation Vent (psig)		\Box Condenser ¹
Vacuum Setting	Pressure Setting	
□ Emergency Relief Valve (psig)		

Vacuum Setting Pressure Setting

 \Box Thief Hatch Weighted \Box Yes \Box No

¹ Complete appropriate Air Pollution Control Device Sheet

20. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application).									
Material Name	Flashing Loss		Breathing Loss		Working Loss		Total		Estimation Method ¹
							Emissio	ns Loss	
	lb/hr	tpy	lb/hr	Тру	lb/hr	tpy	lb/hr	tpy	
Methanol Tank	<0.01	<0.01	0.010	0.043	0.006	0.025	0.016	0.069	EPA Tanks 4.0.9d

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

*Emissions values are on a per-tank basis

TANK CONSTRUCTION AND OPERATIO	TANK CONSTRUCTION AND OPERATION INFORMATION					
21. Tank Shell Construction:						
\boxtimes Riveted \square Gunite lined \square Epoxy-coated rivets \square Other (describe)						
21A. Shell Color:	21B. Roof Color:		21C. Yea	r Last Painted:		
22. Shell Condition (if metal and unlined):						
\Box No Rust \boxtimes Light Rust \Box Dense	Rust 🛛 Not applic	able				
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperature:	22C. If ye	es, how is heat provided to tank?		
23. Operating Pressure Range (psig): zero (no	pressure, atmospheric	2)				
Must be listed for tanks using VRUs with	th closed vent system	ı .				
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provide radius (ft):	24B. If ye	es, for cone roof, provide slop (ft/ft):		
\boxtimes Yes \Box No			0.00			
25. Complete item 25 for Floating Roof Tanks	\square Does not apply	\boxtimes				
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal 🛛 🗆 Liquid mo	unted resil	ient seal		
🗆 Vap	or mounted resilient s	eal \Box Other (des	cribe):			
25C. Is the Floating Roof equipped with a second	ndary seal? 🛛 Yes	□ No				
25D. If yes, how is the secondary seal mounted	? (check one) 🗌 Sho	e 🗆 Rim 🗆 Oth	ner (descril	pe):		
25E. Is the floating roof equipped with a weather	er shield? 🗌 Yes	🗆 No				
25F. Describe deck fittings:						
26. Complete the following section for Interna	l Floating Roof Tanks	☑ Does not apply	y			
26A. Deck Type: 🗌 Bolted 🗌 W	/elded	26B. For bolted decks,	provide dec	ck construction:		
26C. Deck seam. Continuous sheet construction	n:					
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide \Box	other (de	escribe)		
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. For column supported		26G. For column supported		
		tanks, # of columns:		tanks, diameter of column:		
27. Closed Vent System with VRU? \Box Yes	🛛 No					
28. Closed Vent System with Enclosed Combus	28. Closed Vent System with Enclosed Combustor? Yes No					
SITE INFORMATION - Not Applicable: Tank calculations performed using EPA Tanks 4.0.9d software						
29. Provide the city and state on which the data in this section are based:						
30. Daily Avg. Ambient Temperature (°F):	31. Annual Avg. Maximum Temperature (°F):					
32. Annual Avg. Minimum Temperature (°F):	2	33. Avg. Wind Speed (mph):				
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 35. Atmospheric Pressure (psia):						
LIQUID INFORMATION - Not Applicable		performed using EP				
36. Avg. daily temperature range of bulk	36A. Minimum (°F):		36B. Max	timum (°F):		
liquid (°F): 37. Avg. operating pressure range of tank	37A. Minimum (psig)		37B Max	timum (psig):		
(psig):	JA. Winning (psig)		57 D . 1918)	unum (psig).		
38A. Minimum liquid surface temperature (°F)	<u> </u>	38B. Corresponding va	apor pressur	e (psia):		
39A. Avg. liquid surface temperature (°F):		39B. Corresponding va				
40A. Maximum liquid surface temperature (°F)	:	40B. Corresponding va		-		
41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.						

41A. Material name and composition:		
41B. CAS number:		
41C. Liquid density (lb/gal):		
41D. Liquid molecular weight (lb/lb-mole):		
41E. Vapor molecular weight (lb/lb-mole):		
41F. Maximum true vapor pressure (psia):		
41G. Maximum Reid vapor pressure (psia):		
41H. Months Storage per year.		
From: To:		
42. Final maximum gauge pressure and		
temperature prior to transfer into tank used as		
inputs into flashing emission calculations.		

GENERAL INFORMATION

1. Bulk Storage Area Name	2. Tank Name
Daybrook Compressor Station	Produced Water Tanks
3. Emission Unit ID number	4. Emission Point ID number
T03 to T04	T03 to T04
5. Date Installed, Modified or Relocated (for existing tanks)	6. Type of change:
Was the tank manufactured after August 23, 2011?	\Box New construction
\boxtimes Yes \Box No	□ New stored material
	⊠ Other
	\Box Relocation
7A. Description of Tank Modification (if applicable) N/A	
7B. Will more than one material be stored in this tank? If so, a separate form	n must be completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
\Box Yes \boxtimes No	
If Yes, please provide the appropriate documentation and items 8-42 below	are not required.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal	l cross-sectional area multiplied by internal height.
16,800	
9A. Tank Internal Diameter (ft.) 12	9B. Tank Internal Height (ft.) 20
10A. Maximum Liquid Height (ft.) 20	10B. Average Liquid Height (ft.) 10
11A. Maximum Vapor Space Height (ft.) 20	11B. Average Vapor Space Height (ft.) 10
12. Nominal Capacity (specify barrels or gallons). This is also h	known as "working volume". 16,800 gallons
13A. Maximum annual throughput (gal/yr) See attached	13B. Maximum daily throughput (gal/day) See attached
emissions calculations for all throughput values	emissions calculations for all throughput values
14. Number of tank turnovers per year See attached	15. Maximum tank fill rate (gal/min) See attached emissions
emissions calculations for all throughput values	calculations for all throughput values
16. Tank fill method \Box Submerged \boxtimes Splash	□ Bottom Loading
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No
If yes, (A) What is the volume expansion capacity of the system	(gal)?
(B) What are the number of transfers into the system per y	year?
18. Type of tank (check all that apply):	
\boxtimes Fixed Roof \boxtimes vertical \square horizontal \square flat roof	\boxtimes cone roof \square dome roof \square other (describe)
□ External Floating Roof □ pontoon roof □ double of	deck roof
Domed External (or Covered) Floating Roof	
□ Internal Floating Roof □ vertical column support	□ self-supporting
□ Variable Vapor Space □ lifter roof □ diaphragm	
□ Pressurized □ spherical □ cylindrical	
\Box Other (describe)	

PRESSURE/VACUUM CONTROL DATA

19. Check as many as app	ply:								
□ Does Not Apply				🗆 Ruptu	re Disc (ps	sig)			
□ Inert Gas Blanket of _				□ Carbo	n Adsorpt	ion ¹			
□ Vent to Vapor Combu	stion Devi	ice1 (vapo	r combust	ors, flares,	, thermal c	oxidizers,	enclosed c	ombustors	3)
□ Conservation Vent (ps	sig)			□ Conde	nser ¹				
Vacuum Setting		Pressure	Setting						
Emergency Relief Val	lve (psig)								
Vacuum Setting		Pressure	Setting						
☑ Thief Hatch Weighted	l⊠Yes [∃ No							
¹ Complete appropriate A	ir Pollutio	n Control	Device Sh	neet					
20. Expected Emission R	ate (submi	it Test Dat	ta or Calci	ulations he	ere or elsev	where in th	ne applicat	tion).	
Material Name	Flashing	g Loss	Breathi	ng Loss	Workin	g Loss	Total		Estimation Method ¹
							Emissio	ns Loss	
	lb/hr	tpy	lb/hr	Тру	lb/hr	tpy	lb/hr	tpy	
Produced Water Tank	0.105	0.459	<0.01	<0.01	< 0.01	< 0.01	0.105	0.459	E&P TANK v2.0

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

*Emissions values are on a per-tank basis

TANK CONSTRUCTION AND OPERATIO	N INFORMATION			
21. Tank Shell Construction:				
\boxtimes Riveted \square Gunite lined \square Epox	y-coated rivets \Box O	ther (describe)		
21A. Shell Color:	21B. Roof Color:		21C. Year	Last Painted:
22. Shell Condition (if metal and unlined):				
\Box No Rust \boxtimes Light Rust \Box Dense	Rust 🛛 Not applic	able		
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperature:	22C. If ye	s, how is heat provided to tank?
23. Operating Pressure Range (psig): zero (no	pressure, atmospheric	2)	•	
Must be listed for tanks using VRUs wi	•			
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	roof provide radius (ft):	-	s, for cone roof, provide slop (ft/ft):
\boxtimes Yes \Box No			0.00	
25. Complete item 25 for Floating Roof Tanks	$\overline{\mathbf{s}}$ Does not apply	\boxtimes		
25A. Year Internal Floaters Installed:				
25B. Primary Seal Type (check one):	allic (mechanical) sho	e seal 🛛 🗆 Liquid mo	unted resili	ent seal
🗆 🗆 Vap	oor mounted resilient s	eal \Box Other (des	scribe):	
25C. Is the Floating Roof equipped with a seco	ndary seal? 🛛 Yes	□ No		
25D. If yes, how is the secondary seal mounted	? (check one) \Box Sho	e \Box Rim \Box Otl	her (describ	be):
25E. Is the floating roof equipped with a weath	er shield? 🗌 Yes	🗆 No		
25F. Describe deck fittings:				
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes Does not apply	у	
26A. Deck Type: \Box Bolted \Box W	Velded	26B. For bolted decks,	provide dec	k construction:
26C. Deck seam. Continuous sheet construction	n:	•		
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	\Box 5 x 12 ft. wide \Box	other (de	escribe)
26D. Deck seam length (ft.): 26E. Area	a of deck (ft ²):	26F. For column support	orted	26G. For column supported
		tanks, # of columns:		tanks, diameter of column:
27. Closed Vent System with VRU? \Box Yes	🖾 No			
28. Closed Vent System with Enclosed Combu	stor? 🗆 Yes 🖾 No			
SITE INFORMATION - Not Applicable:			TANK soft	tware
29. Provide the city and state on which the data	in this section are based			
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Maxi	mum Tempe	erature (°F):

32. Annual Avg. Minimum Temperature (°F):		33. A	vg. Wind Speed	(mph):	
34. Annual Avg. Solar Insulation Factor (BTU/ft ² -day):		35. Atmospheric Pressure (psia):			
LIQUID INFORMATION - Not Applicabl	e: Tank calculations	perfo	rmed using E&	P TANK soft	ware
36. Avg. daily temperature range of bulk	36A. Minimum (°F):			36B. Maximur	m (°F):
liquid (°F):					
37. Avg. operating pressure range of tank	37A. Minimum (psig):			37B. Maximur	n (psig):
(psig):					
38A. Minimum liquid surface temperature (°F):		38B.	Corresponding va	apor pressure (ps	ia):
39A. Avg. liquid surface temperature (°F):		39B.	Corresponding va	apor pressure (ps	ia):
40A. Maximum liquid surface temperature (°F)	:	40B.	Corresponding va	apor pressure (ps	ia):
41. Provide the following for each liquid or gas	to be stored in the tank.	Add ad	ditional pages if 1	necessary.	
41A. Material name and composition:					
41B. CAS number:					
41C. Liquid density (lb/gal):					
41D. Liquid molecular weight (lb/lb-mole):					
41E. Vapor molecular weight (lb/lb-mole):					
41F. Maximum true vapor pressure (psia):					
41G. Maximum Reid vapor pressure (psia):					
41H. Months Storage per year.					
From: To:					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as					
inputs into flashing emission calculations.					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID #1	Status ²	Content ³	Volume ⁴
T05	Existing*	Coolant (Glycol) Tank	500 Gallon
T06	Existing*	Coolant (Glycol) Tank	500 Gallon
T07	Existing*	Coolant (Glycol) Tank	500 Gallon
T08	Existing*	Coolant (Glycol) Tank	500 Gallon
T09	Existing*	Engine/Compressor Oil Tank	500 Gallon
T10	Existing*	Engine/Compressor Oil Tank	500 Gallon
T11	Existing*	Engine/Compressor Oil Tank	500 Gallon
T12	Existing*	Engine/Compressor Oil Tank	500 Gallon
T13	Existing*	Engine/Compressor Oil Tank	500 Gallon
T14	Existing*	Engine/Compressor Oil Tank	500 Gallon
T15	Existing*	Engine/Compressor Oil Tank	500 Gallon
T16	Existing*	Engine/Compressor Oil Tank	500 Gallon
T17	Existing*	Engine/Compressor Oil Tank	500 Gallon
T18	Existing*	Engine/Compressor Oil Tank	500 Gallon
T19	Existing*	Triethylene Glycol (TEG) Tank	1,000 Gallon
T20	Existing*	Triethylene Glycol (TEG) Tank	1,000 Gallon
T21	Existing*	Coolant/Oil Tank	1,000 Gallon

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following:

EXIST Existing Equipment

- NEW Installation of New Equipment
- REM Equipment Removed

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3. 4.

Enter the maximum design storage tank volume in gallons.

* The facility includes existing tanks and will be installing new tanks, however this permit application seeks to revise the list of tanks to ensure completeness and correctness. The permit application forms include a complete listing of tanks; the applicant is requesting that the issued permit reflect the forms (all tanks are listed as 'Existing*').

Natural Gas Fired Fuel Burning Unit Data Sheet(s)

ATTACHMENT L – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID#1	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
RBV-1	RBV-1	Reboiler	2012	Existing	1.5	~1,072

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

Internal Combustion Engine Data Sheet(s)

ATTACHMENT M – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form*.

exita pages	If necessary.	Ocheruit	n(s) unu i	nicroiun	sine gene	ruior(s) s	mun uise) use inis	<i>j011m</i> .
Emission Unit I	D#1	CE-1 t	o CE-2	C	E-3	CE-4 to	D CE-5	CE	-6
Engine Manufac	turer/Model	Cater	rpillar	Caterpillar		Cater	pillar	Cater	pillar
		G3	516	G3	8612	G36	016	G3	608
Manufacturers F	Rated bhp/rpm	1,3	380	3,	750	5,0	00	2,3	370
Source Status ²		Exis	sting	Exis	sting*	Exis	ting	Exis	ting
Date Installed/ Modified/Remo	ved/Relocated ³	20	12	т	BD	20	14	20	14
Engine Manufac /Reconstruction		20	12	т	BD	20	14	20	14
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	 ⋈ 40CFR6(JJJJ □ JJJJ Certi □ 40CFR6(IIII □ IIII Certi ⋈ 40CFR63 ZZZZ □ NESHA NSPS JJJJ □ NESHA Remote Son 	ified?) Subpart ified? 3 Subpart P ZZZZ/ Window P ZZZZ	NSPS JJJ	JJJ ertified? 60 III rtified? 63 ZZZZ AP ZZZZ/ J Window AP ZZZZ	 ⋈ 40CFR6 Subpart JJ □ JJJJ Cer □ 40CFR6 Subpart II □ IIII Cert ⋈ 40CFR6 Subpart ZZ □ NESHA NSPS JJJJ □ NESHA Remote Sci 	JJ tified? 0 II tified? 3 ZZZ P ZZZZ/ Window P ZZZZ	 ⋈ 40CFR6 JJJJ □ JJJJ Cer □ 40CFR6 IIII □ IIII Cert ⋈ 40CFR6 ZZZZ □ NESHA NSPS JJJJ □ NESHA Remote Sci 	tified? 0 Subpart ified? 3 Subpart .P ZZZZ/ Window .P ZZZZ
Engine Type ⁶		45	SLB	4:	SLB	4S	LB	45	LB
APCD Type ⁷		Ox	Cat	0)	cat	OxC	Cat	Ox	Cat
Fuel Type ⁸		Р	Q		PQ	P	2	Р	Q
H ₂ S (gr/100 scf))	Ne	eg.	N	eg.	Ne	g.	Ne	eg.
Operating bhp/r	pm	1,3	380	3,	750	5,0	00	2,3	370
BSFC (BTU/bhr	o-hr)	8,2	257	7,	431	7,5	11	7,5	531
Hourly Fuel Th	oughput	10,627	ft ³ /hr	25,989	ft³/hr	35,025	ft³/hr	16,646	ft ³ /hr
Annual Fuel Th (Must use 8,760 emergency gene	hrs/yr unless	11.39	MMft ³ /yr	27.87	MMft ³ /yr	37.56	MMft ³ /yr	17.85	MMft ³ /yr
Fuel Usage or H Operation Meter		Yes 🛛	No 🗆	Yes 🖂	No 🗆	Yes 🛛	No 🗆	Yes 🖂	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tpy) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tpy) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tpy) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tpy) ¹¹
See Emissions Calculations	NO _X	1.52	6.66	4.13	18.11	5.51	24.14	2.61	11.44
See Emissions Calculations	СО	6.08	26.65	1.50	6.55	1.65	7.24	0.99	4.34
See Emissions Calculations	VOC	1.58	6.93	2.40	10.50	3.42	14.97	1.67	7.32
See Emissions Calculations	SO ₂	0.01	0.03	0.02	0.07	0.02	0.10	0.01	0.05
See Emissions Calculations	PM ₁₀	0.11	0.50	0.28	1.22	0.38	1.64	0.18	0.78
See Emissions Calculations	Formaldehyde	0.12	0.53	0.33	1.45	0.66	2.90	0.31	1.37
See Emissions Calculations	Total HAPs	0.34	1.50	0.87	3.82	1.39	6.09	0.66	2.87
See Emissions Calculations	GHG (CO ₂ e)	1,744	7,639	4,198	18,385	5,509	24,127	3,000	13,141

- 1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.
- 2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

- 6 Enter the Engine Type designation(s) using the following codes:
 - 2SLBTwo Stroke Lean Burn4SRBFour Stroke Rich Burn4SLBFour Stroke Lean Burn
- 7 Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes:

	A/F	Air/Fuel Ratio		IR	Ignition Retard		
	HEIS	High Energy Ignition System		SIPC	Screw-in Precombustio	n Chambers	
	PSC	Prestratified Charge		LEC	Low Emission Combus	tion	
	NSCR	Rich Burn & Non-Selective Catalytic Reduction	n	OxCat	Oxidation Catalyst		
	SCR	Lean Burn & Selective Catalytic Reduction					
8	Enter th	ne Fuel Type using the following codes:					
	PQ	Pipeline Quality Natural Gas	RG	Raw Natura	l Gas /Production Gas	D Die	sel
9	Enter t	the Potential Emissions Data Reference de	signatio	n using the f	ollowing codes. Attac	h all reference	e data used.
	MD	Manufacturer's Data		AP AP	2-42		
	GR	GRI-HAPCalc TM		OT Ot	her (please	list)	

- 10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.
- 11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

* Although currently listed in the permit, this source has yet to be installed. Therefore, since this application seeks a new permit, the status is noted as 'New'.

Engine Air Pollution Control Device (Emission Unit ID# CE-1 to CE-2, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \boxtimes No \square

□ NSCR □ SCR ⊠ Oxidation Catalyst					
Provide details of process control used for proper mi N/A	xing/control of red	acing agent with gas stream:			
Manufacturer: EMIT Technologies (or equivalent)	Model #	RT-2415-H (or equivalent)			
Design Operating Temperature: 992 °F	Design g	as volume: 9,126 acfm			
Service life of catalyst: TBD	Provide	manufacturer data? 🛛 Yes 🛛 No			
Volume of gas handled: 9,126 acfm at 992 °F		g temperature range for NSCR/Ox Cat: 0 °F to 1,250 °F			
Reducing agent used, if any: N/A	Ammon	a slip (ppm): N/A			
Pressure drop against catalyst bed (delta P): Unknow	wn inches of H ₂ O				
Provide description of warning/alarm system that pro Unknown	otects unit when op	eration is not meeting design conditions:			
Is temperature and pressure drop of catalyst required \Box Yes \boxtimes No	to be monitored p	er 40CFR63 Subpart ZZZZ?			
How often is catalyst recommended or required to be TBD	e replaced (hours of	operation)?			
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please NSPS/GACT,	list any maintenan	e required and the applicable sections in			

Engine Air Pollution Control Device (Emission Unit ID# CE-3, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \boxtimes No \square

\Box NSCR	\Box SCR	🛛 Oxidation Catalyst			
Provide details of process control used for pro N/A	oper mixing/control of red	acing agent with gas stream:			
Manufacturer: Maxim Silencers (or equivaler	nt) Model #	MCCOG4-8-3026-C3 (or equivalent)			
Design Operating Temperature: 848 °F	Design g	as volume: 23,795 acfm			
Service life of catalyst: TBD	Provide	manufacturer data? 🛛 Yes 🛛 No			
Volume of gas handled: 23,795 acfm at 848 °		g temperature range for NSCR/Ox Cat: 2 °F to 928 °F			
Reducing agent used, if any: N/A	Ammoni	Ammonia slip (ppm): N/A			
Pressure drop against catalyst bed (delta P):	~3.02 inches of H ₂ O				
Provide description of warning/alarm system Unknown	that protects unit when ope	eration is not meeting design conditions:			
Is temperature and pressure drop of catalyst re □ Yes ⊠ No	equired to be monitored pe	r 40CFR63 Subpart ZZZZ?			
How often is catalyst recommended or require TBD	ed to be replaced (hours of	operation)?			
How often is performance test required? Initial Annual Every 8,760 hours of operation					

Engine Air Pollution Control Device (Emission Unit ID# CE-4 to CE-5, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included? Yes \boxtimes No \square

\Box NSCR	\Box SCR	🛛 Oxidation Catalyst
Provide details of process control used for proper N/A	mixing/control of red	ducing agent with gas stream:
Manufacturer: EMIT Technologies (or equivalent	t) Model #	#: EBH-9000-3036F-6C4E-48 (or equivalent)
Design Operating Temperature: 858 °F	Design	gas volume: 31,207 acfm
Service life of catalyst: TBD	Provide	manufacturer data? 🛛 Yes 🛛 No
Volume of gas handled: 31,207 acfm at 858 °F		ng temperature range for NSCR/Ox Cat: 600 °F to 1,250 °F
Reducing agent used, if any: N/A	Ammon	ia slip (ppm): N/A
Pressure drop against catalyst bed (delta P): inch	es of H ₂ O	
Provide description of warning/alarm system that Unknown	protects unit when op	peration is not meeting design conditions:
Is temperature and pressure drop of catalyst requi □ Yes ⊠ No	red to be monitored p	er 40CFR63 Subpart ZZZZ?
How often is catalyst recommended or required to TBD	be replaced (hours o	f operation)?
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required		

Engine Air Pollution Control Device (Emission Unit ID# CE-6, use extra pages as necessary)

Air Pollution Control Device Manufacturer's Data Sheet included?Yes □No ⊠Source is in current permit

□ NSCR	□ SCR	🛛 Oxidation Catalyst
Provide details of process control used for proper N/A	mixing/control of red	ucing agent with gas stream:
Manufacturer: Unknown	Model #	: Unknown
Design Operating Temperature: 858 °F	Design	gas volume: 16,106 acfm
Service life of catalyst: TBD	Provide	manufacturer data? 🛛 Yes 🛛 No
Volume of gas handled: 16,106 acfm at 858 °F	Operatin From	g temperature range for NSCR/Ox Cat: F to °F
Reducing agent used, if any: N/A	Ammon	a slip (ppm): N/A
Pressure drop against catalyst bed (delta P): inche	es of H ₂ O	
Provide description of warning/alarm system that Unknown	protects unit when op	eration is not meeting design conditions:
Is temperature and pressure drop of catalyst require \Box Yes \boxtimes No	red to be monitored p	er 40CFR63 Subpart ZZZZ?
How often is catalyst recommended or required to TBD	be replaced (hours o	operation)?
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required		

G3516B

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Exterran M3 Midstream, LLC

GAS COMPRESSION APPLICATION

CAT WIDE RANGE FUEL SYSTEM: ENGINE SPEED (rpm): 1400 WITH AIR FUEL RATIO CONTROL COMPRESSION RATIO: 8:1 130 SITE CONDITIONS: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): 201 FUEL: FUEL PRESSURE RANGE(psig): JACKET WATER OUTLET (°F): 210 FUEL METHANE NUMBER: COOLING SYSTEM: JW+OC+1AC, 2AC ADEM3 FUEL LHV (Btu/scf): **IGNITION SYSTEM:** EXHAUST MANIFOLD: DRY ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F): COMBUSTION: Ultra Lean Burn NOx EMISSION LEVEL (g/bhp-hr NOx): NAMEPLATE RATING: 0.5 SET POINT TIMING: 31.6

			MAXIMUM	SITE RATING AT MAXIMUM INLET AIR TEMPERATURE		
ENGINE DATA ENGINE DATA JEL CONSUMPTION (LHV) JEL CONSUMPTION (HHV) IR FLOW IR FLOW IR FLOW WET (77°F, 14.7 psia) ILET MANIFOLD PRESSURE XHAUST STACK TEMPERATURE	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER	(1)	bhp	1380	1380	1035	690
		*F	100	100	100	100
ENGINE DATA	Sloveski					
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7442	7442	7971	8561
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8257	8257	8844	9499
AIR FLOW	(3)(4)	lb/hr	13860	13860	10872	7601
AIR FLOW WET (77°F, 14.7 psia)	(3)(4)	scfm	3126	3126	2452	1714
NLET MANIFOLD PRESSURE	(5)	in Hg(abs)	94.6	94.6	76.8	54.0
EXHAUST STACK TEMPERATURE	(6)	°F	992	992	986	1006
EXHAUST GAS FLOW (@ stack temp, 14.5 psia)	(7)(4)	ft3/min	9106	9106	7122	5054
EXHAUST GAS MASS FLOW	(7)(4)	ib/hr	14341	14341	11258	7877
EMISSIONS DATA	A CONTRACT					
NOx (as NO2)	(8)	g/bhp-hr	0.50	0.50	0.50	0.50
20	(8)	g/bhp-hr	2.43	2.43	2.60	2.55
FHC (mol. wt. of 15.84)	(8)	g/bhp-hr	4.75	4.75	5.09	5.17
VMHC (mol. wt. of 15.84)	(8)	g/bhp-hr	0.71	0.71	0.76	0.77
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.48	0.48	0.51	0.52
HCHO (Formaldehyde)	(8)	g/bhp-hr	0.43	0.43	0.43	0.42
CO2	(8)	g/bhp-hr	472	472	504	548
EXHAUST OXYGEN	(10)	% DRY	9.0	9.0	8.7	8.3
HEAT REJECTION	网络路径	4.40				
HEAT REJ. TO JACKET WATER (JW)	(11)	Btu/min	23634	23634	21718	20074
HEAT REJ. TO ATMOSPHERE	(11)	Btu/min	6110	6110	5092	4074
HEAT REJ. TO LUBE OIL (OC)	(11)	Btu/min	4449	4449	3947	3323
HEAT REJ. TO A/C - STAGE 1 (1AC)	(11)(12)	Btu/min	12581	12581	10513	3829
HEAT REJ. TO A/C - STAGE 2 (2AC)	(11)(12)	Btu/min	5629	5629	5299	3441

(12)(13)	Btu/min	44546
(12)(13)	Btu/min	5910
	(12)(13)	

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max, rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature.

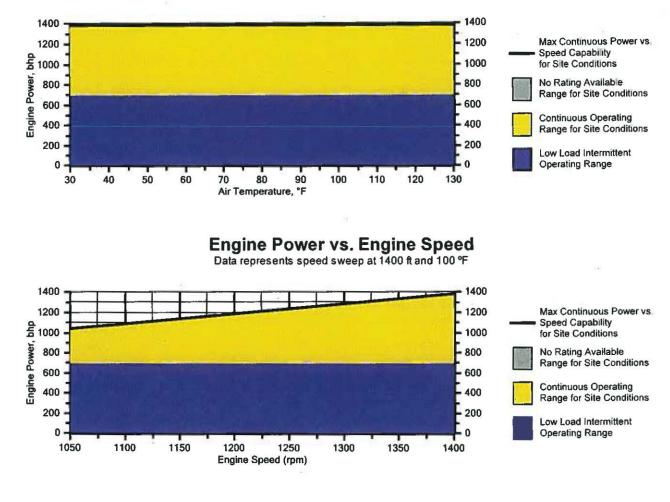
Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three

PREPARED BY: Doug kern, Exterran Data generated by Gas Engine Rating Pro Version 3.04.00 Ref. Data Set DM8800-04-002, Printed 06Apr2011

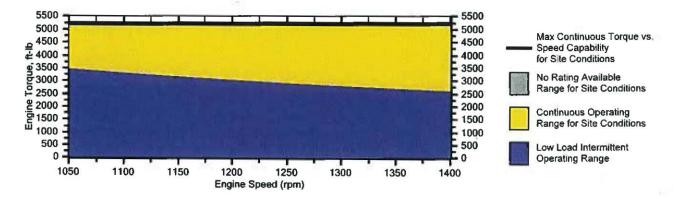
CATERPILLAR

Gas Analysis 7.0-50.0 89.4 929 1400 100 1380 bhp@1400rpm


G3516B

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Exterran M3 Midstream, LLC

GAS COMPRESSION APPLICATION


Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1400 ft and 1400 rpm

Engine Torque vs. Engine Speed

Data represents speed sweep at 1400 ft and 100 °F

Note: At site conditions of 1400 ft and 100°F inlet air temp., constant torque can be maintained down to 1050 rpm. The minimum speed for loading at these conditions is 1050 rpm.

PREPARED BY: Doug kern, Exterran Data generated by Gas Engine Rating Pro Version 3.04.00 Ref. Data Set DM8800-04-002, Printed 06Apr2011 **CATERPILLAR**

G3516B

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Exterran M3 Midstream, LLC

CATERPILLAR'

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is ± 3.0% of full load data.

3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.

6. Exhaust stack temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

8. Emission levels are at engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions, adjusted to the specified NOx level at 100% load. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

9. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

10. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

11. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

12. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

13. Heat exchanger sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

PREPARED BY: Doug kern, Exterran Data generated by Gas Engine Rating Pro Version 3.04.00 Ref. Data Set DM8800-04-002, Printed 06Apr2011

10497 Town & Country Way, Ste. 940 Houston, TX 77024 Office: 307.673.0883 | Direct: 307.675.5078 bwaggener@emittechnologies.com

Prepared For:

Joey Owens TECHNICAL COMPLIANCE SOLUTIONS

INFORMATION PROVIDED BY CATERPILLAR

Engine:	G3516B
Horsepower:	1380
RPM:	1400
Compression Ratio:	8.0
Exhaust Flow Rate:	9126 CFM
Exhaust Temperature:	992 °F
Reference:	DM8800-04
Fuel:	Natural Gas
Annual Operating Hours:	8760

Uncontrolled Emissions

	g/bhp-hr	Lb/Hr	Tons/Year
NOx:	0.50	1.52	6.66
CO:	2.43	7.39	32.38
THC:	4.77	14.51	63.56
NMHC	0.72	2.19	9.59
NMNEHC:	0.48	1.46	6.40
HCHO:	0.44	1.34	5.86
O2:	9.00 %		

POST CATALYST EMISSIONS

	% Reduction	g/bhp-hr	Lb/Hr	Tons/Year
HCHO:	>92 %	<0.04	<0.11	<0.47

CONTROL EQUIPMENT

Catalyst Element

Model:	RT-2415-H
Catalyst Type:	Oxidation, Premium Precious Group Metals
Substrate Type:	BRAZED
Manufacturer:	EMIT Technologies, Inc
Element Quantity:	3
Element Size:	Rectangle 24" x 15" x 3.5"
Estimated Lead Time:	7-10 Business Days to Ship

The information in this quotation, and any files transmitted with it, is confidential and may be legally privileged. It is intended only for the use of Individual(s) within the company named above. If you are the intended recipient, be aware that your use of any confidential or personal information may be restricted by state and federal privacy laws

www.emittechnologies.com

QUOTE: QUO-13970-B6F9

Expires: November 20, 2014

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of two (2) years from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from imprope use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

Catalyst performance using an EMIT Air/Fuel ratio controller is dependent upon property defined set-points, variable with engine and fuel gas composition. Air/fuel ratio controller performance is guaranteed, but not limited, to fuel gas with a HHV content of 1400 BTU/SCF.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or insportiate lubrication oil. The performance guarantee shall not cover the effects of excessive excelling hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of continues regime mainteer or ignition) exposing the catalyst to excessive excelling in temperatures. In most cases, excluding thermal deactivation, or contact a local EMIT Sales report washing (refer to EMIT Catalyst/Silencer Houring Manual for element wash information, or contact a local EMIT Sales report washing).

The exhaust temperature operating range at the converter inlet is a minimum of 600°F for oxidation catalyst and 750 °F for NSCR catalyst, and a maximum of 1250°F.

If a properly functioning, high temperature shut down switch is not installed, thermal deactivation of catalyst at sustained temperatures above 1250°F is not covered. If excessive exposure to over oxygenation of NSCR catalyst occurs due to improperly functioning or non-existent Air/Fuel ratio control, then deactivation of catalyst is not warranted.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent. Standard Oxidation Catalyst conversion efficiencies (% reduction) will be guaranteed for fuel gas containing less than 1.5% mole fraction of non-methane, nonethane hydrocarbons. Applications where fuel gas exceeds this level will require a Premium Oxidation Catalyst to maintain guaranteed VOC conversion efficiencies.

Engine lubrication oil shall contain less than 0.5 wt% Sulfated Ash with a maximum allowable specific oil consumption of 0.7 g/bhp-hr. The catalyst shall be limited to a maximum ash loading of 0.022 lb/ft3. Phosphorous and zinc additives are limited to 0.03 wt%. New or Reconstructed engines must operate for a minimum of 50 hours prior to catalyst installation, otherwise the warranty is void.

The catalyst must not be exposed to the following know poisoning agents, including: antimony, arsenic, chromium, copper, iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, and zinc. Total poison concentrations in the fuel gas must be limited to 0.25 ppm or less for catalyst to function properly.

Shipment - Promised shipping dates are approximate lead times from the point of manufacture and are not guaranteed. EMIT Technologies, Inc. will not be liable for any loss, damage or delay in manufacture or delivery resulting from any cause beyond its control including, but not limited to a period equal to the time lost by reason of that delay. All products will be crated as per best practice to prevent any damage during shipment. Unless otherwise specified, Buyer will pay for any special packing and shipping requirements. Acceptance of goods by common carrier constitutes delivery to Buyer. EMIT Technologies, Inc. shall not be responsible for goods damaged or lost in transit.

Terms: Credit is extended to purchaser for net 30 time period. If payment is not received in the net 30 timeframe, interest on the unpaid balance will accrue at a rate of 1.5% per month from the Invoice date.

Order Cancellation Terms: Upon cancellation of an order once submittal of a Purchase Order has occurred, the customer will pay a 25% restocking fee for Catalyst Housings, Catalyst Elements, and Air/Fuel Ratio Controllers; 50% restocking fee for Cooler Top Solutions Exhaust System Accessories, and other Custom Built Products; 100% of all associated shipping costs incurred by EMIT; 100% of all project expenses incurred by EMIT for Field Services.

G3612

FN

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA 99488 DTE Energy Daybrook 3612

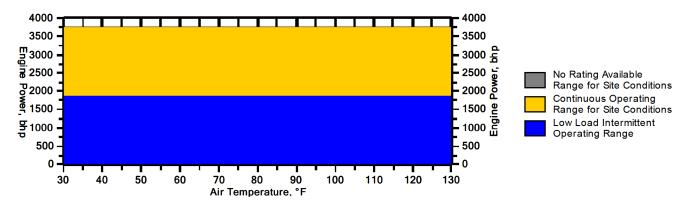
CE-3

ENGINE SPEED (rpm):	1000	RATING STRATEGY:	STANDARD
COMPRESSION RATIO:	7.6	RATING LEVEL:	CONTINUOUS
AFTERCOOLER TYPE:	SCAC	FUEL SYSTEM:	GAV
AFTERCOOLER - STAGE 2 INLET (°F):	130		WITH AIR FUEL RATIO CONTROL
AFTERCOOLER - STAGE 1 INLET (°F):	174	SITE CONDITIONS:	
JACKET WATER OUTLET (°F):	190	FUEL:	Gas Analysis
ASPIRATION:	TA	FUEL PRESSURE RANGE(psig): (See note 1)	58.0-70.3
COOLING SYSTEM:	JW+1AC, OC+2AC	FUEL METHANE NUMBER:	92.0
CONTROL SYSTEM:	ADEM4	FUEL LHV (Btu/scf):	928
EXHAUST MANIFOLD:	DRY	ALTITUDE(ft):	1615
COMBUSTION:	LOW EMISSION	MAXIMUM INLET AIR TEMPERATURE(°F):	100
NOx EMISSION LEVEL (g/bhp-hr NOx):	0.5	STANDARD RATED POWER:	3750 bhp@1000rpm
SET POINT TIMING:	18		
		MAXIMUN	I SITE RATING AT MAXIMUM
		RATING	INLET AIR TEMPERATURE

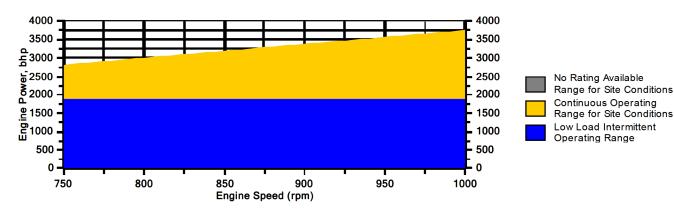
			RATING	INLET A		RATURE
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(2)	bhp	3750	3750	2813	1875
INLET AIR TEMPERATURE		°F	100	100	100	100
ENGINE DATA	1					
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	6699	6699	6901	7367
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	7431	7431	7655	8171
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(4)(5)	ft3/min	9408	9408	7111	4877
AIR FLOW (WET)	(4)(5)	lb/hr	40000	40000	30234	20738
FUEL FLOW (60⁰F, 14.7 psia)		scfm	451	451	349	248
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	97.1	97.1	73.7	52.0
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	°F	850	850	904	973
EXHAUST GAS FLOW (@engine outlet temp, 14.5 (WET)	(8)(5)	ft3/min	23476	23476	18503	13352
psia)						
EXHAUST GAS MASS FLOW (WET)	(8)(5)	lb/hr	41179	41179	31145	21387
EM ISSIONS DATA - ENGINE OUT	1					
NOx (as NO2)	(9)(10)	g/bhp-hr	0.50	0.50	0.50	0.50
CO	(9)(10)	g/bhp-hr	2.19	2.19	2.19	2.19
THC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	3.95	3.95	4.14	4.13
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	0.37	0.37	0.38	0.38
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.25	0.25	0.26	0.26
HCHO (Formaldehy de)	(9)(10)	g/bhp-hr	0.20	0.20	0.21	0.24
CO2	(9)(10)	g/bhp-hr	418	418	431	460
EXHAUST OXY GEN	(9)(12)	% DRY	11.4	11.4	11.1	10.7
HEAT REJECTION	1					
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	39518	39518	32130	26892
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	17707	17707	16913	13961
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	18843	18843	17146	15195
HEAT REJ. TO A/C - STAGE 1 (1AC)	(13)(14)	Btu/min	36228	36228	16657	3246
HEAT REJ. TO A/C - STAGE 2 (2AC)	(13)(14)	Btu/min	7148	7148	5241	3453
COOLING SYSTEM SIZING CRITERIA	1					
TOTAL JACKET WATER CIRCUIT (JW+1AC)	(14)(15)	Btu/min	81509	1		
TOTAL STAGE 2 AFTERCOOLER CIRCUIT (OC+2AC)	(14)(15)	Btu/min	30117			
				1		

A cooling system safety factor of 0% has been added to the cooling system sizing criteria.

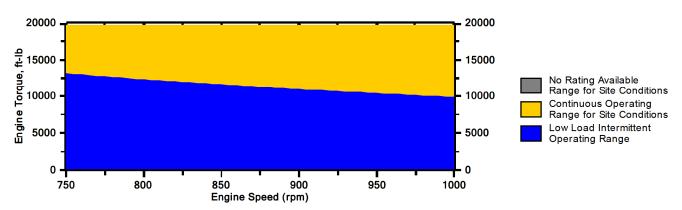
CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified after cooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.


For notes information consult page three.

GAS ENGINE SITE SPECIFIC TECHNICAL DATA 99488 DTE Energy Daybrook 3612


Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1615 ft and 1000 rpm


Engine Power vs. Engine Speed

Engine Torque vs. Engine Speed

Data represents speed sweep at 1615 ft and 100 °F

Note: At site conditions of 1615 ft and 100°F inlet air temp., constant torque can be maintained down to 750 rpm. The minimum speed for loading at these conditions is 750 rpm.

G3612

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA 99488 DTE Energy Daybrook 3612

NOTES

1. Fuel pressure range specified is to the engine gas shutoff valve (GSOV). Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

- 3. Fuel consumption tolerance is ± 2.5% of full load data.
- 4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.
- 9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxy gen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	96.7125	96.7125	Fuel Makeup:	Gas Analysis
Ethane	C2H6	2.6452	2.6452	Unit of Measure:	English
Propane	C3H8	0.1242	0.1242		C C
lsobutane	iso-C4H1O	0.0028	0.0028	Calculated Fuel Properties	
Norbutane	nor-C4H1C	0.0092	0.0092	-	00.0
lsopentane	iso-C5H12	0.0005	0.0005	Caterpillar Methane Number:	92.0
Norpentane	nor-C5H12	0.0005	0.0005		
Hexane	C6H14	0.0000	0.0000	Lower Heating Value (Btu/ scf):	928
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/ scf):	1029
Nitrogen	N2	0.2418	0.2418	WOBBE Index (Btu/ scf):	1227
Carbon Dioxide	CO2	0.2633	0.2633		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	196.98
Carbon Monoxide	CO	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	0.51%
Hydrogen	H2	0.0000	0.0000		
Oxygen	O2	0.0000	0.0000	RPC (%) (To 905 Btu/ scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.998
Octane	C8H18	0.0000	0.0000	Stoich A/ F Ratio (Vol/ Vol):	9.69
Nonane	C9H20	0.0000	0.0000	Stoich A/ F Ratio (Mass/ Mass):	16.95
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.572
Propylene	C3H6	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.311
TOTAL (Volume %)		100.0000	100.0000		1.011

CONDITIONS AND DEFINITIONS Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground ir accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

CATERPILLAR

ENGINE POWER (bhp):	3550	COOLING SY STEM:	JW, OC+AC
ENGINE SPEED (rpm):	1000	AFTERCOOLER WATER INLET (°F):	130
EXHAUST MANIFOLD:	DRY	JACKET WATER OUTLET (°F):	190

Free Field Mechanical and Exhaust Noise

SOUND POWER LEV	'EL (dB)										
Octave Band Center Frequency (OBCF)											
100% Load Data	dB(A)	16 Hz	32 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
Mechanical Sound	125.7	100.7	108	121.3	125.7	119.6	119.6	118.9	119.7	118.8	110.9
Exhaust (Right) Sound	143.6	101.6	107.9	122.9	121	120.5	122.5	127.5	132.8	139	140.3
Exhaust (Left) Sound	125.2	88.7	104.1	120.7	119.7	114.3	111.7	120.5	115.5	114.6	118.7
Air Inlet (Left) Sound	122.5	<90	<90	<90	<90	<90	93.4	<90	105.1	116.2	120.1

SOUND PARAMETER DEFINITION:

G3612

Sound Power Level Data - DM8702-03

Sound pow er is defined as the total sound energy emanating from a source irrespective of direction or distance. Sound pow er level data is presented under two index headings: Sound pow er level -- Mechanical Sound pow er level -- Exhaust

Mechanical: Sound pow er level data is calculated in accordance with ISO 3747. The data is recorded with the exhaust sound source isolated.

Exhaust: Sound pow er level data is calculated in accordance with ISO 6798 Annex A. Exhaust data is post-catalyst on gas engine ratings labeled as "Integrated Catalyst".

Measurements made in accordance with ISO 3747 and ISO 6798 for mechanical and exhaust sound level only. Frequency bands outside the displayed ranges are not measured, due to physical test, and environmental conditions that affect the accuracy of the measurement. No cooling system noise is included unless specifically indicated. Sound level data is indicative of noise levels recorded on one engine sample in a survey grade 3 environment.

How an engine is packaged, installed and the site acoustical environment will affect the site specific sound levels. For site specific sound level guarantees, sound data collection needs to be done on-site or under similar conditions.

Emission Control Application Data Sheet

Maxim Silencers 10635 Brighton Lane Stafford, Texas 77477 832 554-0980 832 554-0990 Phone:

Date: 2/28/2017

Customer: EXTERRAN

Customer Contact

Project: DTE DAY BROOK-3612A4 Powertherm Contact:

Engine Data:

(
	Engine Model:	CAT 3612A4	ļ	Speed:	1000	RPM	
	Fuel & Operating Type:	Natural Gas	Lean Burn	Engine Power:	3750 2823	Hp KW	
	Exhaust Flow Rate:	23795 40428 43224	acfm m ³ /hr Ibs/hr	Exhaust Temperature:	848 453	°F °C	

Catalyst Data:

/	Number of Core layers:	1							
	Model:	MCCOG4-8-30)26-C3			Inlet Size:	26	in	
	Grade:	HOSPITAL				Outlet Size:	30	in	
	Body Diameter:	72	in			Body Length:	297	in	
	Estimated weight:	10200 4628	lbs Kg			Estimated Back Pressure of the unit:	6.02 15.0	in of WC mbar	
	Core Part Number:	CE-7140-2, (1	5.44 X 24.75)	Qty	5	Speed through inlet:	5013	ft/min	
	Cell Density	300	cpsi			Back Pressure across Element(s) only	3.02 7.5	in of WC mbar	/

Emission:

Min. Temp. at Core Face: Max. Temp. at Core Face:			450 498	℃ ℃				Catalyst Type:	Oxidation
Max. Temp. at Core Face.	920	г	490	C				O ₂ in Exhaust	vol %
					Pollutant			H ₂ O in Exhaust	
		NOx		CO	NMNEHC/VOC	CH ₂ O/CHCO	ORGANIC PM10		
Engine Out / Pre Emission:		0.5		2.58	0.67	0.2	0	g/bhp-hr	
-		124.45		642.16	166.76	49.78	0.00	mg/Nm3	
Post Emission:		0.500		0.181	0.335	0.040	0.000	g/bhp-hr	
		124.45		44.95	83.38	9.96	0.00	mg/Nm3	
		0.0		93.0	50.0	80.0	50.0	% Reduction	
		4.17		1.51	2.80	0.33		lb/hr	
		18.27		6.60	12.24	1.46		tons/year operation	8760 hr/year
		59.8		21.6	40.0	4.8		ppmv	5
								ppmvd @ 15% O2	

Acoustics:

(
Frequency Band (H	z): 31	1.5	63	125	250	500	1000	2000	4000	8000		
Raw Noise SPL (dB) at 3.28	ft.: (0	0	0	0	0	0	0	0	0	7 dBA	
Estimated Attenuation (dl	B): 3	0	42	41	38	39	36	33	37	39	No Element	
Plu	is: 3	0	43	43	40	43	41	39	43	44	One Element Layer	
Silenced SPL (dB) at 3.28	ft.:											
	-										-	

Warranty & Notes:

	If Pre-Emission levels are not as noted above, contact Maxim Silencers for a re-guote.		
/			
/	 To achieve Post Emissions levels detailed above, exhaust temperature and Pre-Emission data must be as specified. 		1
1	 Maximum allowable exhaust temperature at core face is 1350°F. 		
	 If applicable, the engine will require an air/fuel ratio controller to meet above emission levels. For Rich Burn engines λ must be 0.96 - 0.99. 		
	 Catalyst cleaning/regeneration required, if initial backpressure increases by 2" of WC. 		
	 Engine operation to be stable and reproducible. 		
	 QAC is not designed to withstand a backfire, therefore measures should be taken prior to QAC unit to alleviate backfire pressure. 		
	 Maximum lubrication oil consumption rate to be less than 0.0015 lb/bhp/hr. 		
	Lube oil sulfate ash contents should not exceed 0.5%.		
	 Phosphorus and/or Zinc should not exceed 5 ppmv in the exhaust stream. 		
	 A high temperature alarm/shutdown to be maintained at downstream of catalyst at 1300°F. 		
	 Fuel not to contain heavy or transition metals such as Pb, Ar, Zn, Cu, Sn, Fe, Ba, Ni, Cr etc. 		
	 Chlorinated or Silicone containing compounds in the exhaust not to exceed 1 ppmv. 		
	 Sulfur compounds in the exhaust gas stream not to exceed 25 ppmv. 		
	 Performance guarantee is voided should the catalyst become masked or de-activated by any contaminant in the exhaust stream. 		
	 Engine to be maintained and operated in accordance within manufacturer's recommended practice. 		
	Under no condition will Maxim Silencers assume any contingent liabilities.		
	 Operating manual is available online at www.maximsilencers.com or contact a Maxim sales representative. 		
	 Nomenclature: QAC4-292-8, 4 is grade (Super Critical), 29 is catalyst block size, 2 is no. of catalyst(s) and 8 is flange diameter. 		
\	 Organic PM10 are estimate only and not a guarantee because of the variability in fuels and additives which change PM10. 		,
\backslash	Maxim Silencers standard one year warranty applies.		
		Rev level: 86	

ENGINE SPEED (rpm):

COMPRESSION RATIO:

AFTERCOOLER TYPE:

ASPIRATION:

COMBUSTION:

COOLING SYSTEM:

CONTROL SYSTEM:

EXHAUST MANIFOLD:

GAS COMPRESSION APPLICATION

AFTERCOOLER - STAGE 2 INLET (°F):

AFTERCOOLER - STAGE 1 INLET (°F)

NOx EMISSION LEVEL(g/bhp-hr NOx):

JACKET WATER OUTLET (°F):

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

G14-3600-182-00

1000

SCAC

7.6

130

174

190

ТΑ

ADEM4

DRY

0.5

JW+1AC, OC+2AC

LOW EMISSION

CE-4 & CE-5

RATING STRATEGY STANDARD RATING LEVEL: CONTINUOUS FUEL SYSTEM: GAV WITH AIR FUEL RATIO CONTROL SITE CONDITIONS FUEL: G14-3600-182 (00) FUEL PRESSURE RANGE(psig): 60.9-65 FUEL METHANE NUMBER: 81.8 FUEL LHV (Btu/scf): 957 ALTITUDE (ft): 961 106

MAXIMUM INLET AIR TEMPERATURE(°F): NAMEPLATE RATING: 5000 bhp@1000rpm

				RATING	en an star Shart Bardal at the	G AT MAXIMU EMPERATUR	the state suggest on a state of the
RATING		NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER	(WITHOUT FAN)	(1)	bhp	5000	5000		/
INLET AIR TEMPERATURE			٩F	106	106		
ENGINE DATA						<u> </u>	
FUEL CONSUMPTION (LHV)		(2)	Btu/bhp-hr	6772	6772		
FUEL CONSUMPTION (HHV)		(2)	Btu/bhp-hr	7511	7511		
AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(3) (4)	ft3/min	12571	12571	\cap	\ V /
AIR FLOW	(WET)	(3) (4)	lb/hr	52900	52900		
FUEL FLOW (60°F, 14.7 psia)			scfm	590	590		
INLET MAN. PRESSURE		(5)	in HG(abş)	100.0	100.0		
EXHAUST TEMPERATURE - ENGINE OUTLET		(6)	°F \	856	856		
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia)	(WET)	(7)(4)	f(3/min	31206	31206		
EXHAUST GAS MASS FLOW	(WET)	(7)(4)	lb/hr \	\$4490	54490		
EMISSIONS DATA- ENGINE OUT						\underline{h}	
NOx (as NO2)		(8) (9)	g/php-hr	0.50	0.50		
со		(8) (9)	g/php-hr	2.22	2.22		
THC (mol. wt. of 15.84)		(8) (9)	g/php-hr\	4.01	4.01		
NMHC (mol. wt of 15.84)		(8) (9)	g/php-hr	0.47	0.47		
NMNEH6 (VOCs)(mol. wt. of 15.84)		(8) (9) (10)	g/php-hr	0.25.	0.25	<u></u>	
HCHO (Formaldehyde)		(8) (9)	g/php-hr	0.22	0.22		
CO2		(8) (9)	g/php-hr	411	411	1	
EXHAUST OXYGEN		(B) (11)	% DRY	14.6	11.6		
A CONTRACTOR OF				-			
HEAT REJECTION TO JACKET WATER (JW)	1	(12)	Btu/min	54681	54681		
HEAT/REJECTION TO ATMOSPHERE		(12)	Btu/min	19797	19797		
HEAT REJECTION TO LUBE OIL (OC)		(12)	Btu/min	27655	27655		
HEAT REJECTION TO A/C -STAGE T(TAC)		(12) (13)	Btu/min	50516	50516		
HEAT REJECTION TO A/C - \$TAGE 2 (2AC)	J	(12) (13)	Btu/min	12879	12879		
COOLING SYSTEM SIZING CRITERIA							

COOLING SYSTEM SIZING CRITERIA

TOTAL JACKET WATER CIRCULF (JW+1AC)	(13) (14)	Btu/min	113192				
TOTAL STAGE 2 AFTER COOLER CIRCUIT (OC+2AC)	(13) (14)	Btu/min	46708				
A COOLING SYSTEM SAFETY FACTOR OF 0% HAS BEEN ADDED TO THE COOLING SYSTEM SIZING CRITERIA.							

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page 3

The engine technical performance data listed above is preliminary in nature and can change as the development program for this new product progresses. This data represents Caterpillar's best knowledge to date on this product but carries no guarantees or warranty, either expressed or implied. This data will be superseded by the final production data when the product completes the development program and the production data is published in TMI. This data should not be used for final designs, sizing, purchase of equipment or financial calculations as it is subject to change.

G3616

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G14-3600-182-00

NOTES:

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is $\pm 2.5\%$ of full load data.

- 3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.
- 4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 5. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.
- 6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.
- 8. Emissions data is at engine exhaust flange prior to any after treatment.
- 9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC op not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.
- 10. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet alr temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

G3616

GAS ENGINE SITE SPECIFIC TECHNICAL DATA G14-3600-182-00

GAS COMPRESSION APPLICATION

CONSTITUENT	ABBREV	MOLE %	NORM		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	94.1143	<u>94.11</u> 43	Fuel Makeup:	G14-3600-182 (00)
Ethane	C2H6	4.7030	4.7030	Unit of Measure:	English
Propane	C3H8	0.0493	0.0493		<u> </u>
Isobutane	iso-C4H10	0.7390	0.7390		1
Norbutane	nor-C4H10	0.0000	0.0000	Calculated Fuel Properties	
Isopentane	iso-C5H12	0.0000	0.0000	Caterpillar Methane Number:	81.8
Norpentane	nor-C5H12	0.0000	0,0000		\frown
Hexane	C6H14	0.0024	0.0024		
Heptane	C7H16	0.0000	0.0000	Lower Heating Value-(Btu/scf)) \ / 957
Nitrogen	N2	0.2650	0.2650	Higher Heating Value (Btu/scf):	1062
Carbon Dioxide	CO2	0.1270	0.1270	WOBBE ndex (Btu/scf):	1246
Hydrogen Sulfide	H2S	0.0000	0.0000		
Carbon Monoxide	со	0.0000	0.0000	THC: Free Inert/Ratio	254.1
Hydrogen	H2	0.0000	0.0000	Total % Inerts(%N2, CO2, He)	0.39%
Oxygen	O2	0.0000	0.000	RPC (%) (To 905 Blu/sct Fuel):	/ \ 100%
Helium	HE	0.000p	0.0000		
Neopentane	neo-C5H12	0.000	0.0000	Compressibility Factor:	0.998
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol);	9.99
Nonane	C9H20	0.000	0.0000	Stouch A/F Ratio (Mass/Mass)	16.93
Ethylene	C2H4	0.0000	0000	Specific Gravity (Relative to Air):	Q.59
Propylene	СЗН6	o.ooop	0,0000	Specific Heat Constant:	1.307
Total (Volume %)		100.000	100,000		
CONDITIONS AND DEFIN	ITIONS		V		
				used with the Caterpillar fuel usage guide for the	engine and rating to
determine the rating for the	fuel specified. A fuel usage	guide for each rating	is included on	page 2 of its standard technical data sheet.	

RPC always applies to the naturally aspirated (NA) engines, and the turbdcharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the gas engine data master-program take the Caterpillar methane number and RPC into account when generating a site rating

Fuel properties for Btu/scf\calculations are at 60°F and 14.696 psia.

Caterpillar shall have no liability in law-or equity, for damages, consequently or otherwise, arising from use of program and releated material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid seperator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

10497 Town & Country Way, Ste. 94(Houston, TX 77024 Office: 307.673.0883 | Direct: 307.675.5073 cparisi@emittechnologies.com

Prepared For: Sam Purdy **EXTERRAN**

QUOTE: QUO-13269-H9S9 Expires: August 25, 2013

INFORMATION PROVIDED BY CATERPILLAR

Engine:	G3616
Horsepower:	5000
RPM:	1000
Compression Ratio:	7.6
Exhaust Flow Rate:	31207 CFM
Exhaust Temperature:	858 °F
Reference:	EM0455-00-001
Fuel:	Natural Gas
Annual Operating Hours:	8760

Uncontrolled Emissions

	<u>g/bhp-hr</u>
NOx:	0.50
CO:	2.20
THC:	6.31
NMHC	0.94
NMNEHC:	0.63
HCHO:	0.26
O2:	12.00 %

POST CATALYST EMISSIONS

	<u>70 Requeite</u>	<u> gronp m</u>
NOx:	Unaffected	by Oxidation Catalyst
CO:	>93 %	<0.15
VOC:	>50 %	<0.32
HCHO:	>76 %	<0.06

% Reduction a/hhp-hr

CONTROL EQUIPMENT

Catalyst Housing

Model:	EBH-9000-3036F-6C4E-48
Manufacturer:	EMIT Technologies, Inc
Element Size:	Rectangle 48" x 15" x 3.5"
Housing Type:	6 Element Capacity
Catalyst Installation:	Ground Level Accessible Housing
Construction:	3/16" Carbon Steel
Sample Ports:	9 (0.5" NPT)
Inlet Connections:	30" Flat Face Flange
Outlet Connections:	36" Flat Face Flange
Configuration:	Side In / End Out
Silencer:	Integrated
Silencer Grade:	Hospital
Insertion Loss:	35-40 dBA
Estimated Lead Time:	2-4 Weeks to Ship

Catalyst Element

Model:	RT-4815-Z
Catalyst Type:	Oxidation, Standard Precious Group Metals
Substrate Type:	BRAZED
Manufacturer:	EMIT Technologies, Inc
Element Quantity:	4
Element Size:	Rectangle 48" x 15" x 3.5"
Estimated Lead Time:	7-10 Business Days to Ship

The information in this quotation, and any files transmitted with it, is confidential and may be legally privileged. It is intended only for the use of individual(s) within the company named above. If you are the intended recipient, be aware that your use of any confidential or personal information may be restricted by state and federal privacy laws

PRICING

		Unit Price	Quantity	Extended Price
EBH-9000-3036F-6C4E-48	Carbon Steel	\$28,540.00	1	\$28,540.00
RT-4815-Z		\$5,620.00	4	\$22,480.00
36" STACK ASSY 36" TUBING FLANGE		\$1,480.00	1	\$1,480.00
GASKET, HIGH TEMP, FLANGE 36"		\$133.00	1	\$133.00
36" FLANGE - BOLT W/NUT, 1 1/2"-6 X 5.5"		\$37.00	32	\$1,184.00
			TOTAL	\$53,817.00

NOTES:

*This application requires QTY (4) RT-4815-Z Oxidation catalyst elements to meet shown emissions reductions based on customer supplied fuel gas analysis.

The information in this quotation, and any files transmitted with it, is confidential and may be legally privileged. It is intended only for the use of individual(s) within the company named above. If you are the intended recipient, be aware that your use of any confidential or personal information may be restricted by state and federal privacy laws

WARRANTY

EMIT Technologies, Inc. warrants that the goods supplied will be free from defects in workmanship by EMIT Technologies, Inc. for a period of two (2) years from date of shipment. EMIT Technologies, Inc. will not be responsible for any defects which result from imprope use, neglect, failure to properly maintain or which are attributable to defects, errors or omissions in any drawings, specifications, plans or descriptions, whether written or oral, supplied to EMIT Technologies, Inc. by Buyer.

Catalyst performance using an EMIT Air/Fuel ratio controller is dependent upon properly defined set-points, variable with engine and fuel gas composition. Air/fuel ratio controller performance is guaranteed, but not limited, to fuel gas with a HHV content of 1400 BTU/SCF.

Catalyst performance will be guaranteed for a period of 1 year from installation, or 8760 operating hours, whichever comes first. The catalyst shall be operated with an automatic air/fuel ratio controller. The performance guarantee shall not cover the effects of excessive ash masking due to operation at low load, improper engine maintenance, or inappropriate lubrication oil. The performance guarantee shall not cover the effects of continuous engine misifiers (cylinder or ignition) exposing the catalyst be excessive exothermic reaction temperatures. In most cases, excluding thermal deactivation, or contact a local EMIT Sales representative).

The exhaust temperature operating range at the converter inlet is a minimum of 600°F for oxidation catalyst and 750 'F for NSCR catalyst, and a maximum of 1250°F.

If a properly functioning, high temperature shut down switch is not installed, thermal deactivation of catalyst at sustained temperatures above 1250'F is not covered. If excessive exposure to over oxygenation of NSCR catalyst occurs due to improperly functioning or non-existent Air/Fuel ratio control, then deactivation of catalyst is not warranted.

The catalyst conversion efficiencies (% reduction) will be guaranteed for engine loads of 50 to 100 percent. Standard Oxidation Catalyst conversion efficiencies (% reduction) will be guaranteed for fuel gas containing less than 1.5% mole fraction of non-methane, nonethane hydrocarbons. Applications where fuel gas exceeds this level will require a Premium Oxidation Catalyst to maintain guaranteed VOC conversion efficiencies.

Engine lubrication oil shall contain less than 0.5 wt% Sulfated Ash with a maximum allowable specific oil consumption of 0.7 g/bhp-hr. The catalyst shall be limited to a maximum ash loading of 0.022 lb/ft3. Phosphorous and zinc additives are limited to 0.03 wt%. New or Reconstructed engines must operate for a minimum of 100 hours prior to catalyst installation, otherwise the warranty is void.

The catalyst must not be exposed to the following know poisoning agents, including: antimony, arsenic, chromium, copper, iron, lead, lithium, magnesium, mercury, nickel, phosphorous, potassium, silicon, sodium, sulfur, tin, and zinc. Total poison concentrations in the fuel gas must be limited to 0.25 ppm or less for catalyst to function properly.

Shipment - Promised shipping dates are approximate lead times from the point of manufacture and are not guaranteed. EMIT Technologies, Inc. will not be liable for any loss, damage or delay in manufacture or delivery resulting from any cause beyond its control including, but not limited to a period equal to the time lost by reason of that delay. All products will be crated as per best practice to prevent any damage during shipment. Unless otherwise specified, Buyer will pay for any special packing and shipping requirements. Acceptance of goods by common carrier constitutes delivery to Buyer. EMIT Technologies, Inc. shall not be responsible for goods damaged or lost in transit.

Terms: Credit is extended to purchaser for net 30 time period. If payment is not received in the net 30 timeframe, interest on the unpaid balance will accrue at a rate of 1.5% per month from the invoice date.

Order Cancellation Terms: Upon cancellation of an order once submittal of a Purchase Order has occurred, the customer will pay a 25% restocking fee for Catalyst Housings, Catalyst Elements, and Air/Fuel Ratio Controllers; 50% restocking fee for Cooler Top Solutions Exhaust System Accessories, and other Custom Built Products; 100% of all associated shipping costs incurred by EMIT; 100% of all project expenses incurred by EMIT for Field Services.

G3608

GAS COMPRESSION APPLICATION

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOx EMISSION LEVEL (g/bhp-hr NOx):

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Exterran M3 Appliachia

1000

9.2:1

SCAC

130

190

ΤA

DRY

0.5

JW, OC+AC

CIS/ADEM3

Low Emission

MAYIMUM SITE DATING AT MAYIMUM

CE-6

STANDARD GAV WITH AIR FUEL RATIO CONTROL

SITE CONDITIONS: FUEL: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE(°F): STANDARD RATED POWER:

RATING STRATEGY:

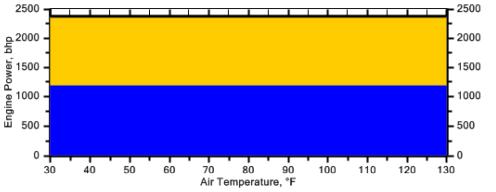
FUEL SYSTEM:

Gas Analysis 42.8-47.0 81.8 957 1500 100 2370 bhp@1000rpm

			RATING		TING AT N IR TEMPE	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)) (1)	bhp	2370	2370	1777	1185
INLET AIR TEMPERATURE		°F	100	100	100	100
ENGINE DATA	1					
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	6791	6791	7082	7785
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	7531	7531	7854	8634
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(3)(4)	ft3/min	6445	6440	4975	3432
AIR FLOW (WET)	(3)(4)	lb/hr	27382	27382	21152	14593
FUEL FLOW (60ºF, 14.7 psia)		scfm	280	280	219	161
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	75.2	75.2	57.6	40.9
EXHAUST TEMPERATURE - ENGINE OUTLET	(6)	°F	858	858	897	978
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(7)(4)	ft3/min	16106	16106	12822	9405
EXHAUST GAS MASS FLOW (WET)) (7)(4)	lb/hr	28137	28137	21743	15026
EMISSIONS DATA - ENGINE OUT	1					
NOx (as NO2)	(8)(9)	g/bhp-hr	0.50	0.50	0.50	0.50
CO	(8)(9)	g/bhp-hr	2.74	2.74	2.74	2.74
THC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	6.30	6.30	6.56	6.80
NMHC (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.94	0.94	0.98	1.02
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)(10)	g/bhp-hr	0.63	0.63	0.66	0.68
HCHO (Formaldehyde)	(8)(9)	g/bhp-hr	0.26	0.26	0.28	0.31
CO2	(8)(9)	g/bhp-hr	440	440	459	505
EXHAUST OXYGEN	(8)(11)	% DRY	12.0	12.0	11.8	11.4
HEAT REJECTION	1					
HEAT REJ. TO JACKET WATER (JW)	(12)	Btu/min	24121	24121	20997	17429
HEAT REJ. TO ATMOSPHERE	(12)	Btu/min	9388	9388	8812	8457
HEAT REJ. TO LUBE OIL (OC)	(12)	Btu/min	12071	12071	11541	11532
HEAT REJ. TO AFTERCOOLER (AC)	(12)(13)	Btu/min	22319	22319	10473	2113
COOLING SYSTEM SIZING CRITERIA	1					
TOTAL JACKET WATER CIRCUIT (JW)	(13)	Btu/min	26533			
TOTAL AFTERCOOLER CIRCUIT (OC+AC)	(13)(14)	Btu/min	37921			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.						

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

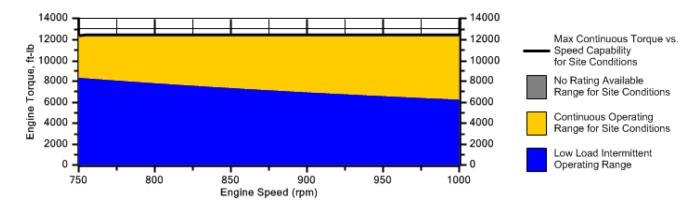
For notes information consult page three


GAS ENGINE SITE SPECIFIC TECHNICAL DATA Exterran M3 Appliachia

GAS COMPRESSION APPLICATION

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 1500 ft and 1000 rpm


Engine Power vs. Engine Speed

Data represents speed sweep at 1500 ft and 100 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 1500 ft and 100 °F

Note: At site conditions of 1500 ft and 100°F inlet air temp., constant torque can be maintained down to 755 rpm. The minimum speed for loading at these conditions is 750 rpm.

G3608

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Exterran M3 Appliachia

GAS COMPRESSION APPLICATION

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is \pm 2.5% of full load data.

- 3. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.
- 4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 5. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 6. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of \pm 6 %.
- 8. Emissions data is at engine exhaust flange prior to any after treatment.

9. Emission values are based on engine operating at steady state conditions. Fuel methane number cannot vary more than ± 3. Values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

10. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

11. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5 .

12. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

13. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

14. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

CATERPILLAR®

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	0.0000	0.0000		
Methane	CH4	94.1143	94.1166	Fuel Makeup:	Gas Analysis
Ethane	C2H6	4.7030	4.7031	Unit of Measure:	English
Propane	C3H8	0.0493	0.0493		-
Isobutane	iso-C4H1O	0.7390	0.7390	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.0000	0.0000	· · ·	01.0
Isopentane	iso-C5H12	0.0000	0.0000	Caterpillar Methane Number:	81.8
Norpentane	nor-C5H12	0.0000	0.0000		
Hexane	C6H14	0.0000	0.0000	Lower Heating Value (Btu/scf):	957
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1061
Nitrogen	N2	0.2650	0.2650	WOBBE Index (Btu/scf):	1246
Carbon Dioxide	CO2	0.1270	0.1270		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	254.1
Carbon Monoxide	CO	0.0000	0.0000		0.39%
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	
Oxygen	02	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.998
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	9.99
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.93
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.590
Propylene	C3H6	0.0000	0.0000	Specific Heat Constant (K):	1.307
TOTAL (Volume %)		99.9976	100.0000	Specific Fleat Constant (K).	1.307

CONDITIONS AND DEFINITIONS

Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Tanker Truck Loading Data Sheet(s)

ATTACHMENT N – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-D Registration.

Emission Unit ID#: L01		Emissio	Emission Point ID#: L01			Year Installed/Modified: N/A		
Emission Unit Description: Liquid loading of waste fluids								
			Loading A	Area Data				
Number of Pumps: 3		Numbe	r of Liquids	Loaded: 1		Max number of trucks loading at one (1) time: 1		
Are tanker trucks pressu If Yes, Please describe:	ire tested f	for leaks at this	or any other	location?	□ Yes	🖾 No		Not Required
Provide description of c	losed vent	t system and any	bypasses.	N/A				
Are any of the following Closed System to tan Closed System to tan Closed System to tan Pro	nker truck nker truck nker truck	passing a MAC passing a NSPS	T level annu level annua annual leak	ll leak test? test and has v	-		a who	ble)
Time	Jai	n – Mar	Apr	- Jun	J	ul – Sept		Oct - Dec
Hours/day		2	2	2		2		2
Days/week		5	4	5		5		5
		Bulk Liquid	Data (use e	xtra pages a	s necess	ary)		
Liquid Name		Waste Flu	Waste Fluids					
Max. Daily Throughput (1000 gal/day)		1.2						
Max. Annual Throughpu (1000 gal/yr)	ıt	453.6						
Loading Method ¹	Loading Method ¹							
Max. Fill Rate (gal/min)		~70						
Average Fill Time (min/loading)		~60						
Max. Bulk Liquid Temperature (°F)								
True Vapor Pressure ²		0.3240						
Cargo Vessel Condition	Cargo Vessel Condition ³							
Control Equipment or Method ⁴		None						
Max. Collection Efficient (%)	ncy	0						

Max. Control (%)	Efficiency	0	
Max.VOC Emission	Loading (lb/hr)	0.08	
Rate	Annual (ton/yr)	0.02	
Max.HAP Emission	Loading (lb/hr)	0.01	
Rate	Annual (ton/yr)	<0.01	
Estimation M	ethod ⁵	EPA	

1	BF	Bottom Fill	SP	Splash Fill	SUB Submerged Fill
2	At max	imum bulk liquid temperature			

Ballasted Vessel С U 3 В Cleaned Uncleaned (dedicated service) Other (describe) 0

MB

4 List as many as apply (complete and submit appropriate Air Pollution Control Device Sheets)

Dedicated Vapor Balance (closed system) CAVB

Carbon Adsorption Enclosed Combustion Device F Flare ECD

Thermal Oxidization or Incineration EPA Emission Factor in AP-42 то

EPA

5

Material Balance ΤМ Test Measurement based upon test data submittal 0 Other (describe)

Glycol Dehydration Unit Data Sheet(s)

ATTACHMENT O – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI- GLYCalc[™] input and aggregate report. Use extra pages if necessary.

Manufacturer: Source Designation RSV-1				
	Model: 125 MMSCFD			
Max. Dry Gas Flow Rate: 125 mmscf/day	Reboiler Design Heat Input: 1.5 MMBTU/hr			
Design Type: 🛛 TEG 🔤 DEG 🔤 EG	Source Status ¹ : Existing			
Date Installed/Modified/Removed ² : 2012	Regenerator Still Vent APCD/ERD ³ : RBV-1			
Control Device/ERD ID# ³ : RBV-1	Fuel HV (BTU/scf): ~1,072			
H ₂ S Content (gr/100 scf): neg.	Operation (hours/year): 8,760			
Pump Rate (scfm): 15 gpm glycol				
Water Content (wt %) in: Wet Gas: Saturated D	ry Gas: 7.0 lbs/MMscf			
Is the glycol dehydration unit exempt from 40CFR63 Section ⊠ Yes □ No: If Yes, answer the following:	764(d)?			
The actual annual average flowrate of natural gas to the glyco meters per day, as determined by the procedures specified in Yes				
The actual average emissions of benzene from the glycol dehymegagram per year (1 ton per year), as determined by the pro \boxtimes Yes \square No	ydration unit process vent to the atmosphere are less than 0.90 cedures specified in §63.772(b)(2) of this subpart.			
Is the glycol dehydration unit located within an Urbanized Ar □ Yes ⊠ No	rea (UA) or Urban Cluster (UC)?			
Is a lean glycol pump optimization plan being utilized? □ Yes ⊠ No				
Recycling the glycol dehydration unit back to the flame zone Yes INO	of the reboiler.			
If yes: Is the reboiler configured to accept flash drum vapors (straight Is the reboiler configured to accept still vent vapors (after a c Is the reboiler configured to accept both in the same operation	condenser)? 🛛 Yes 🗌 No			
Recycling the glycol dehydration unit back to the flame zone \Box Yes \boxtimes No	of the reboiler and mixed with fuel.			
What happens when temperature controller shuts off fuel to th ☐ Still vent emissions to the atmosphere. ☐ Still vent emissions stopped with valve. ☐ Still vent emissions to glow plug.	ne reboiler?			
Please indicate if the following equipment is present. ⊠ Flash Tank □ Burner management system that continuously burns conde	nser or flash tank vapors			
	Technical Data			
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)			
The dehydration unit utilizes a flash tank, which reas fuel in the reboiler burner. The still column vap	ecovers the gas entrained in the rich glycol for use bors are routed to the reboiler for control.			

Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)
		AP	NO _x	0.14	0.61
		AP	СО	0.12	0.51
		AP	VOC	0.01	0.03
RBV-1	Reboiler Vent	AP	SO ₂	8.4E-04	3.7E-03
		AP	PM ₁₀	0.01	0.05
		40 CFR 98	GHG (CO ₂ e)	175.68	769.47
		GRI-GlyCalc [™]	VOC	0.35	1.52
		GRI-GlyCalc TM	Benzene	<0.01	< 0.01
	Glycol	GRI-GlyCalc [™]	Toluene	<0.01	<0.01
RSV-1	Regenerator Still Vent	GRI-GlyCalc [™]	Ethylbenzene	<0.01	<0.01
		GRI-GlyCalc TM	Xylenes	<0.01	<0.01
		GRI-GlyCalc [™]	n-Hexane	0.07	0.30
		GRI-GlyCalc [™]	VOC	6.20	27.16
		GRI-GlyCalc TM	Benzene	<0.01	<0.01
	Glycol Flash	GRI-GlyCalc [™]	Toluene	<0.01	<0.01
RSV-1	Tank	GRI-GlyCalc [™]	Ethylbenzene	<0.01	<0.01
		GRI-GlyCalc [™]	Xylenes	<0.01	<0.01
		GRI-GlyCalc [™]	n-Hexane	0.28	1.24

Enter the Source Status using the following codes: 1 ES

Existing Source

NS Construction of New Source MS Modification of Existing Source

Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or 2 removal.

- Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes 3 and the device ID number: FL Flare
 - NA None
- CD Condenser Thermal Oxidizer
- Condenser/Combustion Combination TO
- CC 0 Other (please list) Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

Enter the Potential Emissions Data Reference designation using the following codes: 5

- MD Manufacturer's Data AP
- AP-42 GRI-GLYCalc[™] OT Other GR

(please list) Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

Pneumatic Controller Data Sheet(s)

ATTACHMENT P – PNEUMATIC CONTROLLERS
DATA SHEET

Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
Yes No
Please list approximate number. 25
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?
Yes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?
🗌 Yes 🛛 No

Centrifugal Compressor Data Sheet(s)

ATTACHMENT Q – CENTRIFUGAL COMPRESSOR DATA SHEET

	re any centrifugal compressors at this facility that commenced a, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
	🗌 Yes 🛛 No
	Please list:
Emission Unit ID#	Compressor Description
	e any centrifugal compressors at this facility that commenced tion, modification or reconstruction after September 18, 2015?
	\Box Yes \boxtimes No
	Please list:
Emission Unit ID#	Compressor Description

Reciprocating Compressor Data Sheet(s)

ATTACHMENT R – RECIPROCATING COMPRESSOR DATA SHEET

	any reciprocating compressors at this facility that commenced modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
	🛛 Yes 🗌 No
	Please list:
Emission Unit ID#	Compressor Description
CE-1	Reciprocating Compressor #1
CE-2	Reciprocating Compressor #2
CE-4	Reciprocating Compressor #4
CE-5	Reciprocating Compressor #5
CE-6	Reciprocating Compressor #6
	any reciprocating compressors at this facility that commenced on, modification or reconstruction after September 18, 2015? Yes No
	Please list:
Emission Unit ID#	Compressor Description
CE-3	Reciprocating Compressor #3

Blowdown and Pigging Operation Data Sheet(s)

ATTACHMENT S – BLOWDOWN AND PIGGING OPERATIONS DATA SHEET

Will there be any blowdown and pigging operations that occur at this facility?

Please list:

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb- mol)	Total Emissions (ton/yr)	VOC weight fraction	VOC emissions (ton/yr)
Compressor Blowdown	360	4,500	17.24	36.85	0.0254	0.94
Compressor Startup	360	1,000	17.24	8.19	0.0254	0.21
Plant Shutdown	1	900,000	17.24	20.47	0.0254	0.52
Low Pressure Pig Venting	52	1,000	17.24	1.18	0.0254	0.03
High Pressure Pig Venting	104	1,000	17.24	2.37	0.0254	0.06

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb- mol)	Total Emissions (ton/yr)	HAP weight fraction	HAP emissions (ton/yr)
Compressor Blowdown	360	4,500	17.24	36.85	0.0001	3.3E-03
Compressor Startup	360	1,000	17.24	8.19	0.0001	7.4E-04
Plant Shutdown	1	900,000	17.24	20.47	0.0001	1.8E-03
Low Pressure Pig Venting	52	1,000	17.24	1.18	0.0001	1.1E-04
High Pressure Pig Venting	104	1,000	17.24	2.37	0.0001	2.1E-04

Air Pollution Control Device Data Sheet(s)

ATTACHMENT T – AIR POLLUTION CONTROL DEVICE / EMISSION REDUCTION DEVICE SHEETS

Complete the applicable air pollution control device sheets for each flare, vapor combustor, thermal oxidizer, condenser, adsorption system, vapor recovery unit, BTEX Eliminator, Reboiler with and without Glow Plug, etc. at the facility. Use extra pages if necessary.

Emissions calculations must be performed using the most conservative control device efficiency.

The following five (5) rows are only to be completed if registering an alternative air pollution control device.							
Emission Unit ID: N/A	Make/Model:						
Primary Control Device ID:	Make/Model:						
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No						
Secondary Control Device ID:	Make/Model:						
Control Efficiency (%):	APCD/ERD Data Sheet Completed: Yes No						

	VAP (Includin	OR CO Ig Enclo			rs)				
General Information									
Control Device ID#: N/A			Installation	Installation Date:					
Maximum Rated Total Flow C scfh scf		Maximum Heat Input mfg. spec MMBTU/h	(from sheet)	Design Heat Content BTU/scf					
	Co	ntrol Devic	e Informati	on					
Enclosed Combustion Devi		of Vapor Con Elevate		ontrol?		Ground Flare			
Manufacturer: Model:			Hours of o	peration	per year?				
List the emission units whose	emissions are contro	olled by this	vapor contr	ol device	e (Emission	Point ID#)			
Emission Unit ID# Emission Source I	Emission Source Description					Description			
If this vapor combustor c	ontrols emissions fr	om more the	an six (6) em	nission un	iits, please	attach additional pages.			
Assist Type (Flares only)	Flare He	eight	Tip Diameter			Was the design per §60.18?			
Steam Air Pressure Non	:	feet	feet			☐ Yes ☐ No Provide determination.			
	•	Waste Gas l	Information	l					
Maximum Waste Gas Flow Ra (scfm)	e Heat	Value of W	'aste Gas Str BTU/ft ³	eam	Exit Vel	locity of the Emissions Stream (ft/s)			
Provide an	attachment with the	e characteri.	stics of the v	vaste gas	stream to	be burned.			
		Pilot Gas I	nformation						
Number of Pilot Lights	Fuel Flow Rate Flame per P scf	Pilot	Heat Input per Pilot BTU/hr Will automatic re-ign be used? Yes N						
If automatic re-ignition is used	If automatic re-ignition is used, please describe the method.								
Is pilot flame equipped with a monitor to detect the presence of the flame?If YesThermocoupleInfraredUltravioletIf YesOther:									
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate).									
Additional information attache Please attach copies of manufa performance testing.		No , drawings,	flame demoi	nstration	per §60.18	or §63.11(b) and			

CONDENSER							
General Information							
Control Device ID#: N/A Installation Date: Installation Date: Installation Date:							
Manufacturer:	Model:	Control Device Name:					
Control Efficiency (%):	1	1					
Manufacturer's required temperature range for control efficie	ncy. °F						
Describe the warning and/or alarm system that protects against	st operation when uni	t is not meeting the design requirements:					
Describe all operating ranges and maintenance procedures rec	uired by the manufac	cturer to maintain the warranty.					
Additional information attached? Yes No Please attach copies of manufacturer's data sheets.							
Is condenser routed to a secondary APCD or ERD?							

ADSORPTION SYSTEM								
General Information								
Control Device ID#: N/A	Installation Date:							
Manufacturer:	Model: Control Device Name:							
Design Inlet Volume: scfm	Adsorbent charge per adsorber vessel and number of adsorber vessels:							
Length of Mass Transfer Zone supplied by the manufacturer:Adsorber diameter:ftAdsorber area:ft²								
Adsorbent type and physical properties: Overall Control Efficiency (%):								
Working Capacity of Adsorbent (%):								
Operating	Parameters							
Inlet volume: scfm @ °F								
Adsorption time per adsorption bed (life expectancy):	Breakthrough Capacity (lbs of VOC/100 lbs of adsorbent):							
Temperature range of carbon bed adsorber. °F - °F								
Control Device	Technical Data							
Pollutants Controlled	Manufacturer's Guaranteed Control Efficiency (%)							
Describe the warning and/or alarm system that protects again	st operation when unit is not meeting the design requirements:							
Has the control device been tested by the manufacturer and co	ertified?							
Describe all operating ranges and maintenance procedures red	quired by the manufacturer to maintain the warranty.							
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, and performance testing.								

VAPOR RECOVERY UNIT									
General Information									
Emission Unit ID#: N/A Installation Date: Installation Date: Relocated									
Device Information									
Manufactu Model:	rer:								
List the en	nission units whose emissions are controlled by this	s vapor recov	very unit (Emission Point ID#)						
Emission Unit ID#	Emission Source Description	Emission Unit ID# Emission Source Description							
If this	vapor recovery unit controls emissions from more t	han six (6) e	mission units, please attach additional pages.						
Additional information attached? Yes No Please attach copies of manufacturer's data sheets, drawings, and performance testing.									
	The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor recovery unit.								

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.

The registrant may claim a capture and control efficiency of 98% if the VRU has a backup VRU.

Emission Calculations

Company Name: Facility Name:

Project Description:

DTE Appalachia Gathering, LLC Daybrook Compressor Station G35-D Application

Facility-Wide Emission Summary - Controlled

Wells	0	per site
Storage Tanks:	4	per site
Sand Separator Tank	0	per site
Line Heaters:	0	per site
TEGs:	0	per site
Dehy Reboilers:	1	per site
Glycol Dehydrators:	1	per site
Dehy Drip Tanks:	0	per site
Dehy Combustors:	0	per site
Compressors:	6	per site
High Pressure Separators:	4	per site
Low Pressure Separator	0	per site
Vapor Recovery Unit	0	per site
Tank Combustor	0	per site
Length of lease road:	800	feet

Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1: CO₂ 1 CH₄ 25 N₂0 298

Emission	Emission	Emission	N	0 _x	C	0	VC)C	S	02	PN	1 ₁₀	Pl	M _{2.5}	C	H ₄	C	0 ₂ e
Point ID #	Source ID#s	Source Description	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1	CE-1	Caterpillar G3516 Comp. Engine	1.52	6.66	6.08	26.65	1.58	6.93	0.01	0.03	0.11	0.50	0.11	0.50	12.29	53.84	1,744.04	7,638.90
CE-2	CE-2	Caterpillar G3516 Comp. Engine	1.52	6.66	6.08	26.65	1.58	6.93	0.01	0.03	0.11	0.50	0.11	0.50	12.29	53.84	1,744.04	7,638.90
CE-3	CE-3	Caterpillar G3612 Comp. Engine	4.13	18.11	1.50	6.55	2.40	10.50	0.02	0.07	0.28	1.22	0.28	1.22	29.60	129.64	4,197.53	18,385.16
CE-4	CE-4	Caterpillar G3616 Comp. Engine	5.51	24.14	1.65	7.24	3.42	14.97	0.02	0.10	0.38	1.64	0.38	1.64	39.02	170.92	5,508.54	24,127.41
CE-5	CE-5	Caterpillar G3616 Comp. Engine	5.51	24.14	1.65	7.24	3.42	14.97	0.02	0.10	0.38	1.64	0.38	1.64	39.02	170.92	5,508.54	24,127.41
CE-6	CE-6	Caterpillar G3608 Comp. Engine	2.61	11.44	0.99	4.34	1.67	7.32	0.01	0.05	0.18	0.78	0.18	0.78	28.01	122.67	3,000.31	13,141.37
RSV-1	RSV-1	125 MMSCFD Dehydration Unit					6.55	28.68							161.46	707.21	4,036.60	17,680.30
RBV-1	RBV-1	1.5 MMbtu/hr Reboiler	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	0.00	0.01	175.68	769.47
T01	T01	Waste Water/Oil Tank					0.05	0.23							1.0E-03	0.01	0.03	0.15
T02	T02	Methanol Tank					0.02	0.07										
T03	T03	Produced Water Tank					0.11	0.46							3.0E-03	0.01	0.08	0.33
T04	T04	Produced Water Tank					0.11	0.46							3.0E-03	0.01	0.08	0.33
T05 to T21	T05 to T21	De Minimis Storage Tanks					0.21	0.92										
L1	L1	Liquid Loading					0.08	0.02										
		Fugitives						5.69								151.64		3,791.08
		Haul Roads										0.03		3.0E-03				·
Facility Total			20.95	91.77	18.08	79.19	21.19	98.17	0.09	0.37	1.44	6.36	1.44	6.33	321.70	1,560.71	25,915.45	117,300.80
Facility Total (excluding	fugitive emissions)		20.95	91.77	18.08	79.19	21.19	92.48	0.09	0.37	1.44	6.33	1.44	6.33	321.70	1.409.06	25,915,45	113,509.72

Emission	Emission	Emission	Forma	ldehyde	Ben	zene	Tolu	ene	Ethylb	enzene	Xyle	enes	n-He	xane	Total	BTEX	Tota	l HAP
Point ID #	Source ID#s	Source Description	lb/hr	tpy														
CE-1	CE-1	Caterpillar G3516 Comp. Engine	0.12	0.53	5.0E-03	2.2E-02	4.6E-03	2.0E-02	4.5E-04	2.0E-03	2.1E-03	9.2E-03	0.01	0.06	0.01	0.05	0.34	1.50
CE-2	CE-2	Caterpillar G3516 Comp. Engine	0.12	0.53	5.0E-03	2.2E-02	4.6E-03	2.0E-02	4.5E-04	2.0E-03	2.1E-03	9.2E-03	0.01	0.06	0.01	0.05	0.34	1.50
CE-3	CE-3	Caterpillar G3612 Comp. Engine	0.33	1.45	1.2E-02	5.4E-02	1.1E-02	5.0E-02	1.1E-03	4.8E-03	5.1E-03	2.2E-02	0.03	0.14	0.03	0.13	0.87	3.82
CE-4	CE-4	Caterpillar G3616 Comp. Engine	0.66	2.90	1.7E-02	7.2E-02	1.5E-02	6.7E-02	1.5E-03	6.5E-03	6.9E-03	3.0E-02	0.04	0.18	0.04	0.18	1.39	6.09
CE-5	CE-5	Caterpillar G3616 Comp. Engine	0.66	2.90	1.7E-02	7.2E-02	1.5E-02	6.7E-02	1.5E-03	6.5E-03	6.9E-03	3.0E-02	0.04	0.18	0.04	0.18	1.39	6.09
CE-6	CE-6	Caterpillar G3608 Comp. Engine	0.31	1.37	7.9E-03	3.4E-02	7.3E-03	3.2E-02	7.1E-04	3.1E-03	3.3E-03	1.4E-02	0.02	0.09	0.02	0.08	0.66	2.88
RSV-1	RSV-1	125 MMSCFD Dehydration Unit											0.35	1.54			0.35	1.54
RBV-1	RBV-1	1.5 MMbtu/hr Reboiler	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.8E-06	2.1E-05					2.5E-03	0.01	7.7E-06	3.4E-05	2.6E-03	0.01
T01	T01	Waste Water/Oil Tank			< 0.01	2.0E-03	< 0.01	1.0E-03	< 0.01	< 0.01	< 0.01	< 0.01	2.0E-03	0.01	< 0.01	3.0E-03	0.01	0.02
T02	T02	Methanol Tank															0.02	0.07
T03	T03	Produced Water Tank			1.0E-03	3.0E-03	< 0.01	2.0E-03	< 0.01	< 0.01	< 0.01	< 0.01	6.0E-03	2.6E-02	1.0E-03	0.01	0.01	0.03
T04	T04	Produced Water Tank			1.0E-03	3.0E-03	< 0.01	2.0E-03	< 0.01	< 0.01	< 0.01	< 0.01	6.0E-03	2.6E-02	1.0E-03	0.01	0.01	0.03
T05 to T21	T05 to T21	De Minimis Storage Tanks															0.04	0.15
L1	L1	Liquid Loading															0.01	2.0E-03
		Fugitives																
		Haul Roads																
Facility Total			2.21	9.68	0.07	0.28	0.06	0.26	5.7E-03	0.02	0.03	0.12	0.53	2.31	0.16	0.69	5.43	23.73
Facility Total (excluding fu	gitive emissions)		2.21	9.68	0.07	0.28	0.06	0.26	5.7E-03	0.02	0.03	0.12	0.53	2.31	0.16	0.69	5.43	23.73

DTE Appalachia Gathering, LLC Daybrook Compressor Station G35-D Application

Compressor Engines

Engine Information:

Source Designation:	CE-1 to CE-2
Manufacturer:	Caterpillar
Model No.:	G3516
Stroke Cycle:	4-stroke
Type of Burn:	Lean
Rated Horsepower (bhp):	1,380

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,072
Specific Fuel Consumption (Btu/bhp-hr):	8,257
Maximum Fuel Consumption at 100% Load (scf/hr):	10,627
Heat Input (MMBtu/hr):	11.39
Potential Fuel Consumption (MMBtu/yr):	99,817
Max. Fuel Consumption at 100% (MMscf/hr):	0.0106
Max. Fuel Consumption (MMscf/yr):	93.1
Max. Annual Hours of Operation (hr/yr):	8,760
1	

Engine Emissions Data:

Pollutant	Emission Factor	Units	Maximum Pote	ntial Emissions	Estimation Basis / Emission
Ponutant	Emission Factor	Units	lbs/hr	tpy	Factor Source
NO _x	0.50	g/bhp-hr	1.52	6.66	Manufacturer Specifications
VOC (excludes HCHO)	0.48	g/bhp-hr	1.46	6.40	Manufacturer Specifications
VOC (includes HCHO)			1.58	6.93	VOC + HCHO
со	2.00	g/bhp-hr	6.08	26.65	Subpart JJJJ Limit
SO _x	0.001	lb/MMBtu	0.01	0.03	AP-42, Table 3.2-2 (Jul-2000)
PM ₁₀	0.01	lb/MMBtu	0.11	0.50	AP-42, Table 3.2-2 (Jul-2000)
PM _{2.5}	0.01	lb/MMBtu	0.11	0.50	AP-42, Table 3.2-2 (Jul-2000)
Formaldehyde (HCHO)	0.04	g/bhp-hr	0.12	0.53	Vendor Specifications
GHG (CO ₂ e)	See Tabl	e Below	1,744	7,639	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tabl	e Below	0.34	1.50	AP-42, Table 3.2-2 (Jul-2000)

Notes:

1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).

2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

DTE Appalachia Gathering, LLC Daybrook Compressor Station G35-D Application

Compressor Engines					
Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:					
Pollutant	Emission Factor	Units	Maximum Pote	ential Emissions	Estimation Basis / Emission
ronutant	Emission Factor	Units	lbs/hr	tpy	Factor Source
GHGs:					
CO ₂	472	g/bhp-hr	1,436.01	6,289.73	Manufacturer Specifications
CH ₄	4.04	g/bhp-hr	12.29	53.84	Manufacturer (THC - NMHC)
J ₂ O	0.0001	kg/MMBtu	0.00	0.01	40 CFR 98, Table C-2
GHG (CO ₂ e)			1,744	7,639	
Drganic HAPs:					
,1,2,2-Tetrachloroethane	4.00E-05	lb/MMBtu	4.6E-04	2.0E-03	AP-42, Table 3.2-2 (Jul-2000)
l,1,2-Trichloroethane	3.18E-05	lb/MMBtu	3.6E-04	1.6E-03	AP-42, Table 3.2-2 (Jul-2000)
,3-Butadiene	2.67E-04	lb/MMBtu	3.0E-03	1.3E-02	AP-42, Table 3.2-2 (Jul-2000)
,3-Dichloropropene	2.64E-05	lb/MMBtu	3.0E-03	1.3E-02 1.3E-03	AP-42, Table 3.2-2 (Jul-2000)
2-Methylnapthalene	3.32E-05	lb/MMBtu	3.8E-04	1.7E-03	AP-42, Table 3.2-2 (Jul-2000)
2,2,4-Trimethylpentane	2.50E-04	lb/MMBtu	2.8E-03	1.2E-02	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
Acenaphthene	1.25E-04	lb/MMBtu	1.4E-05	6.2E-02	AP-42, Table 3.2-2 (Jul-2000)
	5.53E-06	,	6.3E-05	2.8E-04	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
cenaphthylene		lb/MMBtu			
cetaldehyde	8.36E-03	lb/MMBtu	9.5E-02	4.2E-01	AP-42, Table 3.2-2 (Jul-2000)
crolein	5.14E-03	lb/MMBtu	5.9E-02	2.6E-01	AP-42, Table 3.2-2 (Jul-2000)
enzene	4.40E-04	lb/MMBtu	5.0E-03	2.2E-02	AP-42, Table 3.2-2 (Jul-2000)
enzo(b)fluoranthene	1.66E-07	lb/MMBtu	1.9E-06	8.3E-06	AP-42, Table 3.2-2 (Jul-2000)
enzo(e)pyrene	4.15E-07	lb/MMBtu	4.7E-06	2.1E-05	AP-42, Table 3.2-2 (Jul-2000)
enzo(g,h,i)perylene	4.14E-07	lb/MMBtu	4.7E-06	2.1E-05	AP-42, Table 3.2-2 (Jul-2000)
liphenyl	2.12E-04	lb/MMBtu	2.4E-03	1.1E-02	AP-42, Table 3.2-2 (Jul-2000)
arbon Tetrachloride	3.67E-05	lb/MMBtu	4.2E-04	1.8E-03	AP-42, Table 3.2-2 (Jul-2000)
hlorobenzene	3.04E-05	lb/MMBtu	3.5E-04	1.5E-03	AP-42, Table 3.2-2 (Jul-2000)
hloroform	2.85E-05	lb/MMBtu	3.2E-04	1.4E-03	AP-42, Table 3.2-2 (Jul-2000)
hrysene	6.93E-07	lb/MMBtu	7.9E-06	3.5E-05	AP-42, Table 3.2-2 (Jul-2000)
thylbenzene	3.97E-05	lb/MMBtu	4.5E-04	2.0E-03	AP-42, Table 3.2-2 (Jul-2000)
thylene Dibromide	4.43E-05	lb/MMBtu	5.0E-04	2.2E-03	AP-42, Table 3.2-2 (Jul-2000)
luoranthene	1.11E-06	lb/MMBtu	1.3E-05	5.5E-05	AP-42, Table 3.2-2 (Jul-2000)
luorene	5.67E-06	lb/MMBtu	6.5E-05	2.8E-04	AP-42, Table 3.2-2 (Jul-2000)
fethanol	2.50E-03	lb/MMBtu	2.8E-02	1.2E-01	AP-42, Table 3.2-2 (Jul-2000)
lethylene Chloride	2.00E-05	lb/MMBtu	2.3E-04	1.0E-03	AP-42, Table 3.2-2 (Jul-2000)
-Hexane	1.11E-03	lb/MMBtu	1.3E-02	5.5E-02	AP-42, Table 3.2-2 (Jul-2000)
aphthalene	7.44E-05	lb/MMBtu	8.5E-04	3.7E-03	AP-42, Table 3.2-2 (Jul-2000)
АН	2.69E-05	lb/MMBtu	3.1E-04	1.3E-03	AP-42, Table 3.2-2 (Jul-2000)
henanthrene	1.04E-05	lb/MMBtu	1.2E-04	5.2E-04	AP-42, Table 3.2-2 (Jul-2000)
henol	2.40E-05	lb/MMBtu	2.7E-04	1.2E-03	AP-42, Table 3.2-2 (Jul-2000)
yrene	1.36E-06	lb/MMBtu	1.5E-05	6.8E-05	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
tyrene	2.36E-05	lb/MMBtu	2.7E-04	1.2E-03	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
etrachloroethane	2.38E-05 2.48E-06	lb/MMBtu	2.7E-04 2.8E-05	1.2E-03 1.2E-04	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
oluene	2.48E-06 4.08E-04	,	2.8E-05 4.6E-03	2.0E-02	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
		lb/MMBtu			
inyl Chloride vlene	1.49E-05 1.84E-04	lb/MMBtu lb/MMBtu	1.7E-04 2.1E-03	7.4E-04 9.2E-03	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
	1.04E-04	ID/ MIMDLU			111-72, 1able 3.2-2 (Jui-2000)
otal HAP (including HCHO)			0.34	1.50	

DTE Appalachia Gathering, LLC Davbrook Compressor Station G35-D Application

Compressor Engines

Engine Information:

Source Designation:	CE-3
Manufacturer:	Caterpillar
Model No.:	G3612
Stroke Cycle:	4-stroke
Type of Burn:	Lean
Rated Horsepower (bhp):	3,750

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,072
Specific Fuel Consumption (Btu/bhp-hr):	7,431
Maximum Fuel Consumption at 100% Load (scf/hr):	25,989
Heat Input (MMBtu/hr):	27.87
Potential Fuel Consumption (MMBtu/yr):	244,108
Max. Fuel Consumption at 100% (MMscf/hr):	0.0260
Max. Fuel Consumption (MMscf/yr):	227.7
Max. Annual Hours of Operation (hr/yr):	8,760
	1

Engine Emissions Data:

Dellusteret			Maximum Pote	ntial Emissions	Estimation Basis / Emission
Pollutant	Emission Factor	Units	lbs/hr	tpy	Factor Source
NO _x	0.50	g/bhp-hr	4.13	18.11	Manufacturer Specifications
VOC (excludes HCHO)	0.25	g/bhp-hr	2.07	9.05	Manufacturer Specifications
VOC (includes HCHO)			2.40	10.50	VOC + HCHO
CO	0.18	g/bhp-hr	1.50	6.55	Vendor Specifications
SO _x	0.001	lb/MMBtu	0.02	0.07	AP-42, Table 3.2-2 (Jul-2000)
PM ₁₀	0.01	lb/MMBtu	0.28	1.22	AP-42, Table 3.2-2 (Jul-2000)
PM _{2.5}	0.01	lb/MMBtu	0.28	1.22	AP-42, Table 3.2-2 (Jul-2000)
Formaldehyde (HCHO)	0.04	g/bhp-hr	0.33	1.45	Vendor Specifications
GHG (CO ₂ e)	See Tabl	e Below	4,198	18,385	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tabl	e Below	0.87	3.82	AP-42, Table 3.2-2 (Jul-2000)

Notes:

1. PM₁₀ and PM_{2.5} are total values (filterable + condensable).

2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

DTE Appalachia Gathering, LLC Daybrook Compressor Station G35-D Application

Compressor Engines					
Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) H	missions Calculatio	ns:			
Pollutant	Emission Factor	Units	Maximum Pote	ntial Emissions	Estimation Basis / Emission
i onutant	Emission ractor	Units	lbs/hr	tpy	Factor Source
<u>GHGs:</u>					
CO ₂	418	g/bhp-hr	3,455.76	15,136.25	Manufacturer Specifications
CH ₄	3.58	g/bhp-hr	29.60	129.64	Manufacturer (THC - NMHC)
N ₂ O	0.0001	kg/MMBtu	0.01	0.03	40 CFR 98, Table C-2
GHG (CO ₂ e)			4,198	18,385	
Organic HAPs:					
1,1,2,2-Tetrachloroethane	4.00E-05	lb/MMBtu	1.1E-03	4.9E-03	AP-42, Table 3.2-2 (Jul-2000)
1,1,2-Trichloroethane	3.18E-05	lb/MMBtu	8.9E-04	3.9E-03	AP-42, Table 3.2-2 (Jul-2000)
1,3-Butadiene	2.67E-04	lb/MMBtu	7.4E-03	3.3E-02	AP-42, Table 3.2-2 (Jul-2000)
1,3-Dichloropropene	2.64E-05	lb/MMBtu	7.4E-04	3.2E-03	AP-42, Table 3.2-2 (Jul-2000)
2-Methylnapthalene	3.32E-05	lb/MMBtu	9.3E-04	4.1E-03	AP-42, Table 3.2-2 (Jul-2000)
2,2,4-Trimethylpentane	2.50E-04	lb/MMBtu	7.0E-03	3.1E-02	AP-42, Table 3.2-2 (Jul-2000)
Acenaphthene	1.25E-06	lb/MMBtu	3.5E-05	1.5E-04	AP-42, Table 3.2-2 (Jul-2000)
Acenaphthylene	5.53E-06	lb/MMBtu	1.5E-04	6.7E-04	AP-42, Table 3.2-2 (Jul-2000)
Acetaldehyde	8.36E-03	lb/MMBtu	2.3E-01	1.0E+00	AP-42, Table 3.2-2 (Jul-2000)
Acrolein	5.14E-03	lb/MMBtu	1.4E-01	6.3E-01	AP-42, Table 3.2-2 (Jul-2000)
Benzene	4.40E-04	lb/MMBtu	1.2E-02	5.4E-02	AP-42, Table 3.2-2 (Jul-2000)
Benzo(b)fluoranthene	1.66E-07	lb/MMBtu	4.6E-06	2.0E-05	AP-42, Table 3.2-2 (Jul-2000)
Benzo(e)pyrene	4.15E-07	lb/MMBtu	1.2E-05	5.1E-05	AP-42, Table 3.2-2 (Jul-2000)
Benzo(g,h,i)perylene	4.14E-07	lb/MMBtu	1.2E-05	5.1E-05	AP-42, Table 3.2-2 (Jul-2000)
Biphenyl	2.12E-04	lb/MMBtu	5.9E-03	2.6E-02	AP-42, Table 3.2-2 (Jul-2000)
Carbon Tetrachloride	3.67E-05	lb/MMBtu	1.0E-03	4.5E-03	AP-42, Table 3.2-2 (Jul-2000)
Chlorobenzene	3.04E-05	lb/MMBtu	8.5E-04	4.5E-03 3.7E-03	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
Chloroform	2.85E-05	lb/MMBtu	7.9E-04	3.5E-03	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
	6.93E-07	lb/MMBtu	1.9E-04	8.5E-05	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
Chrysene	6.93E-07 3.97E-05	,	1.9E-05 1.1E-03	8.5E-05 4.8E-03	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
Ethylbenzene	3.97E-05 4.43E-05	lb/MMBtu	1.1E-03 1.2E-03	4.8E-03 5.4E-03	
Ethylene Dibromide		lb/MMBtu		5.4E-03 1.4E-04	AP-42, Table 3.2-2 (Jul-2000)
Fluoranthene	1.11E-06 5.67E-06	lb/MMBtu	3.1E-05 1.6E-04	6.9E-04	AP-42, Table 3.2-2 (Jul-2000)
Fluorene		lb/MMBtu			AP-42, Table 3.2-2 (Jul-2000)
Methanol	2.50E-03	lb/MMBtu	7.0E-02	3.1E-01	AP-42, Table 3.2-2 (Jul-2000)
Methylene Chloride	2.00E-05	lb/MMBtu	5.6E-04	2.4E-03	AP-42, Table 3.2-2 (Jul-2000)
n-Hexane	1.11E-03	lb/MMBtu	3.1E-02	1.4E-01	AP-42, Table 3.2-2 (Jul-2000)
Naphthalene	7.44E-05	lb/MMBtu	2.1E-03	9.1E-03	AP-42, Table 3.2-2 (Jul-2000)
РАН	2.69E-05	lb/MMBtu	7.5E-04	3.3E-03	AP-42, Table 3.2-2 (Jul-2000)
Phenanthrene	1.04E-05	lb/MMBtu	2.9E-04	1.3E-03	AP-42, Table 3.2-2 (Jul-2000)
Phenol	2.40E-05	lb/MMBtu	6.7E-04	2.9E-03	AP-42, Table 3.2-2 (Jul-2000)
Pyrene	1.36E-06	lb/MMBtu	3.8E-05	1.7E-04	AP-42, Table 3.2-2 (Jul-2000)
Styrene	2.36E-05	lb/MMBtu	6.6E-04	2.9E-03	AP-42, Table 3.2-2 (Jul-2000)
Tetrachloroethane	2.48E-06	lb/MMBtu	6.9E-05	3.0E-04	AP-42, Table 3.2-2 (Jul-2000)
Toluene	4.08E-04	lb/MMBtu	1.1E-02	5.0E-02	AP-42, Table 3.2-2 (Jul-2000)
Vinyl Chloride	1.49E-05	lb/MMBtu	4.2E-04	1.8E-03	AP-42, Table 3.2-2 (Jul-2000)
Xylene	1.84E-04	lb/MMBtu	5.1E-03	2.2E-02	AP-42, Table 3.2-2 (Jul-2000)
Total HAP (including HCHO)			0.87	3.82	

DTE Appalachia Gathering, LLC Davbrook Compressor Station G35-D Application

Compressor Engines

Engine Information:

CE-4 and CE-5
Caterpillar
G3616
4-stroke
Lean
5,000

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,072
Specific Fuel Consumption (Btu/bhp-hr):	7,511
Maximum Fuel Consumption at 100% Load (scf/hr):	35,025
Heat Input (MMBtu/hr):	37.56
Potential Fuel Consumption (MMBtu/yr):	328,982
Max. Fuel Consumption at 100% (MMscf/hr):	0.0350
Max. Fuel Consumption (MMscf/yr):	306.8
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Dellusteret			Maximum Potential Emissions		Estimation Basis / Emission
Pollutant	Emission Factor	Units	lbs/hr	tpy	Factor Source
NO _x	0.50	g/bhp-hr	5.51	24.14	Manufacturer Specifications
VOC (excludes HCHO)	0.25	g/bhp-hr	2.76	12.07	Manufacturer Specifications
VOC (includes HCHO)			3.42	14.97	VOC + HCHO
CO	0.15	g/bhp-hr	1.65	7.24	Vendor Specifications
SO _x	0.001	lb/MMBtu	0.02	0.10	AP-42, Table 3.2-2 (Jul-2000)
PM ₁₀	0.01	lb/MMBtu	0.38	1.64	AP-42, Table 3.2-2 (Jul-2000)
PM _{2.5}	0.01	lb/MMBtu	0.38	1.64	AP-42, Table 3.2-2 (Jul-2000)
Formaldehyde (HCHO)	0.06	g/bhp-hr	0.66	2.90	Vendor Specifications
GHG (CO ₂ e)	See Tabl	e Below	5,509	24,127	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tabl	e Below	1.39	6.09	AP-42, Table 3.2-2 (Jul-2000)

Notes:

1. PM₁₀ and PM_{2.5} are total values (filterable + condensable).

2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

DTE Appalachia Gathering, LLC Daybrook Compressor Station G35-D Application

Compressor Engines					
Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:					
Pollutant	Units	Maximum Potential Emissions		Estimation Basis / Emission	
Ponutant	Emission Factor	Units	lbs/hr	tpy	Factor Source
<u>GHGs:</u>					
CO ₂	411	g/bhp-hr	4,530.52	19,843.69	Manufacturer Specifications
CH ₄	3.54	g/bhp-hr	39.02	170.92	Manufacturer (THC - NMHC)
N ₂ O	0.0001	kg/MMBtu	0.01	0.04	40 CFR 98, Table C-2
GHG (CO ₂ e)			5,509	24,127	
Organic HAPs:					
1,1,2,2-Tetrachloroethane	4.00E-05	lb/MMBtu	1.5E-03	6.6E-03	AP-42, Table 3.2-2 (Jul-2000)
1,1,2-Trichloroethane	3.18E-05	lb/MMBtu	1.2E-03	5.2E-03	AP-42, Table 3.2-2 (Jul-2000)
1,3-Butadiene	2.67E-04	lb/MMBtu	1.0E-02	4.4E-02	AP-42, Table 3.2-2 (Jul-2000)
1,3-Dichloropropene	2.64E-05	lb/MMBtu	9.9E-04	4.3E-03	AP-42, Table 3.2-2 (Jul-2000)
2-Methylnapthalene	3.32E-05	lb/MMBtu	1.2E-03	5.5E-03	AP-42, Table 3.2-2 (Jul-2000)
2,2,4-Trimethylpentane	2.50E-04	lb/MMBtu	9.4E-03	4.1E-02	AP-42, Table 3.2-2 (Jul-2000)
Acenaphthene	1.25E-06	lb/MMBtu	4.7E-05	2.1E-04	AP-42, Table 3.2-2 (Jul-2000)
Acenaphthylene	5.53E-06	lb/MMBtu	2.1E-04	9.1E-04	AP-42, Table 3.2-2 (Jul-2000)
Acetaldehyde	8.36E-03	lb/MMBtu	3.1E-01	1.4E+00	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
Acrolein	5.14E-03	lb/MMBtu	1.9E-01	8.5E-01	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
	5.14E-03 4.40E-04	,	1.9E-01 1.7E-02	7.2E-01	
Benzene		lb/MMBtu		2.7E-02	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
Benzo(b)fluoranthene	1.66E-07	lb/MMBtu	6.2E-06		. 0 ,
Benzo(e)pyrene	4.15E-07	lb/MMBtu	1.6E-05	6.8E-05	AP-42, Table 3.2-2 (Jul-2000)
Benzo(g,h,i)perylene	4.14E-07	lb/MMBtu	1.6E-05	6.8E-05	AP-42, Table 3.2-2 (Jul-2000)
Biphenyl	2.12E-04	lb/MMBtu	8.0E-03	3.5E-02	AP-42, Table 3.2-2 (Jul-2000)
Carbon Tetrachloride	3.67E-05	lb/MMBtu	1.4E-03	6.0E-03	AP-42, Table 3.2-2 (Jul-2000)
Chlorobenzene	3.04E-05	lb/MMBtu	1.1E-03	5.0E-03	AP-42, Table 3.2-2 (Jul-2000)
Chloroform	2.85E-05	lb/MMBtu	1.1E-03	4.7E-03	AP-42, Table 3.2-2 (Jul-2000)
Chrysene	6.93E-07	lb/MMBtu	2.6E-05	1.1E-04	AP-42, Table 3.2-2 (Jul-2000)
Ethylbenzene	3.97E-05	lb/MMBtu	1.5E-03	6.5E-03	AP-42, Table 3.2-2 (Jul-2000)
Ethylene Dibromide	4.43E-05	lb/MMBtu	1.7E-03	7.3E-03	AP-42, Table 3.2-2 (Jul-2000)
Iuoranthene	1.11E-06	lb/MMBtu	4.2E-05	1.8E-04	AP-42, Table 3.2-2 (Jul-2000)
luorene	5.67E-06	lb/MMBtu	2.1E-04	9.3E-04	AP-42, Table 3.2-2 (Jul-2000)
fethanol	2.50E-03	lb/MMBtu	9.4E-02	4.1E-01	AP-42, Table 3.2-2 (Jul-2000)
Methylene Chloride	2.00E-05	lb/MMBtu	7.5E-04	3.3E-03	AP-42, Table 3.2-2 (Jul-2000)
n-Hexane	1.11E-03	lb/MMBtu	4.2E-02	1.8E-01	AP-42, Table 3.2-2 (Jul-2000)
Vaphthalene	7.44E-05	lb/MMBtu	2.8E-03	1.2E-02	AP-42, Table 3.2-2 (Jul-2000)
РАН	2.69E-05	lb/MMBtu	1.0E-03	4.4E-03	AP-42, Table 3.2-2 (Jul-2000)
Phenanthrene	1.04E-05	lb/MMBtu	3.9E-04	1.7E-03	AP-42, Table 3.2-2 (Jul-2000)
henol	2.40E-05	lb/MMBtu	9.0E-04	3.9E-03	AP-42, Table 3.2-2 (Jul-2000)
Pyrene (Contraction)	1.36E-06	lb/MMBtu	5.1E-05	2.2E-04	AP-42, Table 3.2-2 (Jul-2000)
ityrene	2.36E-05	lb/MMBtu	8.9E-04	3.9E-03	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
etrachloroethane	2.38E-05 2.48E-06	lb/MMBtu	9.3E-04	3.9E-03 4.1E-04	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
oluene		,	9.3E-05 1.5E-02	4.1E-04 6.7E-02	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
	4.08E-04	lb/MMBtu			
/inyl Chloride Kylene	1.49E-05 1.84E-04	lb/MMBtu lb/MMBtu	5.6E-04 6.9E-03	2.5E-03 3.0E-02	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)
	1.04E-04	id/ MMDU			Ar-42, Table 5.2-2 (jul-2000)
otal HAP (including HCHO)			1.39	6.09	

DTE Appalachia Gathering, LLC Daybrook Compressor Station G35-D Application

Compressor Engines

Engine Information:

Source Designation:	CE-6
Manufacturer:	Caterpillar
Model No.:	G3608
Stroke Cycle:	4-stroke
Type of Burn:	Lean
Rated Horsepower (bhp):	2,370

Engine Fuel Information:

Fuel Type:	Natural Gas
Higher Heating Value (HHV) (Btu/scf):	1,072
Specific Fuel Consumption (Btu/bhp-hr):	7,531
Maximum Fuel Consumption at 100% Load (scf/hr):	16,646
Heat Input (MMBtu/hr):	17.85
Potential Fuel Consumption (MMBtu/yr):	156,353
Max. Fuel Consumption at 100% (MMscf/hr):	0.0166
Max. Fuel Consumption (MMscf/yr):	145.8
Max. Annual Hours of Operation (hr/yr):	8,760

Engine Emissions Data:

Pollutant	Emission Factor	Units	Maximum Potential Emissions		Estimation Basis / Emission
			lbs/hr	tpy	Factor Source
NO _x	0.50	g/bhp-hr	2.61	11.44	Manufacturer Specifications
VOC (excludes HCHO)	0.26	g/bhp-hr	1.36	5.95	Total VOC minus HCHO
VOC (includes HCHO)			1.67	7.32	Permit Limit
СО	0.19	g/bhp-hr	0.99	4.34	Permit Limit
SO _x	0.001	lb/MMBtu	0.01	0.05	AP-42, Table 3.2-2 (Jul-2000)
PM ₁₀	0.01	lb/MMBtu	0.18	0.78	AP-42, Table 3.2-2 (Jul-2000)
PM _{2.5}	0.01	lb/MMBtu	0.18	0.78	AP-42, Table 3.2-2 (Jul-2000)
Formaldehyde (HCHO)	0.06	g/bhp-hr	0.31	1.37	Permit Limit
GHG (CO ₂ e)	See Table Below		3,000	13,141	40 CFR 98, Tables C-1 & C-2
Other (Total HAP)	See Tabl	e Below	0.66	2.88	AP-42, Table 3.2-2 (Jul-2000)

Notes:

1. PM_{10} and $PM_{2.5}$ are total values (filterable + condensable).

2. GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

3. Total HAP is the summation of all hazardous air pollutants for which there is a published emission factor for this source type.

DTE Appalachia Gathering, LLC Daybrook Compressor Station G35-D Application

Compressor Engines Greenhouse Gas (GHG) & Hazardous Air Pollutant (HAP) Emissions Calculations:								
	lbs/hr	tpy	Factor Source					
GHGs:								
202	440	g/bhp-hr	2,298.99	10,069.59	Manufacturer Specifications			
CH4	5.36	g/bhp-hr	28.01	122.67	Manufacturer (THC - NMHC)			
J ₂ O	0.0001	kg/MMBtu	0.00	0.02	40 CFR 98, Table C-2			
GHG (CO ₂ e)	I	3,000 13,141						
Organic HAPs:								
1,1,2,2-Tetrachloroethane	4.00E-05	lb/MMBtu	7.1E-04	3.1E-03	AP-42, Table 3.2-2 (Jul-2000)			
1,1,2-Trichloroethane	3.18E-05	lb/MMBtu	5.7E-04	2.5E-03	AP-42, Table 3.2-2 (Jul-2000)			
,3-Butadiene	2.67E-04	lb/MMBtu	4.8E-03	2.1E-02	AP-42, Table 3.2-2 (Jul-2000)			
,3-Dichloropropene	2.64E-05	lb/MMBtu	4.7E-04	2.1E-03	AP-42, Table 3.2-2 (Jul-2000)			
-Methylnapthalene	3.32E-05	lb/MMBtu	5.9E-04	2.6E-03	AP-42, Table 3.2-2 (Jul-2000)			
2,2,4-Trimethylpentane	2.50E-04	lb/MMBtu	4.5E-03	2.0E-02	AP-42, Table 3.2-2 (Jul-2000)			
Acenaphthene	1.25E-06	lb/MMBtu	2.2E-05	9.8E-05	AP-42, Table 3.2-2 (Jul-2000)			
Acenaphthylene	5.53E-06	lb/MMBtu	9.9E-05	4.3E-04	AP-42, Table 3.2-2 (Jul-2000)			
cetaldehyde	8.36E-03	lb/MMBtu	1.5E-01	6.5E-01	AP-42, Table 3.2-2 (Jul-2000)			
crolein	5.14E-03	lb/MMBtu	9.2E-02	4.0E-01	AP-42, Table 3.2-2 (Jul-2000)			
lenzene	4.40E-04	lb/MMBtu	7.9E-03	3.4E-02	AP-42, Table 3.2-2 (Jul-2000)			
enzene enzo(b)fluoranthene	1.66E-07	lb/MMBtu	3.0E-06	1.3E-05	AP-42, Table 3.2-2 (Jul-2000)			
enzo(e)pyrene	4.15E-07	lb/MMBtu	7.4E-06	3.2E-05	AP-42, Table 3.2-2 (Jul-2000)			
Benzo(g,h,i)perylene	4.13E-07 4.14E-07	lb/MMBtu	7.4E-06	3.2E-05	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)			
	4.14E-07 2.12E-04	lb/MMBtu	3.8E-03	1.7E-02	AP-42, Table 3.2-2 (Jul-2000)			
liphenyl arbon Tetrachloride	3.67E-05	lb/MMBtu	6.6E-04	2.9E-03	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)			
hlorobenzene	3.04E-05		5.4E-04	2.4E-03	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)			
	2.85E-05	lb/MMBtu	5.1E-04	2.4E-03 2.2E-03	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)			
hloroform		lb/MMBtu		2.2E-03 5.4E-05	AP-42, Table 3.2-2 (Jul-2000) AP-42, Table 3.2-2 (Jul-2000)			
hrysene	6.93E-07	lb/MMBtu	1.2E-05 7.1E-04	3.1E-03				
thylbenzene	3.97E-05	lb/MMBtu			AP-42, Table 3.2-2 (Jul-2000)			
thylene Dibromide	4.43E-05	lb/MMBtu	7.9E-04	3.5E-03	AP-42, Table 3.2-2 (Jul-2000)			
luoranthene	1.11E-06	lb/MMBtu	2.0E-05	8.7E-05	AP-42, Table 3.2-2 (Jul-2000)			
luorene	5.67E-06	lb/MMBtu	1.0E-04	4.4E-04	AP-42, Table 3.2-2 (Jul-2000)			
fethanol	2.50E-03	lb/MMBtu	4.5E-02	2.0E-01	AP-42, Table 3.2-2 (Jul-2000)			
fethylene Chloride	2.00E-05	lb/MMBtu	3.6E-04	1.6E-03	AP-42, Table 3.2-2 (Jul-2000)			
-Hexane	1.11E-03	lb/MMBtu	2.0E-02	8.7E-02	AP-42, Table 3.2-2 (Jul-2000)			
laphthalene	7.44E-05	lb/MMBtu	1.3E-03	5.8E-03	AP-42, Table 3.2-2 (Jul-2000)			
AH	2.69E-05	lb/MMBtu	4.8E-04	2.1E-03	AP-42, Table 3.2-2 (Jul-2000)			
henanthrene	1.04E-05	lb/MMBtu	1.9E-04	8.1E-04	AP-42, Table 3.2-2 (Jul-2000)			
henol	2.40E-05	lb/MMBtu	4.3E-04	1.9E-03	AP-42, Table 3.2-2 (Jul-2000)			
yrene	1.36E-06	lb/MMBtu	2.4E-05	1.1E-04	AP-42, Table 3.2-2 (Jul-2000)			
tyrene	2.36E-05	lb/MMBtu	4.2E-04	1.8E-03	AP-42, Table 3.2-2 (Jul-2000)			
etrachloroethane	2.48E-06	lb/MMBtu	4.4E-05	1.9E-04	AP-42, Table 3.2-2 (Jul-2000)			
oluene	4.08E-04	lb/MMBtu	7.3E-03	3.2E-02	AP-42, Table 3.2-2 (Jul-2000)			
inyl Chloride	1.49E-05	lb/MMBtu	2.7E-04	1.2E-03	AP-42, Table 3.2-2 (Jul-2000)			
ylene	1.84E-04	lb/MMBtu	3.3E-03	1.4E-02	AP-42, Table 3.2-2 (Jul-2000)			
otal HAP (including HCHO)	· · ·		0.66	2.88				

DTE Appalachia Gathering, LLC Daybrook Compressor Station G35-D Application

Glycol Dehydrator

(tons/yr) 639.9624 91.9793 17.4653 2.4282 3.0070 0.7860 0.4222 1.1300 0.3704 0.0979 756.6316 24.6900 1.1300

Source Designation:	RSV-1
Throughput Rating (MMSCFD):	125
Tower Temperature (deg F):	100
Tower Pressure (psig):	1,250
Glycol Pump Rate (gpm):	15
Flash Tank Temperature (deg F):	110
Flash Tank Pressure (psig):	35
Potential Annual Hours of Operation (hr/yr):	8,760

GRI-GLYCalc Version 4.0 - E Controlled Regenerator Em		UMMARY ¹		GRI-GLYCalc Version 4.0 - I Flash Gas Emissions	EMISSIONS SI	UMMARY ¹
Pollutant	(lbs/hr)	(lbs/day)	(tons/yr)	Pollutant	(lbs/hr)	(lbs/day)
Methane	0.6752	16.206	2.9576	Methane	146.1101	3,506.643
Ethane	0.3572	8.572	1.5644	Ethane	20.9998	503.996
Propane	0.1594	3.827	0.6984	Propane	3.9875	95.700
Isobutane	0.0350	0.841	0.1534	Isobutane	0.5544	13.305
n-Butane	0.0580	1.393	0.2543	n-Butane	0.6865	16.477
Isopentane	0.0177	0.424	0.0774	Isopentane	0.1794	4.307
n-Pentane	0.0121	0.291	0.0531	n-Pentane	0.0964	2.314
n-Hexane*	0.0620	1.480	0.2700	n-Hexane*	0.2580	6.190
Other Hexanes	0.0149	0.357	0.0652	Other Hexanes	0.0846	2.030
Heptanes	0.0115	0.276	0.0504	Heptanes	0.0223	0.536
Total Emissions	1.3473	32.335	5.9012	Total Emissions	172.7469	4,145.927
Total Hydrocarbon Emissions	1.3473	32.335	5.9012	Total Hydrocarbon Emissions	172.7469	4,145.927
Total VOC Emissions	0.3149	7.557	1.3792	Total VOC Emissions	5.6370	135.287
Total HAP Emissions	0.0620	1.480	0.2700	Total HAP Emissions	0.2580	6.190

Regenerator + Flash Tank Pollutant	(lbs/hr)	(lbs/day)	(tons/yr)
Methane	161.4638	3,875.134	707.2120
Ethane	23.4927	563.825	102.8981
Propane	4.5616	109.480	19.9801
Isobutane	0.6483	15.561	2.8398
n-Butane	0.8190	19.657	3.5874
Isopentane	0.2168	5.204	0.9497
n-Pentane	0.1194	2.866	0.5228
n-Hexane*	0.3520	8.437	1.5400
Other Hexanes	0.1095	2.626	0.4792
Heptanes	0.0372	0.893	0.1631
Total Emissions	191.5036	4,596.088	838.7861
Total Hydrocarbon Emissions	191.5036	4,596.088	838.7861
Total VOC Emissions	6.5471	157.128	28.6761
Total HAP Emissions	0.3520	8.437	1.5400

* HAPs (the total emissions rate values for these constituents include a compliance margin to account for the periodic variability of the inlet natural gas)

1. Based on GRI-GLYCalc 4.0 run. The unit utilizes energy-exchange glycol pumps.

2. Totals conservatively include a 10% compliance margin to account for minor variations in inlet gas composition that may occur periodically.

Company Name:	DTE Appalachia Gathering, LLC
Facility Name:	Daybrook Compressor Station
Project Description:	G35-D Application

Reboiler						
Source Designation:	RBV-1					
Fuel Used:	Natural Gas					
Higher Heating Value (HHV) (Btu/scf):	1,072					
Heat Input (MMBtu/hr):	1.50					
Fuel Consumption (MMscf/hr):	1.40E-03					
Potential Annual Hours of Operation (hr/yr):	8,760					

Criteria and Manufacturer Specific Pollutant Emission Rates:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
NO _x	100	0.14	0.61
со	84	0.12	0.51
VOC	5.5	0.01	0.03
SO ₂	0.6	8.4E-04	3.7E-03
PM Total	7.6	0.01	0.05
PM Condensable	5.7	8.0E-03	0.03
PM ₁₀ (Filterable)	1.9	2.7E-03	0.01
PM _{2.5} (Filterable)	1.9	2.7E-03	0.01
Lead	5.00E-04	7.0E-07	3.1E-06
CO_2^4	117.0	175.50	768.67
CH4 ⁴	2.21E-03	3.3E-03	1.4E-02
N ₂ O ⁴	2.21E-04	3.3E-04	1.4E-03

DTE Appalachia Gathering, LLC Daybrook Compressor Station G35-D Application

Reboiler

Hazardous Air Pollutant (HAP) Potential Emissions:

	Emission Factor	Potential	Emissions
Pollutant	(lb/MMscf) ¹	(lb/hr) ²	(tons/yr) ³
HAPs:			
Methylnaphthalene (2-)	2.4E-05	3.4E-08	1.5E-07
3-Methylchloranthrene	1.8E-06	2.5E-09	1.1E-08
7,12-Dimethylbenz(a)anthracene	1.6E-05	2.2E-08	9.8E-08
Acenaphthene	1.8E-06	2.5E-09	1.1E-08
Acenaphthylene	1.8E-06	2.5E-09	1.1E-08
Anthracene	2.4E-06	3.4E-09	1.5E-08
Benz(a)anthracene	1.8E-06	2.5E-09	1.1E-08
Benzene	2.1E-03	2.9E-06	1.3E-05
Benzo(a)pyrene	1.2E-06	1.7E-09	7.4E-09
Benzo(b)fluoranthene	1.8E-06	2.5E-09	1.1E-08
Benzo(g,h,i)perylene	1.2E-06	1.7E-09	7.4E-09
Benzo(k)fluoranthene	1.8E-06	2.5E-09	1.1E-08
Chrysene	1.8E-06	2.5E-09	1.1E-08
Dibenzo(a,h) anthracene	1.2E-06	1.7E-09	7.4E-09
Dichlorobenzene	1.2E-03	1.7E-06	7.4E-06
Fluoranthene	3.0E-06	4.2E-09	1.8E-08
Fluorene	2.8E-06	3.9E-09	1.7E-08
Formaldehyde	7.5E-02	1.0E-04	4.6E-04
Hexane	1.8E+00	2.5E-03	1.1E-02
Indo(1,2,3-cd)pyrene	1.8E-06	2.5E-09	1.1E-08
Naphthalene	6.1E-04	8.5E-07	3.7E-06
Phenanthrene	1.7E-05	2.4E-08	1.0E-07
Pyrene	5.0E-06	7.0E-09	3.1E-08
Toluene	3.4E-03	4.8E-06	2.1E-05
Arsenic	2.0E-04	2.8E-07	1.2E-06
Beryllium	1.2E-05	1.7E-08	7.4E-08
Cadmium	1.1E-03	1.5E-06	6.7E-06
Chromium	1.4E-03	2.0E-06	8.6E-06
Cobalt	8.4E-05	1.2E-07	5.1E-07
Manganese	3.8E-04	5.3E-07	2.3E-06
Mercury	2.6E-04	3.6E-07	1.6E-06
Nickel	2.1E-03	2.9E-06	1.3E-05
Selenium	2.4E-05	3.4E-08	1.5E-07
Total HAP		2.6E-03	1.2E-02

¹ Emission factors from AP-42 Section 1.4 "Natural Gas Combustion" Tables 1.4-1, 1.4-2, & 1.4-3

² Emission Rate (lb/hr) = Rated Capacity (MMscf/hr) × Emission Factor (lb/MMscf).

³ Annual Emissions (tons/yr)_{Potential} = (lb/hr)_{Emissions} × (Maximum Allowable Operating Hours, 8760 hr/yr) × (1 ton/2000 lb).

 $^{\rm 4}$ GHG Emission factors from Tables C-1 and C-2, 40 CFR 98, Subpart C.

DTE Appalachia Gathering, LLC Daybrook Compressor Station G35-D Application

8,760 hrs/yr

Storage Vessels

Operational Hours

btoruge ves

Storage Tanks - Uncontrolled 1,2,3

Source Designation: Contents: Number: Capacity: Throughput: Condensate Throughput:	1 4,200 50,400	01 /ater/Oil tank(s) gal (each) gal (each) bbl/day (each)	Meth 1 4,200 50,400	02 hanol tank(s) gal (each) gal (each)	Produce 2 16,800 201,600	o T04 d Water tank(s) gal (each) gal (each) bbl/day (each)	500	(Glycol) tank(s) gal (each) gal (each)	Engine/Cor 10 500 6,000	o T18 npressor Oil tank(s) gal (each) gal (each)	Triethyle 2 1,000 12,000	& T20 ene Glycol tank(s) gal (each) gal (each)	1,000 12,000	
Emissions (per tank)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
voc	0.052	0.229	0.016	0.069	0.105	0.459	6.8E-06	3.0E-05	9.6E-05	4.2E-04	6.8E-06	3.0E-05	9.6E-05	4.2E-04
HAP Benzene	0.005 <0.001	0.020 0.002	0.016	0.069	0.007 0.001	0.030 0.003	6.8E-06	3.0E-05	9.6E-05	4.2E-04	6.8E-06	3.0E-05	9.6E-05	4.2E-04
Toluene Ethylbenzene	<0.001 <0.001	0.001 <0.001			<0.001 <0.001	0.002 <0.001								
Xylene n-Hexane	<0.001 0.002	<0.001 0.008			<0.001 0.006	<0.001 0.026								
Methane	0.001	0.006			0.003	0.013								

¹ Uncontrolled emissions calculation using E&P TANK v2.0 for tanks with flashing; emissions include working, breathing and flashing losses. Conservatively assumes 1% condensate in waste fluids.

² Uncontrolled emissions calculation using EPA Tanks 4.0.9d for tanks without flashing; emissions include working and breathing losses.

³ Conservatively assumes one turnover per month, per tank.

⁴ Emissions from tanks with the capacity to store more than one fluid are represented with the most conservative pollutant (largest emissions).

DTE Appalachia Gathering, LLC Daybrook Compressor Station G35-D Application

Liquid Loading

Throughput Capture Efficiency Control Efficiency 453,600 gal/yr 0% non-tested tanker trucks 0% Combustor destruction efficiency

Liquid Loading Emissions

Source ID:

Uncontrolled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T Controlled Loading Losses: L_L (lb/10³ gal) = 12.46 (SPM)/T * (1 - Capture Efficiency * Control Efficiency)

L01

Parameter	Value	Description
S	0.60	Saturation factor for "Submerged Loading: dedicated normal service" (AP-42 Table 5.2-1)
Capture Efficiency	0%	Capture Efficiency
Control Efficiency	0%	Control Efficiency
Р	0.3240	true vapor pressure of liquid loaded (psia) - from EPA TANKS run
М	19.3610	molecular weight of vapors (lb/lb-mol) - from EPA TANKS run
Т	511.81	bulk liquid temperature of liquids loaded (deg R) - from EPA TANKS run

Description	Uncontrolled Loading Losses (lb/10 ³ gal)	Maximum Throughput ¹ (gal/yr)	VOC En (tpy)	nissions (lb/hr) ²	HAP Er (tpy)	nissions (lb/hr) ²
	(ID/IO gal)	(gai/yi)	(ւրչյ	(ID/III)	(ւրչյ	(ID/III)
Truck Loading of Produced Fluids	0.09	453,600	0.02	0.08	0.00	0.01

¹ Total estimated maximum annual throughput for the waste fluid tanks.

¹ Lb/hr values assume two (2) hours of loading per day, five (5) days per week.

DTE Appalachia Gathering, LLC Daybrook Compressor Station G35-D Application

Fugitive Emissions

Fugitive Emissions from Component Leaks

Facility Equipment Type ¹	Valves	Connectors	Open-Ended Lines	Pressure Relief Devices	
Wellhead	8	38	0.5	0	
Separators	1	6	0	0	
Meters/Piping	12	45	0	0	
Compressors	12	57	0	0	
In-line heaters	14	65	2	1	
Dehydrators	24	90	2	2	

¹ Table W-1B to Subpart W of Part 98 — Default Average Component Counts for Major Onshore Natural Gas Production Equipment and Onshore Petroleum and Natural Gas Gathering and Boosting Equipment

Fugitive VOC/Total Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Weight Fraction VOC	Weight Fraction HAP		HAP Emissions ³ (tpy)
Pumps	Light Liquid	0.01990	1	0.19	1.00	3.5E-03	0.19	6.8E-04
Compressor	Gas	0.22800	6	13	0.03	9.0E-05	0.34	1.2E-03
Valves	Gas	0.00597	168	9.68	0.03	9.0E-05	0.25	8.7E-04
Pressure Relief Valves	Gas	0.10400	11	11.05	0.03	9.0E-05	0.28	9.9E-04
Open-Ended Lines	All	0.00170	3	0.05	0.03	9.0E-05	1.3E-03	4.4E-06
Connectors	All	0.00183	752	13.28	0.03	9.0E-05	0.34	1.2E-03
Continuous Pneumatic Devices ⁴	Gas	1.39	25	6.92	0.03	9.0E-05	0.18	6.2E-04
Intermittent Pneumatic Devices ⁴	Gas	13.5	16	43.04	0.03	9.0E-05	1.09	3.9E-03
			Emission Totals:	47.46			2.66	0.01

¹ U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas extraction. The pneumatic controller values are from 40 CFR 98 Subpart W, Table W-1A (units of scf/hr-component).

² Pressure relief valves count includes two for each storage tank. A 50% compliance margin is added to the component counts based on Subpart W counts. ³ Potential emissions VOC/HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % VOC/HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) ÷ 2,000 (lb/ton)

* Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

Fugitive Emissions

Fugitive Specific HAP Emissions from Component Leaks

Equipment Type	Service	Emission Factors ¹ (kg/hr/source)	Facility Equipment Count ² (units)	TOC Annual Fugitive Emissions (tpy)	Benzene Emissions ³ (tpy)	Toluene Emissions ³ (tpy)	Ethylbenzene Emissions ³ (tpy)	Xylene Emissions ³ (tpy)	n-Hexane Emissions ⁴ (tpy)
Pumps	Light Liquid	0.01990	1	0.19	< 0.01	< 0.01	< 0.01	< 0.01	1.7E-05
Compressor	Gas	0.22800	6	13.21	< 0.01	< 0.01	< 0.01	< 0.01	1.2E-03
Valves	Gas	0.00597	168	9.68	< 0.01	< 0.01	< 0.01	< 0.01	8.7E-04
Pressure Relief Valves	Gas	0.10400	11	11.05	< 0.01	< 0.01	< 0.01	< 0.01	9.9E-04
Open-Ended Lines	All	0.00170	3	0.05	< 0.01	< 0.01	< 0.01	< 0.01	4.4E-06
Connectors	All	0.00183	752	13.28	< 0.01	< 0.01	< 0.01	< 0.01	1.2E-03
Continuous Pneumatic Devices ⁴	Gas	1.39	25	6.92	< 0.01	< 0.01	< 0.01	< 0.01	6.2E-04
Intermittent Pneumatic Devices ⁴	Gas	13.5	16	43.04	<0.01	< 0.01	<0.01	<0.01	3.9E-03
			Emission Totals:	47.46	<0.01	<0.01	<0.01	<0.01	0.01

¹ U.S. EPA. Office of Air Quality Planning and Standards. Protocol for Equipment Leak Emission Estimates. Table 2-1. (Research Triangle Park, NC: U.S. EPA EPA-453/R-95-017, 1995). SOCMI factors were used as it was representative of natural gas extraction. The pneumatic controller values are from 40 CFR 98 Subpart W, Table W-1A (units of scf/hr-component).

² Pressure relief valves count includes one Emergency Pressure Relief valve and one hatch for each storage tank. A 50% compliance margin is added to the component counts based on Subpart W counts.

³ Potential emissions HAP (tpy) = Emission factor (kg/hr/source) * Number of Sources * Weight % HAP x 2.2046 (lb/kg) x 8,760 (hr/yr) + 2,000 (lb/ton)

⁴ Potential emissions HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

GHG Fugitive Emissions from Component Leaks

		GHG Emission	CH4		
Component	Component Count	Factor ¹ cf/hr/componen		CO ₂ Emissions ^{2,3} (tpy)	CO2e Emissions ⁴ (tpy)
Pumps	1	0.01	1.7E-03	5.8E-06	0.04
Compressor	6	4.17	4.30	0.01	107.46
Valves	168	0.027	0.78	2.6E-03	19.48
Pressure Relief Devices	11	0.04	0.08	2.5E-04	1.89
Open-Ended Lines	3	0.061	0.03	1.1E-04	0.79
Connectors	752	0.003	0.39	1.3E-03	9.68
Continuous Pneumatic Devices	25	1.39	5.97	0.02	149.25
Intermittent Pneumatic Devices	16	13.5	37.10	0.12	927.74
T	otal		48.65	0.16	1216.35

¹ Population emission factors for gas service in the Eastern U.S. from Table W-1A of Subpart W - Default Whole Gas Emission Factors for Onshore Production , 40 CFR 98, Subpart W (table W-6 for compressor).

² Calculated in accordance with Equations W-32a, W-35 and W-36 in Subpart W of 40 CFR 98. See footnote 4 above for sample calculation.

³ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

Mole fractions of CH4 and CO2 based on gas analysis:

CH4: 93% CO₂: 0.11%

⁴ Carbon equivalent emissions (CO₂e) are based on the following Global Warming Potentials (GWP) from 40 CFR Part 98, Table A-1: 1

Carbon Dioxide (CO₂): 25

Methane (CH₄):

DTE Appalachia Gathering, LLC Davbrook Compressor Station G35-D Application

Fugitive Emissions

Fugitive Emissions from Venting

	Number of Events	Gas Vented Per Event	Total Volume Vented	Total Emissions	VOC Emissions	Benzene Emissions	Toluene Emissions	Ethylbenzene Emissions	Xylene Emissions	n-Hexane Emissions	HAP Emissions	CH ₄ Emissions	CO ₂ Emissions	CO ₂ e Emissions
Source	(events per yr)	(scf/event)	(scf/yr)	(ton/yr)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Rod Packing Venting		2,216,280	2,216,280	50.41	1.28	< 0.01	< 0.01	< 0.01	< 0.01	4.5E-03	4.5E-03	43.46	0.15	1,087
Compressor Blowdown	360	4,500	1,620,000	36.85	0.94	< 0.01	< 0.01	< 0.01	< 0.01	3.3E-03	3.3E-03	31.77	0.11	794
Compressor Startup	360	1,000	360,000	8.19	0.21	< 0.01	< 0.01	< 0.01	< 0.01	7.4E-04	7.4E-04	7.06	0.02	177
Plant Shutdown	1	900,000	900,000	20.47	0.52	< 0.01	< 0.01	< 0.01	< 0.01	1.8E-03	1.8E-03	17.65	0.06	441
Low Pressure Pig Venting	52	1,000	52,000	1.18	0.03	< 0.01	< 0.01	< 0.01	< 0.01	1.1E-04	1.1E-04	1.02	0.00	25
High Pressure Pig Venting	104	1,000	104,000	2.37	0.06	< 0.01	< 0.01	< 0.01	< 0.01	2.1E-04	2.1E-04	2.04	0.01	51
Total			5,252,280	119.47	3.03	<0.01	<0.01	<0.01	<0.01	0.01	0.01	103.00	0.35	2,575

¹ VOC and HAP emissions are based on sum of the fractions of the pollutants in the site-specific gas analysis in those classifications, and are calculated in accordance with standard conversion methodology and factors.

² CH₄ and CO₂ emissions are based on fractions of these pollutants in the site-specific gas analysis, and are calculated in accordance with Equations W-35 and W-36 in Subpart W of 40 CFR 98.

³ GHG (CO_2e) is carbon dioxide equivalent, which is the summation of CO_2 (GWP = 1) + CH₄ (GWP = 25) + N₂O (GWP = 298).

⁴ Total gas volume emitted (and thus subsequent emissions values) is estimated based on engineering judgement and is conservative.

⁵ Total gas volume emitted includes blowdowns and other venting activities, such as pigging.

⁶ Potential emissions VOC/HAP (tpy) = Gas volume vented (scf/yr) * Molar weight of natural gas (lb/lb-mol) * Weight % VOC/HAP + 100 + 379 (scf/lb-mol) + 2,000 (lb/ton)

⁷ Potential emissions CH₂/CO₂ (typ) = Gas volume vented (scf/yr) * Mole % CH₄/CO₂ ÷ 100 * Density CH₄/CO₂ (kg/scf) * 1,000 (g/kg) ÷ 453.6 (g/lb) ÷ 2,000 (lb/ton)

 Company Name:
 DTE Appalachia Gathering, LLC

 Facility Name:
 Daybrook Compressor Station

 Project Description:
 G35-D Application

Haul Roads

Estimated Potential Road Fugitive Emissions

Unpaved Road Emissions

paved Road Emissions				
Unpaved Roads:	E (lb/VMT)	$= k(s/12)^{a}(W/3)^{b}$)*[(365-p)/3	65]
	PM	PM ₁₀	PM _{2.5}	
k Factor (lb/VMT)	4.9	1.5	0.15	AP-42 Table 13.2.2-2 (Final, 11/06)
Silt content, s	4.8	%		AP-42 Table 13.2.2-1 (11/06), for Sand and Gravel Processing
Number of Rain Days, p	150			AP-42 Figure 13.2.1-2
а	0.7	0.9	0.9	AP-42 Table 13.2.2-2 (Final, 11/06)
b	0.45	0.45	0.45	AP-42 Table 13.2.2-2 (Final, 11/06)

Description	Weight of Empty Truck (tons)	Weight of Truck w/ Max Load (tons)	Mean Vehicle Weight (tons)	Length of Unpaved Road Traveled (mile)	Trips Per Year	Mileage Per Year	Control (%)	PM	Emissions (tpy PM ₁₀) PM _{2.5}
Liquids Hauling Employee Vehicles	20 3	40 3	30 3	0.15 0.15	113 200	34 61	0 0	0.07 0.05	0.02 0.01	0.00 0.00
Total Potential Emissions								0.12	0.03	0.00

DTE Appalachia Gathering, LLC Daybrook Compressor Station G35-D Application

Gas Analysis

Sample Location: HHV (Btu/scf):	Daybrook Compresson 1,072	r Station			
Constituent	Natural Gas Stream Speciation (Mole %)	Molecular Weight	Molar Weight	Average Weight Fraction	Natural Gas Stream Speciation (Wt. %)
Carbon Dioxide	0.1133	44.01	0.05	0.00	0.289
Nitrogen	0.2900	28.01	0.08	0.00	0.471
Methane	92.6560	16.04	14.86	0.86	86.196
Ethane	6.0239	30.07	1.81	0.11	10.506
Propane	0.7259	44.10	0.32	0.02	1.857
Isobutane	0.0720	58.12	0.04	0.00	0.243
n-Butane	0.0822	58.12	0.05	0.00	0.277
Isopentane	0.0183	72.15	0.01	0.00	0.077
n-Pentane	0.0090	72.15	0.01	0.00	0.038
Cyclopentane	< 0.001	70.10	0.00	0.00	0.000
n-Hexane	0.0018	86.18	0.00	0.00	0.009
Cyclohexane	< 0.001	84.16	0.00	0.00	0.000
Other Hexanes	0.0064	86.18	0.01	0.00	0.032
Heptanes	0.0012	100.21	0.00	0.00	0.007
Methylcyclohexane	< 0.001	98.19	0.00	0.00	0.000
2,2,4-Trimethylpentane	< 0.001	114.23	0.00	0.00	0.000
Benzene*	< 0.001	78.11	0.00	0.00	0.000
Toluene*	< 0.001	92.14	0.00	0.00	0.000
Ethylbenzene*	< 0.001	106.17	0.00	0.00	0.000
Xylenes*	< 0.001	106.16	0.00	0.00	0.000
C8 + Heavies	< 0.001	130.80	0.00	0.00	0.000
Totals	100.000		17.24	1.00	100

TOC (Total)	99.60	99.24
VOC (Total)	0.92	2.54
HAP (Total)	0.00	0.01

J-W Measurement Company

724-749-5180

Customer	: 2239 - M3 APPALACHIA GATHERING LLC		Date Sampled	: 08/14/2013
Station ID	: 12919300		Date Analyzed	: 08/23/2013
Cylinder ID	: 5834		Effective Date	: 09/01/2013
Producer	:		Cyl Pressure	: 879
Lease	: ETC BOBCAT		Temp	: 74
Area	: 100 - AGS WV		Cylinder Type	: Spot
State	: WV		Sample By	: JC
	COMPONENT	MOL%	<u>GPM@14.73(PSIA)</u>	
	Methane	92.6560	0.000	I
	Ethane	6.0239	9 1.614	
	Propane	0.7259	0.200	1
	Iso-Butane	0.0720	0.024	
	Normal-Butane	0.0822		
	Iso-Pentane	0.0183		
	Normal-Pentane	0.0090		
	Nitrogen	0.2900		
	Carbon-Dioxide	0.1133		
	Oxygen	0.0000		
	BENZENE	0.0000		
	TOLUENE	0.0000		
	ETHYLBENZENE	0.0000		
	2,2-Dimethylbutane	0.0011		
	2,3-Dimethylbutane/CycloC5	0.0009		
	2-methylpentane	0.0027		
	3-methylpentane	0.0017		
	Normal-Hexane	0.0018		
	2,2-Dimethylpentane	0.0000		
	Methylcyclopentane	0.0000		
	3,3-Dimethylpentane	0.0000		
	CYCLOHEXANE	0.0000		
	2-Methylhexane	0.0006		
	2,3-Dimethylpentane	0.0000		
	3-Methylhexane	0.0006		
	1,t3-Dimethylcyclopentane	0.0000		
	1,t2-DMCYC5 / 2,2,4-TMC5	0.0000		
	N-Heptane METHYLCYCLOHEXANE	0.0000		
	2,5-Dimethylhexane	0.0000		
	2,3-Dimethylhexane	0.0000		
	2-Methylheptane 4-Methylheptane	0.0000		
		0.0000		
	3-Methylheptane			
	1,t4-Dimethylcyclohexane N-OCTANE / 1,T2-DMCYC6	0.0000		
	1,t3-DMCYC6/1,C4-	0.0000		
	DMCYC6/1,C2,C3-TMCYC5	0.0000	.000	
	2,4,4 TMC6	0.0000	0.000	I

TOTAL	100.0000	1.877
N-UNDECANE	0.0000	0.000
N-DECANE	0.0000	0.000
NONANE	0.0000	0.000
O-XYLENE	0.0000	0.000
M-Xylene/P-Xylene	0.0000	0.000
Ethylcyclohexane	0.0000	0.000
2,6-Dimethylheptane / 1,C2- DMCYC6	0.0000	0.000

Compressibility Factor (Z) @ 14.73 @ 60 Deg. F = 0.9977

C5+ GPM : 0.00998

		•		
Ideal Gravity: 0.5954	Real Gravity: 0.596	5	C5+ Mole % : 0.02	273
BTU @ (PSIA)	@14.65	@14.696	@14.73	@15.025
Ideal GPM	1.864	1.870	1.874	1.911
Ideal BTU Dry	1,063.92	1,067.26	1,069.73	1,091.15
Ideal BTU Sat	1,045.30	1,048.64	1,051.11	1,072.53
Real GPM	1.868	1.874	1.878	1.916
Real BTU Dry	1,066.39	1,069.74	1,072.22	1,093.75
Real BTU Sat	1,048.09	1,051.45	1,053.93	1,075.46
Ideal BTU as Delivered	1,063.23	1,066.57	1,069.04	1,090.45
Real BTU as Delivered	1,065.69	1,069.05	1,071.53	1,093.04
Comments:				

Gas Analysis performed in accordance with GPA 2261 Analytical Calculations performed in accordance with GPA 2172 Sample Count : 21000002

COC :

Lab Technician: ____

DEBORAH J MURPHY GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Daybrook Compressor Station

File Name: P:\Client\DTE\West Virginia\Daybrook\Projects\173901.0120 Daybrook G35-D Application\04 Draft\2017-0818 Revised G35D Application\Attach U - Emission Calcs\04 GRI-GLYCalc\2017-0825 DTE Daybrook_G35D_DehyEmissions.ddf Date: August 25, 2017

DESCRIPTION:

Description: Potential-to-emit calculations

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS			
Component	lbs/hr	lbs/day	tons/yr
Methane	0.6752	16.206	2.9576
Ethane	0.3572	8.572	1.5644
Propane	0.1594	3.827	0.6984
Isobutane	0.0350	0.841	0.1534
n-Butane	0.0580	1.393	0.2543
Isopentane	0.0177	0.424	0.0774
n-Pentane	0.0121	0.291	0.0531
n-Hexane	0.0062	0.148	0.0270
Other Hexanes	0.0149	0.357	0.0652
Heptanes	0.0115	0.276	0.0504
Total Emissions	1.3473	32.335	5.9012
Total Hydrocarbon Emissions	1.3473	32.335	5.9012
Total VOC Emissions	0.3149	7.557	1.3792
Total HAP Emissions	0.0062	0.148	0.0270

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.3505	32.412	5.9152
Ethane	0.7143	17.144	3.1288
Propane	0.3189	7.653	1.3967
Isobutane	0.0701	1.681	0.3068
n-Butane	0.1161	2.786	0.5085
Isopentane	0.0354	0.849	0.1549
n-Pentane	0.0243	0.582	0.1063
n-Hexane	0.0123	0.296	0.0541
Other Hexanes	0.0298	0.714	0.1304
Heptanes	0.0230	0.552	0.1007
Total Emissions	2.6946	64.671	11.8024
Total Hydrocarbon Emissions	2.6946	64.671	11.8024
Total VOC Emissions	0.6298	15.115	2.7584
Total HAP Emissions	0.0123	0.296	0.0541

Page: 2

Component	lbs/hr	lbs/day	tons/yr
Methane	146.1101	3506.643	639.9624
Ethane	20.9998	503.996	91.9793
Propane	3.9875	95.700	17.4653
Isobutane	0.5544	13.305	2.4282
n-Butane	0.6865	16.477	3.0070
Isopentane		4.307	0.7860
n-Pentane	0.0964	2.314	0.4222
n-Hexane	0.0258	0.619	0.1130
Other Hexanes	0.0846	2.030	0.3704
Heptanes	0.0223	0.536	0.0979
Total Emissions	172.7469	4145.927	756.6316
Total Hydrocarbon Emissions	172.7469	4145.927	756.6316
Total VOC Emissions	5.6370	135.287	24.6900
Total HAP Emissions	0.0258	0.619	0.1130

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	292.2203	7013.286	1279.9247
Ethane	41.9997	1007.992	183.9586
Propane	7.9750	191.400	34.9305
Isobutane	1.1088	26.610	4.8563
n-Butane	1.3731	32.954	6.0141
Isopentane	0.3589	8.613	1.5719
n-Pentane	0.1928	4.627	0.8444
n-Hexane	0.0516	1.239	0.2260
Other Hexanes	0.1691	4.059	0.7408
Heptanes	0.0447	1.072	0.1957
Total Emissions	345.4939	8291.853	1513.2632
Total Hydrocarbon Emissions	345.4939	8291.853	1513.2632
Total VOC Emissions	11.2740	270.575	49.3799
Total HAP Emissions	0.0516	1.239	0.2260

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	146.7854	3522.849	642.9199
Ethane Propane	$21.3570 \\ 4.1470$	512.568 99.527	93.5437 18.1636
Isobutane	0.5894	14.146	2.5816
n-Butane	0.7446	17.870	3.2613
Isopentane	0.1971	4.731	0.8634
n-Pentane	0.1085	2.605	0.4754
n-Hexane	0.0320	0.767	0.1401
Other Hexanes	0.0995	2.387	0.4356
Heptanes	0.0338	0.812	0.1482
Total Emissions	174.0942	4178.262	762.5328
Total Hydrocarbon Emissions	174.0942	4178.262	762.5328
Total VOC Emissions	5.9519	142.845	26.0692
Total HAP Emissions	0.0320	0.767	0.1401

Component	Uncontrolled tons/yr	Controlled tons/yr	% Reduction
Methane	1285.8399	642.9199	50.00
Ethane	187.0874	93.5437	50.00
Propane	36.3273	18.1636	50.00
Isobutane	5.1632	2.5816	50.00
n-Butane	6.5226	3.2613	50.00
Isopentane	1.7268	0.8634	50.00
n-Pentane	0.9507	0.4754	50.00
n-Hexane	0.2801	0.1401	50.00
Other Hexanes	0.8712	0.4356	50.00
Heptanes	0.2964	0.1482	50.00
Total Emissions	1525.0656	762.5328	50.00
Total Hydrocarbon Emissions	1525.0656	762.5328	50.00
Total VOC Emissions	52.1383	26.0692	50.00
Total HAP Emissions	0.2801	0.1401	50.00

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

EQUIPMENT REPORTS:

COMBUSTION DEVICE Ambient Temperature: 70.00 deg. F Excess Oxygen: 5.00 % Combustion Efficiency: 50.00 % Supplemental Fuel Requirement: 9.96e-002 MM BTU/hr Component Emitted Destroyed Methane 50.00% 50.00% Ethane 50.00% 50.00% Propane 50.00% 50.00% Isobutane 50.00% 50.00% n-Butane 50.00% 50.00% N-Pentane 50.00% 50.00% n-Pentane 50.00% 50.00% N-Hexane 50.00% 50.00% Other Hexanes 50.00% 50.00% Heptanes 50.00% 50.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:	1.25
Calculated Dry Gas Dew Point:	3.21 lbs. H2O/MMSCF
Temperature:	100.0 deg. F

Page: 4 Pressure: 1250.0 psig Dry Gas Flow Rate: 125.0000 MMSCF/day Glycol Losses with Dry Gas: 3.0998 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 49.92 lbs. H20/MMSCF Calculated Lean Glycol Recirc. Ratio: 3.70 gal/lb H20

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	6.41%	93.59%
Carbon Dioxide	99.80%	0.20%
Nitrogen	99.98%	0.02%
Methane	99.98%	0.02%
Ethane	99.96%	0.04%
Propane	99.94%	0.06%
Isobutane	99.92%	0.08%
n-Butane	99.90%	0.10%
Isopentane	99.91%	0.09%
n-Pentane	99.89%	0.11%
n-Hexane	99.83%	0.17%
Other Hexanes	99.87%	0.13%
Heptanes	99.72%	0.28%

FLASH TANK

Flash Control:	Combustion device
Flash Control Efficiency:	50.00 %
Flash Temperature:	110.0 deg. F
Flash Pressure:	35.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.75%	0.25%
Carbon Dioxide	6.01%	93.99%
Nitrogen	0.44%	99.56%
Methane	0.46%	99.54%
Ethane	1.67%	98.33%
Propane	3.84%	96.16%
Isobutane	5.94%	94.06%
n-Butane	7.80%	92.20%
Isopentane	9.15%	90.85%
n-Pentane	11.39%	88.61%
n-Hexane	19.53%	80.47%
Other Hexanes	15.40%	84.60%
Heptanes	34.21%	65.79%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	34.26%	65.74%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%

Propane Isobutane	0.00%	100.00% 100.00%
n-Butane	0.00%	100.00%
Isopentane	2.24%	97.76%
n-Pentane	2.08%	97.92%
n-Hexane	1.47%	98.53%
Other Hexanes	3.33%	96.67%
Heptanes	1.01%	98.99%

STREAM REPORTS:

WET GAS STREAM

Pressure:	100.00 deg. F 1264.70 psia 5.21e+006 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	1.05e-001 1.13e-001 2.90e-001 9.26e+001 6.02e+000	6.85e+002 1.12e+003 2.04e+005
	Isobutane n-Butane Isopentane	7.25e-001 7.19e-002 8.21e-002 1.83e-002 8.99e-003	5.74e+002 6.56e+002 1.81e+002
	Other Hexanes	1.80e-003 6.39e-003 1.20e-003	7.57e+001
	Total Components	100.00	2.37e+005

DRY GAS STREAM

Temperature: Pressure: Flow Rate:	100.00 deg. F 1264.70 psia 5.21e+006 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	6.75e-003 1.13e-001 2.90e-001 9.27e+001 6.02e+000	6.83e+002 1.11e+003 2.04e+005
	Isobutane n-Butane Isopentane	7.26e-001 7.20e-002 8.21e-002 1.83e-002 8.99e-003	5.74e+002 6.55e+002 1.81e+002
	n-Hexane	1.80e-003	2.13e+001

Page: 6

Other Hexanes 6.39e-003 7.56e+001 Heptanes 1.20e-003 1.65e+001 Total Components 100.00 2.37e+005

LEAN GLYCOL STREAM _____ Temperature: 100.00 deg. F Flow Rate: 1.50e+001 gpm Component Conc. Loading (wt%) (lb/hr) TEG 9.85e+001 8.32e+003 Water 1.50e+000 1.27e+002 Carbon Dioxide 1.59e-012 1.34e-010 Nitrogen 2.37e-013 2.00e-011 Methane 1.23e-017 1.04e-015 Ethane 5.98e-008 5.05e-006 Propane 1.27e-009 1.07e-007 Isobutane 1.56e-010 1.32e-008 n-Butane 1.90e-010 1.60e-008 Isopentane 9.58e-006 8.09e-004 n-Pentane 6.09e-006 5.15e-004 n-Hexane 2.18e-006 1.84e-004 Other Hexanes 1.21e-005 1.03e-003 Heptanes 2.77e-006 2.34e-004 ----- ------Total Components 100.00 8.45e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: Pressure:	100.00 deg. F 1264.70 psia
Flow Rate:	1.63e+001 gpm has more than one phase.

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.20e+001 4.10e+000 2.46e-002 1.81e-002 3.25e+000	3.71e+002 2.22e+000 1.63e+000
Propane Isobutane	4.73e-001 9.18e-002 1.30e-002 1.65e-002 4.37e-003	8.29e+000 1.18e+000 1.49e+000
n-Hexane Other Hexanes	7.51e-004	6.41e-002 2.00e-001

FLASH TANK OFF GAS STREAM

Temperature: 110.00 deg. F

Pressure: 49.70 psia Flow Rate: 7.59e+003 scfh

Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	2.56e-001 2.37e-001 2.90e-001 9.11e+001 6.98e+000	2.09e+000 1.63e+000 2.92e+002
Isobutane n-Butane Isopentane	9.04e-001 9.54e-002 1.18e-001 2.49e-002 1.34e-002	1.11e+000 1.37e+000 3.59e-001
Other Hexanes	2.99e-003 9.81e-003 2.23e-003	1.69e-001
Total Components	100.00	3.50e+002

FLASH TANK GLYCOL STREAM

Temperature: 110.00 deg. F Flow Rate: 1.55e+001 gpm

Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.57e+001 4.26e+000 1.54e-003 8.23e-005 1.55e-002	3.70e+002 1.34e-001 7.15e-003
Propane Isobutane	8.22e-003 3.67e-003 8.06e-004 1.34e-003 4.16e-004	3.19e-001 7.01e-002 1.16e-001
n-Hexane Other Hexanes	2.85e-004 1.44e-004 3.54e-004 2.67e-004	1.25e-002 3.08e-002
Total Components	100.00	8.69e+003

FLASH GAS EMISSIONS

Flow Rate: 1.59e+004 scfh Control Method: Combustion Device Control Efficiency: 50.00 Component Conc. Loading (vol%) (lb/hr) Water 4.99e+001 3.76e+002 Carbon Dioxide 2.62e+001 4.81e+002 Nitrogen 1.39e-001 1.63e+000 Methane 2.18e+001 1.46e+002 Ethane 1.67e+000 2.10e+001 Isobutane 2.28e-002 5.54e-001 n-Butane 2.83e-002 6.87e-001 Isopentane 5.95e-003 1.79e-001 n-Pentane 3.20e-003 9.64e-002 n-Hexane 7.17e-004 2.58e-002 Other Hexanes 2.35e-003 8.46e-002 Heptanes 5.34e-004 2.23e-002 Total Components 100.00 1.03e+003

Propane 2.16e-001 3.99e+000

REGENERATOR OVERHEADS STREAM _____ Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 5.17e+003 scfh Component Conc. Loading (vol%) (lb/hr) ----- -----Water 9.91e+001 2.43e+002 Carbon Dioxide 2.23e-002 1.34e-001 Nitrogen 1.87e-003 7.15e-003 Methane 6.18e-001 1.35e+000 Ethane 1.74e-001 7.14e-001 Propane 5.31e-002 3.19e-001 Isobutane 8.85e-003 7.01e-002 n-Butane 1.47e-002 1.16e-001 Isopentane 3.60e-003 3.54e-002 n-Pentane 2.47e-003 2.43e-002 n-Hexane 1.05e-003 1.23e-002 Other Hexanes 2.54e-003 2.98e-002 Heptanes 1.69e-003 2.30e-002 Total Components 100.00 2.46e+002 COMBUSTION DEVICE OFF GAS STREAM _____ Temperature: 1000.00 deg. F Pressure: 14.70 psia Pressure: 14.70 psia Flow Rate: 2.28e+001 scfh Component Conc. Loading (vol%) (lb/hr) _____ ____ Methane 7.02e+001 6.75e-001 Ethane 1.98e+001 3.57e-001 Propane 6.03e+000 1.59e-001 Isobutane 1.01e+000 3.50e-002 n-Butane 1.67e+000 5.80e-002 Isopentane 4.09e-001 1.77e-002 n-Pentane 2.80e-001 1.21e-002 n-Hexane 1.19e-001 6.17e-003 Other Hexanes 2.88e-001 1.49e-002 Heptanes 1.91e-001 1.15e-002 ----- ------Total Components 100.00 1.35e+000

	*****	***************************************								
-	ct Setup Infor									

Project File		: P:\Client\DTE\West Virginia\Daybrook\Projects\173901.0120 Daybrook G35-D Applicat								
Flowsheet Se Calculation		: Oil Tank with Separator : RVP Distillation								
Calculation Control Eff:		: 100.0%								
	ator Stream	: Geographical Region								
Geographica:		: All Regions in US								
	r Composition	-								
		: NO								
Filed Name		: Daybrook Compressor Station								
Well Name		: Waste Water Tanks (T01)								
Date		: 2017.08.04								
* Data	Input	**************************************								
Separator P	ressure	: 50.00[psig]								
-		: 125.00[F]								
Ambient Pres	=	: 125.00[F] : 14.70[psia]								
Ambient Tem		: 125.00[F]								
C10+ SG	P01 0000 -	: 0.8420								
C10+ MW		: 287.00								
Drag	043									
	sure Oil	mol %								
	2S	1.2800								
2 02		0.0000								
	02	0.0300								
4 N		0.0000								
5 C		1.2700								
6 C:		2.0800								
7 C.	.3	4.5700								
8 i	-C4	1.8900								
9 n-	-C4	6.4800								
10 i	-C5	3.8800								
11 n-	-C5	7.0400								
12 C	6	3.0500								
13 C	7	6.8200								
14 C	8	7.7800								
15 C		7.2300								
	10+	37.9300								
	enzene	0.8300								
	oluene	1.0200								
	-Benzene	0.0700								
	ylenes	0.6500								
	-C6 24Trimethylp	6.1000 0.0000								
<u> </u>	241rimethyip	0.0000								
Production 1		: 0.1[bbl/day]								
		: 365 [days/year]								
API Gravity		: 49.0								
Reid Vapor !	Pressure	: 8.90[psia]								

	lation Results	*								
	~ ~ * * * * * * * * * * * * *	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~								
Emission										
	Uncon	trolled Uncontrolled								
Item	[ton/									

Tot	al HAPs	0.020	0.005					
	al HC	0.254	0.058					
	s, C2+	0.247	0.056					
	s, C3+	0.229	0.052					
Unc	ontrolled Recove	ry Info.						
	Vapor	10.6600 x1E-3	[MSCFD]					
	HC Vapor	9.9100 x1E-3	[MSCFD]					
	GOR	106.60	[SCF/bbl	.]				
	Emission Composi							
No	Component	Uncontrolled	Uncontro	olled				
-		[ton/yr]	[1b/hr]					
1 2	H2S	0.012	0.003					
2 3	02 C02	0.000	0.000 0.000					
4	N2	0.000 0.000	0.000					
5	C1	0.006	0.001					
6	C2	0.018	0.001					
7	C3	0.049	0.011					
8	i-C4	0.020	0.005					
9	n-C4	0.059	0.013					
10	i-C5	0.026	0.006					
11	n-C5	0.039	0.009					
12	C6	0.008	0.002					
13	C7	0.008	0.002					
14	C8	0.004	0.001					
15	C9	0.002	0.000					
16	C10+	0.000	0.000					
17	Benzene	0.002	0.000					
18	Toluene	0.001	0.000					
	E-Benzene	0.000	0.000					
20	Xylenes	0.000	0.000					
21	n-C6	0.013	0.003					
22	224Trimethylp Total	0.000	0.000					
	IOLAI	0.267	0.061					
	Stream Data							
	Component	MW	LP Oil	Flash Oil	Sale Oil	Flash Gas	W&S Gas	Total Emissions
	<u>-</u>		mol %					
1	H2S	34.80	1.2800	0.2130	0.2130	6.8990	0.0000	6.8990
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	C02	44.01	0.0300	0.0021	0.0021	0.1768	0.0000	0.1768
4	N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	C1	16.04	1.2700	0.0369	0.0369	7.7635	0.0000	7.7635
6	C2	30.07	2.0800	0.2466	0.2466	11.7345	0.0000	11.7345
7	C3	44.10	4.5700	1.3445	1.3445	21.5554	0.0000	21.5554
8	i-C4	58.12	1.8900	0.9750	0.9750	6.7085	0.0000	6.7085
9	n-C4	58.12	6.4800	3.9279	3.9279	19.9192	0.0000	19.9192
10	i-C5	72.15	3.8800	3.2983	3.2983	6.9431	0.0000	6.9431
11	n-C5	72.15	7.0400	6.3906	6.3906	10.4595	0.0000	10.4595
12 13	C6 C7	86.16	3.0500 6.8200	3.2895	3.2895 7.8112	1.7886	0.0000	1.7886 1.6004
13 14	C7 C8	100.20 114.23	6.8200 7.7800	7.8112 9.1297	7.8112 9.1297	1.6004 0.6724	0.0000 0.0000	0.6724
14	C9	128.28	7.2300	8.5561	9.1297 8.5561	0.8724 0.2466	0.0000	0.0724
16	C10+	166.00	37.9300	45.1329	45.1329	0.2400	0.0000	0.0000
17	Benzene	78.11	0.8300	0.9150	0.9150	0.3821	0.0000	0.3821
18	Toluene	92.13	1.0200	1.1834	1.1834	0.1596	0.0000	0.1596
19	E-Benzene	106.17	0.0700	0.0825	0.0825	0.0041	0.0000	0.0041
20	Xylenes	106.17	0.6500	0.7670	0.7670	0.0341	0.0000	0.0341
21	n-C6	86.18	6.1000	6.6977	6.6977	2.9524	0.0000	2.9524
22	224Trimethylp	114.24	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	MW		159.21	179.60	179.60	51.88	0.00	51.88
	Stream Mole Rat	io	1.0000	0.8404	0.8404	0.1596	0.0000	0.1596
	Heating Value	[BTU/SCF]				2822.40	0.00	2822.40
	Gas Gravity	[Gas/Air]				1.79	0.00	1.79
	Bubble Pt. @ 10	OF [psia]	76.98	12.70	12.70			

RVP @ 100F	[psia]	27.72	8.66	8.66
Spec. Gravity @ 100F	•	0.690	0.698	0.698

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	Daybrook Station (Methanol Tank)
City:	
State:	West Virginia
Company:	
Type of Tank:	Vertical Fixed Roof Tank
Description:	Storage of Methanol
Tank Dimensions	
Shell Height (ft):	8.00
Diameter (ft):	9.50
Liquid Height (ft) :	8.00
Avg. Liquid Height (ft):	4.00
Volume (gallons):	4,200.00
Turnovers:	12.00
Net Throughput(gal/yr):	50,400.00
Is Tank Heated (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition	Good
Roof Color/Shade:	Gray/Medium
Roof Condition:	Good
Roof Characteristics	
Type:	Cone
Height (ft)	0.00
Slope (ft/ft) (Cone Roof)	0.00
Proothor Vont Sottings	
Breather Vent Settings Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	-0.03 0.03
Fressure Settings (psig)	0.05

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Daybrook Station (Methanol Tank) - Vertical Fixed Roof Tank

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	57.20	47.16	67.23	52.14	1.3195	0.9508	1.8044	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Daybrook Station (Methanol Tank) - Vertical Fixed Roof Tank

Annual Emission Calcaulations	
Standing Losses (lb):	87.2815
Vapor Space Volume (cu ft):	283.5287
Vapor Density (lb/cu ft):	0.0076
Vapor Space Expansion Factor:	0.1416
Vented Vapor Saturation Factor:	0.7814
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	283.5287
Tank Diameter (ft):	9.5000
Vapor Space Outage (ft):	4.0000
Tank Shell Height (ft):	8.0000
Average Liquid Height (ft):	4.0000
Roof Outage (ft):	0.0000

Roof Outage (Cone Roof)

TANKS 4.0 Report

Roof Outage (ft): Roof Height (ft): Roof Slope (ft/ft): Shell Radius (ft):	0.0000 0.0000 0.0000 4.7500
Vapor Density Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole):	0.0076 32.0400
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	1.3195
Daily Avg. Liquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	516.8667 49.0583
(psia cuft / (lb-mol-deg R)): Liquid Bulk Temperature (deg. R):	10.731 511.8083
Tank Paint Solar Absorptance (Shell): Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	0.1416
Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R):	40.1436
Daily Vapor Pressure Range (psia):	0.8536
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	1.3195
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	0.9508
Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R):	1.8044
Daily Min. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R):	516.8667 506.8308
Daily Max. Liquid Surface Temp. (deg R):	526.9026
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor Vented Vapor Saturation Factor:	0.7814
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	1.3195
Vapor Space Outage (ft):	4.0000
Working Losses (lb):	50.7323
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	32.0400
Surface Temperature (psia):	1.3195
Annual Net Throughput (gal/yr.): Annual Turnovers:	50,400.0000 12.0000
Turnover Factor:	12.0000
Maximum Liquid Volume (gal):	4,200.0000
Maximum Liquid Height (ft):	8.0000
Tank Diameter (ft):	9.5000
Working Loss Product Factor:	1.0000
Total Losses (lb):	138.0138

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Daybrook Station (Methanol Tank) - Vertical Fixed Roof Tank

Losses(lbs)					
Working Loss	Breathing Loss	Total Emissions			
50.73	87.28	138.01			
		Working Loss Breathing Loss			

******	******	***************************************
* Pr	oject Setup I	nformation *
******	*******	***************************************
Project	File	: P:\Client\DTE\West Virginia\Daybrook\Projects\173901.0120 Daybrook G35-D Applicatio
Flowshee	t Selection	: Oil Tank with Separator
Calculat	ion Method	: RVP Distillation
Control	Efficiency	: 100.0%
Known Se	parator Strea	m : Geographical Region
Geograph	ical Region	: All Regions in US
Entering	Air Composit	ion : No
Filed Na	me	: Daybrook Compressor Station
Well Nam		: Produced Water Tanks (T03 - T04)
Date	-	: 8/4/2017
*******	******	************
* Da	ta Input	*
	-	**********************
Separato	r Pressure	: 50.00[psig]
Separato	r Temperature	: 125.00[F]
Ambient	Pressure	: 14.70[psia]
Ambient	Temperature	: 125.00[F]
C10+ SG	-	: 0.8420
C10+ MW		: 287.00
	ressure Oil -	
No.	Component	mol %
1	H2S	1.2800
2	02	0.0000
3	CO2	0.0300
4	N2	0.0000
5	C1	1.2700
6	C2	2.0800
7	C3	4.5700
8	i-C4	1.8900
9	n-C4	6.4800
10	i-C5	3.8800
11	n-C5	7.0400
12	C6	3.0500
13	C7	6.8200
14	C8	7.7800
15	C9	7.2300
16	C10+	37.9300
17	Benzene	0.8300
18	Toluene	1.0200
19	E-Benzene	0.0700
20	Xylenes	0.6500
21	n-C6	6.1000
22	224Trimethy	lp 0.0000
Producti		: 0.2[bbl/day]
		ion : 365 [days/year]
API Grav	-	: 49.0
Reid Vap	or Pressure	: 8.90[psia]
******	*****	***************************************
	lculation Res	
******	*******	***************************************
	=	
Item		ncontrolled Uncontrolled ton/yr] [lb/hr]
		······································

	al HAPs	0.03		0.007					
	al HC	0.50		0.116					
	s, C2+	0.49		0.113					
VOC	s, C3+	0.45	9	0.105					
Unc	ontrolled Recover	ry In:	Eo.						
	Vapor	21.3	200 x1E-3	[MSCFD]					
	HC Vapor	19.8	100 x1E-3	[MSCFD]					
	GOR	106.	50	[SCF/bbl]	l				
	Emission Composit				1.4				
No	Component		ntrolled	Uncontrol	Tea				
1	H2S	[ton]		[1b/hr] 0.005					
2	02	0.00		0.000					
3	C02	0.00		0.000					
4	N2	0.00		0.000					
5	C1	0.01		0.003					
6	C2	0.03		0.008					
7	C3	0.09		0.022					
8	i-C4	0.04		0.009					
9	n-C4	0.11		0.027					
10	i-C5	0.05		0.012					
11	n-C5	0.07		0.018					
12	C6	0.01		0.003					
13	C7	0.01		0.004					
14	C8	0.00		0.002					
15	C9	0.00		0.001					
16	C10+	0.00		0.000					
17	Benzene	0.00	3	0.001					
18	Toluene	0.00	2	0.000					
19	E-Benzene	0.00	D	0.000					
20	Xylenes	0.00	D	0.000					
21	n-C6	0.02	5	0.006					
22	224Trimethylp	0.00	0	0.000					
	Total	0.53	2	0.121					
	Ctroom Data								
	Stream Data Component		 мw	LP Oil	Flash Oil	Sale Oil	Flash Gas	W&S Gas	Total Emissions
				mol %	mol %	mol %	mol %	mol %	mol %
1	H2S		34.80	1.2800	0.2130	0.2130	6.8990	0.0000	6.8990
2	02		32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	CO2		44.01	0.0300	0.0021	0.0021	0.1768	0.0000	0.1768
4	N2		28.01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	C1		16.04	1.2700	0.0369	0.0369	7.7635	0.0000	7.7635
6	C2		30.07	2.0800	0.2466	0.2466	11.7345	0.0000	11.7345
7	C3		44.10	4.5700	1.3445	1.3445	21.5554	0.0000	21.5554
8	i-C4		58.12	1.8900	0.9750	0.9750	6.7085	0.0000	6.7085
9	n-C4		58.12	6.4800	3.9279	3.9279	19.9192	0.0000	19.9192
10	i-C5		72.15	3.8800	3.2983	3.2983	6.9431	0.0000	6.9431
11	n-C5		72.15	7.0400	6.3906	6.3906	10.4595	0.0000	10.4595
12	C6		86.16	3.0500	3.2895	3.2895	1.7886	0.0000	1.7886
13	C7		100.20	6.8200	7.8112	7.8112	1.6004	0.0000	1.6004
14	C8		114.23	7.7800	9.1297	9.1297	0.6724	0.0000	0.6724
15	C9		128.28	7.2300	8.5561	8.5561	0.2466	0.0000	0.2466
16	C10+		166.00	37.9300	45.1329	45.1329	0.0000	0.0000	0.0000
17	Benzene		78.11	0.8300	0.9150	0.9150	0.3821	0.0000	0.3821
18	Toluene		92.13	1.0200	1.1834	1.1834	0.1596	0.0000	0.1596
19	E-Benzene		106.17	0.0700	0.0825	0.0825	0.0041	0.0000	0.0041
20	Xylenes		106.17	0.6500	0.7670	0.7670	0.0341	0.0000	0.0341
21	n-C6		86.18	6.1000	6.6977	6.6977	2.9524	0.0000	2.9524
22	224Trimethylp		114.24	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	151			150 05	100 00	100 55	F1 00		F1 00
	MW			159.21	179.60	179.60	51.88	0.00	51.88
	Stream Mole Rati	LO		1.0000	0.8404	0.8404	0.1596	0.0000	0.1596
	Heating Value		[BTU/SCF]				2822.40	0.00	2822.40
	Gas Gravity	-	[Gas/Air]	B C 00	10 50	10 50	1.79	0.00	1.79
	Bubble Pt. @ 100	JF	[psia]	76.98	12.70	12.70			

RVP @ 100	F [psia]	27.72	8.66	8.66
Spec. Gra	vity @ 100F	0.690	0.698	0.698

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification							
User Identification:	Daybrook Station (Glycol Tanks)						
City:							
State:	West Virginia						
Company: Type of Tank:	Horizontal Tank						
Description:	Coolant (EG) and TEG Tanks						
Description.							
Tank Dimensions							
Shell Length (ft):	8.00						
Diameter (ft):	6.00						
Volume (gallons):	1,000.00						
Turnovers:	12.00						
Net Throughput(gal/yr):	12,000.00						
Is Tank Heated (y/n):	N						
Is Tank Underground (y/n):	N						
Paint Characteristics							
Shell Color/Shade:	Gray/Medium						
Shell Condition	Good						
Breather Vent Settings							
Vacuum Settings (psig):	-0.03						
Pressure Settings (psig)	0.03						

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Daybrook Station (Glycol Tanks) - Horizontal Tank

Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp Vapor Pressure (psia)			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure			
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Propylene glycol	All	57.20	47.16	67.23	52.14	0.0008	0.0005	0.0014	76.1100			76.11	Option 2: A=8.2082, B=2085.9, C=203.54

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Daybrook Station (Glycol Tanks) - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (Ib):	0.0426
Vapor Space Volume (cu ft):	144.0730
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0734
Vented Vapor Saturation Factor:	0.9999
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	144.0730
Tank Diameter (ft):	6.0000
Effective Diameter (ft):	7.8196
Vapor Space Outage (ft):	3.0000
Tank Shell Length (ft):	8.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0000
Vapor Molecular Weight (lb/lb-mole):	76.1100
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0008
Daily Avg. Liquid Surface Temp. (deg. R):	516.8667
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8083
Tank Paint Solar Absorptance (Shell): Daily Total Solar Insulation	0.6800
Factor (Btu/sqft day):	1.193.8870

Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily May. Liquid Surface Temp. (deg R): Daily May. Liquid Surface Temp. (deg R): Daily May. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily Avg. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R): Vented Vapor Saturation Factor: Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia):	0.0734 40.1436 0.0009 0.0600 0.0008 0.0005 0.0014 516.8667 506.8308 526.9026 24.1833 0.9999 0.0008
Vapor Space Outage (ft):	3.0000
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	0.0175 76.1100
Surface Temperature (psia): Annual Net Throughput (gal/yr.): Annual Turnovers: Turnover Factor: Tank Diameter (ft): Working Loss Product Factor:	0.0008 12,000.0000 12.0000 1.0000 6.0000 1.0000
Total Losses (lb):	0.0601

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Daybrook Station (Glycol Tanks) - Horizontal Tank

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Propylene glycol	0.02	0.04	0.06						

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification:	Daybrook Station (Oil Tanks)						
City: State: Company:	West Virginia						
Type of Tank:	Horizontal Tank						
Description:	Compressor and Engine Lube Oil Tanks						
Tank Dimensions							
Shell Length (ft):	8.00						
Diameter (ft):	6.00						
Volume (gallons):	1,000.00						
Turnovers:	12.00						
Net Throughput(gal/yr):	12,000.00						
Is Tank Heated (y/n):	Ν						
Is Tank Underground (y/n):	Ν						
Paint Characteristics							
Shell Color/Shade:	Gray/Medium						
Shell Condition	Good						
Breather Vent Settings	0.00						
Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03						
Flessure Settings (psig)	0.03						

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Daybrook Station (Oil Tanks) - Horizontal Tank

Daily Liquid Surf. Temperature (deg F)			Liquid Bulk Temp Vapor Pressure (psia)				Vapor Liquid Mol. Mass	Vapor Mass Mol.	Basis for Vapor Pressure				
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	57.20	47.16	67.23	52.14	0.0066	0.0041	0.0086	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0074

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Daybrook Station (Oil Tanks) - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (lb):	0.5971
Vapor Space Volume (cu ft):	144.0730
Vapor Density (lb/cu ft):	0.0002
Vapor Space Expansion Factor:	0.0736
Vented Vapor Saturation Factor:	0.9990
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	144.0730
Tank Diameter (ft):	6.0000
Effective Diameter (ft):	7.8196
Vapor Space Outage (ft):	3.0000
Tank Shell Length (ft):	8.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0002
Vapor Molecular Weight (lb/lb-mole):	130.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0066
Daily Avg. Liquid Surface Temp. (deg. R):	516.8667
Daily Average Ambient Temp. (deg. F):	49.0583
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8083
Tank Paint Solar Absorptance (Shell):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,193.8870

Vapor Space Expansion Factor Vapor Space Expansion Factor: Daily Vapor Temperature Range (deg. R): Daily Vapor Pressure Range (psia): Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Miniy Average Liquid Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	0.0736 40.1436 0.0045 0.0600 0.0066 0.0041 0.0086 516.8667 506.8308 526.9026 24.1833
Vented Vapor Saturation Factor Vented Vapor Saturation Factor: Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft):	0.9990 0.0066 3.0000
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Net Throughput (gal/yr.): Annual Turnovers: Turnover Factor: Tank Diameter (ft): Working Loss Product Factor:	0.2447 130.0000 0.0066 12,000.0000 12.0000 1.0000 6.0000 1.0000
Total Losses (lb):	0.8417

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Daybrook Station (Oil Tanks) - Horizontal Tank

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Distillate fuel oil no. 2	0.24	0.60	0.84						

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification:	Daybrook Station (Liguid Loading)
City:	.,
State:	West Virginia
Company:	,
Type of Tank:	Vertical Fixed Roof Tank
Description:	Liquid loading parameter calculations for truck loading of produced fluids
Tank Dimensions	
Shell Height (ft):	20.00
Diameter (ft):	12.00
Liquid Height (ft) :	20.00
Avg. Liquid Height (ft):	10.00
Volume (gallons):	16,800.00
Turnovers:	27.00
Net Throughput(gal/yr):	453,600.00
Is Tank Heated (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition	Good
Roof Color/Shade:	Gray/Medium
Roof Condition:	Good
Roof Characteristics	
Туре:	Cone
Height (ft)	0.00
Slope (ft/ft) (Cone Roof)	0.00
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Elkins, West Virginia (Avg Atmospheric Pressure = 13.73 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Daybrook Station (Liquid Loading) - Vertical Fixed Roof Tank

Mixture/Component	Month	Daily Liquid Surf. Temperature (deg F) Avg. Min. Max.			Liquid Bulk Temp (deg F)	Bulk Temp Vapor		or Pressure (psia) Min. Max.		Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
					(==3.1)				Weight.				
Produced Water	All	57.20	47.16	67.23	52.14	0.2365	0.1708	0.3240	19.3610			18.17	
Benzene						1.0800	0.8090	1.4225	78.1100	0.0001	0.0004	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						0.4772	0.3937	0.5736	58.1200	0.0005	0.0009	58.12	Option 2: A=5.09536, B=935.86, C=238.73
Decane (-n)						0.0313	0.0249	0.0394	142.2900	0.0045	0.0006	142.29	Option 1: VP50 = .026411 VP60 = .033211
Ethylbenzene						0.0984	0.0684	0.1390	106.1700	0.0000	0.0000	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.5620	0.4123	0.7572	100.2000	0.0008	0.0017	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						1.7780	1.3561	2.3024	86.1700	0.0010	0.0071	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isopentane						9.4118	7.3180	11.8312	72.1500	0.0003	0.0123	72.15	Option 1: VP50 = 7.889 VP60 = 10.005
Nonane (-n)						0.0614	0.0482	0.0782	128.2600	0.0009	0.0002	128.26	Option 1: VP50 = .051285 VP60 = .065278
Octane (-n)						0.1362	0.1051	0.1764	114.2300	0.0009	0.0005	114.23	Option 1: VP50 = .112388 VP60 = .145444
Pentane (-n)						6.4211	5.1036	8.0084	72.1500	0.0006	0.0163	72.15	Option 3: A=27691, B=7.558
Propane (-n)						103.5663	88.7398	120.2028	44.0956	0.0002	0.0657	44.10	Option 2: A=7.340862493, B=1104.2267744, C=291.70993941
Toluene						0.3024	0.2186	0.4120	92.1300	0.0001	0.0001	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						0.2277	0.1634	0.3135	18.0150	0.9900	0.8941	18.02	Option 1: VP50 = .178 VP60 = .247
Xylene (-m)						0.0818	0.0567	0.1160	106.1700	0.0001	0.0000	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Daybrook Station (Liquid Loading) - Vertical Fixed Roof Tank

TANKS 4.0 Report

Annual Emission Calcaulations	
Standing Losses (lb):	25.6115
Vapor Space Volume (cu ft):	1,130.9734
Vapor Density (lb/cu ft):	0.0008
Vapor Space Expansion Factor:	0.0846
Vented Vapor Saturation Factor:	0.8886
Fank Vapor Space Volume:	1,130.9734
Vapor Space Volume (cu ft): Tank Diameter (ft):	1,130.9734
Vapor Space Outage (ft):	10.0000
Tank Shell Height (ft):	20.0000
Average Liquid Height (ft):	10.0000
Roof Outage (ft):	0.0000
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0000
Roof Height (ft):	0.0000
Roof Slope (ft/ft):	0.0000
Shell Radius (ft):	6.0000
√apor Density	
Vapor Density (lb/cu ft):	0.0008
Vapor Molecular Weight (Ib/Ib-mole):	19.3610
Vapor Pressure at Daily Average Liquid	0.0005
Surface Temperature (psia):	0.2365
Daily Avg. Liquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F):	516.8667 49.0583
Ideal Gas Constant R	49.0303
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	511.8083
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,193.8870
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0846
Daily Vapor Temperature Range (deg. R):	40.1436
Daily Vapor Pressure Range (psia):	0.1531
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.2365
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	0.2363
Surface Temperature (psia):	0.1708
Vapor Pressure at Daily Maximum Liquid	0.1700
Surface Temperature (psia):	0.3240
Daily Avg. Liquid Surface Temp. (deg R):	516.8667
Daily Min. Liquid Surface Temp. (deg R):	506.8308
Daily Max. Liquid Surface Temp. (deg R):	526.9026
Daily Ambient Temp. Range (deg. R):	24.1833
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8886
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.2365
Vapor Space Outage (ft):	10.0000
Norking Losses (lb):	49.4545
Vapor Molecular Weight (lb/lb-mole):	19.3610
Vapor Pressure at Daily Average Liquid	0.0005
Surface Temperature (psia):	0.2365 453,600.0000
Annual Net Throughput (gal/yr.): Annual Turnovers:	453,600.0000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	16,800.0000
Maximum Liquid Height (ft):	20.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	1.0000
otal Losses (lb):	75.0661

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Daybrook Station (Liquid Loading) - Vertical Fixed Roof Tank

		Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions						
Produced Water	49.45	25.61	75.07						
Decane (-n)	0.03	0.01	0.04						
Nonane (-n)	0.01	0.01	0.02						
Ethylbenzene	0.00	0.00	0.00						
Octane (-n)	0.02	0.01	0.04						
Toluene	0.01	0.00	0.01						
Heptane (-n)	0.09	0.04	0.13						
Benzene	0.02	0.01	0.03						

TANKS 4.0 Report

Hexane (-n)	0.35	0.18	0.53
Isopentane	0.61	0.32	0.92
Pentane (-n)	0.81	0.42	1.22
Water	44.22	22.90	67.12
Propane (-n)	3.25	1.68	4.93
Butane (-n)	0.05	0.02	0.07
Xylene (-m)	0.00	0.00	0.00

Facility-Wide Emission Summary

A	ATTACHMENT V – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET													
List all sources of emissions in this table. Use extra pages if necessary.														
E	N	NO _x		СО		VOC		SO ₂		\mathbf{PM}_{10}		PM _{2.5}	GHG (CO ₂ e)	
Emission Point ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1	1.52	6.66	6.08	26.65	1.58	6.93	0.01	0.03	0.11	0.50	0.11	0.50	1,744.04	7,638.90
CE-2	1.52	6.66	6.08	26.65	1.58	6.93	0.01	0.03	0.11	0.50	0.11	0.50	1,744.04	7,638.90
CE-3	4.13	18.11	1.50	6.55	2.40	10.50	0.02	0.07	0.28	1.22	0.28	1.22	4,197.53	18,385.16
CE-4	5.51	24.14	1.65	7.24	3.42	14.97	0.02	0.10	0.38	1.64	0.38	1.64	5,508.54	24,127.41
CE-5	5.51	24.14	1.65	7.24	3.42	14.97	0.02	0.10	0.38	1.64	0.38	1.64	5,508.54	24,127.41
CE-6	2.61	11.44	0.99	4.34	1.67	7.32	0.01	0.05	0.18	0.78	0.18	0.78	3,000.31	13,141.37
RSV-1					6.55	28.68							4,036.60	17,680.30
RBV-1	0.14	0.61	0.12	0.51	0.01	0.03	8.4E-04	3.7E-03	0.01	0.05	0.01	0.05	175.68	769.47
T01					0.05	0.23							0.03	0.15
T02					0.02	0.07								
Т03					0.11	0.46							0.08	0.33
T04					0.11	0.46							0.08	0.33
T05 to T21					0.21	0.92								
L1					0.08	0.02								
Fugitives						7.42								3,791.47
Haul Roads										0.03		3.0E-03		
FACILITY TOTAL	20.95	91.77	18.08	79.19	21.19	98.17	0.09	0.37	1.44	6.36	1.44	6.33	25,915.45	117,300.80
FACILITY TOTAL (Excluding fugitives)	20.95	91.77	18.08	79.19	21.19	92.48	0.09	0.37	1.44	6.33	1.44	6.33	25,915.45	113,509.72

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

	AT	ГАСНМ	ENT V -	- FACIL	ITY-WI	DE HAP	CONTRO	OLLED I	EMISSIC	ONS SUM	IMARY	SHEET		
List all sour	rces of e	missions	in this ta	able. Use	e extra pa	ages if ne	cessary.							
Emission Point Formal	dehyde	Ber	zene	Tol	uene	Ethylb	enzene	Xyl	enes	Hexane		Total HAPs		
ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
CE-1	0.12	0.53	5.0E-03	2.2E-02	4.6E-03	2.0E-02	4.5E-04	2.0E-03	2.1E-03	9.2E-03	0.01	0.06	0.34	1.50
CE-2	0.12	0.53	5.0E-03	2.2E-02	4.6E-03	2.0E-02	4.5E-04	2.0E-03	2.1E-03	9.2E-03	0.01	0.06	0.34	1.50
CE-3	0.33	1.45	1.2E-02	5.4E-02	1.1E-02	5.0E-02	1.1E-03	4.8E-03	5.1E-03	2.2E-02	0.03	0.14	0.87	3.82
CE-4	0.66	2.90	1.7E-02	7.2E-02	1.5E-02	6.7E-02	1.5E-03	6.5E-03	6.9E-03	3.0E-02	0.04	0.18	1.39	6.09
CE-5	0.66	2.90	1.7E-02	7.2E-02	1.5E-02	6.7E-02	1.5E-03	6.5E-03	6.9E-03	3.0E-02	0.04	0.18	1.39	6.09
CE-6	0.31	1.37	7.9E-03	3.4E-02	7.3E-03	3.2E-02	7.1E-04	3.1E-03	3.3E-03	1.4E-02	0.02	0.09	0.66	2.88
RSV-1											0.35	1.54	0.35	1.54
RBV-1	1.0E-04	4.6E-04	2.9E-06	1.3E-05	4.8E-06	2.1E-05					2.5E-03	0.01	2.6E-03	0.01
T01			<0.01	2.0E-03	<0.01	1.0E-03	<0.01	<0.01	<0.01	<0.01	2.0E-03	0.01	0.01	0.02
T02													0.02	0.07
T03			1.0E-03	3.0E-03	<0.01	2.0E-03	<0.01	<0.01	<0.01	<0.01	6.0E-03	2.6E-02	0.01	0.03
T04			1.0E-03	3.0E-03	<0.01	2.0E-03	<0.01	<0.01	<0.01	<0.01	6.0E-03	2.6E-02	0.01	0.03
T05 to T21													0.04	0.15
L1													0.01	2.0E-03
Fugitives														
Haul Roads														
FACILITY TOTAL	2.21	9.68	0.07	0.28	0.06	0.26	5.7E-03	0.02	0.03	0.12	0.53	2.31	5.43	23.73
FACILITY TOTAL (Excluding fugitives)	2.21	9.68	0.07	0.28	0.06	0.26	5.7E-03	0.02	0.03	0.12	0.53	2.31	5.43	23.73

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Class I Legal Advertisement

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that DTE Appalachia Gathering, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G35D permit for an existing natural gas compressor station (Daybrook Compressor Station) located off 8 Tooth Hollow Road and 2.5 miles southeast of Fairview, WV and is in Marion County, West Virginia. Site Latitude and Longitude Coordinates are: 39.57751, -80.20288.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be:

Pollutant	Facility Wide (tpy)	Facility Wide excluding Fugitive Emissions (tpy)				
Nitrogen Oxides	91.77	91.77				
Carbon Monoxide	79.19	79.19				
Particulate Matter-10	6.36	6.33				
Particulate Matter-2.5	6.33	6.33				
Volatile Organic Compounds	98.17	92.48				
Sulfur Dioxide	0.37	0.37				
Formaldehyde	9.68	9.68				
Benzene	0.28	0.28				
Toluene	0.26	0.26				
Ethylbenzene	0.02	0.02				
Xylenes	0.12	0.12				
Hexane	2.31	2.31				
Total Hazardous Air Pollutants	23.73	23.73				
Carbon Dioxide Equivalents (CO2e)	117,300.80	113,509.72				

The facility is currently in operation and is seeking to add additional compression and ancillary equipment. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the XX Day of September, 2017.

By: DTE Appalachia Gathering, LLC Ian Connelly, Gas Pipeline Engineer 333 Technology Drive, Suite 109 Canonsburg, PA 15317