

G35-D General Permit Application

East Comet Natural Gas Compressor Site

Grafton, West Virginia

Prepared By:

Environmental Resources Management, Inc. Hurricane, West Virginia

August 2017

People Powered. Asset Strong.

August 29, 2017

Mr. William F. Durham, Director West Virginia Department of Environmental Protection Division of Air Quality 601 57th Street, SE Charleston, West Virginia, 25304

RE: G35-D General Permit Registration Application Arsenal Midstream East Comet Natural Gas Compression Site Facility ID#

Dear Director Durham:

Enclosed are one (1) original hard copy and two (2) complete PDFs included on CD-ROM of a G35-D General Permit Registration Application for the authority to construct the Comet natural gas compression site located in Taylor County, West Virginia.

A legal advertisement will be published in the next few days and proof of publication will be forwarded as soon as it is received. Please contact me for payment of the application fee by credit card.

If you have any questions concerning this permit application, please contact me at (724) 940-1112 or by email at myingling@arsenalresources.com.

Sincerely,

Meghan M.B. Yingling Environmental Compliance Manager Arsenal Midstream

Enclosures

Cc: Bill Veigel, Sr. Director of Production, Arsenal Resources Stacey Lucas, V.P. HSE, Arsenal Resources Grant Morgan, ERM

1.0 INTRODUCTION NARRATIVE

Arsenal Midstream, LLC submits this G35-D Class II General Permit application to the West Virginia Department of Environmental Protection's Department of Air Quality (WVDAQ) for the East Comet Compressor Station (Comet) site located in Taylor County, West Virginia. This application addresses the operational activities associated with the compression of natural gas at the Comet Station.

Arsenal wishes to submit this G35-D to repermit the following equipment currently at the Comet Station:

- Three (3) 1380 hp G3516ULB Compressor Engines;
- One (1) 670 hp G3508 TALE Compressor Engine;
- One (1) Exterran 10 mmscf/day Dehydration Unit;
- One (1) 0.20 MMBtu/hr Glycol Reboiler;
- One (1) Exterran 45 mmscf/day Dehydration Unit;
- One (1) 1.00 MMBtu/hr Glycol Reboiler;
- Two (2) 100 bbl Produced Water tanks;
- One (1) 100 bbl Regen Overhead Condensation Tank;
- Six (6) 520 gal Oil storage tanks;
- One (1) 520 gal TEG glycol tank;
- One (1) 600 gal rainwater storage tank; and
- One (1) 300 gal Methanol Tank.

In addition to the repermitting of the equipment above, Arsenal submits this permit application for the authority to construct the following emission units:

• One (1) 1380 hp G3516ULB Compressor Engine.

Statement of aggregation

The East Comet Compressor Station is located in Taylor County, WV and operated by Arsenal. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. Arsenal operates Comet with the same industrial grouping as nearby facilities, and some of these facilities are under common control. However, the Comet site is not subject to the aggregation of stationary emission sources because these sites do not meet the definition of contiguous or adjacent facilities.

The Comet Station operates under SIC code 1311 (Crude Petroleum and Natural Gas Extraction). There are surrounding sites operated by Arsenal that share the same two digit major SIC code of 13 for Crude Petroleum and Natural Gas Extraction. Therefore, the Comet Station does share the same SIC codes as the surrounding wells and compressor stations.

Arsenal is the sole operator of the Comet Station. Arsenal is also the sole operator of other production sites and compressor stations in the area. Therefore, Arsenal does qualify as having nearby operations under common control.

Based on the EPA's Source Determination Guidance for Certain Emission Units in the Oil and Natural Gas Sector, effective on August 2, 2016, the term "adjacent" is defined as follows:

Equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located near each other – specifically, if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

The Comet compressor station does not share equipment with the surrounding wells and compressor stations.

The additional consideration that the EPA put forth in the Source Determination Guidance is that the facilities must be within ¼ mile to be considered as adjacent facilities. Comet Compressor station does not fall within the ¼ mile rule and therefore, does not meet the definition of contiguous or adjacent properties.

Based on the above reasoning, Arsenal is not subject to the aggregation of stationary emission sources since the stationary sources are not considered contiguous or adjacent facilities.

2.0 REGULATORY DISCUSSION

This section outlines the State air quality regulations that could be reasonably expected to apply to the Comet Station and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP G35-D permit application forms. The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants.

The regulatory requirements in reference to Comet are described in detail in the below section.

West Virginia State Air Regulations

45 CSR 02 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect Heat Exchangers

The reboilers associated with gas production units are indirect heat exchangers that combust natural gas but are exempt from this regulation since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

Operations conducted at the Comet Station are subject to this requirement. Based on the nature of the process at the well pad, the presence of objectionable odors is unlikely.

45 CSR 06 – Control of Air Pollution from the Combustion of Refuse

The Comet Compressor Station does not have a combustion device and is therefore not subject to this rule.

45 CSR 10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The reboilers combust natural gas but are exempt from this regulation since the heat input capacities are less than 10 MMBtu/hr.

45 CSR 13 – Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants

This G35-D permit application is being submitted for the operational activities associated with Arsenal's compression of natural gas.

45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration (PSD). The G35-D applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Operation of equipment at the Comet Station will not exceed emission thresholds established by this permitting program. Arsenal will monitor future construction and modification activities at the site closely and will compare any future increase in emissions with the PSD thresholds to ensure these activities will not trigger this program.

45 CSR 16 - Standards of Performance for New Stationary Sources (NSPS)

45 CSR 16 applies to all registrants that are subject to any of the NSPS requirements described in more detail in the Federal Regulations section.

45 CSR 19 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution which Cause or Contributed to Non-attainment

Federal construction permitting programs regulate new and modified sources of nonattainment pollutants under Non-Attainment New Source Review (NNSR). The G35-D applicability criterion excludes facilities that meet the definition of a major source as defined in 45 CSR 19 for being eligible for the general permit.

Taylor County, WV is in attainment for all pollutants with the National Ambient Air Quality Standards (NAAQS). Therefore, this regulation would not apply to the Comet Station.

45 CSR 25 – Control of Air Pollution from Hazardous Waste Treatment, Storage, and Disposal Facilities

No hazardous waste will be burned at this well site; therefore, it is not subject to this hazardous waste rule.

45 CSR 30 – Requirements for Operating Permits

45 CSR 30 applies to the requirements of the federal Title V operating permit program (40 CFR 70). The major source thresholds for the Title V operating permit program regulations are 10 tons per year (tpy) of a single hazardous air pollutant (HAP), 25 tpy of any combination of HAPs, or 100 tpy of all other regulated pollutants.

The potential emissions of all regulated pollutants at the proposed facility are below the corresponding major source threshold(s). Therefore, the Comet Station will not be a major source under the Title V program.

45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to all registrants that are subject to any of the NESHAP requirements. The NESHAP Rules are discussed further in the Federal Regulation section of this document.

Federal Regulations

New Source Performance Standards

40 CFR 60, Subpart OOOO (Standards of Performance for Crude oil and Natural Gas Production, Transmission and Distribution)

Subpart OOOO establishes emission standards and compliance schedules for the control of volatile organic compounds (VOC) and sulfur dioxide (SO₂) emissions from affected facilities that commence construction, modification or reconstruction between August 23, 2011 and September 18, 2015. The applicable provisions and requirements of Subpart OOOO are included under the G35-D permit.

The Comet Station is a reciprocating compressor engine affected facility under OOOO.

There are several equipment types that have been installed at Comet that do not meet the affected facility definitions as specified by EPA. These include:

• Storage vessels: Emissions from each storage vessel were determined to be below 6 tons per year (tpy) of VOC. Therefore, the produced water tanks are not affected storage vessels.

• Pneumatic devices: All pneumatic devices installed at the East Comet facility are either low-continuous bleed or intermittent bleed and do not qualify as affected sources.

Subpart OOOOa (Standards Of Performance For Crude Oil And Natural Gas Facilities For Which Construction, Modification, Or Reconstruction Commenced After September 18, 2015)

The East Comet Station does have equipment that is an affected facility under OOOOa. The East Comet Station will qualify as a collection of Fugitive Components Affected Facility. As a Fugitive Component Affected Facility, in order to comply, LDAR monitoring at the East Comet site must be performed within 60 days of startup of production and then quarterly thereafter.

The East Comet Station is a reciprocating compressor engine affected facility under OOOOa.

There are several equipment types that have been installed at East Comet that do not meet the affected facility definitions as specified by EPA. These include:

- Storage vessels: Emissions from each storage vessel were determined to be below 6 tons per year (tpy) of VOC. Therefore, the produced water tanks are not affected storage vessels.
- Pneumatic devices: All pneumatic devices installed at the East Comet facility are either low-continuous bleed or intermittent bleed and do not qualify as affected sources.

40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines)

The Comet station has compressor engines that were constructed after June 12, 2006 and are subject to this rule. Four (4) of these engines are non-emergency, spark-ignition, lean-burn reciprocating internal combustion engine with a horsepower rating of 1380 bhp. These units are subject to the following emission standards:

- NOx 1.0 g/bhp-hr
- CO 2.0 g/bhp-hr
- VOCs 0.7 g/bhp-hr

The Comet station has a fifth engine that is also subject to JJJJ due to its construction date being after June 12, 2006. This engine is a non-emergency, spark ignition, lean-burn reciprocating

internal combustion engine with a horsepower rating of 670 bhp. This unit is subject to the following emission standards:

- NOx 1.0 g/bhp-hr
- CO 2.0 g/bhp-hr
- VOCs 0.7 g/bhp-hr

No additional NSPS are expected to be applicable to this facility.

National Emissions Standards for Hazardous Air Pollutants

The following NESHAP included in the G35-D permit are not applicable to the Comet facility:

• 40 CFR 63 Subpart HH (National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities).

The engines at Comet are subject to NESHAP ZZZZ 40 CFR 63.6590 (c) *Stationary RICE subject to Regulations under 40 CFR Part 60*. An affected source that meets any of the criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the requirements of 40 CFR part 60 subpart IIII, for compression ignition engines or 40 CFR part 60 subpart JJJJ, for spark ignition engines. No further requirements apply for such engines under this part.

(c)(1) A new or reconstructed stationary RICE located at an area source.

No additional NESHAP are expected to be applicable to this facility.

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25304 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G35-D GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION, **RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF** NATURAL GAS COMPRESSOR AND/OR DEHYDRATION FACILITIES

□ CONSTRUCTION **⊠MODIFICATION RELOCATION**

□ CLASS I ADMINISTRATIVE UPDATE □ CLASS II ADMINISTRATIVE UPDATE

SECTION 1. GENERAL INFORMATION

Name of Applicant (as registered with the WV Secretary of State's Office):	Arsenal Midstream, LLC
--	------------------------

Federal Employer ID No. (FEIN): 47-1919654 Applicant's Mailing Address: 65 Professional Place Suite 200 City: Bridgeport State: WV ZIP Code: 26330 Facility Name: East Comet Compressor Station Operating Site Physical Address: Route 50E, Wendel Road, Wendel, Taylor County, WV If none available, list road, city or town and zip of facility. City: Wendel Zip Code: 26354 County: Taylor Latitude & Longitude Coordinates (NAD83, Decimal Degrees to 5 digits): Latitude: 39.30600 Longitude: -80.10700 SIC Code: 1311 DAQ Facility ID No. (For existing facilities) 091-00034 NAICS Code: 211111

CERTIFICATION OF INFORMATION

This G35-D General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or

unsigned G35-D Registration Application will be returned to the applicant. Furthermore, if the G35-D forms are not utilized, the application will be returned to the applicant. No substitution of forms is allowed.

I hereby certify that Meghan is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Division of Air Quality immediately.

I hereby certify that all information contained in this G35-D General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible.

Responsible Official Signature: Name and Title: Stacey A. Lucas, VP HSE/Compliance Email: slucas@arsenalresources.com	e Phone: Date:	724-940-1118 8/29/17	Fax:	_
If applicable: Authorized Representative Signature: Name and Title: Meghan M.B. Yingling, Environ Email: myingling@arsenalresources.com	mental Date:	Compliance Manager 8-29-17	Phone: 724-940-1112	Fax:
If applicable: Environmental Contact Name and Title: Meghan M.B. Yingling, Environ Email: myingling@arsenalresources.com	mental Date	Compliance Manager :	Phone: 724-940-1112	Fax:

OPERATING SIT	E INFORMATION						
Briefly describe the proposed new operation and/or any change(s) to the facility: Addition of one (1) 1380 hp compressor engine.							
Directions to the facility: From I-79 take Exit 124 go East on Route Left onto US Route 50 east. Go 5.3 miles to Wendel Road (RT 36). Tur left. Go 0.3 miles to compressor station on right.	Directions to the facility: From I-79 take Exit 124 go East on Route 279 for 2.5 miles to junction with US Route 50, Turn Left onto US Route 50 east. Go 5.3 miles to Wendel Road (RT 36). Turn right and go 1.2 miles to double white gates on left. Go 0.3 miles to compressor station on right.						
ATTACHMENTS AND SU	PPORTING DOCUMENTS						
I have enclosed the following required documen	ts:						
Check payable to WVDEP – Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).						
 □ Check attached to front of application. □ I wish to pay by electronic transfer. Contact for payment (i ⊠ I wish to pay by credit card. Contact for payment (incl. na myingling@arsenalresources.com 	incl. name and email address): me and email address): Meghan Yingling						
⊠\$500 (Construction, Modification, and Relocation) ⊠\$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or O □\$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or H	□\$300 (Class II Administrative Update) 000 and/or 0000a ⁻¹ 2H ⁻²						
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESH requirements by complying with NSPS, Subparts IIII and/or J. NSPS and NESHAP fees apply to new construction or if the so	HAP fee will be waived for new engines that satisfy JJJ. burce is being modified.						
\boxtimes Responsible Official or Authorized Representative Signatu	re (if applicable)						
\boxtimes Single Source Determination Form (must be completed in	its entirety) – Attachment A						
□ Siting Criteria Waiver (if applicable) – Attachment B	🖾 Current Business Certificate – Attachment C						
🛛 Process Flow Diagram – Attachment D	⊠ Process Description – Attachment E						
🛛 Plot Plan – Attachment F	🖾 Area Map – Attachment G						
🛛 G35-D Section Applicability Form – Attachment H	🛛 Emission Units/ERD Table – Attachment I						
In Fugitive Emissions Summary Sheet – Attachment J							
Storage Vessel(s) Data Sheet (include gas sample data, US HYSYS, etc.), etc. where applicable) – Attachment K	EPA Tanks, simulation software (e.g. ProMax, E&P Tanks,						
⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Attachment L	Heater Treaters, In-Line Heaters if applicable) –						
⊠ Internal Combustion Engine Data Sheet(s) (include manufa Attachment M	acturer performance data sheet(s) if applicable) –						
In Tanker Truck Loading Data Sheet (if applicable) – Attachr	nent N						
⊠ Glycol Dehydration Unit Data Sheet(s) (include wet gas an information on reboiler if applicable) – Attachment O	alysis, GRI- GLYCalc [™] input and output reports and						
Pneumatic Controllers Data Sheet – Attachment P							
\Box Centrifugal Compressor Data Sheet – Attachment Q							
🛛 Reciprocating Compressor Data Sheet – Attachment R							
Blowdown and Pigging Operations Data Sheet - Attachment S							
□ Air Pollution Control Device/Emission Reduction Device(sapplicable) – Attachment T	s) Sheet(s) (include manufacturer performance data sheet(s) if						
\boxtimes Emission Calculations (please be specific and include all c	alculation methodologies used) - Attachment U						
\boxtimes Facility-wide Emission Summary Sheet(s) – Attachment V							
🛛 Class I Legal Advertisement – Attachment W							
\boxtimes One (1) paper copy and two (2) copies of CD or DVD with	pdf copy of application and attachments						

All attachments must be identified by name, divided into sections, and submitted in order.

Attachment A

ATTACHMENT A -	SINGLE	SOURCE	DETERMIN	ATION FORM
	DINGLL	DOCINCL		

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

The Source Determination Rule for the oil and gas industry was published in the Federal Register on June 3, 2016 and will become effective on August 2, 2016. EPA defined the term "adjacent" and stated that equipment and activities in the oil and gas sector that are under common control will be considered part of the same source if they are located on the same site or on sites that share equipment and are within ¹/₄ mile of each other.

Is there equipment and activities in the same industrial grouping (defined by SIC code)?

Yes \Box No \boxtimes

Is there equipment and activities under the control of the same person/people?

 $Yes \square No \boxtimes$

Is there equipment and activities located on the same site or on sites that share equipment and are within ¹/₄ mile of each other?

Yes 🗆 No 🖂

Attachment B (Not Applicable)

Attachment C

WEST VIRGINIA STATE TAX DEPARTMENT

BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: ARSENAL MIDSTREAM LLC 65 PROFESSIONAL PL 200 BRIDGEPORT, WV 26330-1889

BUSINESS REGISTRATION ACCOUNT NUMBER:

2306-9776

This certificate is issued on: 05/17/2017

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L0904785088

Attachment D

Emission Point	
Gas Flow	
Produced Water Flow	
Vent Streams	>

Attachment E

Attachment E – Process Description

Pipeline quality natural gas enters the site and is routed through a knockout separator. From the separation unit, gas flows to the produced water tanks (T-2 and T-3). From there, the gas flows through four (4) 1380 hp G3516 Compressor engines (CE-1R, CE-2R, CE-3R, and CE-6R) and one (1) 670 hp G3508 Compressor Engine (CE-4R). From the compressors, the gas flows through one (1) 10 MMSCF/D and one (1) 45 MMSCF/D Tri-Ethylene Glycol (TEG) Dehydration units (RSV-4 and RSV-5) to dry gas prior to delivery to the sales gas lines. From the dehydration units the gas enters the sales line.

Fluids are removed from the site via tanker truck on an as needed basis.

Attachment F

ATTACHMENT F – PLOT PLAN

East Comet Natural Gas Compression Site	
LAT: 39.30600 LON: -80.10700	

Attachment G

Attachment H

ATTACHMENT H – G35-D SECTION APPLICABILITY FORM

General Permit G35-D Registration Section Applicability Form

General Permit G35-D was developed to allow qualified applicants to seek registration for a variety of sources. These sources include storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G35-D allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

GENERAL PERMIT G35-D APPLICABLE SECTIONS						
\boxtimes Section 5.0	Storage Vessels Containing Condensate and/or Produced Water ¹					
\Box Section 6.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO/OOOOa)					
□Section 7.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO/OOOOa and/or NESHAP Subpart HH					
Section 8.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc					
□Section 9.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO/OOOOa)					
□Section 10.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²					
Section 11.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO/OOOOa) ²					
Section 12.0	Reciprocating Internal Combustion Engines, Generator Engines. Microturbine Generators					
Section 13.0	Tanker Truck Loading ³					
Section 14.0	Glycol Dehydration Units ⁴					
Section 15.0	Blowdown and Pigging Operations					
Section 16.0	Fugitive Emission Components (NSPS, Subpart OOOOa)					

1 Applicants that are subject to Section 5 may also be subject to Section 6 if the applicant is subject to the NSPS, Subpart OOOO/OOOOa control requirements or the applicable control device requirements of Section 7.

2 Applicants that are subject to Section 10 and 11 may also be subject to the applicable RICE requirements of Section 12.

3 Applicants that are subject to Section 13 may also be subject to control device and emission reduction device requirements of Section 7.

4 Applicants that are subject to Section 14 may also be subject to the requirements of Section 8 (reboilers). Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 7.

Attachment I

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment K table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶	
CE-1R	E01	Caterpillar G3516 ULB Compressor Engine	4/2012	10/12/2011	1380 bhp	Existing	Oxidation Catalyst	1D	
CE-2R	E02	Caterpillar G3516 ULB Compressor Engine	5/2012	10/12/2011	1380 bhp	Existing	Oxidation Catalyst	2D	
CE-3R	E03	Caterpillar G3516 ULB Compressor Engine	4/2015	After 2010	1380 bhp	Existing	Oxidation Catalyst	3D	
CE-6R	E04	Caterpillar G3516 ULB Compressor Engine	6/2017	3/27/2006	1380 bhp	New	Oxidation Catalyst	4D	
CE-4R	E05	Caterpillar G3508 TALE	1/2014	5/2008	670 bhp	Existing	Oxidation Catalyst	5D	
RSV-4	E06	TEG Dehydration Still Vent	8/2014	8/2014	45 mmSCF/day	Existing	N/A	N/A	
RBV-4	E07	TEG Dehydration Reboiler	8/2014	8/2014	1.0 mmBTU/hr	Existing	N/A	N/A	
RSV-5	E08	TEG Dehydration Still Vent	1/2014	1/2014	10 mmSCF/day	Modification	N/A	N/A	
RBV-5	E09	TEG Dehydration Reboiler	1/2014	1/2014	0.20 mmBTU/hr	Existing	N/A	N/A	
T-2	E10	Produced Water Tank	9/2011	9/2011	100 bbl	Existing	N/A	N/A	
T-3	E11	Produced Water Tank	9/2011	9/2011	100 bbl	Existing	N/A	N/A	
LO-1	E12	Produced Water Tank Truck Loading S10-S12	N/A	N/A	N/A	Existing	N/A	N/A	
¹ For Emis	Ear Emission Units (or Sources) use the following numbering system: 15, 25, 26, or other appropriate designation								

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

 2 For Emission Points use the following numbering system: 1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

Attachment J

ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET									
Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary.									
Source/Equipm	ent:			• •					
Leak Detection Method Used □ Audible, visual, and olfactory (AVO) inspections □ Infrared (FLIR) cameras □ Other (please describe) □ None required □ None required □								□ None required	
Is the facility s	ubject to qu	arterly L	DAR m	onitoring under 40CFR60 S	ubpart OOOOa? 🛛 🖾 Yes 🗆	No. If no, why?			
Component	Closed			Source of	of Leak Factors	Stream type		Estimated Emis	sions (tpy)
Туре	Vent System	Сот	ınt	(EPA, o	ther (specify))	(gas, liquid, etc.)	VOC	HAP	GHG (CO ₂ e)
Pumps	□ Yes □ No					□ Gas □ Liquid □ Both			
Valves	⊠ Yes □ No	149		EPA		⊠ Gas □ Liquid □ Both	<0.01	<0.01	<0.01
Safety Relief Valves	⊠ Yes □ No	6		EPA		☐ Gas ☐ Liquid ☐ Both	<0.01	<0.01	<0.01
Open Ended Lines	⊠ Yes □ No	8		EPA		☐ Gas □ Liquid □ Both	<0.01	<0.01	<0.01
Sampling Connections	□ Yes □ No					☐ Gas ☐ Liquid ☐ Both			
Connections (Not sampling)	⊠ Yes □ No	656		EPA		Gas Liquid Both	<0.01	<0.01	<0.01
Compressors	□ Yes □ No					☐ Gas ☐ Liquid ☐ Both			
Flanges	□ Yes □ No					☐ Gas ☐ Liquid ☐ Both			
Other ¹	□ Yes □ No					Gas Liquid Both			

¹ Other equipment types may include compressor seals, relief valves, diaphragms, drains, meters, etc.

Please indicate if there are any closed vent bypasses (include component):

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.)

Attachment K

ATTACHMENT K – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

 \Box Composition of the representative sample used for the simulation

- \Box For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation

 \square Working/breathing loss emissions from tanks and/or loading emissions if simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION

1 Dull Storage Area Names Course Commences Station	2 Tonk Names Due due ad Water Tank				
1. Durk Storage Area Name: Comet Compressor Station	2. Tank Name: Produced water Tank				
3 Emission Unit ID number T-2 T-3	4 Emission Point ID number E10 E11				
5. Emission one ib number 1-2, 1-5					
5. Date Installed , Modified or Relocated (for existing	6. Type of change:				
tanks) 9/2011 and 9/2011	\Box New construction \Box New stored material \boxtimes Other				
Was the tank manufactured after August 23, 2011?	□ Relocation				
\boxtimes Yes \square No					
7A. Description of Tank Modification (<i>if applicable</i>)					
7B. Will more than one material be stored in this tank? If so	o, a separate form must be completed for each material.				
7C. Was USEPA Tanks simulation software utilized?					
\Box Yes \boxtimes No					
If Yes, please provide the appropriate documentation and i	tems 8-42 below are not required.				

TANK INFORMATION

8. Design Capacity (<i>specify barrels or gallons</i>). Use the internal cross-sectional area multiplied by internal height.						
100 bbl						
9A. Tank Internal Diameter (ft.) 8	9B. Tank Internal Height (ft.) 10					
10A. Maximum Liquid Height (ft.) 8.5	10B. Average Liquid Height (ft.) 5					
11A. Maximum Vapor Space Height (ft.) 1.5	11B. Average Vapor Space Height (ft.) 5					
12. Nominal Capacity (specify barrels or gallons). This is a	also known as "working volume". 100 bbl					
13A. Maximum annual throughput (gal/yr) 436,800	13B. Maximum daily throughput (gal/day) 1196.71					
14. Number of tank turnovers per year 52	15. Maximum tank fill rate (gal/min) 0.83					
16. Tank fill method \boxtimes Submerged \square Splash	□ Bottom Loading					
17. Is the tank system a variable vapor space system? \Box Y	res ⊠ No					
If yes, (A) What is the volume expansion capacity of the sys	tem (gal)?					
(B) What are the number of transfers into the system	per year?					
18. Type of tank (check all that apply):						
\boxtimes Fixed Roof \square vertical \square horizontal \square flat	roof \Box cone roof \boxtimes dome roof \Box other (describe)					
 External Floating Roof pontoon roof double deck roof Domed External (or Covered) Floating Roof Internal Floating Roof vertical column support self-supporting Variable Vapor Space lifter roof diaphragm Pressurized spherical cylindrical 						

PRESSURE/VACUUM CONTROL DATA

19. Check as many as apply:	:									
\boxtimes Does Not Apply \square Rupture Disc (psig)										
\Box Inert Gas Blanket of \Box Carbon Adsorption ¹										
□ Vent to Vapor Combustion	on Devi	ce ¹ (vapo	r combust	ors, flares	, thermal o	oxidizers,	enclosed c	ombustors	3)	
□ Conservation Vent (psig))			□ Conde	nser ¹					
Vacuum Setting		Pressure	Setting							
□ Emergency Relief Valve	(psig)									
Vacuum Setting		Pressure	Setting							
□ Thief Hatch Weighted □	Yes [] No								
¹ Complete appropriate Air P	Pollutior	n Control	Device Sh	neet						
20. Expected Emission Rate	e (submi	t Test Dat	a or Calcu	ulations he	ere or elsev	where in t	he applica	tion).		
Material Name	Flashir	ng Loss	Breathi	ng Loss	Workin	g Loss	Total		Estimation Method ¹	
							Emissio	ons Loss		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy		
Produced Water	Produced Water See Attachment V									

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.

TANK CONSTRUCTION AND OPERATION INFORMATION					
21. Tank Shell Construction:					
\boxtimes Riveted \square Gunite lined \square Epoxy-coated rivets \square Other (describe)					
21A. Shell Color: Tan	21B. Roof Color: Tan		21C. Year Last Painted: 2015		
22. Shell Condition (if metal and unlined):					
⊠ No Rust □ Light Rust □ Dense Rust □ Not applicable					
22A. Is the tank heated? \Box Yes \boxtimes No 22B. If yes, operating		temperature: 22C. If yes, how is heat provided to tan		es, how is heat provided to tank?	
23. Operating Pressure Range (psig): Must be listed for tanks using VRUs with closed yent system					
24. Is the tank a Vertical Fixed Roof	24A. If yes, for dome	e roof provide radius	24B. If ve	24B. If yes, for cone roof, provide slop	
Tank?	(ft):		(ft/ft):	(ft/ft):	
🛛 Yes 🗆 No	4				
25. Complete item 25 for Floating Roof Tanks Does not apply					
25A. Year Internal Floaters Installed:					
25B. Primary Seal Type (check one):					
\Box Vanor mounted resilient seal \Box Other (describe):					
250 Is the Elogting Roof equipped with a secondary scal? \Box Ves \Box No					
25C. Is the Floating Roof equipped with a secondary sear? \Box Fes \Box Float					
25D. If yes, now is the secondary seal mounted? (<i>check one</i>) \Box Shoe \Box Rim \Box Other (describe):					
25E. Is the floating roof equipped with a weather shield? \Box Yes \Box No					
25F. Describe deck fittings:					
26. Complete the following section for Internal Floating Roof Tanks 🛛 Does not apply					
26A. Deck Type: Bolted Welded 26B. For bolted decks, provide deck construction:					
26C. Deck seam. Continuous sheet construction:					
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide \Box 5 x 7.5 ft. wide \Box 5 x 12 ft. wide \Box other (describe)					
26D. Deck seam length (ft.): 26E. Are	ea of deck (ft ²):	26F. For column supported		26G. For column supported	
		tanks, # of columns:		tanks, diameter of column:	
27. Closed Vent System with VRU? □ Yes ⊠ No					
28. Closed Vent System with Enclosed Combustor? Yes No					
SITE INFORMATION					
29. Provide the city and state on which the data in this section are based:					
30. Daily Avg. Ambient Temperature (°F):		31. Annual Avg. Maximum Temperature (°F):			
32. Annual Avg. Minimum Temperature (°F):		33. Avg. Wind Speed (mph):			
34. Annual Avg. Solar Insulation Factor (BTU/ft²-day): 35. Atmospheric Pressure (psia):					
LIQUID INFORMATION					
36. Avg. daily temperature range of bulk	36A. Minimum (°F):		36B. Max	36B. Maximum (°F):	
liquid (°F):					
37. Avg. operating pressure range of tank	37A. Minimum (psig	:):	37B. Maximum (psig):		
(ps1g):					
38A. Minimum liquid surface temperature (°F):		38B. Corresponding vapor pressure (psia):			
39A. Avg. liquid surface temperature (°F):		39B. Corresponding vapor pressure (psia):			
40A. Maximum liquid surface temperature	40B. Corresponding vapor pressure (psia):				
41. Provide the following for each liquid or gas to be stored in the tank. Add additional pages if necessary.					
41A. Material name and composition:					
41B. CAS number:					
41C. Liquid density (lb/gal):					
--	--	--			
41D. Liquid molecular weight (lb/lb-					
mole):					
41E. Vapor molecular weight (lb/lb-					
mole):					
41F. Maximum true vapor pressure (psia):					
41G. Maximum Reid vapor pressure					
(psia):					
41H. Months Storage per year.					
From: To:					
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used					
as inputs into flashing emission					
calculations.					

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
Oil	Existing	Engine Oil	520 gal x6
Methanol	Existing	Methanol	300 gal
Stormwater Tank (Underground)	Existing	Stormwater	600 gal
Glycol	Existing	TEG Glycol	520 gal
Regen overhead condensation tank (T-1)	Exisitng	Condensation from TEG Overhead	4,200 gal

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the Tanks should be designated T01, T02, T03, etc. compressor station. 2.

Enter storage tank Status using the following:

EXIST Existing Equipment

Installation of New Equipment NEW

REM Equipment Removed

3. Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel,

mercaptan etc. 4.

Enter the maximum design storage tank volume in gallons.

Attachment L

ATTACHMENT L – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
RBV-4	E07	Exterran Reboiler	2015	NA	1.0	1030
RBV-5	E09	Exterran Reboiler	2012	NA	0.20	1030

¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol

Dehydration Unit Data Sheet.

² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.

³ New, modification, removal

⁴ Enter design heat input capacity in MMBtu/hr.

⁵ Enter the fuel heating value in BTU/standard cubic foot.

Attachment M

ATTACHMENT M - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

	•						
Emission Unit I	Unit ID# ¹ CE-1R		CE-2R		CE-3R		
Engine Manufac	cturer/Model	CAT	G3516	CAT G3516		CAT G3516	
Manufacturers I	Rated bhp/rpm	1380	/1400	1380	/1400	1380/1400	
Source Status ²		E	ËS	E	ES	E	ES
Date Installed/ Modified/Remo	ved/Relocated ³	4/2	012	5/2	012	4/2	015
Engine Manufac /Reconstruction	ctured Date ⁴	10/12	2/2011	10/12	2/2011	After	2010
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵ ■ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources		ubpart JJJJ ed? ubpart IIII ed? ubpart ZZZZ ZZZZ/ NSPS ZZZZ Remote	 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ☑ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS □ JJJ Window □ NESHAP ZZZZ Remote Sources 		
Engine Type ⁶		48	LB	48	LB	45	LB
APCD Type ⁷		Ox	Cat	Ox	Cat	Ox	Cat
Fuel Type ⁸		R	G	R	.G	R	G
H ₂ S (gr/100 scf)	0.0)25	0.0)25	0.025	
Operating bhp/r	pm	1380	/1400	1380/1400		1380/1400	
BSFC (BTU/bhj	BSFC (BTU/bhp-hr)		442 7,442		442	7,442	
Hourly Fuel The	roughput	9,971 ft ³ /hr gal/hr		9,971 ft ³ / ga	hr l/hr	9,971 ft ³ / gal	hr l/hr
Annual Fuel Th (Must use 8,760 emergency gene	Annual Fuel Throughput87.34M(Must use 8,760 hrs/yr unless emergency generator)g		fft³/yr l/yr	't ³ /yr 87.34 MMft ³ /yr 'yr gal/yr		87.34 MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter	lours of red	Yes 🛛	No 🗆	Yes 🗵	No 🗆	Yes 🗵	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
Vendor Guarantee	NO _x	1.52	6.66	1.52	6.66	1.52	6.66
Vendor Guarantee	со	0.56	2.43	0.56	2.43	0.56	2.43
Vendor Guarantee	voc	0.32	1.39	0.32	1.39	0.32	1.39
AP-42	SO ₂	< 0.01	0.03	<0.01	0.03	< 0.01	0.03
AP-42	PM ₁₀	0.10	0.45	0.10	0.45	0.10	0.45
Vendor Guarantee	Formaldehyde	0.13	0.57	0.13	0.57	0.13	0.57
AP-42	Total HAPs	0.15	0.67	0.15	0.67	0.15	0.67
AP-42	GHG (CO ₂ e)	1,441.54	6,313.93	1,441.54	6,313.93	1,441.54	6,313.93

ATTACHMENT M – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. Generator(s) and microturbine generator(s) shall also use this form.

Emission Unit I	D# ¹	CE	-6R	CE	-4R		
Engine Manufac	cturer/Model	CAT C	33516B	CAT	G3508		
Manufacturers F	Rated bhp/rpm	1380	/1400	670/1400			
Source Status ²		Ň	IS	N	1S		
Date Installed/ Modified/Remo	ved/Relocated ³	6/2	017	1/2	2014		
Engine Manufac /Reconstruction	ctured Date ⁴	3/27	/2006	5/2	008		
Check all applicable Federal Rules for the engine (include EPA Certificate of Conformity if applicable) ⁵		 ☑ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		 ⋈ 40CFR60 Subpart JJJJ □ JJJJ Certified? □ 40CFR60 Subpart IIII □ IIII Certified? □ 40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources 		□40CFR60 Subpart JJJJ □JJJJ Certified? □40CFR60 Subpart IIII □IIII Certified? □40CFR63 Subpart ZZZZ □ NESHAP ZZZZ/ NSPS JJJJ Window □ NESHAP ZZZZ Remote Sources	
Engine Type ⁶		48	LB	48	LB		
APCD Type ⁷		Ox	Cat	Ox	Cat		
Fuel Type ⁸		R	G	R	G		
H ₂ S (gr/100 scf))	0.0)25	0.025			
Operating bhp/r	pm	1380/1400		670/1400			
BSFC (BTU/bhp	BSFC (BTU/bhp-hr) 7,4		142	7,656			
Hourly Fuel Th	roughput	9,971 ft ³ /hr gal/hr		4,980 ft ³ /hr gal/hr		ft ³ . ga	/hr l/hr
Annual Fuel Th (Must use 8,760 emergency gene	roughput) hrs/yr unless ;rator)	87.34 MM gal	MMft³/yr gal/yr43.63MMft³/yr gal/yr		lft ³ /yr l/yr	MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter	lours of red	Yes 🖂	No 🗆	Yes 🖂	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) 11	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
Vendor Guarantee	NO _x	1.52	6.66	2.95	12.94		
Vendor Guarantee	СО	0.56	2.43	0.22	0.97		
Vendor Guarantee	voc	0.32	1.39	0.31	1.35		
AP-42	SO ₂	< 0.01	0.03	< 0.01	0.01		
AP-42	PM ₁₀	0.10	0.45	0.05	0.22		
Vendor Guarantee	Formaldehyde	0.13	0.57	0.04	0.16		
AP-42	Total HAPs	0.15	0.67	0.05	0.21		
AP-42	GHG (CO ₂ e)	1,441.54	6,313.93	720.00	3,153.61		

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.

5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintained to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

Provide a manufacturer's data sheet for all engines being registered.

6	Enter th	e Engine Type designation(s) using the following co	des:					
	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SRE	B Four S	troke Rich Burn			
7	Enter th	e Air Pollution Control Device (APCD) type designate	ation(s)	using the f	ollowing codes:			
	A/F	Air/Fuel Ratio		IR	Ignition Retar	d		
	HEIS	High Energy Ignition System		SIPC	Screw-in Prec	ombustion Cham	ibers	8
	PSC	Prestratified Charge		LEC	Low Emission	Combustion		
	NSCR	Rich Burn & Non-Selective Catalytic Reduction		OxCat	Oxidation Cat	alyst		
	SCR	Lean Burn & Selective Catalytic Reduction						
8	Enter th	e Fuel Type using the following codes:						
	PQ	Pipeline Quality Natural Gas R	G F	Raw Natura	al Gas /Production	on Gas	D	Diesel
9	Enter t	he Potential Emissions Data Reference design	nation u	sing the	following code	s Attach all r	efei	ence data used
	Linter t		iution u	5 the			0101	enee data asea.
	MD	Manufacturer's Data	F	AP A	P-42			
	GK	GRI-HAPCaic	C	л 0	iner	(please list)		

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Engine Air Pollution Control Device (Emission Unit ID# CE-1R, use extra pages as necessary)				
Air Pollution Control Device Manufacturer's Data Sheet included? Yes ⊠ No □				
□ NSCR □ SCR	🛛 Oxidation Catalyst			
Provide details of process control used for proper mixing/control of reducing agent with gas stream:				
Manufacturer: DCL	Model #: DC65A-12			
Design Operating Temperature: °F	Design gas volume: scfm			
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No			
Volume of gas handled: acfm at ^o F	Operating temperature range for NSCR/Ox Cat: From °F to °F			
Reducing agent used, if any:	Ammonia slip (ppm):			
Pressure drop against catalyst bed (delta P): inches of	H ₂ O			
Provide description of warning/alarm system that protects unit when operation is not meeting design conditions:				
Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZ? □ Yes □ No				
How often is catalyst recommended or required to be replaced (hours of operation)?				
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any page)	maintenance required and the applicable sections in			

Engine Air Pollution Control Device (Emission Unit ID# CE-2R, use extra pages as necessary)				
Air Pollution Control Device Manufacturer's Data Sheet included? Yes 🛛 No 🗆				
□ NSCR □ SCR	🛛 Oxidation Catalyst			
Provide details of process control used for proper mixing/control of reducing agent with gas stream:				
Manufacturer: DCL	Model #: DC65A-12			
Design Operating Temperature: °F	Design gas volume: scfm			
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No			
Volume of gas handled: acfm at ^o F	Operating temperature range for NSCR/Ox Cat: From °F to °F			
Reducing agent used, if any:	Ammonia slip (ppm):			
Pressure drop against catalyst bed (delta P): inches of	H ₂ O			
Provide description of warning/alarm system that protects unit when operation is not meeting design conditions:				
Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZ? □ Yes □ No				
How often is catalyst recommended or required to be replaced (hours of operation)?				
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any results)	naintenance required and the applicable sections in			

Engine Air Pollution Control Device (Emission Unit ID# CE-3R, use extra pages as necessary)				
Air Pollution Control Device Manufacturer's Data Sheet included? Yes ⊠ No □				
□ NSCR □ SCR	🛛 Oxidation Catalyst			
Provide details of process control used for proper mixing/control of reducing agent with gas stream:				
Manufacturer: DCL	Model #: DC65A-12			
Design Operating Temperature: °F	Design gas volume: scfm			
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No			
Volume of gas handled: acfm at ^o F	Operating temperature range for NSCR/Ox Cat: From °F to °F			
Reducing agent used, if any:	Ammonia slip (ppm):			
Pressure drop against catalyst bed (delta P): inches of	H ₂ O			
Provide description of warning/alarm system that protects unit when operation is not meeting design conditions:				
Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZ? □ Yes □ No				
How often is catalyst recommended or required to be replaced (hours of operation)?				
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any results)	naintenance required and the applicable sections in			

Engine Air Pollution Control Device (Emission Unit ID# CE-6R, use extra pages as necessary)				
Air Pollution Control Device Manufacturer's Data Sheet included? Yes ⊠ No □				
□ NSCR □ SCR	🛛 Oxidation Catalyst			
Provide details of process control used for proper mixing/control of reducing agent with gas stream:				
Manufacturer: DCL	Model #: DC65A-12			
Design Operating Temperature: °F	Design gas volume: scfm			
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No			
Volume of gas handled: acfm at ^o F	Operating temperature range for NSCR/Ox Cat: From °F to °F			
Reducing agent used, if any:	Ammonia slip (ppm):			
Pressure drop against catalyst bed (delta P): inches of	H ₂ O			
Provide description of warning/alarm system that protects unit when operation is not meeting design conditions:				
Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZ? □ Yes □ No				
How often is catalyst recommended or required to be replaced (hours of operation)?				
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any results)	naintenance required and the applicable sections in			

Engine Air Pollution Control Device (Emission Unit ID# CE-4R, use extra pages as necessary)				
Air Pollution Control Device Manufacturer's Data Sheet included? Yes ⊠ No □				
□ NSCR □ SCR	🛛 Oxidation Catalyst			
Provide details of process control used for proper mixing/control of reducing agent with gas stream:				
Manufacturer: DCL	Model #: DC63Q-8			
Design Operating Temperature: °F	Design gas volume: scfm			
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No			
Volume of gas handled: acfm at ^o F	Operating temperature range for NSCR/Ox Cat: From °F to °F			
Reducing agent used, if any:	Ammonia slip (ppm):			
Pressure drop against catalyst bed (delta P): inches of	H ₂ O			
Provide description of warning/alarm system that protects unit when operation is not meeting design conditions:				
Is temperature and pressure drop of catalyst required to be monitored per 40CFR63 Subpart ZZZ? □ Yes □ No				
How often is catalyst recommended or required to be replaced (hours of operation)?				
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please list any results)	naintenance required and the applicable sections in			

Attachment N

ATTACHMENT N – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application and will be noted on the issued G35-D Registration.

Emission Unit ID#: LO-	on Point ID#	: E13		Year Installed/Modified: N/A			
Emission Unit Description: Produced Water Tank Truck Loading T1-T3							
			Loading	Area Data			
Number of Pumps: NA		Numbe	r of Liquids	Loaded: 1		Max number of (1) time: 1	f trucks loading at one
Are tanker trucks pressur If Yes, Please describe:	re tested for lea	ks at this	or any other	r location?	🗆 Yes	🗆 No 🛛	Not Required
Provide description of closed vent system and any bypasses. NA							
Are any of the following□Closed System to tan□Closed System to tan□Closed System to tan	truck loadout s ker truck passin ker truck passin ker truck not pa	ystems ung a MAC ng a NSP assing an	tilized? CT level annu S level annua annual leak	aal leak test? al leak test? test and has v	apor ret	urn?	
Proj	ected Maximu	n Operat	ting Schedul	e (for rack o	r transf	er point as a wh	iole)
Time	Jan – Ma	ar	Apr	- Jun	J	ul – Sept	Oct - Dec
Hours/day	24		2	24		24	24
Days/week	nys/week 7			7	7		7
	Bul	k Liquid	Data (use e	xtra pages a	s necess	ary)	
Liquid Name	Produce	d Water					
Max. Daily Throughput (1000 gal/day) 1.20							
Max. Annual Throughput (1000 gal/yr) 436.75							
Loading Method ¹ SP							
Max. Fill Rate (gal/min)	0.83						
Average Fill Time (min/loading)	NA						
Max. Bulk Liquid Temperature (°F)	70						

True Vapor Pi	ressure ²	NA	
Cargo Vessel Condition ³		U	
Control Equipment or Method ⁴		None	
Max. Collection Efficiency (%)		NA	
Max. Control Efficiency (%)		NA	
Max.VOC	Loading (lb/hr)	<0.01	
Rate	Annual (ton/yr)	<0.01	
Max.HAP	Loading (lb/hr)	<0.01	
Rate	Annual (ton/yr)	<0.01	
Estimation Me	ethod ⁵	O - ProMax	

	1	BF	Bottom Fill	SP	Splash Fill	l		SUB	Submerged Fill
	2	At maxim	um bulk liquid temperature		1				C C
	3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated
service)									
		0	Other (describe)						
	4	List as m	any as apply (complete and s	ubmit app	ropriate A	ir Pollutio	on Contro	l Device S	Sheets)
		CA	Carbon Adsorption		VB	Dedicated	d Vapor B	alance (cl	osed system)
		ECD	Enclosed Combustion Device	e	F	Flare			
		ТО	Thermal Oxidization or Incin	neration					
	5	EPA	EPA Emission Factor in AP-	42			MB	Material	Balance
		ТМ	Test Measurement based upo	on test data	a submitta	1	0	Other (des	cribe)

Attachment O

ATTACHMENT O – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI- GLYCalc [™] input and aggregate report. Use extra pages if necessary.						
Manufacturer: Exterran	Model: HANO-486836035					
Max. Dry Gas Flow Rate: 10 mmscf/day	Reboiler Design Heat Input: 0.20 MMBTU/hr					
Design Type: 🛛 TEG 🛛 DEG 🔅 EG	Source Status ¹ : MS					
Date Installed/Modified/Removed ² : 1/2014	Regenerator Still Vent APCD/ERD ³ : NA					
Control Device/ERD ID# ³ : NA Fuel HV (BTU/scf): 1030						
H ₂ S Content (gr/100 scf): <0.25	Operation (hours/year): 8760					
Pump Rate (scfm): 46.5						
Water Content (wt %) in: Wet Gas: 0.17 Dry Gas	s: 0.014					
Is the glycol dehydration unit exempt from 40CFR63 Section	764(d)? \boxtimes Yes \Box No: If Yes, answer the following:					
The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in $63.772(b)(1)$ of this subpart. \Box Yes \boxtimes No						
megagram per year (1 ton per year), as determined by the proc \Box No	eedures specified in §63.772(b)(2) of this subpart. ⊠ Yes					
Is the glycol dehydration unit located within an Urbanized Are	ea (UA) or Urban Cluster (UC)? Yes No					
Is a lean glycol pump optimization plan being utilized? 🗆 Yes 🛛 🛛 No						
Recycling the glycol dehydration unit back to the flame zone of \Box Yes \boxtimes No If yes: Is the reboiler configured to accept flash drum vapors (straigh Is the reboiler configured to accept still vent vapors (after a configured to accept both in the same operation	of the reboiler. t from the glycol dehydrator)? □ Yes ⊠ No ondenser)? □ Yes ⊠ No i? □ Yes ⊠ No					
Recycling the glycol dehydration unit back to the flame zone \Box Yes \boxtimes No	of the reboiler and mixed with fuel.					
What happens when temperature controller shuts off fuel to the reboiler? Still vent emissions to the atmosphere. Still vent emissions stopped with valve. Still vent emissions to glow plug.						
Please indicate if the following equipment is present. Flash Tank Burner management system that continuously burns condenser or flash tank vapors						
Control Device Technical Data						
Pollutants Controlled Manufacturer's Guaranteed Control Efficiency (%)						
NA	NA					
Emissions Data						

Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)
RBV-4		AP-42	NO _x	0.02	0.11
	Reboiler Vent	AP-42	СО	0.02	0.09
		AP-42	VOC	<0.01	<0.01
		AP-42	SO ₂	<0.01	<0.01
		AP-42	PM ₁₀	<0.01	<0.01
		AP-42	GHG (CO ₂ e)	29.27	128.22
RSV-4	Glycol Regenerator	GRI-GlyCalc TM	VOC	0.10	0.43
		GRI-GlyCalc TM	Benzene	<0.01	0.03
		GRI-GlyCalc TM	Toluene	0.01	0.06
	Still Vent	GRI-GlyCalc TM	Ethylbenzene	<0.01	<0.01
		GRI-GlyCalc TM	Xylenes	0.03	0.15
		GRI-GlyCalc TM	n-Hexane	<0.01	<0.01
NA		GRI-GlyCalc TM	VOC		
		GRI-GlyCalc TM	Benzene		
	Glycol Flash	GRI-GlyCalc TM	Toluene		
	Tank	GRI-GlyCalc TM	Ethylbenzene		
		GRI-GlyCalc TM	Xylenes		
		GRI-GlyCalc TM	n-Hexane		

1 Enter the Source Status using the following codes:

NS Cons

Construction of New Source ES Existing Source

MS Modification of Existing Source Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source),

2 modification or

 modification or
 removal.

 3
 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes

 and the device ID number:

NA None CD Condenser FL Flare CC Condenser/Combustion Combination TO Thermal Oxidizer O Other (please list)

4Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol
dehydration unit reboiler vent
and glycol regenerator still vent. The glycol dehydration unit reboiler vent
and glycol regenerator still vent should be
compressor station incorporates multiple glycol dehydration units, a Glycol
be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3
5
Enter the Potential Emissions Data Reference designation using the following codes:Dend

MD Manufacturer's Data AP AP-42

GRI-GLYCalcTM GR OT Other (please list) Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated 6 pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may version of the thermodynamic software model GRI-GLYCalcTM be determined using the most recent (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data

Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT O – GLYCOL DEHYDRATION UNIT DATA SHEET

2					
Complete this data sheet for each Glycol D and/or Regenerator at the facility. Include input and aggregate report. Use extra page	ehydration Unit, Reboiler, Flash Tank gas sample analysis and GRI- GLYCalc [™] s if necessary.				
Manufacturer: Exterran	Model: HANO-486836035				
Max. Dry Gas Flow Rate: 45 mmscf/day	Reboiler Design Heat Input: 1.0 MMBTU/hr				
Design Type: 🛛 TEG 🛛 DEG 🔅 EG	Source Status ¹ : MS				
Date Installed/Modified/Removed ² : 8/2014 Regenerator Still Vent APCD/ERD ³ : NA					
Control Device/ERD ID# ³ : NA	Fuel HV (BTU/scf): 1030				
H ₂ S Content (gr/100 scf): <0.25	Operation (hours/year): 8760				
Pump Rate (scfm): 46.5					
Water Content (wt %) in: Wet Gas: 0.17 Dry Gas	s: 0.014				
Is the glycol dehydration unit exempt from 40CFR63 Section	764(d)? \boxtimes Yes \Box No: If Yes, answer the following:				
The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in $63.772(b)(1)$ of this subpart. \Box Yes \boxtimes No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90					
□ No	$\frac{1}{2} = \frac{1}{2} = \frac{1}$				
Is the glycol dehydration unit located within an Urbanized Are	ea (UA) or Urban Cluster (UC)? Ves No				
Is a lean glycol pump optimization plan being utilized? 🗆 Yes 🛛 🛛 No					
Recycling the glycol dehydration unit back to the flame zone of \Box Yes \boxtimes No If yes: Is the reboiler configured to accept flash drum vapors (straigh Is the reboiler configured to accept still vent vapors (after a configured to accept both in the same operation	of the reboiler. It from the glycol dehydrator)? □ Yes ⊠ No ondenser)? □ Yes ⊠ No I? □ Yes ⊠ No				
Recycling the glycol dehydration unit back to the flame zone \Box Yes \boxtimes No	of the reboiler and mixed with fuel.				
What happens when temperature controller shuts off fuel to the reboiler? Still vent emissions to the atmosphere. Still vent emissions stopped with valve. Still vent emissions to glow plug.					
Please indicate if the following equipment is present. Flash Tank Burner management system that continuously burns condenser or flash tank vapors					
Control Device Technical Data					
Pollutants Controlled Manufacturer's Guaranteed Control Efficiency (%)					
NA	NA				
Emissions Data					

Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	PTE ⁶	Controlled Maximum Hourly Emissions (lb/hr)	Controlled Maximum Annual Emissions (tpy)
RBV-4		AP-42	NO _x	0.10	0.43
	Reboiler Vent	AP-42	СО	0.08	0.36
		AP-42	VOC	< 0.01	0.02
		AP-42	SO ₂	< 0.01	<0.01
		AP-42	PM ₁₀	< 0.01	0.03
		AP-42	GHG (CO ₂ e)	117.10	512.89
RSV-4	Glycol Regenerator	GRI-GlyCalc TM	VOC	0.44	1.92
		GRI-GlyCalc TM	Benzene	0.04	0.15
		GRI-GlyCalc TM	Toluene	0.07	0.29
	Still Vent	GRI-GlyCalc TM	Ethylbenzene	<0.01	<0.01
		GRI-GlyCalc TM	Xylenes	0.15	0.67
		GRI-GlyCalc TM	n-Hexane	<0.01	<0.01
NA		GRI-GlyCalc TM	VOC		
		GRI-GlyCalc TM	Benzene		
	Glycol Flash	GRI-GlyCalc TM	Toluene		
	Tank	GRI-GlyCalc TM	Ethylbenzene		
		GRI-GlyCalc TM	Xylenes		
		GRI-GlyCalc TM	n-Hexane		

1 Enter the Source Status using the following codes:

removal.

NS Const

Construction of New Source ES Existing Source

MS Modification of Existing Source Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source),

modification or

2

3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number:

NA None CD Condenser FL Flare CC Condenser/Combustion Combination TO Thermal Oxidizer O Other (please list)

4Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycoldehydration unit reboiler ventand glycol regenerator still vent. The glycol dehydration unit reboiler ventand glycol regenerator still vent should bedesignated RBV-1 and RSV-1, respectively. If thecompressor station incorporates multiple glycol dehydration units, a GlycolDehydration Emission Unit Data Sheetshall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3and RSV-3, etc.5Enter the Potential Emissions Data Reference designation using the following codes:

MD Manufacturer's Data AP AP-42

GRI-GLYCalcTM GR OT Other (please list) Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated 6 pollutants in lbs per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may version of the thermodynamic software model GRI-GLYCalcTM be determined using the most recent (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data

Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emission Summary Sheet.

Attachment P

ATTACHMENT P – PNEUMATIC CONTROLLERS DATA SHEET
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after September 18, 2015?
\Box Yes \boxtimes No
Please list approximate number.

Attachment Q

ATTACHMENT Q – CENTRIFUGAL COMPRESSOR DATA SHEET

Are there any centrifugal compressors at this facility that commenced construction, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?

🗌 Yes 🛛 🖾 No

Please list:

Emission Unit ID#	Compressor Description
Are there any o construction, m	centrifugal compressors at this facility that commenced addification or reconstruction after September 18, 2015?
	\Box Yes \boxtimes No
	Please list:
Emission Unit ID#	Compressor Description

Attachment R

ATTACHMENT R – RECIPROCATING COMPRESSOR DATA SHEET				
Are there construction	any reciprocating compressors at this facility that commenced a, modification or reconstruction after August 23, 2011, and on or before September 18, 2015?			
	Yes No			
	Please list:			
Emission Unit ID#	Compressor Description			
CE-1R	CAT G3516 ULB Compressor Engine			
CE-2R	CAT G3516 ULB Compressor Engine			
CE-3R	CAT G3516 ULB Compressor Engine			
CE-4R	CAT G3508 TALE Compressor Engine			
Are there construct	any reciprocating compressors at this facility that commenced tion, modification or reconstruction after September 18, 2015?			
	Please list:			
Emission Unit ID#	Compressor Description			
CE-6R	CAT G3516 ULB Compressor Engine			
	<u> </u>			

Attachment S

ATTACHMENT S – BLOWDOWN AND PIGGING OPERATIONS DATA SHEET

Will there be any blowdown and pigging operations that occur at this facility?

Yes No

Please list:

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	VOC weight fraction	VOC emissions (ton/yr)
Compressor Blowdown	100	3,776	16.45	290.22	< 0.01	0.5
Compressor Startup						
Plant Shutdown						
Low Pressure Pig Venting						
High Pressure Pig Venting	52	437.34	16.45	<0.01	0.002	<0.01

Type of Event	# of Events (event/yr)	Amount Vented per event (scf/event)	MW of vented gas (lb/lb-mol)	Total Emissions (ton/yr)	HAP weight fraction	HAP emissions (ton/yr)
Compressor Blowdown	100	3,776	16.45	290.22	< 0.01	< 0.01
Compressor Startup						
Plant Shutdown						
Low Pressure Pig Venting						
High Pressure Pig Venting	52	437.34	16.45	<0.01	<0.01	<0.01

Attachment T (Not Applicable)

Attachment U

Attachment U Natural Gas Compressor Engine (CE-1R, CE-2R, CE-3R, and CE-6R) G3516ULB

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Engine Rating (kW)	Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Catalyst Reduction (%)	Hourly Emissions (Ib/hr)	Annual Emissions (tpy)
VOCs	0.52	g/bhp-hr	Vendor Guarantee	1380.0	1029.1	7,442	1,030	8,760	80%	0.32	1.39
Formaldehyde	0.43	g/bhp-hr	Vendor Guarantee	1380.0	1029.1	7,442	1,030	8,760	90%	0.13	0.57
n-Hexane	1.11E-03	lb/MMBtu	AP-42 Chapter 3.2	1379.0	1028.3	7,442	1,030	8,760	0%	0.01	0.05
Benzene	4.40E-04	lb/MMBtu	AP-42 Chapter 3.2	1380.0	1029.1	7,442	1,030	8,760	0%	<0.01	0.02
Toluene	4.08E-04	lb/MMBtu	AP-42 Chapter 3.2	1380.0	1029.1	7,442	1,030	8,760	0%	<0.01	0.02
Ethylbenzene	3.97E-05	lb/MMBtu	AP-42 Chapter 3.2	1380.0	1029.1	7,442	1,030	8,760	0%	<0.01	<0.01
Xylene	1.84E-04	lb/MMBtu	AP-42 Chapter 3.2	1380.0	1029.1	7,442	1,030	8,760	0%	<0.01	<0.01
со	2.61	g/bhp-hr	Vendor Guarantee	1380.0	1029.1	7,442	1,030	8,760	93%	0.56	2.43
NO _x	0.50	g/bhp-hr	Vendor Guarantee	1380.0	1029.1	7,442	1,030	8,760	0%	1.52	6.66
PM _{Filterable}	7.71E-05	lb/MMBtu	AP-42 Chapter 3.2	1380.0	1029.1	7,442	1,030	8,760	0%	<0.01	<0.01
PM _{Condensable}	9.91E-03	lb/MMBtu	AP-42 Chapter 3.2	1380.0	1029.1	7,442	1,030	8,760	0%	0.10	0.45
PM _{Total}	9.99E-03	lb/MMBtu	AP-42 Chapter 3.2	1380.0	1029.1	7,442	1,030	8,760	0%	0.10	0.45
SO ₂	5.88E-04	lb/MMBtu	AP-42 Chapter 3.2	1380.0	1029.1	7,442	1,030	8,760	0%	<0.01	0.03
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	1380.0	1029.1	7,442	1,030	8,760	0%	1440.05	6307.42
CH ₄	0.001	kg CH ₄ / MMBtu	40 CFR Subpart C	1380.0	1029.1	7,442	1,030	8,760	0%	0.03	0.12
N ₂ O	0.0001	kg N ₂ O / MMBtu	40 CFR Subpart C	1380.0	1029.1	7,442	1,030	8,760	0%	<0.01	0.01
Total HAPs										0.15	0.67
Total CO ₂ e										1441.54	6313.93

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one CAT G3516 NG compressor.

- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 3.2, Table 3.2-2 - Uncontrolled Emission Factors for 4-Stroke Lean Burn Engines

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr) x Catalyst Reuction (%) Max hourly rate (lb/hr) = (Fuel Consumption [Btu/bhp-hr] x Engine Rating [kW] / Heat Value [Btu/scf]) x 0.001 x 0.001235 x Emission Factor (kg/MMBtu) x 1.102 x 2000

Attachment U Natural Gas Compressor Engine (CE-4R) G3508 TALE

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Engine Rating (bhp)	Engine Rating (kW)	Fuel Consumption (Btu/bhp-hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Catalyst Reduction (%)	Hourly Emissions (lb/hr)	Annual Emissions (tpy)
VOCs	0.38	g/bhp-hr	Vendor Guarantee	670.0	499.6	7,656	1,030	8,760	45%	0.31	1.35
Formaldehyde	0.25	g/bhp-hr	Vendor Guarantee	670.0	499.6	7,656	1,030	8,760	90%	0.04	0.16
n-Hexane	1.11E-03	lb/MMBtu	AP-42 Chapter 3.1	669.0	498.9	7,656	1,030	8,760	0%	<0.01	0.02
Benzene	4.40E-04	lb/MMBtu	AP-42 Chapter 3.2	670.0	499.6	7,656	1,030	8,760	0%	<0.01	<0.01
Toluene	4.08E-04	lb/MMBtu	AP-42 Chapter 3.2	670.0	499.6	7,656	1,030	8,760	0%	<0.01	<0.01
Ethylbenzene	3.97E-05	lb/MMBtu	AP-42 Chapter 3.2	670.0	499.6	7,656	1,030	8,760	0%	<0.01	<0.01
Xylene	1.84E-04	lb/MMBtu	AP-42 Chapter 3.2	670.0	499.6	7,656	1,030	8,760	0%	<0.01	<0.01
со	2.14	g/bhp-hr	Vendor Guarantee	670.0	499.6	7,656	1,030	8,760	93%	0.22	0.97
NO _x	2.00	g/bhp-hr	Vendor Guarantee	670.0	499.6	7,656	1,030	8,760	0%	2.95	12.94
PM _{Filterable}	7.71E-05	lb/MMBtu	AP-42 Chapter 3.2	670.0	499.6	7,656	1,030	8,760	0%	<0.01	<0.01
PM _{Condensable}	9.91E-03	lb/MMBtu	AP-42 Chapter 3.2	670.0	499.6	7,656	1,030	8,760	0%	0.05	0.22
PM _{Total}	9.99E-03	lb/MMBtu	AP-42 Chapter 3.2	670.0	499.6	7,656	1,030	8,760	0%	0.05	0.22
SO ₂	5.88E-04	lb/MMBtu	AP-42 Chapter 3.2	670.0	499.6	7,656	1,030	8,760	0%	<0.01	0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40 CFR Subpart C	670.0	499.6	7,656	1,030	8,760	0%	719.26	3150.35
CH ₄	0.001	kg CH ₄ / MMBtu	40 CFR Subpart C	670.0	499.6	7,656	1,030	8,760	0%	0.01	0.06
N ₂ O	0.0001	kg N ₂ O / MMBtu	40 CFR Subpart C	670.0	499.6	7,656	1,030	8,760	0%	<0.01	<0.01
Total HAPs										0.05	0.21
Total CO ₂ e										720.00	3153.61

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one CAT G3508 NG compressor.

- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 3.2, Table 3.2-3 - Uncontrolled Emission Factors for 4-Stroke lean Burn Engines

- Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40 CFR 98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) ÷ Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr) x catalyst reduction (%) Max hourly rate (lb/hr) = (Fuel Consumption [Btu/bhp-hr] x Engine Rating [kW] / Heat Value [Btu/scf]) x 0.001 x 0.001235 x Emission Factor (kg/MMBtu) x 1.102 x 2000

Attachment U RSV-4

Regenerator Overhead Vent RSV-4

Pollutant	Max Hourly Uncontrolled Emissions (lb/hr)	Max Annual Uncontrolled Emissions (tons/yr)		
VOC's	0.44	1.92		
HAPs	0.37	1.60		
Benzene	0.04	0.15		
Toluene	0.07	0.29		
Xylenes	0.15	0.67		
n-Hexane	<0.01	<0.01		
Methane	4.13	18.07		
CO ₂ e	103.14	451.74		

Data from GRI-GLYCalc 4.0

Attachment U Dehy Reboiler RBV-4

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOCs	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,030	8,760	<0.01	0.02
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,030	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,030	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,030	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,030	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,030	8,760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,030	8,760	0.08	0.36
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,030	8,760	0.10	0.43
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,030	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,030	8,760	<0.01	0.02
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,030	8,760	<0.01	0.03
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	1.00	1,030	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	1.00	1,030	8,760	116.98	512.36
CH ₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	1.00	1,030	8,760	<0.01	<0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	1.00	1,030	8,760	<0.01	<0.01
Total HAPs							<0.01	<0.01
Total CO ₂ e							117.10	512.89

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one dehydrator reboiler.

- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

⁻ Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO 2=1, GWP CH4=25, GWP N2O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) \div Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr) Max hourly rate (lb/hr) = Emission Factor (kg CO₂/MMBtu) x Boiler Rating (MMBtu/hr) x 2.20462 (lb/kg)

Attachment U

RSV-5

Regenerator Overhead Vent RSV-5

Pollutant	Max Hourly Uncontrolled Emissions (lb/hr)	Max Annual Uncontrolled Emissions (tons/yr)
VOC's	0.10	0.43
HAPs	0.08	0.36
Benzene	<0.01	0.03
Toluene	0.01	0.06
Xylenes	0.03	0.15
n-Hexane	<0.01	<0.01
Methane	0.92	4.02
CO ₂ e	22.92	100.39

Data from GRI-GLYCalc 4.0

Attachment U Dehy Reboiler RBV-5

Pollutant	Emission Factor	Emission Factor Units	Emission Factor Basis / Source	Boiler Rating (MMBtu/hr)	Heat Value of Natural Gas (Btu/scf)	Annual Operating Hours	Max. Hourly Emissions. (Ib/hr)	Max. Annual Emissions. (tpy)
VOCs	5.5	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.20	1,030	8,760	<0.01	<0.01
Hexane	1.8	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.20	1,030	8,760	<0.01	<0.01
Formaldehyde	0.075	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.20	1,030	8,760	<0.01	<0.01
Benzene	0.0021	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.20	1,030	8,760	<0.01	<0.01
Toluene	0.0034	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.20	1,030	8,760	<0.01	<0.01
Pb	0.0005	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.20	1,030	8,760	<0.01	<0.01
со	84	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.20	1,030	8,760	0.02	0.07
NO _x	100	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.20	1,030	8,760	0.02	0.09
PM _{Filterable}	1.9	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.20	1,030	8,760	<0.01	<0.01
PM _{Condensable}	5.7	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.20	1,030	8,760	<0.01	<0.01
PM _{Total}	7.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.20	1,030	8,760	<0.01	<0.01
SO ₂	0.6	lb/10 ⁶ scf	AP-42 Chapter 1.4	0.20	1,030	8,760	<0.01	<0.01
CO ₂	53.06	kg CO ₂ / MMBtu	40CFR98 Subpart C	0.20	1,030	8,760	23.40	102.47
CH ₄	0.001	kg CH ₄ / MMBtu	40CFR98 Subpart C	0.20	1,030	8,760	<0.01	<0.01
N ₂ O	0.0001	kg N ₂ O / MMBtu	40CFR98 Subpart C	0.20	1,030	8,760	<0.01	<0.01
Total HAPs							<0.01	<0.01
Total CO ₂ e							23.42	102.58

Notes:

- Emission rates displayed above represent the max. hourly and max. annual emissions for one dehydrator reboiler.

- Greenhouse Gas Emissions are calculated using 40 CFR 98 Subpart C Table C-1 and C-2 emission factors.

- AP-42, Chapter 1.4 references are from the July 1998 revision.

⁻ Max. Annual Emissions based upon Max. Hourly Emissions @ 8760 hr/yr.

- CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

Example Equations:

Max. Hourly Emission Rate (lb/hr) = Emission Factor (lb/10⁶ scf) \div Heating Value of Natural Gas (Btu/scf) x Boiler Rating (MMBtu/hr) Max hourly rate (lb/hr) = Emission Factor (kg CO₂/MMBtu) x Boiler Rating (MMBtu/hr) x 2.20462 (lb/kg)
Attachment U - Emission Calculations Produced Water Tanks T-2 and T-3

Pollutant	Max. Hourry Emissions using ProMax (lb/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	<0.01	0.02
Total HAPs	<0.01	<0.01
Hexane	<0.01	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01
CO ₂	0.03	0.13
CH ₄	0.32	1.39
Total CO ₂ e	7.99	34.99

Notes:

-Emission rates for Produced Water Tanks S10-S11 were calculated using ProMax software. ProMax output sheets for the Comet CS are attached. -CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1 (Updated January 2014). GWP CO₂=1, GWP CH₄=25, GWP N₂O=298

-For emission calculation purposes, the total throughput for tanks T-1 and T-2 is modeled as being received through a single tank. The throughput value represents the total throughput for both 100-barrel tanks. Therefore, emission rates represent a total from all produced fluids tanks located at the compressor station. Actual throughput for each tank will vary based on operations.

-Arsenal Midstream will operate the Comet CS Site in Taylor county where the produced hydrocarbon condensate is expected to be minimal. A representative analysis was used in order to find a conservative esitmate of emissions from condensate. Arsenal will collect and analyze a pressurized tank liquid sample within 30 days of production start up.

Attachment U - Emission Calculations Liquids Unloading (LO-1)

Pollutant	Max. Houriy Emissions using ProMax (Ib/hr)	Max. Annual Emissions using ProMax (tons/yr)
VOCs	<0.01	<0.01
Total HAPs	<0.01	<0.01
Hexane	<0.01	<0.01
Benzene	<0.01	<0.01
Toluene	<0.01	<0.01
Ethylbenzene	<0.01	<0.01
Xylene	<0.01	<0.01
CO ₂	<0.01	<0.01
CH ₄	<0.01	<0.01
Total CO ₂ e	0.01	0.06

Notes:

-Emission rates for Liquids Unloading was calculated using ProMax software. ProMax output sheets for the Comet CS are attached.

-CO₂ equivalency solved for using Global Warming Potentials found in 40CFR98 Table A-1

Attachment U - Emissions Calculations Pigging Operations

Type (Launch or Receiving)	Latitude Decimal Degrees	Longitude Decimal Degrees	Chamber Length (Ft.)	Chamber Diam. (Ft .)	Volume of Chamber (ft3)	PSIG of Chamber	Volume of Pressurized Gas (ft3)
Receiving	39.306	-80.107	11	1	8.64	540	326.00
Temp. of Chamber (R®)	Molecular Weight of gas mixture (Ib/Ib- mole)	Compressibility Factor	Pressurized Density (lb/ft3)	Atmospheric Density (lb/ft3)	Delta Density (Ib/ft3)	Amount Gas Vented (Ibs) Per Event	
539.67	16.49	0.99793	1.58313001	0.04195423	1.54117578	13.3148029	
# of Events	# of Purges Per Event	Total Amount of Gas Vented (Ibs)					
52	1	692.3697508					
Methane/Ethane Weight Fraction	Total VOC Weight Fraction	Total CO2 Weight Fraction	Tons of Total Amount of Gas Vented	Tons of CH4/C2H6	Tons of VOC	Tons of CO2	
0.9874	0.0017	0.0084	0.3462	0.3418	0.00	0.00	

Example Calc

Volume of Pressurized Gas (ft3)= (Volume of Chamber (ft3) x (PSIG of Chamber 14.7)) / 14.7

Pressurized Density (lb/ft3) = (Moecular Weight (lb/lb-mole) x (PSIG of Chamber + 14.7)) / Compressibility Factor x 10.73 x Temp of Chamber (R)) Atmospheric Density (lb/ft3) = (14.7 x Molecular Weight (lb/lb-mole)) / (10.73 x Temp of Chamber (R) x Compressibility Factor)

Amount of gas vented (lbs) = Delta Density (lb/ft3) x Volume of chamber (ft3)

Total Gas vented (lbs) = Number of events x Number of purges per event x Amount of gas vented (lbs)

Tons of Total Gas Vented = Amount of gas vented (lbs) / 2000

Tons of VOC = Tons of total gas vented x Total VOC weight frac / 2000

Tons of CO2 = Tons of total gas vented x CO2 weight frac / 2000

Attachment U - Emissions Calculations Blowdowns

Blowdown Volume (scf)	Number of Events	Average length of event (hrs)	Average blowdown rate (scf/hr)	Amount of gas vented (scf)	Pressure of chamber (PSIG)
3,776	100	0.167	22,610.78	377,600.00	540
Temp of Gas (R)	weight of mixture (lb/lb-	Compressibil ity Factor	Pressurized Density (Ib/ft3)	Atmospheric Density (lb/ft3)	Delta Density (lb/ft3)
539.67	16.45	1.00	1.58	0.04	1.54
Amount of Gas vented (lbs)	VOC wieght fraction	CO2 Weight fraction	Me/Et frac	Gas vented (tons)	Tons of CH4/C2H6
580,438.50	0.002	0.008	0.987	290.22	286.57
Tons of VOC	Tons of CO2				

Example Calc

0.50

Amount of gas vented (scf) = Blowdown volume (scf) x Number of events

Pressurized Density (lb/ft3) = (Moecular Weight (lb/lb-mole) x (PSIG of Chamber + 14.7)) / Compressibility Factor x 10.73 x Temp of Chamber (R)) Atmospheric Density (lb/ft3) = (14.7 x Molecular Weight (lb/lb-mole)) / (10.73 x Temp of Chamber (R) x Compressibility Factor)

Amount of gas vented (lbs) = Delta Density (lb/ft3) x Volume of chamber (ft3)

Total Gas vented (lbs) = Amount of gas vented (scf) x Delta Density (lb/ft3)

Tons of Total Gas Vented = Amount of gas vented (lbs) / 2000

2.40

Tons of VOC = Tons of total gas vented x Total VOC weight frac

Tons of CO2 = Tons of total gas vented x CO2 weight frac

Attachment U - Emission Calculations Fugitive Emissions from Unpaved Haul Roads

Constant	Industrial Roads										
Constant	РМ	PM-10	PM-2.5								
k (lb/VMT)	4.9	1.5	0.15								
а	0.7	0.9	0.9								
b	0.45	0.45	0.45								
where											

where k

s

р

Patricle size multiplier¹

4.8 Silt content of road surface material (%)

150 Number of days per year with precipitation

Item Number	Description	Number of Wheels	W Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)	PM Emissions (Ibs/hr)	PM Emissions (tons/yr)	PM-10 Emissions (lbs/hr)	PM-10 Emissions (tons/yr)	PM-2.5 Emissions (Ibs/hr)	PM-2.5 Emissions (tons/yr)
1	Liquids Hauling	14	30	10	1.17	1	104	NA	NA	5.01	0.26	1.28	0.07	0.13	0.01
2	Employee Vehicles	4	3	10	1.17	1	200	NA	NA	1.78	0.18	0.45	0.05	0.05	0.005
									Totals:	6.79	0.44	1.73	0.11	0.17	0.01

Notes: ¹ - Particle Size Multiplier used from AP-42 13.2.2 - Final Version 11/2006 ² - Silt Content of Road Surface uses Sand and Gravel Processing Plant Road from AP-42 13.2.2 - Final Version 11/2006

³ - Number of days per year with precipitation >0.01 in3 found using AP-42 13.2.2 Figure 13.2.2-1 - Final Version 11/2006

Example Calculations:

Emissions (lb/Vehicle Mile Traveled) - E = k x $(s/12)^a x (W/3)^b$ Equation 1a from AP-42 13.2.2 - Final Version 11/2006

Size Specific Emissions (Ib/VMT) - E_{ext} = E[(365-p)/365]

Equation 2 from AP-42 13.2.2 - Final Version 11/2006

Attachment U **Fugitive Leaks**

	Default Average Component Counts for Major Onshore Natural Gas Production Equipment ¹													
Facility Equ	ipment Type	Valves	Connectors	Open-ended Lines	Pressure Relief Valves									
Wellh	neads	8	38	0.5	0									
Sepa	rators	1	6	0	0									
Meters	/Piping	12	45	0	0									
Compi	essors	12	57	0	0									
In-line	Heaters	14	65	2	1									
Dehyo	Irators	24	90	2	2									

Well Specific Equipment Counts										
Facility Equipment										
Туре	Count on Site									
Wellheads	0									
Separators	1									
Meters/Piping	1									
Compressors	5									
In-line Heaters	2									
Dehydrators	2									

¹- Table W-1B to 40CFR98 Subpart W

Gas Composition												
Emissions from Flaring Operations	Propane	Butane	Pentanes	Hexanes+	CO ₂	CH ₄						
Mole %	0.06	0.00	0.00	0.00	0.31	97.12						
MW	44	58	72	86.00	44.00	16.00						

	Fugitive Emissions														
Facility Equipment Type	Total Count	Emission Rate (scf/hr/component) ²	Hours of Operation	VOCs (Ibs/hr)	VOCs (tons/yr)	Hexane (Ibs/hr)	Hexane (tons/yr)	HAPs (Ibs/hr)	HAPs (tons/yr)	CO ₂ (lbs/hr)	CO ₂ (tons/yr)	CH ₄ (Ibs/hr)	CH₄ (tons/yr)	Total CO ₂ e (Ibs/hr)	Total CO ₂ e (tons/yr)
Valves	149	0.027	8760	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Connectors	646	0.003	8760	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Open-ended Lines	8	0.061	8760	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pressure Relief Valves	6	0.040	8760	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
			Total Emissions:	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.01

²- Table W-1A to 40CFR98 Subpart W

Notes:

-Gas Composition data for the Comet CS was utilized

Example Equations: Fugitive Emissions (lb/hr) = Count x Emission Rate x Hours of Operation ÷ 385.5 scf/lbmol x mol VOC's

Attachment U Total Comet Site Wide Emission Levels

												-						-		-				-		-
	VC	DCs	HA	\Ps	C	;o	N	IO _x	PN	Total	PM _F	ilterable	PM _{Co}	ndensable	S	0 ₂	C	:O ₂	C	¦H₄	N	2 0	C	O ₂ e		
Emission Sources	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr		
Compressor Engine (CE-1R)	0.32	1.39	0.15	0.67	0.56	2.43	1.52	6.66	0.10	0.45	<0.01	<0.01	0.10	0.45	<0.01	0.03	1440.05	6307.42	0.03	0.12	<0.01	0.01	1,441.54	6,313.93		
Compressor Engine (CE-2R)	0.32	1.39	0.15	0.67	0.56	2.43	1.52	6.66	0.10	0.45	<0.01	<0.01	0.10	0.45	<0.01	0.03	1440.05	6307.42	0.03	0.12	<0.01	0.01	1,441.54	6,313.93		
Compressor Engine (CE-3R)	0.32	1.39	0.15	0.67	0.56	2.43	1.52	6.66	0.10	0.45	<0.01	<0.01	0.10	0.45	<0.01	0.03	1440.05	6307.42	0.03	0.12	<0.01	0.01	1,441.54	6,313.93		
Compressor Engine (CE-6R)	0.32	1.39	0.15	0.67	0.56	2.43	1.52	6.66	0.10	0.45	<0.01	<0.01	0.10	0.45	<0.01	0.03	1440.05	6307.42	0.03	0.12	<0.01	0.01	1,441.54	6,313.93		
Compressor Engine (CE-4R)	0.31	1.35	0.05	0.21	0.22	0.97	2.95	12.94	0.05	0.22	<0.01	<0.01	0.05	0.22	<0.01	0.01	719.26	3150.35	0.01	0.06	<0.01	<0.01	720.00	3,153.61		
Dehy Still Vent (RSV-4)	0.44	1.92	0.37	1.60	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	103.14	451.74		
Dehy Reboiler (RBV-4)	<0.01	0.02	<0.01	<0.01	0.08	0.36	0.10	0.43	<0.01	0.03	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	116.98	512.36	<0.01	<0.01	<0.01	<0.01	117.10	512.89		
Dehy Still Vent (RSV-5)	0.10	0.43	0.08	0.36	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	22.92	100.39		
Dehy Reboiler (RBV-5)	<0.01	<0.01	<0.01	<0.01	0.02	0.07	0.02	0.09	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	23.40	102.47	<0.01	<0.01	<0.01	<0.01	23.42	102.58		
Produced Water Tank (T-2 and T-3)	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	0.13	0.32	1.39	<0.01	<0.01	7.99	34.99		
Truck Loading (LO-1)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	0.06		
Pigging Fugitives	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
Blowdown	0.11	0.50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.55	2.40	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
Haul Roads									6.79	0.44	1.90	0.12														
Fugitives Leaks	<0.01	<0.01	<0.01	<0.01													<0.01	0.01	< 0.01	<0.01			<0.01	<0.01		
Totals	2.12	9.30	1.11	4.87	2.54	11.14	9.16	40.10	7.26	2.50	1.91	0.15	0.46	2.03	0.03	0.12	6,619.86	28,994.99	0.44	1.94	0.01	0.05	6,760.73	29,611.99		

*Emissions from Tank Truck Loading Operations are routed to the vapor combustion unit. The collection efficiency of the vapors has been calculated using AP-42 methodologies. Emissions that are not collected and routed the VDU are realized at the Tank Truck Loading Operations Emission Point.

Attachment U

Total Comet Site Wide HAP Emission Levels

	Total	HAPs	Formal	dehyde	Hex	kane	Ben	zene	Toluene		Ethylb	enzene	Xyl	ene	
Emission Sources	lb/hr tons/yr		lb/hr tons/yr lb/hr tons/yr lb/hr tons/yr		lb/hr	tons/yr	lb/hr	tons/yr	lb/hr tons/yr		lb/hr	tons/yr			
Compressor Engine (CE-1R)	0.15	0.67	0.13	0.57	0.01	0.05	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	
Compressor Engine (CE-2R)	0.15	0.67	0.13	0.57	0.01	0.05	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	
Compressor Engine (CE-3R)	0.15	0.67	0.13	0.57	0.01	0.05	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	
Compressor Engine (CE-6R)	0.15	0.67	0.13	0.57	0.01	0.05	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	
Compressor Engine (CE-4R)	0.05	0.21	0.04	0.16	<0.01	0.02	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	
Dehy Still Vent (RSV-4)	0.37	1.60	<0.01	<0.01	<0.01	<0.01	0.04	0.15	0.07	0.29	<0.01	<0.01	0.15	0.67	
Dehy Reboiler (RBV-4)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Dehy Still Vent (RSV-5)	0.08	0.36	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	0.01	0.06	<0.01	<0.01	0.03	0.15	
Dehy Reboiler (RBV-5)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Produced Water Tank (T-2 and T-3)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Tank Loading (LO-1)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Pigging Fugitives	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Blowdowns	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Haul Roads															
Fugitives Leaks	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Totals	1.11	4.87	0.56	2.45	0.05	0.24	0.06	0.28	0.10	0.43	<0.01	<0.01	0.20	0.86	

		P	Flowsheet1 Iant Schematic		
Client Name:	Arsenal - Comet Com	pressor Station		Job: Produced	Water Tank
Location:					
Flowsheet:	Flowsheet1				
		Ar	senal – Comet Compressor Station Produced Water Tank		
		Imperation in the state in	Sid Vapor Volumetric Row S5 MMSDED Gas to Separators Tank Vert Gas Gas to Separators Tank Vert Gas Vertical Comparison Produced Liquids Frequencies Produced Liquids Temperature 70 Std Liquid Volumetric Row 28.4831 Valer/Sid Liquid Volumetric Fraction 99 Annuel Tank loss calculations form the Vertica Outrate at 00.4338 tonyr. Used Annuel Tank loss calculations form the Vertica Outrate at 00.4338 tonyr. Used Total working and breathing and Loading losses include non-VOC com More	ding	

			Process Sti All Si Tabulated b	reams Report treams _{by Total Phase}			
Client Name:	Arsenal - Come	t Compressor Stat	tion		Job: Produ	ced Water Tank	
Location:		•					
Flowsheet:	Flowsheet1						
			Conn	ootions			
			Conn Gas to		Moasurod	Moasurod	Broducod
			Separators	Loading	Condensate	Sales Gas	Fluids
From Block	From Block		Separator				Separator
To Block					MIX-100	MIX-100	Produced Water
							Tank
			Stroom C	omnosition			
			Gas to		Measured	Measured	Produced
			Separators	Louding	Condensate	Sales Gas	Fluids
Mole Fraction			. %	%	%	%	%
Nitrogen			0.290112	0.00314949	0 *	0.2905	0.000136903
Methane Carbon Dioxide			96.9968	5.84269	10.674 *	97.1239	* 0.0892058
Ethane			2 20751	0.403873	5.377 *	2 2091	* 0.00433412
Propane			0.064066	0.00908747	3.736 *	0.0632	* 0.00020295
Isobutane			0.000345915	6.69662E-05	1.359 *	0 '	2.14785E-06
n-Butane			0.000700986	0.000170615	2.754 *	0 '	6.12019E-06
Isopentane			0.00063835	0.000185273	2.508 ^	0 3	1.10432E-05
i-Hexane			0.00120681	0.000443321	4.742 *	0 '	6.05858E-05
n-Hexane			0.000691664	0.000265877	2.718 *	0 '	4.79204E-05
2,2,4-Trimethylpe	entane		4.57865E-06	1.59763E-06	0.018 *	0 '	8.20838E-07
Benzene			2.77299E-05	1.47866E-05	0.109 *	0 '	4.00907E-06
Heptane			0.00336245	0.00121693	13.22 ^	0	0.000684061 * 0.23124E.05
Octane			0.00396931	0.00115522	15.626 *	0 '	0.00215305
Ethylbenzene			5.07503E-05	1.56514E-05	0.2 *	0 '	4.17184E-05
o-Xylene			9.33022E-05	2.40314E-05	0.368 *	0 '	9.74368E-05
Nonane			0.00293602	0.000685299	11.599 *	0	0.00433072
Decane			0 108518	89,6038	0 *	0 3	* 00.8138
Oxvgen			0.100518	09.0038	0 *	0 '	* 0
Decanes Plus			0.00518692	0.000675309	21.58 *	0 '	* 0.0807623
Hexanes+			0	0	0 *	0 '	• 0
			1		1	· ·	
			Gas to Separators	Loading	Measured	Measured Sales Gas	Produced
Molar Flow			Ibmol/h	lbmol/h	lbmol/h	Ibmol/h	Ibmol/h
Nitrogen			17.5195	1.6247E-08	0 *	17.5196	* 3.13347E-05
Methane			5857.52	3.01401E-05	0.164075 *	5857.38	0.0204176
Carbon Dioxide			18.8946	2.13165E-05	0.000999147 *	18.8946	* 0.00104236
Propane			3 86887	2.06342E-06 4.68787E-08	0.0626525	3 81149	* 4 64517E-05
Isobutane			0.0208894	3.45452E-10	0.0208899 *	0.01149	* 4.91604E-07
n-Butane			0.0423317	8.80136E-10	0.0423331 *	0	* 1.4008E-06
Isopentane			0.0385492	9.55749E-10	0.0385517 *	0	* 2.5276E-06
n-Pentane			0.0345828	9.4919E-10	0.0345859 *	0	* <u>3.00938E-06</u>
n-Hexane			0.0728777	2.26092E-09	0.0728916	0	1.3667E-05
2,2,4-Trimethylpe	entane		0.000276499	8.24155E-12	0.000276687 *	0	* 1.87875E-07
Benzene			0.00167457	7.62782E-11	0.00167549 *	0	* 9.17605E-07
Heptane			0.203055	6.27766E-09	0.203211 *	0	0.000156569
I oluene Octobo			0.0168414	5.28153E-10	0.0168625 *	0	* 2.11287E-05
Ethylbenzene			0.239702	0.90934E-09 8.07394F-11	0.0030743 *	0	* 9.5486E-06
o-Xylene			0.00563441	1.23968E-10	0.00565671 *	0	* 2.23015E-05
Nonane			0.177303	3.53519E-09	0.178294 *	0	0.000991224
Decane			0	0	0 *	0	· 0
Water			6.55326	0.000462231	0 *	0	22.8456
Decanes Plus			0.313232	3.48365E-09	0.331717 *	0	* 0.0184851

* User Specified Values ? Extrapolated or Approximate Values

Page	2	of	6
------	---	----	---

	Process Streams Report All Streams Tabulated by Total Phase Client Name: Arsenal - Comet Compressor Station Job: I						
Client Name:	Arsenal - Come	t Compressor Stat	tion		Job: Produc	ced Water Tank	
Location:	Floweboot1						
Flowsheet.	FIOWSHEELT						
			Gas to	Loading	Measured	Measured	Produced
Molar Flow			Separators	Ibmol/h	Condensate	Sales Gas	Fluids
Hexanes+			0	0	0 *	0 *	0
						-	-
Mass Fraction			Gas to Separators	Loading	Measured Condensate	Measured Sales Gas	Produced Fluids
Nitrogen			0 492103	0.00463619	/0	/0	0 00021142
Methane			94 2221	4 92537	1 71125 *	94 4739 *	0.00021142
Carbon Dioxide			0 833779	9 55619	0.0285875 *	0.83603 *	0.0110489
Ethane			4.01926	0.638145	1.61576 *	4.02763 *	0.00629965
Propane			0.17106	0.0210569	1.64634 *	0.168977 *	0.000493347
Isobutane			0.00121741	0.000204528	0.789365 *	0 *	6.88197E-06
n-Butane			0.00246704	0.000521092	1.59964 *	0 *	1.96099E-05
Isopentane			0.00278877	0.000702418	1.80831 *	0 *	4.39231E-05
n-Pentane			0.00250183	0.000697598	1.62229 *	0 *	5.22951E-05
i-Hexane			0.00629718	0.0020075	4.08377 *	0 *	0.000287821
n-Hexane			0.00360913	0.00120398	2.34072 *	0 *	0.000227652
2,2,4-1 rimethylpenta	ine		3.16691E-05	9.58973E-06	0.0205477 *	0 *	5.16892E-06
Benzene			0.000131156	6.06933E-05	0.0850863 *	0 *	1.72635E-05
Teluene			0.0204012	0.00640762	13.238	0 *	0.00377867
Octane			0.00155592	0.000495705	17 8377 *	0 *	0.000400007
Ethylbenzene			0.0274340	8 73152E-05	0.212191 *	0 *	0.00244161
			0.000520245	0.000134065	0.212131	0 *	0.000244101
Nonane			0.0228012	0.0046186	14.8666 *	0 *	0.0306198
Decane			0	0	0 *	0 *	0
Water			0.118377	84.8247	0 *	0 *	99.1287
Oxygen			0	0	0 *	0 *	0
Decanes Plus			0.0511082	0.0057745	35.0933 *	0 *	0.724492
Hexanes+			0	0	0 *	0 *	0
			· ·	· · ·	· · ·		
Mass Flow			Gas to Separators Ib/h	Loading lb/h	Measured Condensate Ib/h	Measured Sales Gas Ib/h	Produced Fluids Ib/h
Nitrogen			490.782	4.55133E-07	0 *	490.783 *	0.000877791
Methane			93969.1	0.000483522	2.63217 *	93966.8 *	0.327549
Carbon Dioxide			831.54	0.000938128	0.043972 *	831.542 *	0.0458737
Ethane			4008.47	6.26464E-05	2.48528 *	4006.01 *	0.0261554
Propane			170.6	2.06714E-06	2.53232 *	168.07 *	0.00204832
Isobutane			1.21414	2.00784E-08	1.21416 *	0 *	2.85731E-05
n-Butane			2.46041	5.11554E-08	2.46049 *	0 *	8.14178E-05
Isopentane			2.78128	6.89561E-08	2.78146 *	0 *	0.000182363
n-Pentane			2.49511	6.84829E-08	2.49533	0 *	0.000217123
			3 500//	1.97070E-07	3 60038 *	0 *	0.001195
2.2.4-Trimethylpenta	no		0.0315841	9.4142E-10	0.0316055 *	0 *	2 14607E-05
Benzene			0 130804	5 95823E-09	0.0310035	0 *	7 16758E-05
Heptane			20.3465	6.29034E-07	20.3621 *	0 *	0.0156886
Toluene			1.55174	4.86632E-08	1.55369 *	0 *	0.00194676
Octane			27.3808	6.80727E-07	27.4371 *	0 *	0.0562912
Ethylbenzene			0.325369	8.5717E-09	0.326383 *	0 *	0.00101373
o-Xylene			0.598177	1.31611E-08	0.600544 *	0 *	0.00236764
Nonane			22.74	4.53406E-07	22.8671 *	0 *	0.12713
Decane			0	0	0 *	0 *	0
Water			118.059	0.00832721	0 *	0 *	411.57
Oxygen			0		U *	0 *	0
Decanes Plus			50.9709	0-118800.C	53.9789 ^	<u> </u>	3.008
TICALICST			0	0	U	0	U

			Process Str All St Tabulated by								
Client Name:	Arsenal - Come	t Compressor Sta	tion			Job: Produ	roduced Water Tank				
Location:											
Flowsheet:	Flowsheet1										
Stream Properties											
Property		Units	Gas to Separators	Loading	Meas Conde	sured ensate	Measured Sales Gas	Produced Fluids			
Temperature		°F	80 *	72.1381		110 *	110 *	80			
Pressure		psia	540	0.436193		540 *	540 *	540			
Mole Fraction Vapor		%	100	100		0	100	0			
Mole Fraction Light L	_iquid	%	0	0		100	0	0.104691			
Mole Fraction Heavy	Liquid	%	0	0		0	0	99.8953			
Molecular Weight		lb/lbmol	16.5149	19.0303		100.065	16.4924	18.1398			
Mass Density		lb/ft^3	1.6646	0.00145505		42.8595	1.55018	62.0044			
Molar Flow I		lbmol/h	6038.88	0.000515861		1.53715	6030.83	22.8882			
Mass Flow lb/h		lb/h	99731.4	0.00981696		153.815	99463.2	415.188			
Vapor Volumetric Flow ft^3/h		ft^3/h	59913.2	6.74681		3.58883	64162.4	6.69609			
Liquid Volumetric Flow gpm		7469.7	0.841161	0	.447438	7999.47	0.834838				
Std Vapor Volumetri	c Flow	MMSCFD	54.9998	4.69826E-06	0.0	0139998	54.9265 *	0.208457			
Std Liquid Volumetri	c Flow	sgpm	653.505	2.25342E-05	0	.444096 *	652.835	0.833419			
Compressibility			0.925057	0.999602	0	.206226	0.939746	0.0272779			
Specific Gravity			0.570214	0.657063	0	.687193	0.569439	0.994155			
API Gravity						67.0788		10.3956			
Enthalpy		Btu/h	-1.98556E+08	-52.73		-135535	-1.96006E+08	-2.80896E+06			
Mass Enthalpy		Btu/lb	-1990.91	-5371.31	-	881.156	-1970.64	-6765.51			
Mass Cp		Btu/(lb*°F)	0.585803	0.428815	0	.526872	0.587838	0.977162			
Ideal Gas CpCv Rati	0		1.29882	1.32176		1.05157	1.29158	1.32296			
Dynamic Viscosity		cP	0.0118662	0.0105296	0	.350309	0.0123289	0.87981			
Kinematic Viscosity		cSt	0.445021	451.766		0.51025	0.496504	0.885819			
Thermal Conductivity	/	Btu/(h*ft*°F)	0.0212234	0.0123256	0.0	0663715	0.0224082	0.347588			
Surface Tension		lbf/ft			0.00	0104169		0.00491694 ?			
Net Ideal Gas Heatin	ng Value	Btu/ft^3	920.505	60.1697		5056.69	920.475	7.86602			
Net Liquid Heating V	alue	Btu/lb	21143.3	292.726		19022.3	21172.8	-887.185			
Gross Ideal Gas Hea	ating Value	Btu/ft^3	1021.68	111.776		5439.14	1021.64	58.6584			
Gross Liquid Heating	g Value	Btu/lb	23468.1	1321.81		20472.7	23500.5	175.391			
Remarks											

ſ

Client Name:	Arsenal - Comet	Compressor Sta	tion		Job: Produ	iced Water Tank	
Location:	Flowshoot1						
Flowsneet:	Flowsneet1						
			Conn	ections			
			Produced	Produced	Tank Vent	W/B	1
			Liquids	Water Flow	Gas	11/2	•
From Block			Produced Water		Produced Water		MIX-100
To Block			l ank	MIX-100	l ank		Separator
TO BIOOK							Ceparator
			Stream C	omposition			
			Produced	Produced	Tank Vent	W/B	1
Molo Fraction			Liquids	Water Flow	Gas	0/	0/
Nitrogen			1 90479E-06	70	0 140694	0.00314949	0 289017
Methane			0.00261237	0 *	90.2487	5.84269	96.6309
Carbon Dioxide			0.00162187	0 *	3.05756	4.13222	0.311718
Ethane			0.000239369	0 *	3.71148	0.403873	2.19919
Propane			2.4682E-05	0 *	0.185812	0.00908747	0.0638248
Isobutane			5.10334E-07	0 *	0.00170709	6.69662E-05	0.000344617
n-Butane			1.90907E-06	0 *	0.00439066	0.000170615	0.000698362
n-Pentane			7 75151E-06	0 *	0.00554847	0.000183273	0.000570557
i-Hexane			4.71927E-05	0 *	0.0140053	0.000443321	0.00120248
n-Hexane			4.01748E-05	0 *	0.00811243	0.000265877	0.000689233
2,2,4-Trimethylpenta	ane		7.73279E-07	0 *	5.03387E-05	1.59763E-06	4.56446E-06
Benzene			3.65317E-06	0 *	0.000374563	1.47866E-05	2.76403E-05
Heptane			0.000649444	0 *	0.0367265	0.00121693	0.00335234
1 oluene Ootono			8.91165E-05	0 *	0.00341988	0.000102383	0.000278178
Ethylbenzene			4 12593E-05	0 *	0.0078235	1.56514E-05	5.07162E-05
o-Xylene			9.6629E-05	0 *	0.00093843	2.40314E-05	9.33178E-05
Nonane			0.0043126	0 *	0.0231918	0.000685299	0.00294129
Decane			0	0 *	0	0	0
Water			99.9073	100 *	2.48427	89.6038	0.484988
Oxygen			0 090912	0 *	0 0200802	0 000675300	0 00547228
Hexanes+			0.000012	0 *	0.0290093	0.000073309	0.00347228
					.		
Molar Flow			Produced Liquids	Produced Water Flow	Tank Vent Gas	W/B	1 Ibmol/b
Nitrogen			4.35553E-07	0 *	3.08991E-05	1.29903E-08	17,5196
Methane			0.000597351	0 *	0.0198203	2.40987E-05	5857.54
Carbon Dioxide			0.000370861	0 *	0.000671497	1.70437E-05	18.8956
Ethane			5.47348E-05	0 *	0.000815109	1.66581E-06	133.31
Propane			5.64385E-06	0 *	4.08079E-05	3.7482E-08	3.86891
Isobutane			1.16694E-07	0 ^	3.74909E-07	2.76208E-10	0.0208899
Isopentane			4.30333E-07	0 *	9.0427E-07	7.03710E-10 7.64173E-10	0.0423331
n-Pentane			1.77248E-06	0 *	1.23689E-06	7.58929E-10	0.0345859
i-Hexane			1.07912E-05	0 *	3.07581E-06	1.82851E-09	0.0728916
n-Hexane			9.18649E-06	0 *	1.78164E-06	1.09663E-09	0.0417797
2,2,4-Trimethylpenta	ane		1.7682E-07	0 *	1.10553E-08	6.58957E-12	0.000276687
Benzene			8.35344E-07	0 *	8.22611E-08	6.09886E-11	0.00167549
Toluene			2.03776E-05	U ^	0.00003E-00 7.51060E-07	5.01933E-09 4.22287E-10	0.203211
Octane			0.000484488	0 *	8.30675E-06	4.76482F-09	0.0100025
Ethylbenzene			9.43446E-06	0 *	1.14137E-07	6.45555E-11	0.0030743
o-Xylene			2.20955E-05	0 *	2.06097E-07	9.91195E-11	0.00565671
Nonane			0.000986131	0 *	5.09336E-06	2.82658E-09	0.178294
Decane			0	0 *	0	0	0
vvater			22.8451	29.3989 *	0.000545593	0.000369578	29.3989
Decanes Plus			0.018/797	0 *	0 6 38855E-06	0 2 78537E-00	U 0 331717
Devanes Fius			0.0104/0/	U	0.00000E-00	2.10001E-09	0.001/17

* User Specified Values ? Extrapolated or Approximate Values ProMax 4.0.16308.0 Copyright © 2002-2016 BRE Group, Ltd.

Licensed to The ERM Group, Inc. and Affiliates

Page	5	of	6
------	---	----	---

Client Name:	Arsenal - Comet	Compressor Stat	ion		Job: Produ	ced Water Tank	
Location: Flowsheet	Flowsheet1						
Malas Elass			Produced Liquids	Produced Water Flow	Tank Vent Gas	W/B	1
Hovenos I			nliomai	n/iomai			
TIEXAIIEST			0	0	0	0	0
			Produced	Produced	Tank Vent	W/B	1
			Liquids	Water Flow	Gas		
Mass Fraction			%	%	%	%	%
Nitrogen			2.9415E-06	0 *	0.222656	0.00463619	0.490064
Methane			0.00231027	0 *	81.7906	4.92537	93.8318
Carbon Dioxide			0.00393478	0 *	7.60174	9.55619	0.830368
Ethane			0.000396776	0 ^	6.30461	0.638145	4.00263
Propane			5.99975E-05	0 *	0.462873	0.0210569	0.0121220
n-Butane			6 11677E-06	0 *	0.0000002	0.000204528	0.00121239
Isopentane			2 27692E-05	0 *	0.0226140	0.000321032	0.00240009
n-Pentane			3.083F-05	0 *	0.0229554	0.000697598	0.00249167
i-Hexane			0.00022419	0 *	0.0681814	0.0020075	0.00627226
n-Hexane			0.000190851	0 *	0.0394935	0.00120398	0.00359511
2,2,4-Trimethylpenta	ane		4.86932E-06	0 *	0.000324839	9.58973E-06	3.15593E-05
Benzene			1.57306E-05	0 *	0.00165285	6.06933E-05	0.000130684
Heptane			0.00358736	0 *	0.207897	0.00640762	0.0203323
Toluene			0.000452643	0 *	0.017801	0.000495705	0.00155141
Octane			0.013342	0 *	0.244078	0.00693419	0.0273969
Ethylbenzene			0.000241469	0 *	0.00311696	8.73152E-05	0.000325905
o-Xylene			0.000565518	0 ^	0.00562827	0.000134065	0.000599665
Docano			0.030491	0 *	0.168036	0.0046186	0.0228336
Water			99 2192	100 *	2 52832	84 8247	0 528853
Oxygen			0	0 *	2.52052	04.0247	0.520055
Decanes Plus			0.72492	0 *	0.267413	0.0057745	0.0538999
Hexanes+			0	0 *	0	0	0
			Produced	Produced	Tank Vent	W/B	1
			Liquids	Water Flow	Gas		
Mass Flow			lb/h	lb/h	lb/h	lb/h	lb/h
Nitrogen			1.22013E-05	0 *	0.00086559	3.63903E-07	490.783
Methane			0.00958298	0 *	0.317966	0.000386602	93969.4
Carbon Dioxide			0.0163214	0 *	0.0295522	0.000750084	831.586
Ethane			0.00164582	0 *	0.0245096	5.00892E-05	4008.5
Isobutane			6.78253E-06	0 *	2 17006E-05	1.00279E-00	1 21/16
n-Butane			2 53723E-00	0 *	5 60455E-05	4.09015E-08	2 46049
Isopentane			9.44464E-05	0 *	8.79167E-05	5.51341E-08	2.78146
n-Pentane			0.000127882	0 *	8.92405E-05	5.47558E-08	2.49533
i-Hexane			0.000929936	0 *	0.000265059	1.57573E-07	6.28146
n-Hexane			0.000791649	0 *	0.000153533	9.45028E-08	3.60038
2,2,4-Trimethylpenta	ane		2.01979E-05	0 *	1.26283E-06	7.52717E-10	0.0316055
Benzene			6.52503E-05	0 *	6.42556E-06	4.76393E-09	0.130876
Heptane			0.0148803	0 *	0.000808212	5.02947E-07	20.3621
Toluene			0.00187756	0 *	6.92023E-05	3.89089E-08	1.55369
Octane			0.0553424	0 *	0.000948867	5.442/8E-07	27.4371
			0.00100161	U ^	1.211/4E-05	0.003304E-09	0.320383
Nonane			0.00234576	U " 0 *	2.10003E-05	1.0020E-08	0.000544
Decane			0.120470	0 *	0.000000020 N	0.02020E-07	<u>کک.00/ ۱</u>
Water			411.56	529.629 *	0.00982901	0.00665806	529.629
Oxygen			0	0 *	0	0	0
Decanes Plus			3.00696	0 *	0.00103958	4.53252E-07	53.9789
Hexanes+			0	0 *	0	0	0

			Process Str All St Tabulated b								
Client Name:	Arsenal - Come	t Compressor Sta	tion		Job: F	Produced Water Tank					
Location:											
Flowsheet:	Flowsheet1										
Stream Properties											
Property		Units	Produced Liquids	Produced Water Flow	Tank Vent Gas	W/B	1				
Temperature		°F	70 *	110 *	-	70 72.1381	105.294				
Pressure		psia	14.6959 *	540 *	14.695	59 0.436193	540				
Mole Fraction Vapor		%	0	0	10	00 100	99.7486				
Mole Fraction Light L	_iquid	%	0.088776	100		0 0	0.251419				
Mole Fraction Heavy	/ Liquid	%	99.9112	0		0 0	0				
Molecular Weight		lb/lbmol	18.1402	18.0153	17.70	14 19.0303	16.521				
Mass Density		lb/ft^3	62.1448	61.8492	0.04588	33 0.00145505	1.57351				
Molar Flow Ib		lbmol/h	22.8663	29.3989	0.02196	0.000412459	6061.77				
Mass Flow Ib/h		lb/h	414.799	529.629	0.38875	0.00784919	100147				
Vapor Volumetric Flow ft^3/h		ft^3/h	6.67471	8.56323	8.4727	5.39444	63645.2				
Liquid Volumetric Flow gpm		gpm	0.832172	1.06762	1.0563	35 0.672554	7934.98				
Std Vapor Volumetrie	c Flow	MMSCFD	0.208257	0.267754	0.0002000	02 3.75651E-06	55.2083				
Std Liquid Volumetrie	c Flow	sgpm	0.831049	1.05877 *	0.0023703	31 1.80173E-05	654.338				
Compressibility			0.000754686	0.0257285	0.99743	38 0.999602	0.935138				
Specific Gravity			0.996406	0.991665	0.61118	32 0.657063					
API Gravity			10.3061	9.93525							
Enthalpy		Btu/h	-2.8127E+06	-3.59481E+06	-841.9	-42.1605	-1.99736E+08				
Mass Enthalpy		Btu/lb	-6780.88	-6787.42	-2165.6	65 -5371.31	-1994.44				
Mass Cp		Btu/(lb*°F)	0.978145	0.979951	0.49313	37 0.428815	0.58805				
Ideal Gas CpCv Rati	0		1.32351	1.32394	1.2956	58 1.32176	1.29258				
Dynamic Viscosity		cP	0.99829	0.635123	0.011176	67 0.0105296					
Kinematic Viscosity		cSt	1.00284	0.641066	15.206	69 451.766					
Thermal Conductivity	y	Btu/(h*ft*°F)	0.344283	0.363956	0.018360	0.0123256					
Surface Tension		lbf/ft	0.00500044 ?	0.00473609							
Net Ideal Gas Heatin	ng Value	Btu/ft^3	7.01412	0	894.84	41 60.1697	917.059				
Net Liquid Heating V	'alue	Btu/lb	-905.954	-1059.76	19139	.3 292.726	21051.9				
Gross Ideal Gas Hea	ating Value	Btu/ft^3	57.7605	50.3101	993.58	33 111.776	1018.05				
Gross Liquid Heating	g Value	Btu/lb	155.634	0	21256	.1 1321.81	23371.6				
Demerika											
Remarks											

			Е	nergy Strear	n Repo	rt			
Client Name:	Arsenal - Comet	t Compresso	or Station				Job: Produce	ed Water Tar	nk
Location:									
Flowsheet:	Flowsheet1								
				Energy Stre	eams				
Energy Stream		Energy Ra	ite	Power		F	rom Block		To Block
Q-1		-4587.09	Btu/h	-1.80279	hp			P	roduced Water Tank
Q-2	-1.62	2887E+06	Btu/h	-640.17	hp				Separator
Remarks									

Simulation Initiated on 8/17	mulation Initiated on 8/17/2017 10:59:13 AM Comet_PW			k_08172017.pmx			Page 1 of 1		
			Blo Prod Water	^{cks} uced [.] Tank					
Client Name:	Arsenal - Comet Cor	npressor Statio	n		Job: Produc	ed Water Tank			
Location:				Modified: 12	:02 PM, 7/26/2017				
Flowsheet:	Flowsheet1	Status: Solved 9:59 AM, 8/17/2017					017		
Connections									
Stream	Connection T	ype (Other Block	Stream	Connecti	on Type 🛛	Other Block		
Produced Fluids	Inlet		Separator	Tank Vent Gas	Vapor	Dutlet			
Produced Liquids	Heavy Liquid C	Dutlet		Q-1	Ene	ſġy			
			Block Pa	rameters					
Pressure Drop		525.304	psi	Main Liquid Phase		Light Liquid			
Mole Fraction Vap	or	0.0959527	%	Heat Duty		-4587.09	Btu/h		
Mole Fraction Ligh	nt Liquid	0.0886908	%	Heat Release Curve T	уре	Plug Flow			
Mole Fraction Hea	ivy Liquid	99.8154	%	Heat Release Curve		10			
				Increments					
Remarks									

Simulation Initiated on 8/17	/2017 10:59:13 AM	Comet	_PW Tank_08172017.pmx			Page 1 of 1
	Blocks MIX-100 Mixer/Splitter Report Client Name: Arsenal - Comet Compressor Station Job: Proc					
Client Name: Arsenal - Comet Compressor Station Job: Produced W						
Location: Modified: 11:59 AM, 6/20						7
Flowsheet:	Status: Solv	/ed 9:59 AM, 8/17/2	2017			
		(Connections			
Stream	Connect	ion Type Other Bloc	k Stream	Connecti	ion Type	Other Block
Produced Water Flo	ow In	let	Measured Conden	sate Inl	et	
Measured Sales Ga	as In	let	1	Out	tlet	Separator
		Blo	ck Parameters			
Pressure Drop		0 psi	Fraction to PStre	am 1	100	%
Remarks						

Simulation Initiated on 8/17	/2017 10:59:13 AM	Comet_PW Tank	_08172017.pmx			Page 1 of 1			
Blocks Separator Separator Report									
Client Name:	Arsenal - Comet Compress	Job: Produ	ced Water Tank						
Location:				Modified: 1	2:21 PM, 6/20/2017				
Flowsheet:	Flowsheet1			Status: Sol	ved 9:59 AM, 8/17/2	2017			
Connections									
Stream	Connection Type	Other Block	Stream	Connect	ion Type	Other Block			
1	Inlet	MIX-100	Gas to Separators	Vapor	Outlet				
Produced Fluids	Light Liquid Outlet	Produced Water Tank	Q-2	Ene	ergy				
		Block Pa	rameters						
* Pressure Drop		0 psi	Main Liquid Phase		Light Liquid				
Mole Fraction Vap	or ç	9.6224 %	Heat Duty		-1.62887E+06	Btu/h			
Mole Fraction Ligh	nt Liquid 0.000	395297 %	Heat Release Curve T	Туре	Plug Flow				
Mole Fraction Hea	vy Liquid 0.	377188 %	Heat Release Curve		10				
			Increments						
Remarks	Remarks								

		FI	owsheet Enviro	Environment onment1					
Client Name:	Arsenal - Come	t Compressor Station			Job: Produc	ced Water Tank			
Location:									
Flowsheet:	Flowsheet1								
Environment Settings									
Number of Poyntin	ng Intervals	0		Phase Tolerance		1 %			
Gibbs Excess Mod	Jel	77 °F		Emulsion Enabled		False			
Evaluation Tempe	rature								
Freeze Out Tempe	erature	10 °F							
Threshold Differen	ice								
Components									
Component Name		Henry's Law Component	Phase Initiator	Component Name		Henry's Law Component	Phase Initiator		
Nitrogen		False	False	Benzene		False	False		
Methane		False	False	Heptane		False	False		
Carbon Dioxide		False	False	Toluene		False	False		
Ethane		False	False	Octane		False	False		
Propane		False	False	Ethylbenzene		False	False		
Isobutane		False	False	o-Xylene		False	False		
n-Butane		False	False	Nonane		False	False		
Isopentane		False	False	Decane		False	False		
n-Pentane		False	False	Water		False	True		
i-Hexane		False	False	Oxygen		False	False		
n-Hexane		False	False	Decanes Plus		False	False		
2,2,4-Trimethylpenta	ine	False	False	Hexanes+		False	False		
		Physi	ical Prope	erty Method Sets					
Liquid Molar Volume	,	COSTALD		Overall Package		Peng-Robins	on		
Stability Calculation		Peng-Robinso	on	Vapor Package		Peng-Robins	on		
Light Liquid Package	÷	Peng-Robinso	on	Heavy Liquid Package		Peng-Robins	on		
Remarks									

		E							
Client Name:	Arsenal - Comet	Compressor Station			Job: Produc	ed Water Tank			
Location:									
	Project-Wide Constants								
Atmospheric Pressu	ro	1/ 6050		Ideal Gas Reference Pre	SSUIRO	1/ 6050 r	osia		
Ideal Gas Reference	Temperature	14.0909	vsia °F	Ideal Gas Reference Volu		379 484	thall		
Liquid Reference Ter	mperature	60	°F		anne	575.404	0/10/1101		
			•						
		Env	ironment	[Environment1]					
			Environm	ent Settings					
Number of Poyntin	g Intervals	0		Phase Tolerance		1 %			
Gibbs Excess Model 77 °F		Emulsion Enabled		False					
Evaluation Temper	rature								
Freeze Out Tempe	erature	10 °F							
I hreshold Differen	ice								
			Comr	anonto					
Component Name		Honry's Low	Bhase	Component Name		Honry's Low	Bhasa		
Component Name		Component	Initiator	Component Name		Component	Initiator		
Nitrogen		False	False	Benzene		False	False		
Methane									
		False	⊦alse	Heptane		False	False		
Carbon Dioxide		False False	False False	Heptane Toluene		False False	False False		
Ethane		False False False	False False False	Heptane Toluene Octane		False False False	False False False		
Ethane Propane		False False False False	False False False False	Heptane Toluene Octane Ethylbenzene		False False False False	False False False False		
Ethane Propane Isobutane		False False False False False False	False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene		False False False False False False	False False False False False		
Ethane Propane Isobutane n-Butane		False False False False False False	False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane		False False False False False False False	False False False False False False		
Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane		False False False False False False False	False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane		False False False False False False False	False False False False False False False		
Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane		False False False False False False False False	False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water		False False False False False False False False	False False False False False False False True		
Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane		False False False False False False False False False	False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen		False False False False False False False False False False	False False False False False False True False		
Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane n-Hexane		False False False False False False False False False False	False False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus		False False False False False False False False False False False	False False False False False False True False False False		
Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane i-Hexane n-Hexane 2,2,4-Trimethylpenta	ne	False False False False False False False False False False False False	False False False False False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus Hexanes+		False False False False False False False False False False False False	False False False False False False False False False False False		
Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane i-Hexane n-Hexane 2,2,4-Trimethylpenta	ne	False False False False False False False False False False	False False False False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus Hexanes+		False False False False False False False False False False False False	False False False False False False True False False False False		
Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpenta	ine	False False False False False False False False False False False	False False False False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus Hexanes+ Erty Method Sets		False False False False False False False False False False False	False False False False False False False False False False		
Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpenta	ine	False False False False False False False False False False False False False	False False False False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus Hexanes+ erty Method Sets Overall Package		False False False False False False False False False False False False	False False False False False False False False False False False		
Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpenta Liquid Molar Volume Stability Calculation	ine	False False False False False False False False False False False COSTALE Peng-Robins	False False False False False False False False False False False False False	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus Hexanes+ erty Method Sets Overall Package Vapor Package Heavy Liguid Package		False False False False False False False False False False False Peng-Robins Peng-Robins	False False False False False False False False False False On		
Carbon Dioxide Ethane Propane Isobutane n-Butane Isopentane n-Pentane i-Hexane 2,2,4-Trimethylpenta Liquid Molar Volume Stability Calculation Light Liquid Package	ine 2	False False False False False False False False False False False COSTALD Peng-Robins	False False False False False False False False False False False Sical Prope	Heptane Toluene Octane Ethylbenzene o-Xylene Nonane Decane Water Oxygen Decanes Plus Hexanes+ Erty Method Sets Overall Package Vapor Package Heavy Liquid Package		False False False False False False False False False False False Peng-Robins Peng-Robins	False False False False False False False False False False On On		

			Sing Dec	le Oil Report anes Plus					
Client Name:	Arsenal - Come	nal - Comet Compressor Station				uced Water Tank			
Location:									
	Properties								
Volume Average B Point	Boiling	399.878	°F	Low Temperature Visc	osity	1.05288	сР		
* Molecular Weight		162.726	lb/lbmol	Temperature of High T Viscosity		210	°F		
* Specific Gravity		0.788		High Temperature Visc	cosity	0.503332	cP		
API Gravity		48.0685		Watson K		12.066			
Critical Temperatu	re	720.653	°F	ASTM D86 10-90% Slo	оре	0	°F/%		
Critical Pressure		307.278	psia	ASTM D93 Flash Point	t	157.716	°F		
Critical Volume		10.2876	ft^3/lbmol	? Pour Point		-12.6777	°F		
Acentric Factor		0.527304		Paraffinic Fraction		51.9393	%		
Carbon to Hydroge	en Ratio	6.00643		Naphthenic Fraction		27.7089	%		
Refractive Index		1.43922		Aromatic Fraction		20.3518	%		
Temperature of Lo	w T	100	°F	Ideal Gas Heat Capaci	ty	57.9027	Btu/(lbmol*°F)		
Viscosity									
Warnings ProMax:ProMax!Proj Warning:	ject!Oils!Decane Pour Point calc	s Plus!Properties!Pc ulation: The value (our Point of 0.788 for Sr	pecific Gravity should be betwe	en 0.8 and [,]	1.			

Remarks

		Single Oil Report Hexanes+					
Client Name:	Arsenal - Come	et Compressor Statio	n		Job: Produc	ced Water Tank	
Location:		· · · · · · · · · · · · · · · · · · ·					
			Pro	operties			
Volume Average E Point	Boiling	-173.182	°F	Low Temperature Visc	osity	3.0532E+30	cP
* Molecular Weight		16.662	lb/lbmol	Temperature of High T Viscosity		210	°F
 * Specific Gravity 		0.5763		High Temperature Visc	cosity	1370.85	cP
API Gravity		114.032		Watson K		11.439	
Critical Temperatu	re	-2.89417	°F	ASTM D86 10-90% Sk	ppe	0	°F/%
Critical Pressure		1116.36	psia	2 ASTM D93 Flash Point		-237.696	<u>~</u> F
Acontria Factor		1.64547	II/3/IDMOI	2 Pour Point		2.40106E+29	۲
2 Carbon to Hudrow	on Potio	0.333018		2 Nophthenia Erection		100	70 0/
2 Refractive Index	TIRALIU	0.0229		2 Aromatic Fraction		0	/0
Temperature of Lo	w T	1.31082	°F	? Ideal Gas Heat Capaci	ty	5.55252	Btu/(lbmol*°F)
VISCOSITY							
b/lbmol. ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro Warning: 850 °F. ProMax:ProMax!Pro Warning: lb/lbmol. ProMax:ProMax!Pro Warning: lb/lbmol. ProMax:ProMax!Pro Warning: lb/lbmol. ProMax:ProMax!Pro Warning: lb/lbmol. ProMax:ProMax!Pro Warning: ProMax:ProMax!Pro	ject!Oils!Hexane Refractive Inde: ject!Oils!Hexane ASTM D93 Flas ject!Oils!Hexane Pour Point calcr ject!Oils!Hexane Paraffinic Fracti ject!Oils!Hexane Aromatic Fractio ject!Oils!Hexane derdOils!Hexane Ideal Gas Heat ject!Oils!Hexane	ogen Ratio calculatio s+!Properties!Refrac x calculation: The v s+!Properties!ASTM sh Point calculation: s+!Properties!Pour F ulation: The value o s+!Properties!Paraff ion calculation: The s+!Properties!Napht ction calculation: Ti s+!Properties!Aroma on calculation: The s+!Properties!Ideal (Capacity calculation s+	on: The Value stive Index alue of -173.18 D93 Flash Poi The value of - Point of -173.182 °F f inic Fraction value of 16.66 henic Fraction he value of 16.66 stic Fraction value of 16.66 Gas Heat Capa content of the value of	or -173.182 °F for Volume Average Boil nt 173.182 °F for Volume Average Boiling Po 2 lb/lbmol for Molecular Weig 662 lb/lbmol for Molecular Weigh 2 lb/lbmol for Molecular Weigh city 0.5763 for Specific Gravity sl	erage Bolling ing Point sho ge Boiling Po bint should be ht should be ight should be nt should be bety	p Point should be be build be between 80 bint should be betwe e between 340.33 °l between 70 lb/lbmo be between 70 lb/lbmo between 70 lb/lbmo ween 0.662763 and	tween 80 °F and °F and 1500 °F. een 150 °F and F and 1040.33 °F. I and 600 nol and 600 and 600 1.07605.
Warning:	The value of 0.5	5763 for Specific Gra	wity should be	between 0.662763 and 1.076	05.		
Remarks							

		Calcu	lator Report					
Client Name:	Arsenal - Come	Compressor Station		Job: Produced Water Tank				
Location:								
		Conder						
Residual Error (for (CV(1) - Water frag	.	urce Code					
		Calculate	d Variable [CV1]					
Source Moniker	ProMax:ProMa	ax!Project!Flowsheets!Flowsheet	PStreams!Measured Conder	nsate!Phases!Total!Properties!Std Liquid				
	Volumetric Flo	w		· ·				
Value	15.2262							
Unit								
		Mecoured V	ariahla Matar frasl					
Source Moniker	Fraction!Water		I'r Streamsir Toduced Liquids:					
Value	99							
Unit								
-		Solve	er Properties	Status: Solved				
Error Calculated Value		4.09861E-05	Algorithm	Default				
Lower Bound		0.444096 Sgpm	Max Iterations	20				
Upper Bound		sgpm	Weighting	1				
Step Size		sgpm	Solver Active	Active				
Is Minimizer		False	* Skip Dependency Che	eck True				
	_	Proc	luced Water					
		So	urce Code					
Residual Error (for C	CV1) = Water_flov	/ - 28.4931						
		Calculate	ed Variable [CV1]					
Source Moniker	ProMax:ProMa	ax!Project!Flowsheets!Flowsheet1	PStreams!Produced Water F	Iow!Phases!Total!Properties!Std Liquid Volumetric				
Value	Flow 26 2006							
Unit	30.3000							
		Measured V	ariable [Water_flow]					
Source Moniker	ProMax:ProMa	ax!Project!Flowsheets!Flowsheet	PStreams!Produced Liquids!	Phases!Total!Properties!Std Liquid Volumetric				
	Flow	-	· .	· ·				
Value	28.4931							
Unit								
		E alu	or Properties	Status: Solved				
Error		-1 09742E-06	Algorithm	Default				
Calculated Value		1.05877 sgpm	Iterations	20				
Lower Bound		sgpm	Max Iterations	20				
Upper Bound		sgpm	Weighting	1				
Step Size		sgpm Folco	Solver Active	Active				
			Skip Dependency Che					
Remarks								

		Cal	Iculator I	Report					
Client Name:	Arsenal - Comet	Compressor Station			Job: Produc	ced Water Tank			
Location:									
SG Flow									
Source Code									
Residual Error (for C	V1) = SGflow-55								
		Calcu	lated Varia	able [CV1]					
Source Moniker	ProMax:ProMa Flow	x!Project!Flowsheets!Flowsh	neet1!PStream	ns!Measured Sales Ga	s!Phases!To	otal!Properties!Std Vapor Volume	etric		
Value	54926.5								
Unit									
		Measur	red Variab	le [SGflow]					
Source Moniker	ProMax:ProMa Flow	x!Project!Flowsheets!Flowsh	neet1!PStream	ns!Gas to Separators!	Phases!Tota	IProperties!Std Vapor Volumetrie	С		
Value	54.9998								
Unit									
		Se	olver Prop	erties		Status: Solved			
Error		-0.000205125	lt	erations		1			
Calculated Value		54.9265 MMSCF	D N	lax Iterations		20			
Lower Bound		MMSCF	D V	Veighting		1			
Upper Bound		MMSCF	D F	riority		0			
Step Size		MMSCF	D S	olver Active		Active			
Is Minimizer		False	Ģ	Group					
Algorithm		Default	S	kip Dependency Cheo	k	False			
Remarks									

Г

			User Valu	e Sets Report			
Client Name:	Arsenal - Comet	Compressor Statio	n		Job: Produ	ced Water Tank	
Location.							
				and d			
			Llear Valu	ank-1			
* Parameter		1		Upper Bound			
Lower Bound				* Enforce Bounds		False	
			Llear Valu	a [Shalll angth]			
* Parameter		12	ft	Upper Bound			ft
Lower Bound			ft	* Enforce Bounds		False	
			lleen Vel				
* Parameter		12	User vall	Upper Bound			ft
Lower Bound		12	ft	* Enforce Bounds		False	it.
* Parameter		0.03	User Valu	e [BreatherVP]			nsia
Lower Bound		0.00	psig	* Enforce Bounds		False	poig
* Doromotor		0.02	User Value	[BreatherVacP]			paig
Lower Bound		-0.03	psig	* Enforce Bounds		False	psig
* Dava sa tan			User Value	e [DomeRadius]			<u>.</u>
Lower Bound		0	ft	* Enforce Bounds		False	π
* 5			User Val	ue [OpPress]			
Lower Bound		0	psig	* Enforce Bounds		False	psig
* Dava sa star			User Value	[AvgPercentLiq]			0/
Lower Bound		50	%	* Enforce Bounds		False	%
			User Value	[MaxPercentLiq]			
* Parameter		90	%	Upper Bound * Enforce Bounds		False	%
201101 200110			,,,				
			User Valu	ue [AnnNetTP]			
* Parameter		28.495	bbl/day	Upper Bound * Enforce Bounds		False	bbl/day
Eower Bound			bbi/day	Enloree Bounds		1 0130	
			User V	alue [OREff]			
* Parameter		0	%	Upper Bound		Foloo	%
Lower Bound			70	Efficice Bourios		Faise	
			User Val	ue [MaxAvgT]			
* Parameter		59.8833	°F °F	Upper Bound		F _!	°F
Lower Bound			· F	Enforce Bounds		False	
			User Val	ue [MinAvgT]			
* Parameter		40.7333	°F	Upper Bound			°F
Lower Bound			<u>~</u> ⊢	* Enforce Bounds		False	
			User Val	ue (BulkLiaT)			
* Parameter		54.6483	°F	Upper Bound			°F
Lower Bound			°F	* Enforce Bounds		False	

* User Specified Values ? Extrapolated or Approximate Values ProMax 4.0.16308.0 Copyright © 2002-2016 BRE Group, Ltd.

Licensed to The ERM Group, Inc. and Affiliates

			User Value	Sets Report		
Client Name:	Arsenal - Come	t Compressor Statio	n		Job: Produce	d Water Tank
Location:						
	- I				-	
* Parameter		14.1085	psia	Upper Bound		psia
Lower Bound			psia	* Enforce Bounds		False
			User Valu	e [Thermi]		
* Parameter		1202.96	Btu/ft^2/day	Upper Bound		Btu/ft^2/day
Lower Bound			Btu/ft^2/day	* Enforce Bounds		False
			Jser Value [Av	vaWindSpeed1		
* Parameter		9.075	mi/h	Upper Bound		mi/h
Lower Bound			mi/h	* Enforce Bounds		False
		User	Value [MaxHe	ourlyLoadingRate]		
* Parameter		4.36	gpm	Upper Bound		gpm
Lower Bound			gpm	^ Enforce Bounds		False
		U	ser Value [En	trainedOilFrac]		
* Parameter		1	%	Upper Bound		% Falsa
Lower Bound			70	Enlorce Bounds		Faise
			User Value [T	urnoverRate]		
* Parameter		47.8033		Upper Bound * Enforce Bounds		False
Lower Bound				Enloree Bounds		
		ι	Jser Value [LL	ossSatFactor]		
* Parameter Lower Bound		1.45		* Enforce Bounds		False
* D		111005	User Value [A	AtmPressure]		
 Parameter Lower Bound 		14.1085	psia psia	* Enforce Bounds		psia False
			•			
* Doromotor		0.20824	User Val	ue [TVP]		neio
Lower Bound		0.29824	psia	* Enforce Bounds		False
* Parameter		0.423479	User Value	e [MaxVP]		neia
Lower Bound		0.423479	psia	* Enforce Bounds		False
* Parameter		0 208702	User Valu	e [MINVP] Upper Bound		nsia
Lower Bound		0.2001.02	psia	* Enforce Bounds		False
				al incurfaceTl		
* Parameter		6 1.1967	°F	Upper Bound		°F
Lower Bound			°F	* Enforce Bounds		False
			Iser Value [Ma	axl inSurfaceT1		
* Parameter		72.1381		Upper Bound		°F
Lower Bound			°F	* Enforce Bounds		False
			User Value [Totall osses1		
* Parameter		0.0343795	ton/yr	Upper Bound		ton/yr

* User Specified Values ? Extrapolated or Approximate Values

ProMax 4.0.16308.0 Copyright © 2002-2016 BRE Group, Ltd.

Licensed to The ERM Group, Inc. and Affiliates

		User Val	ue Sets Report		
Client Name:	Arsenal - Come	t Compressor Station		Job: Produced Water Tank	
Location:					
		Lleor Val			
Lower Bound			* Enforce Bounds	False	
		User Value	e [WorkingLosses]		
* Parameter		0.0234419 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False	
		Lisor Value	[Standing] osses]		
* Parameter		0.0109375 ton/vr	Upper Bound		ton/vr
Lower Bound		ton/yr	* Enforce Bounds	False	
* D		User Value	[RimSealLosses]		
Parameter Lower Bound		0 ton/yr	* Enforce Bounds	False	ton/yr
Lower Bound		tony	Enioroe Boundo		
		User Value	[WithdrawalLoss]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False	
* Parameter			Lipper Bound		ton/vr
Lower Bound		ton/yr	* Enforce Bounds	False	toni yi
		User Value [Ma	axHourlyLoadingLoss	.]	
* Parameter		0.0515001 lb/hr	Upper Bound	Falsa	lb/hr
Lower Bound		10/11	Efforce Bourius	T alse	
		User	Value [PStar]		
Parameter			Upper Bound		
Lower Bound			* Enforce Bounds	False	!
* Parameter					ton/vr
Lower Bound		ton/yr	* Enforce Bounds	False	
		User Value [/	AllCLoadingLosses]		
* Parameter		0.0429983 ton/yr	Upper Bound * Enforce Bounds	Falsa	ton/yr
Lower Bound		1017 yi	Enlorce Bounds		
		User Value [Al	[CMaxHLoadingLoss]		
* Parameter		0.0515001 lb/hr	Upper Bound	l	lb/hr
Lower Bound		lb/hr	* Enforce Bounds	False	
* Parameter			Upper Bound		ton/vr
Lower Bound		ton/yr	* Enforce Bounds	False	· · · · · · · · · · · · · · · · · · ·
* D		User Value [DeckFittingLosses]		
^ Parameter		0 ton/yr	Upper Bound	Ealea	ton/yr
		t01/yi			
		User Value	[DeckSeamLosses]		
* Parameter		0 ton/yr	Upper Bound		ton/yr
Lower Bound		ton/yr	* Enforce Bounds	False	

* User Specified Values ? Extrapolated or Approximate Values

			User Va	lue Sets Report				
Client Name:	Arsenal - Comet	Compressor Stati	on		Job: Produ	ced Water Tank		
Location:								
			User Valu	e [FlashingLosses]				
* Parameter		0) ton/yr	Upper Bound			ton/yr	
Lower Bound			ton/yr	* Enforce Bounds		False		
			User Val	ue [TotalResidual]				
* Parameter		1816.78	8 ton/yr	Upper Bound			ton/yr	
Lower Bound			ton/yr	* Enforce Bounds		False		
User Value [GasMoleWeight]								
* Parameter		0.0190303	3 kg/mol	Upper Bound			kg/mol	
Lower Bound			kg/mol	* Enforce Bounds		False	-	
		U	ser Value	[VapReportableFrac]				
* Parameter		100) %	Upper Bound			%	
Lower Bound			%	* Enforce Bounds		False		
		L	Jser Value	[LigReportableFrac]				
* Parameter		100) %	Upper Bound			%	
Lower Bound			%	* Enforce Bounds		False		
		Us	ser Value [FlashReportableFrac]				
* Parameter) %	Upper Bound			%	
Lower Bound			%	* Enforce Bounds		False		
Remarks This User Value Set	was programmati	cally generated.	GUID={8F67(00DA-E196-4418-8000-F4760	212C378}			

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Comet 10 mmSCF
File Name: P:\Projects\0419542 Arsenal G35-D Compressor Station.GM\Comet Compressor
Station\2017 Update\Calculations\GLY-CALC\10 mmSCF.ddf
Date: August 16, 2017

DESCRIPTION:

Description:

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.9168	22.003	4.0155
Ethane	0.1453	3.487	0.6363
Propane	0.0121	0.290	0.0530
Isobutane	<0.0001	0.001	0.0002
n-Butane	0.0001	0.001	0.0002
Isopentane	0.0001	0.002	$\begin{array}{c} 0.0003 \\ 0.0004 \\ 0.0009 \\ 0.0022 \\ 0.0341 \end{array}$
n-Pentane	0.0001	0.002	
n-Hexane	0.0002	0.005	
Heptanes	0.0005	0.012	
Benzene	0.0078	0.187	
Toluene	0.0145	0.349	0.0636
Ethylbenzene	0.0248	0.594	0.1084
Xylenes	0.0341	0.819	0.1495
C8+ Heavies	0.0033	0.080	0.0146
Total Emissions	1.1597	27.832	5.0793
Total Hydrocarbon Emissions	1.1597	27.832	5.0793
Total VOC Emissions	0.0976	2.343	0.4275
Total HAP Emissions	0.0814	1.954	0.3566
Total BTEX Emissions	0.0812	1.949	0.3556

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 3.73	lbs. H20/MMSC	F
Temperature: Pressure:	80.0 540.0	deg. F psig	
Dry Gas Flow Rate:	10.0000	MMSCF/day	

Page: 1

Glycol Losses with Dry Gas: 0.0219 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 50.86 lbs. H2O/MMSCF Specified Lean Glycol Recirc. Ratio: 3.00 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	7.33%	92.67%
Carbon Dioxide	99.91%	0.09%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.98%	0.02%
Propane	99.96%	0.04%
Isobutane	99.94%	0.06%
n-Butane	99.92%	0.08%
Isopentane	99.91%	0.09%
n-Pentane	99.88%	0.12%
n-Hexane	99.78%	0.22%
Heptanes	99.54%	0.46%
Benzene	90.92%	9.08%
Toluene	85.64%	14.36%
Ethylbenzene	78.77%	21.23%
Xylenes	70.72%	29.28%
C8+ Heavies	98.21%	1.79%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	28.19%	71.81%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.50%	99.50%
n-Pentane	0.50%	99.50%
n-Hexane	0.50%	99.50%
Heptanes	0.50%	99.50%
Benzene	5.00%	95.00%
Toluene	7.91%	92.09%
Ethylbenzene	10.41%	89.59%
Xylenes	12.93%	87.07%
C8+ Heavies	12.04%	87.96%

STREAM REPORTS:

Temperature:	80.00	deg.	F
Pressure:	554.70	psia	
Flow Rate:	4.17e+005	scfh	

Component	Conc. (vol%)	Loading (lb/hr)
Water	1.07e-001	2.12e+001
Carbon Dioxide	3.13e-001	1.51e+002
Nitrogen	2.90e-001	8.94e+001
Methane	9.70e+001	1.71e+004
Ethane	2.21e+000	7.29e+002
Propane	6.31e-002	3.06e+001
Isobutane	9.99e-005	6.38e-002
n-Butane	9.99e-005	6.38e-002
Isopentane	9.99e-005	7.92e-002
n-Pentane	9.99e-005	7.92e-002
n-Hexane	9.99e-005	9.46e-002
Heptanes	9.99e-005	1.10e-001
Benzene	9.99e-005	8.58e-002
Toluene	9.99e-005	1.01e-001
Ethylbenzene	9.99e-005	1.17e-001
Xylenes	9.99e-005	1.17e-001
C8+ Heavies	9.99e-005	1.87e-001
Total Components	T00.00	1.010+004

DRY GAS STREAM

. _ _ _ _ _ _ _ _ _

Temperature: Pressure: Flow Rate:	80.00 deg. F 554.70 psia 4.17e+005 scfh		
	Component	Conc. (vol%)	Loading (lb/hr)
	Water	7.87e-003	1.56e+000
	Carbon Dioxide	3.13e-001	1.51e+002
	Nitrogen	2.90e-001	8.94e+001
	Methane	9.71e+001	1.71e+004
	Ethane	2.21e+000	7.29e+002
	Propane	6.32e-002	3.06e+001
	Isobutane	9.99e-005	6.38e-002
	n-Butane	9.99e-005	6.38e-002
	Isopentane	9.99e-005	7.92e-002
	n-Pentane	9.99e-005	7.91e-002
	n-Hexane	9.98e-005	9.44e-002
	Heptanes	9.95e-005	1.10e-001
	Benzene	9.09e-005	7.80e-002
	Toluene	8.56e-005	8.67e-002
	Ethylbenzene	7.88e-005	9.18e-002
	Xylenes	7.07e-005	8.25e-002
	C8+ Heavies	9.82e-005	1.84e-001
	Total Components	100.00	1.81e+004

LEAN GLYCOL STREAM Temperature: 80.00 deg. F Flow Rate: 9.14e-001 gpm

Loading Component Conc. (wt응) (lb/hr) TEG 9.85e+001 5.07e+002 Water 1.50e+000 7.72e+000 Carbon Dioxide 2.66e-012 1.37e-011 Nitrogen 9.71e-014 5.00e-013 Methane 5.99e-018 3.08e-017 Ethane 1.33e-008 6.86e-008 Propane 9.57e-011 4.92e-010 Isobutane 2.27e-013 1.17e-012 n-Butane 2.55e-013 1.31e-012 Isopentane 7.08e-008 3.64e-007 n-Pentane 9.35e-008 4.81e-007 n-Hexane 2.06e-007 1.06e-006 Heptanes 4.92e-007 2.53e-006 Benzene 7.97e-005 4.10e-004 Toluene 2.42e-004 1.25e-003 Ethylbenzene 5.59e-004 2.88e-003 Xylenes 9.84e-004 5.07e-003 C8+ Heavies 8.88e-005 4.57e-004 _____ ____ Total Components 100.00 5.15e+002 RICH GLYCOL STREAM _____ Temperature: 80.00 deg. F Pressure: 554.70 psia Flow Rate: 9.55e-001 gpm NOTE: Stream has more than one phase. Conc. Loading (wt%) (lb/hr) Component TEG 9.46e+001 5.07e+002 Water 5.11e+000 2.74e+001 Carbon Dioxide 2.56e-002 1.37e-001 Nitrogen 9.33e-004 5.00e-003 Methane 1.71e-001 9.17e-001 Ethane 2.71e-002 1.45e-001 Propane 2.26e-003 1.21e-002 Isobutane 7.28e-006 3.90e-005 n-Butane 9.88e-006 5.29e-005 Isopentane 1.36e-005 7.29e-005 n-Pentane 1.80e-005 9.62e-005 n-Hexane 3.96e-005 2.12e-004 Heptanes 9.46e-005 5.06e-004 Benzene 1.53e-003 8.20e-003 Toluene 2.95e-003 1.58e-002 Ethylbenzene 5.16e-003 2.76e-002 Xylenes 7.32e-003 3.92e-002 C8+ Heavies 7.09e-004 3.80e-003 Total Components 100.00 5.35e+002

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia

Component	Conc. (vol%)	Loading (lb/hr)
Water	9.43e+001	1.97e+001
Carbon Dioxide	2.69e-001	1.37e-001
Nitrogen	1.54e-002	5.00e-003
Methane	4.94e+000	9.17e-001
Ethane	4.17e-001	1.45e-001
Propane	2.37e-002	1.21e-002
Isobutane	5.79e-005	3.90e-005
n-Butane	7.86e-005	5.29e-005
Isopentane	8.68e-005	7.25e-005
n-Pentane	1.15e-004	9.57e-005
n-Hexane	2.11e-004	2.11e-004
Heptanes	4.34e-004	5.04e-004
Benzene	8.61e-003	7.79e-003
Toluene	1.36e-002	1.45e-002
Ethylbenzene	2.01e-002	2.48e-002
Xylenes C8+ Heavies	2.78e-002 1.69e-003	3.41e-002 3.34e-003
recar componented	±00.00	

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Comet 10 mmSCF File Name: P:\Projects\0419542 Arsenal G35-D Compressor Station.GM\Comet Compressor Station\2017 Update\Calculations\GLY-CALC\10 mmSCF.ddf Date: August 16, 2017 DESCRIPTION: _____ Description: Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 80.00 usy. 540.00 psig 80.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) ----- -----Carbon Dioxide 0.3133 Nitrogen 0.2905 Methane 97.1239 Ethane 2.2091 Propane 0.0632 Isobutane 0.0001 n-Butane 0.0001 Isopentane 0.0001 n-Pentane 0.0001 0.0001 n-Hexane
 Heptanes
 0.0001

 Benzene
 0.0001

 Toluene
 0.0001

 Ethylbenzene
 0.0001

 Xylenes
 0.0001
 C8+ Heavies 0.0001 DRY GAS: _____ Flow Rate: 10.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Given Type: TEGWater Content:1.5 wt% H2ORecirculation Ratio:3.0 gal/lb H2O PUMP: _____ Glycol Pump Type: Electric/Pneumatic

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Comet 45 mmSCF
File Name: P:\Projects\0419542 Arsenal G35-D Compressor Station.GM\Comet Compressor
Station\2017 Update\Calculations\GLY-CALC\45 mmSCF.ddf
Date: August 16, 2017

DESCRIPTION:

Description:

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	$\begin{array}{c} 4.1255\\ 0.6537\\ 0.0544\\ 0.0002\\ 0.0002\end{array}$	99.012	18.0697
Ethane		15.690	2.8634
Propane		1.306	0.2384
Isobutane		0.004	0.0008
n-Butane		0.006	0.0010
Isopentane	0.0003	0.008	0.0014
n-Pentane	0.0004	0.010	0.0019
n-Hexane	0.0009	0.023	0.0042
Heptanes	0.0023	0.054	0.0099
Benzene	0.0351	0.841	0.1536
Toluene	0.0654	1.569	0.2864
Ethylbenzene	0.1114	2.673	0.4879
Xylenes	0.1536	3.685	0.6726
C8+ Heavies	0.0150	0.361	0.0658
Total Emissions	5.2185	125.243	22.8568
Total Hydrocarbon Emissions	5.2185	125.243	22.8568
Total VOC Emissions	0.4392	10.541	1.9238
Total HAP Emissions	0.3663	8.792	1.6045
Total BTEX Emissions	0.3654	8.769	1.6004

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 3.73	lbs. H2O/M	MSCF
Temperature: Pressure:	80.0 540.0	deg. F psig	
Dry Gas Flow Rate:	45.0000	MMSCF/day	

Page: 1
Glycol Losses with Dry Gas: 0.0984 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 50.86 lbs. H2O/MMSCF Specified Lean Glycol Recirc. Ratio: 3.00 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	7.33%	92.67%
Carbon Dioxide	99.91%	0.09%
Nitrogen	99.99%	0.01%
Methane	99.99%	0.01%
Ethane	99.98%	0.02%
Propane	99.96%	0.04%
Isobutane	99.94%	0.06%
n-Butane	99.92%	0.08%
Isopentane	99.91%	0.09%
n-Pentane	99.88%	0.12%
n-Hexane	99.78%	0.22%
Heptanes	99.54%	0.46%
Benzene	90.92%	9.08%
Toluene	85.64%	14.36%
Ethylbenzene	78.77%	21.23%
Xylenes	70.72%	29.28%
C8+ Heavies	98.21%	1.79%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	28.19%	71.81%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.50%	99.50%
n-Pentane	0.50%	99.50%
n-Hexane	0.50%	99.50%
Heptanes	0.50%	99.50%
Benzene	5.00%	95.00%
Toluene	7.91%	92.09%
Ethylbenzene	10.41%	89.59%
Xylenes	12.93%	87.07%
C8+ Heavies	12.04%	87.96%

STREAM REPORTS:

Temperature:	80.00	deg.	F
Pressure:	554.70	psia	
Flow Rate:	1.88e+006	scfh	

Component	Conc. (vol%)	Loading (lb/hr)
Water	1.07e-001	9.55e+001
Carbon Dioxide	3.13e-001	6.81e+002
Nitrogen	2.90e-001	4.02e+002
Methane	9.70e+001	7.70e+004
Ethane	2.21e+000	3.28e+003
Propane	6.31e-002	1.38e+002
Isobutane	9.99e-005	2.87e-001
n-Butane	9.99e-005	2.87e-001
Isopentane	9.99e-005	3.57e-001
n-Pentane	9.99e-005	3.57e-001
n-Hexane	9.99e-005	4.26e-001
Heptanes	9.99e-005	4.95e-001
Benzene	9.99e-005	3.86e-001
Toluene	9.99e-005	4.55e-001
Ethylbenzene	9.99e-005	5.25e-001
Xylenes	9.99e-005	5.25e-001
C8+ Heavies	9.99e-005	8.42e-001
Total Components	100.00	8.16e+004

DRY GAS STREAM

Temperature: 80.00 deg. F Pressure: 554.70 psia

Flow Rate:	1.88e+006 scin		
	Component	Conc. (vol%)	Loading (lb/hr)
	Water	7.87e-003	7.00e+000
	Carbon Dioxide	3.13e-001	6.81e+002
	Nitrogen	2.90e-001	4.02e+002
	Methane	9.71e+001	7.70e+004
	Ethane	2.21e+000	3.28e+003
	Propane	6.32e-002	1.38e+002
	Isobutane	9.99e-005	2.87e-001
	n-Butane	9.99e-005	2.87e-001
	Isopentane	9.99e-005	3.56e-001
	n-Pentane	9.99e-005	3.56e-001
	n-Hexane	9.98e-005	4.25e-001
	Heptanes	9.95e-005	4.93e-001
	Benzene	9.09e-005	3.51e-001
	Toluene	8.56e-005	3.90e-001
	Ethylbenzene	7.88e-005	4.13e-001
	Xylenes	7.07e-005	3.71e-001
	C8+ Heavies	9.82e-005	8.27e-001
	Total Components	100.00	8.15e+004

LEAN GLYCOL STREAM Temperature: 80.00 deg. F Flow Rate: 4.11e+000 gpm

Loading Component Conc. (wt응) (lb/hr) TEG 9.85e+001 2.28e+003 Water 1.50e+000 3.47e+001 Carbon Dioxide 2.66e-012 6.17e-011 Nitrogen 9.71e-014 2.25e-012 Methane 5.99e-018 1.39e-016 Ethane 1.33e-008 3.09e-007 Propane 9.57e-011 2.22e-009 Isobutane 2.27e-013 5.26e-012 n-Butane 2.55e-013 5.90e-012 Isopentane 7.08e-008 1.64e-006 n-Pentane 9.35e-008 2.17e-006 n-Hexane 2.06e-007 4.77e-006 Heptanes 4.92e-007 1.14e-005 Benzene 7.97e-005 1.85e-003 Toluene 2.42e-004 5.61e-003 Ethylbenzene 5.59e-004 1.29e-002 Xylenes 9.84e-004 2.28e-002 C8+ Heavies 8.88e-005 2.06e-003 _____ ____ Total Components 100.00 2.32e+003 RICH GLYCOL STREAM _____ Temperature:80.00 deg. FPressure:554.70 psiaFlow Rate:4.30e+000 gpm NOTE: Stream has more than one phase. Conc. Loading (wt%) (lb/hr) Component TEG 9.46e+001 2.28e+003 Water 5.11e+000 1.23e+002 Carbon Dioxide 2.56e-002 6.17e-001 Nitrogen 9.33e-004 2.25e-002 Methane 1.71e-001 4.13e+000 Ethane 2.71e-002 6.54e-001 Propane 2.26e-003 5.44e-002 Isobutane 7.28e-006 1.75e-004 n-Butane 9.88e-006 2.38e-004 Isopentane 1.36e-005 3.28e-004 n-Pentane 1.80e-005 4.33e-004 n-Hexane 3.96e-005 9.53e-004 Heptanes 9.46e-005 2.28e-003 Benzene 1.53e-003 3.69e-002 Toluene 2.95e-003 7.10e-002 Ethylbenzene 5.16e-003 1.24e-001 Xylenes 7.32e-003 1.76e-001 C8+ Heavies 7.09e-004 1.71e-002 Total Components 100.00 2.41e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia

Component	Conc. (vol%)	Loading (lb/hr)
Water	9.43e+001	8.85e+001
Carbon Dioxide	2.69e-001	6.17e-001
Nitrogen	1.54e-002	2.25e-002
Methane	4.94e+000	4.13e+000
Ethane	4.17e-001	6.54e-001
Propane	2.37e-002	5.44e-002
Isobutane	5.79e-005	1.75e-004
n-Butane	7.86e-005	2.38e-004
Isopentane	8.68e-005	3.26e-004
n-Pentane	1.15e-004	4.31e-004
n-Hexane	2.11e-004	9.49e-004
Heptanes	4.34e-004	2.27e-003
Benzene	8.61e-003	3.51e-002
Toluene	1.36e-002	6.54e-002
Ethylbenzene	2.01e-002	1.11e-001
Xylenes	2.78e-002	1.54e-001
C8+ Heavies	1.69e-003	1.50e-002
iotal components	100.00	9.430+001

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Comet 45 mmSCF File Name: P:\Projects\0419542 Arsenal G35-D Compressor Station.GM\Comet Compressor Station\2017 Update\Calculations\GLY-CALC\45 mmSCF.ddf Date: August 16, 2017 DESCRIPTION: _____ Description: Annual Hours of Operation: 8760.0 hours/yr WET GAS: _____ Temperature: 80.00 usy. 540.00 psig 80.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) ----- -----Carbon Dioxide 0.3133 Nitrogen 0.2905 Methane 97.1239 Ethane 2.2091 Propane 0.0632 Isobutane 0.0001 n-Butane 0.0001 Isopentane 0.0001 n-Pentane 0.0001 0.0001 n-Hexane
 Heptanes
 0.0001

 Benzene
 0.0001

 Toluene
 0.0001

 Ethylbenzene
 0.0001

 Xylenes
 0.0001
C8+ Heavies 0.0001 DRY GAS: _____ Flow Rate: 45.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: _____ Glycol Type: TEG Given Type: TEGWater Content:1.5 wt% H2ORecirculation Ratio:3.0 gal/lb H2O PUMP: _____ Glycol Pump Type: Electric/Pneumatic

Page: 1

Component

Methane

Ethane

Propane

I-Butane

N-Butane

I-Pentane

N-Pentane

Nitrogen

Oxygen CO2

Hexanes+

TOTAL

Gas Analytical Services

Client:	PDC Mountaineer
Site:	Garrett EQT Check
Field No:	9998
Meter:	
Source Laboratory:	Clarksburg (Bridgeport), WV
Lab File No:	114847.CHR
Sample Type:	Spot

Mol %

97.1239

2.2091

0.0632

< MDL

< MDL

< MDL

< MDL

0.2905

< MDL

0.3133

< MDL

100.0000

Gal/MSCF

0.59

0.02

0.00

0.00

0.00

0.00

0.60

Date Sampled:
Date Reported:
Collected By:
Date Effective:
Sample Pressure (PSI):
Sample Temp (°F):
Field H2O (PPM):
Field H2S (PPM):

May 29, 2014	
Jun 2, 2014 11:28a	
J. Dowell	
May 29, 2014 12:00a	
540	

Analytical Results at Ba	ase Conditions (Real)
BTU/SCF (Dry):	1,025.7784 BTU/ft ³
BTU/SCF (Saturated):	1,008.8030 BTU/ft ³
PSIA:	14.73 PSI
Temperature (°F):	60.00 °F
Z Factor (Dry):	0.99793
Z Factor (Saturated):	0.99758

Analytical Results at Co	ntract Conditions (Real)
BTU/SCF (Dry):	1,025.7784 BTU/ft ³
BTU/SCF (Saturated):	1,008.8030 BTU/ft ³
PSIA:	14.7300 PSI
Temperature (°F):	60.0000 °F
Z Factor (Dry):	0.99793
Z Factor (Saturated):	0.99758

Calculated Specific Gravities

Ideal Gravity:0.5694Real Gravity:0.5704Molecular Wt:16.4925 lb/lbmol

Gross Heating Values are Based on: GPA 2145-09, 2172, 2261 Compressibility is Calculated using AGA-8.

Source	Date	Notes
Gas Analytical	Jun 2, 2014	results to Lenny Pierce

GAS ENGINE TECHNICAL DATA

CATERPILLAR[®]

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F): JACKET WATER OUTLET (°F): COOLING SYSTEM: IGNITION SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOX):	1400 8:1 130 201 210 JW+OC+1AC, 2AC ADEM3 DRY Ultra Lean Burn 0.5	FUEL: FUEL S FUEL P FUEL M FUEL L ALTITU APPLIC	YSTEM: RESSURE RA IETHANE NUN HV (Btu/scf): IDE CAPABILIT ATION:	NGE(psig): /BER: ſY AT 100°F IN	WITH LET AIR TEMF	C, AIR FUEL F P. (ft):	Nat Gas AT WIDE RANGE RATIO CONTROL 5.0-50.0 80 905 4000 Gas Compression	
RATING			NOTES	LOAD	100%	75%	50%	
ENGINE POWER	(WI	THOUT FAN)	(1)	bhp	1380	1035	691	
ENGINE EFFICIENCY		(ISO 3046/1)	(2)	%	34.9	32.5	30.3	
ENGINE EFFICIENCY		(NOMINAL)	(2)	%	34.2	31.9	29.7	
	ТА							
	IA	(ISO 3046/1)	(3)	Btu/bbp-br	7300	7810	8300	
		(NOMINAL)	(3)	Btu/bhp-hr	7300	7013	8562	
AIR FLOW (77°F 14.7 psia)		(WET)	(3) (4) (5)	scfm	3126	2452	1714	
AIR FLOW		(WET)	(4) (5)	lb/hr	13859	10872	7602	
COMPRESSOR OUT PRESSURE		, í	(1)(0)	in Hg(abs)	103 7	91.7	69.4	
COMPRESSOR OUT TEMPERATURE				°F	381	354	274	
AFTERCOOLER AIR OUT TEMPERATU	RE			°F	133	133	131	
INLET MAN. PRESSURE			(6)	in Ho(abs)	94.6	76.8	54.0	
INLET MAN. TEMPERATURE	(MEASURED	IN PLENUM)	(7)	°F	146	146	143	
TIMING			(8)	°BTDC	30.0	28.7	24.1	
EXHAUST STACK TEMPERATURE			(9)	°F	992	938	1006	
EXHAUST GAS FLOW (@stack temp, 14	.5 psia)	(WET)	(10) (5)	ft3/min	9124	6900	5065	
EXHAUST GAS MASS FLOW		(WET)	(10) (5)	lb/hr	14377	11288	7899	
EMISSIONS D								
NOx (as NO2)			(11)	a/bhp-hr	0.50	0.50	0.50	
			(17)	g/bhp-hr	2 43	2.61	2.56	
THC (mol. wt. of 15.84)			(12)	g/bhp-hr	4.77	5.11	5.18	
NMHC (mol. wt. of 15.84)			(12)	g/bhp-hr	0.71	0.77	0.78	
NMNEHC (VOCs) (mol. wt. of 15.84)			(12)(13)	g/bhp-hr	0.48	0.51	0.52	
HCHO (Formaldehvde)			(12)	a/bhp-hr	0.43	0.43	0.42	
CO2			(12)	g/bhp-hr	474	505	549	
EXHAUST OXYGEN			(14)	% DRY	9.0	8.7	8.3	
LAMBDA			(14)		1.68	1.64	1.60	
			(15)	Btu/min	171162	137537	98551	
HEAT REJECTION TO JACKET WATER	(.IW)		(16)(23)	Btu/min	23454	24132	20035	
HEAT REJECTION TO ATMOSPHERE	()		(17)	Btu/min	6110	5093	4076	
HEAT REJECTION TO LUBE OIL (OC)			(18)(23)	Btu/min	4449	3947	3324	
HEAT REJECTION TO EXHAUST (LHV 1	TO 77°F)		(19)	Btu/min	62411	46273	34853	
HEAT REJECTION TO EXHAUST (LHV 1	TO 350°F)		(19)	Btu/min	41610	29857	23415	
HEAT REJECTION TO A/C - STAGE 1			(20)(23)	Btu/min	10041	8304	2813	
HEAT REJECTION TO A/C - STAGE 2			(21)(24)	Btu/min	5357	5061	3334	
PUMP POWER			(22)	Btu/min	833	833	833	

G3516B

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1. (Standard reference conditions of 77°F, 29.60 in Hg barometric pressure, 500 ft. altitude.) No overload permitted at rating shown. Consult altitude curves for applications above maximum rated altitude and/or temperature.

Emission levels are at engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions. Tolerances specified are dependent upon fuel quality. Fuel methane number cannot vary more than ± 3.

For notes information consult page three.

Γ

FUEL	USAGE	GUIDE	

CAT METHANE NUMBER	30	35	40	45	50	55	60	65	70	75	80	85
IGNITION TIMING	27	27	27	28	28	28	28	30	30	30	30	30
DERATION FACTOR	0.90	0.90	0.90	1	1	1	1	1	1	1	1	1

AFT	AFTERCOOLER HEAT REJECTION FACTORS (ACHRF)													
	130	1.31	1.36	1.40	1.45	1.50	1.55	1.55	1.55	1.55	1.55	No Rating	No Rating	No Rating
	120	1.25	1.29	1.34	1.39	1.44	1.49	1.49	1.49	1.49	1.49	No Rating	No Rating	No Rating
	110	1.18	1.23	1.28	1.32	1.37	1.42	1.42	1.42	1.42	1.42	No Rating	No Rating	No Rating
	100	1.12	1.17	1.21	1.26	1.30	1.35	1.35	1.35	1.35	1.35	No Rating	No Rating	No Rating
°F	90	1.06	1.10	1.15	1.19	1.24	1.29	1.29	1.29	1.29	1.29	No Rating	No Rating	No Rating
l .	80	1	1.04	1.08	1.13	1.17	1.22	1.22	1.22	1.22	1.22	No Rating	No Rating	No Rating
	70	1	1	1.02	1.06	1.11	1.15	1.15	1.15	1.15	1.15	1.15	No Rating	No Rating
	60	1	1	1	1	1.04	1.09	1.09	1.09	1.09	1.09	1.09	No Rating	No Rating
	50	1	1	1	1	1	1.02	1.02	1.02	1.02	1.02	1.02	No Rating	No Rating
	-	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000
						ALTI	TUDE (FE	ET ABOV	'E SEA LE	VEL)				

				(RPM)										
	130	1050	1050	1050	1050	1050	1050	1050	1050	1050	1230	No Rating	No Rating	No Rating
	120	1050	1050	1050	1050	1050	1050	1050	1050	1050	1230	No Rating	No Rating	No Rating
INLEI	110	1050	1050	1050	1050	1050	1050	1050	1050	1050	1230	No Rating	No Rating	No Rating
	100	1050	1050	1050	1050	1050	1050	1050	1050	1050	1230	No Rating	No Rating	No Rating
°F	90	1050	1050	1050	1050	1050	1050	1050	1050	1050	1230	No Rating	No Rating	No Rating
1	80	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	No Rating	No Rating	No Rating
	70	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1230	No Rating	No Rating
	60	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1230	No Rating	No Rating
	50	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1230	No Rating	No Rating
		0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000
						ALT	TUDE (FE	ET ABO	/E SEA LE	VEL)				

MINIMUM SPEED CAPABILITY AT THE RATED SPEED'S SITE TORQUE

FUEL USAGE GUIDE:

This table shows the derate factor required for a given fuel. Note that deration occurs as the methane number decreases. Methane number is a scale to measure detonation characteristics of various fuels. The methane number of a fuel is determined by using the Caterpillar Methane Number Calculation program.

ALTITUDE DERATION FACTORS:

This table shows the deration required for various air inlet temperatures and altitudes. Use this information along with the fuel usage guide chart to help determine actual engine power for your site.

ACTUAL ENGINE RATING:

To determine the actual rating of the engine at site conditions, one must consider separately, limitations due to fuel characteristics and air system limitations. The Fuel Usage Guide deration establishes fuel limitations. The Altitude/Temperature deration factors and RPC (reference the Caterpillar Methane Program) establish air system limitations. RPC comes into play when the Altitude/Temperature deration is less than 1.0 (100%). Under this condition, add the two factors together. When the site conditions do not require an Altitude/Temperature derate (factor is 1.0), it is assumed the turbocharger has sufficient capability to overcome the low fuel relative power, and RPC is ignored. To determine the actual power available, take the lowest rating between 1) and 2).

1) Fuel Usage Guide Deration

2) 1-((1-Altitude/Temperature Deration) + (1-RPC))

AFTERCOOLER HEAT REJECTION FACTORS(ACHRF):

Aftercooler heat rejection is given for standard conditions of 77°F and 500 ft. altitude. To maintain a constant air inlet manifold temperature, as the inlet air temperature goes up, so must the heat rejection. As altitude increases, the turbocharger must work harder to overcome the lower atmospheric pressure. This increases the amount of heat that must be removed from the inlet air by the aftercooler. Use the aftercooler heat rejection factor (ACHRF) to adjust for inlet air temp and altitude conditions. See Notes 23 and 24 below for application of this factor in calculating the heat exchanger sizing criteria. Failure to properly account for these factors could result in detonation and cause the engine to shutdown or fail.

MINIMUM SPEED CAPABILITY AT THE RATED SPEED'S SITE TORQUE (RPM):

This table shows the minimum allowable engine turndown speed where the engine will maintain the Rated Speed's Torque for the given ambient conditions. For some ambient conditions, the engine is not capable of being loaded continuously from idle to the max site torque at the indicated speed.

NOTES:

1. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

2. ISO 3046/1 engine efficiency tolerance is (+)0, (-)5% of full load % efficiency value. Nominal engine efficiency tolerance is ± 3.0% of full load % efficiency value.

3. ISO 3046/1 fuel consumption tolerance is (+)5, (-)0% of full load data. Nominal fuel consumption tolerance is ± 3.0% of full load data.

4. Undried air. Flow is a nominal value with a tolerance of ± 5 %.

- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.

7. Inlet manifold temperature is a nominal value with a tolerance of ± 9°F.

8. Timing indicated is for use with the minimum fuel methane number specified. Consult the appropriate fuel usage guide for timing at other methane numbers.

9. Exhaust stack temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

10. Exhaust flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 6 %.

11. NOx values are "Not to Exceed".

12. CO, CO2, THC, NMHC, NMNEHC, and HCHO values are "Not to Exceed" levels. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

13. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

14. Exhaust Oxygen tolerance is \pm 0.5; Lambda tolerance is \pm 0.05. Lambda and Exhaust Oxygen level are the result of adjusting the engine to operate at the specified NOx level.

15. LHV rate tolerance is $\pm 3.0\%$.

16. Heat rejection to jacket water value displayed includes heat to jacket water alone. Value is based on treated water. Tolerance is ± 10% of full load data.

17. Heat rejection to atmosphere based on treated water. Tolerance is \pm 50% of full load data.

18. Lube oil heat rate based on treated water. Tolerance is \pm 20% of full load data.

19. Exhaust heat rate based on treated water. Tolerance is \pm 10% of full load data.

20. Heat rejection to A/C - Stage 1 based on treated water. Tolerance is $\pm 5\%$ of full load data.

21. Heat rejection to A/C - Stage 2 based on treated water. Tolerance is ±5% of full load data.

22. Pump power includes engine driven jacket water and aftercooler water pumps. Engine brake power includes effects of pump power.

23. Total Jacket Water Circuit heat rejection is calculated as: $(JW \times 1.1) + (OC \times 1.2) + (1AC \times 1.05) + [0.9 \times (1AC + 2AC) \times (ACHRF - 1) \times 1.05]$. Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

24. Total Second Stage Aftercooler Circuit heat rejection is calculated as: (2AC x 1.05) + [(1AC + 2AC) x 0.1 x (ACHRF - 1) x 1.05]. Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

Mailing address: P.O. Box 90, Concord, Ontario, Canada, L4K 1B2 Toll free: 1-800-872-1968 Phone: 905-660-6450 Fax: 905-660-6435 E-mail: info@dcl-inc.com

То	Mark Davis	Phone	
	J-W Power	Fax	
Date	January 4, 2010	Email	mdavis@jwenergy.com

RE: EMISSIONS GUARANTEE

Mark,

We hereby guarantee that our QUICK-LIDTM Model DC65A-12 catalytic converter described below:

Catalyst model	DC65
Catalyst coating	Oxidation (A coating)
Outside Diameter of catalyst substrate	30.75"
No. of catalyst substrates	1
Cell Density	300 cpsi

and sized for the following engine:

Engine model	CAT G3516 ULB
Power	1380 hp @ 1400 rpm
Fuel	Pipeline Quality Natural Gas

will perform as follows:

Emissions	After Catalyst
	(% destruction)
Carbon Monoxide (CO)	93%
Formaldehyde (CH ₂ O)	90%
Volatile Organic Compounds	80%

for a period of 1 year or 8000 hours, whichever comes first, subject to all terms and conditions contained in the attached warranty document being respected and met.

Best regards, DCL International, Inc.

Taunya VarGeoninger

Tawnya VanGroningen Account Manager North American Industrial Catalyst Division

Quote#16-1558

GAS ENGINE TECHNICAL DATA

G3508 LE

CATERPILLAR[®]

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): COOLING SYSTEM: IGNITION SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOx EMISSION LEVEL (g/bhp-hr NOx):	1400 8:1 130 210 JW+OC, AC ADEM3 ASWC Low Emission 2.0	FUEL: FUEL S FUEL F FUEL L ALTITU APPLIC	SYSTEM: PRESSURE RAI METHANE NUM HV (Btu/scf): IDE CAPABILIT CATION:	NGE(psig): IBER: Y AT 77°F INLE	Nat Gas HPG IMPCC WITH AIR FUEL RATIO CONTROL 35.0-40.0 80 905 ET AIR TEMP. (ft): 3658 Gas Compression				
RATING			NOTES	LOAD	100%	75%	50%		
ENGINE POWER	(WITHOUT FAN)	(1)	bhp	670	502	335		
ENGINE EFFICIENCY		(ISO 3046/1)	(2)	%	33.9	32.1	29.5		
ENGINE EFFICIENCY		(NOMINAL)	(2)	%	33.2	31.5	28.9		
	ΤΔ								
FUEL CONSUMPTION		(ISO 3046/1)	(3)	Btu/bhp-hr	7510	7936	8639		
FUEL CONSUMPTION		(NOMINAL)	(3)	Btu/bhp-hr	7656	8090	8807		
AIR FLOW (77°F, 14.7 psia)		(WET)	(4) (5)	scfm	1396	1085	783		
AIR FLOW		(WET)	(4) (5)	lb/hr	6188	4811	3472		
COMPRESSOR OUT PRESSURE			() ()	in Hg(abs)	77.1	75.0	59.0		
COMPRESSOR OUT TEMPERATURE				°F	313	294	236		
AFTERCOOLER AIR OUT TEMPERATU	RE			°F	131	129	130		
INLET MAN. PRESSURE			(6)	in Hg(abs)	68.7	54.2	39.4		
INLET MAN. TEMPERATURE	(MEASURE	ED IN PLENUM)	(7)	°F	138	136	137		
TIMING			(8)	°BTDC	33.0	33.0	33.0		
EXHAUST STACK TEMPERATURE			(9)	°F	985	977	974		
EXHAUST GAS FLOW (@stack temp, 14	.5 psia)	(WET)	(10) (5)	ft3/min	4086	3163	2279		
EXHAUST GAS MASS FLOW		(WET)	(10) (5)	lb/hr	6445	5014	3620		
EMISSIONS									
NOx (as NO2)			(11)	a/bhp-hr	2.00	2.00	2.00		
lco			(12)	a/bhp-hr	1.85	1.96	2.14		
THC (mol. wt. of 15.84)			(12)	g/bhp-hr	3.04	3.30	3.76		
NMHC (mol. wt. of 15.84)			(12)	g/bhp-hr	0.46	0.50	0.56		
NMNEHC (VOCs) (mol. wt. of 15.84)			(12)(13)	g/bhp-hr	0.30	0.33	0.38		
HCHO (Formaldehyde)			(12)	g/bhp-hr	0.18	0.20	0.25		
CO2			(12)	g/bhp-hr	468	489	538		
EXHAUST OXYGEN			(14)	% DRY	7.9	7.6	7.2		
LAMBDA			(14)		1.49	1.46	1.45		
			(15)	Btu/min	85472	67733	49171		
HEAT REJECTION TO JACKET WATER	(JW)		(16)(22)	Btu/min	18204	16013	13141		
HEAT REJECTION TO ATMOSPHERE	()		(17)	Btu/min	3188	2657	2126		
HEAT REJECTION TO LUBE OIL (OC)			(18)(22)	Btu/min	2878	2532	2078		
HEAT REJECTION TO EXHAUST (LHV	TO 77°F)		(19)	Btu/min	27406	21203	15304		
HEAT REJECTION TO EXHAUST (LHV	, TO 350°F)		(19)	Btu/min	18562	14270	10261		
HEAT REJECTION TO AFTERCOOLER	(AC)		(20)(23)	Btu/min	4555	3191	1480		
PUMP POWER			(21)	Btu/min	838	838	838		

<u>CONDITIONS AND DEFINITIONS</u> Engine rating obtained and presented in accordance with ISO 3046/1. (Standard reference conditions of 77°F, 29.60 in Hg barometric pressure, 500 ft. altitude.) No overload permitted at rating shown. Consult altitude curves for applications above maximum rated altitude and/or temperature.

Emission levels are at engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions, adjusted to the specified NOx level at 100% load. Tolerances specified are dependent upon fuel quality. Fuel methane number cannot vary more than ± 3.

For notes information consult page three.

FUEL	USAGE GUIDE	

CAT METHANE NUMBER	25	30	35	40	45	50	55	60	65	70	75	80	85	100
IGNITION TIMING	-	27	27	28	29	29	30	31	31	31	32	32	33	33
DERATION FACTOR	0	0.90	0.90	0.90	0.95	1	1	1	1	1	1	1	1	1

ALTITU	IDE DE		FACTORS	AT RATE	D SPEED									
	400	4		0.00	0.00	0.00	0.04	0.00	0.70	0.70	0.70	0.07	0.04	0.04
	130	1	1	0.96	0.92	0.88	0.84	0.80	0.76	0.73	0.70	0.67	0.64	0.61
	120	1	1	0.98	0.94	0.90	0.85	0.81	0.77	0.74	0.71	0.68	0.65	0.62
INLET	110	1	1	1	0.96	0.92	0.87	0.83	0.79	0.75	0.72	0.69	0.66	0.63
	100	1	1	1	0.98	0.94	0.89	0.85	0.81	0.77	0.74	0.70	0.68	0.65
	90	1	1	1	1	0.96	0.91	0.87	0.83	0.79	0.75	0.72	0.69	0.66
	80	1	1	1	1	0.98	0.93	0.89	0.85	0.81	0.77	0.73	0.70	0.67
	70	1	1	1	1	1	0.95	0.91	0.87	0.83	0.78	0.75	0.72	0.68
	60	1	1	1	1	1	0.98	0.93	0.89	0.84	0.80	0.76	0.73	0.70
	50	1	1	1	1	1	1	0.95	0.91	0.87	0.82	0.78	0.74	0.71
		0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000
						ALT	ITUDE (FE	ET ABOV	E SEA LE	VEL)				

AFTERCOOLER HEAT REJECTION FACTORS (ACHRF)

	130	1.39	1.45	1.51	1.58	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.62
	120	1.31	1.37	1.43	1.50	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
INLET	110	1.23	1.29	1.35	1.41	1.46	1.46	1.46	1.46	1.46	1.46	1.46	1.46	1.46
	100	1.15	1.21	1.27	1.33	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37
	90	1.07	1.13	1.19	1.25	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29
	80	1	1.05	1.11	1.17	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21
	70	1	1	1.03	1.09	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13
	60	1	1	1	1	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
	50	1	1	1	1	1	1	1	1	1	1	1	1	1
		0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000
		-												
	ALTITUDE (FEET ABOVE SEA LEVEL)													
MINIMU	M SPEI	ED CAPA	BILITY AT	THE RAT	ED SPEED	D'S SITE T	ORQUE (RPM)						
								,						
	130	1050	1050	1050	1050	1050	1050							
	120	1050					1030	1050	1050	1050	1050	1050	1050	1050
INLET			1050	1050	1050	1050	1050	1050 1050	1050 1050	1050 1050	1050 1050	1050 1050	1050 1050	1050 1050
	110	1050	1050 1050	1050 1050	1050 1050	1050 1050	1050 1050 1050	1050 1050 1050	1050 1050 1050	1050 1050 1050	1050 1050 1050	1050 1050 1050	1050 1050 1050	1050 1050 1050
AIR	110 100	1050 1050	1050 1050 1050	1050 1050 1050	1050 1050 1050	1050 1050 1050	1050 1050 1050 1050	1050 1050 1050 1050	1050 1050 1050 1050	1050 1050 1050 1050	1050 1050 1050 1050	1050 1050 1050 1050	1050 1050 1050 1050	1050 1050 1050 1050
AIR TEMP	110 100 90	1050 1050 1050	1050 1050 1050 1050	1050 1050 1050 1050	1050 1050 1050 1050	1050 1050 1050 1050	1050 1050 1050 1050 1050	1050 1050 1050 1050 1050	1050 1050 1050 1050 1050	1050 1050 1050 1050 1050	1050 1050 1050 1050 1050	1050 1050 1050 1050 1050	1050 1050 1050 1050 1050	1050 1050 1050 1050 1050
AIR TEMP °F	110 100 90 80	1050 1050 1050 1050	1050 1050 1050 1050 1050	1050 1050 1050 1050 1050	1050 1050 1050 1050 1050	1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050
AIR TEMP °F	110 100 90 80 70	1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050
AIR TEMP °F	110 100 90 80 70 60	1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050 1050

ALTITUDE (FEET ABOVE SEA LEVEL)

FUEL USAGE GUIDE:

This table shows the derate factor required for a given fuel. Note that deration occurs as the methane number decreases. Methane number is a scale to measure detonation characteristics of various fuels. The methane number of a fuel is determined by using the Caterpillar Methane Number Calculation program.

ALTITUDE DERATION FACTORS:

This table shows the deration required for various air inlet temperatures and altitudes. Use this information along with the fuel usage guide chart to help determine actual engine power for your site.

ACTUAL ENGINE RATING:

To determine the actual rating of the engine at site conditions, one must consider separately, limitations due to fuel characteristics and air system limitations. The Fuel Usage Guide deration establishes fuel limitations. The Altitude/Temperature deration factors and RPC (reference the Caterpillar Methane Program) establish air system limitations. RPC comes into play when the Altitude/Temperature deration is less than 1.0 (100%). Under this condition, add the two factors together. When the site conditions do not require an Altitude/Temperature derate (factor is 1.0), it is assumed the turbocharger has sufficient capability to overcome the low fuel relative power, and RPC is ignored. To determine the actual power available, take the lowest rating between 1) and 2).

1) Fuel Usage Guide Deration

2) 1-((1-Altitude/Temperature Deration) + (1-RPC))

AFTERCOOLER HEAT REJECTION FACTORS(ACHRF):

Aftercooler heat rejection is given for standard conditions of 77°F and 500 ft. altitude. To maintain a constant air inlet manifold temperature, as the inlet air temperature goes up, so must the heat rejection. As altitude increases, the turbocharger must work harder to overcome the lower atmospheric pressure. This increases the amount of heat that must be removed from the inlet air by the aftercooler. Use the aftercooler heat rejection factor (ACHRF) to adjust for inlet air temp and altitude conditions. See Notes 22 and 23 below for application of this factor in calculating the heat exchanger sizing criteria. Failure to properly account for these factors could result in detonation and cause the engine to shutdown or fail.

MINIMUM SPEED CAPABILITY AT THE RATED SPEED'S SITE TORQUE (RPM):

This table shows the minimum allowable engine turndown speed where the engine will maintain the Rated Speed's Torque for the given ambient conditions.

NOTES:

1. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

2. ISO 3046/1 engine efficiency tolerance is (+)0, (-)5% of full load % efficiency value. Nominal engine efficiency tolerance is ± 3.0% of full load % efficiency value.

3. ISO 3046/1 fuel consumption tolerance is (+)5, (-)0% of full load data. Nominal fuel consumption tolerance is ± 3.0% of full load data.

- 4. Undried air. Flow is a nominal value with a tolerance of ± 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.
- 7. Inlet manifold temperature is a nominal value with a tolerance of ± 9°F.

8. Timing indicated is for use with the minimum fuel methane number specified. Consult the appropriate fuel usage guide for timing at other methane numbers.

9. Exhaust stack temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

10. Exhaust flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 6 %.

11. NOx values are "Not to Exceed".

12. CO, CO2, THC, NMHC, NMNEHC, and HCHO values are "Not to Exceed" levels. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

13. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

14. Exhaust Oxygen tolerance is ± 0.5; Lambda tolerance is ± 0.05. Lambda and Exhaust Oxygen level are the result of adjusting the engine to operate at the specified NOx level.

15. LHV rate tolerance is $\pm 3.0\%$.

16. Heat rejection to jacket water value displayed includes heat to jacket water alone. Value is based on treated water. Tolerance is ± 10% of full load data.

- 17. Heat rejection to atmosphere based on treated water. Tolerance is ± 50% of full load data.
- 18. Lube oil heat rate based on treated water. Tolerance is ± 20% of full load data.

19. Exhaust heat rate based on treated water. Tolerance is \pm 10% of full load data.

20. Heat rejection to aftercooler based on treated water. Tolerance is ±5% of full load data.

21. Pump power includes engine driven jacket water and aftercooler water pumps. Engine brake power includes effects of pump power.

22. Total Jacket Water Circuit heat rejection is calculated as: (JW x 1.1) + (OC x 1.2). Heat exchanger sizing criterion is maximum circuit heat rejection at

site conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin. 23. Total Aftercooler Circuit heat rejection is calculated as: AC x ACHRF x 1.05. Heat exchanger sizing criterion is maximum circuit heat rejection at site

conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

Mailing address: P.O. Box 90, Concord, Ontario, Canada, L4K 1B2

Toll free: 1-800-872-1968 Phone: 905-660-6450 Fax: 905-660-6435 E-mail: info@dcl-inc.com

To	Mark Davis	Phone	
	J-W Power	Fax	
Date	June 21 st 2011	Email	mdavis@jwenergy.com

RE: **EMISSIONS GUARANTEE**

Mark,

We hereby guarantee that our QUICK-LIDTM Model DC63Q-8 catalytic converter described below:

Catalyst model	DC63
Catalyst coating	Oxidation (Q coating)
Outside Diameter of catalyst substrate	20.4"
No. of catalyst substrates	1
Cell Density	300 cpsi

and sized for the following engine:

Engine model	CAT G3508 B
Power	670 hp @ 1400 rpm
Fuel	Pipeline Quality Natural Gas

will perform as follows:

Emissions	After Catalyst
	(% destruction)
Carbon Monoxide (CO)	93%
Formaldehyde (CH ₂ O)	90%
Volatile Organic Compounds	45%

for a period of 1 year (after invoice date) or 8000 hours, whichever comes first, subject to all terms and conditions contained in the attached warranty document being respected and met.

Best regards, DCL International, Inc.

Taurya VarGeoninger

Tawnya VanGroningen Account Manager North American Industrial Catalyst Division

Quote#16-1558

Attachment V

AT	ATTACHMENT V – FACILITY-WIDE CONTROLLED EMISSIONS SUMMARY SHEET														
List all sources of	List all sources of emissions in this table. Use extra pages if necessary.														
	NO _x		СО		VOC		SO ₂		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)		
Emission Font 1D#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
Compressor Engine (CE-1R)	1.52	6.66	0.56	2.43	0.32	1.39	< 0.01	0.03	<0.01	<0.01	<0.01	<0.01	1,441.54	6,313.93	
Compressor Engine (CE-2R)	1.52	6.66	0.56	2.43	0.32	1.39	< 0.01	0.03	<0.01	<0.01	<0.01	<0.01	1,441.54	6,313.93	
Compressor Engine (CE-3R)	1.52	6.66	0.56	2.43	0.32	1.39	< 0.01	0.03	<0.01	<0.01	<0.01	<0.01	1,441.54	6,313.93	
Compressor Engine (CE-6R)	1.52	6.66	0.56	2.43	0.32	1.39	< 0.01	0.03	<0.01	<0.01	<0.01	<0.01	1,441.54	6,313.93	
Compressor Engine (CE-4R)	2.95	12.94	0.22	0.97	0.31	1.35	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	720.00	3,153.61	
Dehy Still Vent (RSV-4)	<0.01	<0.01	< 0.01	<0.01	0.44	1.92	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	103.14	451.74	
Dehy Reboiler (RBV-4)	0.10	0.43	0.08	0.36	<0.01	0.02	<0.01	<0.01	<0.01	0.03	<0.01	0.03	117.10	512.89	
Dehy Still Vent (RSV-5)	<0.01	<0.01	<0.01	<0.01	0.10	0.43	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	22.92	100.39	
Dehy Reboiler (RBV-5)	0.02	0.09	0.02	0.07	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	23.42	102.58	
Produced Water Tank (T-1 and T-2)	<0.01	<0.01	< 0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	7.99	34.99	
Truck Loading (LO-1)	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	0.01	0.06	
TOTAL	9.16	40.10	2.54	11.14	2.12	9.30	0.03	0.12	0.01	0.03	0.01	0.03	6,760.72	29,611.98	

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT V – FACILITY-WIDE HAP CONTROLLED EMISSIONS SUMMARY SHEET

List all sources of	f emissions in t	his table. Use	extra pages if	necessary.	

Emission Boint ID#	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		Hexane		Total HAPs	
Emission Font ID#	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Compressor Engine (CE-1R)	0.13	0.57	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	0.01	0.05	0.15	0.67
Compressor Engine (CE-2R)	0.13	0.57	<0.01	0.02	< 0.01	0.02	<0.01	< 0.01	<0.01	<0.01	0.01	0.05	0.15	0.67
Compressor Engine (CE-3R)	0.13	0.57	<0.01	0.02	<0.01	0.02	<0.01	< 0.01	<0.01	<0.01	0.01	0.05	0.15	0.67
Compressor Engine (CE-6R)	0.13	0.57	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	0.01	0.05	0.15	0.67
Compressor Engine (CE-4R)	0.04	0.16	<0.01	0.02	<0.01	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	0.05	0.21
Dehy Still Vent (RSV-4)	<0.01	<0.01	0.04	0.15	0.07	0.29	<0.01	<0.01	0.15	0.67	<0.01	<0.01	0.37	1.60
Dehy Reboiler (RBV-4)	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dehy Still Vent (RSV-5)	<0.01	<0.01	<0.01	0.03	0.01	0.06	<0.01	<0.01	0.03	0.15	<0.01	<0.01	0.08	0.36
Dehy Reboiler (RBV-5)	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Produced Water Tank (T-1 and T-2)	< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
Truck Loading (LO-1)	< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
TOTAL	0.56	2.45	0.06	0.28	0.10	0.43	< 0.01	<0.01	0.20	0.86	0.05	0.24	1.11	4.87

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators.

According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

Attachment W

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Arsenal Resources, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a G35-D General Permit for a natural gas compressor stations located in Taylor County, West Virginia. The latitude and longitude coordinates are: 39.30600 and -80.10700

The applicant estimates the maximum potential to discharge the following regulated air pollutants on a facility-wide basis will be:

Particulate Matter (PM) = 2.50 tpy Sulfur Dioxide (SO₂) = 0.12 tpy Volatile Organic Compounds (VOC) = 9.30 tpy Carbon Monoxide (CO) = 11.14 tpy Nitrogen Oxides (NO_x) = 40.10 tpy Total Hazardous Air Pollutants (HAPs) = 4.87 tpy Formaldehyde (HCHO) = 2.45 tpy Hexane (C₈H₁₄) = 0.24 tpy Carbon Dioxide Equivalents (CO₂e) = 29,611.98 tpy

Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the 22th day of August 2017.

By: Arsenal Resources Meghan M.B. Yingling Environmental Compliance Manager 6031 Wallace Road Ext. Suite 300 Wexford, PA 15090