

Kessler, Joseph R <joseph.r.kessler@wv.gov>

RE: TG Permit

1 message

 Patrick E. Ward <PEWard@potesta.com>
 Wed, Dec 20, 2023 at 1:17 PM

 To: "Kessler, Joseph R" <joseph.r.kessler@wv.gov>
 Cc: Adam Victor <adam@tgds.com>, "Ronald R. Potesta" <RRPotesta@potesta.com>, "Rhonda L. Henson"

 <rlhenson@potesta.com>

See attached.

The flow rates for shutdown have been removed from confidential status per the supplier. See PDF Page 150. Total flow to the flare for shutdown is provided as 100,065.1 Nm3 (Front End) and 453,500 Nm3 (Haber Bosch Process). Converting to scf that is a total of 20,659,030 ft3 or 21 mmft3 per shutdown.

Revisions made are listed below.

PDF Page 65, Attachment J, corrected typo on controlled NOx for Startup Steam Generator and CO for the Super Heater.

PDF Page 69 Attachment J, modified VOC emissions and added HAPS of 10-3 or larger per request and also Total HAPS based on natural gas.

PDF Page 118, Attachment L, fixed heat rating for Super-Heater.

PDF Page 124, modified VOC emissions and added HAPs emissions.

PDF Page 140, 141, and 142, Calculations, modified VOC emissions and added HAP emissions.

PDF Page 145 and 146, modified note for fugitives emission factors source. This is actually in AP-42 Chapter 5, under Related Documents, so I expanded the note.

PDF Page 150, removed the flow rates from confidential status.

Let me know if you have any questions.

Regards,

Patrick Ward

Potesta & Associates, Inc.

7012 MacCorkle Avenue, S.E.

Charleston, West Virginia 25304

Ph: (304) 342-1400

Direct: (304) 414-4751

Fax: (304) 343-9031

This electronic communication and its attachments contain confidential information. The recommendations and/or design data included herein are provided as a matter of convenience and should not be used for final design or ultimate decision making. Rely only on the final hardcopy materials bearing the consultant's original signature and seal. If you have received this information in error, please notify the sender immediately.

From: Kessler, Joseph R <joseph.r.kessler@wv.gov> Sent: Wednesday, December 20, 2023 9:26 AM To: Patrick E. Ward <PEWard@potesta.com> Subject: TG Permit

Patrick, do you think the revised application will be in today?

--

Joe Kessler, PE

Engineer

West Virginia Division of Air Quality

601-57th St., SE

Charleston, WV 25304

Phone: (304) 926-0499 x41271

Joseph.r.kessler@wv.gov

REV. 2 REDACTED R13 Permit Application - Ammonia Prod. Facility -TransGas (22-0132-001).pdf 9433K

REVISION

Division of Air Quality Permit Application Submittal

Please find attached a permit application for :

[Company Name; Facility Location]

- DAQ Facility ID (for existing facilities only):
- Current 45CSR13 and 45CSR30 (Title V) permits associated with this process (for existing facilities only):
- Type of NSR Application (check all that apply):
 - \circ Construction
 - \circ Modification
 - Class I Administrative Update
 - Class II Administrative Update
 - \circ **Relocation**
 - Temporary
 - Permit Determination

- Type of 45CSR30 (TITLE V) Application:
 - Title V Initial
 - Title V Renewal
 - Administrative Amendment**
 - Minor Modification**
 - Significant Modification**
 - Off Permit Change

**If the box above is checked, include the Title V revision information as ATTACHMENT S to the combined NSR/Title V application.

- Payment Type:
 - Credit Card (Instructions to pay by credit card will be sent in the Application Status email.)
 - Check (Make checks payable to: WVDEP Division of Air Quality) Mail checks to: WVDEP – DAQ – Permitting Attn: NSR Permitting Secretary 601 57th Street, SE Charleston, WV 25304

Please wait until DAQ emails you the Facility ID Number and Permit Application Number. Please add these identifiers to your check or cover letter with your check.

- If the permit writer has any questions, please contact (all that apply):
 - Responsible Official/Authorized Representative
 - Name:
 - Email:
 - Phone Number:
 - **Company Contact**
 - Name:
 - Email:
 - Phone Number:
 - Consultant

 \bigcirc

- Name:
- Email:
- Phone Number:

REGULATION 13 PERMIT APPLICATION FOR THE CONSTRUCTION OF AN AMMONIA PRODUCTION FACILITY IN MINGO COUNTY, WEST VIRGINIA

REDACTED VERSION

Prepared for:

TransGas Development Systems, LLC

630 First Avenue, Suite 30G New York, New York 10013-3799

Prepared by:

Potesta & Associates, Inc.

7012 MacCorkle Avenue, SE Charleston, West Virginia 25304 Phone: (304) 342-1400 Fax: (304) 343-9031 Email: potesta@potesta.com

Project No. 0101-22-0132-001

June 30, 2023 Revised September 29, 2023

POTESTA

TABLE OF CONTENTS

Application for NSR Permit	SECTION I – III
Business Certificate	ATTACHMENT A
Site Location Map	ATTACHMENT B
Installation and Startup Schedule	ATTACHMENT C
Regulatory Discussion	ATTACHMENT D
Plot Plan	ATTACHMENT E
Process Flow Diagram(s)	ATTACHMENT F
Process Description	ATTACHMENT G
Material Safety Data Sheets	ATTACHMENT H
Emissions Units Table	ATTACHMENT I
Emission Points Data Summary Sheet	ATTACHMENT J
Fugitive Emissions Data Summary Sheet	ATTACHMENT K
Emissions Unit Data Sheet(s)	ATTACHMENT L
Air Pollution Control Device(s)	ATTACHMENT M
Supporting Emissions Calculations	ATTACHMENT N
Monitoring/Recordkeeping/Reporting/Testing Plans	ATTACHMENT O
Public Notice	ATTACHMENT P
Business Confidential Claims	ATTACHMENT Q
Confidential Haldor Topsoe Documents	APPENDIX 1
Startup and Emergency Generator Information	APPENDIX 2
Detailed Process Flow Diagrams	APPENDIX 3
Attachments not applicable to this submission: Attachment R, Aut S, Title V Permit Revision Information.	hority Forms and Attachment

Regulation 13 Permit Application – Ammonia Production Facility (0101-22-0132-001), Revised September 29, 2023

SECTION I - III

APPLICATION FOR NSR PERMIT

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/daq	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)			
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION			
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revis (Appendix A, "Title V Permit Revision Flowchart") and ability	FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision Guidance" in order to determine your Title V Revision options (Appendix A, "Title V Permit Revision Flowchart") and ability to operate with the changes requested in this Permit Application.			
Section	I. General			
1. Name of applicant (as registered with the WV Secretary of State's Office): TransGas Development Systems, LLC 2. Federal Employer ID No. (FEIN 20343110				
3. Name of facility (if different from above):	4. The applicant is the:			
Ammonia Production Facility	OWNER OPERATOR BOTH			
5A. Applicant's mailing address:5B. Facility's present physical address:630 First Avenue, Suite 30GRight Fork Bens Creek RoadNew York, New York 10016-3799Wharncliffe, WV				
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? XES □ NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 				
7. If applicant is a subsidiary corporation, please provide the na	ame of parent corporation: No			
8. Does the applicant own, lease, have an option to buy or othe	erwise have control of the proposed site? YES NO			
S If YES , please explain: Applicant has an option on the site with the Mingo County Development Authority.				
If NO, you are not eligible for a permit for this source.				
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Ammonia Production Facility 10. North American Industry Classification System (NAICS) code for the facility: 325311 				
11A. DAQ Plant ID No. (for existing facilities only): 11B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): 059-00102 R13-2791A				
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

12A.

For Modifications, Administrative Updates or present location of the facility from the nearest s	Temporary permits at an existing facility, state road:	please provide directions to the
 For Construction or Relocation permits, please road. Include a MAP as Attachment B. 	se provide directions to the proposed new s	site location from the nearest state
The facility will be located within the proposed Ming Virginia. The site can be accessed from WV Route a onto Right Fork Bens Creek Road. Proceed to near t	go County Development Authority Industri 52 headed toward Gilbert. Turn right onto the top of the hill and turn right into the ent	al Park near Wharncliffe, West Gilbert Creek Road, then right trance.
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
Not Applicable	Wharncliffe	Mingo
12.E. UTM Northing (KM): 4,163.5908	12F. UTM Easting (KM): 418.1564	12G. UTM Zone: 17
13. Briefly describe the proposed change(s) at the far This application is for converting the existing methan	cility: nol-to-gasoline permit to an ammonia prod	luction facility.
14A. Provide the date of anticipated installation or change: 01/01/2024 14B. Date of anticipated Start-Up If this is an After-The-Fact permit application, provide the date upon which the proposed change did happen: 14B. Date of anticipated Start-Up		
14C. Provide a Schedule of the planned Installation application as Attachment C (if more than one	of/ Change to and Start-Up of each of the unit is involved).	units proposed in this permit
 Provide maximum projected Operating Schedu Hours Per Day 7 Days Per Week 	le of activity/activities outlined in this applicative weeks Per Year 52	ation:
16. Is demolition or physical renovation at an existing	g facility involved? YES NO	
17. Risk Management Plans. If this facility is subject changes (for applicability help see www.epa.gov/c	ct to 112(r) of the 1990 CAAA, or will becom ceppo), submit your Risk Management Pla	ne subject due to proposed In (RMP) to U. S. EPA Region III.
18. Regulatory Discussion. List all Federal and Sta	ate air pollution control regulations that you	believe are applicable to the
proposed process (if known). A list of possible app	plicable requirements is also included in Att	achment S of this application
(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this		
information as Attachment D.		
Section II. Additional	attachments and supporting d	ocuments.
 19. Include a check payable to WVDEP – Division of 45CSR13). 	Air Quality with the appropriate application	n fee (per 45CSR22 and
20. Include a Table of Contents as the first page of	your application package.	
 Provide a Plot Plan, e.g. scaled map(s) and/or s source(s) is or is to be located as Attachment E 	ketch(es) showing the location of the prope (Refer to <i>Plot Plan Guidance</i>) .	erty on which the stationary
S Indicate the location of the nearest occupied structure	cture (e.g. church, school, business, reside	nce).
22. Provide a Detailed Process Flow Diagram(s) s device as Attachment F.	howing each proposed or modified emissio	ns unit, emission point and control

23. Provide a Process Description as Attachment G.

Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.			
➡ For chemical processes, provide a MSDS for each compound emitted to the air.			
25. Fill out the Emission Units Table and provide it as Attachment I.			
26. Fill out the Emission Points Data S	ummary Sheet (Table 1 and Tal	ble 2) and provide it as Attachment J.	
27. Fill out the Fugitive Emissions Data	a Summary Sheet and provide it	as Attachment K.	
28. Check all applicable Emissions Uni	it Data Sheets listed below:		
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry	
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage	
Concrete Batch Plant	Incinerator		
Grey Iron and Steel Foundry	Indirect Heat Exchanger	⊠ Storage Tanks	
General Emission Unit, specify Feed Unit, Ammonia Loop Unit, CO2 Remov	Purification, Reformer Sections, al Section.	ATR Section, CO Conversion Section, Nitrogen Wash	
Fill out and provide the Emissions Unit	Data Sheet(s) as Attachment L.		
29. Check all applicable Air Pollution C	control Device Sheets listed belo	W:	
Absorption Systems	Baghouse	⊠ Flare	
Adsorption Systems		Mechanical Collector	
	Electrostatic Precipita	tor Wet Collecting System	
Other Collectors, specify SCR System Fill out and provide the Air Pollution Co	n ntrol Device Sheet(s) as Attach	ment M.	
30. Provide all Supporting Emissions (Items 28 through 31.	Calculations as Attachment N, o	or attach the calculations directly to the forms listed in	
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.			
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.			
32. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general			
circulation in the area where the sou	rce is or will be located (See 45C	SR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>	
Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.			
33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?			
🖾 YES 🗌 NO			
If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.			
Section III. Certification of Information			
34. Authority/Delegation of Authority. Only required when someone other than the responsible official signs the application. Check applicable Authority Form below: Not Required			
Authority of Corporation or Other Business Entity			
Authority of Governmental Agency Authority of Limited Partnership			
Submit completed and signed Authority Form as Attachment R.			
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.			

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE (Please use blue ink)		ATE: <u>GISOIZS</u> (Please use blue ink)
35B. Printed name of signee: Adam Victor		35C. Title: President
35D. E-mail: adam@tgds.com	36E. Phone: (212) 828-0001	36F. FAX: Use Email
36A. Printed name of contact person (if different from above): Same as above		36B. Title:
36C. E-mail:	36D. Phone:	36E. FAX:

 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee
Please mail an original and three (3) copies of the complete address listed on the first page of this	permit application with the signature(s) to the DAQ, Permitting Section, at the sapplication. Please DO NOT fax permit applications.

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:

Forward 1 copy of the application to the Title V Permitting Group and:

For Title V Administrative Amendments:

□ NSR permit writer should notify Title V permit writer of draft permit,

For Title V Minor Modifications:

□ Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

NSR permit writer should notify Title V permit writer of draft permit.

□ For Title V Significant Modifications processed in parallel with NSR Permit revision:

- □ NSR permit writer should notify a Title V permit writer of draft permit,
- □ Public notice should reference both 45CSR13 and Title V permits,

EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

ATTACHMENT A

BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: TRANSGAS DEVELOPMENT SYSTEMS, LLC 630 1ST AVE APT 30G NEW YORK, NY 10016-3799

BUSINESS REGISTRATION ACCOUNT NUMBER: 2218

2218-0756

This certificate is issued on: 06/29/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with W.Va. Code § 11-12.

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued.

This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.1 L1333508864

ATTACHMENT B SITE LOCATION MAP

Potesta & Associates, Inc.

7012 MacCorkle Avenue, SE, Charleston, WV 25304 Phone: (304) 342-1400 Fax: (304) 343-9031 E-Mail: potesta@potesta.com

TransGas Development Systems, LLC Ammonia Production Facility Wharncliffe, West Virginia Project No. 0101-22-0132-001

ATTACHMENT C

INSTALLATION AND STARTUP SCHEDULE

ATTACHMENT C

INSTALLATION AND START UP SCHEDULE

Construction of the facility will begin after receipt of Construction Permit from West Virginia Department of Environmental Protection, Division of Air Quality, and other necessary regulatory approvals on or near January 1, 2024. Operations will commence approximately 12 months after the beginning of construction. There are six identical process trains proposed in this application.

ATTACHMENT D

REGULATORY DISCUSSION

ATTACHMENT D

REGULATORY DISCUSSION

The facility proposed herein, or portions of the facility, may be subject to the following regulations based on a review of potential air quality regulations:

- 1. State Regulations
 - A. 45CSR2 "To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers"
 - B. 45CSR2A "Testing, Monitoring, Recordkeeping and Reporting Requirements Under 45CSR2"
 - C. 45CSR4 "To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors"
 - D. 45CSR7 "To Prevent and Control Particulate Matter Air Pollution from Manufacturing Processes and Associated Operations"
 - E. 45CSR7A "Compliance Test Procedures for 45CSR7 To Prevent and Control Particulate Matter Air Pollution from Manufacturing Process Operations" Provides guidance for complying with the requirements of 45CSR7.
 - F. 45CSR10 "To Prevent and Control Air Pollution from the Emission of Sulfur Oxides"
 - G. 45CSR10A "Testing, Monitoring, Recordkeeping and Reporting Requirements Under 45CSR10"
 - H. 45CSR13 "Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Temporary Permits, General Permits, and Procedures for Evaluation"
 - I. 45CSR16 "Standards of Performance for New Stationary Sources"
 - J. 45CSR20 "Good Engineering Practice as Applies to Stack Heights"
 - K. 45SCR30 "Requirements for Operation Permits"
 - L. 45CSR31 "Confidential Information"

This application contains confidential information. This claim of confidentiality is made in accordance with the requirements of 45CSR31.

2. Federal Regulations

- A. 40CFR60 Subpart A General Provisions
- B. 40CFR60 Subpart Dc Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units
- C. 40CFR60 Subpart JJJJ Standard of Performance for Stationary Spark Ignitiion Internal Combustion Engines
- D. 40CFR60 Standards of Performance for New Stationary Sources Subpart A General Provisions Part 60.18-General Control Device Requirements.

ATTACHMENT E

PLOT PLANS

ATTACHMENT F

PROCESS FLOW DIAGRAM(S)

By Others	By AFE	By Topose	By w/st
			dow

TRANSGAS DEVELOPMENT SYSTEMS, LLC

y Topose tartup-shut down emissions

Process Stream

Emission Stream

ATTACHMENT G

PROCESS DESCRIPTION

ATTACHMENT G

PROCESS DESCRIPTION

Overview

The block flow diagram presents the order of the units throughout the process of ammonia production. This description provides a discussion on the process in detail. Ammonia (NH₃) is one of the most widely produced chemicals in the world. Ammonia is considered as the only carbon-free hydrogen storage compound that can overarch water, energy, and food value chains, while allowing long- and short-term energy storage at lower costs than that of pure hydrogen. Ammonia Haber-Bosch (HB) synthesis is undoubtedly one of the most important chemical breakthroughs in history with current production of NH_3 in excess of 180 million tons per year. Currently, more than 80% of the produced ammonia is used for fertilizers, helping to feed over 70% of the world population. As a result, nearly 50% of the nitrogen found in the human body has passed through the HB process. Ammonia also has promising potential as an energy carrier.

Following the HB process, ammonia is produced from a mixture of hydrogen (H₂) and nitrogen (N₂), where the molar ratio of N₂ to H₂ is approximately 3:1. Besides these two components, trace amounts of inert gases-such as argon (Ar), methane (CH₄), and hydrogen (H₂) in the syngas contribute those to the product.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3 \qquad \Delta H^{298K} = -91.4 \ kJ/mol \tag{1}$$

Figure 1 shows how ammonia can be used as a liquid, anhydrous ammonia (AN), or converted into one of several other products with addition of various acids: Nitric Acid, Sulfuric Acid or Phosphoric Acid. Products include Anhydrous Ammonia (AN) Urea and Urea Ammonium Nitrate

(UAN), Ammonium Nitrate (AN) or Calcium Ammonium Nitrate (CAN).

The main production processes for ammonia synthesis gas currently in operation are:

- Steam reforming of natural gas (SMR) or other light hydrocarbons (Natural Gas Liquids, Liquefied Petroleum Gas, Naphtha),
- Partial oxidation of coal, heavy fuel oil or vacuum residue, and
- Auto thermal reforming of methane.

Currently, the vast majority of large-scale ammonia synthesis plants are coupled to SMR.

TECHNOLOGY SELECTION

For more than 60 years, Topsoe has been one of the main suppliers of catalysts and technology for the ammonia industry. By the introduction of new catalysts, new equipment design, and extensive process optimization studies, Topsoe has contributed significantly to the development of efficient ammonia production technology. Today, approximately 50% of new ammonia plants use Topsoe technology.

Fiaure 2 – Technoloav selection matrix

ATR ASU is fully integrated steam driven Fixed O&M ATR=100%, SMR=115%, SMR/ATR=110% As with the methanol technology selection a matrix (Figure 2) comparing the technologies and providers was completed. The results indicate that an ATR-based ammonia process has a lower Capex and Opex.

There are several vendors of ammonia technology (Figure 3). However, only Topsoe has completed ATR plants. Topsoe pioneered advanced autothermal reforming throughout the 1990s and commercialized the low steam-to-carbon (S/C) ATR technology in 2002.

-		-		
Technology Provider		Topsoe	KBR	UHDE
	SMR	+	+	+
Prontend technologies	ATR	+		
Proposed for 5200 MTPD		ATR	SMR + KRES + SR	SMR +SR
	PDP	Yes, Denmark	Yes, US	Yes, Germany
Engineering services	EPC	Contractor, Flexible	Contractor, Flexible	Contractor, Flexible
Catalyst sourcing		In-House	JM	JM or Clariant
Industrial availables (F300 MTDD)	Frontend	6	0	0
industrial experience (S200 MTPD)	Backend	1	0	0

Figure 3 – Vendor selection matrix

PROCESS LAYOUT

The Topsoe SynCOR Ammonia[™] process enables a large single train capacity. The Capex saving come in part due to the elimination of the SMR but also from creative engineering of the ammonia synthesis processes that eliminates several sections in traditional plant design. The design provides sufficient steam to power itself with excess for export. The plant has two principal processes divided into sub processes process sections (Figure 4).

A. Syngas generation

- 1. Desulfurization section
- 2. Reforming section
- B. Ammonia production
 - 3. Syngas conditioning
 - 4. Ammonia synthesis section
 - 5. Ammonia cooling/refrigeration section

Figure 4 - Block Flow Diagram

TECHNICAL DESCRIPTION & ANALYSIS

These discussions are relevant for all plants from 3,000 to 6,000 MTPD. The difference between a grey ammonia plant (Figure 5) and a Blue Ammonia plant (Figure 6) can be seen in the following two process flow diagrams (PFD).

Diagram

Figure 6 - Blue Ammonia Process Flow Diagram

Note that in the Blue Ammonia process, as with Blue Methanol, a hydrogen stream is produced in a water gas shift (WGS) and routed to the preheater to replace natural gas used to preheat the feedstock. This eliminates the CO_2 emissions from the preheater, which is the primary source of emission from the facility.

However, in the case of ammonia, the WGS is already an integral part of the process thus it is simply a matter of resizing the equipment and producing extra carbon monoxide (CO) required.

1. DESULFURIZATION SECTION

The process is based on utilizing 100% methane as feedstock. In the desulfurization section any sulfur and other impurities are removed from the methane via a hydrogenation step where sulfur components are converted to

saturated hydrocarbon and hydrogen sulfide over a Topsoe hydrogenation catalyst bed. Thereafter the hydrogen sulfide is absorbed in a sulfur absorber loaded with Topsoe sulfur absorption catalyst. The feed is also preheated.

2. **REFORMING SECTION**

SynCOR[™] is not a new development. Topsoe has designed ATRs for many years. The first ATR was installed in an ammonia plant in 1958.

Since then, the SynCOR™ technology has been found useful in many different types of process plants such as gas-

to-liquids (GTL) plants, methanol plants, and for various synthesis gas applications. This means that the knowledge and experience from these technologies can advantageously be transferred and used also for designing very large ammonia plants.

Figure 7 illustrates how the purified natural gas is mixed with steam to the required steam to carbon ratio before being routed to an adiabatic pre-reformer loaded with Topsoe pre-reformer catalyst. In the prereformer, all higher hydrocarbons are converted into a mixture of hydrogen, carbon monoxide, carbon dioxide, and methane by the steam reforming and water gas shift reactions. The pre-reformed natural gas and steam together with a mixture of steam and high purity oxygen enters the Cool Tip Swirler (CTS) burner at the top of the autothermal reformer.

Exothermic reactions occur within the combustion zone and catalytic zone whereby the overall hydrocarbon reforming occurs.

Figure 7 - Topsoe SynCOR™ Reformer

Combustion zone

 $CH_4 + \frac{1}{2}O_2 \rightleftharpoons CO + 2H_2O$ $\Delta H^{249K} = -890.32 \text{ kJ/mol}$

$$\Delta H^{249K} = -890.32 \text{ kJ/mol}$$
 (2)

Thermal and catalytic zones

$CH_4+H_2O \rightleftharpoons CO+3H_2$	$\Delta H^{249K} = 206.13 \text{ kJ/mol}$	(3)
$CO + H_2O \rightleftharpoons CO_2 + H_2$	$\Delta H^{249K} = -41.15 \text{ kJ/mol}$	(4)

A critical parameter for satisfactory autothermal reformer performance is efficient mixing of the process gas and air or oxygen. Uneven mixing can result in large temperature variations above and into the catalyst bed, causing variations in the degree of methane reforming achieved and often yielding a poor overall approach to reforming equilibrium, even with a highly active secondary reforming catalyst. The efficiency of gas mixing is primarily a function of the burner design. In addition to causing inefficient gas mixing, a poorly designed burner can damage the vessel walls, refractory or even the burner itself due to impingement of hot gas and/or flame in these areas.

In autothermal and oxygen-blown reformers, the enriched air or oxygen is typically supplied at high pressures, thereby allowing for the possibility of a higher pressure drop across the reactor burner. For these services, Topsoe uses the CTS burner (Figure 8).

Figure 9 - Temperature distribution and the velocity profiles

Figure 8 – Topsoe CTS

Figure 9 illustrates a Computational Fluid Dynamics (CFD) profile of a CTS burner, showing the maintenance of low temperatures at the vessel walls and an efficient gas circulation pattern, thereby producing optimal mixing and minimizing reactor damage.

A critical attribute of the SynCORTM is its low steam to carbon ratio (S/C) enabled this through the development and commercialization of its high temperature shift catalyst, SK-501 FlexTM. The conventional SMR based plants operate at S/C ratio around 3 while a SynCOR AmmoniaTM plant operates at S/C ratio around 0.6. Consequently, steam throughput decreases by 80% enabling significantly reduced pipe and equipment sizes not only in the frontend (reforming, shift, and CO₂ removal sections), but also in the backend (ammonia synthesis section) including a smaller synthesis gas compressor/recirculation, ammonia converter, and high-pressure heat exchangers.

Waste heat from the synthesis gas is used to produce steam for internal consumption as well as for electricity generation. In the SynCOR Blue AmmoniaTM process enough steam is generated to provide the electricity requirements for the air separation unit (ASU) and ISBL motors under normal operating conditions.

The process gas waste heat boiler (WHB) is a critical piece of equipment cooling the hot synthesis gas exiting the SynCOR reformer. The heat from the process gas is utilized to generate high-pressure and high-quality steam for the process and to drive turbines. The Topsoe WHB is based on a thin flexible tube sheet combined with a unique

thermal protection of the tube sheet, the tube-to-tube sheet weld, and the tube inlet. This protection is essential to avoid long-term degradation of the boiler from high temperatures and highly corrosive gases.

- The WHB ensures a high degree of heat recovery producing valuable steam, and
- Topsoe's internal bypass systems are designed to give optimum temperature control, ensuring uniform gas temperatures and to avoid metal dusting corrosion issues.

To close the steam balance of an integrated ammonia plant, the process gas leaves the process gas waste heat boiler (WHB) at a higher temperature and uses the remaining heat for steam superheating. The loop steam superheater (SSH) cannot be viewed separately. The performance in terms of operability and reliability depends on the WHB, the temperature control of the process gas after the WHB as well as the loop SSH itself – and the Topsoe proprietary steam superheater design takes these factors into consideration. In addition, a loop steam superheater replaces a fired heater. This not only reduces emissions it better utilizes energy in the process gases.

The temperature control and the uniformity of the process gas entering the SSH are of utmost importance. The Topsoe loop SSH is designed to secure proper mixing of the process gas so that no local high-temperature zones can exist and thereby the loop SSH is well protected from metal dusting attack.

Figure 10 – Loop Steam Superheater

3. SYNGAS CONDITIONING FOR AMMONIA PRODUCTION

At the foreseen outlet temperature from the SynCOR reformer, the gas is in equilibrium with respect to the steam reforming and water shift reactions favoring low CH₄ slip as well as high carbon monoxide (CO) content. The shift reaction takes place in the two adiabatic shift converters, both loaded with Topsoe's shift catalyst. In the shift section the CO is reduced to carbon dioxide (CO₂) and the hydrogen (H₂) content is increased. The CO₂ is removed in a carbon dioxide removal system, and for this purpose an OASE process by BASF is applied. The CO₂ can be compressed for sequestration or for alternative use.

The conventional plant based on tubular reforming has a shift section containing a high-temperature shift step followed by a low-temperature shift step. A standard high-temperature shift uses a Fe/Cr based catalyst that cannot operate at S/C ratio below 2.6. To overcome this limitation, Topsoe installed the first charge of SK-501 FlexTM in an industrial plant in 2014.

SynCOR Ammonia[™] uses two high temperature shift reactors in series, a nitrogen wash to remove the CO, and recycling of shift by-products has resulted in numerous benefits such as byproduct formation being reduced close to zero. Several conventional process steps such as methanation, purge gas recovery, ammonia absorption and hydrogen recovery become obsolete, thus resulting in less need of compressor/recycle power and significantly reduced sizes of high-pressure equipment and piping.

In typical ammonia plants, the iron based high temperature shift catalyst sets the minimum allowable S/C ratio for the shift section. When the S/C ratio is lowered to 0.6, three factors limit the shift section— the required water content to perform the shift reaction, the acceptable CO slip, and the formation of by-products. The SK-501 FlexTM in itself is a game changer, based on promoted zinc-aluminum oxide spinel, which can operate at very low S/C ratios at typical high temperature shift conditions, but without risk of mechanical integrity or by-products associated with a Fe/Cr catalyst.¹ This catalyst enables a shift section that perfectly matches the S/C ratio of 0.6 in the SynCOR Ammonia design.

Figure 11 - Nitrogen wash

In conventional plant designs, the slip of CO is converted to

methane in a downstream methanator. This methane goes to the ammonia synthesis loop where it acts as an inert and it builds up if not purged out. A high content of inert requires a high rate of purge gas. When ammonia has been washed out, the purge gas is used as fuel in the tubular reformer. The Blue Ammonia plant avoids the need to create methane or to combust it.

The CH₄ comes from side reactions, not pass-through:

$$CO + 3H_2 \rightleftharpoons CH_4 + H_2O \qquad \Delta H^{239K} = -206.1 \text{ kJ/mol}$$
(5)

$$CO_2 + 4H_2 \rightleftharpoons CH_4 + 2H_2O \qquad \Delta H^{239K} = -890.7 \text{kJ/mol}$$
(6)

As these reactions consume H_2 , obviously the design objective is to minimize these reactions by controlling pressure and temperature.

At the inlet to shift section there is 13.8 mole percent CO. The Topsoe design uses two high temperature shift reactors with purpose-built catalyst. The result is a high conversion rate that avoids carbon formation following the reverse Boudouard reaction:

$$2CO \rightleftharpoons CO_2 + C$$
 $\Delta H^{239K} = 200 \text{ kJ/mol}$ (7)

This reaction is avoided by maintaining temp above 721°C where the reaction rate is too slow to allow formation before the desired shift reaction occurs.

The synthesis gas is introduced to a nitrogen (N_2) wash in order to correct the H_2/N_2 ratio to the required 3:1 and further, it aids in the removal of inert gases, thus resulting in the synthesis gas entering the ammonia loop being inert-free.

In the SynCOR AmmoniaTM plant, a nitrogen wash replaces the conventional steps for methanation, ammonia wash, and hydrogen recovery. The nitrogen wash removes both the slip of CO from the shift section and the CH_4 slip from the reforming section.

¹ The SK-501 FlexTM catalyst provides the plant with other benefits due to its complete absence of chromium, most notably the highly toxic hexavalent chromium found in iron-based HTS catalysts in the market. With SK-501 Flex, plants avoid the potential risk that hexavalent chromium poses to personnel safety and to the environment during product handling and during operation.

This design generates an inert-free synthesis gas, which provides benefits in terms of less need of compressor/recycle power and significantly reduced sizes of high-pressure equipment and piping.

The inert containing stream is routed to the fired heater in order to drive the combustion process as a low carbon content fuel gas stream.

After the shift section, by-products will be partly condensed out together with the process condensate. The process condensate and washing water, which contains the by-products from the shift, flows to a process condensate stripper, where practically all shift by-products are stripped off. This has several advantages:

- The main by-product formation is by equilibrium reactions. Adding an equilibrium byproduct component to the feed of an equilibrium byproduct generator, such as a shift reactor, will stop further formation of that component. The main shift by-product, methanol, is formed by an equilibrium reaction.
- Dissolved synthesis gas in the process condensate returns to the process.
- The stripper steam will increase the S/C in the shift section.

The CO₂ is removed using the OASE process by BASF. CO₂ is removed by absorption in the hot aqueous potassium carbonates solution containing a \approx 30 wt% potassium carbonate (K₂CO₃) partly converted into bicarbonate (KHCO₃). The solution further contains activators, glycine, diethanolamine (DEA), and vanadium oxides as corrosion inhibitor. The reason for keeping the solution hot is to increase the rate of absorption and keep the bicarbonate dissolved. Another advantage is that the temperature is approximately the same in the absorber and in the regenerators, keeping the boiling point temperature of the solution at the pressure prevailing in each of the two regenerators. Thus, it is not necessary to supply heat to the solution before the regeneration. The important point is that the purified gas has very low CO₂ slippage (about 0.03 wt% dry CO₂).

4. AMMONIA SYNTHESIS SECTION

In ammonia synthesis, Topsoe uses its updated version of the radial flow converter – the S-300. The S-300 radial flow converters are proven by more than 50 installations worldwide, making it the benchmark within the ammonia industry today.

The S-300 converter features three radial flow catalyst beds and two interbed heat exchangers. In the S-300 converter, the catalyst volume can be reduced by approximately 20% compared with the previous version for the same ammonia conversion.

The synthesis gas is compressed and mixed with circulating synthesis gas from the ammonia loop recycle compressor, before being preheated and fed to the ammonia converter. In the ammonia converter, the hydrogen and nitrogen are converted into ammonia according to reaction (1).

$$N_2 + 3 H_2 \rightleftharpoons 2 NH_3$$
 $\Delta H^{298K} = -48.561 \text{ kJ/mol}$ (8)

SynCOR Ammonia[™] plants also benefit from an inert-free ammonia synthesis, with the required nitrogen admitted just upstream of the ammonia synthesis section, whereas the conventional plant introduces the nitrogen in the reforming section.

The ammonia converter is a three-catalyst bed converter with radial flow through the catalyst beds. Between each of the catalyst beds, an interbed heat exchanger is installed and the interbed heat exchangers serve the purpose of removing the reaction heat prior to entering the next catalyst bed. This is necessary, as the ammonia synthesis reaction is an equilibrium reaction favored by low temperatures. However, since the reaction velocity is favored by high temperatures, the actual operating temperatures are based on a compromise.

The ammonia synthesis loop is an inert free loop, and this means that the content of dissolved inert gases like methane and noble gases are so low that a purge system including a hydrogen recovery section is not needed.

Topsoe's ammonia synthesis technology is based on radial flow converters where the synthesis of ammonia from hydrogen and nitrogen takes place. Topsoe pioneered the technology with the installation of the first radial flow converters in the 1960s. Since then, continuous development has resulted in a comprehensive portfolio of radial flow converter designs to meet the multifaceted requirements in the industry.

- 100% radial flow through the catalyst beds to obtain low pressure and high conversion with a small size catalyst particle,
- Indirect cooling of the gas in the heat exchangers between the catalyst beds instead of quenching, to avoid dilution of the converted gas,
- Total converter feed flow passes through all beds fully utilizing the total installed catalyst volume,
- Stable operation with great flexibility in operating range, and
- Simple temperature control.

At startup the converter must be preheated. Traditionally this has been done with natural gas heaters. Topsoe's electrical start-up heater provides with a safe, quick, and energy-efficient solution to the start-up. Compared to conventional gas-fired heaters, the Topsoe electrical heater offers compact, safe, remotely controlled, and quick start-up of an ammonia plant. Intrinsically safe for hazardous areas with pressurized terminal boxes, with no explosion hazard. The S-300 heater has a hairpin-type arrangement, located inside the converter, allowing the heat duty to be 50% lower than an external arrangement.

5. AMMONIA COOLING/REFRIGERATION SECTION

The synthesis gas leaving the ammonia converter is cooled, and the ammonia is condensed in the loop air cooler and the subsequent ammonia chiller (Figure 13). The liquid ammonia is separated from the synthesis gas in the ammonia separator and the ammonia is treated further in the ammonia refrigeration section.

The ammonia refrigeration section:

- Generates the low temperatures needed to condense the produced ammonia
- Cools the product ammonia
- Removes some of the dissolved inert gases from the ammonia

Figure 13 - Ammonia Loop Process Layout

The layout of the ammonia refrigeration section is as shown in figure 14 hereunder.

The section comprises a compressor part, an accumulator and two ammonia chillers. The inerts present in the liquid ammonia are removed by flashing in the accumulator and the ammonia is recovered.

The product ammonia is delivered at battery limit at -32° C with a composition of:

-	H_2	0.06%
-	CH_4	0.03%
-	N_2	0.02%
-	Ar	64 ppm

Figure 14 - Ammonia Refrigeration Process Layout

AMMONIA HANDLING

Liquefied ammonia from production plants is either used directly in downstream plants or transferred to storage tanks. From these the ammonia can be transferred to road tankers, rail tank cars, or ships. Ammonia is usually stored by using one or other of three methods:

- Refrigerated storage in large tanks with a typical capacity of 10,000 tons (up to 50,000)

Emissions during normal operation are negligible. Major leaks of ammonia from storage tanks are almost unknown, with most of the leaks which do occur being during transport or transfer. A well designed, constructed, operated, and maintained installation has a very low probability of an ammonia leak of hazardous proportions.

STORAGE TANKS

Anhydrous ammonia is stored in three types of tanks as outlined below:

- Fully refrigerated at a temperature of about -33°C, these tanks are provided with refrigeration equipment
- Non-refrigerated tanks in which the ammonia is stored at ambient temperature
- Semi-refrigerated spheres

Refrigerated storage is preferred for storage of large quantities of liquid ammonia. The initial release of ammonia in the case of a line or tank failure is much slower than with pressurized ammonia.

There are several construction types for the storage of refrigerated liquid products. The most important types are:

- Single containment: a single-wall insulated tank, normally with a containment bund around it.
- Double containment: this type of storage tank has two vertical walls, both of which are designed to contain the stored amount of liquid and withstand the hydrostatic pressure of the liquid. The roof rests on the inner wall.
- Full containment: the two walls of this closed storage tank are also designed to contain the stored amount of liquid, but in this case the roof rests on the outer wall.

The tank must be constructed in conformity with an agreed code for the construction of pressure vessels or storage tanks, taking account of its pressure and operating temperature. The design and materials of construction of the tank should be checked by consulting an appropriate national standard. These could make demands on the blast resistance of storage tanks in some cases.

The storage tank must be safeguarded against high pressure, and in the case of refrigerated liquid ammonia, also against a pressure below the minimum design pressure. The ingress of warm ammonia into cold ammonia must be avoided to eliminate risk of excessive evaporation and the "roll-over" phenomenon. All storage tanks should be equipped with two independent level indicators, each having a high-level alarm.

An automatic cut-off valve, operated by a very high-level alarm instrument, should be installed on the feeding line.

In cases of refrigerated liquid ammonia, storage tanks must be equipped with a recompression installation to liquefy the boil-off. There should be at least two refrigeration units to allow proper maintenance and to prevent the emission of ammonia via the relief valves. Furthermore, an installed

ATTACHMENT H

MATERIAL SAFETY DATA SHEETS

SAFETY DATA SHEET

Ammonia

Section 1. Identification

GHS product identifier	: Ammonia
Chemical name	: ammonia
Other means of identification	: ammonia; anhydrous ammonia
Product type	: Gas.
Product use	: Synthetic/Analytical chemistry.
Synonym SDS # Supplier's details	 ammonia; anhydrous ammonia 001003 Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100
	Radnor, PA 19087-5283 1-610-687-5253
24-hour telephone	: 1-866-734-3438

Section 2 Hazards identification

Section 2. nazaru	Sidentification
OSHA/HCS status	: This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).
Classification of the substance or mixture	: FLAMMABLE GASES - Category 2 GASES UNDER PRESSURE - Liquefied gas ACUTE TOXICITY (inhalation) - Category 4 SKIN CORROSION - Category 1 SERIOUS EYE DAMAGE - Category 1 AQUATIC HAZARD (ACUTE) - Category 1
GHS label elements	
Hazard pictograms	
Signal word	: Danger
Hazard statements	 Flammable gas. May form explosive mixtures with air. Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation. Harmful if inhaled. Causes severe skin burns and eye damage. Very toxic to aquatic life.
Precautionary statements	
General	: Read and follow all Safety Data Sheets (SDS'S) before use. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Always keep container in upright position. Approach suspected leak area with caution.
Prevention	: Wear protective gloves. Wear eye or face protection. Wear protective clothing. Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Use only outdoors or in a well-ventilated area. Avoid release to the environment. Avoid breathing gas. Wash hands thoroughly after handling.

Section 2. Hazards identification

Response	: Collect spillage. IF INHALED: Remove person to fresh air and keep comfortable for breathing. Immediately call a POISON CENTER or physician. IF SWALLOWED: Immediately call a POISON CENTER or physician. Rinse mouth. Do NOT induce vomiting. IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water or shower. Wash contaminated clothing before reuse. Immediately call a POISON CENTER or physician. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a POISON CENTER or physician. Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.
Storage	: Store locked up. Protect from sunlight. Store in a well-ventilated place.
Disposal	 Dispose of contents and container in accordance with all local, regional, national and international regulations.
Hazards not otherwise classified	: In addition to any other important health or physical hazards, this product may displace oxygen and cause rapid suffocation.

Section 3. Composition/information on ingredients

Substance/mixture	: Substance	
Chemical name	: ammonia	
Other means of identification	: ammonia; anhydrous ammonia	l
Product code	: 001003	

CAS number/other identifiers

CAS number	: 7664-41-7		
Ingredient name		%	CAS number
ammonia		100	7664-41-7

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section.

Occupational exposure limits, if available, are listed in Section 8.

Section 4. First aid measures

Description of necessary first aid measures

Eye contact	: Immedi eyelids. minutes. center im	ately flush eyes with plenty of Check for and remove any of Get medical attention imm mediately.Chemical burns r	of water, occasionally contact lenses. Cont nediately. Call media nust be treated prom	y lifting the uppe inue to rinse for cal doctor or poi aptly by a physic	er and lowe at least 10 son contro cian.	:r) 1
Inhalation	: Remove victim to fresh air and keep at rest in a position comfortable for breathin is suspected that fumes are still present, the rescuer should wear an appropriate or self-contained breathing apparatus. If not breathing, if breathing is irregular or respiratory arrest occurs, provide artificial respiration or oxygen by trained person may be dangerous to the person providing aid to give mouth-to-mouth resuscitat unconscious, place in recovery position and get medical attention immediately. I an open airway. Loosen tight clothing such as a collar, tie, belt or waistband. Ge medical attention immediately. Call medical doctor or poison control center imm In case of inhalation of decomposition products in a fire, symptoms may be delay The exposed person may need to be kept under medical surveillance for 48 hou				breathing. propriate m egular or if d personne suscitation iately. Mai and. Get ter immedi be delayed 48 hours.	 If it mask if nel. It on. If laintain t ediately. ed. s.
Skin contact	: Flush cou shoes. T clothing t minutes. center im clothing t	ntaminated skin with plenty o avoid the risk of static dis horoughly with water before Get medical attention imme mediately. Chemical burns before reuse. Clean shoes	of water. Remove co charges and gas ign removing it. Contin- ediately. Call medica must be treated pro choroughly before reu	ontaminated clo ition, soak conta ue to rinse for a al doctor or pois mptly by a phys use.	thing and aminated t least 10 on control ician. Was	sh
Ingestion	: As this p	roduct is a gas, refer to the	nhalation section.			
Date of issue/Date of revision	: 1/10/2019	Date of previous issue	: 10/9/2018	Version	: 1.09	2/12

Section 4. First aid measures

Most important symptoms/e	, acute and delayed	
Potential acute health effect		
Eye contact	auses serious eye damage.	
Inhalation	larmful if inhaled.	
Skin contact	auses severe burns.	
Frostbite	ry to warm up the frozen tissues and seek medical attention.	
Ingestion	s this product is a gas, refer to the inhalation section.	
Over-exposure signs/symp		
Eye contact	dverse symptoms may include the following:, pain, watering, redness	
Inhalation	lo specific data.	
Skin contact	dverse symptoms may include the following:, pain or irritation, redness, blistering m ccur	ay
Ingestion	dverse symptoms may include the following:, stomach pains	
Indication of immediate med	ttention and special treatment needed, if necessary	
Notes to physician	n case of inhalation of decomposition products in a fire, symptoms may be delayed. he exposed person may need to be kept under medical surveillance for 48 hours.	
Specific treatments	lo specific treatment.	
Protection of first-aiders	lo action shall be taken involving any personal risk or without suitable training. If it is uspected that fumes are still present, the rescuer should wear an appropriate mask elf-contained breathing apparatus. It may be dangerous to the person providing aid ive mouth-to-mouth resuscitation. Wash contaminated clothing thoroughly with wate efore removing it, or wear gloves.	s or to er

See toxicological information (Section 11)

Section 5. Fire-fighting measures

Extinguishing media	
Suitable extinguishing media	: Use an extinguishing agent suitable for the surrounding fire.
Unsuitable extinguishing media	: None known.
Specific hazards arising from the chemical	: Contains gas under pressure. Flammable gas. In a fire or if heated, a pressure increase will occur and the container may burst, with the risk of a subsequent explosion. This material is very toxic to aquatic life. Fire water contaminated with this material must be contained and prevented from being discharged to any waterway, sewer or drain.
Hazardous thermal decomposition products	: Decomposition products may include the following materials: nitrogen oxides
Special protective actions for fire-fighters	: Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training. Contact supplier immediately for specialist advice. Move containers from fire area if this can be done without risk. Use water spray to keep fire-exposed containers cool. If involved in fire, shut off flow immediately if it can be done without risk. If this is impossible, withdraw from area and allow fire to burn. Fight fire from protected location or maximum possible distance. Eliminate all ignition sources if safe to do so.
Special protective equipment for fire-fighters	: Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

Section 6. Accidental release measures

Personal precautions, protect	tiv	e equipment and emergency procedures
For non-emergency personnel	:	Accidental releases pose a serious fire or explosion hazard. No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Shut off all ignition sources. No flares, smoking or flames in hazard area. Do not breathe gas. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment.
For emergency responders	:	If specialized clothing is required to deal with the spillage, take note of any information in Section 8 on suitable and unsuitable materials. See also the information in "For non-emergency personnel".
Environmental precautions	:	Ensure emergency procedures to deal with accidental gas releases are in place to avoid contamination of the environment. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air). Water polluting material. May be harmful to the environment if released in large quantities. Collect spillage.
Methods and materials for co	nt	ainment and cleaning up
Small spill		Immediately contact emergency personnel. Stop leak if without risk. Use spark-proof

Small spill	Immediately contact emergency personnel. Stop leak if without ri tools and explosion-proof equipment.	 Use spark-proof
Large spill	Immediately contact emergency personnel. Stop leak if without ri tools and explosion-proof equipment. Note: see Section 1 for em information and Section 13 for waste disposal.	sk. Use spark-proof ergency contact

Section 7. Handling and storage

Precautions for safe handling

Protective measures	:	Put on appropriate personal protective equipment (see Section 8). Contains gas under pressure. Do not get in eyes or on skin or clothing. Do not breathe gas. Avoid release to the environment. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Do not enter storage areas and confined spaces unless adequately ventilated. Store and use away from heat, sparks, open flame or any other ignition source. Empty containers retain product residue and can be hazardous. Do not puncture or incinerate container. Use equipment rated for cylinder pressure. Close valve after each use and when empty. Protect cylinders from physical damage; do not drag, roll, slide, or drop. Use a suitable hand truck for cylinder movement.
Advice on general occupational hygiene	:	Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated clothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures.
Conditions for safe storage, including any incompatibilities	:	Store in accordance with local regulations. Store in a segregated and approved area. Store away from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10). Store locked up. Eliminate all ignition sources. Keep container tightly closed and sealed until ready for use. Cylinders should be stored upright, with valve protection cap in place, and firmly secured to prevent falling or being knocked over. Cylinder temperatures should not exceed 52 °C (125 °F). Refer to ANSI/CGA G-2.1, Section 5.13 for electrical classification of anhydrous ammonia storage and handling areas. Where anhydrous ammonia is stored indoors, use electrical (ventilating, lighting and material handling) equipment with the appropriate electrical classification rating and use only non-sparking tools.

Section 8. Exposure controls/personal protection

Control parameters

Occupational exposure limits

Ingredient name		Exposure limits	
ammonia		California PEL fr Table AC-1) (Un PEL: 25 ppm 8 STEL: 35 ppm 7 ACGIH TLV (Uni TWA: 25 ppm 8 TWA: 17 mg/m ³ STEL: 35 ppm 7 STEL: 24 mg/m OSHA PEL 1989 STEL: 35 ppm 7 STEL: 27 mg/m NIOSH REL (Uni TWA: 18 mg/m ³ STEL: 35 ppm 7 STEL: 35 ppm 7 STEL: 35 ppm 7 STEL: 35 ppm 7 STEL: 27 mg/m OSHA PEL (Unit TWA: 50 ppm 8 TWA: 35 mg/m ³	or Chemical Contaminants (ited States). hours. 15 minutes. ted States, 3/2017). hours. 8 hours. 15 minutes. 3 15 minutes. 3 15 minutes. 3 15 minutes. 3 15 minutes. 3 15 minutes. 3 10 hours. 5 minutes. 3 10 hours. 5 minutes. 3 15 minutes. 3 15 minutes. 3 15 minutes. 3 15 minutes. 3 16 hours. 5 minutes. 3 16 hours. 5 minutes. 3 17 minutes. 3 18 minutes. 3 18 minutes. 3 19 minutes. 3 19 minutes. 3 19 minutes. 3 10 hours. 3 11 minutes. 3 15 minutes. 3 16 minutes. 3 17 minutes. 3 18 minutes. 3 18 minutes. 3 18 minutes. 3 19 minutes. 3 19 minutes. 3 19 minutes. 3 10 hours. 3 10 hours.
Appropriate engineering controls	: Use only with adequate ventilation other engineering controls to kee recommended or statutory limits. vapor or dust concentrations belo ventilation equipment.	n. Use process enclosur p worker exposure to airb The engineering control w any lower explosive lin	es, local exhaust ventilation or borne contaminants below any s also need to keep gas, nits. Use explosion-proof
Environmental exposure controls	: Emissions from ventilation or wor they comply with the requirement cases, fume scrubbers, filters or will be necessary to reduce emiss	k process equipment sho s of environmental protect engineering modifications sions to acceptable levels	ould be checked to ensure ction legislation. In some to the process equipment s.
Individual protection meas	<u>sures</u>		
Hygiene measures	: Wash hands, forearms and face eating, smoking and using the law Appropriate techniques should be Wash contaminated clothing befor showers are close to the worksta	thoroughly after handling vatory and at the end of the used to remove potentia ore reusing. Ensure that tion location.	chemical products, before ne working period. ally contaminated clothing. eyewash stations and safety
Eye/face protection	: Safety eyewear complying with an assessment indicates this is nece gases or dusts. If contact is poss the assessment indicates a higher or face shield. If inhalation hazar	n approved standard sho essary to avoid exposure sible, the following protect er degree of protection: c ds exist, a full-face respir	uld be used when a risk to liquid splashes, mists, tion should be worn, unless hemical splash goggles and/ ator may be required instead.
Skin protection			
Hand protection	: Chemical-resistant, impervious gl worn at all times when handling c necessary. Considering the para during use that the gloves are stil noted that the time to breakthroug glove manufacturers. In the case protection time of the gloves can	loves complying with an a chemical products if a risk meters specified by the g I retaining their protective gh for any glove material of mixtures, consisting c not be accurately estimate	approved standard should be assessment indicates this is love manufacturer, check properties. It should be may be different for different of several substances, the ed.
Body protection	: Personal protective equipment fo performed and the risks involved handling this product. When ther static protective clothing. For the should include anti-static overalls	r the body should be sele and should be approved re is a risk of ignition from greatest protection from , boots and gloves.	ected based on the task being by a specialist before a static electricity, wear anti- static discharges, clothing
Date of issue/Date of revision	: 1/10/2019 Date of previous issue	: 10/9/2018	Version : 1.09 5/12

Date of issue/Date of revision : 1/10/2019 :10/9/2018 Version : 1.09 Date of previous issue

Section 8. Exposure controls/personal protection

Other skin protection	: Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.
Respiratory protection	: Based on the hazard and potential for exposure, select a respirator that meets the appropriate standard or certification. Respirators must be used according to a respiratory protection program to ensure proper fitting, training, and other important aspects of use. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator.

Section 9. Physical and chemical properties

<u>Appearance</u>	
Physical state	: Gas. [Compressed gas.]
Color	: Colorless.
Odor	: Pungent.
Odor threshold	: Not available.
рН	: Approx. 11.6
Melting point	: -77.7°C (-107.9°F)
Boiling point	: -33°C (-27.4°F)
Critical temperature	: 132.85°C (271.1°F)
Flash point	: Not available.
Evaporation rate	: Not available.
Flammability (solid, gas)	: Extremely flammable in the presence of the following materials or conditions: oxidizing materials.
Lower and upper explosive (flammable) limits	: Lower: 16% Upper: 25%
Vapor pressure	: 114.1 (psig)
Vapor density	: 0.59 (Air = 1)
Specific Volume (ft ³ /lb)	: 20.79
Gas Density (lb/ft ³)	: 0.0481 (32°C / 89.6 to °F)
Relative density	: SPECIFIC GRAVITY (AIR=1): @ 70°F (21.1°C) = 0.59
Solubility	: Soluble in water. Soluble in alcohol and ether.
Solubility in water	: 540 g/l
Partition coefficient: n- octanol/water	: Not available.
Auto-ignition temperature	: 651°C (1203.8°F)
Decomposition temperature	: Not available.
Viscosity	: Not applicable.
Flow time (ISO 2431)	: Not available.
Molecular weight	: 17.03 g/mole
Aerosol product	
Heat of combustion	: -18589392 J/kg

Section 10. Stability and reactivity

Reactivity	: No specif	ic test data related to react	tivity available for thi	s product or its ingredients	3.
Chemical stability	: The prod	uct is stable.			
Possibility of hazardous reactions	: Under no	rmal conditions of storage	and use, hazardous	reactions will not occur.	
Conditions to avoid	: Avoid all braze, so	possible sources of ignitior lder, drill, grind or expose o	n (spark or flame). E containers to heat or	Do not pressurize, cut, weld sources of ignition.	d,
Date of issue/Date of revision	: 1/10/2019	Date of previous issue	: 10/9/2018	Version : 1.09	6/12

Section 10. Stability and reactivity

Incompatible materials	:	Oxidizers and Yellow Metals (brass & copper)
Hazardous decomposition products	:	Under normal conditions of storage and use, hazardous decomposition products should not be produced.

Hazardous polymerization : Under normal conditions of storage and use, hazardous polymerization will not occur.

Section 11. Toxicological information

Information on toxicological effects

Acute toxicity

Product/ingredient name	Result	Species	Dose	Exposure
ammonia	LC50 Inhalation Gas.	Rat	7338 ppm	1 hours

Irritation/Corrosion

Not available.

Sensitization

Not available.

Mutagenicity

Not available.

Carcinogenicity

Not available.

Reproductive toxicity

Not available.

Teratogenicity

Not available.

Specific target organ toxicity (single exposure)

Not available.

Specific target organ toxicity (repeated exposure)

Not available.

Aspiration hazard

Not available.

Information on the likely : Not available. routes of exposure

Potential acute health effects

Eye contact: Causes serious eye damage.Inhalation: Harmful if inhaled.Skin contact: Causes severe burns.Ingestion: As this product is a gas, refer to the inhalation section.

Symptoms related to the physical, chemical and toxicological characteristics

Date of issue/Date of revision	: 1/10/2019	Date of previous issue	: 10/9/2018	Version	: 1.09	7/12
Skin contact	: Adverse s occur	symptoms may include the	following:, pain or irr	itation, redness	s, blisterin	ig may
Inhalation	: No specif	ic data.				
Eye contact	: Adverse s	symptoms may include the	following:, pain, wate	ering, redness		

Section 11. Toxicological information

Ingestion

: Adverse symptoms may include the following:, stomach pains

Delayed and immediate effect	ts	and also chronic effects from short and long term exposure
Short term exposure		
Potential immediate effects	:	Not available.
Potential delayed effects	1	Not available.
Long term exposure		
Potential immediate effects	1	Not available.
Potential delayed effects	:	Not available.
Potential chronic health effe	ect	<u>s</u>
Not available.		
General	:	No known significant effects or critical hazards.
Carcinogenicity	1	No known significant effects or critical hazards.
Mutagenicity	:	No known significant effects or critical hazards.
Teratogenicity	1	No known significant effects or critical hazards.
Developmental effects	1	No known significant effects or critical hazards.
Fertility effects	1	No known significant effects or critical hazards.

Numerical measures of toxicity

Acute toxicity estimates Not available.

Other information

: IDLH : 300 ppm

Section 12. Ecological information

T	<u>oxicity</u>	
-		-

Product/ingredient name	Result	Species	Exposure
ammonia	Acute EC50 29.2 mg/l Marine water	Algae - Ulva fasciata - Zoea	96 hours
	Acute LC50 2080 µg/l Fresh water	Crustaceans - Gammarus pulex	48 hours
	Acute LC50 0.53 ppm Fresh water	Daphnia - Daphnia magna	48 hours
	Acute LC50 300 µg/l Fresh water	Fish - Hypophthalmichthys nobilis	96 hours
	Chronic NOEC 0.204 mg/l Marine water	Fish - Dicentrarchus labrax	62 days

Persistence and degradability

Not available.

Bioaccumulative potential

Not available.

Mobility in soil

Soil/water partition	: Not available.
coefficient (Koc)	

Other adverse effects : No known significant effects or critical hazards.

Section 13. Disposal considerations

Disposal methods

: The generation of waste should be avoided or minimized wherever possible. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Waste should not be disposed of untreated to the sewer unless fully compliant with the requirements of all authorities with jurisdiction. Empty Airgas-owned pressure vessels should be returned to Airgas. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Empty containers or liners may retain some product residues. Do not puncture or incinerate container.

Section 14. Transport information

	DOT	TDG	Mexico	IMDG	ΙΑΤΑ
UN number	UN1005	UN1005	UN1005	UN1005	UN1005
UN proper shipping name	AMMONIA, ANHYDROUS	AMMONIA, ANHYDROUS; OR ANHYDROUS AMMONIA	AMMONIA, ANHYDROUS	AMMONIA, ANHYDROUS	AMMONIA, ANHYDROUS
Transport hazard class(es)	2.2	2.3 (8)	2.3 (8)	2.3 (8)	2.3 (8)
Packing group	-	-	-	-	-
Environmental hazards	Yes.	Yes.	Yes. The environmentally hazardous substance mark is not required.	Yes.	Yes. The environmentally hazardous substance mark is not required.

"Refer to CFR 49 (or authority having jurisdiction) to determine the information required for shipment of the product."

Additional information	
DOT Classification	 Inhalation hazard This product is not regulated as a marine pollutant when transported on inland waterways in sizes of ≤5 L or ≤5 kg or by road, rail, or inland air in non-bulk sizes, provided the packagings meet the general provisions of §§ 173.24 and 173.24a. <u>Reportable quantity</u> 100 lbs / 45.4 kg. Package sizes shipped in quantities less than the product reportable quantity are not subject to the RQ (reportable quantity) transportation requirements. <u>Limited quantity</u> Yes. <u>Quantity limitation</u> Passenger aircraft/rail: Forbidden. Cargo aircraft: Forbidden.
TDG Classification	 Product classified as per the following sections of the Transportation of Dangerous Goods Regulations: 2.13-2.17 (Class 2), 2.40-2.42 (Class 8), 2.7 (Marine pollutant mark). The marine pollutant mark is not required when transported by road or rail. <u>Explosive Limit and Limited Quantity Index</u> 0 <u>ERAP Index</u> 3000 <u>Passenger Carrying Ship Index</u> Forbidden <u>Passenger Carrying Road or Rail Index</u> Forbidden

Date of issue/Date of revision	: 1/10/2019	Date of previous issue	: 10/9/2018	Version : 1.09	9/12

Section 14. Transport information

Section 15 Pequila	+/	any information
Transport in bulk according to Annex II of MARPOL and the IBC Code	:	Not available.
Special precautions for user	:	Transport within user's premises: always transport in closed containers that are upright and secure. Ensure that persons transporting the product know what to do in the event of an accident or spillage.
ΙΑΤΑ	:	The environmentally hazardous substance mark may appear if required by other transportation regulations. Quantity limitation Passenger and Cargo Aircraft: Forbidden. Cargo Aircraft Only: Forbidden. Limited Quantities - Passenger Aircraft: Forbidden.
IMDG	;	The marine pollutant mark is not required when transported in sizes of \leq 5 L or \leq 5 kg.
Mexico Classification	÷	Toxic Inhalation Hazard Zone D
		Special provisions

Section 15. Regulatory information

U.S. Federal regulations	:	TSCA 8(a) CDR Exempt/Partial exemption: Not determined Clean Water Act (CWA) 311: ammonia
		Clean Air Act (CAA) 112 regulated toxic substances: ammonia
Clean Air Act Section 112 (b) Hazardous Air Pollutants (HAPs)	:	Not listed
Clean Air Act Section 602 Class I Substances	:	Not listed
Clean Air Act Section 602 Class II Substances	:	Not listed
DEA List I Chemicals (Precursor Chemicals)	:	Not listed
DEA List II Chemicals (Essential Chemicals)	:	Not listed
SARA 302/304		
Composition/information of	on	ingredients

			SARA 302 TPQ		SARA 304 RQ	
Name	%	EHS	(lbs)	(gallons)	(lbs)	(gallons)
ammonia	100	Yes.	500	-	100	-

SARA 304 RQ : 100 lbs / 45.4 kg

SARA 311/312

Classification

: Refer to Section 2: Hazards Identification of this SDS for classification of substance.

SARA 313

	Product name	CAS number	%
Form R - Reporting requirements	ammonia	7664-41-7	100
Supplier notification	ammonia	7664-41-7	100

SARA 313 notifications must not be detached from the SDS and any copying and redistribution of the SDS shall include copying and redistribution of the notice attached to copies of the SDS subsequently redistributed.

State regulations

Massachusetts

: This material is listed.

Date of issue/Date of revision : 1

Section 15. Regulatory information

<u> </u>	-
New York	: This material is listed.
New Jersey	: This material is listed.
Pennsylvania	: This material is listed.
International regulations	
Chemical Weapon Conv	ention List Schedules I, II & III Chemicals
Not listed.	
Montreal Protocol (Ann	exes A, B, C, E)
Not listed.	
Stockholm Convention	on Persistent Organic Pollutants
Not listed.	
	- Prior Informed Concert (PIC)
Not listed	on Prior Informed Consent (PIC)
Not listed.	
UNECE Aarhus Protoco	I on POPs and Heavy Metals
Not listed.	
Inventory list	
Australia	: This material is listed or exempted.
Canada	: This material is listed or exempted.
China	: This material is listed or exempted.
Europe	: This material is listed or exempted.
Japan	: Japan inventory (ENCS): This material is listed or exempted. Japan inventory (ISHL): This material is listed or exempted.
Malaysia	: This material is listed or exempted.
New Zealand	: This material is listed or exempted.
Philippines	: This material is listed or exempted.
Republic of Korea	: This material is listed or exempted.
Taiwan	: This material is listed or exempted.
Thailand	: Not determined.
Turkey	: This material is listed or exempted.
United States	: This material is listed or exempted.
Viet Nam	: Not determined.

Section 16. Other information

Hazardous Material Information System (U.S.A.)

Caution: HMIS® ratings are based on a 0-4 rating scale, with 0 representing minimal hazards or risks, and 4 representing significant hazards or risks. Although HMIS® ratings and the associated label are not required on SDSs or products leaving a facility under 29 CFR 1910.1200, the preparer may choose to provide them. HMIS® ratings are to be used with a fully implemented HMIS® program. HMIS® is a registered trademark and service mark of the American Coatings Association, Inc.

The customer is responsible for determining the PPE code for this material. For more information on HMIS® Personal Protective Equipment (PPE) codes, consult the HMIS® Implementation Manual.

National Fire Protection Association (U.S.A.)

11/12

Section 16. Other information

Reprinted with permission from NFPA 704-2001, Identification of the Hazards of Materials for Emergency Response Copyright ©1997, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the National Fire Protection Association, on the referenced subject which is represented only by the standard in its entirety.

Copyright ©2001, National Fire Protection Association, Quincy, MA 02269. This warning system is intended to be interpreted and applied only by properly trained individuals to identify fire, health and reactivity hazards of chemicals. The user is referred to certain limited number of chemicals with recommended classifications in NFPA 49 and NFPA 325, which would be used as a guideline only. Whether the chemicals are classified by NFPA or not, anyone using the 704 systems to classify chemicals does so at their own risk.

Procedure used to derive the classification

		Classification	Justification
FLAMMABLE GASES - Cate GASES UNDER PRESSUR ACUTE TOXICITY (inhalation SKIN CORROSION - Categor SERIOUS EYE DAMAGE - (AQUATIC HAZARD (ACUTE	egory E - Lie on) - C ory 1 Categ E) - C	2 quefied gas Category 4 ory 1 ategory 1	Expert judgment Expert judgment Expert judgment Expert judgment Expert judgment Expert judgment
<u>History</u>			
Date of printing	:	1/10/2019	
Date of issue/Date of revision	-	1/10/2019	
Date of previous issue	1	10/9/2018	
Version	:	1.09	
Key to abbreviations	:	ATE = Acute Toxicity Estimate BCF = Bioconcentration Factor GHS = Globally Harmonized System of Classification a IATA = International Air Transport Association IBC = International Air Transport Association IBC = International Maritime Dangerous Goods LogPow = logarithm of the octanol/water partition coeff MARPOL = International Convention for the Preventior as modified by the Protocol of 1978. ("Marpol" = marine UN = United Nations	ind Labelling of Chemicals icient of Pollution From Ships, 1973 e pollution)
References	:	Not available.	

Notice to reader

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein.

Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

SAFETY DATA SHEET

1/11

Methane

Section 1. Identification

GHS product identifier	:	Methane
Chemical name	:	methane
Other means of identification	:	Methane or natural gas; Marsh gas; Methyl hydride; CH4; Fire Damp;
Product type	:	Gas.
Product use	:	Synthetic/Analytical chemistry.
Synonym SDS #	:	Methane or natural gas; Marsh gas; Methyl hydride; CH4; Fire Damp; 001033
Supplier's details	:	Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253
24-hour telephone		1-866-734-3438

Section 2. Hazards identification

OSHA/HCS status	: This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).
Classification of the	: FLAMMABLE GASES - Category 1
substance or mixture	GASES UNDER PRESSURE - Compressed gas
GHS label elements	
Hazard pictograms	
Signal word	: Danger
Hazard statements	: Extremely flammable gas.
	May form explosive mixtures with air.
	Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation.
Precautionary statements	
General	: Read and follow all Safety Data Sheets (SDS'S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Approach suspected leak area with caution.
Prevention	: Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
Response	 Leaking gas fire: Do not extinguish, unless leak can be stopped safely. Eliminate all ignition sources if safe to do so.
Storage	: Protect from sunlight. Store in a well-ventilated place.
Disposal	: Not applicable.
Hazards not otherwise classified	: In addition to any other important health or physical hazards, this product may displace oxygen and cause rapid suffocation.

Section 3. Composition/information on ingredients

Substance/mixture	;	Substance
Chemical name	:	methane
Other means of identification	:	Methane or natural gas; Marsh gas; Methyl hydride; CH4; Fire Damp;
Product code	:	001033

CAS number/other identifiers

Methane

CAS number	: 74-82-8

Ingredient name	%	CAS number
methane	100	74-82-8

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section.

Occupational exposure limits, if available, are listed in Section 8.

Section 4. First aid measures

<u>Description of necessary first aid measures</u>				
Eye contact	:	Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 10 minutes. Get medical attention if irritation occurs.		
Inhalation	:	Remove victim to fresh air and keep at rest in a position comfortable for breathing. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Get medical attention if adverse health effects persist or are severe. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband.		
Skin contact	:	Wash contaminated skin with soap and water. Remove contaminated clothing and shoes. To avoid the risk of static discharges and gas ignition, soak contaminated clothing thoroughly with water before removing it. Get medical attention if symptoms occur. Wash clothing before reuse. Clean shoes thoroughly before reuse. As this product is a gas, refer to the inhalation section.		
	- 1	· · · · · · · · · · · · · · · · · · ·		

Most important symptoms/effects, acute and delayed

Potential acute health effects	
Eye contact :	Contact with rapidly expanding gas may cause burns or frostbite.
Inhalation :	No known significant effects or critical hazards.
Skin contact :	Contact with rapidly expanding gas may cause burns or frostbite.
Frostbite :	Try to warm up the frozen tissues and seek medical attention.
Ingestion :	As this product is a gas, refer to the inhalation section.
Over-exposure signs/sympton	n <u>s</u>
Eye contact :	No specific data.
Inhalation :	No specific data.
Skin contact :	No specific data.
Ingestion :	No specific data.
Indication of immediate medica	I attention and special treatment needed, if necessary
Notes to physician :	Treat symptomatically. Contact poison treatment specialist immediately if large quantities have been ingested or inhaled.
Specific treatments :	No specific treatment.

Date of issue/Date of revision: 11/15/2020Date of previous issue: 3/14/2019Version: 1.08

2/11

Section 4. First aid measures

Protection of first-aiders

: No action shall be taken involving any personal risk or without suitable training. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation.

See toxicological information (Section 11)

Section 5. Fire-fighting measures **Extinguishing media** Suitable extinguishing : Use an extinguishing agent suitable for the surrounding fire. media **Unsuitable extinguishing** : None known. media Specific hazards arising : Contains gas under pressure. Extremely flammable gas. In a fire or if heated, a from the chemical pressure increase will occur and the container may burst, with the risk of a subsequent explosion. Hazardous thermal : Decomposition products may include the following materials: carbon dioxide decomposition products carbon monoxide **Special protective actions** : Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable for fire-fighters training. Contact supplier immediately for specialist advice. Move containers from fire area if this can be done without risk. Use water spray to keep fire-exposed containers cool. If involved in fire, shut off flow immediately if it can be done without risk. If this is impossible, withdraw from area and allow fire to burn. Fight fire from protected location or maximum possible distance. Eliminate all ignition sources if safe to do so. : Fire-fighters should wear appropriate protective equipment and self-contained breathing **Special protective** equipment for fire-fighters apparatus (SCBA) with a full face-piece operated in positive pressure mode.

Section 6. Accidental release measures

Personal precautions, protec	<u>tiv</u>	e equipment and emergency procedures
For non-emergency personnel	:	Accidental releases pose a serious fire or explosion hazard. No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Shut off all ignition sources. No flares, smoking or flames in hazard area. Avoid breathing gas. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment.
For emergency responders	:	If specialized clothing is required to deal with the spillage, take note of any information in Section 8 on suitable and unsuitable materials. See also the information in "For non-emergency personnel".
Environmental precautions	:	Ensure emergency procedures to deal with accidental gas releases are in place to avoid contamination of the environment. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air).
Methods and materials for co	ont	ainment and cleaning up
Small spill	;	Immediately contact emergency personnel. Stop leak if without risk. Use spark-proof tools and explosion-proof equipment.
l arge spill		Immediately contact emergency personnel. Stop leak if without risk. Use spark-proof

ely contact emergency personnel. Stop leak if without risk. Use spark-pi irge spill tools and explosion-proof equipment. Note: see Section 1 for emergency contact information and Section 13 for waste disposal.

3/11

Section 7. Handling and storage

Precautions for safe handling	L	
Protective measures	:	Put on appropriate personal protective equipment (see Section 8). Contains gas under pressure. Avoid breathing gas. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Do not enter storage areas and confined spaces unless adequately ventilated. Do not puncture or incinerate container. Use equipment rated for cylinder pressure. Close valve after each use and when empty. Protect cylinders from physical damage; do not drag, roll, slide, or drop. Use a suitable hand truck for cylinder movement. Use only non-sparking tools. Avoid contact with eyes, skin and clothing. Empty containers retain product residue and can be hazardous. Store and use away from heat, sparks, open flame or any other ignition source. Use explosion-proof electrical (ventilating, lighting and material handling) equipment.
Advice on general occupational hygiene	:	Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated clothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures.
Conditions for safe storage, including any incompatibilities	:	Store in accordance with local regulations. Store in a segregated and approved area. Store away from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10). Eliminate all ignition sources. Cylinders should be stored upright, with valve protection cap in place, and firmly secured to prevent falling or being knocked over. Cylinder temperatures should not exceed 52 °C (125 °F). Keep container tightly closed and sealed until ready for use. See Section 10 for incompatible materials before handling or use.

Section 8. Exposure controls/personal protection

Control parameters

Occupational exposure limits

Ingredient name	Exposure limits		
methane	None.		

Appropriate engineering controls	:	Use only with adequate ventilation. Use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits. The engineering controls also need to keep gas, vapor or dust concentrations below any lower explosive limits. Use explosion-proof ventilation equipment.
Environmental exposure controls	:	Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation. In some cases, fume scrubbers, filters or engineering modifications to the process equipment will be necessary to reduce emissions to acceptable levels.
Individual protection meas	ures	
Hygiene measures	:	Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before reusing. Ensure that eyewash stations and safety showers are close to the workstation location.
Eye/face protection	:	Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists, gases or dusts. If contact is possible, the following protection should be worn, unless the assessment indicates a higher degree of protection: safety glasses with side-shields.
Skin protection		

Section 8. Exposure controls/personal protection

Hand protection	: Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. Considering the parameters specified by the glove manufacturer, check during use that the gloves are still retaining their protective properties. It should be noted that the time to breakthrough for any glove material may be different for different glove manufacturers. In the case of mixtures, consisting of several substances, the protection time of the gloves cannot be accurately estimated.
Body protection	: Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product. When there is a risk of ignition from static electricity, wear anti-static protective clothing. For the greatest protection from static discharges, clothing should include anti-static overalls, boots and gloves.
Other skin protection	: Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.
Respiratory protection	: Based on the hazard and potential for exposure, select a respirator that meets the appropriate standard or certification. Respirators must be used according to a respiratory protection program to ensure proper fitting, training, and other important aspects of use. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator.

Section 9. Physical and chemical properties

<u>Appearance</u>		
Physical state	:	Gas. [Compressed gas.]
Color	1	Colorless.
Odor	:	Odorless.
Odor threshold	1	Not available.
рН	1	Not available.
Melting point	1	-187.6°C (-305.7°F)
Boiling point	:	-161.48°C (-258.7°F)
Critical temperature	1	-82.45°C (-116.4°F)
Flash point	1	Closed cup: -104°C (-155.2°F)
Evaporation rate	:	Not available.
Flammability (solid, gas)	:	Extremely flammable in the presence of the following materials or conditions: open flames, sparks and static discharge and oxidizing materials.
Lower and upper explosive	;	Lower: 5%
Vanor pressure		Not available
Vapor density	÷	0.6 (Air = 1)
Specific Volume (ft ³ /lb)		23 6407
Gas Density (lb/ft ³)	1	0.0423 (25°C / 77 to °E)
Relative density	1	Not applicable
Solubility	÷	Not available.
Solubility in water	÷	0.02 g/l
Partition coefficient: n- octanol/water	:	1.09
Auto-ignition temperature	:	537°C (998.6°F)
Decomposition temperature	:	Not available.
Viscosity	:	Not applicable.
Flow time (ISO 2431)	:	Not available.
Molecular weight	:	16.05 g/mole
Aerosol product		
Heat of combustion	:	-50048542 J/kg

Date of issue/Date of revision

5/11

Section 10. Stability and reactivity

Reactivity	:	No specific test data related to reactivity available for this product or its ingredients.
Chemical stability	:	The product is stable.
Possibility of hazardous reactions	:	Under normal conditions of storage and use, hazardous reactions will not occur.
Conditions to avoid	:	Avoid all possible sources of ignition (spark or flame). Do not pressurize, cut, weld, braze, solder, drill, grind or expose containers to heat or sources of ignition.
Incompatible materials	:	Oxidizers
Hazardous decomposition products	:	Under normal conditions of storage and use, hazardous decomposition products should not be produced.

Hazardous polymerization : Under normal conditions of storage and use, hazardous polymerization will not occur.

Section 11. Toxicological information

Information on toxicological effects

Acute toxicity

Not available.

Irritation/Corrosion

Not available.

Sensitization

Not available.

Mutagenicity

Not available.

Carcinogenicity

Not available.

Reproductive toxicity

Not available.

Teratogenicity

Not available.

Specific target organ toxicity (single exposure)

Not available.

Specific target organ toxicity (repeated exposure)

Not available.

Aspiration hazard

Not available.

Information on the likely : Not available. routes of exposure

Potential acute health effects

Eye contact	:	Contact with rapidly expanding gas may cause burns or frostbite.
Inhalation	1	No known significant effects or critical hazards.

Section 11. Toxicological information

	5
Skin contact	: Contact with rapidly expanding gas may cause burns or frostbite.
Ingestion	: As this product is a gas, refer to the inhalation section.
Symptoms related to the phy	sical, chemical and toxicological characteristics
Eye contact	: No specific data.
Inhalation	: No specific data.
Skin contact	: No specific data.
Ingestion	: No specific data.
Delayed and immediate effect	<u>ts and also chronic effects from short and long term exposure</u>
<u>Short term exposure</u>	
Potential immediate effects	: Not available.
Potential delayed effects	: Not available.
Long term exposure	
Potential immediate	: Not available.
effects	
Potential delayed effects	: Not available.
Potential chronic health effe	ects
Not available.	
General	: No known significant effects or critical hazards.
Carcinogenicity	: No known significant effects or critical hazards.
Mutagenicity	: No known significant effects or critical hazards.
Teratogenicity	: No known significant effects or critical hazards.
Developmental effects	No known significant effects or critical hazards.
Fertility effects	No known significant effects or critical hazards.
-	

Numerical measures of toxicity

Acute toxicity estimates

Not available.

Section 12. Ecological information

Toxicity

Not available.

Persistence and degradability

Not available.

Bioaccumulative potential

Product/ingredient name	LogPow	BCF	Potential
methane	1.09	-	low

Mobility in soil

Soil/water partition coefficient (Koc)

: Not available.

7/11

Section 12. Ecological information

Other adverse effects

: No known significant effects or critical hazards.

Section 13. Disposal considerations

- **Disposal methods**
- : The generation of waste should be avoided or minimized wherever possible. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Waste should not be disposed of untreated to the sewer unless fully compliant with the requirements of all authorities with jurisdiction. Empty Airgas-owned pressure vessels should be returned to Airgas. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Empty containers or liners may retain some product residues. Do not puncture or incinerate container.

Section 14. Transport information

	DOT	TDG	Mexico	IMDG	ΙΑΤΑ
UN number	UN1971	UN1971	UN1971	UN1971	UN1971
UN proper shipping name	Methane, compressed	Methane, compressed or Methane or Natural gas, compressed (with high methane content)	Methane, compressed	Methane, compressed	Methane, compressed
Transport hazard class(es)	2.1	2.1	2.1	2.1	2.1
Packing group	-	-	-	-	-
Environmental hazards	No.	No.	No.	No.	No.

"Refer to CFR 49 (or authority having jurisdiction) to determine the information required for shipment of the product."

Additional information TDG Classification : Product classified as per the following sections of the Transportation of Dangerous Goods Regulations: 2.13-2.17 (Class 2). Explosive Limit and Limited Quantity Index 0.125 ERAP Index 3000 Passenger Carrying Vessel Index Forbidden Passenger Carrying Road or Rail Index Forbidden ΙΑΤΑ : Quantity limitation Passenger and Cargo Aircraft: Forbidden. Cargo Aircraft Only: 150 kg. Special precautions for user : Transport within user's premises: always transport in closed containers that are upright and secure. Ensure that persons transporting the product know what to do in the event of an accident or spillage. **Transport in bulk according** : Not available. to IMO instruments

Section 15. Regulatory information

U.S. Federal regulations	: TSCA 8(a) CDR Exempt/Partial exemption: Not determined
	Clean Air Act (CAA) 112 regulated flammable substances: methane
Clean Air Act Section 112 (b) Hazardous Air Pollutants (HAPs)	: Not listed
Clean Air Act Section 602 Class I Substances	: Not listed
Clean Air Act Section 602 Class II Substances	: Not listed
DEA List I Chemicals (Precursor Chemicals)	: Not listed
DEA List II Chemicals (Essential Chemicals)	: Not listed
SARA 302/304	
Composition/information	on ingredients
No products were found.	
SARA 304 RQ	: Not applicable.
SARA 311/312	
Classification	: Refer to Section 2: Hazards Identification of this SDS for classification of substance.
State regulations	
Massachusetts	: This material is listed.
New York	This material is not listed.
New Jersey	: This material is listed.
Pennsylvania	: This material is listed.
International regulations	
Chemical Weapon Conven	tion List Schedules I, II & III Chemicals
Not listed.	
Montreal Protocol Not listed.	
Stockholm Convention on	Persistent Organic Pollutants
NOT IISTED.	
Rotterdam Convention on Not listed.	Prior Informed Consent (PIC)
UNECE Aarhus Protocol o Not listed.	n POPs and Heavy Metals
Inventory list	
Australia	: This material is listed or exempted.
Canada	: This material is listed or exempted.
China	: This material is listed or exempted.
Europe	: This material is listed or exempted.
Japan	: Japan inventory (ENCS): This material is listed or exempted. Japan inventory (ISHL): Not determined.
New Zealand	: This material is listed or exempted.
Philippines	: This material is listed or exempted.
Republic of Korea	: This material is listed or exempted.
Taiwan	: This material is listed or exempted.

Section 15. Regulatory information

Thailand

: Not determined.

Turkey

. This material is

United States

This material is listed or exempted.This material is listed or exempted.

Viet Nam

: Not determined.

Section 16. Other information

Caution: HMIS® ratings are based on a 0-4 rating scale, with 0 representing minimal hazards or risks, and 4 representing significant hazards or risks. Although HMIS® ratings and the associated label are not required on SDSs or products leaving a facility under 29 CFR 1910.1200, the preparer may choose to provide them. HMIS® ratings are to be used with a fully implemented HMIS® program. HMIS® is a registered trademark and service mark of the American Coatings Association, Inc.

The customer is responsible for determining the PPE code for this material. For more information on HMIS® Personal Protective Equipment (PPE) codes, consult the HMIS® Implementation Manual.

National Fire Protection Association (U.S.A.)

Reprinted with permission from NFPA 704-2001, Identification of the Hazards of Materials for Emergency Response Copyright ©1997, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the National Fire Protection Association, on the referenced subject which is represented only by the standard in its entirety.

Copyright ©2001, National Fire Protection Association, Quincy, MA 02269. This warning system is intended to be interpreted and applied only by properly trained individuals to identify fire, health and reactivity hazards of chemicals. The user is referred to certain limited number of chemicals with recommended classifications in NFPA 49 and NFPA 325, which would be used as a guideline only. Whether the chemicals are classified by NFPA or not, anyone using the 704 systems to classify chemicals does so at their own risk.

Procedure used to derive the classification

	Classi	fication		Justifi	cation	
FLAMMABLE GASES - Cat GASES UNDER PRESSUF	egory 1 RE - Compressed	dgas		Expert judgment According to pac	kage	
History						
Date of printing	: 11/15/202	20				
Date of issue/Date of revision	: 11/15/202	20				
Date of previous issue	: 3/14/2019)				
Version	: 1.08					
Key to abbreviations	: ATE = Ac BCF = Bid GHS = G IATA = In IBC = Inte IMDG = In LogPow = MARPOL as modifie UN = Uni	ute Toxicity Estimate oconcentration Factor obally Harmonized System ternational Air Transport / ermediate Bulk Container nternational Maritime Dan logarithm of the octanol/ = International Conventioned by the Protocol of 1978 ted Nations	m of Classification a Association gerous Goods water partition coef on for the Prevention 8. ("Marpol" = marin	and Labelling of C ficient n of Pollution Fron e pollution)	hemicals n Ships, 1973	3
Date of issue/Date of revision	: 11/15/2020	Date of previous issue	: 3/14/2019	Version	:1.08	10/11

Section 16. Other information

References

: Not available.

Notice to reader

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein.

Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

ATTACHMENT I EMISSION UNITS TABLE

Attachment I Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)											
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴					
Ammonia	Unit #1										
1S-1	2E-1	Feed Purification	2024		New	2C-1*					
2S-1	2E-1	Reformer Section	2024		New	2C-1*					
3S-1	2E-1	ATR Section	2024		New	2C-1*					
4S-1	2E-1	CO Conversion Section	2024		New	2C-1*					
5S-1	2E-1	Nitrogen Wash Unit	2024	6 000 MTDD NH2	New	2C-1*					
6S-1	2E-1	CO2 Removal Section	2024	0,000 MITD NH3	New	2C-1*					
7S-1	2E-1	Ammonia Loop	2024		New	2C-1*					
8S-1	1E-1	Startup Steam Generator	2024		New	1C-1					
9S-1	1E-1	Pre-Heater	2024		New	1C-1					
10S-1	1E-1	Super Heater	2024		New	1C-1					
11S-1	4E-1	Startup & Emergency Generator	2024	1,000 KW	New	NA					
Ammonia	Unit #2										
1S-2	2E-2	Feed Purification	2024		New	2C-2*					
28-2	2E-2	Reformer Section	2024		New	2C-2*					
38-2	2E-2	ATR Section	2024		New	2C-2*					
4S-2	2E-2	CO Conversion Section	2024		New	2C-2*					
58-2	2E-2	Nitrogen Wash Unit	2024		New	2C-2*					
6S-2	2E-2	CO2 Removal Section	2024	6,000 MTPD NH3	New	2C-2*					
7S-2	2E-2	Ammonia Loop	2024		New	2C-2*					
8S-2	1E-2	Startup Steam Generator	2024		New	1C-2					
98-2	1E-2	Pre-Heater	2024] [New	1C-2					
10S-2	1E-2	Super Heater	2024		New	1C-2					
11S-2	4E-2	Startup & Emergency Generator	2024	1,000 KW	New	NA					

*Source only has emissions during startup and shutdown. The emissions are controlled by the flare. During steady state operations, the source does not vent and the flare is turned off.

¹ For Emission Units (or <u>Sources</u>) use the following numbering system: 1S, 2S, 3S, or other appropriate designation ² For <u>E</u>mission Points use the following numbering system: 1E, 2E, 3E, or other appropriate designation.

³New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation.

Attachment I Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)												
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴						
Ammonia	Unit #3											
1S-3	2E-3	Feed Purification	2024		New	2C-3*						
2S-3	2E-3	Reformer Section	2024		New	2C-3*						
38-3	2E-3	ATR Section	2024		New	2C-3*						
4S-3	2E-3	CO Conversion Section	2024		New	2C-3*						
58-3	2E-3	Nitrogen Wash Unit	2024		New	2C-3*						
6S-3	2E-3	CO2 Removal Section	2024	6,000 MTPD NH3	New	2C-3*						
7S-3	3E-3	Ammonia Loop	2024		New	2C-3*						
8S-3	1E-3	Startup Steam Generator	2024		New	1C-3						
9S -3	1E-3	Pre-Heater	2024		New	1C-3						
10S-3	1E-3	Super Heater	2024		New	1C-3						
11 S -3	4E-3	Startup & Emergency Generator	2024	1,000 KW	New	NA						
Ammonia	Unit #4											
1 S -4	2E-4	Feed Purification	2024		New	2C-4*						
2S-4	2E-4	Reformer Section	2024		New	2C-4*						
3S-4	2E-4	ATR Section	2024		New	2C-4*						
4S-4	2E-4	CO Conversion Section	2024		New	2C-4*						
5S-4	2E-4	Nitrogen Wash Unit	2024		New	2C-4*						
6S-4	2E-4	CO2 Removal Section	2024	+	New	2C-4*						
7S-4	3E-4	Ammonia Loop	2024		New	2C-4*						
8S-4	1E-4	Startup Steam Generator	2024		New	1C-4						
9S-4	1E-4	Pre-Heater	2024] [New	1C-4						
10S-4	1E-4	Super Heater	2024		New	1C-4						
11S-4	11S-4 4E-4 Startup & Emergency Generator 2024 1,000 KW New NA											
*Source of	only has en	nissions during startup and shutdo	own. The emi	ssions are controlle	ed by the flare.	Duringz						

steady state operations, the source does not vent and the flare is turned off.

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S, or other appropriate designation ² For Emission Points use the following numbering system: 1E, 2E, 3E, or other appropriate designation.

³New, modification, removal

⁴ For <u>Control Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation.</u>

Attachment I Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)												
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴						
Ammonia	Unit #5											
1S-5	2E-5	Feed Purification	2024		New	2C-5*						
28-5	2E-5	Reformer Section	2024		New	2C-5*						
38-5	2E-5	ATR Section	2024		New	2C-5*						
4S-5	2E-5	CO Conversion Section	2024		New	2C-5*						
58-5	2E-5	Nitrogen Wash Unit	2024		New	2C-5*						
6S-5	2E-5	CO2 Removal Section	2024	6,000 MTPD NH3	New	2C-5*						
7S-5	3E-5	Ammonia Loop	2024		New	2C-5*						
8S-5	1E-5	Startup Steam Generator	2024		New	1C-5						
9S-5	1E-5	Pre-Heater	2024		New	1C-5						
10S-5	1E-5	Super Heater	2024		New	1C-5						
11S-5	4E-5	Startup & Emergency Generator	2024	1,000 KW	New	NA						
Ammonia	Unit #6											
1S-6	2E-6	Feed Purification	2024		New	2C-6*						
2S-6	2E-6	Reformer Section	2024		New	2C-6*						
3S-6	2E-6	ATR Section	2024		New	2C-6*						
4S-6	2E-6	CO Conversion Section	2024		New	2C-6*						
5S-6	2E-6	Nitrogen Wash Unit	2024		New	2C-6*						
6S-6	2E-6	CO2 Removal Section	2024	6,000 MTPD NH3	New	2C-6*						
7S-6	3E-6	Ammonia Loop	2024		New	2C-6*						
8S-6	1E-6	Startup Steam Generator	2024		New	1C-6						
9S-6	1E-6	Pre-Heater	2024		New	1C-6						
10S-6	1E-6	Super Heater	2024] [New	1C-6						
11S-6	11S-6 4E-6 Startup & Emergency Generator 2024 1,000 KW New NA											
*Source of	only has en	nissions during startup and shutdo	wn. The emi	ssions are controlle	ed by the flare.	During						

steady state operations, the source does not vent and the flare is turned off.

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S, or other appropriate designation ² For Emission Points use the following numbering system: 1E, 2E, 3E, or other appropriate designation.

³New, modification, removal

⁴ For <u>Control Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation.</u>

ATTACHMENT J

EMISSION POINTS DATA SUMMARY SHEET

			Table 1:	Emis	sions D	ata – st	ΓEADY	STATE. EMISSI	ONS SHOWN	N ARE FOR C	ONE PRO	CESS LINE	E		
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emiss Ve Through (Must mat Units Ta	ion Unit nted This Point ch Emission able & Plot lan)	Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	` & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Liquid or Gas/ Vapor)		
		8S-1 to 6	Startup Steam Generator	1C	SCR Units	NA	NA	NOx	14.50	0.25	0.145	0.01	Gas	EE	NA
1E-1 to 6	Vertical Stack	9S-1 to 6	Pre-Heater H201	1C	SCR Units	NA	NA	PM PM10 PM2.5 CO CO2 SO2 CH4 VOC NO _X	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 2.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 43.11 \end{array}$	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 8.79 \\ 0.01 \\ 0.01 \\ 0.01 \\ 188.79 \end{array}$	0.01 0.01 0.01 2.01 0.01 0.01 0.01 0.01	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 8.79 \\ 0.01 \\ 0.01 \\ 0.01 \\ 1.90 \end{array}$	Solids and Gas	EE	NA
		10S-1 to 6	Super Heater H202	1C	SCR Units	NA	NA	PM PM10 PM2.5 CO CO2 SO2 CH4 VOC NO2	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 2.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 109.24 \end{array}$	0.01 0.01 0.01 8.79 0.01 0.01 0.01 0.01	0.01 0.01 0.01 2.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 8.79 0.01 0.01 0.01 4.79	Solids and Gas	EE	NA

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

	Table 1: Emissions Data – 2E STARTUP AND SHUTDOWN FLARE EMISSIONS. EMISSIONS SHOWN ARE FOR ONE PROCESS LINE.														
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emis V Throug <i>(Must ma Units T</i>	ision Unit ented h This Point atch Emission Table & Plot Plan)	Air F Contr (Mu Emis Tab	Pollution ol Device st match sion Units vle & Plot Plan)	Vent T Emissi (chei process	ime for on Unit mical res only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maximum Potential Uncontrolled Emissions ⁴		Max Pote Cont Emis	imum ential rolled sions ⁵	Emission Form or Phase (At exit conditions, Solid,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/ Vapor)		
2E-1 to 6	Vertical Flare	1S, 2S, 3S, 4S, 5S, 6S, and 7S	Feed Purification, Reformer Section, ATR Section, CO Conversion Section, Nitrogen Wash Unit, CO2 Removal Section, and Ammonia Loop	2C	Flare	NA	NA	NOX CO PM/PM10/PM2.5 VOC S02 HAPS CO2 CH4	Flare Contro Streams – Se	ol of Multiple e Calculations	178.72 50.97 7.54 5.46 0.04 1.87 90,400 418.88	$ \begin{array}{c} 1.88\\0.32\\0.01\\0.001\\0.0001\\0.002\\50.04\\3.39\end{array} $	Solids and Gas	EE	NA

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

	Table 1: Emissions Data – PRE-HEATER H201 AND SUPER HEATER H202. STARTUP GAS EMISSIONS.															
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emissic Ven Through T <i>(Must matcl Units Tab</i> <i>Pla</i>	on Unit ted his Point h Emission ile & Plot in)	Air F Contr (Mu Emis Tab	Pollution ol Device st match sion Units le & Plot Plan)	Vent Time for Emission Unit (chemical processes only)		Vent Time for Emission Unit (chemical processes only) All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs		Maximum Potential Uncontrolled Emissions ⁴		otential Maximum nissions ⁴ Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/ Vapor)			
	Vertical	9S-1 to 6	Pre-Heater H201	1C	SCR Units	NA	NA	NOX CO PM PM10 PM2.5 VOC SO2 HAPS CO2 CH4	31.41 5.61 2.61 2.61 1.89 0.01 0.65 550.69 117.84	$\begin{array}{c} 0.34 \\ 0.05 \\ 0.003 \\ 0.003 \\ 0.002 \\ 0.00001 \\ 0.001 \\ 1.26 \\ 0.71 \end{array}$	0.31 5.61 2.61 2.61 1.89 0.01 0.65 550.69 117.84	$\begin{array}{c} 0.003\\ 0.05\\ 0.003\\ 0.003\\ 0.003\\ 0.002\\ 0.00001\\ 0.001\\ 1.26\\ 0.71\\ \end{array}$	Solids			
1E-1 to 6	Stack	10S-1 to 6	Super Heater H202	1C	SCR Units	NA	NA	NOX CO PM PM10 PM2.5 VOC SO2 HAPS CO2 CH4	79.60 14.21 6.62 6.62 6.62 4.79 0.04 1.64 1,396.65 450.72	$\begin{array}{c} 0.87\\ 0.12\\ 0.01\\ 0.01\\ 0.005\\ 0.00004\\ 0.002\\ 3.20\\ 1.81\\ \end{array}$	$\begin{array}{c} 0.80\\ 14.21\\ 6.62\\ 6.62\\ 4.79\\ 0.04\\ 1.64\\ 1.396.65\\ 450.72\\ \end{array}$	$\begin{array}{c} 0.01\\ 0.12\\ 0.01\\ 0.01\\ 0.005\\ 0.00004\\ 0.002\\ 3.20\\ 1.81 \end{array}$	and Gas	EE	NA	

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

					Table	1: Em	issions	s Data – 2E STE	EADY STAT	E EMISSION:	5						
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emis V Through (Must ma Units 1	sion Unit ented n This Point atch Emission Fable & Plot Plan)	Air F Contr <i>(Mu</i> Emis Tab	Pollution ol Device st match sion Units le & Plot Plan)	Vent T Emissie (chei process	ime for on Unit <i>mical</i> es only)	All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	ed Maximum Potential - Uncontrolled Emissions ⁴ 33 CS		Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Liquid or Gas/ Vapor)				
2E-1 to 6	Vertical Flare	1S, 2S, 3S, 4S, 5S, 6S, and 7S	Feed Purification, Reformer Section, ATR Section, CO Conversion Section, Nitrogen Wash Unit, CO2 Removal Section, and Ammonia Loop	2C	Flare	NA	NA	Steady stat	e operations de	o not have venti	ng to flare	from the pro	ocess and the	flare is turr	ied off.		

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

					-	Table 1	: Emis	ssions Data	4E Startup Er	nissions					
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emiss Ve Through (Must mat Units Ta P	ion Unit Inted This Point Ich Emission Iable & Plot Ian)	Air F Contr <i>(Mu</i> Emis Tab	Pollution ol Device st match sion Units le & Plot Plan)	Vent Time for Emission Unit (chemical processes only) All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs		Maximum Potential Uncontrolled Emissions ⁴		Naximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)	
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Gas/ Vapor)		
4E-1 to 6	Vertical	11S-1 to 6	Startup & Emergency Generator	NA	NA	NA	NA	NO _x CO CO2 SO2 CH4 VOC PM/PM10/PM2.5 Total HAPS	$\begin{array}{c} 3.20 \\ 5.11 \\ 1,083.50 \\ 0.01 \\ 14.28 \\ 1.18 \\ 0.48 \\ 0.78 \end{array}$	$\begin{array}{c} 0.16 \\ 0.26 \\ 54.18 \\ 0.01 \\ 0.72 \\ 0.06 \\ 0.03 \\ 0.04 \end{array}$	$\begin{array}{c} 3.20 \\ 5.11 \\ 1,083.50 \\ 0.01 \\ 14.28 \\ 1.18 \\ 0.48 \\ 0.78 \end{array}$	$\begin{array}{c} 0.16 \\ 0.26 \\ 54.18 \\ 0.01 \\ 0.72 \\ 0.06 \\ 0.03 \\ 0.04 \end{array}$			

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

- ³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.
- ⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
- ⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
- ⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

	Table 2: Release Parameter Data										
			Exit Gas		Emission Point El	evation (ft)	UTM Coordina	tes (km)			
Emission Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Temp. (ºF)	Volumetric Flow ¹ (acfm) <i>at operating conditions</i>	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting			
1E	NA	NA	NA	NA	~1517 Ft.	NA	4,163.5908	418.1564			
2E	NA	NA	NA	NA	~1517 Ft.	NA	4,163.5908	418.1564			
4E	NA	NA	NA	NA	~1517 Ft.	NA	4,163.5908	418.1564			

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.
ATTACHMENT K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions, which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS					
1.)	Will there be haul road activities?					
	□ Yes					
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.					
2.)	Will there be Storage Piles?					
	□ Yes					
	If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.					
3.)	Will there be Liquid Loading/Unloading Operations?					
	☐ Yes					
	☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.					
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?					
	☐ Yes					
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.					
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?					
	Yes IN Leak Source Count is in Attachment N.					
	If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.					
6.)	Will there be General Clean-up VOC Operations?					
	□ Yes					
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.					
7.)	Will there be any other activities that generate fugitive emissions?					
	□ Yes					
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.					
lf yo Sur	If you answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions Summary."					

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants	Maximum Potential Uncontrolled Emissions ²		Maximum Potential Controlled Emissions ³		Est. Method
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads						
Unpaved Haul Roads						
Storage Pile Emissions						
Loading/Unloading Operations						
Wastewater Treatment Evaporation & Operations						
Equipment Leaks (One Process Line)	CO CO2 CH4 NH3	Does Not Apply	1.47 5.79 0.20 4.73	Does Not Apply	1.47 5.79 0.20 4.73	EE
General Clean-up VOC Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

 ² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
 ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

ATTACHMENT L

EMISSION UNIT DATA SHEET(S)

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 1S-1 through 6

1. Name or type and model of proposed affected source:

The Feed Purification Unit includes the following major pieces of equipment:

- K411-Natural Gas Compressor
- R-201-Hydrogenator
- R-202 ¹/₂-Sulfur Absorber
- On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.

See Process Flow Diagram C1 PFD01-Reforming

The Feed Purification Unit is utilized to purify the inlet Methane Feed Stream. This unit is vented during startups and shutdowns to the Process Gas Vent Flare.

3. Name(s) and maximum amount of proposed process material(s) charged per hour: Stream 2000 PFD01-Reforming

	Nm^3/hr
Ar	0
Byproducts	0
C3 to C6	6,816
C7+	120
C2H6	10,526
CH4	181,852
CO	0
CO2	11,504
H2	0
He	46
N2	5,738
H2O	20
4 Name(s)	and maxim

. Name(s) and maximum amount of proposed material(s) produced per hour:

Stream 2055 Pl	FD01-Reforming Nm^3/hr
Ar	2
Byproducts	36
C3 to C6	6,816
C7+	120
C2H6	10,526
CH4	181,850
CO	1,676
CO2	9,854
H2	16,010
He	48
N2	11,642
NH3	18
H2O	170,366

5. Give chemical reactions, if applicable, that will be involved in the generation of air Pollutants:

No chemical reaction.

6.	Со	mbustion Data (if applic	able):			
	(a)	Type and amount in ap	propriate units of	fuel(s) to be bu	rned:	
	(h)	Chemical analysis of	proposed fuel(s)		al including r	maximum percen
	(D)	sulfur and ash:		excluding coa	al, including i	
•						
	(c)	Theoretical combustion	n air requirement (ACF/unit of fue	l):	
		@		°F and		psia.
	(d)	Percent excess air:	NA			
	(e)	Type and BTU/hr of bu	rners and all other	firing equipme	ent planned to	be used:
	(f)	If coal is proposed as the coal as it will be fire	a source of fuel, i	dentify supplie	r and seams	and give sizing o
			JG .			
	(g)	Proposed maximum de	esign heat input:	NA		× 10 ⁶ BTU/hr.
7.	Pro	jected operating sched	ule:			
Но	ours/	Day 24	Days/Week	7	Weeks/Year	52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control					
The	The Feed Purification Unit vents to the Process Gas Flare during routine Startups/Shutdown. It does not have a steady state vent safety valve venting to the Process Gas Flare could occur during upset conditions					
	steady state vent, sare	ly vuive ve	Shifting to the Process Gus Pr		i occur during upset conditions.	
		Val	ues shown below represent	1 Startuj	p	
	NO			II- /I	Tautu	
a.				id/nr	l on/yr	
h	SO ₂			l lh/hr	Top/yr	
0.		See A	Attachment N for	10/111		
c.	СО	Steps	3-12.	lb/hr	Ton/yr	
d.				lb/hr	Ton/yr	
					,	
e.	Hydrocarbons			lb/hr	Ton/yr	
f.	VOCs (Ethan Methane)	e &		lb/hr	Ton/yr	
g.	Pb			lb/hr	Ton/yr	
h.	Specify other(s)					
				lb/hr	Ton/yr	
				lb/hr	Ton/yr	
				lb/hr	Ton/yr	
				lb/hr	Ton/yr	

9.	Projected amou devices were us	nt of pollut	ants that would be e	mitted fro	m this affected source if no control		
The	The Feed Purification Unit vents to the Process Gas Flare during routine Startups/Shutdown. It						
	does not have a steady state vent, safety valve venting to the Process Gas Flare could occur during upset conditions.						
		Values	shown below represe	ent 1 Shut	down		
a.	NO _X			lb/hr	Ton/yr		
	SO ₂						
b.	-	a		lb/hr	Ton/yr		
		See Att	ent to flare in				
c.	со	Steps 3	- 12.	lb/hr	Ton/yr		
d.	PM ₁₀			lb/hr	Ton/yr		
e.	Hydrocarbons			lb/hr	Ton/vr		
0.				10/111			
f	VOCs (Eth	ane &		lb/br	Top/yr		
1.	Methane)			10/111	r on // yr		
~	Dh			lle /le r	Tophr		
g.	PD			ID/III	ı ori/yi		
h.	Specify other(s)					
				lb/br	Top/yr		
				10/111	ı orayı		
				lb/br	Tophy		
				10/11	ı onyyı		
				lle /le v	Tartur		
				וח/מו	i on/yr		
				ib/hr	Ton/yr		

10. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.						
MONITORING	RECORDKEEPING					
None Proposed	Track the amount of sulfur produced.					
REPORTING	TESTING					
None Proposed	None Proposed					
MONITORING. PLEASE LIST AND DESCRIBE TH	E PROCESS PARAMETERS AND RANGES THAT ARE					

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 2S-1 through 6

 R-203 PreReformer On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants. See <i>Process Flow Diagram C1 PFD01-Reforming</i> The Reformer Section is to condition Methane Gas feed stream for downstream reforming. Thi unit is vented during startups and shutdowns to the Process Gas Vent Flare. Name(s) and maximum amount of proposed process material(s) charged per hour: Stream 2055 PFD01-Reforming M Note a state of the state of th	The Reformer S	ection includes the following major pieces of equipment:
 2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants. See <i>Process Flow Diagram C1 PFD01-Reforming</i> The Reformer Section is to condition Methane Gas feed stream for downstream reforming. Thi unit is vented during startups and shutdowns to the Process Gas Vent Flare. 3. Name(s) and maximum amount of proposed process material(s) charged per hour: Stream 2055 PFD01-Reforming A 2 10 10 10 10 10 10 10 10 10 10 10 10 10	• R-203	PreReformer
See Process Flow Diagram C1 PFD01-Reforming The Reformer Section is to condition Methane Gas feed stream for downstream reforming. This unit is vented during startups and shutdowns to the Process Gas Vent Flare. 3. Name(s) and maximum amount of proposed process material(s) charged per hour: Stream 2055 PFD01-Reforming Name(s) and maximum amount of proposed material(s) produced per hour: Stream 2060 PFD01-Reforming No chemical reaction.	2. On a sep be made all feature	arate sheet(s), furnish a sketch(es) of this affected source. If a modification is to to this source, clearly indicated the change(s). Provide a narrative description c as of the affected source which may affect the production of air pollutants.
The Reformer Section is to condition Methane Gas feed stream for downstream reforming. Thi unit is vented during startups and shutdowns to the Process Gas Vent Flare. 3. Name(s) and maximum amount of proposed process material(s) charged per hour: Stream 2055 PFD01-Reforming Note: the state of	See Process I	Flow Diagram C1 PFD01-Reforming
 3. Name(s) and maximum amount of proposed process material(s) charged per hour: Stream 2055 PFD01-Reforming Ar 2 Byproducts 36 C74 120 C74 120	The Reforme unit is ver	r Section is to condition Methane Gas feed stream for downstream reforming. Thi nted during startups and shutdowns to the Process Gas Vent Flare.
Stream 2055 PFD01-Reforming Nm ³ /h ¹ # 2 #pyroducts 36 G10 C6 6.816 C746 10,526 C02 9,854 H2 16,000 He 48 N2 11,642 H3 18 H20 170,366 4. <name(s) amount="" and="" hour:<="" material(s)="" maximum="" of="" per="" produced="" proposed="" td=""> Stream 2060 PFD01-Reforming Nm³/h¹ M13 18 H20 12,352 C01 436 Stream 2060 PFD01-Reforming Nm³/h¹ M20 11,553 Pyproducts 0 C02 19,534 H2 12,650 H20 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.</name(s)>	3. Name(s)	and maximum amount of proposed process material(s) charged per hour:
Ministry 1 Ary products 36 C3 to C6 6,816 C74 120 C2H6 10,526 C01 1,576 C02 9,854 H2 16,010 H8 11,642 H9 48 N2 11,642 H9 2 Byproducts 0 Ar 2 Byproducts 0 C04 218,752 C05 436 N2 11,650 H20 135,334 H2 2,018 H8 11,650 H20 132,286	Stream 2055 PFI	D01-Reforming
M 2 CH4 10 CH4 10 CH4 11 CH4 18 M2 1.642 H2 16,010 He 48 H2 170,366 4. Name(s) and maximum amount of proposed material(s) produced per hour: Stream 2060 PFD01-Reforming Mr/3/hr Ar 2 Byproducts 0 CH4 218,752 CO 436 CO2 19,534 H2 11,652 Stream 2060 PFD01-Reforming Mr/3/hr 18 Ar 2 Byproducts 0 CH4 218,752 CO 436 CO2 19,534 H2 11,650 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction. No chemical reaction.	A	Nm^3/hr
Giro Gam 6,816 C7+ 120 CH6 10,526 CH4 181,850 CO 1,576 CO2 9,854 H2 16,010 H2 11,642 NH3 18 H20 170,366 4. Name(s) and maximum amount of proposed material(s) produced per hour: Stream 2060 PFD01-Reforming Ar 2 Byproducts 0 CH4 218,752 CO2 19,534 H2 11,650 H2 12,286	Ar Byproducts	36
C^{7+} 120 C^{7+} 120 C^{7+} 10526 C^{7+} 120 C^{7+} 120 C^{7+} 120 C^{7+} 120 C^{7+} 120 C^{7+} 120 C^{7+} 15010 He 48 N2 11,642 NH3 18 H20 170,366 4. Name(s) and maximum amount of proposed material(s) produced per hour: Stream 2060 PFD01-Reforming Nm*3/hr Ar A^r 2 Bygroduts 0 CH4 218,752 CO2 436 CO2 19,534 H2 23,018 He 48 N2 11,650 H2O 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.	C3 to C6	6,816
CH4 10,326 CO 1,676 CO 1,676 CO 9,854 H2 16,010 He 48 N2 11,542 NH3 18 H2O 170,366 4. Name(s) and maximum amount of proposed material(s) produced per hour: Stream 2060 PFD01-Reforming Nm ³ /hr Ar 2 Byproducts 0 CH4 218,752 CO 436 CO2 19,534 H2 23,018 He 48 N2 11,650 H2O 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.	C7+	120
C0 1,67° C02 9,854 H2 16,010 H8 48 N2 11,642 NH3 18 H2O 170,366 44. Name(s) and maximum amount of proposed material(s) produced per hour: Stream 2060 PFD01-Reforming Nm ⁴ 3/hr Ar 2 Byproducts 0 CH4 218,752 CO2 19,534 H2 23,018 He 48 N2 11,650 H20 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.	C2H6 CH4	10,526 181,850
CD2 9,854 H2 16,010 H4 48 N2 11,642 N3 18 H20 170,366 4. Name(s) and maximum amount of proposed material(s) produced per hour: Stream 2060 PFD01-Reforming Nm^3/hr Ar 2 Byproducts 0 CH4 218,752 CO 436 CO2 19,534 H2 23,018 He 48 M2 11,650 H20 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.	CO	1,676
$\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$	CO2	9,854
 ^{ne} ⁴⁰ ⁴⁰ ^{11,642} ^{NH3} ¹⁸ ¹²⁰ ^{170,366} 4. Name(s) and maximum amount of proposed material(s) produced per hour: Stream 2060 PFD01-Reforming ^{NM3/hr} ^{Ar} ² ^{PM7/hr} ^{Ar} ² ^{PM7/hr} ² ^{PM7/hr} ^{Ar} ² ^{PM7/hr} ^{11,552} ^{CO} ⁴³⁶ ^{23,52} ^{CO} ^{11,550} ^{11,550} ^{11,550} ^{FE} ⁴⁸ ^{11,650} ^{FE} ^{11,650} 	H2	15,010
NH3 18 H20 170,366 4. Name(s) and maximum amount of proposed material(s) produced per hour: Stream 2060 PFD01-Reforming Nm*3/hr Ar 2 Byproducts 0 CO 436 CO 436 CO 436 CO 436 CO 436 CO 11,650 H20 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.	N2	11.642
H20 170,366 4. Name(s) and maximum amount of proposed material(s) produced per hour: Stream 2060 PFD01-Reforming Ar 2 Byproducts 0 CO 436 CO 436 CO 436 CO 436 H2 23,018 H4 48 N2 11,650 H2O 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.	NH3	18
 4. Name(s) and maximum amount of proposed material(s) produced per hour: Stream 2060 PFD01-Reforming Nm³/hr Ar 2 Byproducts 0 CH4 218,752 CO 436 CO2 19,534 H2 23,018 He 48 NZ 11,650 H2O 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.	H2O	170,366
Stream 2060 PFD01-Reforming Nm ^{*3/hr} Ar 2 Byproducts 0 CH4 218,752 CO 436 CO2 19,534 H2 23,018 He 48 N2 11,650 H2O 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.	4. Name(s)	and maximum amount of proposed material(s) produced per hour:
Ar 2 Byproducts 0 CH4 218,752 CO 436 CO2 19,534 H2 23,018 He 48 N2 11,650 H2O 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.	Stream 2060 PFI	D01-Reforming
Byproducts 0 CH4 218,752 CO 436 CO2 19,534 H2 23,018 He 48 N2 11,650 H2O 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.	Δr	Nm*3/hr 2
CH4 218,752 CO 436 CO2 19,534 H2 23,018 He 48 N2 11,650 H2O 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.	Byproducts	0
CO 436 CO2 19,534 H2 23,018 He 48 N2 11,650 H20 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.	CH4	218,752
H2 23,018 He 48 N2 11,650 H20 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction.	CO	436
 Me is a state of the s	H2	23,018
 ^{N2} H20 11,650 152,286 5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction. 	He	48
 Find the second secon	N2	11,650
 Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: No chemical reaction. 	H2O	152,286
No chemical feaction.	5. Give chem	ical reactions, if applicable, that will be involved in the generation of air pollutants:
	No chamical r	aaction
	No chemical r	eaction.

6.	Co	mbustion Data (if appli	cable):				
	(a)	Type and amount in a	ppropriate units of	fuel(s) to be bu	rned:		
	(h)	Chemical analysis of	proposed fuel(s)	excluding co:	al including	maximum nerc	ont
	(0)	sulfur and ash:		choldding coa	ai, including		CIII
•							
	(c)	Theoretical combustic	n air requirement (ACF/unit of fue	l):		
		@		°F and		psia	a.
	(d)	Percent excess air:	NA				
	(e)	Type and BTU/hr of b	urners and all othe	r firing equipme	ent planned to	be used:	
	(f)	If coal is proposed as the coal as it will be fir	a source of fuel,	identify supplie	r and seams	and give sizing	g of
	(g)	Proposed maximum d	esign heat input:	NA		× 10 ⁶ BTU/hr	
7.	Pro	jected operating sched	lule:				
Но	ours/	Day 24	Days/Week	7	Weeks/Year	52	

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control					
The	Reformer Section v	vents to the P	rocess Gas Flare during	routine Sta	rtups/Shutdown. It does not have a steady	
	state vent, safety va	alve venting t	o the Process Gas Flare of	could occur	during upset conditions.	
		V	alues shown are for	1 Startup		
a.	NO _X			lb/hr	Ton/yr	
b.	SO ₂	C Att		lb/hr	Ton/yr	
c.	СО	gases s Steps 3	ent to flare in -12 .	lb/hr	Ton/yr	
d.	PM ₁₀			lb/hr	Ton/yr	
e.	Hydrocarbons			lb/hr	Ton/yr	
f.	VOCs (Eth Methane)	ane &		lb/hr	Ton/yr	
g.	Pb			lb/hr	Ton/yr	
h.	Specify other(s)				
				lb/hr	Ton/yr	
				lb/hr	Ton/yr	
				lb/hr	Ton/yr	
				lb/hr	Ton/yr	

9.	9. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:						
The	The Reformer Section vents to the Process Gas Flare during routine Startups/Shutdown. It does						
	not have a stead	y state ve	ent, safety valve vent	ting to t	he Process Gas Flare could occur		
	during upset conc	nuons.					
			Values shown are for 1 S	hutdown			
a.	NO _x			lb/hr	Ton/yr		
b.	SO ₂			lb/hr	Ton/yr		
	<u> </u>	See A	ttachment N for				
c.	gases Steps 3		sent to flare in $3-12$.	lb/hr	Ton/yr		
d.	PM ₁₀			lb/hr	Ton/yr		
e.	Hydrocarbons			lb/hr	Ton/yr		
f.	VOCs (Etha Methane)	ne &		lb/hr	Ton/yr		
g.	Pb			lb/hr	Ton/yr		
h.	Specify other(s)						
				lb/hr	Ton/yr		
				lb/hr	Ton/yr		
				lb/hr	Ton/yr		
				lb/hr	Ton/yr		

10. Proposed Monitoring, Recordkeeping, Report Please propose monitoring, recordkeeping compliance with the proposed operating pro- demonstrate compliance with the proposed MONITORING None Proposed	orting, and Testing ng, and reporting in order to demonstrate arameters. Please propose testing in order to emissions limits. RECORDKEEPING Track the amount of sulfur produced.		
REPORTING	TESTING		
None Proposed	None Proposed		
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE. RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.			

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 3S-1 through 6

1. Name or type and model of proposed affected source:						
The ATR Section includes the following major pieces of equipment:						
• R-204 AutoThermal Reformer (ATR)						
• E-208 Waste Heat Boiler						
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is be made to this source, clearly indicated the change(s). Provide a narrative description all features of the affected source which may affect the production of air pollutants. 	to of					
See Process Flow Diagram C1 PFD01-Reforming						
The ATR Section is utilized to reform the Methane gas feed stream into Carbon Dioxide. T unit is vented during startups and shutdowns to the Process Gas Vent Flare.	his					
3 Name(s) and maximum amount of proposed process material(s) charged per hour.						
Stream 2060 PFD01-Reforming						
Nm^3/hr						
Ar 2 Byproducts 0						
CH4 218,752 CO 436						
CO2 19,534						
H2 23,018 He 48						
N2 11,650						
H2O 152,286						
4. Name(s) and maximum amount of proposed material(s) produced per hour:						
Stream 2105 PFD02-Shift						
Ar 29,882						
Byproducts 6						
CH4 7,998 CO 214,386						
CO2 50,524						
He 48						
N2 36,476						
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:						
$CH + 20 \rightarrow CO + 2H O$						
$CH_4 + 2O_2 - 7 CO_2 + 2H_2O$						
$C\Pi_4 + \Pi_2 O \neq CO + 3\Pi_2$						

6.	Со	mbustion Data (if app	licable):			
	(a)	Type and amount in a	appropriate units of	fuel(s) to be bu	rned:	
	(h)	Chemical analysis of	f proposed fuel(s)	evoluding co:	al including	
	(0)	sulfur and ash:		, excluding coo	al, moldaling	
•						
	(c)	Theoretical combusti	on air requirement	(ACF/unit of fue	l):	
		@		°F and		psia.
	(d)	Percent excess air:	NA			
	(e)	Type and BTU/hr of t	ourners and all othe	er firing equipme	ent planned to	be used:
	(f)	If coal is proposed a the coal as it will be f	s a source of fuel, ired [.]	identify supplie	r and seams	and give sizing o
	(g)	Proposed maximum	design heat input:	NA		× 10 ⁶ BTU/hr.
7.	Pro	jected operating sche	edule:			
Ho	ours/	Day 24	Days/Week	7	Weeks/Year	52

8.	3. Projected amount of pollutants that would be emitted from this affected source if no control						
The	The ATR Section vents to the Process Gas Flare during routine Startups/Shutdown. It does not						
	have a steady state vent, safety valve venting to the Process Gas Flare could occur during						
	upset conditions.						
			Values shown are for 1 S	tartup			
a.	NO _X			lb/hr			
	SO ₂						
b.				lb/hr	Ton/yr		
		See A	Attachment N for				
c.	со	gases Steps	sent to flare in $3-12$.	lb/hr	Ton/yr		
d.	PM ₁₀] Ib/hr	Ton/yr		
e.	Hydrocarbons			lb/hr	Ton/yr		
f.	VOCs (Ethar Methane)	ne &		lb/hr	Ton/yr		
g.	Pb			lb/hr	Ton/yr		
h.	Specify other(s)						
				lb/hr	Ton/yr		
				lb/hr	Ton/yr		
				lb/hr	Ton/yr		
				lb/hr	Ton/yr		

9. The	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
	have a steady state vent, safety valve venting to the Process Gas Flare could occur during upset conditions.					
		Va	lues shown are for 1	Shutdow	n	
a.	NO _X			lb/hr	Ton/yr	
b.	SO ₂			lb/hr	Ton/yr	
c.	. CO See A gases Steps 3		ttachment N for sent to flare in $3-12$.	lb/hr	Ton/yr	
d.	PM ₁₀			lb/hr	Ton/yr	
e.	Hydrocarbons			lb/hr	Ton/yr	
f.	VOCs (Etha Methane)	ane &		lb/hr	Ton/yr	
g.	Pb			lb/hr	Ton/yr	
h.	Specify other(s)					
				lb/hr	Ton/yr	
				lb/hr	Ton/yr	
				lb/hr	Ton/yr	
				lb/hr	Ton/yr	

10. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.						
MONITORING	RECORDKEEPING					
None Proposed	Track the amount of sulfur produced.					
REPORTING	TESTING					
None Proposed	None Proposed					
MONITORING. PLEASE LIST AND DESCRIBE TH	E PROCESS PARAMETERS AND RANGES THAT ARE					
PROPOSED TO BE MONITORED IN ORDER TO DEMITHIS PROCESS EQUIPMENT OPERATION/AIR POLLU	ONSTRATE COMPLIANCE WITH THE OPERATION OF TION CONTROL DEVICE.					
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.						

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): 4S-1 through 6

1. Name or type and model of proposed affected source:
 The CO Conversion Section includes the following major pieces of equipment: R-205 High Temperature Shift Converter R-206 Medium Temperature Shift Converter E-213 BFW PreHeater C-301 HP Regenerator C-303 LP Regenerator
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
See Process Flow Diagram C1 PFD02-Shift
The CO Conversion Section is utilized to continue converting Methane feed into Carbon Dioxide, CO2, Hydrogen and Water. This unit is vented during startups and shutdowns to the Process Gas Vent Flare.
3. Name(s) and maximum amount of proposed process material(s) charged per hour: $\begin{array}{c} \text{Stream 2105 PFD02-Shift} \\ \text{Ar} & 29,882 \\ \text{Byproducts} & 6 \\ \text{CH4} & 7,998 \\ \text{CO} & 214,386 \\ \text{CO2} & 50,524 \\ \text{H2} & 450,754 \\ \text{He} & 48 \\ \text{N2} & 36,476 \\ \text{H2O} & 200,874 \end{array}$
4. Name(s) and maximum amount of proposed material(s) produced per hour:Stream 2160 PFD02-ShiftNm^3/hrAr29,888Byproducts1,014CH48,000CO26,924CO2238,550H2637,990He48N236,478H2O208,566
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
$CH_4+2O_2 \rightarrow CO_2+2H_2O$
$CO + H_2O \rightarrow CO_2 + H$

6.	Со	mbustion Data (if ap	olicable):				
	(a)	Type and amount in	appropriate units of	fuel(s) to be bu	irned:		
	(b)	Chemical analysis	of proposed fuel(s)	. excluding co	al. including	maximum	percent
	(~)	sulfur and ash:		,, e.e.e.e	,		
⊢	(c)	Theoretical combus	tion air requirement	(ACF/unit of fue	al):		
	(0)						
		<u>w</u>		°F and			psia.
	(d)	Percent excess air:	NA				
	(e)	Type and BTU/hr of	burners and all othe	er firing equipme	ent planned to	be used:	
	(f)	If coal is proposed		identify supplic	r and coame	and give e	izing of
	(1)	the coal as it will be	fired:	identity supplie	and seams	and give s	
<u> </u>							
	(g)	Proposed maximum	design heat input:	NA		× 10 ⁶ BT	U/hr.
7.	Pro	jected operating sch	edule:		1		
Ho	ours/	Day 24	Days/Week	7	Weeks/Year	52	

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 						
The	The CO Conversion Section vents to the Process Gas Flare during routine Startups/Shutdown. It does not have a						
	steady state vent, safety valve venting to the Process Gas Flare could occur during upset conditions.						
			Values shown are for	1 Startup			
a.	NO _X			lb/hr	Ton/yr		
	SO ₂						
b.		See Att	achment N for	lb/hr	Ton/yr		
		gases se	ent to flare in				
c.	CO	Steps 5 -	- 12.	lb/hr	Ton/yr		
d.	. PM ₁₀			lb/hr	Ton/yr		
e.	Hydrocarbons			lb/hr	Ton/yr		
f.	VOCs (Eth Methane)	nane &		lb/hr	Ton/yr		
g.	Pb			lb/hr	Ton/yr		
h.	Specify other(s	s)	1				
				lb/hr	Ton/yr		
				lb/hr	Ton/yr		
				lb/hr	Ton/yr		
				lb/hr	Ton/yr		

9.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 						
The	The CO Conversion Section vents to the Process Gas Flare during routine Startups/Shutdown. It does not have a						
	steady state vent, safety varve venting to the Process Gas Flare could occur during upset conditions.						
			Values shown are for 1	Shutdown			
a.	NO _X			lb/hr	Ton/yr		
b.	SO ₂			lb/hr	Ton/yr		
c.	со	See Atta gases se Steps 3 -	achment N for ent to flare in -12.	lb/hr	Ton/yr		
d.	PM_{10}			lb/hr	Ton/yr		
e.	Hydrocarbons			lb/hr	Ton/yr		
f.	VOCs (Eth Methane)	nane &		lb/hr	Ton/yr		
g.	Pb			lb/hr	Ton/yr		
h.	Specify other(s	5)					
				lb/hr	Ton/yr		
				lb/hr	Ton/yr		
				lb/hr	Ton/yr		
				lb/hr	Ton/yr		

10. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.					
MONITORING	RECORDKEEPING				
None Proposed	Track the amount of sulfur produced.				
REPORTING	TESTING				
None Proposed	None Proposed				
MONITORING. PLEASE LIST AND DESCRIBE TH	MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE				
PROPOSED TO BE MONITORED IN ORDER TO DEM THIS PROCESS EQUIPMENT OPERATION/AIR POLLU	ONSTRATE COMPLIANCE WITH THE OPERATION OF TION CONTROL DEVICE.				
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.					

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 5S-1 through 6

1. Name or	type and model of proposed affected source:
The Nitrogen W • V-311 • X-302 • K-401	Vash Unit includes the following major pieces of equipment: Final Separator Nitrogen Wash Unit Recycle Off-Gas Compressor
2. On a sep be made all feature	parate sheet(s), furnish a sketch(es) of this affected source. If a modification is to to this source, clearly indicated the change(s). Provide a narrative description c es of the affected source which may affect the production of air pollutants.
See Process Fla	ow Diagram C1 PFD04-NWU
The Nitrogen V Loop Section	Vash Unit is utilized to purify the feed stream of Hydrogen going downstream to the Ammoni on. This unit is vented during startups and shutdowns to the Process Gas Vent Flare.
3. Name(s)	and maximum amount of proposed process material(s) charged per hour:
Stream 2300 PFI	D03-GV
Ar	29,882
Byproducts	48
CO	26,898
CO2	110
H2 He	636,196 48
N2	36,452
NH3	240
H2O	5,502
4. Name(s)	and maximum amount of proposed material(s) produced per hour:
Stream 2330 PFD	03-GV
Ar	Nm^3/hr 12
Byproducts	0
CH4	0
CO2	0
H2	513,016
ne N2	
NH3	74
H2O	0
5. Give chem	nical reactions, if applicable, that will be involved in the generation of air pollutants:
No chemical r	reaction.

6.	Combustion Data (if applicable):							
	(a) Type and amount in appropriate units of fuel(s) to be burned:							
	(b)	Chemical analysis of	proposed fuel(s).	excluding coa	al, including n	naximum percent		
	()	sulfur and ash:	p. op o o o	energien.g eet	,			
-	(c)	Theoretical combustion	n air requirement (ACF/unit of fue	I):			
	()	0		°F and		nsia		
						pola.		
	(d)	Percent excess air:	NA					
	(e)	Type and BTU/hr of bu	rners and all other	firing equipme	ent planned to	be used:		
	(f)	If coal is proposed as	a source of fuel. i	dentifv supplie	r and seams a	and give sizing of		
	()	the coal as it will be fire	ed:			5 5		
┢	(=)	Deep and starting to						
	(g)	Proposed maximum de	esign neat input:	NA		× 10° BTU/hr.		
7.	Pro	jected operating sched	ule:					
Но	urs/	Day 24	Days/Week	7	Weeks/Year	52		

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:							
The	The Nitrogen Wash Unit vents to the Process Gas Flare during routine Startups/Shutdown. It does not have a							
	steady state vent, safety valve venting to the Process Gas Flare could occur during upset conditions.							
			Values shown are a for 1	Startup				
a.	NO _X			lb/hr	Ton/yr			
b.	SO ₂			lb/hr	Ton/yr			
c.	со	See A gases Steps 3	ttachment N for sent to flare in $3-12$.	lb/hr	Ton/yr			
d.	PM ₁₀			lb/hr	Ton/yr			
e.	Hydrocarbons			lb/hr	Ton/yr			
f.	VOCs (Etha Methane)	ne &		lb/hr	Ton/yr			
g.	Pb			lb/hr	Ton/yr			
h.	Specify other(s)							
				lb/hr	Ton/yr			
				lb/hr	Ton/yr			
				lb/hr	Ton/yr			
				lb/hr	Ton/yr			

9.	9. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:								
The	The Nitrogen Wash Unit vents to the Process Gas Flare during routine Startups/Shutdown. It does not have a steady state yeart, safety valve venting to the Process Gas Flare could occur during upset conditions.								
	steady state vent, safety varve venting to the Flocess Gas Flare could occur during upset conditions.								
			Values shown are fo	r 1 Shutdown					
a.	NO _x			lb/hr	Ton/yr				
	SO ₂								
b.		See Attac	hment N for	lb/hr	Ton/yr				
		gases sen	t to flare in						
c.	CO	Steps 3 – 2	12.	lb/hr	Ton/yr				
d.	PM ₁₀			lb/hr	Ton/yr				
e.	Hydrocarbo	ns		lb/hr	Ton/yr				
f.	VOCs (I Methane)	Ethane &		lb/hr	Ton/yr				
g.	Pb			lb/hr	Ton/yr				
h									
n.	Specily othe	er(S)							
				lb/hr	Ton/yr				
				lb/hr	Ton/yr				
				lb/hr	Ton/yr				
				lb/hr	Ton/yr				

10. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.						
MONITORING	RECORDKEEPING					
None Proposed	Track the amount of sulfur produced.					
REPORTING	TESTING					
None Proposed	None Proposed					
MONITORING. PLEASE LIST AND DESCRIBE TH	E PROCESS PARAMETERS AND RANGES THAT ARE					
PROPOSED TO BE MONITORED IN ORDER TO DEM THIS PROCESS EQUIPMENT OPERATION/AIR POLLU	ONSTRATE COMPLIANCE WITH THE OPERATION OF TION CONTROL DEVICE.					
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.						

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 6S-1 through 6

1. Name or type and model of proposed affected source:
 The CO2 Removal Section includes the following major pieces of equipment: C-301 HP Regenerator C-303 LP Regenerator C-302 CO2 Absorber
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is the made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
See Process Flow Diagram C1 PFD03-GV
The CO2 Removal Section is utilized to remove and sequester CO2 from the process stream. This unit is vented during startups and shutdowns to the Process Gas Vent Flare.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Sitealii 2100 PFD02-Siliit Nm^3/hr
Ar 29,888 Byproducts 1.014
CH4 8,000
CO 26,924 CO2 238,550
H2 637,990
He 48 N2 36 478
H2O 208,566
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Stream 2300 PFD03-GV
Nm^3/hr Ar 29,882
Byproducts 48
CH4 7,998 CO 26.898
CO2 110
H2 636,196 He 48
N2 36,452
NH3 240
H2U 5,502
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
No chemical reaction.

6.	Combustion Data (if applicable):							
	(a) Type and amount in appropriate units of fuel(s) to be burned:							
	(h)	Chamical analysis of	proposed fuel(c)	oveluding co				
	(0)	sulfur and ash:	proposed idei(s),	excluding coa	al, including i			
•								
	()							
	(C)	I heoretical combustion	n air requirement (ACF/unit of fue	1):			
		@		°F and		psia.		
	(d)	Percent excess air:	NA					
	(e)	Type and BTU/hr of bu	rners and all other	r firing equipme	ent planned to	be used:		
	(6)							
	(†)	the coal as it will be fire	a source of fuel, a	identify supplie	r and seams	and give sizing o		
	(g)	Proposed maximum de	esign heat input:	NA		× 10 ⁶ BTU/hr.		
7.	Pro	jected operating sched	ule:					
Но	ours/	Day 24	Days/Week	7	Weeks/Year	52		

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:								
The	The CO2 Removal Section vents to the Process Gas Flare during routine Startups/Shutdown. It does not have a								
	steady state vent, safety valve venting to the Process Gas Vent Flare could occur during upset conditions.								
		Va	lues shown are for 1 A	Annual Startup					
a.	NO _X			lb/hr	Ton/yr				
b.	SO ₂			lb/hr	Ton/yr				
c.	СО	See Attac gases ser	chment N for at to flare in	lb/hr	` Ton/yr				
d.	PM ₁₀	steps 5 –	12.	lb/hr	Ton/yr				
e.	Hydrocarbon	IS		lb/hr	Ton/yr				
f.	VOCs (E Methane)	Ethane &		lb/hr	Ton/yr				
g.	Pb			lb/hr	Ton/yr				
h.	Specify othe	r(s)							
				lb/hr	Ton/yr				
				lb/hr	Ton/yr				
				lb/hr	Ton/yr				
				lb/hr	Ton/yr				

9.	9. Projected amount of pollutants that would be emitted from this affected source if no control dovices were used:							
The	The CO2 Removal Section vents to the Process Gas Flare during routine Startups/Shutdown. It does not have a							
	steady state vent, safety valve venting to the Process Gas Vent could occur during upset conditions.							
		Values shown	n are a combined numbe	er for 1 Annu	al Shutdown			
a.	NO _x			lb/hr	Ton/yr			
b.	SO ₂			lb/hr	Ton/yr			
c.	CO	See Atta gases se	achment N for ent to flare in	lb/hr	Ton/yr			
d.	PM ₁₀	Steps 3 -	- 12.	lb/hr	Ton/yr			
e.	Hydrocarbons	3		lb/hr	Ton/yr			
f.	VOCs (Et Methane)	hane &		lb/hr	Ton/yr			
g.	Pb			lb/hr	Ton/yr			
h.	Specify other	(s)						
				lb/hr	Ton/yr			
				lb/hr	Ton/yr			
				lb/hr	Ton/yr			
				lb/hr	Ton/yr			

10. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.						
MONITORING	RECORDKEEPING					
None Proposed	Track the amount of sulfur produced.					
REPORTING	TESTING					
None Proposed	None Proposed					
MONITORING. PLEASE LIST AND DESCRIBE TH	E PROCESS PARAMETERS AND RANGES THAT ARE					
PROPOSED TO BE MONITORED IN ORDER TO DEM THIS PROCESS EQUIPMENT OPERATION/AIR POLLU	ONSTRATE COMPLIANCE WITH THE OPERATION OF TION CONTROL DEVICE.					
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY						

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 7S-1 through 6

1. Name or type and model of proposed affected source:
 The Ammonia Loop Unit includes the following major pieces of equipment: K-431 Synthesis Gas Compressor R-501 Ammonia Converter V-501 Ammonia Separator V-503 Flash Vessel C-501 Off Gas Absorber
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
See Process Flow Diagram C1 PFD06-Refrig
The Ammonia Loop Unit is utilized to convert Hydrogen gas feed into the final Ammonia product. This unit is vented during startups and shutdowns to the Process Gas Vent Flare.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Stream 2330 PFD03-GV
Nm^3/hr Ar 12
Byproducts 0
CH4 0
CO2 0
H2 513,016 He 38
N2 171,106
NH3 74
H2O 0
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Stream 7845 PFD06-Refrig
Nm^3/hr
Ar 12
CH4 0
CO 0
H2 1,246
Не 36
N2 506
H2O 14
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants: $N_2 + 3H_2 \rightarrow 2 NH_3$

6.	Combustion Data (if applicable):								
	(a) Type and amount in appropriate units of fuel(s) to be burned:								
-	(h)	Chemic	al analysis of	proposed fu	ما(م)	evoludina co	al including	maximum	nercent
	(0)	sulfur ar	nd ash:	proposed in	ei(<i>s)</i> ,	excluding co	ai, including	maximum	percent
•									
<u> </u>	()								
	(c)	Iheoret	ical combustior	air requirem	ient (A	CF/unit of fue	el):		
			@			°F and			psia.
	(d)	Percent	excess air:	NA					
	(e)	Type an	d BTU/hr of bu	rners and all	other	firing equipm	ent planned to	o be used:	
	(0)							<u> </u>	
	(†)	the coal	s proposed as as it will be fire	a source of f ed:	uel, id	lentify supplie	er and seams	s and give s	sizing of
	(g)	Propose	ed maximum de	esign heat inp	out:	NA		× 10 ⁶ B1	Ū/hr.
7.	Pro	jected o	perating sched	ule:			1		
Но	ours/	Day	24	Days/Week		7	Weeks/Yea	r 5	2
8.	3. Projected amount of pollutants that would be emitted from this affected source if no control								
-----	---	-----------------------------------	---------------------------------------	-----------	--------	--	--		
The	The Ammonia Loop Unit vents to the Process Gas Flare during routine Startups/Shutdown. It does not have a								
	steady state vent, safety valve venting to the Process Gas Flare could occur during upset conditions.								
			Values shown are for	1 Startup					
a.	NO _X			lb/hr	Ton/yr				
b.	SO ₂			lb/hr	Ton/yr				
c.	СО	See Atta gases se Steps 3 –	chment N for nt to flare in 12.	lb/hr	Ton/yr				
d.	PM_{10}			lb/hr	Ton/yr				
e.	Hydrocarbons	;		lb/hr	Ton/yr				
f.	VOCs			lb/hr	Ton/yr				
g.	Pb			lb/hr	Ton/yr				
h.	Specify other(s)							
				lb/hr	Ton/yr				
				lb/hr	Ton/yr				
				lb/hr	Ton/yr				
				lb/hr	Ton/yr				

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

9.	9. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:							
The	The Ammonia Loop Unit vents to the Ammonia Gas Flare during routine Startups/Shutdown. It							
	occur during upset conditions.							
	S T							
		Val	ues shown are for	r 1 Shutdow	n			
a.	NO _X			lb/hr	Ton/yr			
b.	SO ₂			lb/hr	Ton/yr			
c.	СО	gases sent Steps 3 – 1	to flare in 2.	lb/hr	Ton/yr			
d.	PM ₁₀			lb/hr	Ton/yr			
e.	Hydrocarbor	IS		lb/hr	Ton/yr			
f.	VOCs			lb/hr	Ton/yr			
g.	Pb			lb/hr	Ton/yr			
h.	Specify othe	r(s)						
				lb/hr	Ton/yr			
				lb/hr	Ton/yr			
				lb/hr	Ton/yr			
				lb/hr	Ton/yr			

10. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.						
MONITORING						
None Proposed	Track the amount of sulfur produced.					
REPORTING	TESTING					
None Proposed	None Proposed					
MONITORING. PLEASE LIST AND DESCRIBE TH PROPOSED TO BE MONITORED IN ORDER TO DEM THIS PROCESS EQUIPMENT OPERATION/AIR POLLU	E PROCESS PARAMETERS AND RANGES THAT ARE ONSTRATE COMPLIANCE WITH THE OPERATION OF TION CONTROL DEVICE.					
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY						

THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

This unit is specifically designed for each process and the final design has not been completed. Operating ranges and maintenance procedures will be identified during final design of each unit within the system. The procedures as identified will be followed.

Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form): 8S-1 through 6/1C-1 through 6

Equipment	Equipment Information					
1. Manufacturer:	2. Model No Ammonia Unit					
	Serial No. NA					
3. Number of units: 1	4. Use Startup Steam Generator					
5. Rated Boiler Horsepower: NA hp	6. Boiler Serial No.: NA					
7. Date constructed: New	8. Date of last modification and explain: New					
9. Maximum design heat input per unit:	10. Peak heat input per unit:					
5.15 ×10 ⁶ BTU/hr	59.46 ×10 ⁶ BTU/hr					
11. Steam produced at maximum design output:	12. Projected Operating Schedule:					
NA LB/br	Hours/Day 24					
	Days/Week 1					
NA psig	Weeks/Year 3					
13. Type of firing equipment to be used:	14. Proposed type of burners and orientation:					
Spreader stoker	Front Wall					
Oil burners						
Natural Gas Burner	⊠ Tangential					
Others, specify Ammonia Combustor	Others, specify					
15. Type of draft: 🛛 Forced 🗌 Induced	16. Percent of ash retained in furnace: NA %					
17. Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: NA %					
Stack or	Vent Data					
19. Inside diameter or dimensions: NA ft.	20. Gas exit temperature: NA °F					
21. Height: NA ft.	22. Stack serves:					
	This equipment only					
23. Gas flow rate: NA ft ³ /min	☐ Other equipment also (submit type and rating of all other equipment exhausted through this attack exercise)					
24. Estimated percent of moisture: NA %	stack or vent)					

REDACTED INFORMATION CLAIMED CONFIDENTIAL 6/30/2023

Fual	Requiremente	è
I UCI	Neyunemente	,

			i dei Kequ	liementa		
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify) Ammonia	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	ft ³ /hr	13,448 lb/hr	ТРН	
	Annually	×10 ³ gal	×10 ⁶ ft ³ /hr	155,327 lbs/startup	tons	
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	None gr/100 ft ³	Maximum: wt. %	
	Ash (%)			None	Maximum	
	BTU Content	BTU/Gal.	BTU/ft ³	382.2 Btu/lb	BTU/Ib	
	Source	LDS/Gal.(0001		Facility		
	Supplier			Facility		
	Halogens (Yes/No)			No		
	List and Identify Metals			None		
26.	Gas burner mode	of control:	omatic hi low	27. Gas burner ma	anufacture:	
	Automatic full n	nodulation Aut	omatic on-off	28. Oil burner mar	nufacture: NA	
29.	lf fuel oil is used, h	ow is it atomized?	NA Oil Pressu	re 🔲 Steam F ed Air 🗌 Rotary C ecify	Pressure Cup	
30.	Fuel oil preheated:	Yes	⊠ No	31. If yes, indicate	e temperature:	NA °F
32.	Specify the calculation above actual cubic	ated theoretical ai	r requirements for t of fuel: NA	or combustion of t	the fuel or mixture of	of fuels described
	@	°F,	PSIA	% r	noisture	
33.	Emission rate at ra	ated capacity: See	e Attachment N I)/hr		
34.	Percent excess air	actually required f	or combustion of	the fuel described	: NA %	
			Coal Chara	cteristics		
35.	Seams: NA	L				
36.	Proximate analysis	s (dry basis): % of	Fixed Carbon:		% of Sulfur:	
		% of % of	Moisture: Ash:		% of Volatile Matter	•

Emissions Stream

37. What quantities of pollutants will be emitted from the boiler before controls?							
	Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA		
-	СО						
	Hydrocarbons						
-	NOx	14.50	NA	NA	NA		
-	Pb						
-	PM ₁₀						
	SO ₂						
-	VOCs						
-	Other (specify)						
-							
-							
-							
38.	What quantities of pollutar	its will be emitted from	the boiler after contro	ols?			
	Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA		
_	СО						
-	Hydrocarbons						
-	NO	0.145	NΔ	NΔ	NΔ		

•				
NO _x	0.145	NA	NA	NA
Pb				
PM ₁₀				
SO ₂				
VOCs				
Other (specify)				
9. How will waste materia	I from the process and c	ontrol equipment be c	lisposed of?	1

39. How will waste material from the process and control equipment be disposed of? There is no waste material generated.

40. Have you completed an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit.

41. Have you included the *air pollution rates* on the Emissions Points Data Summary Sheet? Yes

42.	Proposed N	Monitoring,	Recordkeeping,	Reporting, and	Testing
-----	------------	-------------	----------------	----------------	---------

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. None Proposed

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. None Proposed

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. None Proposed

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. None Proposed

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. Manufacturer will provide operating and maintenance procedures upon final design of the unit.

Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form): 9S-1 through 6/1C-1 through 6

Equipment Information

• •			
1. Manufacturer: Haldor Topsoe	 Model No. Pre-Heater Serial No. NA 		
3. Number of units: 1	4. Use Pre-heater for Feed Purification		
5. Rated Boiler Horsepower: NA hp	6. Boiler Serial No.: NA		
7. Date constructed: New	8. Date of last modification and explain: NA		
9. Maximum design heat input per unit:	10. Peak heat input per unit:		
14.3 ×10 ⁶ BTU/hr	14.7 ×10 ⁶ BTU/hr		
11. Steam produced at maximum design output:	12. Projected Operating Schedule:		
NA LB/br	Hours/Day 24		
	Days/Week 7		
NA psig	Weeks/Year 52		
 13. Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify Methane and Hydrogen Burners 	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify 		
15. Type of draft: 🛛 Forced 🗌 Induced	16. Percent of ash retained in furnace: NA %		
17. Will flyash be reinjected? 🗌 Yes 🛛 No	18. Percent of carbon in flyash: NA %		
Stack or	Vent Data		
19. Inside diameter or dimensions: NA ft.	20. Gas exit temperature: NA °F		
21. Height: NA ft.	22. Stack serves:		
	This equipment only		
23. Gas flow rate: NA ft ³ /min	 Uther equipment also (submit type and rating of all other equipment exhausted through this stack or vent) 		
24. Estimated percent of moisture: NA %	,		

Fuel Requirements

25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify) Hydrogen	Coal, Type:	Other: Methane	
	Quantity(atOutput)	gph@60°F	ft ³ /hr	45,130 Nm3/hr ft ³ /hr	TPH		
	Annually	×10 ³ gal	×10 ⁶ ft ³ /hr	395.34 x 10 ⁶ Nm3 ×10 ⁶ ft ³ /hr	tons		
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	None gr/100 ft ³	Maximum: wt. %		
	Ash (%)			None	Maximum		
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	BTU/ft ³	325 BTU/ft ³	BTU/lb		
	Source			Facility			
	Supplier			Facility			
	Halogens (Yes/No)			No			
	List and Identify Metals			None			
26.	Gas burner mode	of control:	omatic hi-low	27. Gas burner man	ufacture: Haldor To	opsoe	
	Automatic full n	nodulation Aut	omatic on-off	28. Oil burner manu	facture: NA		
29.	If fuel oil is used, h	ow is it atomized?	NA Oil Pressu Compresso	re 🛛 Steam Pre ed Air 🗌 Rotary Cu cify	essure P		
30.	Fuel oil preheated:	🗌 Yes	⊠ No ;	31. If yes, indicate te	emperature:	NA °F	
32.	32. Specify the calculated theoretical air requirements for combustion of the fuel or mixture of fuels described above actual cubic feet (ACF) per unit of fuel: NA						
33.	33. Emission rate at rated capacity: See Attachment N lb/hr						
34.	34. Percent excess air actually required for combustion of the fuel described: NA %						
			Coal Chara	cteristics			
35.	Seams: NA	·					
36. Proximate analysis (dry basis): % of Fixed Carbon: % of Sulfur: % of Moisture: % of Volatile Matter: % of Asb: % of Volatile Matter:						:	

Emissions Stream

7. What quantities of pollutants will be emitted from the boiler before controls?						
Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA		
СО	0.01	NA	NA	NA		
Hydrocarbons	NA	NA	NA	NA		
NOx	43.11	NA	NA	NA		
Pb	NA	NA	NA	NA		
PM10	0.01	NA	NA	NA		
SO ₂	0.01	NA	NA	NA		
VOCs	0.01	NA	NA	NA		
Other (specify)						
CH4	0.01	NA	NA	NA		
CO2	2.01	NA	NA	NA		

38. What quantities of pollutants will be emitted from the boiler after controls?

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
СО	0.01	NA	NA	NA
Hydrocarbons	NA	NA	NA	NA
NO _x	0.44	NA	NA	NA
Pb	NA	NA	NA	NA
PM ₁₀	0.01	NA	NA	NA
SO ₂	0.01	NA	NA	NA
VOCs	0.01	NA	NA	NA
Other (specify)				
CH4	0.01	NA	NA	NA
CO2	2.01	NA	NA	NA

39. How will waste material from the process and control equipment be disposed of? There is no waste material generated.

40. Have you completed an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit.

41. Have you included the air pollution rates on the Emissions Points Data Summary Sheet? Yes

42.	Pro	posed	Monitoring,	Recordkeepi	ng, Reporting	and Testing
	-				J/	,

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. None Proposed

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device.

None Proposed

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. None Proposed

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. None Proposed

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. Haldor Topsoe will provide operating and maintenance procedures upon final design of the unit.

Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form): 10S-1 through 6/1C-1 through 6

Equipment Information

1. Manufacturer: Haldor Topsoe	 Model No. Super Heater Serial No. NA
3. Number of units: 1	4. Use Pre-heater for Feed Purification
5. Rated Boiler Horsepower: NA hp	6. Boiler Serial No.: NA
7. Date constructed: New	8. Date of last modification and explain: NA
9. Maximum design heat input per unit:	10. Peak heat input per unit:
1,332.7 ×10 ⁶ BTU/hr	1,332.7 ×10 ⁶ BTU/hr
11. Steam produced at maximum design output:	12. Projected Operating Schedule:
NA LP/br	Hours/Day 24
	Days/Week 7
NA psig	Weeks/Year 52
 13. Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify Methane and Hydrogen Burners 	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify
15. Type of draft: 🛛 Forced 🗌 Induced	16. Percent of ash retained in furnace: NA %
17. Will flyash be reinjected? 🗌 Yes 🛛 No	18. Percent of carbon in flyash: NA %
Stack or	Vent Data
19. Inside diameter or dimensions: NA ft.	20. Gas exit temperature: NA °F
21. Height: NA ft.	22. Stack serves:
	This equipment only
23. Gas flow rate: NA ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this
24. Estimated percent of moisture: NA %	stack or vent)

Fuel Requirements

25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify) Hydrogen	Coal, Type:	Other: Methane
	Quantity (at Design Output)	gph@60°F	ft³/hr	114,376 Nm3/hr ft ³ /hr	ТРН	
	Annually	×10³ gal	×10 ⁶ ft ³ /hr	1,001.94 x 10 ⁶ Nm3 ×10 ⁶ ft ³ /hr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	None gr/100 ft ³	Maximum: wt. %	
	Ash (%)			None	Maximum	
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	BTU/ft ³	325 BTU/ft ³	BTU/lb	
	Source			Facility		
	Supplier			Facility		
	Halogens (Yes/No)			No		
	List and Identify Metals			None		
26.	26. Gas burner mode of control: 27. Gas burner manufacture: Haldor Topsoe				opsoe	
	Automatic full n	nodulation Aut	omatic on-off	28. Oil burner manu	ifacture: NA	
29.	29. If fuel oil is used, how is it atomized? NA Oil Pressure Steam Pressure Compressed Air Rotary Cup Other, specify					
30.	30. Fuel oil preheated: Yes No 31. If yes, indicate temperature: NA °F					NA °F
32.	 32. Specify the calculated theoretical air requirements for combustion of the fuel or mixture of fuels described above actual cubic feet (ACF) per unit of fuel: NA 					
33.	33. Emission rate at rated capacity: See Attachment N lb/hr					
34.	34. Percent excess air actually required for combustion of the fuel described: NA %					
			Coal Chara	cteristics		
35.	Seams: NA	.				
36.	Proximate analysis	s (dry basis): % of % of % of	Fixed Carbon: Moisture: Ash:	9 9	6 of Sulfur: 6 of Volatile Matter	:

Emissions Stream

7. What quantities of pollutants will be emitted from the boiler before controls?				
Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
СО	0.01	NA	NA	NA
Hydrocarbons	NA	NA	NA	NA
NOx	109.24	NA	NA	NA
Pb	NA	NA	NA	NA
PM10	0.01	NA	NA	NA
SO ₂	0.01	NA	NA	NA
VOCs	0.01	NA	NA	NA
Other (specify)				
CH4	0.01	NA	NA	NA
CO2	2.01	NA	NA	NA

38. What quantities of pollutants will be emitted from the boiler after controls?

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
СО	0.01	NA	NA	NA
Hydrocarbons	NA	NA	NA	NA
NO _x	1.10	NA	NA	NA
Pb	NA	NA	NA	NA
PM ₁₀	0.01	NA	NA	NA
SO ₂	0.01	NA	NA	NA
VOCs	0.01	NA	NA	NA
Other (specify)				
CH4	0.01	NA	NA	NA
CO2	2.01	NA	NA	NA

39. How will waste material from the process and control equipment be disposed of? There is no waste material generated.

40. Have you completed an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit.

41. Have you included the *air pollution rates* on the Emissions Points Data Summary Sheet?

42.	Pro	posed	Monitorina.	Recordkeeping	. Reporting	and Testing
					,	

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. Amount of fuel used.

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. None Proposed

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. None Proposed

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. None Proposed

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. Haldor Topsoe will provide operating and maintenance procedures upon final design of the unit.

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 11S-1 through 6

1. Name or type and model of proposed affected source:
Cummins Model C1000N6 See attached Generator Set Data Sheet
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Startup and emergency power generator
4. Name(s) and maximum amount of proposed material(s) produced per hour:
NA
5. Give chemical reactions, if applicable, that will be involved in the generation of air
NA

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

	11.				
6. Combustion Data (if applied	cable):				
(a) Type and amount in a	opropriate units of	fuel(s) to be bu	rned:		
9.85 MMBtu/hr Methane					
(b) Chemical analysis of	proposed fuel(s)	, excluding coa	al, including	maximum	percent
sulfur and ash:					
Methane Gas					
(c) Theoretical combustio	n air requirement	ACF/unit of fue	I): See Genera	ator Data Shee	ts
0		°E and			neia
W		i anu			psia.
(d) Percent excess air:	NA				
(a) Type and PTI l/br of by	urners and all othe	r firing oquipme	nt plannad t	a ha uaadi	
(e) Type and BTO/III of bo		r nnng equipme	int planneu t	o be used.	
N7.4					
NA					
(f) If coal is proposed as	a source of fuel,	identify supplie	r and seams	s and give s	sizing of
	eu.				
NT A					
NA					
(g) Proposed maximum d	esign heat input:	Ν	A	× 10 ⁶ B1	Ū/hr.
7. Projected operating sched	lule: Operated as nee	eded for startup, sh	utdown and em	ergencies.	
Hours/Day 24	Days/Week	7	Weeks/Yea	r 52	

8.	Projected amount of pollu devices were used: NA	utants that would be e	emitted fro	m this affected so	urce if no control
@		°F and	1		psia
a.	NOx	3.20	lb/hr	NA	grains/ACF
b.	SO ₂	0.01	lb/hr	NA	grains/ACF
c.	СО	5.11	lb/hr	NA	grains/ACF
d.	PM ₁₀	0.48	lb/hr	NA	grains/ACF
e.	Hydrocarbons	NA	lb/hr	NA	grains/ACF
f.	VOCs	1.18	lb/hr	NA	grains/ACF
g.	Pb	NA	lb/hr	NA	grains/ACF
h.	Specify other(s)	1		l	
	CH4 CO2	14.28 1,083.50	lb/hr	NA NA	grains/ACF
	TOTAL HAPS	0.78	lb/hr	NA	grains/ACF
			lb/hr		grains/ACF
			lb/hr		grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.				
MONITORING	RECORDKEEPING			
Amount of fuel burned.	Amount of fuel burned.			
REPORTING	TESTING			
None.	None.			
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE				
PROPOSED TO BE MONITORED IN ORDER TO DEM	UNSTRATE COMPLIANCE WITH THE OPERATION OF			
THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.				

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

See Cummins Specification Sheet, Data Sheet, and Emissions Data in Appendix 2.

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFOR	MATION (required)

1. Bulk Storage Area Name	2. Tank Name
NH3 Tanks	NH3 Tanks
3. Tank Equipment Identification No. (as assigned on Equipment List Form)	 Emission Point Identification No. (as assigned on Equipment List Form) Ammonia is not a regulated pollutant.
5. Date of Commencement of Construction (for existing	tanks) New
6 Type of change MNew Construction	Now Stored Material
A second se	
7. Description of Tank Modification (il applicable)	
New – Final design of tanks is not available. Information	below is typical for tanks.
7A. Does the tank have more than one mode of operatio (e.g. Is there more than one product stored in the tar	n? □ Yes ⊠ No ʰk?)
 If YES, explain and identify which mode is cover completed for each mode). 	ed by this application (Note: A separate form must be
NA	
7C. Provide any limitations on source operation affecting variation, etc.):	g emissions, any work practice standards (e.g. production
NA	
II. TANK INFORM	IATION (required)
 Design Capacity (specify barrels or gallons). Use height. 22,337.24 lbs NH3 at -33°C 	the internal cross-sectional area multiplied by internal
9A. Tank Internal Diameter (ft) 100	9B. Tank Internal Height (or Length) (ft) 69
10A. Maximum Liquid Height (ft) 69	10B. Average Liquid Height (ft) 69
11A. Maximum Vapor Space Height (ft) NA	11B. Average Vapor Space Height (ft) NA
12. Nominal Capacity (specify barrels or gallons). This liquid levels and overflow valve heights. 22,337.24	is also known as "working volume" and considers design lbs.

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
2,125,000 MTPY	6,000 MTPD
14. Number of Turnovers per year (annual net throu	ighput/maximum tank liquid volume)
15. Maximum tank fill rate (gal/min)	
16. Tank fill method Submerged	Splash Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems Does Not Apply
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
 18. Type of tank (check all that apply): Fixed Roof vertical horizontal other (describe) External Floating Roof pontoon roof Domed External (or Covered) Floating Roof Internal Floating Roof vertical column summer to the state of the state of	flat roofcone roofdome roof double deck roof upportself-supporting
 Variable Vapor Space lifter roof Pressurized spherical cylindrica Underground Other (describe) 	diaphragm I
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	
Riveted Gunite lined Epoxy-coate	d rivets 🗌 Other (describe)
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense R	ust 🔲 Not applicable
22A. Is the tank heated? YES NO	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to t	ank.
23. Operating Pressure Range (psig): to	
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft)	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Ta	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type: Metallic (Mechanical) (check one) Vapor Mounted Resi	Shoe SealLiquid Mounted Resilient Seallient SealOther (describe):
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (ch	eck one) Shoe Rim Other (describe):
25E. Is the Floating Roof equipped with a weather shi	eld?

25F. Describe deck fittings; indicat	25F. Describe deck fittings; indicate the number of each type of fitting:						
ACCESS HATCH							
BOLT COVER, GASKETED:	UNBOLTED COVE	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:				
	AUTOMATIC GAU	GE FLOAT WELL	1				
BOLT COVER, GASKETED:	UNBOLTED COVE	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:				
		NWELL	<u> </u>				
BUILT-UP COLUMN - SLIDING	BUILT-UP COLU	MN – SLIDING	PIPE COLUMN – FLEXIBLE				
COVER, GASKETED:	COVER, UNGASK	ETED:	FABRIC SLEEVE SEAL:				
PIP COLUMIN – SLIDING COVER, G	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:				
	GAUGE-HATCH	SAMPLE PORT					
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:				
	ROOF LEG OR	HANGER WELL					
WEIGHTED MECHANICAL	WEIGHTED	MECHANICAL	SAMPLE WELL-SLIT FABRIC SEAL				
ACTUATION, GASKETED.	ACTUATION, UNC	ASKETED.	(10% OPEN AREA)				
	VACUUM	BREAKER					
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:				
GASKETED MECHANICAL	ACTUATION	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:				
GASKETED.							
	DECK DRAIN (3-I	NCH DIAMETER)					
OPEN:	,	90% CLOSED:					
	STUB	DRAIN					
1-INCH DIAMETER:							
OTHER (DESCRIBE ATTACH ADDITIONAL PAGES IE NECESSARV)							

26. Complete the following section for Internal Floatin	g Roof Tanks
26A. Deck Type: Dolted Welded	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam:	
Continuous sheet construction 5 feet wide	
Continuous sheet construction 7 feet wide	
□ Continuous sheet construction 5 × 7.5 feet wide	
Other (describe)	
26D. Deck seam length (ft)	26E. Area of deck (ff ²)
26F Number of columns:	26G. Diameter of each column.
IV. SITE INFORMANTION (option	al if providing TANKS Summary Sheets)
27. Provide the city and state on which the data i	n this section are based.
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(ft2-	day))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (option	nal if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be s	stored in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

I Iviaximum Vapor Press	sure					
39F. True (psia)						
39G. Reid (psia)						
Months Storage per Y	ear					
39H. From						
39I. To						
	VI. EMISSIONS A			DATA (required)		
40. Emission Control I	Devices (check as many	y as apply):[_ Does No	ot Apply		
Carbon Adsorp	otion ¹					
Conservation V	/ent (psig)					
Vacuum S	Setting	F	Pressure Se	etting		
Emergency Re	lief Valve (psig)					
Inert Gas Blank	ket of					
Insulation of Ta	ank with					
Liquid Absorpti	ion (scrubber) ¹					
Refrigeration o	f Tank					
Rupture Disc (p	osig)					
Vent to Incinera	ator ¹					
Other ¹ (describ	e):					
¹ Complete approp	priate Air Pollution Cont	rol Device S	heet.			
Complete appropriate All Pollution Control Device Sheet.						
41. Expected Emission	n Rate (submit Test Da	ta or Calcula	ations here	or elsewhere in the ap	plication).	
41. Expected Emission	n Rate (submit Test Da	ta or Calcula Working	ations here a Loss	or elsewhere in the ap	plication).	
41. Expected Emission Material Name & CAS No.	n Rate (submit Test Da Breathing Loss (Ib/hr)	ta or Calcula Working	ations here g Loss	or elsewhere in the ap Annual Loss (Ib/yr)	blication).	
41. Expected Emission Material Name & CAS No.	n Rate (submit Test Da Breathing Loss (Ib/hr)	ta or Calcula Working Amount	ations here g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	plication). Estimation Method ¹	
41. Expected Emission Material Name & CAS No.	n Rate (submit Test Da Breathing Loss (Ib/hr)	ta or Calcula Working Amount	ations here g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	plication). Estimation Method ¹	
41. Expected Emission Material Name & CAS No.	n Rate (submit Test Da Breathing Loss (lb/hr) ted pollutant.	ta or Calcula Working Amount	ations here g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	blication).	
41. Expected Emission Material Name & CAS No.	n Rate (submit Test Da Breathing Loss (Ib/hr) ted pollutant.	ta or Calcula Working Amount	ations here o g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	plication). Estimation Method ¹	
41. Expected Emission Material Name & CAS No. Ammonia is not a regula	n Rate (submit Test Da Breathing Loss (lb/hr) ted pollutant.	ta or Calcula Working Amount	ations here g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	Estimation Method ¹	
 41. Expected Emission Material Name & CAS No. Ammonia is not a regula 	n Rate (submit Test Da Breathing Loss (lb/hr) ted pollutant.	ta or Calcula Working Amount	ations here of g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emission Material Name & CAS No. Ammonia is not a regula	n Rate (submit Test Da Breathing Loss (lb/hr) Ited pollutant.	ta or Calcula Working Amount	ations here of g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emission Material Name & CAS No. Ammonia is not a regula	n Rate (submit Test Da Breathing Loss (lb/hr) ted pollutant.	ta or Calcula Working Amount	ations here of g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emission Material Name & CAS No. Ammonia is not a regula	n Rate (submit Test Da Breathing Loss (lb/hr) ted pollutant.	ta or Calcula Working Amount	ations here of g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emission Material Name & CAS No. Ammonia is not a regula	n Rate (submit Test Da Breathing Loss (lb/hr) Ited pollutant.	ta or Calcula Working Amount	ations here of g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emission Material Name & CAS No. Ammonia is not a regula	n Rate (submit Test Da Breathing Loss (lb/hr) ted pollutant.	ta or Calcula Working Amount	ations here of g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emission Material Name & CAS No. Ammonia is not a regula	n Rate (submit Test Da Breathing Loss (lb/hr) ted pollutant.	ta or Calcula Working Amount	ations here of g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	Estimation Method ¹	
41. Expected Emission Material Name & CAS No. Ammonia is not a regula	n Rate (submit Test Da Breathing Loss (lb/hr) Ited pollutant.	ta or Calcula Working Amount	ations here of g Loss Units	or elsewhere in the ap Annual Loss (Ib/yr)	Estimation Method ¹ Estimation Method	

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

ATTACHMENT M

AIR POLLUTION CONTROL DEVICE(S)

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 1C-1 through 6

Equipment Information

1.	Manufacturer: Umicore Model No. DNX CD-139 to LD-939	 Control Device Nan Type: SCR 	ne: SCR System (2 Units)			
3.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.					
4.	On a separate sheet(s) supply all data and calculation	ns used in selecting or de	signing this collection device.			
5.	Provide a scale diagram of the control device showing	g internal construction.				
6.	Submit a schematic and diagram with dimensions and	d flow rates. See attached	information.			
7.	Guaranteed minimum collection efficiency for each po	ollutant collected: 100%				
8.	Attached efficiency curve and/or other efficiency infor	mation. NA				
9.	Design inlet volume: SCFM	10. Capacity:				
11.	Indicate the liquid flow rate and describe equipment p	provided to measure pres	sure drop and flow rate, if any.			
See	attached information from Umicore. Complete details will	be available upon completi	on of final design.			
12.	Attach any additional data including auxiliary equip control equipment. NA	ment and operation det	tails to thoroughly evaluate the			
13.	Description of method of handling the collected mater	rial(s) for reuse of dispos	al.			
The	ere is no collected materials.					
	Gas Stream C	haracteristics				
14.	Are halogenated organics present? Are particulates present? Are metals present?	☐ Yes				
15.	Inlet Emission stream parameters:	Maximum	Typical			
	Pressure (mmHg):	NA	NA			
	Heat Content (BTU/scf):	NA	NA			
	Oxygen Content (%):	NA	NA			
	Moisture Content (%):	NA	NA			
	Relative Humidity (%):	NA	NA			

16. Type of pollutant(s)	controlled:):	SO _x	\Box Odor \boxtimes Other NO_x			
17. Inlet gas velocity:	NA	ft/sec	18. Pollutant	specific gravity	:	
19. Gas flow into the co ACF @	llector: °F and	PSIA	20. Gas strea	m temperature Inlet: Outlet:	2	°F °F
21. Gas flow rate: Design Maximum: Average Expected:		ACFM ACFM	22. Particulate	e Grain Loadin Inlet: Outlet:	g in grains/scf:	
23. Emission rate of each	ch pollutant (spec	cify) into and out	of collector:			1
Pollutant	IN Po	ollutant	Emission	OUT P	ollutant	Control
	lb/hr	grains/acf	Efficiency %	lb/hr	grains/acf	%
A						
В						
С						
D						
E						
24. Dimensions of stack	k: Heig	ght	ft.	Diamete	r	ft.
25. Supply a curve sho rating of collector.	wing proposed c	collection efficien	cy versus gas	volume from 2	25 to 130 perce	ent of design
		Particulate	Distribution			
26. Complete the table:		Particle Size Dis to C	stribution at In Collector	llet Fractio	on Efficiency of	Collector
Particulate Size Rang	je (microns)	Weight % fo	r Size Range	We	ight % for Size	Range
0 – 2						
2 – 4						
4 - 6			See attache	d Umicore docu	iment.	
6 – 8						
8 – 10						
10 – 12						
12 – 16						
16 – 20						
20 - 30						
30 - 40						
40 - 50						
50 - 60						
00 – 70 70 - 00						
10 - 80						
00 - 90						
N N N N N N N N N N						

27. Describe any air p reheating, gas hum	 Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): 			
28. Describe the collec	ction material disposal system:			
29. Have you included	Other Collectores Control Devic	e in the Emissions Points Data Summary Sheet?		
30. Proposed Monito Please propose n proposed operatin proposed emission	ring, Recordkeeping, Reporting, nonitoring, recordkeeping, and re ng parameters. Please propose ns limits.	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the		
MONITORING: Amount of ammonia used	d for NOx control.	RECORDKEEPING: Amount of ammonia used for NOx control.		
REPORTING: None.		TESTING: None.		
MONITORING: RECORDKEEPING:	Please list and describe the pro- monitored in order to demons equipment or air control device. Please describe the proposed re-	ccess parameters and ranges that are proposed to be trate compliance with the operation of this process cordkeeping that will accompany the monitoring.		
REPORTING: TESTING:	Please describe any proposed pollution control device. Please describe any proposed pollution control device.	emissions testing for this process equipment on air emissions testing for this process equipment on air		
31. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 99%				
 Manufacturer's Guaranteed Control Efficiency for each air pollutant. 99% 				
33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. The SCR system selected will meet the operating conditions of the emission sources.				

To whom it may concern,

With a reactor in series design, ~99% NOx removal is achievable with currently available SCR catalysts. Please see below basic illustration of such a layout.

SCR DeNOx catalyst DNX[®]-series DNX LD-139 to LD-939

Description The DNX LD-139 to LD-939 catalyst series is a fiber reinforced Vanadium-Tungsten-Titania catalyst. The catalyst is available in a version with 0.4 mm walk.

Application areas

Appreciation areas The DNX LD-1996 b LD-039 catalyst is suitable for operation in a low dust environment, and it is typically used in SCR installations with minor amounts of particles in the flue gas. The catalyst also poses a high activity for discins memoral.

Physical and chemical properties

Physical properties	
Wall thickness, mm	0.4
Channel hydraulic diameter, mm	3.4
Cell pitch, mm	4.1
Plate pitch, mm	4.1
Cell density, CPSI	30
Specific area m ² /m ³	885
Open area (void), %	76
Leading edge reinforcement	Yes
Chemical composition	
Vanadium pentoxide, %	0.1-4
Tungsten trloxide, %	2 - 9
Silicon dioxide, %	0-4
Titanium dioxide, %	73 - 83
Fibers. %	12 - 18
Element sizes	
Element cross section including metal frame, mm x mm	465 x 465
Element height, mm	322/342/572/612
Net catalyst depth, mm	250 / 270 / 500 / 540

Copyright @Umicore Catalyst USA LLC. All rights reserved.

Tel.: +1 (888) 840-5228 Fax.: +1 (346) 230-6019 E-mail: info@umicore.com Website: https://fcs.umicore.com

Umicore Umicore Catalyst USA, LLC 17625 El Camino Real, Suite 210 Houston, TX 77058, USA

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Flare design is not finalized. These flares will be designed specifically for the process and are not off-the-shelf flares. Information listed as NA will be available after design is finalized.

Control Device ID No. (must match Emission Units Table): 2C-1 through 6

JII OIIII3	rabie).	2C-1	unougno	
Eauip	ment In	form	ation	

	Equipment					
1.	Manufacturer: Honeywell or Equivalent	2. Method: ⊠ Elevated flare ☐ Ground flare				
	Model No. Flare will be a project specific design.	Other Describe				
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	m with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.				
4.	Method of system used:	Pressure-assisted Non-assisted				
5.	Maximum capacity of flare:	6. Dimensions of stack: NA				
	216,273 (max) scf/min	Diameter ft.				
	12,976.386 (max) scf/hr	Height ft.				
7.	Estimated combustion efficiency: (Waste gas destruction efficiency)	8. Fuel used in burners: ☐ Natural Gas				
	Estimated: 98.5 %	 ☐ Fuel Oil, Number				
	Minimum guaranteed: 98.5 %	Other, Specify: Methane				
9.	Number of burners: Multiple	11. Describe method of controlling flame:				
	Rating: NA BTU/hr	NA				
10.	Will preheat be used? Yes No					
12.	Flare height: NA ft	14. Natural gas flow rate to flare pilot flame per pilot light: NA scf/min				
13.	Flare tip inside diameter: NA ft	scf/hr				
15.	Number of pilot lights: NA	16. Will automatic re-ignition be used?				
	Total BTU/hr	🛛 Yes 🗌 No				
17.	If automatic re-ignition will be used, describe the met	hod:				
	The flare will be equipped with an automatic electrical re-	ignition system.				
40						
18.	Is pliot flame equipped with a monitor?	-Red				
		era with monitoring control room				
	Other. Describe:	<u> </u>				
19.	Hours of unit operation per year: ~36 per startup/108 h	ours/year				

Steam Injection					
20. Will steam injection be used?	′es 🛛 No	21. Steam pressure	PSIG		
		Minimum Expected:			
		Design Maximum			
22. Total Steam flow rate:	LB/hr	23. Temperature:	°F		
24. Velocity	ft/sec	25. Number of jet streams			
26. Diameter of steam jets:	in	27. Design basis for steam injected:			
		LB steam/LB hvo	drocarbon		
28. How will steam flow be controlled if steam injection is used?					

Characteristics of the Waste Gas Stream to be Burned

29.	Name	Quantity Grains of H ₂ S/100 ft ³	Quantity (LB/hr, ft ³ /hr, etc)	Source of Material
	See Attachment N.			
30.	Estimate total combustible t	o flare: See Attachment N	LB/hr	or ACF/hr
	(Maximum mass flow rate of	f waste gas)	scfm	
31.	Estimated total flow rate to	flare including materials to	be burned, carrier gases, aux	kiliary fuel, etc.:
	NA LB/hr			
32.	Give composition of carrier	gases: There is no carrier g	as.	
22	Tomporature of amigaion at	roomi	A Identify and describe all a	uviliary fuels to be burned
<i>ა</i> ა.	remperature of emission st	°F	54. Identity and describe all a	BTU/scf
	Heating value of emission s	tream:	None	BTU/scf
	Moon malagular weight of a	BTU/ft ³		BTU/scf
	MW = Ib/Ib-m	ole		BTU/scf
35.	Temperature of flare gas:	Variable °F 3	36. Flare gas flow rate: NA s	scf/min
37.	Flare gas heat content: Var	riable BTU/ft ³	38. Flare gas exit velocity: N	A scf/min
39.	Maximum rate during emerg	gency for one major piece o	of equipment or process unit:	NA scf/min
40.	Maximum rate during emergency for one major piece of equipment or process unit: NA BTU/min			NA BTU/min
41.	Describe any air pollution reheating, gas humidification	control device inlet and ou n):	tlet gas conditioning process	ses (e.g., gas cooling, gas
	There is no conditioning proce	ess.		
42.	Describe the collection mate NA	erial disposal system:		

43. Have you included *Flare Control Device* in the Emissions Points Data Summary Sheet? Yes

44. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.			
MONITORING:		RECORDKEEPING:	
Thermocouple monitoring	g to determine flare operation.	Flare startup, shutdown, and steady state operating hours.	
REPORTING:		TESTING:	
None proposed.		None proposed.	
MONITORING:	Please list and describe the pro-	ocess parameters and ranges that are proposed to be	
	monitored in order to demons	trate compliance with the operation of this process	
	equipment or air control device.		
	Please describe any proposed rec	emissions testing for this process equipment on air	
REFORTING.	pollution control device.	emissions testing for this process equipment on an	
TESTING:	Please describe any proposed	emissions testing for this process equipment on air	
45 Marsterle Ori			
45. Manufacturer's Guaranteed Capture Efficiency for each air pollutant.			
100%	100%		
46 Manufacturar's Cur	pranteed Control Efficiency for and	h air pollutant	
	arameted Control Emolency IOI Edu		
98.5%			
47. Describe all operati	ng ranges and maintenance proce	dures required by Manufacturer to maintain warranty.	
Operating ranges and maintenance procedures will be identified during final design and/or purchase of the flare system. The procedures provided by the manufacturer will be followed.			

ATTACHMENT N

SUPPORTING EMISSIONS CALCULATIONS

Total Yearly Emissions - All Process Lines

Boilers	
Emission	tpy
NOx	0.06

Generators	
NOx	0.96
CO	1.56
CO2	325.08
SO2	0.06
CH4	4.32
VOC	0.36
PM	0.18
PM10	0.18
PM2.5	0.18
HAPS	0.24

Heaters 201s and 202s		
PM	0.12	
PM10	0.12	
PM2.5	0.12	
СО	0.12	
CO2	105.48	
SO2	0.12	
CH4	0.12	
VOC	0.12	
NOx	40.15	

Total Flares, 201s, and 202s Startup and Flared Shutdown Emissions		
CH4	35.48	
СО	2.92	
CO2	327.01	
NOx	11.36	
PM	0.101	
PM10	0.101	
PM2.5	0.101	
VOC	0.073	
SO2	0.00063	
HAPS	0.0250	

Γ

Total Fugitives	
СО	8.79
CO2	34.76
CH4	1.23
NH3	28.36

Total Potential to Emit (TPY)		
Emission	tpy	
PM	0.40	
PM10	0.40	
PM2.5	0.40	
СО	13.39	
CO2	792.33	
SO2	0.18	
CH4	41.15	
VOC	0.55	
NOx	52.53	
NH3	28.36	
HAPS	0.265	

CO2, CH4, and NH3 are provided for information only within the application sheets and calculations. These are not regulated air pollutants for minor sources.

Proposed No. of Startups and Shutdowns = 1

Proposed No. of Identical Process Lines = 6

Yearly Emissions By Sources for One Process Line

Boiler	
Emission	tpy
NOx	0.01

Generator	
NOx	0.16
СО	0.26
CO2	54.18
SO2	0.01
CH4	0.72
VOC	0.06
PM	0.03
PM10	0.03
PM2.5	0.03
HAPS	0.04

Heaters 201 and 202		
PM	0.02	
PM10	0.02	
PM2.5	0.02	
CO	0.02	
CO2	17.58	
SO2	0.02	
CH4	0.02	
VOC	0.02	
NOx	6.69	

Total Flare, 201s, and 202s Startup and		
Flare Shutdown Emissions		
CH4	5.91	
CO	0.49	
CO2	54.50	
NOx	1.89	
PM	0.02	
PM10	0.02	
PM2.5	0.02	
VOC	0.01	
SO2	0.0001	
HAPS	0.004	

Total Fugitives	
CO	1.47
CO2	5.79
CH4	0.20
NH3	4.73

Total Potential to Emit (TPY)				
Emission	tpy			
PM	0.07			
PM10	0.07			
PM2.5	0.07			
СО	2.23			
CO2	132.05			
SO2	0.03			
CH4	6.86			
VOC	0.09			
NOx	8.76			
NH3	4.73			
HAPS	0.044			

Startup Steam Generator (8S-1 through 6)

Cummings generator 9.85 mmBtu/hr

Ammonina Feed Rate 6,100 kg/h

100 ppm NOx intial uncontroled (first hour) 60 ppm NOx steady state uncontroled

1451 hp/hr

13,448 lb/h

Startup and Emergency Generator (11S-1 through 6)

Startup and Emergency Generator						
Pollutant	Emission Factor		Emis	Emissions		
			lbs/hr	ton/yr(3)		
NOx (1)	1	g/hr-hr	3.20	0.16		
CO (1)	1.6	g/hr-hr	5.11	0.26		
CO2 (2)	110	lb/mmBtu	1,083.50	54.18		
SO2 (2)	0.000588	lb/mmBtu	0.01	0.01		
THC (1)	3.8	g/hr-hr	12.14	0.61		
CH4 (2)	1.45	lb/mmBtu	14.28	0.72		
VOC (2)	0.12	lb/mmBtu	1.18	0.06		
PM/PM10/PM2.5 (2)	0.04831	lb/mmBtu	0.48	0.03		
Acetaldehyde (4)	7.76E-03	lb/MMBtu	0.08	0.01		
Acrolein (4)	7.78E-03	lb/MMBtu	0.08	0.01		
Benzene (4)	1.94E-03	lb/MMBtu	0.02	0.01		
Formaldehyde (4)	5.52E-02	lb/MMBtu	0.54	0.03		
Methanol (4)	2.48E-03	lb/MMBtu	0.02	0.01		
Total HAPS (5)	0.0795351	lb/MMBtu	0.78	0.04		

Tir	ne	Feed Rate	Ammoni	na Consumed	NOx mol	NOx kg	NOx lb	
0	hr	0.0%	- Ib	0 mmBtu	-	-	-	
1	hr	50.0%	6,724 lb	2.57 mmBtu	71.47	3.29	7.25	
2	hr	100.0%	13,448 lb	5.15 mmBtu	142.94	6.58	14.50	
3	hr	100.0%	13,448 lb	5.15 mmBtu	142.94	6.58	14.50	
4	hr	100.0%	13,448 lb	5.15 mmBtu	142.94	6.58	14.50	
5	hr	100.0%	13,448 lb	5.15 mmBtu	142.94	6.58	14.50	
6	hr	100.0%	13,448 lb	5.15 mmBtu	142.94	6.58	14.50	
7	hr	100.0%	13,448 lb	5.15 mmBtu	142.94	6.58	14.50	
8	hr	100.0%	13,448 lb	5.15 mmBtu	142.94	6.58	14.50	
9	hr	100.0%	13,448 lb	5.15 mmBtu	142.94	6.58	14.50	
10	hr	100.0%	13,448 lb	5.15 mmBtu	142.94	6.58	14.50	
11	hr	80.0%	10,759 lb	4.12 mmBtu	114.35	5.26	11.60	
12	hr	75.0%	10,086 lb	3.86 mmBtu	107.21	4.93	10.87	
13	hr	50.0%	6,724 lb	2.57 mmBtu	71.47	3.29	7.25	
14	hr	0.0%	- Ib	0.00 mmBtu	-	-	-	
				59.46 mmBtu	_	-	167.45	NOx lb
				Control 9	9% reduction	n	1.67	NOv It

Startups per Year = Hours per Startyup =

Emissions for Boiler				
Uncontrolled		Controlled		
lb/hr	ton/yr	lb/hr	ton/yr	
14.50	0.25	0.145	0.01	

3 14

1. Cummins Exhaust Emissions Data Sheet

2. AP-42, 3.2., Table 3.2-1.
 3. Operating Hours =

100

Operating hours = 100
 HAPS from AP-42, 3.2., Table 3.2-1. which are at or aboce 10⁻³.
 Total HAPS from AP-42, 3.2., Table 3.2-1.

.

Conversion 454 grams/pound = 454

Constants and Conversion Used 35.3147 NM3 to SCF 2.20462 lb/kg 0.0022 g/lb 325 Btu H2/SCF H2 8760 operating hours per year 2204.62 lb/metric ton 0.1124 Btu/SCF per kcal/Nm3 1.836 kg CO2(g)/Nm³ CO2 (g) 1.429 kgO2/Nm³ O2 1.251 kgN2 (g)/Nm³ N2 (g) 4850 kg H2O (g)/Nm³ H2O (g)

Uncontroled Nox 143 mol NOX/h 6,579 g NOX/h 27.77 mol NOX/mmBtu 1,277.43 g NOX/mmBtu 2.82 lb NOX/mmBtu

167.45 lb Nox/stary

Ammonia Energy (liquid -33C) 382.8 Btu/lb

44.0095 g/mol CO2 31.9988 g/mol O2 28.014 g/mol N2 20.027 g/mol H2O 46.0055 g/mol NO2 (surgate for NOx)

0.05189 kg CO2 (g)/SCF CO2 (g) 0.03756 kg O2 (g)/SCF O2 (g) 0.03286 kg N2 (g)/SCF N2 (g) 0.021413 kg H2O (g)/SCF H2O (g)
Process Heaters- Pre-Heater H201 (9S-1 through 6) and Super Heater H202 (10S-1 through 6)

5.4.5 Reformer flue gas

Quantity, Nm ³ /h	210,350
Temperature, °C	140
CO ₂ content, mol-% (dry)	0.54
NOx content, mol ppm at 3% O ₂ , estimated	<40

H2 feed H 201	45,130 Nm3 H2/h		28.3% Emission Assignmnet				
H2 feed H 202	114,376 Nm3 H2/h		71.7% Emission Assignmnet				
total H2 flow	159,506 Nm3 H2/h						
	Controled NOV/vr	6 67 short ton	28.3%	H201	1.89 NOv ton/vr		
		0.07 Short ton	71.7%	H202	4.78 NOx ton/yr		

		Wet Flue	Gas Flow			
3,000mtpd	210,350.00	m3/hr		Operating Hours	8,760	Hours/Y
6,000mtpd	420,700.00	m3/hr				
22.4nm3/mole	18,781.25	kgmole/hr				
	450,750.00	kgmole/day				
	164,523,750	kgmole/yr				
		Prorated FI	ue Gas Flow			
H2 feed H 201	45,130	Nm3 H2/h	28.39	6 Emission Contributio	n	
H2 feed H 202	114376	Nm3 H2/h	71.79	6 Emission Contributio	n	
total H2 flow	159,506	Nm3 H2/h				
		NOx Flow	Before SCR			
NOx 40ppmv	6,580.95	kgmole NOx/yr				
NOx mol wt g						
46	302.72	NOx metric tpy befor	e SCR			
	667.20	NOx Short ton/yr				
H201 portion 28.3%	188.78	NOx Short ton/yr		43.10	lb/hr	
H202 portion 71.7%	478.43	NOx Short ton/yr		109.23	lb/hr	
		NOx E	xit SCR			
SCR reduction %						
99%						
	3.03	NOx metric TPY exit S	CR			
	6.67	NOx Short tons/yr				
H201 portion 28.3%	1.89	NOx Short tons/yr		0.43	lb/hr	
H202 portion 71.7%	4.78	NOx Short tons/yr		1.09	lb/hr	
					_	
	Emis	sions from Pre-Heater	H201]	
Туре	Uncor	trolled	Con	trolled	1	
	lb/hr	ton/yr	lb/hr	ton/yr]	
PM	0.01	0.01	0.01	0.01	1	
PM10	0.01	0.01	0.01	0.01]	
PM2.5	0.01	0.01	0.01	0.01		

PM	0.01	0.01	0.01	0.01
PM10	0.01	0.01	0.01	0.01
PM2.5	0.01	0.01	0.01	0.01
CO	0.01	0.01	0.01	0.01
CO2	2.01	8.79	2.01	8.79
SO2	0.01	0.01	0.01	0.01
CH4	0.01	0.01	0.01	0.01
VOC	0.01	0.01	0.01	0.01
NOx	43 11	188 79	0.44	1 90

Emissions from Super Heater H202									
Туре	Uncon	trolled	Contr	olled					
	lb/hr	ton/yr	lb/hr	ton/yr					
PM	0.01	0.01	0.01	0.01					
PM10	0.01	0.01	0.01	0.01					
PM2.5	0.01	0.01	0.01	0.01					
CO	0.01	0.01	0.01	0.01					
CO2	2.01	8.79	2.01	8.79					
SO2	0.01	0.01	0.01	0.01					
CH4	0.01	0.01	0.01	0.01					
VOC	0.01	0.01	0.01	0.01					
NOx	109.24	478.44	1.10	4.79					

Methane Trace Gas for Flame Detection for H201 and H202 (9S-1 to 6 and 10S-1 to 6)

From methane co-feed										
590	Nm3/h Methane feed with H2 fuel			979.98 Bt	979.98 Btu/SCF methane fuel					
16.7	SCF/h	Methane f	eed with H2 fuel	0.15 m	mSCF/yr					
16,372	Btu/h	Methane f	eed with H2 fuel	143.42 m	mBtu/yr m	ethane fuel				
			AP 42 Fa	actors						
100	Uncontrolled	Nox factor	lb/mmSCF	84 C0	O uncontro	led lb/mmSCF				
50	Controled lov	v Nox burn	ers lb/mmSCF	120,000 CC	02 uncontr	oled lb/mmSCF				
7.6	PM Total lb/mmSCF			0.6 SC	0.6 SO2 uncontroled lb/mmSCF					
11	TOC uncontroled lb/mmSCF			2.3 Cł	2.3 CH4 uncontroled lb/mmSCF					
5.5	VOC uncontro	oled lb/mm	SCF							
NOx uncontroled	15	lb/yr		Operating Hours	8,760	Hours/Year				
NOx controled	0.1	lb/yr	99% reduction per v	endor						
PM	1.11	lb/yr								
TOC	1.61	lb/yr								
CO	12.29	lb/yr								
CO2	17,562.32	lb/yr								
SO2	0.09	lb/yr								
CH4	0.34	lb/yr								
VOC	0.80	lb/yr								

Constants and Conversion Used								
35.3147	NM3 to SCF							
2.20462	lb/kg							
0.0022	g/lb							
325	Btu H2/SCF H2							
8760	operating hours per year							
2204.62	lb/metric ton							
0.1124	Btu/SCF per kcal/Nm3							
1.836	kg CO2(g)/Nm ³ CO2 (g)							
1.429	kgO2/Nm ³ O2							
1.251	kgN2 (g)/Nm ³ N2 (g)							
4850	kg H2O (g)/Nm ³ H2O (g)							
44.0095	g/mol CO2							
31.9988	g/mol O2							
28.014	g/mol N2							
20.027	g/mol H2O							
46.0055	g/mol NO2 (surgate for NOx)							
0.05189	kg CO2 (g)/SCF CO2 (g)							
0.03756	kg O2 (g)/SCF O2 (g)							
0.03286	kg N2 (g)/SCF N2 (g)							
0.021413	kg H2O (g)/SCF H2O (g)							

Emissions from Co-Feed Signal Methane Fuel									
Туре	Uncon	trolled	Contr	olled					
	lb/hr	ton/yr	lb/hr	ton/yr					
PM	0.01	0.01	0.01	0.01					
PM10	0.01	0.01	0.01	0.01					
PM2.5	0.01	0.01	0.01	0.01					
CO	0.01	0.01	0.01	0.01					
CO2	2.01	8.79	2.01	8.79					
SO2	0.01	0.01	0.01	0.01					
CH4	0.01	0.01	0.01	0.01					
VOC	0.01	0.01	0.01	0.01					
NOx	0.01	0.01	0.01	0.01					

Fugitive Leaks (Based on Lines 2015,2102,2160, 3745, and 7170)

Maximum (Mole %)							
CO	7.2						
CO2	24.4						
CH4	1.0						

					Uncontrolled		Controlled		
Source Type	Number of Sources	Emission Factor(1) (kg/hr/source)	TOC Emissions (lb/hr)	TOC Emissions (ton/yr)	CO Emissions (lb/hr)	CO Emissions (ton/yr)	Control Efficiency (%)	CO Emissions (lb/hr)	CO Emissions (ton/yr)
Valves	415	0.000131	0.119853	0.524956	0.008677	0.038007	0	0.008677	0.038007
Pressure Relief Valves	40	0.0447	3.941825	17.265193	0.285388	1.250000	0	0.285388	1.250000
Connectors (Flanges)	917	0.0000810	0.163751	0.717230	0.011856	0.051927	0	0.011856	0.051927
Compressor Seals	2	0.089	0.394182	1.726519	0.028539	0.125000	0	0.028539	0.125000
Light Liquid Pumps	0	0.0019	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
Sample Connections (2)		0.0150	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
				Emissions	0.33	1.46		0.33	1.46

				Uncon	trolled		Cont	rolled	
	Number of	Emission	TOC	TOC	CO2	CO2	Control	CO2	CO2
Source Type	Sources	Factor(1)	Emissions	Emissions	Emissions	Emissions	Efficiency	Emissions	Emissions
	Sources	(kg/hr/source)	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)	(%)	(lb/hr)	(ton/yr)
Valves	415	0.000131	0.119853	0.524956	0.029208	0.127932	0	0.029208	0.127932
Pressure Relief Valves	40	0.0447	3.941825	17.265193	0.960623	4.207527	0	0.960623	4.207527
Connectors (Flanges)	917	0.0000810	0.163751	0.717230	0.039906	0.174789	0	0.039906	0.174789
Compressor Seals	2	0.089	0.394182	1.726519	0.096062	0.420753	0	0.096062	0.420753
Light Liquid Pumps	0	0.0019	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
Sample Connections (2)	0	0.0150	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
				Emissions	1.13	4.93		1.13	4.93

					Uncon	Uncontrolled		Controlled	
Source Type	Number of Sources	Emission Factor(1) (kg/hr/source)	TOC Emissions (lb/hr)	TOC Emissions (ton/yr)	CH4 Emissions (lb/hr)	CH4 Emissions (ton/yr)	Control Efficiency (%)	CH4 Emissions (lb/hr)	CH4 Emissions (ton/yr)
Valves	415	0.000131	0.119853	0.524956	0.001211	0.005302	0	0.001211	0.005302
Pressure Relief Valves	40	0.0447	3.941825	17.265193	0.039812	0.174378	0	0.039812	0.174378
Connectors (Flanges)	917	0.0000810	0.163751	0.717230	0.001654	0.007244	0	0.001654	0.007244
Compressor Seals	2	0.089	0.394182	1.726519	0.003981	0.017438	0	0.003981	0.017438
Light Liquid Pumps	0	0.0019	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
Sample Connections (2)	0	0.0150	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
				Emissions	0.05	0.20		0.05	0.20

1. AP42, Chapter 5, Related Emission Factor Documents, 1995 Protocol for Equipment Leak Emission Estimates, Table 2-5 (EPA Document EPA-453/R-95-017). lb/kg = 2.2046

Fugitive Leaks (Based on Lines 3745)

Maximum (Mole %)					
CO	0.01				
CO2	99.23				

					Uncon	trolled		Cont	rolled
Source Type	Number of Sources	Emission Factor(1) (kg/hr/source)	TOC Emissions (lb/hr)	TOC Emissions (ton/yr)	CO Emissions (lb/hr)	CO Emissions (ton/yr)	Control Efficiency (%)	CO Emissions (lb/hr)	CO Emissions (ton/yr)
Valves	2	0.000131	0.000578	0.002530	0.000000	0.000000	0	0.000000	0.000000
Pressure Relief Valves	s 0	0.0447	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
Connectors (Flanges)	4	0.0000810	0.000714	0.003129	0.000000	0.000000	0	0.000000	0.000000
Compressor Seals	1	0.089	0.197091	0.863260	0.000020	0.000086	0	0.000020	0.000086
Light Liquid Pumps	0	0.0019	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
Sample Connections (2	2) 0	0.0150	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
				Emissions	0.00	0.00		0.00	0.00

					Uncon	trolled		Cont	rolled
		Emission	TOC	TOC	CO2	CO2	Control	CO2	CO2
Source Type	Number of	Factor(1)	Emissions	Emissions	Emissions	Emissions	Efficiency	Emissions	Emissions
	Sources	(kg/hr/source)	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)	(%)	(lb/hr)	(ton/yr)
Valves	2	0.000131	0.000578	0.002530	0.000573	0.002510	0	0.000573	0.002510
Pressure Relief Valves	0	0.0447	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
Connectors (Flanges)	4	0.0000810	0.000714	0.003129	0.000709	0.003105	0	0.000709	0.003105
Compressor Seals	1	0.089	0.197091	0.863260	0.195574	0.856613	0	0.195574	0.856613
Light Liquid Pumps	0	0.0019	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
Sample Connections (2)	0	0.0150	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
				Emissions	0.20	0.86		0.20	0.86

1. AP42, Chapter 5, Related Emission Factor Documents, 1995 Protocol for Equipment Leak Emission Estimates, Table 2-5 (EPA Document EPA-453/R-95-017). Ib/kg = 2.2046

Fugitive Leaks (Based on Lines 2440)					Maximum	(Mole %)			
					NH3	2.14			
					Uncon	trolled		Cont	rolled
Source Type	Number of Sources	Emission Factor(1) (kg/hr/source)	TOC Emissions (lb/hr)	TOC Emissions (ton/yr)	NH3 Emissions (lb/hr)	NH3 Emissions (ton/yr)	Control Efficiency (%)	NH3 Emissions (lb/hr)	NH3 Emissions (ton/yr)
Valves	118	0.000131	0.034079	0.149265	0.000729	0.003194	0	0.000729	0.003194
Pressure Relief Valves	13	0.0447	1.281093	5.611188	0.027415	0.120079	0	0.027415	0.120079
Connectors (Flanges)	249	0.0000810	0.044465	0.194755	0.000952	0.004168	0	0.000952	0.004168
Compressor Seals	2	0.089	0.394182	1.726519	0.008436	0.036948	0	0.008436	0.036948
Light Liquid Pumps	0	0.0019	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
Sample Connections (2)	0	0.0150	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
				Emissions	0.04	0.16		0.04	0.16

Fugitive Leaks (Based on Lines 4600)

1	Maximum	(Mole %)
NH3		100.00

					Uncon	trolled		Cont	rolled
Source Type	Number of Sources	Emission Factor(1) (kg/hr/source)	TOC Emissions (lb/hr)	TOC Emissions (ton/yr)	NH3 Emissions (lb/hr)	NH3 Emissions (ton/yr)	Control Efficiency (%)	NH3 Emissions (lb/hr)	NH3 Emissions (ton/yr)
Valves	84	0.000131	0.024259	0.106256	0.024259	0.106256	0	0.024259	0.106256
Pressure Relief Valves	8	0.0447	0.788365	3.453039	0.788365	3.453039	0	0.788365	3.453039
Connectors (Flanges)	178	0.0000810	0.031786	0.139222	0.031786	0.139222	0	0.031786	0.139222
Compressor Seals	1	0.089	0.197091	0.863260	0.197091	0.863260	0	0.197091	0.863260
Light Liquid Pumps	0	0.0019	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
Sample Connections (2)	0	0.0150	0.000000	0.000000	0.000000	0.000000	0	0.000000	0.000000
				Emissions	1.04	4.56		1.04	4.56

 Emission
 0.00000 0

 Emissions
 1.04 4.56

 1. AP42, Chapter 5, Related Emission Factor Documents, 1995 Protocol for Equipment Leak Emission Estimates, Table 2-5 (EPA Document EPA-453/R-95-017). Ib/kg = 2.2046

		Total Fugitives								
	Uncor	ntrolled	Cont	rolled						
	lb/hr	ton/yr	lb/hr	ton/yr						
CO	0.33	1.47	0.33	1.47						
CO2	1.32	5.79	1.32	5.79						
CH4	0.05	0.20	0.05	0.20						
NH3	1.08	4.73	1.08	4.73						

Flare Emissions Summary (2C-1 through 6)

Startup Emissions Summary (one startup)								
Pollutant	lb/hr	ton/startup						
NOx	167.47	1.792						
CO	50.97	0.318						
PM/PM10/PM2.5	7.54	0.008						
VOC	5.46	0.005						
SO2	0.04	0.00004						
HAPS	1.8728	0.0019						
CO2	623.17	4.84						
CH4	418.88	3.38						

1

Shutdown (one shutdown)								
Pollutant	lb/hr	ton/shutdown						
NOx	178.72	0.089						
CO	9.93	0.005						
PM/PM10/PM2.5	-	-						
VOC	-	-						
SO2	-	-						
HAPS	-	-						
CO2	90,400.00	45.20						
CH4	22.05	0.011						

Normal Operations (flag	re is off during normal o	perations-no						
emissions)								
Pollutant	lb/hr	ton/yr						
NOx	-	-						
CO	-	-						
PM/PM10/PM2.5	-	-						
VOC	-	-						
SO2	-	-						
HAPS	-	-						
CO2	-	-						
CH4	-	-						

Total Flaring (Multiple Startups and Shutdowns if Wanted)								
Pollutant	lb/hr	ton/yr						
NOx	178.72	1.88						
CO	50.97	0.32						
PM/PM10/PM2.5	7.54	0.01						
VOC	5.46	0.01						
SO2	0.04	0.0001						
HAPS	1.87	0.002						
CO2	90,400.00	50.04						
CH4	418.88	3.39						

Pre-Heater 201 (9S-1 through 6)

	Startup E	Emissions Summary (one	Total	(Multiple Startups if Wa	inted)		
	Uncon	trolled	Contro	lled (1)		Uncontrolled	Controlled
Pollutant	lb/hr	ton/startup	lb/hr	ton/startup	lb/hr	ton/yr	ton/yr
NOx	31.41	0.344	0.31	0.003	0.31	0.34	0.003
CO	5.61	0.046	5.61	0.05	5.61	0.05	0.05
PM/PM10/PM2.5	2.61	0.00261	2.61	0.00261	2.61	0.003	0.003
VOC	1.89	0.00189	1.89	0.00189	1.89	0.002	0.002
SO2	0.01	0.00001	0.01	0.00001	0.01	0.00001	0.00001
HAPS	0.65	0.00065	0.65	0.00065	0.65	0.001	0.001
CO2	550.69	1.26	550.69	1.26	550.69	1.26	1.26
CH4	177.84	0.71	177.84	0.71	177.84	0.71	0.71

Super Heater H202 (10S-1 through 6)

	Startup E	missions Summary (one	Total (Multiple Startups if Wanted)							
	Uncont	rolled	Contro	lled (1)		Uncontrolled	Controlled			
Pollutant	lb/hr	ton/startup	lb/hr	ton/startup	lb/hr	ton/yr	ton/yr			
NOx	79.60	0.872	0.80	0.009	0.80	0.87	0.01			
CO	14.21	0.117	14.21	0.12	14.21	0.12	0.12			
PM/PM10/PM2.5	6.62	0.00662	6.62	0.00662	6.62	0.01	0.01			
VOC	4.79	0.00479	4.79	0.00479	4.79	0.005	0.005			
SO2	0.04	0.00004	0.04	0.00004	0.04	0.00004	0.00004			
HAPS	1.64	0.0016	1.64	0.00164	1.64	0.002	0.002			
CO2	1,395.65	3.20	1,395.65	3.20	1,395.65	3.20	3.20			
CH4	450.72	1.81	450.72	1.81	450.72	1.81	1.81			
1. SCR for NOx with contr	SCR for NOx with control (%) = 99									

1

1. SCR for NOx with control (%) =

2. Number of Startup and Shutdowns per Year =

Total Startup and Shutdown Emissions

(Multiple Events if Wanted)						
Pollutant	ton/yr					
NOx	1.89					
CO	0.49					
PM/PM10/PM2.5	0.02					
VOC	0.01					
SO2	0.0001					
HAPS	0.004					
CO2	54.50					
CH4	5.91					

Starbap Emissions for Flares (2C-1 to 6) including PRot Light, H321 (95-1 to 6) uncentrolled, and H322 (105-1 through 6) uncentrolled Proteins gauss during startup are used for fuel in process heaters H321 and H322 and the remaining amount of gas is flared.

																				_				
																			RED INFORMATION CLA	ACTED	FIDENTIAL			
																				1				
																				_				
																				_				
																				_				
																				_				
LHV Kcal/Nm3	8733			5976			3663			2309.0	5			1864.00			1932			_				
Duration hr	2			6			10							1			15		-	_				
Flow rate Nm3/h	65,000			400,000			220,000			220,00	5	1		187,500			371,803			_				
Fuel heat duty Kcal/h	567,645,000			2,390,400,000			805,860,000			507,980,00	5	1		349,500,000			718,322,613			_				
Flared gas/fuel portion % (2)	44.946			85.926			61.220			38.48	5			10.584			56.495							
Gas to Flare (Kcal/h)	255,135,742			2,077,890,742			493,350,742			195,470,74				36,990,743			405,813,355							
Gas to Flare (MMBtu/hr)	1,011.78			8,240.23			1,956.47			775.1	r .			146.65			1,609.32	8,24	0.23 MMBTU/hr ()	VAX)				
Gas Flowrate to Flare (Nm3/hr)	29,215.13			347,705.95			134,684.89			84,656.0				19,844.83			210,048.32							
Gas Flowrate to Flare (scf/hr)	1,090,308.70			12,976,385.96			5,026,439.99			3,159,362.5				740,608.63			7,839,003.32	12,976,385.96	scf/hr (MAX)					
Gas Heat Rating (BTU/scf)	928			635			389			24				198			205	216	,273 scf/min					
									Flue gas - 20% excess air (1)												Emission	is Summary	
	Flare	H201	H202	Flare	H201	H202	Flare	H201	H202	Flar	H20	1 H203		flare	H201	H202	Flare		4201	H202	Flare	H201	H202	
Flow (Nm3)- Combustion calculated flows	704,355	NA	NA	11,104,308	NA	NA	4,893,340	NA	NA	675,304	N	5. N#		116,158	NA	NA	9,333,979		NA	NA				
Flame Temp. ("C)	1694	NA	NA	1434	NA	NA	1159	NA	NA	147) N	5. N#		1628	NA	NA	1740		NA	NA				
NOX (ppmv)	50	NA	NA	20	NA	NA	10	NA	NA	2) N	5. N#		50	NA	NA	50		NA	NA				
NOX (kg)	72	NA	NA	456	NA	NA	100	NA	NA	2	N	5. N#		13	NA	NA	958		NA	NA				
NOX (tons)	0.08	0.03	0.07	0.50	0.02	0.05	0.11	0.02	0.05	0.0	0.0	0.04		0.01	0.03	0.08	1.06		0.23	0.58	1.79	0.34	0.87 1	tons
NOx (b/hr)	79.67	27.61	69.98	167.47	7.13	18.06	22.14	3.97	10.05	20.3	9.2	23.35		13.14	31.41	79.60	140.77	1	.0.67	77.73	167.5	31.4	79.6	ib/hr (MAX)
CO (ppm)	10	NA	NA	10	NA	NA	20	NA	NA	2) N	5. N#		10	NA	NA	0		0	0				
CO (kg)	2	NA	NA	139	NA	NA	122	NA	NA	1	t N	5. N#		1	NA	NA	0		0	0				
CO (tons)	0.01	0.003	0.01	0.15	0.01	0.02	0.13	0.02	0.06	0.0	0.0	0.03		0.003	0.004	0.01	0		0	0	0.32	0.05	0.12	tons
CO (lb/hr)	9.70	3.36	8.52	50.97	2.17	5.50	26.95	4.83	12.24	12.4	5.6	1 14.23		1.60	3.82	9.69	0		0	0	50.97	5.61	14.21	ib/hr (MAX)
PM/PM10/PM2.5 (tons)	0.01	0.00	0.01	0	0	0	0	0	0		5	0 0		6	0.00	0.00	0		0	0	0.01	0.00	0.01	tons
PM/PM10/PM2.5 (lb/hr)	7.54	2.61	6.62	0	0	0	0	0	0		5	0 0		6	0.00	0.00	0		0	0	7.54	2.61	6.62	ib/hr (MAX)
VOC (tons)	0.0055	0.0019	0.0048	0	0	0	0	0	0	1	2	0 0		c	0.00	0.00	0		0	0	0.0055	0.0019	0.0048 t	Jons
VOC (b/hr)	5.46	1.89	4.79	0	0	0	0	0	0	-	2	5 0		(0.00	0.00	0		0	0	5.46	1.89	4.79	ib/hr (MAX)
SO2 (tons)	0.00004	0.00001	0.00004	0	0	0	0	0	0		2				0.00	0.00	0		0	0	0.00004	0.00001	0.00004 1	Jons
SO2 (b/hr)	0.043	0.015	0.037	0	0	0	0	0	0		2				0.00	0.00	0		0	0	0.0426	0.0148	0.0374 1	dy/br (MAX)
HAPs (tons)	0.0019	0.0005	0.0016	0	0	0	0	0	0		2				0.00	0.00	0		0	0	0.0019	0.0006	0.0016 t	Jons
HAPs (Ib/hr)	1.87	0.65	1.64	0	0	0	0	0	0		2	0 0			0.00	0.00	0		0	0	1.87	0.65	1.64	Jb/hr (MAX)
CD2 (tons)	0.31	0.11	0.28	1.87	0.03	0.20	2.09	0.38	0.95	0.3	0.1	0.32		0.23	0.55	1.40	0		0	0	4.84	1.26	3.20 t	Jons
CO2 (lb/hr)	314.16	108.88	275.93	623.17	26.52	67.21	418.83	75.07	190.26	218.9	99.0	5 251.05		230.38	550.69	1395.65	0		0	0	625.17	350.69	1,395.65	dy/hr (MAX)
CH4 (tons)	0.0860	0.03	0.08	0.6041	0.03	0.07	2.0944	0.38	0.95	0.589	0.2	7 0.68		0.0066	0.02	0.04	0		0	0	3.38	0.71	1.81 t	Jons
CH4 (b/hr)	85.98	29.80	75.52	201.36	8.57	21.72	418.88	75.07	190.26	393.1	177.8	41 450.72	1	6.61	1 15.81	40.07	0		0	0	418.88	177.84	450.72	ib/hr (MAX)

Market 1 A Constant Constant A Co

 Salid is the data of seven data
 Hugs 1
 Hug 2
 Hug 3
 Hug 3

2. A particular lange an user uses an user of the set o

 Emission Factors from AP-42 Table 1.4-2 for Natural Gas Combustion

 Rultant
 Ity/D05 scl
 Ity/MMEDy

 PM/MMLT/PM2.5 (Total)
 7.4
 0.00745078

 PM/MMLT/PM2.5 (Total)
 5.5
 0.00393257

 RMP5
 See Next Page

Speciated HAPs for Step 3

HAPs are speciated as if the gas is typical natural gas using AP-42 Section 1.4-3 and 1.4-4.

Burner Rating =	1,011.78
Operating Hours =	1

011.78 MMBTU/HR 1 HR/YR (2 hrs is factored in on previoud page)

CAC N-	Harrison Ala Dallatanta	EF (1&2)	Uncon	trolled	Contr	olled
CAS NO.	Hazardous Air Pollutants	lb/10 ⁶ scf	lb/MMBtu	lb/hr	tpy	lb/hr	tpy
91-57-6	2-Methylnaphthalene	2.40E-05	2.35E-08	2.38E-05	1.19E-08	2.38E-05	1.19E-08
56-49-5	3-Methylchloranthrene	1.80E-06	1.76E-09	1.79E-06	8.93E-10	1.79E-06	8.93E-10
57-97-6	7,12-Dimethylbenz(a)anthracene	1.60E-05	1.57E-08	1.59E-05	7.94E-09	1.59E-05	7.94E-09
83-32-9	Acenaphthene	1.80E-06	1.76E-09	1.79E-06	8.93E-10	1.79E-06	8.93E-10
203-96-8	Acenaphthylene	1.80E-06	1.76E-09	1.79E-06	8.93E-10	1.79E-06	8.93E-10
120-12-7	Anthracene	2.40E-06	2.35E-09	2.38E-06	1.19E-09	2.38E-06	1.19E-09
56-55-3	Benz(a)anthracene	1.80E-06	1.76E-09	1.79E-06	8.93E-10	1.79E-06	8.93E-10
71-43-2	Benzene	2.10E-03	2.06E-06	2.08E-03	1.04E-06	2.08E-03	1.04E-06
50-32-8	Benzo(a)pyrene	1.20E-06	1.18E-09	1.19E-06	5.95E-10	1.19E-06	5.95E-10
205-99-2	Benzo(b)fluoranthene	1.80E-06	1.76E-09	1.79E-06	8.93E-10	1.79E-06	8.93E-10
191-24-2	Benzo(g,h,i)perylene	1.20E-06	1.18E-09	1.19E-06	5.95E-10	1.19E-06	5.95E-10
207-08-9	Benzo(k)fluoranthene	1.80E-06	1.76E-09	1.79E-06	8.93E-10	1.79E-06	8.93E-10
218-01-9	Chrysene	1.80E-06	1.76E-09	1.79E-06	8.93E-10	1.79E-06	8.93E-10
53-70-3	Dibenzo(a,h)anthracene	1.20E-06	1.18E-09	1.19E-06	5.95E-10	1.19E-06	5.95E-10
25321-22-6	Dichlorobenzene	1.20E-03	1.18E-06	1.19E-03	5.95E-07	1.19E-03	5.95E-07
206-44-0	Fluoranthene	3.00E-06	2.94E-09	2.98E-06	1.49E-09	2.98E-06	1.49E-09
86-73-7	Fluorene	2.80E-06	2.75E-09	2.78E-06	1.39E-09	2.78E-06	1.39E-09
50-00-0	Formaldehyde	7.50E-02	7.35E-05	7.44E-02	3.72E-05	7.44E-02	3.72E-05
110-54-3	Hexane	1.80E+00	1.76E-03	1.79E+00	8.93E-04	1.79E+00	8.93E-04
193-39-5	Indeno(1,2,3-cd)pyrene	1.80E-06	1.76E-09	1.79E-06	8.93E-10	1.79E-06	8.93E-10
91-20-3	Naphthalene	6.10E-04	5.98E-07	6.05E-04	3.03E-07	6.05E-04	3.03E-07
85-01-8	Phenanthrene	1.70E-05	1.67E-08	1.69E-05	8.43E-09	1.69E-05	8.43E-09
129-00-0	Pyrene	5.00E-06	4.90E-09	4.96E-06	2.48E-09	4.96E-06	2.48E-09
108-88-3	Toluene	3.40E-03	3.33E-06	3.37E-03	1.69E-06	3.37E-03	1.69E-06
7440-38-2	Arsenic	2.00E-04	1.96E-07	1.98E-04	9.92E-08	1.98E-04	9.92E-08
7440-41-7	Beryllium	1.20E-05	1.18E-08	1.19E-05	5.95E-09	1.19E-05	5.95E-09
7440-43-9	Cadmium	1.10E-03	1.08E-06	1.09E-03	5.46E-07	1.09E-03	5.46E-07
7440-47-3	Chromium	1.40E-03	1.37E-06	1.39E-03	6.94E-07	1.39E-03	6.94E-07
7440-48-4	Cobalt	8.40E-05	8.24E-08	8.33E-05	4.17E-08	8.33E-05	4.17E-08
7439-96-5	Manganese	3.80E-04	3.73E-07	3.77E-04	1.88E-07	3.77E-04	1.88E-07
7439-97-6	Mercury	2.60E-04	2.55E-07	2.58E-04	1.29E-07	2.58E-04	1.29E-07
7440-02-0	Nickel	2.10E-03	2.06E-06	2.08E-03	1.04E-06	2.08E-03	1.04E-06
7782-49-2	Selenium	2.40E-05	2.35E-08	2.38E-05	1.19E-08	2.38E-05	1.19E-08
		VOC	HAPs Subtotal	1.87E+00	9.34E-04	1.87E+00	9.34E-04
		Metal	HAPs Subtotal	5.52E-03	2.76E-06	5.52E-03	2.76E-06
			Total HAPs	1.87E+00	9.36E-04	1.87E+00	9.36E-04

Notes:

1. AP42 Table 1.4-3 and Table 1.4-4

2. Conversion from lb/10^6 scf to lb/MMBtu (divide by) (1) =

1,020 BTU/CF

Flare Shutdown Emission (2C-1 through 6)

FEED Gas	Front end (Syngas Operating at aver temp	of ammonia plant generation unit) age pressure 450 psig and erature 570 °F	→	Haber Bosch process (Ammonia synthesis unit) Operating at average pressure 2800 psig and tempeature 390 °F					
	Approx. equipment vo	blume (m3) 1700		Approx.equipment volume (m3)	1500				
	Gas volume (Nm3)	100065.06		Gas volume (Nm3)	453500				
					INF	REDACTED CORMATION CLAIMED CONFIDENTIAL 6/30/2023			
			Emissions Pe	r Shutdown					
	Emission factor	0.266840159		Emission factor	0.0813155				
	NOx	3.2 kg		NOx	77.9	kg			
		7.01 lbs/hr			171.70471	lbs/hr			
		0.004 tpy			0.09	tpy			
	CO	4.5 kg		CO	0	kg			
		9.93 lbs/hr			0	lbs/hr			
		0.005 tpy			0	tov			
otal Shutdown Emis	ssions One Shutdown	NOx	۲ ۱	78.72 lb/hr	CO2	90.400 lb/hr			
				0.89 tpv		45 20 tov			
		00		9 93 lb/hr	CH4	22.05 lb/hr			
				005 tpv		0.011 toy			
	Emission factors are c	alculated from page "Gas stream to	o flare" sheet	5,000 (p)		0.011 (p)			
	Conversion 1 kg = 2.20	0462 lbs = 2.20462							
	<u> </u>								
otal Multiple Shutd	owns								
		NOx	c (0.089 tpy	CO2	45.20 tpy			
		CO	(0.005 tpy	CH4	0.011 tpy			
Aain vessels/reacto	ors on process gas side (vol	lume in m3)		Main vessels/reactors on process	gas side (volume	in m3)			
201	50	· · ····,		R501	400	-,			
202 1/2	200			8x Heat exchangers	400				
203	50			V503	100				
204	300			C501	100				
205	100			Flash vessels	500				
206	100				1500				
301	200				1900				
302	200								
(302	500								
.502	1700								

ATTACHMENT O

MONITORING, RECORDKEEPING, REPORTING, TESTING PLANS

ATTACHMENT O

MONITORING, RECORDKEEPING, REPORTING, AND TESTING PLANS

TransGas Development Systems, LLC will work with the Division of Air Quality to identify and address Monitoring, Recordkeeping, Reporting, and Testing Plans. Requirements that are identified in the permit will be implemented.

ATTACHMENT P

PUBLIC NOTICE

ATTACHMENT P

AIR QUALITY PERMIT NOTICE

Notice of Application

Notice is given that TransGas Development Systems, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Construction Permit for an Ammonia Production Facility located on Right Fork of Bens Creek Road near Wharncliffe in Mingo County, West Virginia. The latitude and longitude coordinates are: 37.615774 and -81.927364.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be: NO_x of 52.53 tons per year (tpy), SO2 of 0.18 tpy, CO of 13.39, tpy, VOC of 0.25 tpy, PM of 0.40 ty, PM10 of 0.40 tpy, PM2.5 of 0.40 tpy, and HAPs of 0.025 tpy.

Startup of operations is planned to begin on or about the 1st day of September 2024. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice. Written comments will also be received via email at DEPAirQualityPermitting@WV.gov.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, Extension 41281, during normal business hours.

Dated this the (Insert Date) day of October 2023.

By: TransGas Development Systems, LLC Adam Victor President 630 First Avenue, Suite 30G New York, New York 10013-3799

ATTACHMENT Q

BUSINESS CONFIDENTIAL CLAIMS

Cover Document Confidential Information

This sample form contains each of the required elements for the cover document required under 45CSR31. The person submitting this form may wish to attach an additional page(s) to provide adequate justification under the "Rationale" section of the form.

Company Name	TransGas Development Systems, LLC	Responsible Of	ficial	Adam Victor, President			
Company Address	630 First Avenue, Suite 30 G New York, NY 10016-3799	Confidential	Name	Patrick Ward			
		Information Designee in	Title	Senior Engineer			
		State of WV	Address	7012 MacCorkle Ave, SE Charleston, WV 25304			
Person/Title	Adam Victor						
Submitting Confidential	President		Phone	(304) 342-1400			
Information			Fax	(304) 343-9031			

Reason for Submittal of Confidential Information: Initial permitting.

Identification of Confidential Information	Rationale for Confidential Claim	Confidential Treatment Time Period			
	Provide justification that the criteria set forth in § 45CSR31-4.1.a - e have been met.				
All Marked Confidential Information.	The information contained within the application is fully protected under non-disclosure and confidentiality agreements by all parties involved in the application process and design of the facility. See Page Q2 of Q2.	This information is to be maintained confidential. There is no timeframe for expiration of confidential treatment.			
	· / / /6	<u> </u>			
Responsible Official Signatu	re: Delt				
Responsible Official Title:	President				
Date Signed:	6/30/23				

NOTE: Must be signed and dated in BLUE INK.

Precautionary Notice — Claims of Confidentiality WVDEP-DAQ: Revised March 23, 2020

Provide justification that the criteria set forth in § 45CSR31-4.1.a - e have been met.

4.1.a. The claim of confidentiality has not expired by its terms, nor been waived or withdrawn;

The confidentiality agreements do not have an expiration date due to the nature of the information contained in the application.

4.1.b. The person asserting the claim of confidentiality has satisfactorily shown that it has taken reasonable measures to protect the confidentiality of the information, and that it intends to continue to take such measures;

The information contained within the application is fully protected under non-disclosure and confidentiality agreements by all parities involved in the original development of the processes, the design of the facility, and the permit application process.

4.1.c. The information claimed confidential is not, and has not been, reasonably obtainable without the person's consent by other persons (other than governmental bodies) by use of legitimate means (other than discovery based on a showing of special need in a judicial or quasi-judicial proceeding);

The information available herein is not available and is not to be made available to outside parties.

4.1.d. No statute specifically requires disclosure of the information; and

Applicant believes there are no statutes that require disclosure of the information.

4.1.e. Either--

4.1.e.1. The person has satisfactorily shown that disclosure of the information is likely to cause substantial harm to the business's competitive position; or

This is a unique facility with many parties involved in preparing and providing information on the systems. Release of this information could cause substantial harm to Applicant's competitive position in the market.

4.1.e.2. The information is voluntarily submitted information, and its disclosure would likely to impair the State's ability to obtain necessary information in the future.

The State should not disclose this information to anyone.

APPENDIX 1

CONFIDENTIAL HALDOR TOPSOE DOCUMENTS
APPENDIX 2

STARTUP AND EMERGENCY GENERATOR INFORMATION

Specification sheet

Gaseous fuel generator set

1000 kW - 1300 kW 60 Hz

Description

You can count on the 1000-1300 kW natural gas generator set (GenSet) for the reliability, quality, and dependability that is genuine Cummins performance. EPA-certified, this fully-integrated power generation system provides optimum performance and versatility for demand response and stationary standby power applications.

Features

- Over 100 years of Cummins power generation technology and innovation
- Listed to UL 2200 and CSA standards for all low voltage models
- Stamford rugged and reliable alternator with state-of-the-art technology
- One-year (demand response) and two-year (standby) base warranty supported by a worldwide Cummins twenty-four hour, seven days-a-week, distributor network
- Accepts 100% rated load in a single step
- Capable of meeting NFPA 110 Type 10 for Level 1 emergency or standby power supply systems (EPSSs) when installed and operated per Cummins and NFPA guidelines
- Standard Power Command Control (PCC) 3300 technology provides digital (precise) frequency and voltage regulation
- Efficient and convenient operation monitoring and control options:
 - Modbus over the Internet (monitor and control)
 - Remote HMI (monitor and control)

Model	Power rating 60 Hz kW (kVa) Standby and demand response	Emissions	Data sheet
C1000N6B	1000 (1250)	EPA-certified for stationary emergency	NAD-C1000N6B
C1300N6	1300 (1625)	and non-emergency applications	NAD-C1300N6

Engine specifications

Base engine	Cummins QSK 60G
Displacement	3671 in ³ (60.1 L)
Minimum battery capacity	1800 amps at minimum ambient temperature of 0 $^\circ$ F (-18 $^\circ$ C)
Battery charging alternator	55 amps
Starting voltage	24-volt, negative ground
Standard cooling system	104 °F (40 °C)

Alternator specifications

Design	Brushless, 4-pole, drip-proof revolving field
Stator	2/3 pitch
Rotor	Direct-coupled by flexible disc
Insulation system	Class H per NEMA MG1-1.65 or better
Standard temperature rise	125 °C
Exciter type	Permanent Magnet Generator (PMG)
Phase rotation	A (U), B (V), C (W)
Alternator cooling	Direct-drive centrifugal blower

Outline drawing

This outline drawing is for reference only. *Do not use for installation design.*

All models	Dim "A" in. (cm)	Dim "B" in. (cm)	Dim "C" in. (cm)
Open set	240 (610)	102 (259)	115 (292)
Sound- attenuated Level II enclosure	403 (1024)	102 (259)	128 (325)

NOTE: Consult drawings for applicable weights. Contact the factory for additional information.

GenSet options and accessories

Alternator

- 80 °C rise
- 105 °C rise
- 125 °C rise
- 120/240 V, 200 W anti-condensation heater

Fuel system - flexible fuel connector and fuel strainer

Exhaust system - critical grade silencer

Generator set

- Batteries
- Battery charger 120/208/240 V, 20A
- Main line circuit breaker
- Electronically-operated (E.O.) generator breaker
- PowerCommand Network I/O module
- PowerCommand Network Aux 101, 102 module
- Remote control HMI with extension harness
- Remote annunciator panel
- Spring isolators
- Audible alarm
- Sound-attenuated enclosure Level II with silencer
- Warranty five-year standby including parts, labor, and travel

Applicable codes and standards

The Underwriters Laboratory (UL) 2200 Listing is a comprehensive safety standard encompassing the design, construction, and performance of stationary GenSets.

CSA Group tests products under a formal process to ensure that they meet the safety and/or performance requirements of applicable standards. This GenSet is certified to: CSA 22.2 No. 100 <u>Motors and Generators</u>; CSA 22.2 No. 0.4-044 <u>Bonding of Electrical Equipment</u>; CSA 22.2 No. 14 <u>Industrial Control Equipment</u>; and CSA 22.2 No. 0 <u>General Requirements - Canadian Electrical Code, Part II</u>. All low voltage models are CSA-certified to product class 4215-01.

Engine is certified to Stationary Emergency and Non-Emergency U.S. EPA New Source Performance Standards (NSPS), 40 CFR 60 subpart JJJJ. U.S. applications must be applied per EPA regulations.

ISO 9001:2015

This product has been manufactured under the controls established by an approved management system that conforms with ISO 9001:2015.

PowerCommand 3.3 control system

An integrated microprocessor-based GenSet control system providing voltage regulation, engine protection, AmpSentry alternator protection, operator interface and isochronous governing.

Advanced control methodology

- Designed for reliable operation in harsh environment.
- Provides battery monitoring and testing features and smart starting control system.
- Includes three-phase sensing, full wave rectified voltage regulation, with a PWM output for stable operation with all load types.
- Digitally governed with temperature dynamic governing and integrated digital electronic isochronous governing.
- **Prototype tested** UL, CSA, and CE compliant.
- Supports multiple languages- English, Spanish, and French (standard); other languages, optional.
- **Protects the engine** cranking lockout, overspeed shutdown, and battleshort; sensor failure indication; low fuel level warning or shutdown; low oil pressure warning and shutdown; high/low coolant temperature warning and shutdown; fail to start (overcrank) and fail to crank shutdown; and battery voltage monitoring, protection, and testing.
- Enables paralleling control direct control of the paralleling breaker and displays breaker status; First Start Sensor System selects first GenSet to close to bus; Phase Lock Loop Synchronizer with voltage matching; sync check relay; isochronous kW and kVar load sharing; load govern control for utility paralleling; extended Paralleling (baseload/peak shave) Mode; and digital power transfer control, for use with a breaker pair to provide open transition, closed transition, ramping closed transition, peaking and base load functions.
- **Includes AmpSentry alternator protection** over current and short circuit shutdown; over current warning; single and three-phase fault regulation; over and under voltage/frequency shutdown; overload warning with alarm contact; reverse power and reverse var shutdown; and field overload shutdown.
- Cummins InPower PC-based service tool connects to the PowerCommand 3.3 control system for detailed diagnostics, setup, data logging, and fault simulation.
- Comes standard with PCCNet and Modbus interface.
- Allows for up to twenty configurable data inputs and outputs.

State-of-the-art operator panel

- Includes LED lamps indicating GenSet running, remote start, not in auto, common shutdown, common warning, manual run mode, auto mode and stop.
- **Displays engine data** DC voltage and engine speed; lube oil pressure and temperature; coolant temperature; and comprehensive full authority electronic (FAE) data.
- **Provides GenSet data** start attempts, starts, running hours, kW hours; load profile (operating hours at percent load in 5% increments); fault history up to 32 events; data logging and fault simulation (requires InPower); air cleaner restriction indication; exhaust temperature in each cylinder.
- Includes alternator data Line-to-neutral and line-to-line AC volts; three-phase AC current; frequency; kW, kVar, and power factor kVa (three-phase and total); and winding temperature and/or bearing temperature (optional).

Refer to document S-1570 for more detailed information.

Ratings definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power is in accordance with ISO 3046, AS 2789, DIN 6271, and BS 5514.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271, and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) is in accordance with ISO 8528, ISO 3046, AS 2789, DIN 6271, and BS 5514.

Demand Response Power Rating - Spark Ignited Gas (DRP):

Applicable for supplying electrical power in parallel with commercially available power in variable and non-variable load applications. This fuel rating is intended for use in situations where power outages are contracted, such as in utility power curtailment. Engine operation is limited to a total of 500 hours per year. Engines may be operated in parallel to the public utility for up to 500 hours per year, with an average load factor no greater than 80% of rated Demand Response Power. Engines with Standby Power ratings available can be run in Emergency Standby applications up to the Standby Power rating for up to 50 hours per year. The customer should be aware, however, that the life of any engine will be reduced by constant high load operation.

Warning: Backfeed to a utility system can cause electrocution and/or property damage. Do not connect GenSets to any building electrical system except through an approved device or after the building main disconnect is open. Neutral connection must be bonded in accordance with National Electrical Code.

Specifications are subject to change without notice.

Power You Can Rely On

To order, contact centralregionordergs@cummins.com. Visit cummins.com to view all your power solutions.

Cummins Inc. Box 3005 Columbus, IN 47202-3005 U.S.A.

1-800-CUMMINS™ (1-800-286-6467) cummins.com

Printed in U.S.A. ©2022 Cummins Inc.

NAS-C1000N6B-C1300N6 November 2022

Generator Set Data Sheet 1000 kW Standby Power

Model:	C1000N6
Frequency:	60 Hz
Fuel Type:	Pipeline Natural Gas
Emissions NOx:	EPA NSPS & Non-Road Mobile Factory Certified
LT water inlet temp:	50°C (122°F)
HT water outlet temp:	90°C (194°F)

Measured sound performance data sheet:	MSP-1089
Prototype test summary data:	PTS-640
Remote radiator cooling outline:	0500-5090

Fuel Consumption (ISO3046/1)	See Note	100% of Rated Load	90% of Rated Load	75% of Rated Load	50% of Rated Load
Fuel Consumption (LHV) ISO3046/1, kW (MMBTU/hr)	2,3,5	2885 (9.85)	2630 (8.98)	2248 (7.68)	Below Minimum
Electrical Efficiency ISO3046/1, percent	2,5,10	36.4%	35.9%	35.0%	Tested
Thermal Efficiency ISO3046/1, percent	2,5,17	52.4%	52.6%	53.0%	Power

Engine

Engine Manufacturer	Cummins
Engine Model	QSK60G
Configuration	V16
Displacement, L (cu.in)	60 (3672)
Aspiration	Turbocharged and Charge Air Aftercooled
Gross Engine Power Output, kWm (hp)	1082 (1451)
BMEP, bar (psi)	12.3 (178)
Bore, mm (in)	159 (6.25)
Stroke, mm (in)	190 (7.48)
Rated Speed, rpm	1800
Piston Speed, m/s (ft/min)	11.4 (2244)
Compression Ratio	11.4:1
Lube Oil Capacity, L (qt)	379 (400)
Full Load Lubricating oil consumption, g/kWe-hr (g/hp-hr)	0.15 (0.11)

Fuel

Gas supply pressure to FSOV inlet, bar (psi) ¹⁸	0.2 - 0.46 (2.9 - 6.7)		
Minimum Methane Index	55		

Starting System(s)

Electric Starter Voltage, volts	24
Minimum Battery Capacity @ 40°C (104°F), AH	450

Genset dimensions (see Note 1)

Genset Length, m (ft)	5.00 (16.40)
Genset Width, m (ft)	2.33 (7.64)
Genset Height, m (ft)	2.97 (9.74)
Genset Weight (wet), kg (lbs)	13924 (30697)

	See	100% of	90% of	75% of	50% of
Energy data	Notes	Rated Load	Rated Load	Rated Load	Rated Load
Continuous Generator Electrical Output kWe @ 1.0 pf	2,5,10	1050	945	787.5	Below Minimum Tested Power
Total Heat Rejected in LT Circuit, kW (MMBTU/h)	14	85 (0.29)	80 (0.27)	73 (0.25)	
Total Heat Rejected in HT Circuit, kW (MMBTU/h)	14	719 (2.45)	653 (2.23)	556 (1.90)	
Unburnt, kW (MMBTU/h)	14	93 (0.32)	86 (0.29)	75 (0.25)	
Heat Radiated to Ambient, kW (MMBTU/h)	14	126 (0.43)	115 (0.39)	97 (0.33)	
Available Exhaust heat to 120°C, kW (MMBTU/h)	14	795 (2.71)	731 (2.49)	635 (2.17)	

Intake air flow

Intake Air Flow Mass, kg/s (lb/hr)	14	1.83 (14513)	1.67 (13241)	1.43 (11345)	
Intake Air Flow Volume, m³/s @ 0°C (scfm)	14	1.41 (3150)	1.29 (2880)	1.11 (2480)	
Maximum Air Cleaner Restriction, mmHG (in H_2O)	19	18.3 (9.8)	18.3 (9.8)	18.3 (9.8)	

Exhaust air flow

Exhaust Gas Flow Mass, kg/s (lb/hr)	14	1.89 (15038)	1.73 (13721)	1.48 (11759)	
Exhaust Gas Flow Volume, m³/s (cfm)	14	4.15 (8790)	3.82 (8090)	3.32 (7030)	' -
Exhaust Temperature After Turbine, ºC (ºF)	4	500 (932)	507 (945)	518 (964)	
Max Exhaust System Back Pressure, mmHG (in H ₂ O)	12	37.3 (20.0)	37.3 (20.0)	37.3 (20.0)	
Min Exhaust System Back Pressure, mmHG (in H ₂ O)	12	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	

HT cooling circuit

HT Circuit Engine Coolant Volume, L (gal)		182 (48)	182 (48)	182 (48)	
HT Coolant Flow @ Max Ext Restriction, m ³ /h (gal/min)	13,15	83 (365)	83 (365)	83 (365)	
Maximum HT Engine Coolant Inlet Temp, °C (°F)	6	81 (179)	82 (180)	83 (182)	
HT Coolant Outlet Temp, ºC (ºF)	6	90 (194)	90 (194)	90 (194)	
Max Pressure Drop in External HT Circuit, bar (psig)	15	1.5 (21.8)	1.5 (21.8)	1.5 (21.8)	
HT Circuit Maximum Pressure, bar (psig)		4.5 (65)	4.5 (65)	4.5 (65)	
Minimum Static Head - Pump Inlet, bar (psig)		0.5 (7)	0.5 (7)	0.5 (7)	

	See	100% of	90% of	75% of	50% of
LT Cooling Circuit	Notes	Rated Load	Rated Load	Rated Load	Rated Load
LT Circuit Engine Coolant Volume, L (gal)		34 (9)	34 (9)	34 (9)	
LT Coolant Flow @ Max Ext Restriction, m³/h (gal/min)	13,15	23 (101)	23 (101)	23 (101)	
Maximum LT Engine Coolant Inlet Temp, °C (°F)	7	50 (122)	50 (32)	50 (32)	
Nominal LT Coolant Outlet Temp, ºC (ºF)	7	54 (129)	54 (32)	54 (32)	
Max Pressure Drop in External LT Circuit, bar (psig)	15	1.0 (14.5)	1.0 (14.5)	1.0 (14.5)	
LT Circuit Maximum Pressure, bar (psig)		4.5 (65)	4.5 (65)	4.5 (65)	
Minimum Static Head - Pump Inlet, bar (psig)		0.5 (7)	0.5 (7)	0.5 (7)	

Emissions

NO _x Emissions dry, ppm					
NO _x Emissions, mg/Nm³ @5% O ₂ (g/hp-h)					
THC Emissions wet, ppm	11				
THC Emissions, mg/Nm ³ @5% O ₂ (g/hp-h)	11				
CO Emissions dry, ppm	14				
CO Emissions, mg/Nm ³ @5% O ₂ (g/hp-h)	14				
CO ₂ Emissions dry, percent	14				
CO ₂ Emissions, mg/Nm ³ @5% O ₂ (g/hp-h)	14				
O ₂ Emissions dry, percent	14				
Particulates PM ₁₀ , g/hp-h	14				

This rating is EPA NSPS Certified. Please refer to EPA emissions datasheet for regulation limits.

Genset De-rating

Barome	ter	Altitude	1	Table A								
In Hg	mbar	Feet	Meters	Derate Mu	ultiplier							
20.7	701	9843	3000	0.90	0.89	0.87	0.85	0.83	0.80	0.76	0.72	0.69
21.4	723	9022	2750	0.94	0.93	0.91	0.89	0.88	0.84	0.80	0.77	0.73
22.1	747	8202	2500	0.99	0.97	0.95	0.93	0.92	0.88	0.84	0.81	0.77
22.8	771	7382	2250	1.00	1.00	0.99	0.98	0.96	0.92	0.88	0.85	0.81
23.5	795	6562	2000	1.00	1.00	1.00	1.00	1.00	0.96	0.93	0.89	0.85
24.3	820	5741	1750	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.93	0.89
25.0	846	4921	1500	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.94
25.8	872	4101	1250	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98
26.6	899	3281	1000	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
27.4	926	2461	750	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
28.3	954	1640	500	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
29.1	983	820	250	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
29.5	995	492	150	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
30.0	1012	0	0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	D°C		20	25	30	35	40	45	50	55	60	
	°F		°F	68	77	86	95	104	113	122	131	140
Air Filter Inlet Temperature												

Altitude and Temperature Derate Multiplication Factor - On Grid, Soft Start

Altitude and Temperature Derate Multiplication Factor - Off Grid

Barometer		Altitude	e	Table A								
In Hg	mbar	Feet	Meters	Derate Mu	ultiplier							
20.7	701	9843	3000	0.88	0.86	0.85	0.83	0.81	0.77	0.73	0.68	-
21.4	723	9022	2750	0.92	0.91	0.89	0.87	0.85	0.81	0.77	0.72	0.68
22.1	747	8202	2500	0.96	0.95	0.93	0.91	0.89	0.85	0.81	0.77	0.72
22.8	771	7382	2250	1.00	0.99	0.97	0.95	0.94	0.89	0.85	0.81	0.77
23.5	795	6562	2000	1.00	1.00	1.00	0.99	0.98	0.93	0.89	0.85	0.81
24.3	820	5741	1750	1.00	1.00	1.00	1.00	1.00	0.98	0.93	0.89	0.85
25.0	846	4921	1500	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.93	0.89
25.8	872	4101	1250	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.93
26.6	899	3281	1000	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.97
27.4	926	2461	750	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
28.3	954	1640	500	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
29.1	983	820	250	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
29.5	995	492	150	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
30.0	1012	0	0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
			°C	20	25	30	35	40	45	50	55	60
			°F	68	77	86	95	104	113	122	131	140
Air Filter Inlet Temperature												

Temperature & altitude derate

1. Determine derate multiplier vs. temperature and altitude in Table A.

- 2. Assumes the LT return temperature is 10 °C above the air filter inlet with a maximum LT temperature of 50 °C.
- 3. If the LT temperature exceeds 50°C, consult factory for recommendations.
- 4. Altitude is based upon SAE standard ambient pressure vs. altitude. For low barometric conditions add 150 m (500 ft) to site altitude.

Genset De-rating

Barome	Barometer)	Table B								
In Hg	mbar	Feet	Meters	Multiplier	for HT & I	_T (1/4) He	at Rejectio	on vs Alt 8	Temp.			
20.7	701	9843	3000	1.11	1.13	1.14	1.15	1.17	1.18	1.19	1.20	1.22
21.4	723	9022	2750	1.10	1.12	1.13	1.14	1.15	1.17	1.18	1.19	1.21
22.1	747	8202	2500	1.09	1.10	1.12	1.13	1.14	1.16	1.17	1.18	1.20
22.8	771	7382	2250	1.08	1.09	1.11	1.12	1.13	1.14	1.16	1.17	1.18
23.5	795	6562	2000	1.07	1.08	1.09	1.11	1.12	1.13	1.15	1.16	1.17
24.3	820	5741	1750	1.06	1.07	1.08	1.10	1.11	1.12	1.14	1.15	1.16
25.0	846	4921	1500	1.05	1.06	1.07	1.09	1.10	1.11	1.12	1.14	1.15
25.8	872	4101	1250	1.04	1.05	1.06	1.07	1.09	1.10	1.11	1.13	1.14
26.6	899	3281	1000	1.02	1.04	1.05	1.06	1.08	1.09	1.10	1.12	1.13
27.4	926	2461	750	1.01	1.03	1.04	1.05	1.07	1.08	1.09	1.10	1.12
28.3	954	1640	500	1.00	1.02	1.03	1.04	1.05	1.07	1.08	1.09	1.11
29.1	983	820	250	0.99	1.00	1.02	1.03	1.04	1.06	1.07	1.08	1.10
29.5	995	492	150	0.99	1.00	1.01	1.03	1.04	1.05	1.06	1.08	1.09
30.0	1012	0	0	0.98	0.99	1.01	1.02	1.03	1.05	1.06	1.07	1.08
			°C	20	25	30	35	40	45	50	55	60
	°F			68	77	86	95	104	113	122	131	140
Air Filter Inlet Temperature												

Heat Rejection Factor (altitude and ambient) for HT and LT Circuits

LT & HT Circuit Heat Rejection Calculation

- 1. Determine derate multiplier vs. temperature and altitude in Table A.
- 2. Using the multiplier from #1 above as the percent load factor determine the heat rejection from the previous page.
- 3. From Table B find the LT circuit multiplier. *The HT circuit multiplier is 1/4 of the multiplier shown in the table e.g. if the table says 1.04, the actual factor for HT is 1.01.
- 4. Multiply the result of step 2 by the result of step 3 to obtain the heat rejection at your altitude and temperature.

Methane Index Derate Multiplication Factor*

Table C

Derate Mutiplier

LT Inle	t Temp		Derate	Factor	
°F	°C	1.00	0.90	0.75	0.50
122	50	55	52	48	-
131	55	59	56	52	-
140	60	63	60	56	-
149	65	67	64	60	-
158	70	71	68	64	-

Methane Index Derate

- 1. Determine derate multiplier vs. Methane Number in Table C based on MN given your gas analysis input into the Cummins Gas Analysis Tool.
- 2. Using the multiplier from #1 above as the percent load factor determine the max load in kW using the nominal max rated load.

Alternator Data

Voltage Range	Connection Configuration	Temp Rise Degrees C	Duty ⁹ Cycle	Winding No.	Alternator Data Sheet					
380-480	Wye, 3 Phase	80	S	N/A	See Note 16					
600	Wye, 3 Phase	80	S	N/A	See Note 16					
4160	Wye, 3 Phase	80	S	N/A	See Note 16					
12470-13800	Wye, 3 Phase	80	S	N/A	See Note 16					
4160	Wye, 3 Phase	105	S	N/A	See Note 16					
380-416	Wye, 3 Phase	125	S	N/A	See Note 16					
440-480	Wye, 3 Phase	125	S	N/A	See Note 16					

Emergency Standby Power (ESP) Rating Defintion

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528.

Note:

1) Weights and set dimensions represent a generator set with its standard features only. See outline drawing for other configurations.

2) At ISO3046 reference conditions, altitude 1013 mbar (30in Hg), air inlet temperature 25°C (77°F)

3) According to ISO 3046/I with fuel consumption tolerance of +5%, -0%

4) With air intake at 25°C (77°F). Tolerance ± 10°C.

5) Tested using pipeline natural gas with LHV of 35.64MJ/Nm3 (905BTU/scf).

6) Outlet temperature controlled by thermostat. Inlet temperature for reference only. Data taken with 50% Glycol and with outlet temperature at max allowance.

7) Inlet temperature controlled by thermostat, outlet temperature for reference only. Data taken with 50% Glycol.

8) Without engine driven coolant pumps

9) Standby (S), Prime (P), Continuous (C)

10) At electrical output of 1.0 Power Factor, 97% Alternator Efficiency

11) Tolerance ±15%. Values shown are measured using fuel with less than 1% NMHC by volume. Values can vary significantly depending on NMHC found in the fuel.

12) Exhaust system back pressure is at rated load and will decrease at lower loads. Minimum restriction/back pressure is 0 mm H₂O.

13) Flow including off engine thermostats.

14) Tolerance +/- 10%

15) Pressure drop external to genset.

16) Alternator model and data sheet information available on www.powersuite.cummins.com

17) Exhaust gas cooled to 120 °C.

18) Fuel pressure capability will vary depending on fuel quality and site conditions.

19) Maximum Air Cleaner Restriction based on intake air temperature below 35 °C. If intake air temperature rises above 35 °C, contact Application Engineering for guidance.

For more information contact your local Cummins distributor or visit power.cummins.com

Our energy working for you.™

©2019 Cummins Inc. All rights reserved. Cummins is a registered trademark of Cummins Inc. PowerCommand, InPower and "Our energy working for you." are trademarks of Cummins Inc. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. D-6455 Jan 2020

Exhaust emission data sheet C1000N6B 60 Hz spark-ignited generator set (GenSet)

Natural gas exhaust enhissions data @ 1000 ipin								
Exhaust component	50% load		75% load		Full load			
Exhaust component	g/hp-hr	ppm	g/hp-hr	ppm	g/hp-hr	ppm		
Oxides of nitrogen (as NO _x , DRY)	NOx	N/A	N/A	1.0	151	1.0	155	
Total hydrocarbons (WET)	THC	N/A	N/A	3.7	1408	3.8	1471	
Carbon Monoxide (DRY)	CO	N/A	N/A	1.7	405	1.6	406	

Natural gas exhaust emissions data @ 1800 rpm

Engine information:

-		Bore:	6 25 in (159 mm)
Model:	Cummins QSK60G	Stroke:	7.48 in. (190 mm)
Emission certification:	EPA-certified for stationary	Displacement:	3672 in ³ (60 L)
	emergency and non-emergency applications	Cylinders:	16
Assistant	Turbocharged and	Combustion:	Advanced lean burn
Aspiration:	coolant-air aftercooled	Compression ratio:	11.4:1

Test conditions

Steady-state emissions recorded per ISO 8178-1 during operation at rated engine speed (+/- 2%) and stated constant load (+/- 2%) with engine temperatures, pressures, and emission rates stabilized.

Fuel specifications:	Dry processed natural gas fuel with 905 BTU per standard cubic foot lower heating value. The percentage of NMHCs found in exhaust emissions are typically 2-3 times the percentage of NMHCs found in fuel. If there is no NMHC in the fuel, NMHC and VOC emissions in exhaust will be insignificant.
Air inlet temperature:	77 °F (25 °C)
Barometric pressure:	29.39 in. Hg (99.5 kPa) at 500 ft. (152 m) altitude
Relative humidity:	30%
Emissions data tolerance:	NO _x : +/-10%, HC: +/-15%, CO: +/-10%

The NOx, HC, CO and particulate matter (PM) emissions data tabulated here are representative of test data taken from a single engine under the test conditions shown above. These data are subjected to instrumentation and engine-to-engine variability. Field emission test data are not guaranteed to these levels. Actual field test results may vary due to engine tuning, test site conditions, installation, fuel specification, test procedures, and instrumentation. Engine operation with excessive air intake or exhaust restrictions beyond published maximum limits, or with improper maintenance, may result in elevated emissions levels.

UNITED STATES ENVIRON 2023 MC CERTIFICATE WITH THE	UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 2023 MODEL YEAR CERTIFICATE OF CONFORMITY WITH THE CLEAN AIR ACT			OFFICE OF TRANSPORTATION AND AIR QUALITY ANN ARBOR, MICHIGAN 48105	
Certificate Issued To: Cummins Inc. (U.S. Manufacturer or Importer) Certificate Number: PCEXB60.0AAA-015	Effective Date: 09/27/2022 Expiration Date: 12/31/2023	Byron J. Bunker Complia	r, Division Director nce Division	Issue Date: 09/27/2022 Revision Date: N/A	
Manufacturer: Cummins Inc. Engine Family: PCEXB60.0AAA Mobile/Stationary Certification Type: Mobile Fuel : Natural Gas (CNG/LNG) Emission Standards : Mobile Part 1048 CO (g/kW-hr): 4.4 NMHC + NOx (g/kW-hr): 2.7 Emergency Use Only :					

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 1048, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 1048 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 1048 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 1048. This certificate of conformity does not cover nonroad engines imported prior to the effective date of the certificate.

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 1048. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 1048.

PRO

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

APPENDIX 3

DETAILED PROCESS FLOW DIAGRAMS

