

May 9, 2023

it's what's inside that counts

Joe Kessler West Virginia Division of Air Quality 601-57th St., SE Charleston, WV 25304 joseph.r.kessler@wv.gov

RE: Updates to January and March 2023 Air Quality Permit Application

Permit Number: R14-0040 Applicant: CMC Steel US, LLC Facility: CMC Steel West Virginia

#### Dear Mr. Kessler:

On January 3, 2023, CMC Steel US, LLC (CMC) submitted an air quality permit application for the development of a Prevention of Significant Deterioration (PSD) Permit to Construct for a new micro mill and associated support operations in Berkeley County, West Virginia (the proposed Project). On March 24, 2023, CMC submitted an updated version of the January 3, 2023 application that addressed comments provided. We appreciate your review and comments on our application. Pursuant to discussions with our team enclosed is an updated version of the March 24, 2023, application that addresses additional comments provided. The following is a summary of the primary changes to the application:

- Section 1 (Executive Summary): Added physical address of the proposed Project.
- Attachment D (Regulatory Discussion): Updates to Table 6-1 due to the changes discussed in this cover letter and enclosed application.
- Attachment F (Detailed Process Flow Diagrams): Removes TR51D Outside Truck Mixed Bins Drop Point, Scrap.
- Attachment I (Emission Units Table):
  - o Updates the Emission Unit ID for Fluxing Agent Storage Silo Nos. 1 and 2.
  - o Removes TR51D Outside Truck Mixed Bins Drop Point, Scrap.
  - o Removes the proposed controls on TR11A Outside SPP Pile Drop Points, Slag.
- Attachment J (Emission Points Data Summary Sheet): Updates the Emission Unit ID for Fluxing Agent Storage Silo Nos. 1 and 2.
- Attachment L (Emissions Unit Data Sheets):
  - o Updates the Emission Unit ID for Fluxing Agent Storage Silo Nos. 1 and 2.
  - o Removes TR51D Outside Truck Mixed Bins Drop Point, Scrap.

- Attachment N (Supporting Emissions Calculations):
  - o Table 16-1: Updates to the Summary of Application Proposed Hourly PTE due to the changes discussed in this cover letter and enclosed application.
  - o Table 16-2: Updates to the Summary of Application Proposed Annual PTE due to the changes discussed in this cover letter and enclosed application.
  - Section 16.7: Correct the source of the emission factors associated with binder usage to "based on process experience from other CMC micro-mills."
  - Section 16.8: Removes crushing from the description of the calculation methodology as no crushing will be performed at the slag processing plant.
  - Section 16.10: Updates the windspeed used in the underlying calculations from Hagerstown to the Martinsburg airport.
  - Section 16.11: References new Appendix C which contains the road segments details utilized in developing the road emissions estimates.
- Section 23 (Best Available Control Technology (BACT)): Streamline the "Identify Air Pollution Control Technologies" description for the technically feasible GHG reduction practices summarized in Table 23-7.
- Appendix A (Emission Calculation Details):
  - Updates the EAF and LMS caster vent emissions of lead, Fluorides, and metal HAPs.
  - o Adjustment to the EAF/LMS Fluorides emission factor.
  - Removes reference to the Caster emissions in Table A-4b as these are addressed separately in Table A-6.
  - Adjustment to the usage of the annual utilization percent in the annual emission calculations for the combustion sources.
  - Updates the Emission Unit ID for Fluxing Agent Storage Silo Nos. 1 and 2.
  - o Removes TR51D Outside Truck Mixed Bins Drop Point, Scrap.
  - Removes the proposed controls on TR11A Outside SPP Pile Drop Points, Slag.
  - o Removes crushing from the description of TR11B1.
  - Updates the wind speed in the material handling calculations as well as the % of time the unobstructed wind speed exceeds 12 mph at the pile height in the storage pile calculations due to change in meteorological station from Hagerstown to Martinsburg.
  - Increase the diesel throughput for the tanks.
- Appendix C (Road Segment Details): New appendix which contains the road segments details utilized in developing the road emissions estimates.

If you have any questions or comments about the information in the enclosed application, please do not hesitate to call Brad Bredesen at 830-305-5250 or at <a href="mailto:Steven.Bredesen@cmc.com">Steven.Bredesen@cmc.com</a>.

I, the undersigned Responsible Official, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein

in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code §22-5-1 et seq. (State Air Pollution Control Act).

Sincerely,

CMC Steel US, LLC

Billy Milligan Vice President,

**Enclosure** 

cc: Brad Bredesen, CMC

Alan Gillespie, CMC Michael Noll, CMC

Eddie Al-Rayes, Trinity Consultants

Dave Flannery, Steptoe & Johnson PLLC

# **AIR QUALITY PERMIT APPLICATION**



# CMC Steel US, LLC / Martinsburg, WV

#### **Prepared By:**

#### TRINITY CONSULTANTS

4500 Brooktree Road, Suite 310 Wexford, PA 15090 (724) 935-2611

January 2023

(Revised May 2023)

Project 220506.0013



# **TABLE OF CONTENTS**

| 1. | EXECUTIVE SUMMARY                                             | 1-1                                                                          |
|----|---------------------------------------------------------------|------------------------------------------------------------------------------|
| 2. | WVDAQ APPLICATION FORM                                        | 2-1                                                                          |
| 3. | ATTACHMENT A: BUSINESS CERTIFICATE                            | <b>3-1</b>                                                                   |
| 4. | ATTACHMENT B: MAPS                                            | 4-1                                                                          |
| 5. | ATTACHMENT C: INSTALLATION AND START UP SCHEDULE              | 5-1                                                                          |
| 6. | 6.1 Federal Major New Source Review (NSR)                     | <b>6-1 6-1 6-1 6-1 6-2 6-2 6-3 6-4 6-5 6-5 6-6 6-7 6-8 6-9 6-9 6-10 6-10</b> |
|    | Air Pollution for the Prevention of Significant Deterioration |                                                                              |

|           |        | 6.9.7         | 45CSR30 - Requirements for Operating Permits               | 6-11  |
|-----------|--------|---------------|------------------------------------------------------------|-------|
|           |        | 6.9.8         | 45CSR34 – Emission Standards for Hazardous Air Pollutants  | 6-11  |
| <b>7.</b> | ATTA   | CHME          | NT E: PLOT PLAN                                            | 7-1   |
| 8.        | ATTA   | CHME          | NT F: DETAILED PROCESS FLOW DIAGRAMS                       | 8-1   |
| 9.        | ATTA   | CHME          | NT G: PROCESS DESCRIPTION                                  | 9-1   |
|           | 9.1    | Raw I         | Material Storage and Handling                              | 9-2   |
|           | 9.2    | Melts         | hop                                                        | 9-4   |
|           |        |               | Electric Arc Furnace (EAF)                                 |       |
|           |        |               | Ladle Metallurgy Station (LMS)                             |       |
|           |        | 9.2.3         |                                                            |       |
|           |        | 9.2.4         | Ladle and Tundish Preheat Burners                          |       |
|           |        | 9.2.5         | Refractory Repair                                          |       |
|           |        |               | Meltshop Baghouse                                          |       |
|           | 9.3    | Rollin        | g Mill                                                     | 9-6   |
|           | 9.4    |               | ng Beds                                                    |       |
|           | 9.5    | <b>Finish</b> | ing and Transportation                                     | 9-6   |
|           | 9.6    | Spool         | er                                                         | 9-7   |
|           | 9.7    |               | Processing Plant                                           |       |
|           | 9.8    | Paved         | I/Unpaved Roads                                            | 9-7   |
|           | 9.9    |               | es                                                         |       |
|           |        |               | Cooling Towers                                             |       |
|           |        | 9.9.2         | Fuel Storage Tanks                                         |       |
|           |        | 9.9.3         | Emergency Generator & Fire Water Pump                      |       |
|           |        | 9.9.4         | Other Miscellaneous Equipment                              | 9-8   |
| 10        | . ATTA | CHME          | NT H: MATERIAL SAFETY DATA SHEETS                          | 10-1  |
| 11        | . ATTA | CHME          | NT I: EMISSION UNITS TABLE                                 | 11-1  |
| 12        | . ATTA | CHME          | NT J: EMISSION POINTS DATA SUMMARY SHEET                   | 12-1  |
| 13        | . ATTA | CHME          | NT K: FUGITIVE EMISSIONS DATA SUMMARY SHEET                | 13-1  |
| 14        | . ATTA | CHME          | NT L: EMISSIONS UNIT DATA SHEETS                           | 14-1  |
| 15        | . ATTA | CHME          | NT M: AIR POLLUTION CONTROL DEVICE SHEETS                  | 15-1  |
| 16        | . ATTA | CHMF          | NT N: SUPPORTING EMISSIONS CALCULATIONS                    | 16-1  |
|           |        |               | ic Arc Furnace (EAF) and Ladle Metallurgy Station (LMS)    |       |
|           |        |               | PM Emissions                                               |       |
|           |        |               | Criteria Pollutants (Except for PM) and Fluoride Emissions |       |
|           |        |               | GHG Emissions                                              |       |
|           |        |               | HAP Emissions                                              |       |
|           | 16.2   |               | g Mill, Cooling Beds, & Spooler Vents                      |       |
|           | 16.3   | Silos .       |                                                            | 16-10 |
|           | 16.4   | Caste         | r Teeming                                                  | 16-11 |
|           |        |               | ng Towers                                                  |       |
|           | 16.6   |               | Combustion                                                 |       |
|           |        | 16.6.1        | Criteria Pollutant Emissions                               | 16-12 |

| 16-13                                                  |
|--------------------------------------------------------|
| 16-13                                                  |
| 16-14                                                  |
| 16-14                                                  |
| 16-15                                                  |
| 16-16                                                  |
| 16-17                                                  |
| 16-17                                                  |
| 16-18                                                  |
| 16-18                                                  |
| 16-18                                                  |
| 16-19                                                  |
| 16-19                                                  |
| 16-20                                                  |
| 16-20                                                  |
| 16-20                                                  |
| 10 20                                                  |
| 17-1                                                   |
| 18-1                                                   |
| 19-1                                                   |
| 20-1                                                   |
| 21-1                                                   |
| 22-1                                                   |
|                                                        |
| 23-1                                                   |
| 23-2                                                   |
| 25 2                                                   |
| 23-2                                                   |
| 23-2<br>23-2                                           |
| 23-2<br>23-2<br>23-2                                   |
| 23-2<br>23-2<br>23-2<br>23-2                           |
| 23-2<br>23-2<br>23-2<br>23-2                           |
| 23-2<br>23-2<br>23-2<br>23-2<br>23-3                   |
| 23-2<br>23-2<br>23-2<br>23-2                           |
| 23-2<br>23-2<br>23-2<br>23-2<br>23-3<br>23-4           |
| 23-2<br>23-2<br>23-2<br>23-2<br>23-3<br>23-3           |
| 23-2<br>23-2<br>23-2<br>23-2<br>23-3<br>23-4           |
| 23-2 23-2 23-2 23-2 23-3 23-4 23-5                     |
| 23-2 23-2 23-2 23-2 23-3 23-4 23-5                     |
| 23-2 23-2 23-2 23-3 23-3 23-4 23-6 23-6                |
| 23-2 23-2 23-2 23-3 23-4 23-6 23-6 23-6                |
| 23-2 23-2 23-2 23-2 23-3 23-4 23-6 23-6 23-6 23-7      |
| 23-2 23-2 23-2 23-3 23-3 23-6 23-6 23-7 23-7           |
| 23-2 23-2 23-2 23-3 23-4 23-6 23-6 23-7 23-7 23-7      |
| 23-2 23-2 23-2 23-3 23-3 23-5 23-6 23-7 23-7 23-7 23-7 |
| 23-2 23-2 23-2 23-3 23-4 23-6 23-6 23-7 23-7 23-7      |
|                                                        |

| 23.8 St         | orage Piles & Material Transfer                         | 23-57         |
|-----------------|---------------------------------------------------------|---------------|
| 23.9 Di         | esel-Fired Engines Associated with Emergency Generators | 23-60         |
| 23.10           | Cooling Towers                                          | 23-70         |
| 23.11           | Ball Drop Crushing                                      | <b>23-7</b> 3 |
| 23.12           | Roads                                                   | 23-75         |
| <b>APPENDIX</b> | A. EMISSION CALCULATIONS DETAILS                        | A-1           |
| <b>APPENDIX</b> | B. EPA RBLC SEARCH RESULTS                              | B-1           |
| APPENDIX        | C. ROAD SEGMENTS DETAILS                                | C-1           |

# **LIST OF FIGURES**

| Figure 4-1. Area Map of Proposed Project       | 4-1 |
|------------------------------------------------|-----|
| Figure 4-2. Site Map of Proposed Project       | 4-2 |
| Figure 9-1. Example Micro Mill Process Diagram | 9-3 |

# **LIST OF TABLES**

| Table 6-1. Summary of Emissions from Proposed Project and PSD Permitting Applicability          | 6-3   |
|-------------------------------------------------------------------------------------------------|-------|
| Table 6-2. 45CSR7 Section 4.1 Compliance Demonstration                                          | 6-10  |
| Table 16-1. Summary of Application Proposed Hourly PTE                                          | 16-3  |
| Table 16-2. Summary of Application Proposed Annual PTE                                          | 16-5  |
| Table 16-3. EAF & LMS Capture Efficiencies                                                      | 16-7  |
| Table 23-1. Summary of Selected BACT for EAF/LMS                                                | 23-5  |
| Table 23-2. CO Top-Down BACT Analysis for EAF and LMS                                           | 23-9  |
| Table 23-3. $NO_x$ Top-Down BACT Analysis for EAF and LMS                                       | 23-13 |
| Table 23-4. SO₂ Top-Down BACT Analysis for EAF and LMS                                          | 23-16 |
| Table 23-5. PM Top-Down BACT Analysis for EAF and LMS                                           | 23-18 |
| Table 23-6. VOC Top-Down BACT Analysis for EAF and LMS                                          | 23-23 |
| Table 23-7. GHG Top-Down BACT Analysis for EAF and LMS                                          | 23-26 |
| Table 23-8. Fluorides Top-Down BACT Analysis for EAF and LMS                                    | 23-35 |
| Table 23-9. CO Top-Down BACT Analysis for Natural Gas Combustion Emission Sources               | 23-41 |
| Table 23-10. NO <sub>x</sub> Top-Down BACT Analysis for Natural Gas Combustion Emission Sources | 23-42 |
| Table 23-11. SO <sub>2</sub> Top-Down BACT Analysis for Natural Gas Combustion Emission Sources | 23-43 |
| Table 23-12. PM Top-Down BACT Analysis for Natural Gas Combustion Emission Sources              | 23-45 |
| Table 23-13. VOC Top-Down BACT Analysis for Natural Gas Combustion Emission Sources             | 23-47 |
| Table 23-14. GHG Top-Down BACT Analysis for Natural Gas Combustion Emission Sources             | 23-48 |
| Table 23-15. Summary of Selected BACT for Rolling Mill, Cooling Beds, & Spooler Vents           | 23-49 |
| Table 23-16. PM Top-Down BACT Analysis for Rolling Mill, Cooling Beds, & Spooler Vent           | 23-50 |
| Table 23-17. VOC Top-Down BACT Analysis for Rolling Mill, Cooling Beds, & Spooler Vent          | 23-52 |
| Table 23-18. Summary of Selected BACT for Storage Silos                                         | 23-54 |
| Table 23-19. PM Top-Down BACT Analysis for Storage Silos                                        | 23-55 |

| Table 23-20. Summary of Selected BACT for Storage Piles                       | 23-57 |
|-------------------------------------------------------------------------------|-------|
| Table 23-21. PM Top-Down BACT Analysis for Storage Piles & Material Transfers | 23-58 |
| Table 23-22. Summary of Selected BACT for Emergency Engines                   | 23-60 |
| Table 23-23. CO Top-Down BACT Analysis for Emergency Engines                  | 23-61 |
| Table 23-24. NO <sub>x</sub> Top-Down BACT Analysis for Emergency Engines     | 23-62 |
| Table 23-25. SO <sub>2</sub> Top-Down BACT Analysis for Emergency Engines     | 23-64 |
| Table 23-26. PM Top-Down BACT Analysis for Emergency Engines                  | 23-65 |
| Table 23-27. VOC Top-Down BACT Analysis for Emergency Engines                 | 23-67 |
| Table 23-28. GHG Top-Down BACT Analysis for Emergency Engines                 | 23-69 |
| Table 23-29. Summary of Selected BACT for Cooling Towers                      | 23-70 |
| Table 23-30. PM Top-Down BACT Analysis for Cooling Towers                     | 23-71 |
| Table 23-31. Summary of Selected BACT for Ball Drop Crushing                  | 23-73 |
| Table 23-32. PM Top-Down BACT Analysis for Ball Drop Crushing                 | 23-74 |
| Table 23-33. Summary of Selected BACT for Roads                               | 23-75 |
| Table 23-34. PM Top-Down BACT Analysis for Roads                              | 23-76 |

CMC Steel US, LLC (CMC) is proposing to construct and operate a new micro mill and associated support operations at 447 Dupont Road, Martinsburg, WV 25404 in Berkeley County, West Virginia (the proposed Project). With this application, CMC is seeking a Permit to Construct for the proposed Project in accordance with West Virginia Code of State Rules (CSR), Title 45, Series 14 (45CSR14).

Berkeley County is currently designated as "attainment" or "unclassified" for all regulated New Source Review (NSR) pollutants. The proposed Project will be a major source with respect to the Prevention of Significant Deterioration (PSD) and the Title V operating permit programs. With respect to the PSD program, the proposed Project will be a major source for the following pollutants:

- Filterable particulate matter (PM);
- Total particulate matter less than or equal to ten microns (PM<sub>10</sub>);
- ▶ Total particulate matter less than or equal to 2.5 microns (PM<sub>2.5</sub>);
- Nitrogen oxides (NOx);
- Carbon monoxide (CO);
- Volatile organic compounds (VOC);
- Sulfur dioxide (SO<sub>2</sub>)
- ▶ Fluoride (F) excluding hydrogen fluoride (HF); and
- Greenhouse gases (GHGs).

Pursuant to West Virginia Department of Environmental Protection (WVDEP) application form requirements, this application includes the following sections and attachments:

- ► Attachment A: Business Certificate
- Attachment B: Maps
- Attachment C: Installation and Start-up Schedule
- ▶ Attachment D: Regulatory Discussion (containing a state and federal regulatory applicability analysis for the proposed Project)
- Attachment E: Plot Plan
- ► Attachment F: Detailed Process Flow Diagrams
- Attachment G: Process Description
- Attachment H: Material Safety Data Sheets
- Attachment I: Emission Units Table
- ▶ Attachment J: Emission Points Data Summary Sheet
- ▶ Attachment K: Fugitive Emissions Data Summary Sheet
- Attachment L: Emission Unit Data Sheets
- ▶ Attachment M: Air Pollution Control Device Sheets
- ► Attachment N: Supporting Emission Calculations
- ► Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans
- Attachment P: Public Notice
- Attachment Q: Business Confidential Claims (Not Applicable)
- Attachment R: Authority Forms (Not Applicable)
- ► Attachment S: Title V Permit Revision Information (Not Applicable)
- Section 20: Application fees
- ▶ Section 23: Best Available Control Technology (BACT) (addressing the EPA recommended 5-step top-down approach to determining BACT for applicable emission units)

CMC will provide under separate cover, dispersion modeling analyses to demonstrate that the proposed Project will not:

- 1. Cause or significantly contribute to a violation of any applicable NAAQS;
- 2. Cause or significantly contribute to a violation of incremental standards; or
- 3. Cause any other adverse impacts to the surrounding area (i.e., impacts on soil and vegetation, visibility degradation, etc.).

# 2. WVDAQ APPLICATION FORM



# WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

#### **DIVISION OF AIR QUALITY**

601 57th Street, SE Charleston, WV 25304 (304) 926-0475

www.dep.wv.gov/dag

# APPLICATION FOR NSR PERMIT AND

# TITLE V PERMIT REVISION (OPTIONAL)

| www.dep.wv.gov/dad                                                                                                                                                                     |                                                                                                                                                                                                                                        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN):  CONSTRUCTION MODIFICATION RELOCATION  CLASS I ADMINISTRATIVE UPDATE TEMPORARY  CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT | PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY):  ADMINISTRATIVE AMENDMENT MINOR MODIFICATION SIGNIFICANT MODIFICATION  IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION |  |
| FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revision" (Appendix A, "Title V Permit Revision Flowchart") and ability to                                                       | on Guidance" in order to determine your Title V Revision options to operate with the changes requested in this Permit Application.                                                                                                     |  |
| Section                                                                                                                                                                                | I. General                                                                                                                                                                                                                             |  |
| <ol> <li>Name of applicant (as registered with the WV Secretary of St<br/>CMC Steel US, LLC</li> </ol>                                                                                 | tate's Office):  2. Federal Employer ID No. (FEIN): 8 2 4 0 6 5 2 4 7                                                                                                                                                                  |  |
| Name of facility (if different from above):     CMC Steel West Virginia                                                                                                                | 4. The applicant is the:  ☐ OWNER ☐ OPERATOR ☑ BOTH                                                                                                                                                                                    |  |
| 5A. Applicant's mailing address: 1 Steel Mill Dr Seguin, TX 78155                                                                                                                      | 5B. Facility's present physical address:                                                                                                                                                                                               |  |
| change amendments or other Business Registration Certific                                                                                                                              | Organization/Limited Partnership (one page) including any name ate as Attachment A.  rity of L.L.C./Registration (one page) including any name change                                                                                  |  |
| Does the applicant own, lease, have an option to buy or other                                                                                                                          |                                                                                                                                                                                                                                        |  |
| <ul> <li>If YES, please explain: CMC will own parcels of land f</li> <li>If NO, you are not eligible for a permit for this source.</li> </ul>                                          | · ,                                                                                                                                                                                                                                    |  |
| 9. Type of plant or facility (stationary source) to be constructed administratively updated or temporarily permitted (e.g., or crusher, etc.): Steel Mill  Output  Description:        |                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                        | ist all current 45CSR13 and 45CSR30 (Title V) permit numbers issociated with this process (for existing facilities only):                                                                                                              |  |
| All of the required forms and additional information can be found u                                                                                                                    | nder the Permitting Section of DAQ's website, or requested by phone.                                                                                                                                                                   |  |

| 12A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              |                                       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|
| <ul> <li>For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the<br/>present location of the facility from the nearest state road;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                       |  |  |
| For Construction or Relocation permits, please p road. Include a MAP as Attachment B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rovide directions to the proposed new s                                                                                      | ite location from the nearest state   |  |  |
| The proposed site will be located on the North side of sta<br>Mills Primary School (401 Campus Dr, Martinsburg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | ately 1 kilometer east of the Spring  |  |  |
| 12.B. New site address (if applicable):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12C. Nearest city or town:                                                                                                   | 12D. County:                          |  |  |
| N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Martinsburg                                                                                                                  | Berkeley                              |  |  |
| 12.E. UTM Northing (KM): 4,380.501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12F. UTM Easting (KM): 251.728                                                                                               | 12G. UTM Zone: 18                     |  |  |
| 13. Briefly describe the proposed change(s) at the facility CMC is proposing to construct a new steel mill at this loc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              | ,                                     |  |  |
| 14A. Provide the date of anticipated installation or change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              | 14B. Date of anticipated Start-Up     |  |  |
| If this is an After-The-Fact permit application, proviction, | de the date upon which the proposed                                                                                          | if a permit is granted:<br>12/01/2025 |  |  |
| 14C. Provide a <b>Schedule</b> of the planned <b>Installation</b> of application as <b>Attachment C</b> (if more than one unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                                     | units proposed in this permit         |  |  |
| 15. Provide maximum projected <b>Operating Schedule</b> of Hours Per Day 24 Days Per Week 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f activity/activities outlined in this application  Weeks Per Year 52                                                        | ation:                                |  |  |
| 16. Is demolition or physical renovation at an existing fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cility involved?                                                                                                             |                                       |  |  |
| 17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                       |  |  |
| changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              |                                       |  |  |
| 18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                       |  |  |
| proposed process (if known). A list of possible applica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application |                                       |  |  |
| (Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                       |  |  |
| information as Attachment D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              |                                       |  |  |
| Section II. Additional attachments and supporting documents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              |                                       |  |  |
| 19. Include a check payable to WVDEP – Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                       |  |  |
| 20. Include a Table of Contents as the first page of your application package.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |                                       |  |  |
| 21. Provide a <b>Plot Plan</b> , e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as <b>Attachment E</b> (Refer to <b>Plot Plan Guidance</b> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                       |  |  |
| <ul> <li>Indicate the location of the nearest occupied structure (e.g. church, school, business, residence).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              |                                       |  |  |
| 22. Provide a <b>Detailed Process Flow Diagram(s)</b> showing each proposed or modified emissions unit, emission point and control device as <b>Attachment F</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              |                                       |  |  |
| 23. Provide a Process Description as Attachment G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              |                                       |  |  |
| <ul> <li>Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              |                                       |  |  |
| All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              |                                       |  |  |
| 24. Provide Material Safety Data Sheets (MSDS) for al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                            | d as <b>Attachment H</b> .            |  |  |
| For chemical processes, provide a MSDS for each compound emitted to the air.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              |                                       |  |  |

| 25. Fill out the Emission Units Table and provide it as Attachment I.                                                                                               |                                                                                                                                                                                                                                                                                                                                                         |                           |                                                         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------|--|
| 26. Fill out the Emission Points Data Summary Sheet (Table 1 and Table 2) and provide it as Attachment J.                                                           |                                                                                                                                                                                                                                                                                                                                                         |                           |                                                         |  |
| 27. Fill out the Fugitive                                                                                                                                           | Emissions Data Summar                                                                                                                                                                                                                                                                                                                                   | y Sheet and provide it a  | s Attachment K.                                         |  |
| 28. Check all applicable                                                                                                                                            | Emissions Unit Data She                                                                                                                                                                                                                                                                                                                                 | ets listed below:         |                                                         |  |
| ☐ Bulk Liquid Transfer (                                                                                                                                            | Operations 🔲 Hau                                                                                                                                                                                                                                                                                                                                        | Road Emissions            | ☐ Quarry                                                |  |
| ☐ Chemical Processes                                                                                                                                                | ☐ Hot                                                                                                                                                                                                                                                                                                                                                   | Mix Asphalt Plant         | Solid Materials Sizing, Handling and Storage            |  |
| ☐ Concrete Batch Plant                                                                                                                                              | ☐ Inci                                                                                                                                                                                                                                                                                                                                                  | nerator                   | Facilities                                              |  |
| Grey Iron and Steel F                                                                                                                                               | oundry 🔲 Indi                                                                                                                                                                                                                                                                                                                                           | rect Heat Exchanger       | ☑ Storage Tanks                                         |  |
| General Emission Un                                                                                                                                                 | t, specify Material Handlin                                                                                                                                                                                                                                                                                                                             | g, Emergency Generator    | , Emergency Fire Pump                                   |  |
| Fill out and provide the E                                                                                                                                          | missions Unit Data Shee                                                                                                                                                                                                                                                                                                                                 | t(s) as Attachment L.     |                                                         |  |
|                                                                                                                                                                     | Air Pollution Control De                                                                                                                                                                                                                                                                                                                                |                           |                                                         |  |
| ☐ Absorption Systems                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                         | Baghouse                  | ∏ Flare                                                 |  |
| ☐ Adsorption Systems                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                | Condenser                 | ☐ Mechanical Collector                                  |  |
| Afterburner                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         | Electrostatic Precipitato |                                                         |  |
| Other Collectors, spe                                                                                                                                               | ··                                                                                                                                                                                                                                                                                                                                                      |                           |                                                         |  |
|                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                       |                           |                                                         |  |
| Fill out and provide the A                                                                                                                                          | ir Pollution Control Devi                                                                                                                                                                                                                                                                                                                               | ce Sheet(s) as Attachm    | ent M.                                                  |  |
| 30. Provide all Supporti<br>Items 28 through 31                                                                                                                     | ng Emissions Calculatio                                                                                                                                                                                                                                                                                                                                 | ns as Attachment N, or    | attach the calculations directly to the forms listed in |  |
| testing plans in orde                                                                                                                                               | <ol> <li>Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and<br/>testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit<br/>application. Provide this information as Attachment O.</li> </ol>                         |                           |                                                         |  |
| measures. Addition                                                                                                                                                  | Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.               |                           |                                                         |  |
| 32. Public Notice. At t                                                                                                                                             | 2. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general                                                                                                                                                                                                                          |                           |                                                         |  |
| circulation in the are                                                                                                                                              | a where the source is or w                                                                                                                                                                                                                                                                                                                              | II be located (See 45CSI  | R§13-8.3 through 45CSR§13-8.5 and Example Legal         |  |
| Advertisement for o                                                                                                                                                 | letails). Please submit the                                                                                                                                                                                                                                                                                                                             | Affidavit of Publication  | as Attachment P immediately upon receipt.               |  |
| 33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?                                                          |                                                                                                                                                                                                                                                                                                                                                         |                           |                                                         |  |
|                                                                                                                                                                     | ☐ YES ☑ NO                                                                                                                                                                                                                                                                                                                                              |                           |                                                         |  |
| segment claimed co                                                                                                                                                  | If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q. |                           |                                                         |  |
| Section III. Certification of Information                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                         |                           |                                                         |  |
| 34. Authority/Delegation of Authority. Only required when someone other than the responsible official signs the application. Check applicable Authority Form below: |                                                                                                                                                                                                                                                                                                                                                         |                           |                                                         |  |
| ☐ Authority of Corporation or Other Business Entity ☐ Authority of Partnership                                                                                      |                                                                                                                                                                                                                                                                                                                                                         |                           |                                                         |  |
| ☐ Authority of Governmental Agency ☐ Authority of Limited Partnership                                                                                               |                                                                                                                                                                                                                                                                                                                                                         |                           |                                                         |  |
|                                                                                                                                                                     | Submit completed and signed Authority Form as Attachment R.                                                                                                                                                                                                                                                                                             |                           |                                                         |  |
| All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.                             |                                                                                                                                                                                                                                                                                                                                                         |                           |                                                         |  |
| An or the required forms and additional information can be found under the Fernitung Section of DAG'S website, of requested by phone.                               |                                                                                                                                                                                                                                                                                                                                                         |                           |                                                         |  |

| 35A. <b>Certification of Information</b> . To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                         |                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Certification of Truth, Accuracy, and Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | leteness                            |                                                         |                                                                                              |  |
| I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                         |                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                                         |                                                                                              |  |
| Compliance Certification  Except for requirements identified in the Title \( \) that, based on information and belief formed a compliance with all applicable requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ✓ Application fo<br>fter reasonable | r which compliance is not<br>inquiry, all air contamina | achieved, I, the undersigned hereby certify nt sources identified in this application are in |  |
| SIGNATURE Please                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | use blue ink)                       |                                                         | DATE: 12/21/22  (Please use blue ink)                                                        |  |
| 35B. Printed name of signee: Billy Milligan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                         | 35C. Title: Vice President,<br>Sustainability, and Government Affairs                        |  |
| 35D. E-mail: Billy.Milligan@cmc.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36E. Phone:                         | (972) 409-4799                                          | 36F. FAX:                                                                                    |  |
| 36A. Printed name of contact person (if differe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ent from above):                    | Brad Bredesen                                           | 36B. Title: Director of Environmental                                                        |  |
| 36C. E-mail: Steven.Bredesen@cmc.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36D. Phone:                         | (830) 305-5250                                          | 36E. FAX:                                                                                    |  |
| - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                                                         |                                                                                              |  |
| PLEASE CHECK ALL APPLICABLE ATTACHMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ITS INCLUDED V                      | WITH THIS PERMIT APPLIC                                 | ATION:                                                                                       |  |
| ✓ Attachment A:       Business Certificate       ✓ Attachment K:       Fugitive Emissions Data Summary Sheet         ✓ Attachment B:       Map(s)       ✓ Attachment L:       Emissions Unit Data Sheet(s)         ✓ Attachment D:       Regulatory Discussion       ✓ Attachment M:       Air Pollution Control Device Sheet(s)         ✓ Attachment E:       Plot Plan       ✓ Attachment N:       Supporting Emissions Calculations         ✓ Attachment F:       Detailed Process Flow Diagram(s)       ✓ Attachment O:       Monitoring/Recordkeeping/Reporting/Testing Plans         ✓ Attachment G:       Process Description       ✓ Attachment P:       Public Notice         ✓ Attachment H:       Material Safety Data Sheets (MSDS)       ✓ Attachment R:       Authority Forms         ✓ Attachment B:       ✓ Attachment C:       Mattachment C:       Mattachment C:         ✓ Attachment B:       Mattachment D:       Mattachment C:       Mattachment C:         ✓ Attachment C:       Public Notice       Mattachment C:       Mattachment C:       Mattachment C:         ✓ Attachment B:       Mattachment C:       Mattachment C:       Mattachment C:       Mattachment C:         ✓ Attachment C:       Mattachment C:       Mattachment C:       Mattachment C:       Mattachment C:         ✓ Attachment C:       Mattachment C:       Mattachment C: |                                     |                                                         |                                                                                              |  |
| address listed on the first page of this application. Please DO NOT fax permit applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                                         |                                                                                              |  |
| FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:    Forward 1 copy of the application to the Title V Permitting Group and:   For Title V Administrative Amendments:   NSR permit writer should notify Title V permit writer of draft permit,   For Title V Minor Modifications:   Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,   NSR permit writer should notify Title V permit writer of draft permit.   For Title V Significant Modifications processed in parallel with NSR Permit revision:   NSR permit writer should notify a Title V permit writer of draft permit,   Public notice should reference both 45CSR13 and Title V permits,   EPA has 45 day review period of a draft permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                                         |                                                                                              |  |
| C Erw nes 43 day review period of a un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | are bennit                          | We compare the second                                   |                                                                                              |  |

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

# 3. ATTACHMENT A: BUSINESS CERTIFICATE



# Certificate=

I, Mac Warner, Secretary of State, of the State of West Virginia, hereby certify that

CMC STEEL US, LLC

has filed the appropriate registration documents in my office according to the provisions of the West Virginia Code and hereby declare the organization listed above as duly registered with the Secretary of State's Office.



Given under my hand and the Great Seal of West Virginia on this day of November 30, 2022

Mac Warner

Figure 4-1 depicts the area map of the proposed Project including roads, general boundaries of towns and other nearby municipalities, and proximity to major geographical features such as the Potomac River.

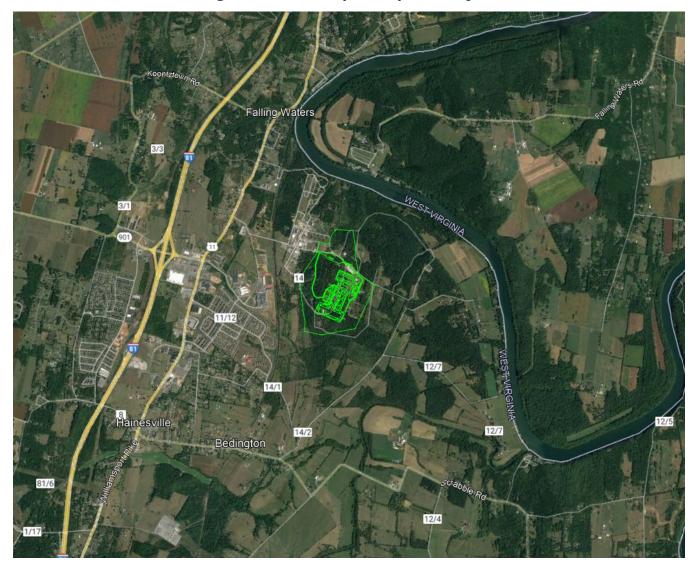



Figure 4-1. Area Map of Proposed Project

Figure 4-2 depicts the site map of the proposed Project including fenceline and anticipated locations of proposed Project features such as buildings.



**Figure 4-2. Site Map of Proposed Project** 

| 5. | <b>ATTACHMENT C:</b> | INSTALLATION AND        | <b>START UP SCHEDULE</b> |
|----|----------------------|-------------------------|--------------------------|
|    | AIIACIIIILII CI      | TITO I ALLA I TO IT AIT | SIAKI OI SCHEDUEL        |

| s noted on the WVDAQ application form the date of anticipated installation is June 2023 and the date of nticipated start-up is December 2025. |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |

# 6. ATTACHMENT D: REGULATORY DISCUSSION

This section discusses the air permitting requirements and key air quality regulations that potentially apply to the proposed Project, including major New Source Review (NSR), New Source Performance Standards (NSPS), National Emission Standards for Hazardous Air Pollutants (NESHAP), and West Virginia 45 Code of State Rules (CSR) regulations.

#### **6.1 Federal Major New Source Review (NSR)**

Two distinct major New Source Review (NSR) permitting programs potentially apply depending on whether a source is located in an "attainment/unclassifiable" or "nonattainment" area for a particular regulated NSR pollutant. The Prevention of Significant Deterioration (PSD) program provisions govern potential major NSR actions in areas which are designated to be in attainment or unclassifiable status. The Nonattainment NSR (NANSR) program governs potential major NSR actions in areas which are nonattainment for one or more regulated pollutants.

The proposed Project will be located near Martinsburg, West Virginia, that is currently designated as attainment or unclassified for all criteria pollutants (see 40 CFR 81.349). As a result, for purposes of federal major NSR applicability, all regulated attainment NSR pollutants are evaluated for applicability under the PSD program. Iron and steel mill plants are classified as one of the 28 listed source categories in Title 45, Legislative Rule of the Department of Environmental Protection, Series 14 (45CSR14) Section 2.43.a. with a 100 ton per year (tpy) "major" source PSD threshold. If the proposed Project Potential-to-Emit (PTE) is above the major source thresholds set for regulated NSR pollutants, PSD is triggered for that pollutant. Table 6-1 contains a summary of the proposed Project major NSR evaluation.

The proposed Project PTE exceeds the PSD major source thresholds for CO and is therefore subject to PSD requirements. For PSD purposes, if a source exceeds the major stationary source threshold for one regulated NSR pollutant, it is considered major for any other regulated NSR pollutant emitted above its corresponding significant emission rate (SER). The proposed Project PTE exceeds the SERs for PM, PM<sub>10</sub>, PM<sub>2.5</sub>, NOx, VOC, SO<sub>2</sub>, Fluorides excluding hydrogen fluoride (HF), and greenhouse gases (GHGs). Per 40 CFR 52.21(b)(49)(iv), GHGs are a regulated NSR pollutant if the stationary source is a new major source for a regulated NSR pollutant which is not GHGs and will also have the potential to emit 75,000 tpy CO<sub>2</sub>e or more. The proposed Project GHG PTE exceeds this threshold and therefore is subject to PSD review for GHGs. The proposed Project will be subject to PSD program requirements contained under 45CSR14.

Table 6-1. Summary of Emissions from Proposed Project and PSD Permitting Applicability

|                                                           | Annual PTE (tpy) |             |                           |                            |     |       |     |                        |      |           |                                   |              |                   |
|-----------------------------------------------------------|------------------|-------------|---------------------------|----------------------------|-----|-------|-----|------------------------|------|-----------|-----------------------------------|--------------|-------------------|
| Parameter                                                 | Filterable<br>PM | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | NOx | со    | voc | <b>SO</b> <sub>2</sub> | Pb   | Fluorides | Max<br>Single<br>HAP <sup>4</sup> | Total<br>HAP | CO <sub>2</sub> e |
| Site-Wide Emissions                                       | 67               | 155         | 145                       | 139                        | 137 | 1,328 | 100 | 101                    | 0.53 | 3.29      | 1.69                              | 2.84         | 157,635           |
| Major NSR "Major<br>Source" Threshold <sup>1, 3</sup>     | 100              | -           | 100                       | 100                        | 100 | 100   | 100 | 100                    | 100  | 100       | -                                 | -            | -                 |
| Title V Threshold <sup>3</sup>                            | 100              | -           | 100                       | 100                        | 100 | 100   | 100 | 100                    | -    | -         | 10                                | 25           | 100,000           |
| Project Exceeds Major<br>NSR "Major Source"<br>Threshold? | No               | -           | Yes                       | Yes                        | Yes | Yes   | Yes | Yes                    | No   | No        | -                                 | -            | No                |
| Project Exceeds Title V<br>Thresholds?                    | No               | -           | Yes                       | Yes                        | Yes | Yes   | Yes | Yes                    | -    | -         | No                                | No           | Yes               |
| PSD Significant<br>Emission Rates (SERs) <sup>2</sup>     | 25               | -           | 15                        | 10                         | 40  | 100   | 40  | 40                     | 0.6  | 3         | -                                 | -            | 75,000            |
| Project Meets or<br>Exceeds PSD SER?                      | Yes              | -           | Yes                       | Yes                        | Yes | Yes   | Yes | Yes                    | No   | Yes       | -                                 | ı            | Yes               |

<sup>&</sup>lt;sup>1</sup> Major source per 40 CFR 52.21(b). NOx is a regulated NSR pollutant for purposes of evaluating PSD applicability because NOx, as measured in the ambient air as nitrogen dioxide (NO<sub>2</sub>), is a pollutant for which a national ambient air quality standard (NAAQS) has been promulgated (see 40 CFR 50.11).

<sup>&</sup>lt;sup>2</sup> PSD Significant Emission Rates (SERs) as defined in 40 CFR 52.21.

<sup>&</sup>lt;sup>3</sup> VOC is not a criteria pollutant but is considered to be a precursor to ozone. Stated value corresponds to the ozone threshold.

<sup>&</sup>lt;sup>4</sup> Max Single HAP is Manganese.

#### **6.2 Title V Operating Permit Program**

The requirements of 40 CFR Part 70 establish the federal Title V operating permit program elements required for a state to accept delegation of authority from the U.S. EPA. West Virginia has promulgated the necessary provisions of this Title V operating permit program. Initially, U.S. EPA granted final full approval effective on November 19, 2001. Since then, West Virginia adopted the necessary revisions to remain the delegated authority for the Part 70 operating permit program. To date, West Virginia implements a fully approved Part 70 operating permit program under 45CSR30 (see 40 CFR 70, Appendix A).

The proposed Project is located near Martinsburg, West Virginia, which is classified as attainment or maintenance for all criteria pollutants. Therefore, the major source threshold for all criteria pollutants is 100 tpy; 10 tpy of any single hazardous air pollutant (HAP); 25 tpy of any combination of HAPs; and 100,000 tpy of GHGs.

As noted in Table 6-1, the site-wide potential emissions at the proposed Project trigger major source thresholds for  $PM_{10}$ ,  $PM_{2.5}$ , and CO. As such, the proposed Project will be subject to Title V program requirements contained under 45CSR30.

#### 6.3 Minor New Source Review

Section 110(a)(2)(C) of the Clean Air Act (CAA) requires State Implementation Plans (SIPs) to include a preconstruction permit program for both major and minor sources. Sources which do not constitute a major source subject to the requirements of 45CSR14, *Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration*, are potentially subject to the requirements of 45CSR13, *Permits For Construction, Modification, Relocation and Operation Of Stationary Sources Of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, Permission To Commence Construction, And Procedures For Evaluation.* 

A facility is subject to the requirements of 45CSR13 if any of the following criteria are met 1:

- ▶ 6 lbs/hr and 10 tpy of any regulated air pollutant; or
- ▶ 144 lbs/day of any regulated air pollutant; or
- 2 lbs/hr or 5 tpy of aggregated HAP; or
- ▶ 45CSR27 TAP (10% increase if above BAT triggers an increase to BAT triggers); or
- Subject to applicable standard or rule.

As summarized in Table 6-1, the site-wide PTE is in excess of these levels and therefore the proposed Project must obtain a construction permit. This application is being filed to satisfy the requirements of 45CSR13 and 45CSR14.

#### 6.4 New Source Performance Standards

New Source Performance Standards (NSPS), contained in 40 CFR 60, consist of technology-based standards developed by EPA that are applicable to certain types of equipment ("affected facilities") which are newly constructed, modified, or reconstructed after a given applicability date. A summary of NSPS applicability is provided below for the relevant emission units that are part of the proposed Project.

<sup>&</sup>lt;sup>1</sup> Per Permit Levels for 45CSR13 (wv.gov)

#### 6.4.1 NSPS Subpart A - General Provisions

All affected facilities subject to NSPS are also subject to the applicable General Provisions of NSPS Subpart A unless specifically excluded by a specific NSPS Subpart. For example, NSPS Subpart A addresses the following for affected facilities subject to a specific NSPS Subpart:

- Initial construction/reconstruction notification;
- Initial startup notification;
- Performance tests:
- Performance test date initial notification;
- General monitoring requirements;
- General recordkeeping requirements; and
- ▶ Semi-annual monitoring system and/or excess emission reports.

Because the proposed Project will include affected facilities subject to a specific NSPS Subpart, the NSPS Subpart A General Provisions will apply.

#### 6.4.2 NSPS Subpart Dc - Standards of Performance for Small Industrial-Commercial Steam Generating Units

NSPS Subpart Dc, Standards of Performance for Small Industrial-Commercial Steam Generating Units, applies to each steam generating unit constructed after June 9, 1989 which has a heat input capacity greater than 10 MMBtu/hr, but less than or equal to 100 MMBtu/hr. A steam generating unit is defined under 40 CFR § 60.41c as "a device that combusts any fuel and produces steam or heats water or heats any heat transfer medium. This term includes any duct burner that combusts fuel and is part of a combined cycle system. This term does not include process heaters as defined in this subpart."

The following proposed units do not fall under the definition of "steam generating unit" contained in 40 CFR §60.41c as they are direct-fired and do not utilize a transfer medium. Additionally, all units are rated less than 10 MMBtu/hr.

- ► Three (3) ladle preheaters (6 MMBtu/hr each);
- ► Two (2) ladle dryers (8 MMBtu/hr each);
- ► Two (2) tundish preheaters (6 MMBtu/hr each);
- One (1) tundish dryer (6 MMBtu/hr);
- One (1) tundish mandril dryer (1 MMBtu/hr);
- One (1) shroud heater (0.5 MMBtu/hr);
- ► Twenty (20) Meltshop comfort heaters (0.4 MMBtu/hr each);
- One (1) bit furnace (0.225 MMBtu/hr);
- ▶ Twenty (20) rolling mill comfort heaters (0.4 MMBtu/hr each); and
- Cutting torches (0.32 MMBtu/hr).

As such NSPS Subpart Dc does not apply to the proposed units. There are no other units that meet the definition of steam generating unit and therefore NSPS Subpart Dc does not apply to the proposed Project.

#### 6.4.3 NSPS Subpart Kb

NSPS Subpart Kb, Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984, applies to each storage vessel with a capacity greater than or equal to 75 cubic meters

(m³) that is used to store volatile organic liquids (VOLs) which commenced construction, modification, or reconstruction after July 23, 1984. The proposed Project includes storage vessels that will store a VOL. However, the vessel capacities are less than 75 m³ (or approximately 19,800 gallons) each and will be storing diesel, a VOL with a low vapor pressure. Therefore, the proposed Project will not be subject to the requirements of NSPS Subpart Kb.

#### 6.4.4 NSPS Subpart AA

NSPS Subpart AA, Standards of Performance for Steel Plants: Electric Arc Furnaces constructed after October 21, 1974, and on or Before August 17, 1983, applies to electric arc furnaces and dust-handling systems at steel plants that produce carbon, alloy, or specialty steels which commenced construction, modification, or reconstruction after October 21, 1974, and on or before August 17, 1983. The proposed Project will be constructed after August 17, 1983 and is not subject to NSPS Subpart AA.

#### 6.4.5 NSPS Subparts AAa and AAb

NSPS Subpart AAa, *Standards of Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels constructed after August 17, 1983*, applies to Electric Arc Furnaces (EAFs), argonoxygen decarburization vessels, and dust handling systems in the steel industry which commenced construction, modification, or reconstruction after August 17, 1983. The proposed Project will contain affected facilities that are considered new and potentially subject to the requirements of NSPS Subpart AAb<sup>2</sup> in which case NSPS Subpart AAa would not apply to the proposed Project.

CMC will comply with potentially applicable requirements by (a) monitoring the opacity from the meltshop baghouse stack on a daily basis following Test Method 9 and (b) installing a bag leak detection system (BLDS) according to the specifications and work practices (i.e., developing a site-specific monitoring plan for the BLDS).

#### 6.4.6 NSPS Subpart IIII

NSPS Subpart IIII, *Standards of Performance for Stationary Compression Ignition Internal Combustion Engines*, applies to owners/operators of stationary compression ignition (CI) internal combustion engines (ICE) for which construction commenced after July 11, 2005 and are manufactured as a certified National Fire Protection Association (NFPA) fire pump engine after July 1, 2006 [40 CFR §60.4200(a)(2)(ii)]. Fire pump engine is defined under 40 CFR §60.4219 as:

An emergency stationary internal combustion engine certified to NFPA requirements that is used to provide power to pump water for fire suppression or protection.

The proposed emergency fire water pump will utilize an NFPA certified fire pump engine and will have a manufacturer date and construction date after 2006. Thus, the proposed emergency generator and emergency fire water pump (i.e., emergency units) are subject to NSPS Subpart IIII.

As a fire pump engine with a displacement of less than 30 liters per cylinder the engine will comply with the emission standards in Table 4 of NSPS IIII, per 40 CFR §60.4205(c). Per 40 CFR §60.4206, CMC will ensure the fire pump engine meets these emission standards over the entire life of the unit. Additionally, per 40 CFR §60.4207(b), such engines must also comply with the diesel fuel standards listed in 40 CFR

<sup>&</sup>lt;sup>2</sup> The EPA has proposed new NSPS Subpart AAb, *Standards of Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After May 16, 2022.* 

§80.510(b), which requires the sulfur content of the diesel fuel to be less than or equal to 15 ppm. The engine will fire ULSD with a sulfur content of 0.0015%.

Per 40 CFR §60.4209(a), an emergency stationary CI internal combustion engine that does not meet the standards applicable to non-emergency engines must install a non-resettable hour meter prior to startup of the engine. Additionally, records of the engine's emergency and non-emergency operation would need to be maintained through this meter, per 40 CFR §60.4214(b). The proposed emergency units will be equipped with a non-resettable hour meter and comply with the recordkeeping requirements, as necessary.

Per 40 CFR §60.4211(a) and §60.4211(c), the engine must be operated and maintained in accordance with manufacturer's instructions and certified to the applicable emission standards. The proposed emergency units will utilize an EPA certified Tier 3 engine and will comply with these requirements. The emergency units will be limited to 50 hours of non-emergency use, which counts towards an overall limit of 100 hours per calendar year for testing and maintenance, as limited by 40 CFR §60.4211(f)(2) and 40 CFR §60.4211(f)(3). The emergency units will operate in accordance with the required operational limits.

CMC is subject to the aforementioned sections of NSPS Subpart IIII and will comply with all applicable requirements.

#### 6.5 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAPs) have been established in 40 CFR Part 61 and Part 63 to control emissions of HAPs from stationary sources. A facility that is a major source of HAPs is defined as having PTE emissions greater than 25 tpy of total HAPs and/or 10 tpy of a single HAP. Facilities with a potential to emit HAPs at an amount less than these major source (i.e., Title V) thresholds are otherwise considered an "area source".

The NESHAP allowable emission limits are most often established on the basis of a maximum achievable control technology (MACT) determination for the particular source. The NESHAP apply to sources in specifically regulated industrial source categories (Clean Air Act [CAA] §112(d)) or on a case-by-case basis (CAA §112(g)) for facilities not regulated as a specific industrial source type.

The proposed Project will be area source of HAPs as it will have potential HAP emissions less than the major source thresholds. The NESHAP subparts potentially applicable to the proposed Project are discussed in the following sections.

#### 6.5.1 NESHAP Subpart A

All "affected sources" subject to a NESHAP Subpart are also subject to the applicable General Provisions of NESHAP Subpart A unless specifically excluded by a specific NESHAP Subpart. NESHAP Subpart A includes the following requirements for affected sources subject to a specific NESHAP Subpart:

- Initial construction/reconstruction notification;
- Initial startup notification;
- Performance tests;
- Performance test date initial notification;
- General monitoring requirements;
- General recordkeeping requirements; and
- ▶ Semi-annual monitoring system and/or excess emission reports.

Because the proposed Project will include an affected source subject to a specific NESHAP Subpart, the NESHAP Subpart A General Provisions will apply.

#### 6.5.2 NESHAP Subpart Q

NESHAP Subpart Q, *National Emissions Standards for Hazardous Air Pollutants for Industrial Process Cooling Towers*, applies to all new and existing industrial process cooling towers that are operated with chromium-based water treatment chemicals and are either major sources of HAPs or are integral parts of facilities that are major sources of HAP. The proposed Project will not use any chromium-based water treatment chemicals in the proposed cooling towers and is not expected to be a major source of HAPs. As such, NESHAP Subpart Q does not apply.

#### 6.5.3 NESHSP Subpart CCC

NESHAP Subpart CCC, *National Emission Standards for Hazardous Air Pollutants for Steel Pickling - HCl Process Facilities and Hydrochloric Acid Regeneration Plants*, applies to (a) all new and existing steel pickling facilities that pickle carbon steel using hydrochloric acid solution that contains 6% or more by weight HCl and is at a temperature of 100 °F or higher and (b) all new or existing hydrochloric acid regeneration plants that are considered major sources for HAP. Because the proposed Project will not conduct pickling, and the proposed Project is an area source, NESHAP Subpart CCC is not applicable.

#### 6.5.4 NESHAP Subpart ZZZZ

NESHAP Subpart ZZZZ, *National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines*, applies to stationary reciprocating internal combustion engines (RICE) at major and area sources of HAPs. Per 40 CFR §63.6590(a)(2)(ii), a stationary RICE at an area source of HAPs is new if construction commenced after June 12, 2006. Thus, the proposed emergency units are considered a new stationary RICE under NESHAP Subpart ZZZZ. Per 40 CFR §63.6590(c), certain affected sources demonstrate compliance with NESHAP Subpart ZZZZ by satisfying the requirements of NSPS Subpart IIII. The proposed emergency units are new stationary RICE located at an area source, as described in 40 CFR §63.6590(c)(1). Thus, compliance with NESHAP Subpart ZZZZ is maintained by compliance with NSPS Subpart IIII.

#### 6.5.5 **NESHAP Subpart DDDDD**

NESHAP Subpart DDDDD, *National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters*, applies to owners or operators of industrial, commercial, or institutional boilers or process heaters as defined in 40 CFR 63.7575 that are located at a major source of HAP. Because the proposed Project is an area source of HAPs, NESHAP Subpart DDDDD does not apply.

#### 6.5.6 **NESHAP Subpart EEEEE**

NESHAP Subpart EEEEE, *National Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries*, applies to iron and steel foundries which are considered a major source for HAP. Because the proposed Project is in an area source of HAPs, NESHAP Subpart EEEEE does not apply.

#### 6.5.7 **NESHAP Subpart FFFFF**

NESHAP Subpart FFFFF, *National Emission Standards for Hazardous Air Pollutants for Integrated Iron and Steel Manufacturing Facilities*, applies to integrated iron and steel manufacturing facilities which are considered a major source for HAP. As defined in 40 CFR 63.7852, an integrated iron and steel manufacturing facility means an establishment engaged in the production of steel from iron ore. The proposed Project will process scrap metal rather than iron ore and is not considered an integrated iron and steel manufacturing facility. Additionally, because the proposed Project is an area source of HAPs, NESHAP Subpart FFFFF does not apply.

#### 6.5.8 **NESHAP Subpart JJJJJJ**

NESHAP Subpart JJJJJJ, *National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources*, applies to operators of industrial, commercial, and institutional boilers located at area sources of HAPs. Pursuant to 40 CFR 63.11237, a boiler is defined as an enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or hot water. CMC is not proposing installation of any boilers as a part of the proposed Project. As such, NESHAP Subpart JJJJJJ is not applicable to any units associated with the proposed Project.

#### **6.5.9 NESHAP Subpart YYYYY**

NESHAP Subpart YYYYY, *National Emission Standards for Hazardous Air Pollutants for Area Sources: Electric Arc Furnace Steelmaking Facilities*, applies to any owner or operator of an EAF steelmaking facility that is an area source for HAP emissions. Per 40 CFR 63.10692, an EAF steelmaking facility is defined as follows:

Electric arc furnace (EAF) steelmaking facility means a steel plant that produces carbon, alloy, or specialty steels using an EAF. The definition excludes EAF steelmaking facilities at steel foundries and EAF facilities used to produce nonferrous metals.

The proposed Project will produce carbon, alloy, or specialty steels using an EAF and will not be located at a steel foundry. As a result, the proposed Project will be subject to NESHAP Subpart YYYYY requirements.

To reduce the amount of chlorinated plastics, lead, and free organic liquids entering the EAF, NESHAP Subpart YYYYY requires that CMC comply with one of two options listed below:

- 1. Prepare and implement a pollution prevention plan (PPP) meeting the requirements stipulated in 40 CFR 63.10685(a)(1) for materials that are charged to the furnace. The PPP must be submitted to and approved by WVDEP, OR
- 2. Restrict metallic scrap that authorized to be charged to the EAF per the requirements of 40 CFR 63.10685(a)(2).

To reduce the amount of mercury from motor vehicle scrap entering the EAF, NESHAP Subpart YYYYY requires that CMC comply with one of three options listed below:

 Prepare and implement a site-specific plan for removing mercury switches from vehicle bodies meeting the requirements stipulated in 40 CFR 63.10685(b)(1). The plan must be submitted to and approved by WVDEP, OR

- 2. Participate in a program for removal of mercury switches (such as National Vehicle Mercury Switch Recovery Program or the Vehicle Switch Recovery Program) per the requirements of 40 CFR 63.10685(b)(2). It is acceptable for CMC to participate in the aforementioned programs or for CMC to contract with scrap providers or brokers that participate in the programs, OR
- 3. Accept only materials from material vehicles that is not reasonably expected to contain mercury switches.

Per 40 CFR 63.10685(b)(4), CMC will also document when scrap is accepted that is not from motor vehicles.

For facilities with a production capacity greater than or equal to 150,000 tons per year of stainless or specialty steel, the EAF control device (i.e., the Meltshop Baghouse) is prohibited from discharging to the atmosphere emissions in excess of 0.0052 gr/dscf.<sup>3</sup> Additionally, emissions that leave the Meltshop (i.e., via the Caster Vent), which are solely generated by the EAF, are limited to 6% opacity.<sup>4</sup>

CMC will comply with the monitoring, recordkeeping, and reporting requirements provided in 40 CFR 63.10685, 63.10686, and 63.10690.

#### 6.5.10 NESHAP Subpart ZZZZZ

NESHAP Subpart ZZZZZ, *National Emission Standards for Hazardous Air Pollutants for Iron and Steel Foundries Area Sources,* applies to new and existing iron and steel foundries that are considered an area source for HAP. As defined in 40 CFR 63.10906, an iron or steel foundry is a facility or portion of a facility that melts scrap, ingot, and/or other forms of iron and/or steel and pours the resulting molten metal into molds to produce final or near final shape products for introduction into commerce. The proposed Project is not considered an iron or steel foundry and is not subject to NESHAP Subpart ZZZZZ.<sup>5</sup>

### **6.6 Compliance Assurance Monitoring**

The Compliance Assurance Monitoring (CAM) Rule under 40 CFR Part 64 applies to each pollutant specific emission unit that satisfies all of the following criteria:

- 1. Is subject to an emission limitation or standard for the applicable regulated air pollutant;
- 2. Uses a control device to achieve compliance with any such emission limitation or standard;
- 3. Has potential pre-control emissions of the applicable regulated air pollutant that are equal to or greater than the applicable major source threshold; and
- 4. Is not otherwise exempt.

As defined in 40 CFR Part 64.1, control device means equipment, other than inherent process equipment, that is used to destroy or remove air pollutant(s) prior to discharge to the atmosphere. This does not include passive methods such as lids, seals, or inherent process equipment provided for safety or material recovery.

4 40 CFR 63.10686(b)(2)

<sup>&</sup>lt;sup>3</sup> 40 CFR 63.10686(b)(1)

<sup>&</sup>lt;sup>5</sup> Per Federal Register, Volume 73, Number 1, January 2, 2008. NESHAP ZZZZZ encompasses the following NAICS codes: 331511, 331512, 331513. The proposed facility will have a NAICS code of 331210. As such, it is not considered an iron or steel foundry.

The primary emission unit that is part of the proposed Project and that will have a control device installed is the EAF, controlled by the Meltshop Baghouse.

Per 40 CFR Part 64.5, owners or operators of pollutant-specific emission units (PSEUs) that meet the above criteria are required to submit information at different deadlines depending on the controlled potential to emit. Large PSEUs subject to the CAM Rule are required to submit the information required under this rule as a part of an initial application for a Title V Permit or a significant permit revision to a Title V Permit (but only for the PSEUs for which the proposed permit revision applies). As defined in 40 CFR 64.5, large PSEU means each PSEU with the PTE (taking into account control devices) of the applicable regulated air pollutant in an amount equal to or greater than 100% of the amount, in tons per year, required for a source to be classified as a major source. Other PSEUs subject to the CAM Rule are required to submit the information required under this rule as a part of an application for renewal of a Title V Permit. The meltshop baghouse (BH1) is considered a large PSEU as PM<sub>10</sub> and PM<sub>2.5</sub> emissions exceed major source threshold post control, and is subject to the requirements of NESHAP Part 63, Subpart YYYYY (opacity standard of 3% and PM limit of 0.0052 gr/dscf).

Pursuant to EPA guidance<sup>6</sup>, for "large PSEUs", CAM requires the collection of four or more data values equally spaced over each hour and average the values, as applicable, over the applicable averaging period. The proposed baghouse BLDS required as part of applicable requirements meets this data frequency requirement. Therefore, CMC proposes CAM elements consistent with the BLDS requirements in NSPS Subpart AAb.

#### 6.7 Chemical Accident Prevention

Subpart B of 40 CFR Part 68 outlines requirements for risk management prevention (RMP) plans pursuant to CAA Section 112(r). Applicability of this subpart is determined based on the type and quantity of the chemicals stored at the proposed Project. The list of regulated substances does not include ultra-low sulfur diesel fuel, propane, kerosene or gasoline, which will be stored on-site. The proposed Project will not store any non-exempt RMP chemicals in quantities greater than the RMP trigger thresholds. Therefore, the requirements of 40 CFR Part 68 are not applicable. However, the proposed Project will be subject to the provisions of the CAA General Duty Clause, Section 112, as it pertains to accidental releases of hazardous materials.

### **6.8 Stratospheric Ozone Protection Regulations**

The requirements originating from Title VI of the Clean Air Act, Protection of Stratospheric Ozone, are contained in 40 CFR Part 82. Subparts A through E, Subpart G, Subpart H, and Subpart and I of 40 CFR Part 82 will not be applicable to CMC. 40 CFR Part 82 Subpart F, Recycling and Emissions Reduction, potentially applies if the facility maintains, repairs, services, or disposes of appliances that utilize Class I or Class II ozone depleting substances. Subpart F generally requires persons completing the repairs, service, or disposal to be properly certified. An appropriately certified technician will complete all repairs, service, and disposal of ozone depleting substances from the comfort cooling components at the proposed Project.

## **6.9 West Virginia Administrative Code**

The proposed Project will be subject to certain CSR regulations. Potentially applicable rules are discussed in the sections below.

<sup>&</sup>lt;sup>6</sup> Per EPA Technical Guidance Document: Compliance Assurance Monitoring, dated August 1998, revised 2005.

# 6.9.1 45CSR2: To Prevent and Control Particulate Air Pollution from Combustion of Fuel in Indirect Heat Exchangers

45CSR2 "establishes emission limitations for smoke and particulate matter which are discharged from fuel burning units." A fuel burning unit is defined under 45CSR2 as any "furnace, boiler apparatus, device, mechanism, stack or structure used in the process of burning fuel or other combustible material for the primary purpose of producing heat or power by indirect heat transfer." Additionally, the definition of "indirect heat exchanger" specifically excludes process heaters, which are defined as "a device that is primarily used to heat a material to initiate or promote a chemical reaction in which the material participates as a reactant or catalyst." The proposed direct-fired combustion units associated with the proposed Project meet the definition of "process heater" and therefore 45CSR2 does not apply to the proposed Project.

# 6.9.2 45CSR7: To Prevent and Control Particulate Air Pollution from Manufacturing Process Operations

45CSR7 has requirements to prevent and control particulate matter air pollution from manufacturing processes and associated operations. Pursuant to §45-7-2.20, a "manufacturing process" means "any action, operation or treatment, embracing chemical, industrial or manufacturing efforts that may emit smoke, particulate matter or gaseous matter." 45CSR7 has three substantive requirements potentially applicable to the particulate matter-emitting operations at the proposed Project further discussed below.

#### 6.9.2.1 45CSR7 Opacity Standards - Section 3

§45-7-3.1 sets an opacity limit of 20% on all "process source operations." Pursuant to §45-6-2.38, a "source operation" is defined as the "last operation in a manufacturing process preceding the emission of air contaminants [in] which [the] operation results in the separation of air contaminants from the process materials or in the conversion of the process materials into air contaminants and is not an air pollution abatement operation." This language would define all particulate matter emitting sources (excluding combustion exhaust sources and emergency engines) as "source operations" under 45CSR7 and, therefore, these sources would be subject to the opacity limit (after any applicable control device).

#### 6.9.2.2 45CSR7 Weight Emission Standards - Section 4

§45-7-4.1 requires that each manufacturing process source operation or duplicate source operation meet a maximum allowable "stack" particulate matter limit based on the weight of material processed through the source operation. As the limit is defined as a "stack" limit (under Table 45-7A), the only applicable emission units (defined as a type 'a' sources) are those that can be defined as non-fugitive in nature. Pursuant to §45-7-4.1, any manufacturing process that has "a potential to emit less than one (1) pound per hour of particulate matter and an aggregate of less than one thousand (1000) pounds per year for all such sources of particulate matter located at the stationary source" is exempt from Section 4.1. For the purposes of Section 4.1, a source of particulate matter emissions that are solely the result of the combustion of a fuel source such as propane, natural gas, or diesel is not considered a "source operation" as defined under §45-7-2.38. This is based on the definition that states a source operation is one that "result in the separation of air contaminants from the process materials or in the conversion of the process materials into air contaminants." Propane, natural gas, or diesel when solely a fuel do not meet the reasonable definition of a process material. Additionally, the particulate matter limits given under 45CSR7 only address filterable particulate matter. Table 6-2 demonstrates 45CSR7 compliance.

**Table 6-2. 45CSR7 Section 4.1 Compliance Demonstration** 

| Emission<br>Unit ID | Emission<br>Point ID | Source<br>Type | Aggregate PWR<br>(lb/hr) | Table 45-7A<br>Limit <sup>1</sup><br>(lb/hr) | PTE<br>(lb/hr) |
|---------------------|----------------------|----------------|--------------------------|----------------------------------------------|----------------|
| EAF1                | BH1                  | В              | 234,000                  | 19.01                                        | 10.36          |
| EAF1                | CV1                  | В              | 234,000                  | 19.01                                        | 1.12           |

<sup>1.</sup> These sources, for a conservative compliance demonstration, are considered "duplicate sources "as defined in 45CSR7. As such, the PWR of all duplicate sources are aggregated and the resulting limit is distributed to each emission point relative to each source's contribution to total PWR.

# 6.9.2.3 45CSR7 Fugitive Emissions - Section 5

Pursuant to §45-7-5.1 and 5.2, each manufacturing process or storage structure generating fugitive particulate matter must include a system to minimize the emissions of fugitive particulate matter. The proposed Project will utilize BACT-level controls (where reasonable) on material transfer points, watering on the haul roads, and partial or full enclosure of some on-storage pile activity to minimize the emissions of fugitive particulate matter.

# 6.9.3 45CSR10: To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

The purpose of 45CSR10 is to prevent and control air pollution from the emission of sulfur oxides from "fuel burning units" by limiting in-stack  $SO_2$  concentrations of "manufacturing process source operations," and limiting  $H_2S$  concentrations in "process gas" streams that are combusted. Pursuant to §45-10-2.8, fuel burning units include "any furnace, boiler apparatus, device, mechanism, stack or structure used in the process of burning fuel or other combustible material for the primary purpose of producing heat or power by indirect heat transfer." The proposed Project units will be direct-fired and therefore do not meet the definition of fuel burning unit.

The EAF meets the definition of a manufacturing process and must also comply with the requirements of 45CSR10. 45CSR10-4.1 prohibits the emission of process gases exceeding 2,000 parts per million by weight (ppmv) SO<sub>2</sub>. The EAF baghouse stack will not contain gases in excess of 2,000 ppmv based on the following demonstration:

▶ 40CFR10 SO<sub>2</sub> Standard = 2,000 ppmv
 ▶ SO<sub>2</sub> Molecular Weight = 64 lb/lbmol

Universal Gas Constant = 0.73 (atm·ft³)/(lbmol.R)
 Baghouse Exhaust Temperature = 176 deg F, or 636 deg R

Allowable SO₂ Emission Rate
 Baghouse Exhaust Flowrate
 40CFR10 SO₂ Max Allowable Emission Rate
 Proposed Short-Term Emission Rate
 = 0.00028 lb/ft³
 = 788,000 acfm
 = 13,042 lb/hr
 = 49.14 lb/hr

# 6.9.4 45CSR13: Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, and Procedures for Evaluation

The proposed Project site-wide potential to emit a regulated pollutant is in excess of six (6) lbs/hr and ten (10) tpy and, therefore, pursuant to §45-13-2.24, the proposed Project is defined as a "stationary source" under 45CSR13. The proposed Project is also defined as a "major stationary source" under 45CSR14. This permit application is being submitted to satisfy the requirements of both 45CSR13 and 45CSR14.

# 6.9.5 45CSR14: Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

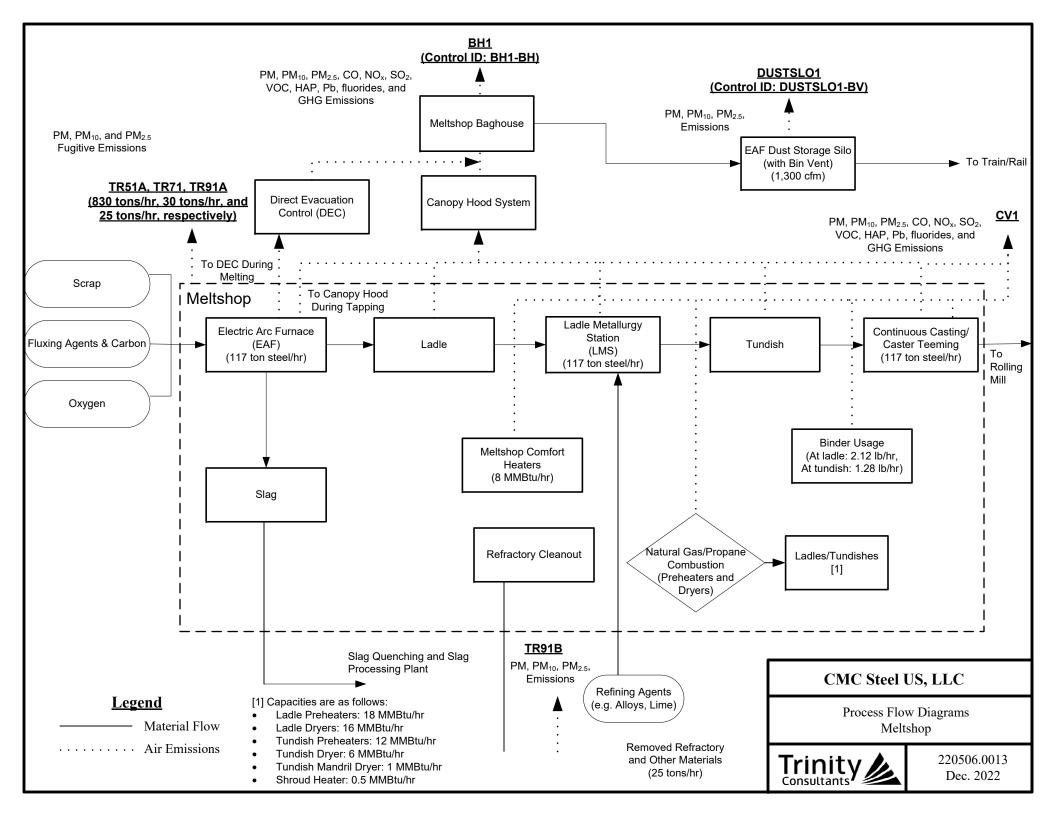
This rule, which outlines PSD permitting processes, is applicable to the proposed Project. See Section 6.1 above for the detailed applicability determination for this rule. CMC is submitting this permit application to satisfy the requirements of 45CSR14. As summarized in Table 6-1, PSD review is required for all PSD pollutants contained in the table except lead. The substantive requirements of a PSD review includes a BACT analysis, an air dispersion modeling analysis (for applicable pollutants), a review of potential impacts on Federal Class I areas, and an additional impacts analysis.

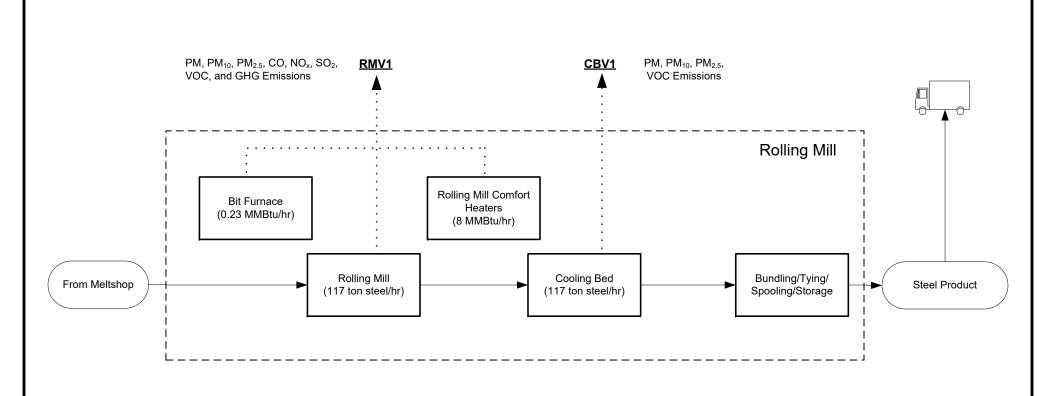
# 6.9.6 45CSR16 – Standards of Performance for New Stationary Sources

The provisions of 45CSR16 incorporate by reference the NSPS standards contained in 40 CFR 60. Please see Section 6.4 above for a list of NSPS for which the proposed Project is potentially subject.

# 6.9.7 45CSR30 - Requirements for Operating Permits

As discussed in Section 6.3 of this application, the proposed Project will be subject to the requirements under 45CSR30. CMC will submit a Title V permit application within twelve (12) months after commencing operation to satisfy the requirements of 45CSR30.


# 6.9.8 45CSR34 – Emission Standards for Hazardous Air Pollutants


The provisions of 45CSR34 incorporate by reference the MACT/GACT standards contained in 40 CFR 63. Please see Section 6.5 above for a list of MACT/GACT standards to which the proposed Project is potentially subject.

# 7. ATTACHMENT E: PLOT PLAN

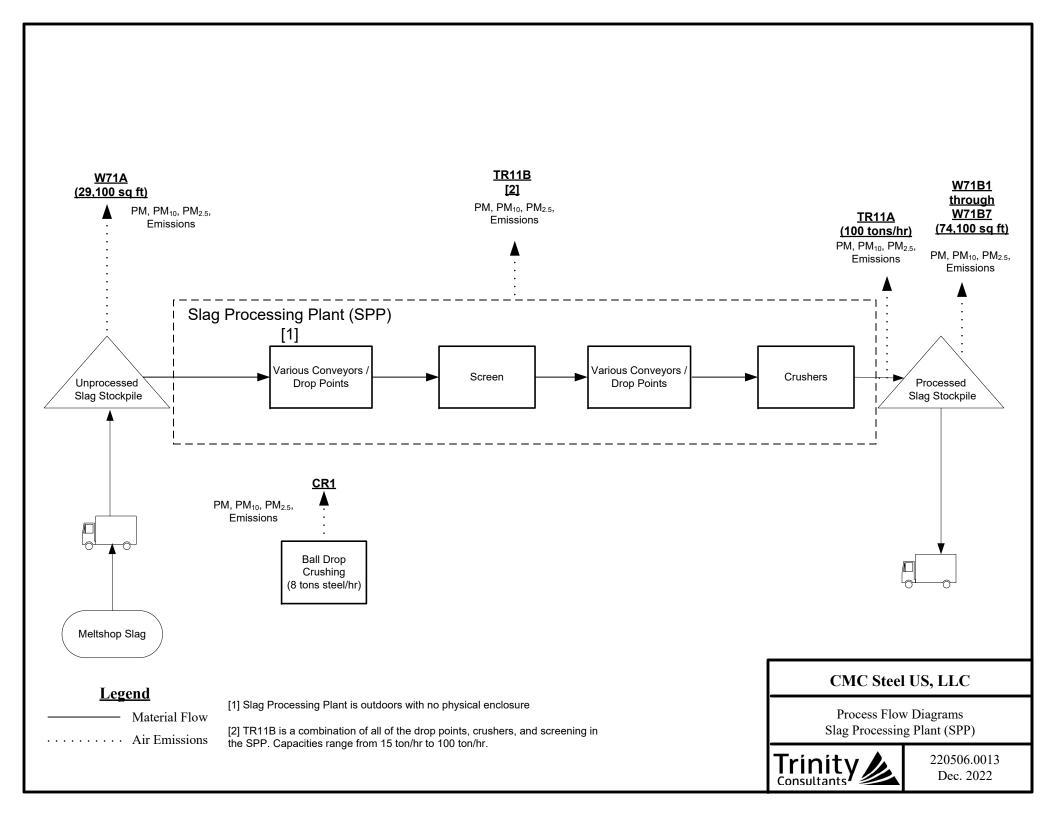
| CMC will s<br>provided u | submit detailed<br>under separate | proposed Proj<br>cover. | ect plot plans a | as part of the F | PSD air dispersion | n modeling re <sub>l</sub> | oort to be |
|--------------------------|-----------------------------------|-------------------------|------------------|------------------|--------------------|----------------------------|------------|
|                          |                                   |                         |                  |                  |                    |                            |            |
|                          |                                   |                         |                  |                  |                    |                            |            |
|                          |                                   |                         |                  |                  |                    |                            |            |
|                          |                                   |                         |                  |                  |                    |                            |            |
|                          |                                   |                         |                  |                  |                    |                            |            |
|                          |                                   |                         |                  |                  |                    |                            |            |
|                          |                                   |                         |                  |                  |                    |                            |            |
|                          |                                   |                         |                  |                  |                    |                            |            |
|                          |                                   |                         |                  |                  |                    |                            |            |
|                          |                                   |                         |                  |                  |                    |                            |            |
|                          |                                   |                         |                  |                  |                    |                            |            |
|                          |                                   |                         |                  |                  |                    |                            |            |
|                          |                                   |                         |                  |                  |                    |                            |            |
|                          |                                   |                         |                  |                  |                    |                            |            |

# 8. ATTACHMENT F: DETAILED PROCESS FLOW DIAGRAMS

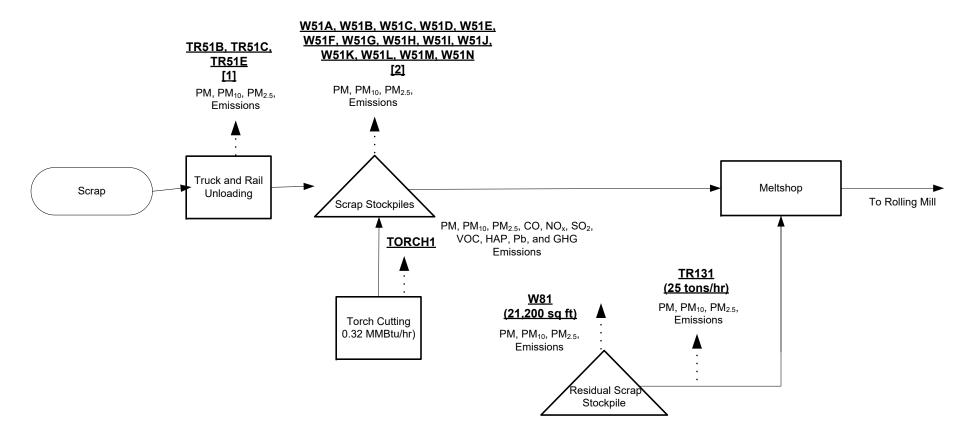







Material Flow

· · · · · · · · Air Emissions


# CMC Steel US, LLC

Process Flow Diagrams Rolling Mill





# Scrap Storage & Handling



#### [1] Capacities are as follows:

- TR51B: 330 tons/hr
- TR51C, TR51E: 110 tons/hr each

# Legend

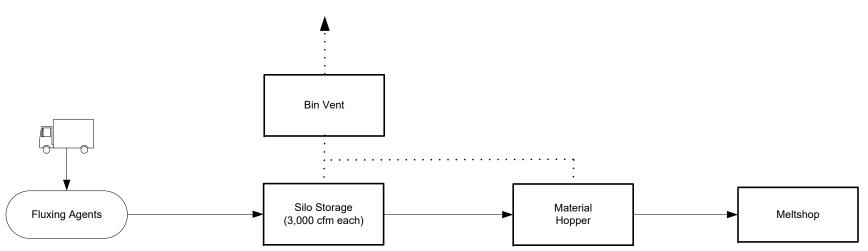
Material Flow

• · · · · · · · · · Air Emissions

#### [2] Capacities are as follows:

- W51A: 5,900 sq ft
- W51B: 5,400 sq ft
- W51C: 5,300 sq ft
- W51D: 12,100 sq ft
- W51E, W51F, W51G, W51H: 9,100 sq ft each
- W51K, W51L, W51M, W51N: 9,100 sq ft each

# CMC Steel US, LLC


Process Flow Diagrams Scrap Storage and Handling



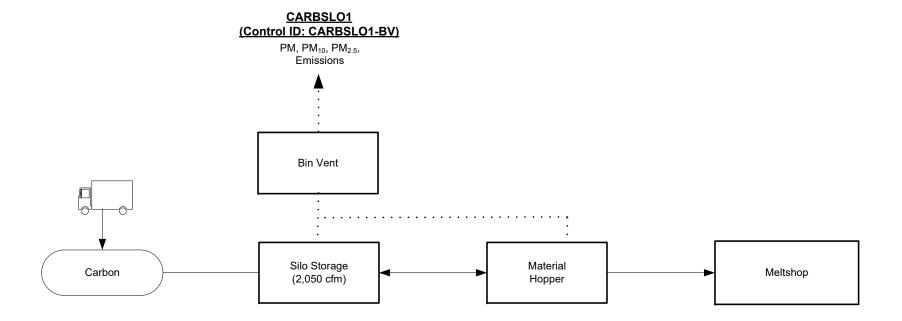
# Fluxing Agents Storage & Handling

#### FLXSLO11, FLXSLO12 (Control ID: FLXSLO11-BV, FLXSLO12-BV)

PM, PM<sub>10</sub>, PM<sub>2.5</sub>, Emissions



# Legend


Material Flow
.... Air Emissions

Trinity \_\_\_\_

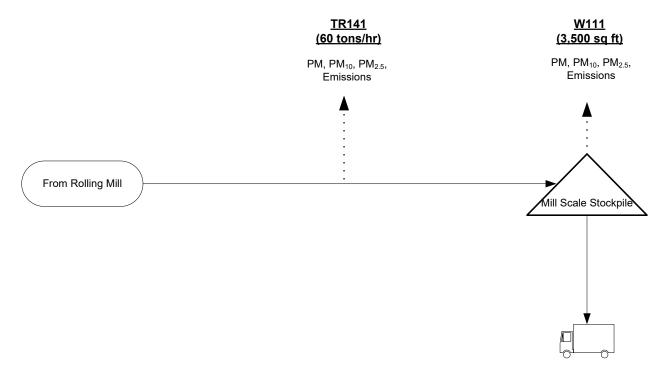
# CMC Steel US, LLC

Process Flow Diagrams
Fluxing Agent Storage and Handling

# Carbon Storage & Handling



# Legend


Material Flow
.... Air Emissions

# CMC Steel US, LLC

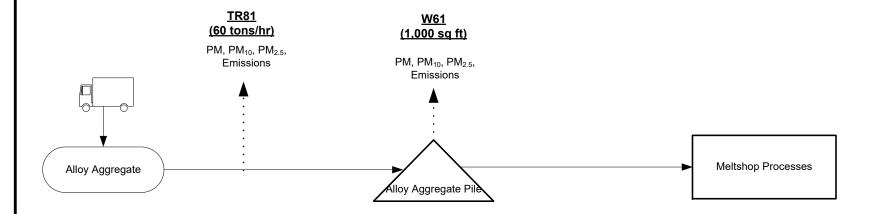
Process Flow Diagrams Carbon Storage and Handling



# Mill Scale Storage & Handling



# **Legend**


Material Flow
.... Air Emissions

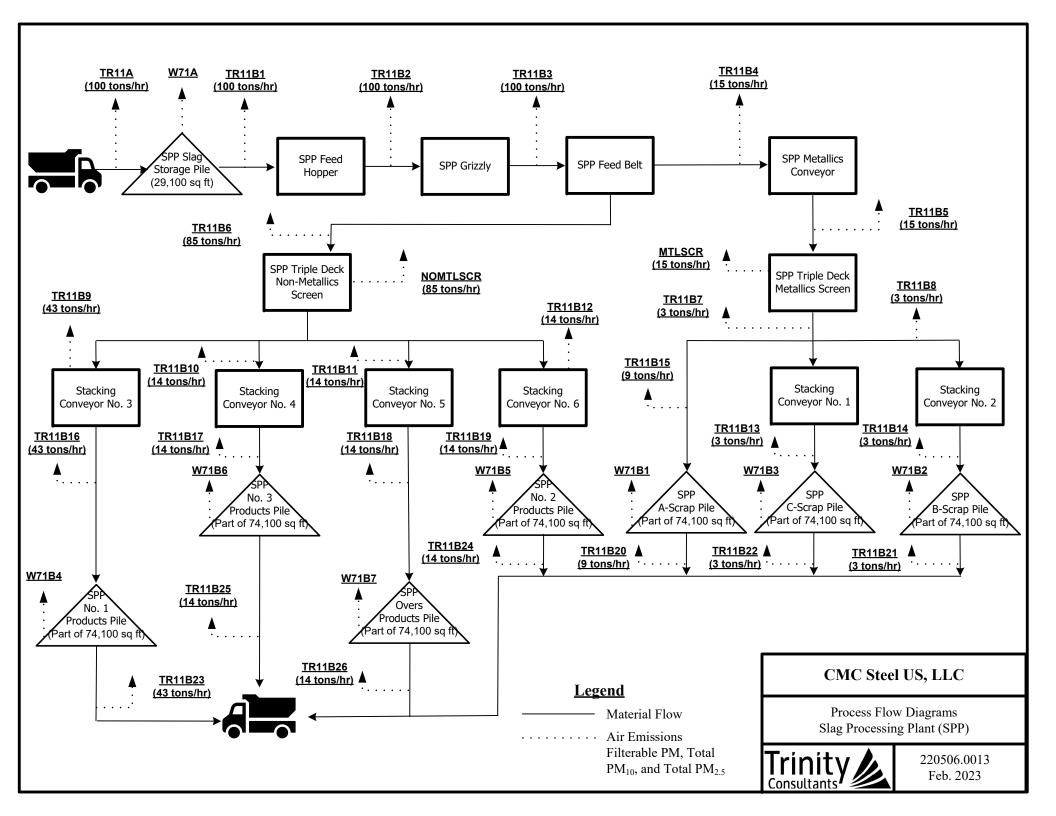
# **CMC Steel US, LLC**

Process Flow Diagrams Mill Scale Storage and Handling



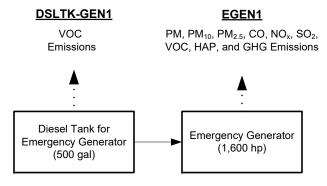
# Alloy Aggregate Storage & Handling



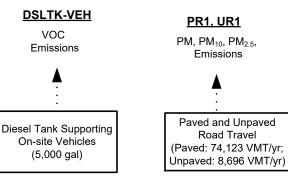

# **Legend**

Material Flow
.... Air Emissions

# CMC Steel US, LLC


Process Flow Diagrams Alloy Aggregate Storage and Handling

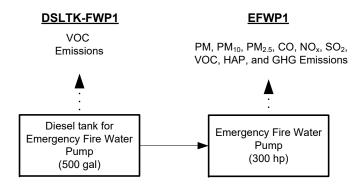





# **Cooling Towers** CTNC11a, CTNC11b, CTNC12a, CTNC12b, CTC1a, CTC1b <u>[1], [2]</u> PM, PM<sub>10</sub>, PM<sub>2.5</sub>, **Emissions Cooling Towers**

# **Emergency Generator**




# Paved/Unpaved Roads



# PM, PM<sub>10</sub>, PM<sub>2.5</sub>, **Emissions** Paved and Unpaved Road Travel (Paved: 74,123 VMT/yr;

PR1, UR1

# **Emergency Fire Water Pump**



#### Legend

Material Flow

· · · · · · · · · Air Emissions

[1] Control IDs are CTNC11a-DE, CTNC11b-DE, CTNC12a-DE, CTNC12b-DE, CTC1a-DE, and CTC1b-DE, respectively.

[2] Capacities are as follows:

- CTNC11a, CTNC11b, CTNC12a, CTNC12b 11,000 gpm each
- CTC1a, CTC1b 5,500 gpm each

# CMC Steel US, LLC

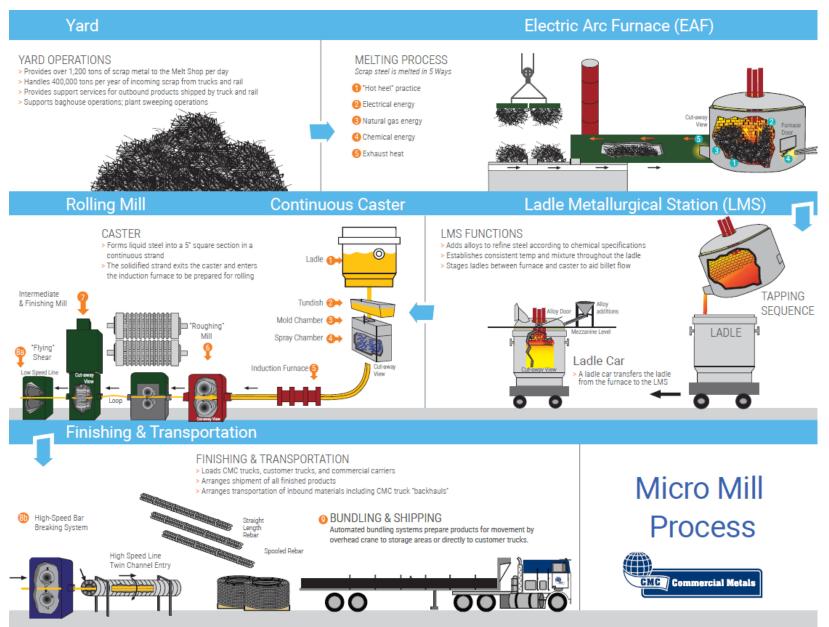
Process Flow Diagrams **Additional Operations** 



# 9. ATTACHMENT G: PROCESS DESCRIPTION

CMC proposes to construct and operate a new micro mill with associated support operations to produce long steel products at a maximum production rate of 650,000 tpy and 117 tons per hour (tph) (the Project). CMC plans to begin construction of the Project as soon as possible after issuance of the requested permit. Figure 9-1 contains a depiction of an example micro-mill process. The following subsections provide additional detail on the equipment and emission units to be constructed and operated at the proposed micro mill.

# 9.1 Raw Material Storage and Handling


Recycled scrap metal for the new micro mill will be purchased from outside suppliers and transported into the Facility by trucks or railcars. Scrap metal to be received will include un-shredded and shredded scrap largely from crushed automobiles but also may include old appliances, machinery, sheet metal, rectangular bundles, and miscellaneous scrap metal. Un-shredded scrap metal will arrive in a form either suitable for direct use in the steelmaking process or in larger sizes that will require cutting by torch cutters prior to use in the process. The scrap metal will be either stored at the proposed scrap bay, or if the proposed scrap bay is full, it will be stored at the proposed overflow scrap storage piles and then moved into the proposed scrap bay. Once the scrap metal is inside the proposed scrap bay, cranes are used to load it onto the electric arc furnace (EAF) conveyor feed system (i.e., the endless charging system (ECS)). The EAF is expected to have an average electrical power input rating of 30 MW and a peak electrical demand of approximately 36 MW. The expected average power consumption of the EAF is approximately 18.0 MWH.

In addition to the proposed recycled scrap metal, the new micro mill will use raw materials in the steelmaking process, including carbon (such as, but not limited to, coal, petroleum coke, etc.) and fluxing agents (such as, but not limited to, dolomitic lime, high cal lime, spar, etc.). The carbon and fluxing agents will be delivered to the micro mill by truck or rail and moved into storage silos (one carbon silo and two fluxing agents silo, each with a capacity of 250 tons). The carbon and fluxing agents will be pneumatically transferred from these silos to the proposed EAF and proposed ladle metallurgy station (LMS), as needed. The carbon and fluxing agent silos will be equipped with a fabric filter bin vents.

Alloy aggregates will also be used in the proposed EAF and LMS for refining steel metallurgy. Alloys will be transported by truck or rail to the plant in aggregate form and unloaded into storage piles. The alloys will be transferred by front-end loaders, forklift, or manually to the meltshop for use in the proposed EAF or LMS as needed. Alloy aggregates may include, but are not limited to, the following. Note that carbon, fluxing agent, alloy aggregates to be at any time will vary based on cost, availability, and other supply chain challenges.

- Manganese ferroalloys (FeMn and/or SiMn).
- Iron monosilicide (FeSi).
- ► Ferrochrome (FeCr).
- ► Iron-molybdenum (FeMo).
- Ferrovanadium (FeV).

Figure 9-1. Example Micro Mill Process Diagram



# 9.2 Meltshop

The proposed micro mill will include a meltshop that consists of the EAF; LMS; casting operations; ladle and tundish preheat burners; and refractory repair. Scrap metal is fed into the EAF where it is melted and transferred to the LMS via a ladle. The main emission control device for these proposed operations is the meltshop baghouse, which captures emissions primarily from the EAF and LMS, as well as some of the emissions from the casting operations; ladle and tundish preheat burners; and refractory repair via the canopy hood. Emissions not captured by the meltshop baghouse or canopy hood are emitted through the caster vent. The following subsections describe each process that occurs in the proposed meltshop. For purposes of this application, it is conservatively assumed that all fugitive EAF and LMS releases as well as all releases from the casting operations and ladle and tundish preheat burners are vented through the caster vent without the benefit of any baghouse control.

# 9.2.1 Electric Arc Furnace (EAF)

The steelmaking process begins with scrap metal being transported to the scrap bay to the EAF as discussed above. During the first use of the EAF after downtime, and at other times due to operational considerations, loading of scrap metal will be accomplished using charge buckets, which are transported into position over the EAF using overhead cranes. Once in position, the charge bucket bottom will open, allowing scrap to fill the EAF. After the first heat of molten steel is made, scrap for subsequent heats will be fed to the EAF using a continuous conveyor (i.e., ECS). The conveyor system will allow the continuous feeding of scrap metal to the EAF without opening the furnace, which will result in considerable energy savings. In addition, the section of the ECS closest to the EAF will be enclosed to allow for pre-heating of the scrap metal using the off-gas from the EAF.

While traditional EAFs utilize oxyfuel burners to heat scrap that is piled up inside the EAF to the roof in combination with injectors, ECS EAFs use only injectors. The two injectors for the proposed EAF will utilize natural gas to create a flame "shroud" in order to improve the effectiveness of the injected oxygen, as needed. During a cold startup (which is expected to occur once per week as part of scheduled maintenance), the charge scrap is deposited in the EAF and electrical power will be applied to induce arcing that will increase the temperature of the scrap to beyond the steel melting point. As the scrap melts, the injectors inject oxygen protected by the natural gas "shroud". After the startup sequence that uses electrical energy, the operation will be similar or same as a normal heat and will utilize the injectors to inject oxygen. Oxygen will be supplied to the EAF using either on-site liquid oxygen or produced on-site by an air separation unit.

A direct evacuation control (DEC) system or a canopy hood will capture the EAF emissions and vent the emissions through a large duct to the meltshop baghouse. Off-gasses not captured by the DEC or canopy hood can be released from the meltshop openings and doors as well as the caster vent. Due to the elevated temperature of such fugitive releases, it is expected that the majority will be released from the caster vent and a de minims amount from the meltshop openings and doors. For purposes of this application, it is conservatively assumed that all fugitive releases will be vented from the caster vent.

During the melting and refining processes that will take place in the EAF and the LMS, raw materials such as fluxing agents, coal or coke, and oxygen will be added to the molten steel in order to achieve the desired product chemistry and properties and promote the formation of slag (a product of steelmaking, and is a complex solution of silicates and oxides that solidifies upon cooling). Once the desired steel properties are reached in the EAF, the molten steel is poured (i.e., "tapped") into a refractory-lined transport vessel referred to as a ladle. The molten steel is then transferred to the LMS via a ladle car.

The slag formed in the EAF will be emptied by tipping the EAF to the side and allowing the hot slag to be poured into a pile within the meltshop building. The slag will be subsequently removed from the pit using a front-end loader, cooled or quenched, and transported to an outdoor storage pile before being processed on-site.

A hot heel, a small amount of liquid steel, is typically left in the EAF between heats to aid in the processing of the feed materials for the subsequent heat. If the EAF is shutdown no heel is kept in the EAF but rather continues through the steel making process.

# 9.2.2 Ladle Metallurgy Station (LMS)

The ladles filled with molten steel will be transferred from the EAF to the LMS via the ladle car. At the LMS, the steel will be subjected to additional heating by electrical energy from electrodes in order to maintain its molten state. The molten steel will be further refined with the injection and mixing of raw materials such as fluxing agents, carbon, and alloys into the molten steel. Once the molten steel reaches the desired temperature and composition (dependent on the physical properties of the desired product), the ladle of molten steel is transported to the continuous casting machine.

Emissions from the LMS will be captured by the ladle hood (which is a direct evacuation device) connected to the meltshop baghouse. Emissions not captured by the ladle hood or meltshop canopy will be emitted through the caster vent.

# 9.2.3 Casting Operations

After reaching the desired temperature of approximately 3,000 °F and composition in the LMS, the ladle is transported to a continuous casting machine. During casting, steel flows out of the bottom of the ladle via a slide gate into a tundish. A tundish is a holding vessel used to ensure continuous casting while ladles are switched out. Emissions from the process will be emitted through the caster vent. Note that the steel is drained out of the bottom of the ladle into the tundish until the ladle is nearly empty. A small volume of residual steel remains in the ladle and is removed (also known as "skulls") and processed for recovery. Additionally, steel is drained out of the bottom of the tundish into the casting machine until the tundish is nearly emptied of steel. Slag with some residual steel that may remain in the tundish (also known as "skulls") is removed and processed for recovery.

From the tundish, the steel flows into a single mold at the casting machine. In the mold, the steel is water-cooled and formed into bars, referred to as billets.

#### 9.2.4 Ladle and Tundish Preheat Burners

Refractory materials will line the ladles and tundishes which must be dried completely prior to steel production. Additionally, the ladles and tundishes must be preheated prior to the transfer of molten steel in order to prevent heat losses. Nine natural gas or propane-fired burners<sup>7</sup> will be used to preheat the ladles and tundishes as follows. These combustion sources will vent emissions inside the meltshop.

- ► Three 6.0 MMBtu/hr each ladle preheaters;
- Two 8.0 MMBtu/hr each ladle dryers;
- Two 6.0 MMBtu/hr each tundish preheaters;

<sup>&</sup>lt;sup>7</sup> Site combustion sources will utilize propane or natural gas.

- One 6.0 MMBtu/hr tundish dryer;
- One 1.0 MMBtu/hr tundish mandril drver; and
- ▶ One 0.5 MMBtu/hr shroud heater.

Combustion emissions generated during preheating and drying of the ladles and tundishes will be captured by the canopy hood and routed to the baghouse or released at the caster vent. For purposes of this application, it is conservatively assumed that all combustion emissions are vented through the caster vent without the benefit of any baghouse control.

#### 9.2.5 Refractory Repair

Refractory is made up of a layer of bricks and will be used in the EAF, ladles, and tundishes. For the EAF, the refractory will be changed periodically. For the ladles and tundishes, occasional refractory repairs and replacements will also be required. This will involve the use of organic binding agents (binder) to hold the refractory bricks in place. Emissions from the curing of the binder at the ladle and tundish dryers will be routed to the caster vent. When the refractory is replaced or repaired, spent refractory will be recycled or disposed of, along with other various wastes generated in the steel production process.

# 9.2.6 Meltshop Baghouse

Emissions captured in the meltshop are vented to the meltshop baghouse. Dust collected by the meltshop baghouse will be transferred to a dust silo (with a capacity of approximately 190 tons) controlled with a bin vent filter. The dust will then be shipped off-site by either railcar or truck for recycling.

# 9.3 Rolling Mill

After continuous casting the steel is conveyed through a series of rolling stands that reduce the cross-sectional area and hot-form final rolled steel shapes such as reinforcing bar. Note that the rolling process is wet (water is continuously applied at the rolling stands) and is expected to generate a minimal amount of particulate matter emissions. A 0.225 MMBtu/hr natural gas or propane-fired "bit furnace" is used to heat sample bars (or bits) and run them through a pass to check size prior to rolling. The rolled steel that exits the rolling mill is water quenched, or cooled on natural convection cooling beds, and is then either spooled or sheared to length. Steel products are then bundled and stored. Note that the vents above the rolling mill and cooling beds are primarily for purposes of heat evacuation. Mill scale, which is a type of iron oxide that is formed on the surface of the steel during the rolling process, is removed using water.

# 9.4 Cooling Beds

The products that exit the rolling mill are directed to the cooling beds. The products will either first receive an initial water quench or be moved directly along the length of the bed, without this initial quench, allowing time and space to cool in the ambient air. Some of the products may be diverted to coil forming machines where the rolled steel is formed into a spool as it cools.

# 9.5 Finishing and Transportation

After the products have cooled, automated bundling systems will prepare un-spooled products. Overhead cranes or forklifts will transport materials to storage areas or directly to customer trucks or railcars.

<sup>&</sup>lt;sup>8</sup> Site combustion sources will utilize propane or natural gas.

# 9.6 Spooler

Spools of steel rebar are one of the finished products to be manufactured at the proposed Project. Note that the vent above the spooler is primarily for purposes of heat evacuation. The detailed activities associated with the spool processing are as follows:

- ▶ Instead of being cut into different lengths, the produced rebar will be spooled into coils.
- ▶ The majority of the finished products will be moved with overhead cranes.
- ▶ Industrial forklift trucks move the finished spools from the rolling mill building to a nearby storage area.
- ▶ When the spools are ready to be shipped, forklifts load the spools into trucks/trailers for shipping.

# 9.7 Slag Processing Plant

After the slag is removed from the meltshop, cooled, and stored in an outdoor storage pile, the slag is processed by on-site Slag Processing Plant (SPP). At the SPP slag will be processed through a system consisting of conveyors, hoppers, and screens in the following manner:

- ▶ Slag is transported to the feed hopper and grizzly screen.
- ▶ Slag from the grizzly screen will be separated into metallic and non-metallic material using a magnet.
  - Metallic material will be introduced into a triple deck screen and separated into the following scrap grade. All three grades of scrap will then be routed to the ECS building.
    - A-Scrap (approximately 3/4-to-10-inch material);
    - B-Scrap (approximately 5/16 to ¾ inch material); and
    - C-Scrap (approximately 0-to-5/16-inch material).
  - Non-metallic material will be introduced into a triple deck screen and separated into the following non-metallic material grades. All non-metallic material grades will be used onsite or transported offsite to be sold to consumers.
    - No. 1 Product (approximately 0-to-5/8-inch material);
    - No. 2 Product (approximately 5/8-to-1.5-inch material);
    - No. 3 Product (approximately 1.5-to-3-inch material); and
    - Overs (greater than 3-inch material).

At the SPP area, large pieces of scrap (also known as "reclaim" or "skulls", from the process) will be reduced in size by a ball drop crushing process.

# 9.8 Paved/Unpaved Roads

Vehicle traffic will occur on paved and unpaved roads located throughout the Facility. Paved and unpaved roads will be used by various vehicles, including haul trucks, trailers, loader trucks, Euclid/roll-off trucks, inert gas trucks, and forklifts/loaders. Fugitive emissions can occur due to vehicle traffic and wind erosion.

#### 9.9 Utilities

# 9.9.1 Cooling Towers

Two non-contact cooling towers and one contact cooling tower will be used at the proposed micro mill to remove heat from the cooling water used in the proposed operations. The contact cooling tower's water will come into direct contact with the steel during the rolling mill process to provide cooling which may increase the solid content in the water.

# 9.9.2 Fuel Storage Tanks

Three diesel fuel tanks will be used to supply fuel to the site as follows:

- ▶ 500-gallon diesel storage tank for Emergency Generator No. 1;
- ▶ 500-gallon diesel storage tank for Fire Water Pump No. 1; and
- ▶ 5,000-gallon diesel storage tank supporting on-site vehicles.

# 9.9.3 Emergency Generator & Fire Water Pump

A 1,600 hp diesel fired emergency generator will supply power to the meltshop and other critical infrastructure during power outages. Similarly, a 300 hp emergency fire water pump will be used in case of emergency fire events at the proposed mill.

#### 9.9.4 Other Miscellaneous Equipment

Operations at the proposed Project will include additional pieces of equipment classified as "De minimis sources" pursuant to 45 CSR 13-2.2.6. These include the following:

- Air compressors and pneumatically-operated equipment, including hand tools; instrument air systems (excluding fuel-fired compressors); emissions from pneumatic starters on reciprocating engines, turbines or other equipment; and periodic use of air for cleanup (excluding all sandblasting activities).
- ▶ Bench-scale laboratory equipment used for physical or chemical analysis, excluding lab fume hoods or vents.
- ▶ Portable brazing, soldering, gas cutting or welding equipment used as an auxiliary to the principal equipment at the source.
- Comfort air conditioning or ventilation systems not used to remove air contaminants generated by or released from specific units of equipment.
- ► Hand-held equipment for buffing, polishing, cutting, drilling, sawing, grinding, turning or machining wood, metal or plastic.

# 10. ATTACHMENT H: MATERIAL SAFETY DATA SHEETS

Attachment N: Supporting Emission Calculations provides the specifications for materials that will be located at the proposed Project. A safety data sheet (SDS) for the diesel fuel to be utilized at the proposed Project is included in this section.

#### SAFETY DATA SHEET

#### Section 1. Identification

CHS Inc. Transportation Emergency (CHEMTREC) 1-800-424-9300 1-651-355-8443

P.O. Box 64089 **Technical Information** Mail station 525

**SDS Information** 1-651-355-8445 St. Paul, MN 55164-0089

: No. 2 ULTRA LOW SULFUR DIESEL FUEL / DISTILLATE SDS no. **Product name** 0201-M1A0.3.HL

(sulfur<15ppm)

Common name #2 Diesel Fuel, #2 Distillate, Fuel Oil Fieldmaster XL Diesel Fuel, **Revision date** 06/01/2021

Roadmaster XL Diesel Fuel

Chemical formula **Chemical name** Petroleum Distillate Mixture

**Chemical family** : A mixture of paraffinic, olefinic, naphthenic and aromatic

hydrocarbons.

Relevant identified uses of the substance or mixture and uses advised against

Not available.

#### Section 2. Hazards identification

OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).

Classification of the substance or

mixture

FLAMMABLE LIQUIDS - Category 3 CARCINOGENICITY - Category 2

**GHS label elements** 

Hazard pictograms





Signal word Warning

**Hazard statements** : H226 - Flammable liquid and vapor.

H351 - Suspected of causing cancer.

**Precautionary statements** 

Read label before use. Keep out of reach of children. If medical advice is needed, have product container or General

label at hand.

Prevention Obtain special instructions before use. Do not handle until all safety precautions have been read and

understood. Wear protective gloves. Wear eye or face protection. Wear protective clothing. Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Use explosion-proof electrical, ventilating, lighting and all material-handling equipment. Use only non-sparking tools. Take

precautionary measures against static discharge. Keep container tightly closed.

IF exposed or concerned: Get medical attention. IF ON SKIN (or hair): Take off immediately all contaminated Response

clothing. Rinse skin with water or shower.

Storage Store locked up. Store in a well-ventilated place. Keep cool.

Dispose of contents and container in accordance with all local, regional, national and international regulations. Disposal

Hazards not otherwise classified : None known.

Hazardous Material Information System (U.S.A.) Health: Physical hazards: () Flammability: 2 National Fire Protection Association (U.S.A.) Health: Flammability: 2 Instability: 0

#### Section 3. Composition/information on ingredients

Substance/mixture : Mixture

Chemical name : Petroleum Distillate

Other means of identification : #2 Diesel Fuel, #2 Distillate, Fuel Oil Fieldmaster XL Diesel Fuel, Roadmaster XL Diesel Fuel

| Ingredient name     | %     | CAS number |
|---------------------|-------|------------|
| Fuels, diesel, No 2 | ≥90   | 68476-34-6 |
| Ethylbenzene        | ≤0.3  | 100-41-4   |
| Naphthalene         | <0.25 | 91-20-3    |

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section.

Occupational exposure limits, if available, are listed in Section 8.

#### Section 4. First aid measures

#### **Description of necessary first aid measures**

Eye contact : If material comes in contact with the eyes, immediately wash the eyes with large amounts of water for 15

minutes, occasionally lifting the lower and upper lids. Get medical attention.

: If person breathes in large amounts of material, move the exposed person to fresh air at once. If breathing has

stopped, perform artificial respiration. Keep the person warm and at rest. Get medical attention as soon as

possible.

Skin contact : If the material comes in contact with the skin, wash the contaminated skin with soap and water promptly. If the

material penetrates through clothing, remove the clothing and wash the skin with soap and water promptly. If

irritation persists after washing, get medical attention immediately.

Ingestion : If material has been swallowed, do not induce vomiting. Get medical attention immediately.

#### Most important symptoms/effects, acute and delayed

#### Potential acute health effects

Inhalation

Eye contact: No known significant effects or critical hazards.Inhalation: No known significant effects or critical hazards.Skin contact: No known significant effects or critical hazards.Ingestion: No known significant effects or critical hazards.

#### Over-exposure signs/symptoms

Eye contact : Adverse symptoms may include the following: pain or irritation, watering, redness.

Inhalation : Adverse symptoms may include the following: respiratory tract irritation, coughing.

**Skin contact**: Adverse symptoms may include the following: irritation, redness.

**Ingestion**: No known significant effects or critical hazards.

#### Indication of immediate medical attention and special treatment needed, if necessary

Notes to physician : Treat symptomatically. Contact poison treatment specialist immediately if large quantities have been ingested

or inhaled.

**Specific treatments** : No specific treatment.

Protection of first-aiders : No action shall be taken involving any personal risk or without suitable training. It may be dangerous to the

person providing aid to give mouth-to-mouth resuscitation.

See toxicological information (Section 11)

#### Section 5. Fire-fighting measures

#### **Extinguishing media**

Suitable extinguishing media

: Use water spray to cool fire exposed surfaces and to protect personnel. Foam, dry chemical or water spray (fog) to extinguish fire.

Unsuitable extinguishing media

Specific hazards arising from the chemical

- : Do not use water jet or water-based fire extinguishers.
- : Vapors are heavier than air and may travel along the ground to a source of ignition (pilot light, heater, electric motor) some distance away. Containers, drums (even empty) can explode when heat (welding, cutting, etc.) is applied.

Hazardous thermal decomposition products

- : No specific data.
- Special protective actions for fire-fighters
- : Water may be ineffective on flames, but should be used to keep fire-exposed containers cool. Water or foam sprayed into container of hot burning product could cause frothing and endanger fire fighters. Large fires, such as tank fires, should be fought with caution. If possible, pump the contents from the tank and keep adjoining structures cool with water. Avoid spreading burning liquid with water used for cooling purposes. Do not flush down public sewers. Avoid inhalation of vapors. Firefighters should wear self-contained breathing apparatus.

#### Special protective equipment for fire-fighters

: Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

#### Section 6. Accidental release measures

#### Personal precautions, protective equipment and emergency procedures

For non-emergency personnel

: Keep unnecessary and unprotected personnel from entering. Avoid breathing vapor or mist. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment.

#### Methods and materials for containment and cleaning up

Spill

: Contain with dikes or absorbent to prevent migration to sewers/streams. Take up small spill with dry chemical absorbent; large spills may require pump or vacuum prior to absorbent. May require excavation of severely contaminated soil.

#### Section 7. Handling and storage

#### Precautions for safe handling

Protective measures

: Put on appropriate personal protective equipment (see Section 8). Do not get in eyes or on skin or clothing. Do not breathe vapor or mist. Do not ingest. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate.

Advice on general occupational hygiene

: Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking.

Conditions for safe storage, including any incompatibilities

: Do not store above the following temperature: 113°C (235.4°F). Odorous and toxic fumes may form from the decomposition of this product if stored at excessive temperatures for extended periods of time. Store in accordance with local regulations. Store in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10). Use appropriate containment to avoid environmental contamination.

#### Section 8. Exposure controls/personal protection

#### **Control parameters**

#### Occupational exposure limits

| Ingredient name     | Exposure limits                                                                                                                                        |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuels, diesel, No 2 | ACGIH TLV (United States, 3/2017). Absorbed through skin. TWA: 100 mg/m³, (measured as total hydrocarbons) 8 hours. Form: Inhalable fraction and vapor |
| Ethylbenzene        | ACGIH TLV (United States, 3/2017). TWA: 20 ppm 8 hours.                                                                                                |
|                     | NIOSH REL (United States, 10/2016).  TWA: 100 ppm 10 hours.  TWA: 435 mg/m³ 10 hours.  STEL: 125 ppm 15 minutes.                                       |
|                     | STEL: 545 mg/m³ 15 minutes.  OSHA PEL (United States, 6/2016).  TWA: 100 ppm 8 hours.                                                                  |
| Naphthalene         | TWA: 435 mg/m³ 8 hours.  ACGIH TLV (United States, 3/2017). Absorbed through skin.  TWA: 10 ppm 8 hours.                                               |
|                     | TWA: 52 mg/m³ 8 hours.  NIOSH REL (United States, 10/2016).  TWA: 10 ppm 10 hours.  TWA: 50 mg/m³ 10 hours.                                            |
|                     | TWA: 50 mg/m³ 10 hours.  STEL: 15 ppm 15 minutes.  STEL: 75 mg/m³ 15 minutes.  OSHA PEL (United States, 6/2016).  TWA: 10 ppm 8 hours.                 |
|                     | TWA: 50 mg/m³ 8 hours.                                                                                                                                 |

#### Appropriate engineering controls

: Use only with adequate ventilation.

**Environmental exposure controls** 

: Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation.

#### **Individual protection measures**

Hygiene measures

: Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Ensure that eyewash stations and safety showers are close to the workstation location.

Eye/face protection Skin protection

: Recommended: Splash goggles and a face shield, where splash hazard exists.

**Hand protection** : 4 - 8 hours (breakthrough time): Nitrile gloves.

Body protection
Other skin protection

- : Recommended: Long sleeved coveralls.
- : Recommended: Impervious boots.
- Respiratory protection : If ventilation is inadequate, use a NIOSH-certified respirator with an organic vapor cartridge and P95 particulate

#### Section 9. Physical and chemical properties

| Appearance                      |                                              | Relative density          | : 0.85                                                            |
|---------------------------------|----------------------------------------------|---------------------------|-------------------------------------------------------------------|
| Physical state                  | : Liquid. [Mobile liquid.]                   | Evaporation rate          | : Not available.                                                  |
| Color                           | : Clear yellow. Red.                         | Solubility                | : Insoluble in the following materials: cold water and hot water. |
| Odor                            | : Characteristic. Hydrocarbon.               | Solubility in water       | : Insoluble                                                       |
| Odor threshold                  | : Not available.                             | Partition coefficient: n- | : Not available.                                                  |
| рН                              | : Not available.                             | octanol/water             |                                                                   |
| Melting point                   | : Not available.                             | Auto-ignition temperature | : Not available.                                                  |
| Boiling point                   | : 157.22 to 343.33°C (315 to 650°F)          | Decomposition temperature | : Not available.                                                  |
| Flash point                     | : Closed cup: 60°C (140°F) [Pensky-Martens.] | SADT                      | : Not available.                                                  |
| Flammability                    | : Not available.                             | Viscosity                 | : Not available.                                                  |
| Lower and upper                 | : Not available.                             | Vapor pressure            | : Not available.                                                  |
| explosive (flammable)<br>limits |                                              | Vapor density             | : >3 [Air = 1]                                                    |

#### Section 10. Stability and reactivity

Reactivity : No specific test data related to reactivity available for this product or its ingredients.

**Chemical stability** : The product is stable.

Possibility of hazardous reactions : Under normal conditions of storage and use, hazardous reactions will not occur.

Conditions to avoid : Avoid all possible sources of ignition (spark or flame). Do not pressurize, cut, weld, braze, solder, drill, grind or

expose containers to heat or sources of ignition. Do not allow vapor to accumulate in low or confined areas.

**Incompatible materials**: Reactive or incompatible with the following materials: Strong oxidizing agents.

Hazardous decomposition products : Under normal conditions of storage and use, hazardous decomposition products should not be produced.

#### Section 11. Toxicological information

#### Information on toxicological effects

#### Acute toxicity

| Product/ingredient name | Result                   | Species | Dose                      | Exposure |
|-------------------------|--------------------------|---------|---------------------------|----------|
| Ethylbenzene            | LD50 Dermal<br>LD50 Oral |         | >5000 mg/kg<br>3500 mg/kg | -        |
| Naphthalene             | LD50 Dermal<br>LD50 Oral |         | >20 g/kg<br>490 mg/kg     | -        |

#### Irritation/Corrosion

| Product/ingredient name | Result                 | Species | Score | Exposure         | Observation |
|-------------------------|------------------------|---------|-------|------------------|-------------|
| Biphenyl                | Eyes - Mild irritant   | Rabbit  | -     | 100 mg           | -           |
|                         | Skin - Severe irritant | Rabbit  | -     | 24 hours 500 μL  | -           |
| Naphthalene             | Skin - Mild irritant   | Rabbit  | -     | 495 mg           | -           |
|                         | Skin - Severe irritant | Rabbit  | -     | 24 hours 0.05 mL | -           |

#### **Sensitization**

Skin: There is no data available.Respiratory: There is no data available.

#### **Mutagenicity**

There is no data available.

#### Carcinogenicity

#### Classification

#### No. 2 ULTRA LOW SULFUR DIESEL FUEL / DISTILLATE (sulfur<15ppm)

| Product/ingredient name | OSHA | IARC | NTP                                              |
|-------------------------|------|------|--------------------------------------------------|
| Ethylbenzene            | -    | 2B   | -                                                |
| Naphthalene             | -    | 2B   | Reasonably anticipated to be a human carcinogen. |

#### Reproductive toxicity

There is no data available.

#### **Teratogenicity**

There is no data available.

#### Specific target organ toxicity (single exposure)

There is no data available.

#### Specific target organ toxicity (repeated exposure)

| Name         | Category   | Route of exposure | Target organs  |
|--------------|------------|-------------------|----------------|
| Ethylbenzene | Category 2 | Not determined    | hearing organs |

#### **Aspiration hazard**

| Name         | Result                         |
|--------------|--------------------------------|
| Ethylbenzene | ASPIRATION HAZARD - Category 1 |

**Information on the likely routes of**: Dermal contact. Eye contact. Inhalation. Ingestion.

exposure

#### Section 12. Ecological information

#### **Toxicity**

| Product/ingredient name | Result                             | Species                                  | Exposure |
|-------------------------|------------------------------------|------------------------------------------|----------|
| Ethylbenzene            | Acute EC50 13300 μg/L Fresh water  | Crustaceans - Artemia sp Nauplii         | 48 hours |
|                         | Acute LC50 13900 μg/L Fresh water  | Daphnia - Daphnia magna - Neonate        | 48 hours |
| Naphthalene             | Acute EC50 1600 μg/L Fresh water   | Daphnia - Daphnia magna - Neonate        | 48 hours |
|                         | Acute LC50 2350 μg/L Marine water  | Crustaceans - Palaemonetes pugio         | 48 hours |
|                         | Acute LC50 213 μg/L Fresh water    | Fish - Melanotaenia fluviatilis - Larvae | 96 hours |
|                         | Chronic NOEC 0.5 mg/L Marine water | Crustaceans - Uca pugnax - Adult         | 3 weeks  |
|                         | Chronic NOEC 1.5 mg/L Fresh water  | Fish - Oreochromis mossambicus           | 60 days  |

#### Persistence and degradability

There is no data available.

#### **Bioaccumulative potential**

| Product/ingredient name | LogPow | BCF         | Potential |
|-------------------------|--------|-------------|-----------|
| Fuels, diesel, No 2     | >3.3   | -           | low       |
| Ethylbenzene            | 3.6    | -           | low       |
| Naphthalene             | 3.4    | 36.5 to 168 | low       |

#### **Mobility in soil**

Soil/water partition coefficient (Koc) : There is no data available.

Other adverse effects : No known significant effects or critical hazards.

#### Section 13. Disposal considerations

#### Disposal methods

: Disposal of this product, solutions and any by-products should comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements.

#### Section 14. Transport information

**DOT IDENTIFICATION NUMBER** UN1202 DOT proper shipping name DIESEL FUEL

DOT Hazard Class(es) 3 **DOT EMER. RESPONSE GUIDE NO. 128** PG III

#### Section 15. Regulatory information

U.S. Federal regulations : TSCA 8(a) PAIR: Naphthalene

TSCA 8(a) CDR Exempt/Partial exemption: Not determined

United States inventory (TSCA 8b): All components are listed or exempted.

Clean Water Act (CWA) 307: Ethylbenzene; Naphthalene Clean Water Act (CWA) 311: Ethylbenzene; Naphthalene

Clean Air Act Section 602 Class I Substances : Not listed DEA List I Chemicals (Precursor Chemicals) : Not listed Clean Air Act Section 602 Class II Substances : Not listed DEA List II Chemicals (Essential Chemicals) : Not listed

Clean Air Act Section 112(b) Hazardous Air Pollutants (HAPs) : Listed

#### SARA 302/304

#### Composition/information on ingredients

No products were found.

SARA 304 RQ : Not applicable.

**SARA 311/312** 

Hazard classifications : FLAMMABLE LIQUIDS - Category 3 CARCINOGENICITY - Category 2

#### Composition/information on ingredients

| Name                | Classification                                              |
|---------------------|-------------------------------------------------------------|
| Fuels, diesel, No 2 | FLAMMABLE LIQUIDS - Category 3 CARCINOGENICITY - Category 2 |
| Ethylbenzene        | FLAMMABLE LIQUIDS - Category 2                              |
|                     | ACUTE TOXICITY (inhalation) - Category 4                    |
|                     | SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 2A            |
|                     | CARCINOGENICITY - Category 2                                |
|                     | SPECIFIC TARGET ORGAN TOXICITY (REPEATED EXPOSURE) (hearing |
|                     | organs) - Category 2                                        |
|                     | ASPIRATION ĤAZARD - Category 1                              |
| Naphthalene         | FLAMMABLE SOLIDS - Category 2                               |
|                     | ACUTE TOXICITY (oral) - Category 4                          |
|                     | CARCINOGENICITY - Category 2                                |

#### SARA 313 This product (does/not) contain toxic chemicals subject to the reporting requirements of SARA Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 and of 40 CFR 372.

| Product name | CAS number          | %          |
|--------------|---------------------|------------|
| - <b>,</b>   | 100-41-4<br>91-20-3 | 0.1<br>0.1 |

SARA 313 notifications must not be detached from the SDS and any copying and redistribution of the SDS shall include copying and redistribution of the notice attached to copies of the SDS subsequently redistributed.

#### State regulations

Massachusetts : None of the components are listed.

New York: The following components are listed: Ethylbenzene; NaphthaleneNew Jersey: The following components are listed: Ethylbenzene; NaphthalenePennsylvania: The following components are listed: Ethylbenzene; Naphthalene

California Prop. 65

★ WARNING: This product can expose you to chemicals including Ethylbenzene, Naphthalene, which are known to the State of California to cause cancer. For more information go to www.P65Warnings.ca.gov.

| Ingredient name             |              | Maximum<br>acceptable dosage<br>level |
|-----------------------------|--------------|---------------------------------------|
| Ethylbenzene<br>Naphthalene | Yes.<br>Yes. | -                                     |

#### Section 16. Other information

: 06/01/2021 : 10/17/2017 Review date Supersedes

: None. : KMK Regulatory Services Inc. Revised Section(s) Prepared by

Notice to reader
THE INFORMATION CONTAINED IN THIS SDS RELATES ONLY TO THE SPECIFIC MATERIAL IDENTIFIED. IT DOES NOT COVER USE OF THAT MATERIAL IN COMBINATION WITH ANY OTHER
MATERIAL OR IN ANY PARTICULAR PROCESS. IN COMPLIANCE WITH 29 C.F.R. 1910.1200(g), CHS HAS PREPARED THIS SDS IN SEGMENTS, WITH THE INTENT THAT THOSE SEGMENTS BE
READ TOGETHER AS A WHOLE WITHOUT TEXTUAL OMISSIONS OR ALTERATIONS. CHS BELIEVES THE INFORMATION CONTAINED HEREIN TO BE ACCURATE, BUT MAKES NO
REPRESENTATION, GUARANTEE, OR WARRANTY, EXPRESS OR IMPLIED, ABOUT THE ACCURACY, RELIABILITY, OR COMPLETENESS OF THE INFORMATION OR ABOUT THE FITNESS OF
CONTENTS HEREIN FOR EITHER GENERAL OR PARTICULAR PURPOSES. PERSONS REVIEWING THIS SDS SHOULD MAKE THEIR OWN DETERMINATION AS TO THE MATERIAL'S
SUITABILITY AND COMPLETENESS FOR USE IN THEIR PARTICULAR APPLICATIONS.





# 11. ATTACHMENT I: EMISSION UNITS TABLE

# Attachment I Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

| Emission<br>Unit ID | Emission<br>Point ID | Emission Unit Description                                            | Year Installed/<br>Modified | Design Capacity  | Control Device ID | Control Description                |  |  |
|---------------------|----------------------|----------------------------------------------------------------------|-----------------------------|------------------|-------------------|------------------------------------|--|--|
| Meltshop            |                      |                                                                      |                             |                  |                   |                                    |  |  |
|                     | BH1                  |                                                                      | •                           |                  | BH1-BH            | Pulse Jet Fabric Filter Baghouse 1 |  |  |
| EAF1                | CV1                  | Electric Arc Furnace 1                                               | New/Proposed                | 117 ton steel/hr | N/A               | None                               |  |  |
| LMC1                | BH1                  | Ladla Makallanaisal Chakian 4                                        | N /D                        | 117 +            | BH1-BH            | Pulse Jet Fabric Filter Baghouse 1 |  |  |
| LMS1                | CV1                  | Ladle Metallurgical Station 1                                        | New/Proposed                | 117 ton steel/hr | N/A               | None                               |  |  |
| CAST1               | CV1                  | Continuous Caster 1                                                  | New/Proposed                | 117 ton steel/hr | BH1-BH            | Pulse Jet Fabric Filter Baghouse 1 |  |  |
| LPH1                | CV1                  | Ladle Preheaters                                                     | New/Proposed                | 18.00 MMBtu/hr   | N/A               | None                               |  |  |
| LD1                 | CV1                  | Ladle Dryers                                                         | New/Proposed                | 16.00 MMBtu/hr   | N/A               | None                               |  |  |
| TPH1                | CV1                  | Tundish Preheaters                                                   | New/Proposed                | 12.00 MMBtu/hr   | N/A               | None                               |  |  |
| TD1                 | CV1                  | Tundish Dryer                                                        | New/Proposed                | 6.00 MMBtu/hr    | N/A               | None                               |  |  |
| TMD1                | CV1                  | Tundish Mandril Dryer                                                | New/Proposed                | 1.00 MMBtu/hr    | N/A               | None                               |  |  |
| SRDHTR1             | CV1                  | Shroud Heater                                                        | New/Proposed                | 0.50 MMBtu/hr    | N/A               | None                               |  |  |
| MSAUXHT             | CV1                  | Meltshop Comfort Heaters                                             | New/Proposed                | 8.00 MMBtu/hr    | N/A               | None                               |  |  |
|                     |                      | Rollin                                                               | ng Mills                    |                  |                   |                                    |  |  |
| RMV1                | RMV1                 | Rolling Mill                                                         | New/Proposed                | 117 ton steel/hr | N/A               | None                               |  |  |
| CBV1                | CBV1                 | Cooling Beds                                                         | New/Proposed                | 117 ton steel/hr | N/A               | None                               |  |  |
| SPV1                | SPV1                 | Spooler Vent                                                         | New/Proposed                | 117 ton steel/hr | N/A               | None                               |  |  |
| BF1                 | RMV1                 | Bit Furnace                                                          | New/Proposed                | 0.23 MMBtu/hr    | N/A               | None                               |  |  |
| RMAUXHT             | RMV1                 | Rolling Mill Comfort Heaters                                         | New/Proposed                | 8.00 MMBtu/hr    | N/A               | None                               |  |  |
|                     |                      | Material S                                                           | torage Silos                |                  |                   |                                    |  |  |
| FLXSLO11            | FLXSLO11             | Fluxing Agent Storage Silo No. 1                                     | New/Proposed                | 250 ton          | FLXSLO11-BV       | Bin Vent                           |  |  |
| FLXSLO12            | FLXSLO12             | Fluxing Agent Storage Silo No. 2                                     | New/Proposed                | 250 ton          | FLXSLO12-BV       | Bin Vent                           |  |  |
| CARBSLO1            | CARBSLO1             | Carbon Storage Silo No. 1                                            | New/Proposed                | 250 ton          | CARBSLO1-BV       | Bin Vent                           |  |  |
| DUSTSLO1            | DUSTSLO1             | EAF Baghouse Dust Silo                                               | New/Proposed                | 190 ton          | DUSTSLO1-BV       | Bin Vent                           |  |  |
|                     |                      | Cooling                                                              | g Towers                    |                  |                   |                                    |  |  |
| CTNC11              | CTNC11A              | Non-Contact Cooling Tower 1 - Cell 1                                 | New/Proposed                | 11,000 gpm       | CTNC11A-DE        | Drift Eliminator                   |  |  |
| CTNC11              | CTNC11B              | Non-Contact Cooling Tower 1 - Cell 2                                 | New/Proposed                | 11,000 gpm       | CTNC11B-DE        | Drift Eliminator                   |  |  |
| CTNC12              | CTNC12A              | Non-Contact Cooling Tower 2 - Cell 1                                 | New/Proposed                | 11,000 gpm       | CTNC12A-DE        | Drift Eliminator                   |  |  |
| CTNC12              | CTNC12B              | Non-Contact Cooling Tower 2 - Cell 2                                 | New/Proposed                | 11,000 gpm       | CTNC12B-DE        | Drift Eliminator                   |  |  |
| CTC1                | CTC1A                | Contact Cooling Tower - Cell 1                                       | New/Proposed                | 5,500 gpm        | CTC1A-DE          | Drift Eliminator                   |  |  |
| CTC1                | CTC1B                | Contact Cooling Tower - Cell 2                                       | New/Proposed                | 5,500 gpm        | CTC1B-DE          | Drift Eliminator                   |  |  |
|                     |                      | Materia                                                              | l Handling                  |                  |                   |                                    |  |  |
| TR51A               | TR51A                | Inside ECS Building Drop Points, Scrap                               | New/Proposed                | 830 tons/hr      | N/A               | Partial Enclosure                  |  |  |
| TR51B               | TR51B                | Outside ECS Building Drop Points, Scrap, Storage Area                | New/Proposed                | 330 tons/hr      | N/A               | None                               |  |  |
| TR51C               | TR51C                | Outside Rail Bins Drop Point, Scrap                                  | New/Proposed                | 110 tons/hr      | N/A               | None                               |  |  |
| TR51E               | TR51E                | Outside Truck Bins Drop Point, Scrap                                 | New/Proposed                | 110 tons/hr      | N/A               | None                               |  |  |
| TR71                | TR71                 | Inside ECS Building Drop Points, Fluxing Agent                       | New/Proposed                | 30 tons/hr       | N/A               | Full Enclosure                     |  |  |
| TR81                | TR81                 | Outside Drop Points, Alloy Aggregate                                 | New/Proposed                | 60 tons/hr       | N/A               | Partial Enclosure                  |  |  |
| TR91A               | TR91A                | Inside Drop Points, Removed Refractory and Other Materials           | New/Proposed                | 25 tons/hr       | N/A               | Full Enclosure                     |  |  |
| TR91B               | TR91B                | Outside Drop Points, Removed Refractory and Other Materials          | New/Proposed                | 25 tons/hr       | N/A               | None                               |  |  |
| TR11A               | TR11A                | Outside SPP Pile Drop Points, Slag                                   | New/Proposed                | 100 tons/hr      | N/A               | None                               |  |  |
| TR11B1              | TR11B1               | Drop from Loader to SPP Feed Hopper, Slag                            | New/Proposed                | 100 tons/hr      | N/A               | Moisture Content of Material       |  |  |
| TR11B2              | TR11B2               | Drop from SPP Feed Hopper to SPP Grizzly                             | New/Proposed                | 100 tons/hr      | N/A               | Moisture Content of Material       |  |  |
| TR11B3              | TR11B3               | Drop from SPP Grizzly to SPP Feed Belt                               | New/Proposed                | 100 tons/hr      | N/A               | Moisture Content of Material       |  |  |
| TR11B4              | TR11B4               | Drop from SPP Feed Belt to SPP Metallics Conveyor                    | New/Proposed                | 15 tons/hr       | N/A               | Moisture Content of Material       |  |  |
| TR11B5              | TR11B5               | Drop from SPP Metallics Conveyor to SPP Triple Deck Metallics Screen | New/Proposed                | 15 tons/hr       | N/A               | Moisture Content of Material       |  |  |
| TR11B6              | TR11B6               | Drop from SPP Feed Belt to SPP Triple Deck Non-Metallics Screen      | New/Proposed                | 85 tons/hr       | N/A               | Moisture Content of Material       |  |  |

# Attachment I Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

| Emission<br>Unit ID | Emission<br>Point ID | Emission Unit Description                                               | Year Installed/<br>Modified | Design Capacity | <b>Control Device ID</b> | Control Description          |
|---------------------|----------------------|-------------------------------------------------------------------------|-----------------------------|-----------------|--------------------------|------------------------------|
| MTLSCR              | MTLSCR               | SPP Triple Deck Metallics Screen                                        | New/Proposed                | 15 tons/hr      | N/A                      | Moisture Content of Material |
| NOMTLSCR            | NOMTLSCR             | SPP Triple Deck Non-Metallics Screen                                    | New/Proposed                | 85 tons/hr      | N/A                      | Moisture Content of Material |
| TR11B7              | TR11B7               | Drop from SPP Triple Deck Metallics Screen to Stacking Conveyor No. 1   | New/Proposed                | 3 tons/hr       | N/A                      | Moisture Content of Material |
| TR11B8              | TR11B8               | Drop from SPP Triple Deck Metallics Screen to Stacking Conveyor No. 2   | New/Proposed                | 3 tons/hr       | N/A                      | Moisture Content of Material |
| TR11B9              | TR11B9               | Drop from SPP Triple Deck Non-Metallics Screen to Stacking Conveyor No. | New/Proposed                | 43 tons/hr      | N/A                      | Moisture Content of Material |
| TR11B10             | TR11B10              | Drop from SPP Triple Deck Non-Metallics Screen to Stacking Conveyor No. | New/Proposed                | 14 tons/hr      | N/A                      | Moisture Content of Material |
| TR11B11             | TR11B11              | Drop from SPP Triple Deck Non-Metallics Screen to Stacking Conveyor No. | New/Proposed                | 14 tons/hr      | N/A                      | Moisture Content of Material |
| TR11B12             | TR11B12              | Drop from SPP Triple Deck Non-Metallics Screen to Stacking Conveyor No. | New/Proposed                | 14 tons/hr      | N/A                      | Moisture Content of Material |
| TR11B13             | TR11B13              | Drop from Stacking Conveyor No. 1 to SPP C-Scrap Pile                   | New/Proposed                | 3 tons/hr       | N/A                      | Moisture Content of Material |
| TR11B14             | TR11B14              | Drop from Stacking Conveyor No. 2 to SPP B-Scrap Pile                   | New/Proposed                | 3 tons/hr       | N/A                      | Moisture Content of Material |
| TR11B15             | TR11B15              | Drop from SPP Triple Deck Metallics Screen to SPP A-Scrap Pile          | New/Proposed                | 9 tons/hr       | N/A                      | Moisture Content of Material |
| TR11B16             | TR11B16              | Drop from Stacking Conveyor No. 3 to SPP No. 1 Products Pile            | New/Proposed                | 43 tons/hr      | N/A                      | Moisture Content of Material |
| TR11B17             | TR11B17              | Drop from Stacking Conveyor No. 4 to SPP No. 3 Products Pile            | New/Proposed                | 14 tons/hr      | N/A                      | Moisture Content of Material |
| TR11B18             | TR11B18              | Drop from Stacking Conveyor No. 5 to SPP Overs Pile                     | New/Proposed                | 14 tons/hr      | N/A                      | Moisture Content of Material |
| TR11B19             | TR11B19              | Drop from Stacking Conveyor No. 6 to SPP No. 2 Products Pile            | New/Proposed                | 14 tons/hr      | N/A                      | Moisture Content of Material |
| TR11B20             | TR11B20              | Drop from SPP A-Scrap Pile to Trucks                                    | New/Proposed                | 9 tons/hr       | N/A                      | Moisture Content of Material |
| TR11B21             | TR11B21              | Drop from SPP B-Scrap Pile to Trucks                                    | New/Proposed                | 3 tons/hr       | N/A                      | Moisture Content of Material |
| TR11B22             | TR11B22              | Drop from SPP C-Scrap Pile to Trucks                                    | New/Proposed                | 3 tons/hr       | N/A                      | Moisture Content of Material |
| TR11B23             | TR11B23              | Drop from SPP No. 1 Products Pile to Trucks                             | New/Proposed                | 43 tons/hr      | N/A                      | Moisture Content of Material |
| TR11B24             | -                    | Drop from SPP No. 2 Products Pile to Trucks                             | New/Proposed                | 14 tons/hr      | N/A                      | Moisture Content of Material |
| TR11B25             | TR11B25              | Drop from SPP No. 3 Products Pile to Trucks                             | New/Proposed                | 14 tons/hr      | N/A                      | Moisture Content of Material |
| TR11B26             | TR11B26              | Drop from SPP Overs Pile to Trucks                                      | New/Proposed                | 14 tons/hr      | N/A                      | Moisture Content of Material |
| TR131               | TR131                | Outside Drop Points, Residual Scrap Pile                                | New/Proposed                | 25 tons/hr      | N/A                      | None                         |
| TR141               | TR141                | Outside Drop Points, Mill Scale Pile                                    | New/Proposed                | 60 tons/hr      | N/A                      | Partial Enclosure            |
| CR1                 | CR1                  | Ball Drop Crushing                                                      | New/Proposed                | 8 tons/hr       |                          | None                         |
|                     | •                    |                                                                         | orage Piles                 | •               |                          |                              |
| W51A                | W51A                 | ECS Scrap Building Storage Pile A                                       | New/Proposed                | 5,900 sq ft     | N/A                      | Partial Enclosure            |
| W51B                | W51B                 | ECS Scrap Building Storage Pile B                                       | New/Proposed                | 5,400 sq ft     | N/A                      | Partial Enclosure            |
| W51C                | W51C                 | ECS Scrap Building Storage Pile C                                       | New/Proposed                | 5,300 sq ft     | N/A                      | Partial Enclosure            |
| W51D                | W51D                 | ECS Scrap Building Overage Scrap Pile                                   | New/Proposed                | 12,100 sq ft    | N/A                      | None                         |
| W51E                | W51E                 | Outside Rail Scrap 5k Pile A                                            | New/Proposed                | 9,100 sq ft     | N/A                      | None                         |
| W51F                | W51F                 | Outside Rail Scrap 5k Pile B                                            | New/Proposed                | 9,100 sq ft     | N/A                      | None                         |
| W51G                |                      | Outside Rail Scrap 5k Pile C                                            | New/Proposed                | 9,100 sq ft     |                          | None                         |
| W51H                | W51H                 | Outside Rail Scrap 5k Pile D                                            | New/Proposed                | 9,100 sq ft     | N/A                      | None                         |
| W51K                | W51K                 | Outside Truck Scrap 5k Pile A                                           | New/Proposed                | 9,100 sq ft     | N/A                      | None                         |
| W51L                |                      | Outside Truck Scrap 5k Pile B                                           | New/Proposed                | 9,100 sq ft     |                          | None                         |
| W51M                | W51M                 | Outside Truck Scrap 5k Pile C                                           | New/Proposed                | 9,100 sq ft     |                          | None                         |
| W51N                | W51N                 | Outside Truck Scrap 5k Pile D                                           | New/Proposed                | 9,100 sq ft     | N/A                      | None                         |
| W61                 | W61                  | Alloy Aggregate Storage Pile                                            | New/Proposed                | 1,000 sq ft     | N/A                      | Partial Enclosure            |
| W71A                | W71A                 | SPP Slag Storage Pile                                                   | New/Proposed                | 29,100 sq ft    | N/A                      | None                         |
| W71B                | W71B                 | SPP Piles                                                               | New/Proposed                | 74,100 sq ft    | N/A                      | None                         |
| W81                 | W81                  | Residual Scrap Storage Pile in Scrap Yard                               | New/Proposed                | 21,200 sq ft    | N/A                      | None                         |
| W111                | W111                 | Mill Scale Pile                                                         | New/Proposed                | 3,500 sq ft     | N/A                      | Partial Enclosure            |
| AATTT               | 1 AATTT              |                                                                         | roads                       | , 3,300 34 It   | I IV/ 🔼                  | n ardar Endosare             |
| PR1                 | PR1                  | Paved Roads                                                             | New/Proposed                | 34.91 VMT/hr    | N/A                      | Watering + Sweeping          |
| UR1                 |                      | Unpaved Roads                                                           | New/Proposed                | 3.12 VMT/hr     |                          | Watering + Sweeping Watering |
| OVI                 | UKI                  |                                                                         | Equipment                   | J.12 VIVII/III  | I IN/A                   | Ivvatering                   |

# Attachment I Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

| Emission<br>Unit ID | Emission<br>Point ID | Emission Unit Description                         | Year Installed/<br>Modified | Design Capacity | <b>Control Device ID</b> | Control Description |
|---------------------|----------------------|---------------------------------------------------|-----------------------------|-----------------|--------------------------|---------------------|
| EGEN1               | EGEN1                | Emergency Generator 1                             | New/Proposed                | 1,600 hp        | N/A                      | None                |
| EFWP1               | EFWP1                | Emergency Fire Water Pump 1                       | New/Proposed                | 300 hp          | N/A                      | None                |
| TORCH1              | TORCH1               | Cutting Torches                                   | New/Proposed                | 0.32 MMBtu/hr   | N/A                      | None                |
| DSLTK-GEN1          | DSLTK-GEN1           | Diesel Storage Tank for Emergency Generator No. 1 | New/Proposed                | 500 gal         | N/A                      | None                |
| DSLTK-FWP1          | DSLTK-FWP1           | Diesel Storage Tank for Fire Water Pump No. 1     | New/Proposed                | 500 gal         | N/A                      | None                |
| DSLTK-VEH           | DSLTK-VEH            | Diesel Storage Tank Supporting On-Site Vehicles   | New/Proposed                | 5,000 gal       | N/A                      | None                |

# 12. ATTACHMENT J: EMISSION POINTS DATA SUMMARY SHEET

|          |              |                     | REGULATE                        | D AIR POLLUTA        | ANT DATA               |                                                |                  |                      | EMI                                                  | SSIONS INFOR               | MATION                                              |          |                     |                 | MISSION POIN                          | T DISCHARG                                | GE PARAMETEI     | RS            |          |            |
|----------|--------------|---------------------|---------------------------------|----------------------|------------------------|------------------------------------------------|------------------|----------------------|------------------------------------------------------|----------------------------|-----------------------------------------------------|----------|---------------------|-----------------|---------------------------------------|-------------------------------------------|------------------|---------------|----------|------------|
|          | ON POINT     |                     | I UNITS VENTED<br>SH THIS POINT |                      | ON CONTROL             | CHEMICAL<br>COMPOSITION OF<br>TOTAL STREAM     |                  | CONTROLLED<br>SIONS  |                                                      |                            |                                                     | итм соо  | RDINATES O<br>POINT | F EMISSION      |                                       |                                           | STACK SOL        | JRCES         |          |            |
| ID       | ТҮРЕ         | EMISSION<br>UNIT ID | EMISSION UNIT<br>DESCRIPTION    | CONTROL<br>DEVICE ID | CONTROL<br>DEVICE TYPE | REGULATED AIR<br>POLLUTANT NAME<br>[2]         | #/<br>HR.<br>[3] | TONS/<br>YEAR<br>[4] | EMISSION FORM<br>OR PHASE (AT<br>EXIT<br>CONDITIONS) | EST. METHOD<br>USED<br>[5] | EMISSION<br>CONCENTRATION<br>(ppmv or mg/m3)<br>[6] | ZONE     | EAST<br>(Mtrs)      | NORTH<br>(Mtrs) | ELEVATION:<br>GROUND<br>LEVEL<br>(ft) | STACK HEIGHT ABOVE GROUND LEVEL. (ft) [7] | DIAMETER<br>(ft) | VOL. FLOW     | XIT DATA | ТЕМР       |
|          |              |                     |                                 |                      |                        |                                                |                  |                      |                                                      |                            |                                                     |          |                     |                 |                                       |                                           |                  | (ACFM)<br>[8] | (fps)    | (°F)       |
|          |              |                     |                                 |                      |                        | Filterable PM                                  | 10.36            | 45.36                | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Total PM Total PM <sub>10</sub>                | 29.92<br>29.92   | 131.03<br>131.03     | Solid                                                | O (BACT)                   | TBD<br>TBD                                          | -        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Total PM <sub>10</sub>                         | 29.92            | 131.03               | Solid/Gas<br>Solid/Gas                               | O (BACT) O (BACT)          | TBD                                                 | 1        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | NO <sub>X</sub>                                | 45.63            | 97.50                | Gas                                                  | O (BACT)                   | TBD                                                 | †        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | CO                                             | 936.00           | 1,300.00             | Gas                                                  | O (BACT)                   | TBD                                                 | ]        |                     |                 |                                       |                                           |                  |               |          |            |
| BH1      | Point        | EAF1, LMS1          | Meltshop Baghouse               | BH1-BH               | Baghouse               | VOC                                            | 35.10            | 97.50                | Gas                                                  | O (BACT)                   | TBD                                                 | 18       | 252,059             | 4,380,348       | N/A                                   | 164                                       | 17               | 788,000       | 57       | 176        |
|          |              |                     |                                 |                      |                        | SO <sub>2</sub>                                | 49.14<br>0.19    | 97.50<br>0.52        | Gas<br>Solid                                         | O (BACT)<br>EE             | TBD<br>TBD                                          | +        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Max Single HAP                                 | 0.19             | 1.21                 | Solid/Gas                                            | EE                         | TBD                                                 | †        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Total HAP                                      | 0.83             | 2.31                 | Solid/Gas                                            | EE                         | TBD                                                 | 1        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Fluorides                                      | 1.17             | 3.25                 | Gas                                                  | O (BACT)                   | TBD                                                 | ]        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | CO₂e                                           | -                | 119,513              | Gas                                                  | EE                         | TBD                                                 |          |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Filterable PM Total PM                         | 1.12<br>1.70     | 3.51<br>5.96         | Solid<br>Solid                                       | O (BACT) O (BACT)          | TBD<br>TBD                                          | 1        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Total PM <sub>10</sub>                         | 1.70             | 5.96                 | Solid/Gas                                            | O (BACT)                   | TBD                                                 | †        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Total PM <sub>2.5</sub>                        | 1.70             | 5.96                 | Solid/Gas                                            | O (BACT)                   | TBD                                                 | †        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | NO <sub>X</sub>                                | 8.85             | 36.03                | Gas                                                  | O (BACT)                   | TBD                                                 | ]        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | CO                                             | 7.92             | 25.80                | Gas                                                  | O (BACT)                   | TBD                                                 | 1.0      |                     |                 |                                       |                                           |                  |               |          | 400        |
| CV1      | Bouyant Line | EAF1, LMS1          | Caster Vent                     | N/A                  | N/A                    | VOC<br>SO <sub>2</sub>                         | 0.72<br>0.80     | 2.75<br>3.00         | Gas<br>Gas                                           | O (BACT) O (BACT)          | TBD<br>TBD                                          | 18       | 251,718             | 4,380,214       | N/A                                   | 121                                       | N/A              | N/A           | 10.37    | 136        |
|          |              |                     |                                 |                      |                        | Pb                                             | 2.38E-03         | 0.0066               | Solid                                                | EE EE                      | TBD                                                 | 1        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Max Single HAP                                 | 0.11             | 4.41E-01             | Solid/Gas                                            | EE                         | TBD                                                 | †        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Total HAP                                      | 1.23E-01         | 0.4913               | Solid/Gas                                            | EE                         | TBD                                                 | ]        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Fluorides                                      | 1.47E-02         | 0.0407               | Gas                                                  | O (BACT)                   | TBD                                                 | <u> </u> |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | CO <sub>2</sub> e                              | - 0.000          | 35,348               | Gas                                                  | EE                         | TBD                                                 |          |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Filterable PM Total PM                         | 0.028<br>0.073   | 0.050<br>0.152       | Solid<br>Solid                                       | EE<br>EE                   | TBD<br>TBD                                          | +        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Total PM <sub>10</sub>                         | 0.073            | 0.152                | Solid/Gas                                            | EE                         | TBD                                                 | †        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Total PM <sub>2.5</sub>                        | 0.073            | 0.152                | Solid/Gas                                            | EE                         | TBD                                                 | Ī        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | NO <sub>X</sub>                                | 1.17             | 2.63                 | Gas                                                  | EE                         | TBD                                                 | ]        |                     |                 |                                       |                                           |                  |               |          |            |
| RMV1     | Bouyant Line | RMV1                | Rolling Mill Vent               | N/A                  | N/A                    | CO                                             | 0.68             | 1.52                 | Gas                                                  | EE                         | TBD                                                 | 18       | 251,756             | 4,380,274       | N/A                                   | 69                                        | N/A              | N/A           | 2.00     | 122        |
|          |              |                     |                                 |                      |                        | VOC<br>SO <sub>2</sub>                         | 0.082<br>0.090   | 0.172<br>0.20        | Gas<br>Gas                                           | EE<br>EE                   | TBD<br>TBD                                          | +        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Max Single HAP                                 | 0.015            | 0.033                | Solid/Gas                                            | EE                         | TBD                                                 | 1        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Total HAP                                      | 0.015            | 0.034                | Solid/Gas                                            | EE                         | TBD                                                 | ]        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | CO₂e                                           | -                | 2,575                | Gas                                                  | EE                         | TBD                                                 |          |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Filterable PM                                  | 0.01             | 0.01                 | Solid                                                | EE                         | TBD                                                 | +        |                     |                 |                                       |                                           |                  |               |          |            |
| CBV1     | Bouyant Line | CBV1                | Cooling Bed Vent                | N/A                  | N/A                    | Total PM Total PM <sub>10</sub>                | 0.01<br>0.01     | 0.01<br>0.01         | Solid<br>Solid/Gas                                   | EE<br>EE                   | TBD<br>TBD                                          | 18       | 251,843             | 4,380,393       | N/A                                   | 66                                        | N/A              | N/A           | 3.54     | 142        |
| 2211     | Dougain Line | 55.1                | Cooming Dea Verit               | 1.47.1               | 1.47.1                 | Total PM <sub>2.5</sub>                        | 0.01             | 0.01                 | Solid/Gas                                            | EE                         | TBD                                                 | † 1      |                     | .,500,555       | ,,,,                                  |                                           | 13/13            | 1973          | 3.3      | 1,2        |
|          |              |                     |                                 |                      |                        | VOC                                            | 0.01             | 0.01                 | Gas                                                  | EE                         | TBD                                                 |          |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Filterable PM                                  | 0.01             | 0.01                 | Solid                                                | EE                         | TBD                                                 |          |                     |                 |                                       |                                           |                  |               |          |            |
| CDV/1    | Lina         | CD//4               | Cnceles Vent                    | NI/A                 | NI/A                   | Total PM                                       | 0.01             | 0.01                 | Solid                                                | EE                         | TBD                                                 | 10       | 251 004             | 4 200 105       | N1/A                                  |                                           | NI/A             | NI/A          | 2.54     | 1.40       |
| SPV1     | Line         | SPV1                | Spooler Vent                    | N/A                  | N/A                    | Total PM <sub>10</sub> Total PM <sub>2.5</sub> | 0.01<br>0.01     | 0.01<br>0.01         | Solid/Gas<br>Solid/Gas                               | EE<br>EE                   | TBD<br>TBD                                          | 18       | 251,804             | 4,380,105       | N/A                                   | 66                                        | N/A              | N/A           | 3.54     | 142        |
|          |              |                     |                                 |                      |                        | VOC                                            | 0.01             | 0.01                 | Gas                                                  | EE                         | TBD                                                 | †        |                     |                 |                                       |                                           |                  |               |          |            |
|          |              |                     |                                 |                      |                        | Filterable PM                                  | 0.13             | 0.064                | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           |                  |               |          |            |
| FLXSLO11 | Point        | FLXSLO11            | Fluxing Agent Storage           | FLXSLO11-RV          | Filter                 | Total PM                                       | 0.13             | 0.064                | Solid                                                | O (BACT)                   | TBD                                                 | 18       | 251,936             | 4,380,493       | N/A                                   | 95                                        | 0.50             | 50            | 4.24     | Ambient    |
|          | . 5          | 12.02011            | Silo No. 1                      | . E.GEOTI BV         | 1 1/601                | Total PM <sub>10</sub>                         | 0.13             | 0.064                | Solid                                                | O (BACT)                   | TBD                                                 | 1        | 231,330             | 1,300,133       | 14/7                                  |                                           | 5.50             | 30            |          | , andicite |
|          | 1            |                     |                                 |                      | İ                      | Total PM <sub>2.5</sub>                        | 0.13             | 0.064                | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           | 1                |               |          |            |

|           |          |                     | REGULATE                                | D AIR POLLUT         | ANT DATA               |                                                |                  |                      | EMI                                                  | SSIONS INFOR               | MATION                                              |          |                     | E               | MISSION POIN                          | T DISCHARG                                | E PARAMETER      | RS                  |       |                                                  |
|-----------|----------|---------------------|-----------------------------------------|----------------------|------------------------|------------------------------------------------|------------------|----------------------|------------------------------------------------------|----------------------------|-----------------------------------------------------|----------|---------------------|-----------------|---------------------------------------|-------------------------------------------|------------------|---------------------|-------|--------------------------------------------------|
|           | ON POINT |                     | N UNITS VENTED<br>SH THIS POINT         |                      | ION CONTROL<br>VICE    | CHEMICAL<br>COMPOSITION OF<br>TOTAL STREAM     |                  | ONTROLLED<br>SIONS   |                                                      |                            |                                                     | итм соо  | RDINATES (<br>POINT | F EMISSION      |                                       |                                           | STACK SOL        | JRCES               |       |                                                  |
| ID        | ТҮРЕ     | EMISSION<br>UNIT ID | EMISSION UNIT<br>DESCRIPTION            | CONTROL<br>DEVICE ID | CONTROL<br>DEVICE TYPE | REGULATED AIR<br>POLLUTANT NAME<br>[2]         | #/<br>HR.<br>[3] | TONS/<br>YEAR<br>[4] | EMISSION FORM<br>OR PHASE (AT<br>EXIT<br>CONDITIONS) | EST. METHOD<br>USED<br>[5] | EMISSION<br>CONCENTRATION<br>(ppmv or mg/m3)<br>[6] | ZONE     | EAST<br>(Mtrs)      | NORTH<br>(Mtrs) | ELEVATION:<br>GROUND<br>LEVEL<br>(ft) | STACK HEIGHT ABOVE GROUND LEVEL. (ft) [7] | DIAMETER<br>(ft) | VOL. FLOW<br>(ACFM) | VEL.  | TEMP<br>(°F)                                     |
|           |          |                     |                                         |                      |                        | Filterable PM                                  | 0.13             | 0.064                | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           |                  | [8]                 | (.p.) | ( ' '                                            |
|           |          |                     | Fluxing Agent Storage                   |                      |                        | Total PM                                       | 0.13             | 0.064                | Solid                                                | O (BACT)                   | TBD                                                 | 1        |                     |                 |                                       |                                           |                  |                     |       |                                                  |
| FLXSLO12  | Point    | FLXSLO12            | Silo No. 2                              | FLXSLO12-BV          | Filter                 | Total PM <sub>10</sub>                         | 0.13             | 0.064                | Solid                                                | O (BACT)                   | TBD                                                 | 18       | 251,934             | 4,380,490       | N/A                                   | 95                                        | 0.50             | 50                  | 4.24  | Ambient                                          |
|           |          |                     |                                         |                      |                        | Total PM <sub>2.5</sub>                        | 0.13             | 0.064                | Solid                                                | O (BACT)                   | TBD                                                 | Ī        |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | Filterable PM                                  | 0.088            | 0.044                | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           |                  |                     |       |                                                  |
| CARBSLO1  | Point    | CARBSLO1            | Carbon Storage Silo                     | CARBSLO1C            | Filter                 | Total PM                                       | 0.088            | 0.044                | Solid                                                | O (BACT)                   | TBD                                                 | 18       | 251,933             | 4,380,488       | N/A                                   | 95                                        | 0.50             | 50                  | 4.24  | Ambient                                          |
| CHINDSLUI | 1 01110  | CANDSLOT            | No. 1                                   | CARDSLOTC            | i iitei                | Total PM <sub>10</sub>                         | 0.088            | 0.044                | Solid                                                | O (BACT)                   | TBD                                                 | 10       | 231,333             | 7,500,700       | 14/75                                 | ),,                                       | 0.50             | 30                  | 7.27  | AIIIDICIIL                                       |
|           |          |                     |                                         |                      |                        | Total PM <sub>2.5</sub>                        | 0.088            | 0.044                | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           |                  |                     |       | !                                                |
|           |          |                     |                                         |                      |                        | Filterable PM                                  | 0.056            | 0.24                 | Solid                                                | O (BACT)                   | TBD                                                 | <u> </u> |                     |                 |                                       |                                           |                  |                     |       |                                                  |
| DUSTSLO1  | Point    | DUSTSLO1            | EAF Baghouse Dust<br>Silo               | DUSTSLO1-BV          | Filter                 | Total PM                                       | 0.056            | 0.24                 | Solid                                                | O (BACT)                   | TBD                                                 | 18       | 252,063             | 4,380,329       | N/A                                   | 95                                        | 0.50             | 50                  | 4.24  | Ambient                                          |
|           |          |                     | SIIO                                    |                      |                        | Total PM <sub>10</sub> Total PM <sub>2.5</sub> | 0.056<br>0.056   | 0.24<br>0.24         | Solid<br>Solid                                       | O (BACT) O (BACT)          | TBD<br>TBD                                          | 1        |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | Filterable PM                                  | 0.036            | 0.48                 | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          |                     | Non-Contact Cooling                     |                      |                        | Total PM                                       | 0.11             | 0.48                 | Solid                                                | O (BACT)                   | TBD                                                 | 1        |                     |                 |                                       |                                           |                  |                     |       | ŀ                                                |
| CTNC11A   | Point    | CTNC11              | Tower 1 - Cell 1                        | CTNC11A-DE           | Drift Eliminator       | Total PM <sub>10</sub>                         | 0.075            | 0.33                 | Solid                                                | O (BACT)                   | TBD                                                 | 18       | 251,903             | 4,380,365       | N/A                                   | 13                                        | 18.01            | 514,120             | 33.63 | Ambient                                          |
|           |          |                     |                                         |                      |                        | Total PM <sub>2.5</sub>                        | 2.39E-04         | 1.05E-03             | Solid                                                | O (BACT)                   | TBD                                                 | †        |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | Filterable PM                                  | 0.11             | 0.48                 | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           |                  |                     |       | <del>                                     </del> |
| CTNC44D   | 5        | CTN C4.4            | Non-Contact Cooling                     | CTNC44B BE           | D :0 El:               | Total PM                                       | 0.11             | 0.48                 | Solid                                                | O (BACT)                   | TBD                                                 | 1 40     | 254 000             | 4 200 274       | 21/4                                  | 42                                        | 10.04            | 544420              | 22.62 |                                                  |
| CTNC11B   | Point    | CTNC11              | Tower 1 - Cell 2                        | CINCI1B-DE           | Drift Eliminator       | Total PM <sub>10</sub>                         | 0.075            | 0.33                 | Solid                                                | O (BACT)                   | TBD                                                 | 18       | 251,908             | 4,380,371       | N/A                                   | 13                                        | 18.01            | 514,120             | 33.63 | Ambient                                          |
|           |          |                     |                                         |                      |                        | Total PM <sub>2.5</sub>                        | 2.39E-04         | 1.05E-03             | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | Filterable PM                                  | 0.11             | 0.48                 | Solid                                                | O (BACT)                   | TBD                                                 | <u> </u> |                     |                 |                                       |                                           |                  |                     |       |                                                  |
| CTNC12A   | Point    | CTNC12              | Non-Contact Cooling                     | CTNC12A-DE           | Drift Eliminator       | Total PM                                       | 0.11             | 0.48                 | Solid                                                | O (BACT)                   | TBD                                                 | 18       | 251,886             | 4,380,321       | N/A                                   | 13                                        | 18.01            | 514,120             | 33.63 | Ambient                                          |
|           |          |                     | Tower 2 - Cell 1                        |                      |                        | Total PM <sub>10</sub>                         | 0.075            | 0.33                 | Solid                                                | O (BACT)                   | TBD                                                 | <u> </u> | , , , , , ,         | ,,.             | ,                                     |                                           |                  |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | Total PM <sub>2.5</sub>                        | 2.39E-04         | 1.05E-03             | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | Filterable PM                                  | 0.11             | 0.48<br>0.48         | Solid<br>Solid                                       | O (BACT)                   | TBD                                                 | 1        |                     |                 |                                       |                                           |                  |                     |       |                                                  |
| CTNC12B   | Point    | CTNC12              | Non-Contact Cooling<br>Tower 2 - Cell 2 | CTNC12B-DE           | Drift Eliminator       | Total PM<br>Total PM <sub>10</sub>             | 0.11             | 0.48                 | Solid                                                | O (BACT) O (BACT)          | TBD<br>TBD                                          | 18       | 251,891             | 4,380,328       | N/A                                   | 13                                        | 18.01            | 514,120             | 33.63 | Ambient                                          |
|           |          |                     | Tower 2 Cen 2                           |                      |                        | Total PM <sub>2.5</sub>                        | 2.39E-04         | 1.05E-03             | Solid                                                | O (BACT)                   | TBD                                                 | 1        |                     |                 |                                       |                                           |                  |                     |       | ŀ                                                |
|           |          |                     |                                         |                      |                        | Filterable PM                                  | 0.055            | 0.24                 | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           |                  |                     |       | +                                                |
| <b>~</b>  |          |                     | Contact Cooling                         |                      |                        | Total PM                                       | 0.055            | 0.24                 | Solid                                                | O (BACT)                   | TBD                                                 | †        |                     |                 |                                       |                                           |                  | 455-                |       | 1                                                |
| CTC1A     | Point    | CTC1                | Tower - Cell 1                          | CTC1A-DE             | Drift Eliminator       | Total PM <sub>10</sub>                         | 0.038            | 0.16                 | Solid                                                | O (BACT)                   | TBD                                                 | 18       | 251,924             | 4,380,388       | N/A                                   | 30                                        | 8.01             | 138,511             | 45.87 | Ambient                                          |
|           |          |                     |                                         |                      |                        | Total PM <sub>2.5</sub>                        | 1.19E-04         | 5.23E-04             | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | Filterable PM                                  | 0.055            | 0.24                 | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           |                  |                     |       |                                                  |
| CTC1B     | Point    | CTC1                | Contact Cooling                         | CTC1B-DE             | Drift Eliminator       | Total PM                                       | 0.055            | 0.24                 | Solid                                                | O (BACT)                   | TBD                                                 | 18       | 251,932             | 4,380,400       | N/A                                   | 30                                        | 8.01             | 138,511             | 45.87 | Ambient                                          |
| 0.010     | . 5      | 0.01                | Tower - Cell 2                          | 0.010 00             | Z Z.III III IGCOI      | Total PM <sub>10</sub>                         | 0.038            | 0.16                 | Solid                                                | O (BACT)                   | TBD                                                 | 1 1      |                     | .,555, 100      | 14/1                                  |                                           | 0.01             | 250,511             | 15.57 | Dicite                                           |
|           |          |                     |                                         |                      |                        | Total PM <sub>2.5</sub>                        | 1.19E-04         | 5.23E-04             | Solid                                                | O (BACT)                   | TBD                                                 |          |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | Filterable PM                                  | 0.53             | 0.026                | Solid                                                | EE                         | TBD                                                 | 4        |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | Total PM<br>Total PM <sub>10</sub>             | 0.53             | 0.026                | Solid/Cas                                            | EE                         | TBD                                                 | +        |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | Total PM <sub>2.5</sub>                        | 0.53<br>0.53     | 0.026<br>0.026       | Solid/Gas<br>Solid/Gas                               | EE<br>EE                   | TBD<br>TBD                                          | +        |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | NO <sub>X</sub>                                | 9.82             | 0.026                | Gas                                                  | EE                         | TBD                                                 | †        |                     |                 |                                       |                                           |                  |                     |       |                                                  |
| EGEN1     | Point    | EGEN1               | Emergency Generator                     | N/A                  | N/A                    | CO                                             | 9.21             | 0.46                 | Gas                                                  | EE                         | TBD                                                 | 18       | 251,904             | 4,380,498       | N/A                                   | 30                                        | 0.75             | 784                 | 29.58 | 600                                              |
|           |          |                     | 1                                       |                      |                        | VOC                                            | 0.70             | 0.035                | Gas                                                  | EE                         | TBD                                                 | †        | ,                   | , ,             | - 4                                   |                                           | ,                |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | SO <sub>2</sub>                                | 1.74E-02         | 8.70E-04             | Gas                                                  | EE                         | TBD                                                 | †        |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | Max Single HAP                                 | 1.32E-02         | 6.61E-04             | Solid/Gas                                            | EE                         | TBD                                                 | ]        |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          |                     |                                         |                      |                        | Total HAP                                      | 4.34E-02         | 2.17E-03             | Solid/Gas                                            | EE                         | TBD                                                 |          |                     |                 |                                       |                                           |                  |                     |       |                                                  |
|           |          | 1                   |                                         |                      |                        | CO₂e                                           | -                | 91.62                | Gas                                                  | EE                         | TBD                                                 |          |                     |                 |                                       |                                           |                  |                     |       | '                                                |

|               |       |                     | REGULATE                       | D AIR POLLUTA        | ANT DATA               |                                            |                  |                      | EMI                                                  | SSIONS INFORI              | MATION                                              |              |                     |                 | EMISSION POIN                         | T DISCHAR                                 | GE PARAMETER     | RS                         |               |              |        |             |     |            |         |
|---------------|-------|---------------------|--------------------------------|----------------------|------------------------|--------------------------------------------|------------------|----------------------|------------------------------------------------------|----------------------------|-----------------------------------------------------|--------------|---------------------|-----------------|---------------------------------------|-------------------------------------------|------------------|----------------------------|---------------|--------------|--------|-------------|-----|------------|---------|
| EMISSIO<br>[1 |       |                     | UNITS VENTED<br>H THIS POINT   |                      | ION CONTROL<br>VICE    | CHEMICAL<br>COMPOSITION OF<br>TOTAL STREAM |                  | CONTROLLED<br>SIONS  |                                                      |                            |                                                     | итм соо      | RDINATES (<br>POINT | F EMISSION      |                                       |                                           | STACK SOL        | JRCES                      |               |              |        |             |     |            |         |
| ID            | ТҮРЕ  | EMISSION<br>UNIT ID | EMISSION UNIT<br>DESCRIPTION   | CONTROL<br>DEVICE ID | CONTROL<br>DEVICE TYPE | REGULATED AIR<br>POLLUTANT NAME<br>[2]     | #/<br>HR.<br>[3] | TONS/<br>YEAR<br>[4] | EMISSION FORM<br>OR PHASE (AT<br>EXIT<br>CONDITIONS) | EST. METHOD<br>USED<br>[5] | EMISSION<br>CONCENTRATION<br>(ppmv or mg/m3)<br>[6] | ZONE         | EAST<br>(Mtrs)      | NORTH<br>(Mtrs) | ELEVATION:<br>GROUND<br>LEVEL<br>(ft) | STACK HEIGHT ABOVE GROUND LEVEL. (ft) [7] | DIAMETER<br>(ft) | VOL. FLOW<br>(ACFM)<br>[8] | VEL.<br>(fps) | TEMP<br>(°F) |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Filterable PM                              | 0.10             | 0.005                | Solid                                                | EE                         | TBD                                                 |              |                     |                 |                                       |                                           |                  | [0]                        |               | +            |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Total PM                                   | 0.10             | 0.005                | Solid                                                | EE                         | TBD                                                 | †            |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Total PM <sub>10</sub>                     | 0.10             | 0.005                | Solid/Gas                                            | EE                         | TBD                                                 | †            |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Total PM <sub>2.5</sub>                    | 0.10             | 0.005                | Solid/Gas                                            | EE                         | TBD                                                 | †            |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | NO <sub>X</sub>                            | 1.84             | 0.092                | Gas                                                  | EE                         | TBD                                                 | 1            |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
| EFWP1         | Point | EFWP1               | Emergency Fire Water<br>Pump 1 | N/A                  | N/A                    | CO                                         | 1.73             | 0.086                | Gas                                                  | EE                         | TBD                                                 | 18           | 251,898             | 4,380,358       | N/A                                   | 12                                        | 0.50             | 1,500                      | 127.95        | 848          |        |             |     |            |         |
|               |       |                     | Pullip 1                       |                      |                        | VOC                                        | 0.13             | 0.007                | Gas                                                  | EE                         | TBD                                                 | 1            |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | SO <sub>2</sub>                            | 3.26E-03         | 1.63E-04             | Gas                                                  | EE                         | TBD                                                 | ]            |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Max Single HAP                             | 2.48E-03         | 1.24E-04             | Solid/Gas                                            | EE                         | TBD                                                 |              |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Total HAP                                  | 8.13E-03         | 4.07E-04             | Solid/Gas                                            | EE                         | TBD                                                 | 1            |                     |                 |                                       | N/A TBD                                   |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | CO₂e                                       | -                | 17.18                | Gas                                                  | EE                         | TBD                                                 |              |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     | Diesel Storage Tank            |                      |                        | VOC                                        | 0.015            | 3.62E-04             | Gas                                                  | EE                         | TBD                                                 |              |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
| DSLTK-GEN1    | Point | DSLTK-GEN1          | for Emergency                  | N/A                  | N/A                    | Max Single HAP                             | 6.01E-03         | 1.44E-04             | Solid/Gas                                            | EE                         | TBD                                                 | 18           | TBD                 | TBD             | N/A                                   |                                           | N/A TBD          | N/A TB                     | N/A           | N/A T        | N/A TE | TBD         | TBD | Negligible | Ambient |
|               |       |                     | Generator No. 1                |                      |                        | Total HAP                                  | 7.85E-03         | 1.88E-04             | Solid/Gas                                            | EE                         | TBD                                                 |              |                     |                 |                                       |                                           |                  |                            |               |              |        | <del></del> |     |            |         |
|               |       |                     | Diesel Storage Tank            |                      |                        | VOC                                        | 0.015            | 3.62E-04             | Gas                                                  | EE                         | TBD                                                 |              |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
| DSLTK-FWP1    | Point | DSLTK-FWP1          | for Fire Water Pump<br>No. 1   | N/A                  | N/A                    | Max Single HAP                             | 6.01E-03         | 1.44E-04             | Solid/Gas                                            | EE                         | TBD                                                 | 18           | TBD                 | TBD             | N/A                                   | N/A                                       | TBD              | TBD                        | Negligible    | Ambient      |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Total HAP                                  | 7.85E-03         | 1.88E-04             | Solid/Gas                                            | EE                         | TBD                                                 |              |                     |                 |                                       |                                           |                  |                            |               | +            |        |             |     |            |         |
| DSLTK-VEH     | Point | DSLTK-VEH           | Diesel Storage Tank            | N/A                  | N/A                    | VOC                                        | 0.15<br>6.01E-03 | 3.59E-03<br>1.44E-04 | Gas<br>Solid/Gas                                     | EE<br>EE                   | TBD<br>TBD                                          | 18           | TBD                 | TBD             | N/A                                   | N/A                                       | TBD              | TBD                        | Nogligible    | Ambient      |        |             |     |            |         |
| DOLIK-VEH     | FUIIL | D3L1K-VEH           | Supporting On-Site<br>Vehicles | IN/A                 | IN/A                   | Max Single HAP Total HAP                   | 7.85E-03         | 1.44E-04<br>1.88E-04 | Solid/Gas<br>Solid/Gas                               | EE                         | TBD                                                 | 10           | עפו                 | טסו             | IN/A                                  | IN/A                                      | טפו              | טפו                        | Negligible    | Ambient      |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Filterable PM                              | 0.20             | 0.20                 | Solid                                                | EE                         | TBD                                                 |              |                     |                 |                                       |                                           |                  |                            |               | +            |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Total PM                                   | 0.20             | 0.20                 | Solid                                                | EE                         | TBD                                                 | †            |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Total PM <sub>10</sub>                     | 0.20             | 0.20                 | Solid/Gas                                            | EE                         | TBD                                                 | †            |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Total PM <sub>2.5</sub>                    | 0.20             | 0.20                 | Solid/Gas                                            | EE                         | TBD                                                 | †            |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | NO <sub>X</sub>                            | 0.046            | 9.13E-02             | Gas                                                  | EE                         | TBD                                                 | †            |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     | <b></b>                        |                      |                        | CO                                         | 2.64E-02         | 5.29E-02             | Gas                                                  | EE                         | TBD                                                 | † . <u>.</u> |                     |                 |                                       | _                                         |                  | _                          |               |              |        |             |     |            |         |
| TORCH1        | Point | TORCH1              | Cutting Torches                | N/A                  | N/A                    | VOC                                        | 2.81E-03         | 5.62E-03             | Gas                                                  | EE                         | TBD                                                 | 18           | 251,903             | 4,380,618       | N/A                                   | 3                                         | 2.50             | 1                          | 0.0033        | 848          |        |             |     |            |         |
|               |       |                     |                                |                      |                        | SO <sub>2</sub>                            | 3.51E-03         | 7.02E-03             | Gas                                                  | EE                         | TBD                                                 | 1            |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Pb                                         | 1.57E-07         | 3.15E-07             | Solid                                                | EE                         | TBD                                                 | 1            |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Max Single HAP                             | 5.67E-04         | 1.13E-03             | Solid/Gas                                            | EE                         | TBD                                                 | ]            |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | Total HAP                                  | 5.95E-04         | 1.19E-03             | Solid/Gas                                            | EE                         | TBD                                                 |              |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |
|               |       |                     |                                |                      |                        | CO <sub>2</sub> e                          | -                | 89.39                | Gas                                                  | EE                         | TBD                                                 |              |                     |                 |                                       |                                           |                  |                            |               |              |        |             |     |            |         |

#### eneral Instructions

<sup>1.</sup> Identify each emission point with a unique number for this plant site, consistent with emission point identification used on plot plan, previous permits, and Emissions Inventory Questionnaire. Include fugitive emission point use as many lines as necessary to list regulated air pollutant data. Typical emission point names are: heater, vent, boiler, tank, reactor, separator, baghouse, fugitive, etc. Abbreviations are O.K. Please add descriptors such as upward vertical stack, downward vertical stack, relief vent, rain cap, etc.

<sup>2.</sup> List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases

Pounds per hour (#/HR) is maximum potential emission rate expected by applicant.

<sup>4.</sup> Tons per year is annual maximum potential emission expected by applicant, which takes into account process operating schedule.

<sup>5.</sup> Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify)

<sup>6.</sup> Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

<sup>7.</sup> Give at operating conditions. Including inerts.

<sup>8.</sup> Release height of emissions above ground level.

# 13. ATTACHMENT K: FUGITIVE EMISSIONS DATA SUMMARY SHEET

#### **Attachment K - Fugitive Emissions Data Summary Sheet**

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

| APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.) Will there be haul road activities?                                                                                                                                                                     |
| Yes If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.                                                                                                                                          |
| 2.) Will there be Storage Piles?                                                                                                                                                                            |
| No* If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.  * The storage piles for the CMC Plant will all be metalic materials (i.e., scrap metal and slag).           |
| 3.) Will there be Liquid Loading/Unloading Operations?                                                                                                                                                      |
| No If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.                                                                                                                          |
| 4.) Will there be emissions of air pollutants from Wastewater Treatment Evaporation?                                                                                                                        |
| No If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.                                                                                                                                                  |
| 5.) Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)? |
| No If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.                                                                                                 |
| 6.) Will there be General Clean-up VOC Operations?                                                                                                                                                          |
| No If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.                                                                                                                                                  |
| 7.) Will there be any other activities that generate fugitive emissions?                                                                                                                                    |
| Yes If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.                                                                                                                    |
|                                                                                                                                                                                                             |

#### **Attachment K - Fugitive Emissions Data Summary Sheet**

|                                                | All Regulated Pollutants -                    | Maximum<br>Uncontrolle |        | Maximum<br>Controlled I                                       |        | Est. Method                 |
|------------------------------------------------|-----------------------------------------------|------------------------|--------|---------------------------------------------------------------|--------|-----------------------------|
| FUGITIVE EMISSIONS SUMMARY                     | Chemical Name/CAS <sup>1</sup>                | lb/hr                  | ton/yr | lb/hr                                                         | ton/yr | Used <sup>4</sup>           |
|                                                | Filterable PM                                 | 1.34                   | 1.76   | 1.34                                                          | 1.76   | EE                          |
|                                                | Total PM                                      | 1.34                   | 1.76   | 1.34                                                          | 1.76   | EE                          |
| Haul Road/Road Dust Emissions Paved Haul Roads | Total PM <sub>10</sub>                        | 0.27                   | 0.35   | 0.27                                                          | 0.35   | EE                          |
|                                                | Total PM <sub>2.5</sub>                       | 0.07                   | 0.09   | 0.07                                                          | 0.09   | EE                          |
|                                                | Filterable PM                                 | 8.24                   | 5.97   | 8.24                                                          | 5.97   | EE                          |
|                                                | Total PM                                      | 8.24                   | 5.97   | 8.24                                                          | 5.97   | EE                          |
| Unpaved Haul Roads                             | Total PM <sub>10</sub>                        | 2.20                   | 1.59   | 2.20                                                          | 1.59   | EE                          |
|                                                | Total PM <sub>2.5</sub>                       | 0.22                   | 0.16   | 0.22                                                          | 0.16   | EE                          |
| Storage Pile Emissions                         | Form K specifically requests inform and slag) |                        | • •    | storage piles for the CMC Pl<br>les is presented in the R13-L |        | aterials (i.e., scrap metal |
| Liquid Loading/Unloading Operations            | N/A                                           | N/A                    | N/A    | N/A                                                           | N/A    | N/A                         |
| Wastewater Treatment Evaporation & Operations  | N/A                                           | N/A                    | N/A    | N/A                                                           | N/A    | N/A                         |
| Equipment Leaks                                | N/A                                           | N/A                    | N/A    | N/A                                                           | N/A    | N/A                         |
| General Clean-up VOC Emissions                 | N/A                                           | N/A                    | N/A    | N/A                                                           | N/A    | N/A                         |
|                                                | Filterable PM                                 | 1.80                   | 7.26   | 1.80                                                          | 7.26   | EE & O (BACT)               |
| Other:                                         | Total PM                                      | 1.80                   | 7.26   | 1.80                                                          | 7.26   | EE & O (BACT)               |
| Uncontrolled Material Handling and Storage     | Total PM <sub>10</sub>                        | 0.90                   | 3.62   | 0.90                                                          | 3.62   | EE & O (BACT)               |
|                                                | Total PM <sub>2.5</sub>                       | 0.14                   | 0.55   | 0.14                                                          | 0.55   | EE & O (BACT)               |

List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS 2, VOCs, H 2 S, Inorganics, Lead, Organics, O 3, NO, NO 2, SO 2, SO 3, all applicable Greenhouse Gases (including CO 2 and methane), etc. DO NOT LIST H 2, H 2 O, N 2, O 2, and Noble Gases.

<sup>&</sup>lt;sup>2</sup> Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

<sup>&</sup>lt;sup>3</sup> Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

# 14. ATTACHMENT L: EMISSIONS UNIT DATA SHEETS

| Emission Unit       | t Form Number:       | 1                                                              | 3                                                                    | 4                                        | 6a                                               | 6g                                                                | 7. Projec | cted operating | schedule:  |
|---------------------|----------------------|----------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|-----------|----------------|------------|
| Emission<br>Unit ID | Emission<br>Point ID | Name or Type and Model                                         | Name(s) and Maximum<br>Process Materials<br>Charged                  | Name(s) and Maximum<br>Material Produced | Type and Amount of<br>Fuel(s) Burned             | Proposed Maximum<br>Design Heat Input<br>(10 <sup>6</sup> BTU/hr) | Hours/Day | Days/Week      | Weeks/Year |
| EAF1, LMS1          | BH1                  | Meltshop Baghouse                                              | Steel: 117 tons/hr                                                   | Steel: 117 tons/hr                       | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| EAF1, LMS1          | CV1                  | Caster Vent                                                    | Steel: 117 tons/hr                                                   | Steel: 117 tons/hr                       | Propane: 672 gal/hr<br>Natural Gas: 60294 scf/hr | 62                                                                | 24        | 7              | 52         |
| RMV1                | RMV1                 | Rolling Mill Vent 1                                            | Propane: 90 gal/hr<br>Natural Gas: 8064 scf/hr<br>Steel: 117 tons/hr | N/A                                      | Propane: 90 gal/hr<br>Natural Gas: 8064 scf/hr   | 8.23                                                              | 24        | 7              | 52         |
| CBV1                | CBV1                 | Cooling Beds Vent 1                                            | Steel: 117 tons/hr                                                   | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| SPV1                | SPV1                 | Spooler Vent 1                                                 | Steel: 117 tons/hr                                                   | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| FLXSL011            |                      | Fluxing Agent Storage Silo No. 1                               | Fluxing Agent: 3000<br>scf/min                                       | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| FLXSLO12            | FLXSLO12             | Fluxing Agent Storage Silo No. 2                               | Fluxing Agent: 3000 scf/min                                          | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| CARBSLO1            | CARBSLO1             | Carbon Storage Silo No. 1                                      | Coal/Coke: 2050 scf/min                                              | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| DUSTSL01            | DUSTSLO1             | EAF Baghouse Dust Silo                                         | Baghouse Dust: 1300<br>scf/min                                       | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| TR51A               | TR51A                | Inside ECS Building Drop Points, Scrap                         | Scrap: 830 ton/hr                                                    | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| TR51B               | TR51B                | Outside ECS Building Drop Points, Scrap, Storage Area          | Scrap: 330 ton/hr                                                    | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| TR51C               | TR51C                | Outside Rail Bins Drop Point, Scrap                            | Scrap: 110 ton/hr                                                    | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| TR51E               |                      | Outside Truck Bins Drop Point, Scrap                           | Scrap: 110 ton/hr                                                    | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| TR71                | TR71                 | Inside ECS Building Drop Points, Fluxing Agent                 | Fluxing Agent: 30 ton/hr                                             | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| TR81                | TR81                 | Outside Drop Points, Alloy Aggregate                           | Alloy Aggregate: 60<br>ton/hr                                        | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| TR91A               | TR91A                | Inside Drop Points, Removed Refractory and Other Materials     | Removed Refractory /<br>Other Materials: 25<br>ton/hr                | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| TR91B               | TR91B                | Outside Drop Points, Removed Refractory and Other<br>Materials | Removed Refractory /<br>Other Materials: 25<br>ton/hr                | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| TR11A               | TR11A                | Outside SPP Pile Drop Points, Slag                             | Slag: 100 ton/hr                                                     | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| TR11B1              |                      | SPP Material Transfers and Screens                             | Slag: 100 ton/hr                                                     | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| TR131               |                      | Outside Drop Points, Residual Scrap Pile                       | Residual Scrap: 25                                                   | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| TR141               |                      | Outside Drop Points, Mill Scale Pile                           | Mill Scale: 60 ton/hr                                                | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| CR1                 |                      | Ball Drop Crushing                                             | Large Scrap: 8 ton/hr                                                | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| W51A                |                      | ECS Scrap Building Storage Pile A                              | Scrap: 5900 sq. ft                                                   | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| W51B                | W51B                 | ECS Scrap Building Storage Pile B                              | Scrap: 5400 sq. ft                                                   | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| W51C                |                      | ECS Scrap Building Storage Pile C                              | Scrap: 5300 sq. ft                                                   | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| W51D                |                      | ECS Scrap Building Overage Scrap Pile                          | Scrap: 12100 sq. ft                                                  | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| W51E                |                      | Outside Rail Scrap 5k Pile A                                   | Scrap: 9100 sq. ft                                                   | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |
| W51F                |                      | Outside Rail Scrap 5k Pile B                                   | Scrap: 9100 sq. ft                                                   | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52<br>52   |
| W51G<br>W51H        | W51G<br>W51H         | Outside Rail Scrap 5k Pile C Outside Rail Scrap 5k Pile D      | Scrap: 9100 sq. ft                                                   | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52<br>52   |
| W51H<br>W51K        | W51H<br>W51K         | Outside Rail Scrap 5k Pile D Outside Truck Scrap 5k Pile A     | Scrap: 9100 sq. ft<br>Scrap: 9100 sq. ft                             | N/A<br>N/A                               | N/A<br>N/A                                       | N/A<br>N/A                                                        | 24<br>24  | 7              | 52<br>52   |
| W51L                | W51L                 | Outside Truck Scrap 5k Pile B                                  | Scrap: 9100 sq. ft                                                   | N/A<br>N/A                               | N/A<br>N/A                                       | N/A<br>N/A                                                        | 24        | 7              | 52         |
| W51M                |                      | Outside Truck Scrap 5k File C                                  | Scrap: 9100 sq. ft                                                   | N/A                                      | N/A                                              | N/A                                                               | 24        | 7              | 52         |

| Emission Uni        | t Form Number:       | 1                                         | 3                                               | 4                                        | 6a                                              | 6g                                                          | 7. Projec | cted operating | schedule:  |
|---------------------|----------------------|-------------------------------------------|-------------------------------------------------|------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|-----------|----------------|------------|
| Emission<br>Unit ID | Emission<br>Point ID | Name or Type and Model                    | Name(s) and Maximum Process Materials Charged   | Name(s) and Maximum<br>Material Produced | Type and Amount of<br>Fuel(s) Burned            | Proposed Maximum Design Heat Input (10 <sup>6</sup> BTU/hr) |           | Days/Week      | Weeks/Year |
| W51N                | W51N                 | Outside Truck Scrap 5k Pile D             | Scrap: 9100 sq. ft                              | N/A                                      | N/A                                             | N/A                                                         | 24        | 7              | 52         |
| W61                 | W61                  | Alloy Aggregate Storage Pile              | Alloy Aggregate:<br>1000 sq. ft                 | N/A                                      | N/A                                             | N/A                                                         | 24        | 7              | 52         |
| W71A                | W71A                 | SPP Slag Storage Pile                     | Slag: 29100 sq. ft                              | N/A                                      | N/A                                             | N/A                                                         | 24        | 7              | 52         |
| W71B                | W71B                 | SPP Piles                                 | SPP Product:<br>74100 sq. ft                    | N/A                                      | N/A                                             | N/A                                                         | 24        | 7              | 52         |
| W81                 | W81                  | Residual Scrap Storage Pile in Scrap Yard | Residual Scrap:<br>21200 sq. ft                 | N/A                                      | N/A                                             | N/A                                                         | 24        | 7              | 52         |
| W111                | W111                 | Mill Scale Pile                           | Mill Scale:<br>3500 sq. ft                      | N/A                                      | N/A                                             | N/A                                                         | 24        | 7              | 52         |
| CTNC11              | CTNC11A              | Non-Contact Cooling Tower 1 - Cell 1      | Water: 11000 gpm                                | N/A                                      | N/A                                             | N/A                                                         | 24        | 7              | 52         |
| CTNC11              | CTNC11B              | Non-Contact Cooling Tower 1 - Cell 2      | Water: 11000 gpm                                | N/A                                      | N/A                                             | N/A                                                         | 24        | 7              | 52         |
| CTNC12              | CTNC12A              | Non-Contact Cooling Tower 2 - Cell 1      | Water: 11000 gpm                                | N/A                                      | N/A                                             | N/A                                                         | 24        | 7              | 52         |
| CTNC12              | CTNC12B              | Non-Contact Cooling Tower 2 - Cell 2      | Water: 11000 gpm                                | N/A                                      | N/A                                             | N/A                                                         | 24        | 7              | 52         |
| CTC1                | CTC1A                | Contact Cooling Tower - Cell 1            | Water: 5500 gpm                                 | N/A                                      | N/A                                             | N/A                                                         | 24        | 7              | 52         |
| CTC1                | CTC1B                | Contact Cooling Tower - Cell 2            | Water: 5500 gpm                                 | N/A                                      | N/A                                             | N/A                                                         | 24        | 7              | 52         |
| EGEN1               | EGEN1                | Emergency Generator 1                     | Diesel - 580 lb/hr                              | N/A                                      | Diesel - 580 lb/hr                              | 11.2                                                        | 24        | 7              | 52         |
| EFWP1               | EFWP1                | Emergency Fire Water Pump 1               | Diesel - 109 lb/hr                              | N/A                                      | Diesel - 109 lb/hr                              | 2.1                                                         | 24        | 7              | 52         |
| TORCH1              | TORCH1               | Cutting Torches                           | Propane: 3.51 gal/hr<br>Natural Gas: 130 scf/hr | N/A                                      | Propane: 3.51 gal/hr<br>Natural Gas: 130 scf/hr | 0.32                                                        | 24        | 7              | 52         |

| Emission Unit       | Form Number:         | 1                                                              |                                        |                 | 8. Projected    | amount of p | ollutants        |              |         |         |           |
|---------------------|----------------------|----------------------------------------------------------------|----------------------------------------|-----------------|-----------------|-------------|------------------|--------------|---------|---------|-----------|
|                     |                      |                                                                |                                        | (               | Controlled E    | nission Rat | es (lb/hr)       |              |         |         |           |
| Emission<br>Unit ID | Emission<br>Point ID | Name or Type and Model                                         | @ Temp and Pressure<br>(°F & psia)     | NO <sub>x</sub> | SO <sub>2</sub> | CO          | PM <sub>10</sub> | Hydrocarbons | voc     | Lead    | Fluorides |
| EAF1, LMS1          | BH1                  | Meltshop Baghouse                                              | 176 °F / Ambient Pressure              | 45.63           | 49.14           | 936.00      | 29.92            | 35.10        | 35.10   | 0.19    | 1.17      |
| EAF1, LMS1          | CV1                  | Caster Vent                                                    | 136 °F / Ambient Pressure              | 8.85            | 0.80            | 7.92        | 1.70             | 0.72         | 0.72    | 2.4E-03 | 1.5E-02   |
| RMV1                | RMV1                 | Rolling Mill Vent 1                                            | 122 °F / Ambient Pressure              | 1.17            | 9.0E-02         | 0.68        | 7.3E-02          | 8.2E-02      | 8.2E-02 | -       | -         |
| CBV1                | CBV1                 | Cooling Beds Vent 1                                            | 142 °F / Ambient Pressure              | -               | _               | _           | 1.0E-02          | 1.0E-02      | 1.0E-02 | -       | -         |
| SPV1                | SPV1                 | Spooler Vent 1                                                 | 142 °F / Ambient Pressure              | _               | _               | _           | 1.0E-02          | 1.0E-02      | 1.0E-02 | _       | _         |
| FLXSLO11            | FLXSLO11             | Fluxing Agent Storage Silo No. 1                               | Ambient Temperature / Ambient Pressure | -               | -               | -           | 0.13             | -            | -       | -       | -         |
| FLXSLO12            | FLXSLO12             | Fluxing Agent Storage Silo No. 2                               | Ambient Temperature / Ambient Pressure | -               | -               | -           | 0.13             | -            | -       | -       | -         |
| CARBSL01            | CARBSLO1             | Carbon Storage Silo No. 1                                      | Ambient Temperature / Ambient Pressure | -               | -               | 1           | 8.8E-02          | -            | -       | -       | -         |
| DUSTSL01            | DUSTSL01             | EAF Baghouse Dust Silo                                         | Ambient Temperature / Ambient Pressure | -               | -               | -           | 5.6E-02          | -            | -       | -       | -         |
| TR51A               | TR51A                | Inside ECS Building Drop Points, Scrap                         | Ambient Temperature / Ambient Pressure | -               | -               | -           | 1.9E-02          | -            | -       | -       | -         |
| TR51B               | TR51B                | Outside ECS Building Drop Points, Scrap, Storage Area          | Ambient Temperature / Ambient Pressure | -               | -               | -           | 1.5E-02          | -            | -       | -       | -         |
| TR51C               | TR51C                | Outside Rail Bins Drop Point, Scrap                            | Ambient Temperature / Ambient Pressure | -               | -               | -           | 5.1E-03          | -            | -       | -       | -         |
| TR51E               | TR51E                | Outside Truck Bins Drop Point, Scrap                           | Ambient Temperature / Ambient Pressure | -               | -               | -           | 5.1E-03          | -            | -       | -       | -         |
| TR71                | TR71                 | Inside ECS Building Drop Points, Fluxing Agent                 | Ambient Temperature / Ambient Pressure | -               | -               | -           | 2.0E-03          | -            | -       | -       | -         |
| TR81                | TR81                 | Outside Drop Points, Alloy Aggregate                           | Ambient Temperature / Ambient Pressure | -               | -               | -           | 1.4E-03          | -            | -       | -       | -         |
| TR91A               | TR91A                | Inside Drop Points, Removed Refractory and Other Materials     | Ambient Temperature / Ambient Pressure | -               | -               | -           | 2.3E-03          | -            | -       | -       | -         |
| TR91B               | TR91B                | Outside Drop Points, Removed Refractory and Other<br>Materials | Ambient Temperature / Ambient Pressure | -               | -               | -           | 1.2E-02          | -            | -       | -       | -         |
| TR11A               | TR11A                | Outside SPP Pile Drop Points, Slag                             | Ambient Temperature / Ambient Pressure | -               | -               | -           | 2.9E-04          | -            | -       | -       | -         |
| TR11B1              | TR11B1               | SPP Material Transfers and Screens                             | Ambient Temperature / Ambient Pressure | -               | -               | -           | 1.0E-02          | -            | -       | -       | -         |
| TR131               | TR131                | Outside Drop Points, Residual Scrap Pile                       | Ambient Temperature / Ambient Pressure | -               | -               | -           | 2.3E-03          | -            | -       | -       | -         |
| TR141               | TR141                | Outside Drop Points, Mill Scale Pile                           | Ambient Temperature / Ambient Pressure | -               | -               | -           | 2.1E-02          | -            | -       | -       | -         |
| CR1                 | CR1                  | Ball Drop Crushing                                             | Ambient Temperature / Ambient Pressure | -               | -               | -           | 4.3E-03          | -            | -       | -       | -         |
| W51A                | W51A                 | ECS Scrap Building Storage Pile A                              | Ambient Temperature / Ambient Pressure | -               | -               | -           | 9.4E-03          | -            | -       | -       | -         |
| W51B                | W51B                 | ECS Scrap Building Storage Pile B                              | Ambient Temperature / Ambient Pressure | -               | -               | -           | 8.6E-03          | -            | -       | -       | -         |
| W51C                | W51C                 | ECS Scrap Building Storage Pile C                              | Ambient Temperature / Ambient Pressure | -               | -               | -           | 8.5E-03          | -            | -       | -       | -         |
| W51D                | W51D                 | ECS Scrap Building Overage Scrap Pile                          | Ambient Temperature / Ambient Pressure | -               | -               | -           | 3.9E-02          | -            | -       | -       | -         |
| W51E                | W51E                 | Outside Rail Scrap 5k Pile A                                   | Ambient Temperature / Ambient Pressure | -               | -               | -           | 2.9E-02          | -            | -       | -       | -         |
| W51F                | W51F                 | Outside Rail Scrap 5k Pile B                                   | Ambient Temperature / Ambient Pressure | -               | -               | -           | 2.9E-02          | -            | -       | -       | -         |
| W51G                | W51G                 | Outside Rail Scrap 5k Pile C                                   | Ambient Temperature / Ambient Pressure | -               | -               | -           | 2.9E-02          | -            | -       | -       | -         |
| W51H                | W51H                 | Outside Rail Scrap 5k Pile D                                   | Ambient Temperature / Ambient Pressure | -               | -               | -           | 2.9E-02          | -            | -       | -       | -         |
| W51K                | W51K                 | Outside Truck Scrap 5k Pile A                                  | Ambient Temperature / Ambient Pressure | -               | -               | -           | 2.9E-02          | -            | -       | -       | -         |
| W51L                | W51L                 | Outside Truck Scrap 5k Pile B                                  | Ambient Temperature / Ambient Pressure | -               | -               | -           | 2.9E-02          | -            | -       | -       | -         |
| W51M                | W51M                 | Outside Truck Scrap 5k Pile C                                  | Ambient Temperature / Ambient Pressure | -               | -               | -           | 2.9E-02          | -            | -       | -       | -         |

| Emission Unit       | Form Number:         | 1                                         |                                        |                 | •               | amount of p  |                  |              |         |         |           |
|---------------------|----------------------|-------------------------------------------|----------------------------------------|-----------------|-----------------|--------------|------------------|--------------|---------|---------|-----------|
|                     |                      |                                           |                                        | C               | ontrolled E     | mission Rate | es (lb/hr)       | 1            |         | T       | -         |
| Emission<br>Unit ID | Emission<br>Point ID | Name or Type and Model                    | @ Temp and Pressure<br>(°F & psia)     | NO <sub>X</sub> | SO <sub>2</sub> | со           | PM <sub>10</sub> | Hydrocarbons | VOC     | Lead    | Fluorides |
| W51N                | W51N                 | Outside Truck Scrap 5k Pile D             | Ambient Temperature / Ambient Pressure | -               | -               | -            | 2.9E-02          | -            | -       | -       | -         |
| W61                 | W61                  | Alloy Aggregate Storage Pile              | Ambient Temperature / Ambient Pressure | -               | -               | -            | 8.5E-04          | -            | -       | -       | -         |
| W71A                | W71A                 | SPP Slag Storage Pile                     | Ambient Temperature / Ambient Pressure | -               | -               | -            | 0.11             | -            | -       | -       | -         |
| W71B                | W71B                 | SPP Piles                                 | Ambient Temperature / Ambient Pressure | -               | -               | -            | 0.29             | -            | -       | -       | -         |
| W81                 | W81                  | Residual Scrap Storage Pile in Scrap Yard | Ambient Temperature / Ambient Pressure | -               | -               | -            | 8.3E-02          | -            | -       | -       | -         |
| W111                | W111                 | Mill Scale Pile                           | Ambient Temperature / Ambient Pressure | -               | -               | -            | 6.9E-03          | -            | -       | -       | -         |
| CTNC11              | CTNC11A              | Non-Contact Cooling Tower 1 - Cell 1      | Ambient Temperature / Ambient Pressure | -               | -               | -            | 7.5E-02          | -            | -       | -       | -         |
| CTNC11              | CTNC11B              | Non-Contact Cooling Tower 1 - Cell 2      | Ambient Temperature / Ambient Pressure | -               | -               | -            | 7.5E-02          | -            | -       | -       | -         |
| CTNC12              | CTNC12A              | Non-Contact Cooling Tower 2 - Cell 1      | Ambient Temperature / Ambient Pressure | -               | -               | -            | 7.5E-02          | -            | -       | -       | -         |
| CTNC12              | CTNC12B              | Non-Contact Cooling Tower 2 - Cell 2      | Ambient Temperature / Ambient Pressure | -               | -               | -            | 7.5E-02          | -            | -       | -       | -         |
| CTC1                | CTC1A                | Contact Cooling Tower - Cell 1            | Ambient Temperature / Ambient Pressure | -               | -               | -            | 3.8E-02          | -            | -       | -       | -         |
| CTC1                | CTC1B                | Contact Cooling Tower - Cell 2            | Ambient Temperature / Ambient Pressure | -               | -               | -            | 3.8E-02          | -            | =       | -       | -         |
| EGEN1               | EGEN1                | Emergency Generator 1                     | 600 °F / Ambient Pressure              | 9.82            | 1.7E-02         | 9.21         | 0.53             | 0.70         | 0.70    | -       | -         |
| EFWP1               | EFWP1                | Emergency Fire Water Pump 1               | 848 °F / Ambient Pressure              | 1.84            | 3.3E-03         | 1.73         | 0.10             | 0.13         | 0.13    | -       | -         |
| TORCH1              | TORCH1               | Cutting Torches                           | 848 °F / Ambient Pressure              | 4.6E-02         | 3.5E-03         | 2.6E-02      | 0.20             | 2.8E-03      | 2.8E-03 | 1.6E-07 | -         |

| Emission Unit       | Form Number:         | 1                                                              | 9. Proposed M | onitoring, Record    | keeping, Reporti     | ng, and Testir |
|---------------------|----------------------|----------------------------------------------------------------|---------------|----------------------|----------------------|----------------|
| Emission<br>Unit ID | Emission<br>Point ID | Name or Type and Model                                         | Monitoring    | Recordkeeping        | Reporting            | Testing        |
| EAF1, LMS1          | BH1                  | Meltshop Baghouse                                              | See re        | gulatory write-up ii | n the application na | arrative       |
| EAF1, LMS1          | CV1                  | Caster Vent                                                    | See re        | gulatory write-up ii | n the application na | arrative       |
| RMV1                | RMV1                 | Rolling Mill Vent 1                                            | See re        | gulatory write-up ii | n the application na | arrative       |
| CBV1                | CBV1                 | Cooling Beds Vent 1                                            | See re        | gulatory write-up ii | n the application na | arrative       |
| SPV1                | SPV1                 | Spooler Vent 1                                                 | See re        | gulatory write-up ii | n the application na | arrative       |
| FLXSLO11            | FLXSL011             | Fluxing Agent Storage Silo No. 1                               | See re        | gulatory write-up ii | n the application na | arrative       |
| FLXSLO12            | FLXSL012             | Fluxing Agent Storage Silo No. 2                               | See re        | gulatory write-up ii | n the application na | arrative       |
| CARBSLO1            | CARBSLO1             | Carbon Storage Silo No. 1                                      | See re        | gulatory write-up ii | n the application na | arrative       |
| DUSTSL01            | DUSTSL01             | EAF Baghouse Dust Silo                                         | See re        | gulatory write-up ii | n the application na | arrative       |
| TR51A               | TR51A                | Inside ECS Building Drop Points, Scrap                         | See re        | gulatory write-up ii | n the application na | arrative       |
| TR51B               | TR51B                | Outside ECS Building Drop Points, Scrap, Storage Area          | See re        | gulatory write-up ii | n the application na | arrative       |
| TR51C               | TR51C                | Outside Rail Bins Drop Point, Scrap                            | See re        | gulatory write-up ii | n the application na | arrative       |
| TR51E               | TR51E                | Outside Truck Bins Drop Point, Scrap                           | See re        | gulatory write-up ii | n the application na | arrative       |
| TR71                | TR71                 | Inside ECS Building Drop Points, Fluxing Agent                 | See re        | gulatory write-up ii | n the application na | arrative       |
| TR81                | TR81                 | Outside Drop Points, Alloy Aggregate                           | See re        | gulatory write-up ii | n the application na | arrative       |
| TR91A               | TR91A                | Inside Drop Points, Removed Refractory and Other Materials     | See re        | gulatory write-up ii | n the application na | arrative       |
| TR91B               | TR91B                | Outside Drop Points, Removed Refractory and Other<br>Materials | See re        | gulatory write-up ii | n the application na | arrative       |
| TR11A               | TR11A                | Outside SPP Pile Drop Points, Slag                             | See re        | gulatory write-up ii | n the application na | arrative       |
| TR11B1              | TR11B1               | SPP Material Transfers and Screens                             | See re        | gulatory write-up ii | n the application na | arrative       |
| TR131               | TR131                | Outside Drop Points, Residual Scrap Pile                       |               | gulatory write-up ii | * *                  |                |
| TR141               | TR141                | Outside Drop Points, Mill Scale Pile                           |               | gulatory write-up ii |                      |                |
| CR1                 | CR1                  | Ball Drop Crushing                                             | See re        | gulatory write-up ii | n the application na | arrative       |
| W51A                | W51A                 | ECS Scrap Building Storage Pile A                              |               | gulatory write-up ii |                      |                |
| W51B                | W51B                 | ECS Scrap Building Storage Pile B                              |               | gulatory write-up ii |                      |                |
| W51C                | W51C                 | ECS Scrap Building Storage Pile C                              |               | gulatory write-up ii | * *                  |                |
| W51D                | W51D                 | ECS Scrap Building Overage Scrap Pile                          |               | gulatory write-up ii | * *                  |                |
| W51E                | W51E                 | Outside Rail Scrap 5k Pile A                                   |               | gulatory write-up ii |                      |                |
| W51F                | W51F                 | Outside Rail Scrap 5k Pile B                                   |               | gulatory write-up ii | * *                  |                |
| W51G                | W51G                 | Outside Rail Scrap 5k Pile C                                   |               | gulatory write-up ii | * *                  |                |
| W51H                | W51H                 | Outside Rail Scrap 5k Pile D                                   |               | gulatory write-up ii | * *                  |                |
| W51K                | W51K                 | Outside Truck Scrap 5k Pile A                                  |               | gulatory write-up ii |                      |                |
| W51L                | W51L                 | Outside Truck Scrap 5k Pile B                                  |               | gulatory write-up ii | * *                  |                |
| W51M                | W51M                 | Outside Truck Scrap 5k Pile C                                  | See re        | gulatory write-up ii | n the application na | arrative       |

| Emission Uni        | t Form Number:       | 1                                         | 9. Proposed Monitoring, Recordkeeping, Reporting, and Tes |                      |                      |          |  |
|---------------------|----------------------|-------------------------------------------|-----------------------------------------------------------|----------------------|----------------------|----------|--|
| Emission<br>Unit ID | Emission<br>Point ID | Name or Type and Model                    | Monitoring                                                | Recordkeeping        | Reporting            | Testing  |  |
| W51N                | W51N                 | Outside Truck Scrap 5k Pile D             | See re                                                    | gulatory write-up ii | n the application na | arrative |  |
| W61                 | W61                  | Alloy Aggregate Storage Pile              | See re                                                    | gulatory write-up ii | n the application na | arrative |  |
| W71A                | W71A                 | SPP Slag Storage Pile                     | See regulatory write-up in the application narrative      |                      |                      |          |  |
| W71B                | W71B                 | SPP Piles                                 | See regulatory write-up in the application narrative      |                      |                      |          |  |
| W81                 | W81                  | Residual Scrap Storage Pile in Scrap Yard | See re                                                    | gulatory write-up i  | n the application na | arrative |  |
| W111                | W111                 | Mill Scale Pile                           | See re                                                    | gulatory write-up i  | n the application na | arrative |  |
| CTNC11              | CTNC11A              | Non-Contact Cooling Tower 1 - Cell 1      | See re                                                    | gulatory write-up ii | n the application na | arrative |  |
| CTNC11              | CTNC11B              | Non-Contact Cooling Tower 1 - Cell 2      | See re                                                    | gulatory write-up ii | n the application na | arrative |  |
| CTNC12              | CTNC12A              | Non-Contact Cooling Tower 2 - Cell 1      | See re                                                    | gulatory write-up ii | n the application na | arrative |  |
| CTNC12              | CTNC12B              | Non-Contact Cooling Tower 2 - Cell 2      | See re                                                    | gulatory write-up ii | n the application na | arrative |  |
| CTC1                | CTC1A                | Contact Cooling Tower - Cell 1            | See re                                                    | gulatory write-up ii | n the application na | arrative |  |
| CTC1                | CTC1B                | Contact Cooling Tower - Cell 2            | See regulatory write-up in the application narrative      |                      |                      |          |  |
| EGEN1               | EGEN1                | Emergency Generator 1                     | See regulatory write-up in the application narrative      |                      |                      |          |  |
| EFWP1               | EFWP1                | Emergency Fire Water Pump 1               | See regulatory write-up in the application narrative      |                      |                      |          |  |
| TORCH1              | TORCH1               | Cutting Torches                           | See regulatory write-up in the application narrative      |                      |                      |          |  |

#### **Attachment L - Fugitive Emissions from Unpaved Haul Roads**

UNPAVED HAULROADS & PARKING AREAS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

|     |                                                       | PM   | PM-10 |
|-----|-------------------------------------------------------|------|-------|
| k = | Particle Size Multiplier                              | 4.90 | 1.5   |
| S = | Silt content of road surface material (%)             | 6    | 6     |
| p = | Number of days per year with precipitation > 0.01 in. | 150  | 150   |

| Truck ID | Description                                                | Mean<br>Vehicle<br>Weight | Mean<br>Vehicle<br>Speed<br>(mph) | Daily Miles<br>Traveled<br>(VMT/day) | Annual Miles<br>Traveled<br>(VMT/yr) | Control Device ID<br>Number | Control<br>Efficiency |
|----------|------------------------------------------------------------|---------------------------|-----------------------------------|--------------------------------------|--------------------------------------|-----------------------------|-----------------------|
| TRK1     | Off-Site to ECS Building Scrap Bay                         | (tons)<br>27.5            | <15 MPH                           | (VM1/uay)                            | (VIVII/yI)                           |                             | <b>(%)</b><br>70      |
| TRK1     | Off-Site to ECS building Scrap Bay  Off-Site to Scrap Yard | 27.5                      | <15 MPH                           | 8.31                                 | 2,084.64                             | Watering<br>Watering        | 70                    |
| TRK3     | Around Scrap Yard to Around Scrap Yard                     | 31.0                      | <15 MPH                           | 0                                    | 0                                    | Watering                    | 70                    |
| TRK4     | Around Scrap Yard to Around Scrap Yard                     | 27.5                      | <15 MPH                           | 0                                    | 0                                    | Watering                    | 70                    |
| TRK5     | Off-Site to Silos                                          | 27.5                      | <15 MPH                           | 0.056                                | 13.23                                | Watering                    | 70                    |
| TRK6     | Off-Site to Storage                                        | 31.0                      | <15 MPH                           | 0                                    | 0                                    | Watering                    | 70                    |
| TRK7     | Storage to Meltshop                                        | 6.0                       | <15 MPH                           | 0                                    | 0                                    | Watering                    | 70                    |
| TRK8     | Off-Site to Silos                                          | 27.5                      | <15 MPH                           | 0.14                                 | 31.01                                | Watering                    | 70                    |
| TRK9     | Off-Site to Alloy Pile                                     | 27.5                      | <15 MPH                           | 0                                    | 0                                    | Watering                    | 70                    |
| TRK10    | Meltshop to Off-Site                                       | 27.5                      | <15 MPH                           | 0                                    | 0                                    | Watering                    | 70                    |
| TRK11    | Finished Products Storage to Off-Site                      | 27.5                      | <15 MPH                           | 0                                    | 0                                    | Watering                    | 70                    |
| TRK12    | Off-Site to Gas Storage Area                               | 6.0                       | <15 MPH                           | 0                                    | 0                                    | Watering                    | 70                    |
| TRK13    | Mill Scale Pile to Off-Site                                | 27.5                      | <15 MPH                           | 0                                    | 0                                    | Watering                    | 70                    |
| TRK14    | Meltshop to Quench Building                                | 31.0                      | <15 MPH                           | 1.50                                 | 309.83                               | Watering                    | 70                    |
| TRK15    | Quench Building to SPP Area                                | 31.0                      | <15 MPH                           | 5.16                                 | 1,064.36                             | Watering                    | 70                    |
| TRK16    | Within SPP Area to Within SPP Area                         | 34.5                      | <15 MPH                           | 6.24                                 | 1,287.33                             | Watering                    | 70                    |
| TRK17    | SPP Area to Off-Site                                       | 27.5                      | <15 MPH                           | 1.19                                 | 343.85                               | Watering                    | 70                    |
| TRK18    | Trailer Parking Area                                       | 15.0                      | <15 MPH                           | 0                                    | 0                                    | Watering                    | 70                    |
| TRK19    | General Support                                            | 34.5                      | <15 MPH                           | 13.11                                | 2,631.56                             | Watering                    | 70                    |

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) = lb/Vehicle Mile Traveled (VMT)$ 

Where:

|     |                                                       | PM      | PM-10   |
|-----|-------------------------------------------------------|---------|---------|
| k = | Particle Size Multiplier                              | 4.90    | 1.5     |
| s = | Silt content of road surface material (%)             | 6       | 6       |
| S = | Mean vehicle speed (mph)                              | <15 MPH | <15 MPH |
| W = | Mean vehicle weight (tons)                            | 31.95   | 31.95   |
| p = | Number of days per year with precipitation > 0.01 in. | 150     | 150     |

For lb/hr: [lb  $\div$  VMT]  $\times$  [VMT  $\div$  trip]  $\times$  [Trips  $\div$  Hour] = lb/hr

For TPY: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

<sup>&</sup>lt;sup>1</sup> Please refer to details in calculations

#### **Attachment L - Fugitive Emissions from Unpaved Haul Roads**

UNPAVED HAULROADS & PARKING AREAS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

|     |                          | PM   | PM-10 |
|-----|--------------------------|------|-------|
| k = | Particle Size Multiplier | 4.90 | 1.5   |

| SUMMARY OF UNPAVED HAULROAD EMISSIONS |         |       |       |         |       |          |       |           |  |  |  |  |  |
|---------------------------------------|---------|-------|-------|---------|-------|----------|-------|-----------|--|--|--|--|--|
|                                       |         | PM    |       |         |       |          | PM-10 |           |  |  |  |  |  |
|                                       | Uncontr | olled | Con   | trolled | Unco  | ntrolled | C     | ontrolled |  |  |  |  |  |
| Truck ID                              | lb/hr   | TPY   | lb/hr | TPY     | lb/hr | TPY      | lb/hr | TPY       |  |  |  |  |  |
| TRK1                                  | 0       | 0     | 0     | 0       | 0     | 0        | 0     | 0         |  |  |  |  |  |
| TRK2                                  | 3.78    | 5.02  | 1.13  | 1.51    | 1.01  | 1.34     | 0.30  | 0.40      |  |  |  |  |  |
| TRK3                                  | 0       | 0     | 0     | 0       | 0     | 0        | 0     | 0         |  |  |  |  |  |
| TRK4                                  | 0       | 0     | 0     | 0       | 0     | 0        | 0     | 0         |  |  |  |  |  |
| TRK5                                  | 0.23    | 0.032 | 0.068 | 0.010   | 0.061 | 0.008    | 0.018 | 0.0025    |  |  |  |  |  |
| TRK6                                  | 0       | 0     | 0     | 0       | 0     | 0        | 0     | 0         |  |  |  |  |  |
| TRK7                                  | 0       | 0     | 0     | 0       | 0     | 0        | 0     | 0         |  |  |  |  |  |
| TRK8                                  | 0.23    | 0.075 | 0.068 | 0.022   | 0.061 | 0.020    | 0.018 | 0.0060    |  |  |  |  |  |
| TRK9                                  | 0       | 0     | 0     | 0       | 0     | 0        | 0     | 0         |  |  |  |  |  |
| TRK10                                 | 0       | 0     | 0     | 0       | 0     | 0        | 0     | 0         |  |  |  |  |  |
| TRK11                                 | 0       | 0     | 0     | 0       | 0     | 0        | 0     | 0         |  |  |  |  |  |
| TRK12                                 | 0       | 0     | 0     | 0       | 0     | 0        | 0     | 0         |  |  |  |  |  |
| TRK13                                 | 0       | 0     | 0     | 0       | 0     | 0        | 0     | 0         |  |  |  |  |  |
| TRK14                                 | 0.86    | 0.79  | 0.26  | 0.24    | 0.23  | 0.21     | 0.069 | 0.063     |  |  |  |  |  |
| TRK15                                 | 2.97    | 2.70  | 0.89  | 0.81    | 0.79  | 0.72     | 0.24  | 0.22      |  |  |  |  |  |
| TRK16                                 | 3.76    | 3.43  | 1.13  | 1.03    | 1.00  | 0.91     | 0.30  | 0.27      |  |  |  |  |  |
| TRK17                                 | 0.81    | 0.83  | 0.24  | 0.25    | 0.22  | 0.22     | 0.065 | 0.07      |  |  |  |  |  |
| TRK18                                 | 0       | 0     | 0     | 0       | 0     | 0        | 0     | 0         |  |  |  |  |  |
| TRK19                                 | 14.83   | 7.02  | 4.45  | 2.10    | 3.95  | 1.87     | 1.19  | 0.56      |  |  |  |  |  |

Note: Extraneous information unrelated to regulatory requirements and air emissions has been excluded from the application form. Information labeled as "to be determined" (TBD) will be

#### Attachment L - Fugitive Emissions from Paved Haul Roads

#### INDUSTRIAL PAVED HAULROADS & PARKING AREAS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

| s = | Surface material silt content (g/m <sup>2</sup> ) | 3.34 |
|-----|---------------------------------------------------|------|

| Truck ID | Description                           | Mean<br>Vehicle<br>Weight<br>(tons) | Daily Miles<br>Traveled<br>(VMT/day) | Annual Miles<br>Traveled<br>(VMT/yr) | Control Device ID<br>Number | Control<br>Efficiency<br>(%) |
|----------|---------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-----------------------------|------------------------------|
| TRK1     | Off-Site to ECS Building Scrap Bay    | 27.5                                | 40.84                                | 10,755                               | Watering + Sweeping         | 96                           |
| TRK2     | Off-Site to Scrap Yard                | 27.5                                | 17.95                                | 4,501                                | Watering + Sweeping         | 96                           |
| TRK3     | Around Scrap Yard to Around Scrap     | 31.0                                | 14.96                                | 3,751                                | Watering + Sweeping         | 96                           |
| TRK4     | Around Scrap Yard to Around Scrap     | 27.5                                | 14.96                                | 3,751                                | Watering + Sweeping         | 96                           |
| TRK5     | Off-Site to Silos                     | 27.5                                | 2.13                                 | 505                                  | Watering + Sweeping         | 96                           |
| TRK6     | Off-Site to Storage                   | 31.0                                | 2.61                                 | 302                                  | Watering + Sweeping         | 96                           |
| TRK7     | Storage to Meltshop                   | 6.0                                 | 0.26                                 | 30                                   | Watering + Sweeping         | 96                           |
| TRK8     | Off-Site to Silos                     | 27.5                                | 5.33                                 | 1,184                                | Watering + Sweeping         | 96                           |
| TRK9     | Off-Site to Alloy Pile                | 27.5                                | 3.47                                 | 550                                  | Watering + Sweeping         | 96                           |
| TRK10    | Meltshop to Off-Site                  | 27.5                                | 1.22                                 | 63                                   | Watering + Sweeping         | 96                           |
| TRK11    | Finished Products Storage to Off-Site | 27.5                                | 207.21                               | 54,562                               | Watering + Sweeping         | 96                           |
| TRK12    | Off-Site to Gas Storage Area          | 6.0                                 | 5.21                                 | 982                                  | Watering + Sweeping         | 96                           |
| TRK13    | Mill Scale Pile to Off-Site           | 27.5                                | 8.48                                 | 920                                  | Watering + Sweeping         | 96                           |
| TRK14    | Meltshop to Quench Building           | 31.0                                | 4.20                                 | 866                                  | Watering + Sweeping         | 96                           |
| TRK15    | Quench Building to SPP Area           | 31.0                                | 0                                    | 0                                    | Watering + Sweeping         | 96                           |
| TRK16    | Within SPP Area to Within SPP Area    | 34.5                                | 0                                    | 0                                    | Watering + Sweeping         | 96                           |
| TRK17    | SPP Area to Off-Site                  | 27.5                                | 12.54                                | 3,610                                | Watering + Sweeping         | 96                           |
| TRK18    | Trailer Parking Area                  | 15.0                                | 10.90                                | 2,756                                | Watering + Sweeping         | 96                           |
| TRK19    | General Support                       | 34.5                                | 53.57                                | 10,755                               | Watering + Sweeping         | 96                           |

#### SUMMARY OF PAVED HAULROAD EMISSIONS

|          |       | ]       | PM     |         |       |         | PM-10     |          |
|----------|-------|---------|--------|---------|-------|---------|-----------|----------|
|          | Uncon | trolled | Contr  | olled   | Uncon | trolled | Controlle | d        |
|          |       |         |        |         |       |         |           |          |
| Truck ID | lb/hr | TPY     | lb/hr  | TPY     | lb/hr | TPY     | lb/hr     | TPY      |
| TRK1     | 1.98  | 4.67    | 0.079  | 0.19    | 0.40  | 0.93    | 0.016     | 0.037    |
| TRK2     | 0.97  | 1.96    | 0.039  | 0.078   | 0.19  | 0.39    | 0.0077    | 0.016    |
| TRK3     | 0.91  | 1.84    | 0.036  | 0.074   | 0.18  | 0.37    | 0.0073    | 0.015    |
| TRK4     | 0.80  | 1.63    | 0.032  | 0.065   | 0.16  | 0.33    | 0.0064    | 0.013    |
| TRK5     | 1.03  | 0.22    | 0.041  | 0.0088  | 0.21  | 0.044   | 0.0083    | 0.0018   |
| TRK6     | 2.85  | 0.15    | 0.11   | 0.0059  | 0.57  | 0.030   | 0.023     | 0.0012   |
| TRK7     | 0.05  | 0.00    | 0.0021 | 0.00011 | 0.011 | 0.00055 | 0.00042   | 0.000022 |
| TRK8     | 1.03  | 0.51    | 0.041  | 0.021   | 0.21  | 0.10    | 0.0083    | 0.0041   |
| TRK9     | 2.24  | 0.24    | 0.090  | 0.010   | 0.45  | 0.048   | 0.018     | 0.0019   |
| TRK10    | 1.18  | 0.03    | 0.047  | 0.0011  | 0.24  | 0.0055  | 0.0094    | 0.00022  |
| TRK11    | 8.36  | 23.71   | 0.33   | 0.95    | 1.67  | 4.74    | 0.067     | 0.19     |
| TRK12    | 0.53  | 0.09    | 0.021  | 0.0036  | 0.11  | 0.018   | 0.0043    | 0.00072  |
| TRK13    | 1.64  | 0.40    | 0.066  | 0.016   | 0.33  | 0.080   | 0.013     | 0.0032   |
| TRK14    | 0.31  | 0.43    | 0.012  | 0.017   | 0.061 | 0.085   | 0.0024    | 0.0034   |
| TRK15    | 0.00  | 0.00    | 0.000  | 0.000   | 0.00  | 0.00    | 0.0000    | 0.000    |
| TRK16    | 0.00  | 0.00    | 0.000  | 0.000   | 0.000 | 0.00    | 0.0000    | 0.0000   |
| TRK17    | 1.01  | 1.57    | 0.04   | 0.06    | 0.20  | 0.31    | 0.008     | 0.013    |

 $Note: Extraneous\ information\ unrelated\ to\ regulatory\ requirements\ and\ air\ emissions\ has\ been\ excluded\ from\ the\ application\ form.\ Information\ labeled\ as\ "to\ be\ determined"\ (TBD)\ will\ be$ 

provided once specific equipment vendors have been selected.

| Form<br>Number: | 2                                                | 3                                                                                        | 4                                                                                     | 5                                   | 6                   | 7A                                                                                                             | 7B                                                                                                                                                      | 7C                                                                                                                             | 8                           | 9A                                   | 9B                                                | 10A                                 | 10B                                 | 11A                                   |
|-----------------|--------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|---------------------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|
|                 | <b>Tank Name</b>                                 | Tank<br>Equipment<br>Identification<br>No. (As<br>Assigned on<br>Equipment List<br>Form) | Emission Point<br>Identification<br>No. (As<br>Assigned on<br>Equipment List<br>Form) | Commencemen<br>t of<br>Construction | Type of<br>Change   | Does the Tank Have More Than One Mode of Operation? (e.g., Is There More Than One Product Stored in the Tank?) | If YES, Explain<br>and Identify<br>Which Mode is<br>Covered by this<br>Application<br>(Note: A Separate<br>Form Must be<br>Completed for<br>Each Mode). | Provide Any Limitations on Source Operation Affecting Emissions, Any Work Practice Standards (e.g. Production Variation, etc.) | Design<br>Capacity<br>(gal) | Tank<br>Internal<br>Diameter<br>(ft) | Tank<br>Internal<br>Height (or<br>Length)<br>(ft) | Maximum<br>Liquid<br>Height<br>(ft) | Average<br>Liquid<br>Height<br>(ft) | Maximum Vapor<br>Space Height<br>(ft) |
|                 | Diesel Storage Tank for Emergency Generator No.  | DSLTK-GEN1                                                                               | DSLTK-GEN1                                                                            | N/A                                 | New<br>Construction | No                                                                                                             | N/A                                                                                                                                                     | N/A                                                                                                                            | 500                         | 4                                    | 6                                                 | 5                                   | 3                                   | 6                                     |
|                 | Diesel Storage Tank for<br>Fire Water Pump No. 1 | DSLTK-FWP1                                                                               | DSLTK-FWP1                                                                            | N/A                                 | New<br>Construction | No                                                                                                             | N/A                                                                                                                                                     | N/A                                                                                                                            | 500                         | 4                                    | 6                                                 | 5                                   | 3                                   | 6                                     |
|                 | Supporting On-Site                               | DSLTK-VEH                                                                                | DSLTK-VEH                                                                             | N/A                                 | New<br>Construction | No                                                                                                             | N/A                                                                                                                                                     | N/A                                                                                                                            | 5,000                       | 8.5                                  | 12.6                                              | 11.6                                | 6.3                                 | 12.6                                  |

| Form<br>Number: | 2                                                  | 3                                                                      | 4                                                                                     | 11B                                         | 12                           | 13A                                         | 13B                                         | 14 | 16                  | 18                                       | 20A            | 20B           | 20C                  | 22A                    | 22B                                                        | 22C                                                              |
|-----------------|----------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|---------------------------------------------|----|---------------------|------------------------------------------|----------------|---------------|----------------------|------------------------|------------------------------------------------------------|------------------------------------------------------------------|
|                 | Tank Name                                          | Tank Equipment Identification No. (As Assigned on Equipment List Form) | Emission Point<br>Identification<br>No. (As<br>Assigned on<br>Equipment List<br>Form) | Average<br>Vapor<br>Space<br>Height<br>(ft) | Nominal<br>Capacity<br>(gal) | Maximum<br>Annual<br>Throughput<br>(gal/yr) | Maximum<br>Daily<br>Throughput<br>(gal/day) |    | Tank Fill<br>Method | Type of Tanks<br>(Select All that Apply) | Shell<br>Color | Roof<br>Color | Year Last<br>Painted | Is the tank<br>heated? | If YES,<br>Provide the<br>Operating<br>Temperature<br>(°F) | If YES, Please<br>Describe<br>How Heat is<br>Provided to<br>Tank |
|                 | Diesel Storage Tank for<br>Emergency Generator No. | DSLTK-GEN1                                                             | DSLTK-GEN1                                                                            | 3                                           | 500                          | 25,000                                      | 500                                         | 50 | TBD                 | Horizontal Fixed Roof                    | TBD            | TBD           | N/A                  | No                     | N/A                                                        | N/A                                                              |
|                 | Diesel Storage Tank for<br>Fire Water Pump No. 1   | DSLTK-FWP1                                                             | DSLTK-FWP1                                                                            | 3                                           | 500                          | 25,000                                      | 500                                         | 50 | TBD                 | Horizontal Fixed Roof                    | TBD            | TBD           | N/A                  | No                     | N/A                                                        | N/A                                                              |
|                 | Supporting On-Site                                 | DSLTK-VEH                                                              | DSLTK-VEH                                                                             | 6.3                                         | 5,000                        | 250,000                                     | 5,000                                       | 50 | TBD                 | Vertical Fixed Roof                      | TBD            | TBD           | N/A                  | No                     | N/A                                                        | N/A                                                              |

| Form<br>Number: | 2                       | 3                        | 4                                | 24A                | 24B      | 27                | 28               | 29                | 30                | 31         | 32                          | 33         | 34A              | 34B              | 35A                  |
|-----------------|-------------------------|--------------------------|----------------------------------|--------------------|----------|-------------------|------------------|-------------------|-------------------|------------|-----------------------------|------------|------------------|------------------|----------------------|
|                 |                         |                          |                                  |                    |          |                   |                  |                   |                   |            |                             |            |                  |                  |                      |
|                 |                         |                          |                                  |                    |          |                   |                  |                   |                   |            |                             |            |                  |                  |                      |
|                 |                         | Tank                     | Parte de la Parte d              |                    |          |                   | D. 1             |                   | A 1               |            | Annual                      |            | Minimum          | Maximum          | Minimum              |
|                 |                         | Equipment Identification | Emission Point<br>Identification | For Domed          | For Cone | Provide the City  | Daily<br>Average | Annual<br>Average | Annual<br>Average |            | Annual<br>Average Solar     |            | Average<br>Daily | Average<br>Daily | Average<br>Operating |
|                 |                         | No. (As                  | No. (As                          | Roof,              | Roof,    | and State on      | Ambient          | Maximum           | Minimum           |            | Insulation                  |            | 1                | Temperature      | Pressure             |
|                 |                         | Assigned on              | Assigned on                      | Provide            | Provide  | Which the Data    |                  |                   |                   | Average    | Factor                      | Atmospheri |                  | Range of Bulk    |                      |
|                 |                         | <b>Equipment List</b>    | <b>Equipment List</b>            | <b>Roof Radius</b> | Slope    | in this Section   | e                | e                 | e                 | Wind Speed | (BTU/(ft <sup>2</sup> ·day) | c Pressure | Liquid           | Liquid           | Tank                 |
|                 | Tank Name               | Form)                    | Form)                            | (ft)               | (ft/ft)  | are Based         | (°F)             | (°F)              | (°F)              | (miles/hr) | )                           | (psia)     | (°F)             | (°F)             | (psig)               |
|                 | Diesel Storage Tank for | DSLTK-GEN1               | DSLTK-GEN1                       | N/A                | N/A      | Martinsburg, West |                  |                   |                   |            |                             |            | See              | Storage Tank En  | nissions Calculat    |
|                 | Emergency Generator No. | DOLLIK GENT              | DOLLIK GENT                      | 11/11              | 11/11    | Virginia          |                  |                   |                   |            |                             |            |                  | otorage rank in  |                      |
|                 | Diesel Storage Tank for | DSLTK-FWP1               | DSLTK-FWP1                       | N/A                | N/A      | Martinsburg, West |                  |                   |                   |            |                             |            | See              | Storage Tank En  | nissions Calculat    |
|                 | Fire Water Pump No. 1   | D3L1K-I W1 1             | DOLLIK-L WILL                    | IV/A               | IV/A     | Virginia          |                  |                   |                   |            |                             |            | 566              | otorage rank bii | iissioiis Gaiculai   |
|                 | Supporting On-Site      | DSLTK-VEH                | DSLTK-VEH                        | N/A                | 0.0625   | Martinsburg, West |                  |                   |                   |            |                             |            | See              | Storage Tank En  | nissions Calculat    |
|                 | Validation of the state | DOLLIK-VEII              | DOLLIK-VEII                      | IV/A               | 0.0023   | Virginia          |                  |                   |                   |            |                             |            | 500              | otoruge runk bii | iissioiis Galculai   |

| Form<br>Number: | 2                                                  | 3                                                                | 4          | 35B                                       | 36A  | 36B                             | 37A  | 37В            | 38A         | 38B            | 39          | ). Provide th | e following for              | each liquid o                     |
|-----------------|----------------------------------------------------|------------------------------------------------------------------|------------|-------------------------------------------|------|---------------------------------|------|----------------|-------------|----------------|-------------|---------------|------------------------------|-----------------------------------|
|                 |                                                    | Tank Equipment Identification No. (As Assigned on Equipment List |            | Operating<br>Pressure<br>Range of<br>Tank | _    | Corresponding<br>Vapor Pressure | e    | Vapor Pressure | Temperature | Vapor Pressure | or          | Density       | Vapor<br>Molecular<br>Weight | Maximum<br>True Vapor<br>Pressure |
|                 | Tank Name                                          | Form)                                                            | Form)      | (psig)                                    | (°F) | (psia)                          | (°F) | (psia)         | (°F)        | (psia)         | Composition | (lb/gal)      | (lb/lb-mole)                 | (psia)                            |
|                 | Diesel Storage Tank for<br>Emergency Generator No. | DSLTK-GEN1                                                       | DSLTK-GEN1 | ions Workshee                             | ts   |                                 |      |                |             |                | Diesel      | 7.1           | 0                            | 0.25                              |
|                 | Diesel Storage Tank for<br>Fire Water Pump No. 1   | DSLTK-FWP1                                                       | DSLTK-FWP1 | ions Workshee                             | ts   |                                 |      |                |             |                | Diesel      | 7.1           | 0                            | 0.25                              |
|                 | Supporting On-Site                                 | DSLTK-VEH                                                        | DSLTK-VEH  | ions Workshee                             | ts   |                                 |      |                |             |                | Diesel      | 7.1           | 0                            | 0.25                              |

| Form<br>Number: | 2                                                  | 3                                                                      | 4                                                                                     | r gas to be st        | ored in tank                             |                                        | 40             |                               | 41. Emission Rate (Remember to attach emissions calculat including TANKS Summary Sheets if applicable.) |                            |                           |                     |  |
|-----------------|----------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|------------------------------------------|----------------------------------------|----------------|-------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|---------------------|--|
|                 | Tank Name                                          | Tank Equipment Identification No. (As Assigned on Equipment List Form) | Emission Point<br>Identification<br>No. (As<br>Assigned on<br>Equipment List<br>Form) | Maximum<br>Reid Vapor | Months<br>Storage per<br>Year<br>(Start) | Months<br>Storage per<br>Year<br>(End) |                | Material<br>Name & CAS<br>No. |                                                                                                         | Working<br>Loss<br>(lb/yr) | Annual<br>Loss<br>(lb/yr) | Estimation Method   |  |
|                 | Diesel Storage Tank for<br>Emergency Generator No. | DSLTK-GEN1                                                             | DSLTK-GEN1                                                                            | N/A                   | January                                  | December                               | Does Not Apply | Diesel                        | 0.29                                                                                                    | 188.00                     | 0.72                      | EPA Emission Factor |  |
|                 | Diesel Storage Tank for<br>Fire Water Pump No. 1   | DSLTK-FWP1                                                             | DSLTK-FWP1                                                                            | N/A                   | January                                  | December                               | Does Not Apply | Diesel                        | 0.29                                                                                                    | 188.00                     | 0.72                      | EPA Emission Factor |  |
|                 | Supporting On-Site                                 | DSLTK-VEH                                                              | DSLTK-VEH                                                                             | N/A                   | January                                  | December                               | Does Not Apply | Diesel                        | 2.85                                                                                                    | 188.00                     | 7.18                      | EPA Emission Factor |  |

# 15. ATTACHMENT M: AIR POLLUTION CONTROL DEVICE SHEETS

#### Attachment M - Air Pollution Control Device Sheet (Baghouse)

| Form N    | umber:   | 1                       | 5                                                     | 11                      | 14. Operat  | tion Hours                                     | 16                     | 21.         | 22                                       | 24                         | 24        |                       | 24                |                                                       | 24 26         |           | 31      | 32. Propose | 32. Proposed Monitoring, Recordkeeping, Reporting, and |  |  |  |
|-----------|----------|-------------------------|-------------------------------------------------------|-------------------------|-------------|------------------------------------------------|------------------------|-------------|------------------------------------------|----------------------------|-----------|-----------------------|-------------------|-------------------------------------------------------|---------------|-----------|---------|-------------|--------------------------------------------------------|--|--|--|
|           |          |                         |                                                       |                         |             |                                                |                        |             |                                          |                            |           |                       | Have you          |                                                       |               |           |         |             |                                                        |  |  |  |
|           |          |                         |                                                       |                         |             |                                                |                        |             |                                          | 1                          |           |                       | included          |                                                       |               |           |         |             |                                                        |  |  |  |
|           |          |                         |                                                       |                         |             |                                                |                        |             |                                          | Emission rate of pollutant |           |                       | Baghouse          |                                                       |               |           |         |             |                                                        |  |  |  |
|           |          |                         |                                                       |                         |             |                                                |                        |             | Type of                                  | (specify) into and out of  |           |                       | Control Device    |                                                       |               |           |         |             |                                                        |  |  |  |
|           |          |                         |                                                       |                         |             |                                                |                        |             | pollutant(s) to                          | collector at maximum       |           | How is filter         | in the            |                                                       |               |           |         |             |                                                        |  |  |  |
|           |          |                         |                                                       |                         |             |                                                | Gas flow               |             | be collected                             | design operating           |           | monitored for         | Emissions         |                                                       |               |           |         |             |                                                        |  |  |  |
|           |          |                         |                                                       |                         |             |                                                | rate into the          |             | (if particulate                          | conditions                 |           | indications of        | Points Data       |                                                       |               |           |         |             |                                                        |  |  |  |
| Control   | Emission | Manufacturer            | Baghouse                                              | Baghouse                | Max. per    | Max. per                                       | collector              | Outlet      | give specific                            |                            | Outlet    | deterioration         | Summary           |                                                       |               |           |         |             |                                                        |  |  |  |
| Device ID | Point ID | and Model No.           | Configuration                                         | Operation               | Day         | Year                                           | (dscfm)                | (gr/scf)    | type)                                    | Pollutant                  | (gr/dscf) | (e.g., broken bags)?  | Sheet?            | Monitoring                                            | Recordkeeping | Reporting | Testing |             |                                                        |  |  |  |
|           |          |                         |                                                       |                         |             |                                                |                        |             |                                          | Filterable PM              | 0.0018    |                       |                   |                                                       |               |           |         |             |                                                        |  |  |  |
| BH1-BH    | BH1      | TBD                     | TDD                                                   | Cantinuaua              | 24          | 0.760                                          | (71 102                | Coo Dotoila | PM, PM <sub>10</sub> & PM <sub>2.5</sub> | Total PM                   | 0.0052    | Othor opolify DIDC    | Vaa               | See regulatory write-up in the application narrative. |               |           |         |             |                                                        |  |  |  |
| ри1-вн    | DHI      | 180                     | TBD   Continuous   24   8,760   671,192   See Details |                         | see Details | FIVI, FIVI <sub>10</sub> & PIVI <sub>2.5</sub> | Total PM <sub>10</sub> | 0.0052      | Other, specify: BLDS                     | Yes                        | See regu  | natory write-up in th | ne application na | aiiauve.                                              |               |           |         |             |                                                        |  |  |  |
|           |          | Total PM <sub>2</sub> , |                                                       | Total PM <sub>2.5</sub> | 0.0052      |                                                |                        |             |                                          |                            |           |                       |                   |                                                       |               |           |         |             |                                                        |  |  |  |

# 16. ATTACHMENT N: SUPPORTING EMISSIONS CALCULATIONS

The proposed micro mill and associated operations are expected to generate emissions of the following pollutants:

- Particulate matter (PM);
- ▶ Particulate matter with an aerodynamic diameter of less than 10 microns (PM₁0);
- ▶ Particulate matter with an aerodynamic diameter of less than 2.5 microns (PM<sub>2.5</sub>);
- ▶ Nitrogen oxides (NOX);
- Carbon monoxide (CO);
- Volatile organic compounds (VOCs);
- Sulfur dioxide (SO<sub>2</sub>);
- ► Lead (Pb);
- ► Fluorides excluding hydrogen fluoride (HF);
- ▶ Greenhouse gases (GHGs), including carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O); and
- ► Hazardous air pollutants (HAPs).

The following sections contain a detailed description of the methodology used to calculate emissions for the proposed emission units and processes at the Facility. Detailed emission calculations for the Project are included in Appendix A. A summary of the Project's proposed hourly and annual PTE is provided in Table 3-1 and Table 3-2 below.

Table 16-1. Summary of Application Proposed Hourly PTE

| Hourly PTE (lb/hr)   |                      |                                                                                              |                  |                |                        |                         |          |          |       |                        |        |                                   |              |                                                  |
|----------------------|----------------------|----------------------------------------------------------------------------------------------|------------------|----------------|------------------------|-------------------------|----------|----------|-------|------------------------|--------|-----------------------------------|--------------|--------------------------------------------------|
| Emission Unit ID     | Emission Point<br>ID | Emission Point Description                                                                   | Filterable<br>PM | Total PM       | Total PM <sub>10</sub> | Total PM <sub>2.5</sub> | NOx      | СО       | voc   | <b>SO</b> <sub>2</sub> | Pb     | Max<br>Single<br>HAP <sup>2</sup> | Total<br>HAP | Fluorides                                        |
|                      |                      |                                                                                              |                  | Meltsho        | op                     |                         |          |          |       | •                      |        |                                   | •            | •                                                |
| EAF1, LMS1           | BH1                  | Meltshop Baghouse                                                                            | 10.36            | 29.92          | 29.92                  | 29.92                   | 45.63    | 936.00   | 35.10 | 49.14                  | 0.19   | 0.44                              | 0.83         | 1.17                                             |
| EAF1, LMS1, CAST1    | CV1                  | Caster Vent                                                                                  | 1.12             | 1.70           | 1.70                   | 1.70                    | 8.85     | 7.92     | 0.72  | 0.80                   | 0.0024 | 0.11                              | 0.12         | 0.015                                            |
| , ,                  | <u>I</u>             |                                                                                              |                  | Rolling N      | иill                   |                         | <u>I</u> |          |       |                        | Į.     |                                   | <u> </u>     | II.                                              |
| RMV1                 | RMV1                 | Rolling Mill Vent <sup>1</sup>                                                               | 0.028            | 0.073          | 0.073                  | 0.073                   | 1.17     | 0.68     | 0.082 | 0.090                  | _      | 0.015                             | 0.015        | -                                                |
| CBV1                 | CBV1                 | Cooling Beds Vent <sup>1</sup>                                                               | 0.010            | 0.010          | 0.010                  | 0.010                   | -        | -        | 0.010 | -                      | _      | -                                 | -            | -                                                |
| SPV1                 | SPV1                 | Spooler Vent <sup>1</sup>                                                                    | 0.010            | 0.010          | 0.010                  | 0.010                   | _        | _        | 0.010 | _                      | _      | _                                 | _            | _                                                |
| 26.01                | JPV1                 | Spooler Vent                                                                                 |                  | aterial Stora  | 1                      | 0.010                   | _        |          | 0.010 | -                      | _      | _                                 |              |                                                  |
| FLXSLO11             | FLXSLO11             | Eluving Agent Storage Cile No. 1                                                             | 0.13             | 0.13           | 0.13                   | 0.13                    |          |          |       |                        |        |                                   |              | 1                                                |
| FLXSLO11<br>FLXSLO12 | FLXSLO11<br>FLXSLO12 | Fluxing Agent Storage Silo No. 1                                                             | 0.13             | 0.13           | 0.13                   | 0.13                    | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| CARBSLO1             | CARBSLO1             | Fluxing Agent Storage Silo No. 2                                                             | 0.13             | 0.13           | 0.13                   | 0.13                    | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
|                      | DUSTSLO1             | Carbon Storage Silo No. 1  EAF Baghouse Dust Silo                                            | _                | 0.088          | 0.088                  | 0.088                   | _        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| DUSTSLO1             | DUSTSLUI             | EAF DayHouse Dust 5110                                                                       | 0.056            |                |                        | 0.056                   | _        | -        | -     | -                      | _      | _                                 | -            | -                                                |
| TR51A                | TR51A                | Incide ECC Duilding Dyen Dainte Cayon                                                        | 1                | Material Ha    |                        | 0.00204                 |          |          |       |                        | Ī      |                                   |              | T                                                |
| TR51A                | TR51A<br>TR51B       | Inside ECS Building Drop Points, Scrap Outside ECS Building Drop Points, Scrap, Storage Area | 0.041<br>0.033   | 0.041<br>0.033 | 0.0194<br>0.015        | 0.00294<br>0.0023       | _        | <u>-</u> | _     | -                      | -      | -                                 | -            | -                                                |
| TR51C                | TR51C                | Outside Rail Bins Drop Points, Scrap, Storage Area                                           | 0.033            | 0.033          | 0.005                  | 0.0023                  |          |          |       |                        | _      | _                                 |              | <del>                                     </del> |
| TR51E                | TR51E                | Outside Truck Bins Drop Point, Scrap                                                         | 0.011            | 0.011          | 0.005                  | 0.0008                  |          | _        | _     | _                      | _      | _                                 | _            |                                                  |
| TR71                 | TR71                 | Inside ECS Building Drop Points, Fluxing Agent                                               | 0.0012           | 0.0042         | 0.0020                 | 0.00030                 | _        | _        | _     | _                      | _      | _                                 | _            | _                                                |
| TR81                 | TR81                 | Outside Drop Points, Alloy Aggregate                                                         | 0.0030           | 0.0030         | 0.0014                 | 0.00021                 | -        | -        | -     | -                      | _      | _                                 | -            | _                                                |
| TR91A                | TR91A                | Inside Drop Points, Removed Refractory and Other Materials                                   | 0.0049           | 0.0049         | 0.0023                 | 0.00035                 | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| TR91B                | TR91B                | Outside Drop Points, Removed Refractory and Other Materials                                  | 0.0247           | 0.0247         | 0.012                  | 0.0018                  | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| TR11A                | TR11A                | Outside SPP Pile Drop Points, Slag                                                           | 0.00061          | 0.00061        | 0.00029                | 0.00004                 | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| TR11B1               | TR11B1               | SPP Material Transfers and Screens                                                           | 0.023            | 0.023          | 0.010                  | 0.0015                  | -        | 1        | -     | -                      | -      | -                                 | -            | -                                                |
| TR131                | TR131                | Outside Drop Points, Residual Scrap Pile                                                     | 0.0049           | 0.0049         | 0.0023                 | 0.00035                 | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| TR141                | TR141                | Outside Drop Points, Mill Scale Pile                                                         | 0.045            | 0.045          | 0.0211                 | 0.00319                 | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| CR1                  | CR1                  | Ball Drop Crushing                                                                           | 0.0096           | 0.0096         | 0.0043                 | 0.00080                 | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
|                      |                      |                                                                                              | М                | aterial Stora  | ige Piles              |                         |          |          |       |                        |        |                                   |              |                                                  |
| W51A                 | W51A                 | ECS Scrap Building Storage Pile A                                                            | 0.019            | 0.019          | 0.009                  | 0.0014                  | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| W51B                 | W51B                 | ECS Scrap Building Storage Pile B                                                            | 0.017            | 0.017          | 0.009                  | 0.0013                  | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| W51C                 | W51C                 | ECS Scrap Building Storage Pile C                                                            | 0.017            | 0.017          | 0.008                  | 0.0013                  | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| W51D                 | W51D                 | ECS Scrap Building Overage Scrap Pile                                                        | 0.077            | 0.077          | 0.039                  | 0.0059                  | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| W51E                 | W51E                 | Outside Rail Scrap 5k Pile A                                                                 | 0.058            | 0.058          | 0.029                  | 0.0044                  | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| W51F                 | W51F                 | Outside Rail Scrap 5k Pile B                                                                 | 0.058            | 0.058          | 0.029                  | 0.0044                  | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| W51G                 | W51G                 | Outside Rail Scrap 5k Pile C                                                                 | 0.058            | 0.058          | 0.029                  | 0.0044                  | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| W51H                 | W51H                 | Outside Rail Scrap 5k Pile D                                                                 | 0.058            | 0.058          | 0.029                  | 0.0044                  | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| W51K                 | W51K                 | Outside Truck Scrap 5k Pile A                                                                | 0.058            | 0.058          | 0.029                  | 0.0044                  | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| W51L                 | W51L                 | Outside Truck Scrap 5k Pile B                                                                | 0.058            | 0.058          | 0.029                  | 0.0044                  | -        |          | -     | -                      | -      | -                                 | -            |                                                  |
| W51M                 | W51M                 | Outside Truck Scrap 5k Pile C                                                                | 0.058            | 0.058          | 0.029                  | 0.0044                  | _        | -        | -     |                        | -      | -                                 |              | -                                                |
| W51N                 | W51N                 | Outside Truck Scrap 5k Pile D                                                                | 0.058            | 0.058          | 0.029                  | 0.0044                  | -        | -        | -     | -                      | -      | -                                 | -            |                                                  |
| W61                  | W61                  | Alloy Aggregate Storage Pile                                                                 | 0.0017           | 0.0017         | 0.0009                 | 0.00013                 | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| W71A                 | W71A                 | SPP Slag Storage Pile                                                                        | 0.23             | 0.23           | 0.11                   | 0.017                   | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |
| W71B                 | W71B                 | SPP Piles                                                                                    | 0.58             | 0.58           | 0.29                   | 0.044                   |          | -        | -     | -                      | -      | -                                 | -            | -                                                |
| W81                  | W81                  | Residual Scrap Storage Pile in Scrap Yard                                                    | 0.17             | 0.17           | 0.083                  | 0.013                   | -        | -        | -     | -                      | -      | -                                 | -            | -                                                |

| W111           | W111       | Mill Scale Pile                                   | 0.014 | 0.014                | 0.0069 | 0.0010  | -     | -             | -      | -            | -        | -        | -        |      |
|----------------|------------|---------------------------------------------------|-------|----------------------|--------|---------|-------|---------------|--------|--------------|----------|----------|----------|------|
| Cooling Towers |            |                                                   |       |                      |        |         |       |               |        |              |          |          |          |      |
| CTNC11         | CTNC11A    | Non-Contact Cooling Tower 1 - Cell 1              | 0.11  | 0.11                 | 0.075  | 0.00024 | -     | -             | -      | -            | -        | -        | -        | -    |
| CTNC11         | CTNC11B    | Non-Contact Cooling Tower 1 - Cell 2              | 0.11  | 0.11                 | 0.075  | 0.00024 | -     | -             | -      | -            | -        | -        | -        | -    |
| CTNC12         | CTNC12A    | Non-Contact Cooling Tower 2 - Cell 1              | 0.11  | 0.11                 | 0.075  | 0.00024 | -     | -             | -      | -            | -        | -        | -        | -    |
| CTNC12         | CTNC12B    | Non-Contact Cooling Tower 2 - Cell 2              | 0.11  | 0.11                 | 0.075  | 0.00024 | -     | -             | -      | -            | -        | -        | -        | -    |
| CTC1           | CTC1A      | Contact Cooling Tower - Cell 1                    | 0.055 | 0.055                | 0.038  | 0.00012 | -     | -             | -      | -            | -        | -        | -        | -    |
| CTC1           | CTC1B      | Contact Cooling Tower - Cell 2                    | 0.055 | 0.055                | 0.038  | 0.00012 | -     | -             | -      | -            | -        | -        | -        | -    |
| Haulroads      |            |                                                   |       |                      |        |         |       |               |        |              |          |          |          |      |
| PR1            | PR1        | Paved Roads                                       | 1.34  | 1.34                 | 0.27   | 0.066   | -     | -             | -      | -            | -        | -        | -        | -    |
| UR1            | UR1        | Unpaved Roads                                     | 8.24  | 8.24                 | 2.20   | 0.22    | -     | -             | -      | -            | -        | -        | -        | -    |
|                |            |                                                   | F     | <b>Auxiliary Equ</b> | ipment |         |       |               |        |              |          |          |          |      |
| EGEN1          | EGEN1      | Emergency Generator 1                             | 0.53  | 0.53                 | 0.53   | 0.53    | 9.82  | 9.21          | 0.70   | 0.017        | -        | 0.013    | 0.043    | -    |
| EFWP1          | EFWP1      | Emergency Fire Water Pump 1                       | 0.10  | 0.10                 | 0.10   | 0.10    | 1.84  | 1.73          | 0.13   | 0.0033       | -        | 0.0025   | 0.0081   | -    |
| DSLTK-GEN1     | DSLTK-GEN1 | Diesel Storage Tank for Emergency Generator No. 1 | -     | -                    | -      | -       | -     | -             | 0.015  | -            | -        | 0.0060   | 0.0078   | -    |
| DSLTK-FWP1     | DSLTK-FWP1 | Diesel Storage Tank for Fire Water Pump No. 1     | -     | -                    | -      | -       | -     | -             | 0.015  | -            | -        | 0.0060   | 0.0078   | -    |
| DSLTK-VEH      | DSLTK-VEH  | Diesel Storage Tank Supporting On-Site Vehicles   | -     | -                    | -      | -       | -     | -             | 0.15   | -            | -        | 0.060    | 0.078    | -    |
| TORCH1         | TORCH1     | Cutting Torches                                   | 0.20  | 0.20                 | 0.20   | 0.20    | 0.046 | 0.026         | 0.0028 | 0.0035       | 1.57E-07 | 5.67E-04 | 5.95E-04 | -    |
| Total          | Total      |                                                   | 24.68 | 44.87                | 36.67  | 33.35   | 67.36 | <i>955.56</i> | 36.94  | <i>50.05</i> | 0.19     | 0.65     | 1.12     | 1.18 |

<sup>&</sup>lt;sup>1</sup> Emissions from the rolling mill vent and the cooling bed vents are conservatively represented using de minimis values. Total rolling mill vent emissions include de minimis values and combustion emissions.

<sup>&</sup>lt;sup>2</sup> Max Single HAP is: Manganese.

Table 16-2. Summary of Application Proposed Annual PTE

|                        | Annual PTE (tpy)     |                                                              |                  |              |                        |                            |          |               |       |                        |        |           |                                   | <u>,</u>       |                                               |
|------------------------|----------------------|--------------------------------------------------------------|------------------|--------------|------------------------|----------------------------|----------|---------------|-------|------------------------|--------|-----------|-----------------------------------|----------------|-----------------------------------------------|
| Emission Unit ID       | Emission<br>Point ID | Emission Point Description                                   | Filterable<br>PM | Total PM     | Total PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | NOx      | со            | voc   | <b>SO</b> <sub>2</sub> | Pb     | Fluorides | Max<br>Single<br>HAP <sup>5</sup> | Total<br>HAP   | CO <sub>2</sub> e                             |
| Meltshop               |                      |                                                              |                  |              |                        |                            |          |               |       |                        |        |           |                                   |                |                                               |
| EAF1, LMS1             | BH1                  | Meltshop Baghouse                                            | 45.36            | 131.03       | 131.03                 | 131.03                     | 97.50    | 1,300         | 97.50 | 97.50                  | 0.52   | 3.25      | 1.21                              | 2.31           | 119,513                                       |
| EAF1, LMS1, CAST1      | CV1                  | Caster Vent                                                  | 3.51             | 5.96         | 5.96                   | 5.96                       | 36.03    | 25.80         | 2.75  | 3.00                   | 0.0066 | 0.041     | 0.44                              | 0.49           | 35,348                                        |
|                        | Rolling Mill         |                                                              |                  |              |                        |                            |          |               |       |                        |        |           |                                   |                |                                               |
| RMV1                   | RMV1                 | Rolling Mill Vent <sup>1</sup>                               | 0.050            | 0.152        | 0.152                  | 0.152                      | 2.63     | 1.52          | 0.172 | 0.20                   | -      | -         | 0.033                             | 0.034          | 2,575                                         |
| CBV1                   | CBV1                 | Cooling Beds Vent <sup>1</sup>                               | 0.010            | 0.010        | 0.010                  | 0.010                      | -        | -             | 0.010 | -                      | -      | -         | -                                 | -              | -                                             |
| SPV1                   | SPV1                 | Spooler Vent <sup>1</sup>                                    | 0.010            | 0.010        | 0.010                  | 0.010                      | -        | -             | 0.010 | -                      | _      | -         | -                                 | -              | _                                             |
| Material Storage Silos |                      |                                                              |                  |              |                        |                            |          |               |       |                        |        |           |                                   |                |                                               |
| FLXSLO11               | FLXSLO11             | Fluxing Agent Storage Silo No. 1                             | 0.064            | 0.064        | 0.064                  | 0.064                      | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| FLXSLO12               | FLXSLO12             | Fluxing Agent Storage Silo No. 2                             | 0.064            | 0.064        | 0.064                  | 0.064                      | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| CARBSLO1               | CARBSLO1             | Carbon Storage Silo No. 1                                    | 0.044            | 0.044        | 0.044                  | 0.044                      | -        | -             | -     | -                      | _      | -         | -                                 | -              | -                                             |
| DUSTSLO1               | DUSTSLO1             | EAF Baghouse Dust Silo                                       | 0.24             | 0.24         | 0.24                   | 0.24                       | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| Material Handling      |                      |                                                              |                  |              |                        |                            |          |               |       |                        |        |           |                                   |                |                                               |
| TR51A                  | TR51A                | Inside ECS Building Drop Points, Scrap                       | 0.084            | 0.084        | 0.040                  | 0.0060                     | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| TR51B                  | TR51B                | Outside ECS Building Drop Points, Scrap, Storage Area        | 0.11             | 0.11         | 0.050                  | 0.0076                     | -        | ı             | -     | 1                      | -      | -         | -                                 | -              | -                                             |
| TR51C                  | TR51C                | Outside Rail Bins Drop Point, Scrap                          | 0.035            | 0.035        | 0.017                  | 0.0025                     | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| TR51E                  | TR51E                | Outside Truck Bins Drop Point, Scrap                         | 0.035            | 0.035        | 0.017                  | 0.0025                     | -        | -             | -     | -                      | -      | -         | -                                 | -              | _                                             |
| TR71                   | TR71                 | Inside ECS Building Drop Points, Fluxing Agent               | 0.0021           | 0.0021       | 0.0010                 | 0.00015                    | -        | -             | -     | -                      | -      | -         | -                                 | -              | _                                             |
| TR81                   | TR81                 | Outside Drop Points, Alloy Aggregate                         | 0.00024          | 0.00024      | 0.00011                | 0.000017                   | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| TR91A                  | TR91A                | Inside Drop Points, Removed Refractory and Other Materials   | 0.00028          | 0.00028      | 0.00013                | 0.000020                   | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| TR91B                  | TR91B                | Outside Drop Points, Removed Refractory and Other Materials  | 0.0014           | 0.00139      | 0.00066                | 0.00010                    | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| TR11A                  | TR11A                | Outside SPP Pile Drop Points, Slag                           | 0.00056          | 0.00056      | 0.00026                | 0.000040                   | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| TR11B1                 | TR11B1               | SPP Material Transfers and Screens                           | 0.021            | 0.021        | 0.010                  | 0.0013                     | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| TR131                  | TR131                | Outside Drop Points, Residual Scrap Pile                     | 0.00028          | 0.00028      | 0.00013                | 0.000020                   | -        | -             | -     | -                      | -      | -         | -                                 | -              | _                                             |
| TR141                  | TR141                | Outside Drop Points, Mill Scale Pile                         | 0.0036           | 0.0036       | 0.0017                 | 0.00026                    | -        | -             | -     | -                      | -      | -         | -                                 | -              | _                                             |
| CR1                    | CR1                  | Ball Drop Crushing                                           | 0.0049           | 0.0049       | 0.0022                 | 0.00041                    | -        | -             | -     | -                      | -      | -         | -                                 | -              | _                                             |
|                        |                      |                                                              |                  |              | <b>Material Sto</b>    |                            |          |               | 1     |                        |        |           |                                   |                | '                                             |
| W51A                   | W51A                 | ECS Scrap Building Storage Pile A                            | 0.083            | 0.083        | 0.041                  | 0.0062                     | -        | -             | -     | -                      | -      | -         | -                                 |                | -                                             |
| W51B                   | W51B                 | ECS Scrap Building Storage Pile B                            | 0.076            | 0.076        | 0.038                  | 0.0057                     | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| W51C                   | W51C                 | ECS Scrap Building Storage Pile C                            | 0.074            | 0.074        | 0.037                  | 0.0056                     | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| W51D                   | W51D                 | ECS Scrap Building Overage Scrap Pile                        | 0.34             | 0.34         | 0.17                   | 0.026                      | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| W51E                   | W51E                 | Outside Rail Scrap 5k Pile A                                 | 0.25             | 0.25         | 0.13                   | 0.019                      | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| W51F                   | W51F                 | Outside Rail Scrap 5k Pile B                                 | 0.25             | 0.25         | 0.13                   | 0.019                      | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| W51G                   | W51G                 | Outside Rail Scrap 5k Pile C                                 | 0.25             | 0.25         | 0.13                   | 0.019                      | -        | -             | -     | -                      | -      | -         | -                                 | -              | -                                             |
| W51H                   | W51H                 | Outside Rail Scrap 5k Pile D                                 | 0.25             | 0.25         | 0.13                   | 0.019                      | -        | -             | -     | -                      | -      | -         | -                                 |                | -                                             |
| W51K<br>W51L           | W51K<br>W51L         | Outside Truck Scrap 5k Pile A Outside Truck Scrap 5k Pile B  | 0.25<br>0.25     | 0.25<br>0.25 | 0.13<br>0.13           | 0.019<br>0.019             | -        | <u>-</u><br>- | -     | -                      | -      | -         | -                                 | <del>-</del>   | -                                             |
| W51L<br>W51M           | W51L<br>W51M         | Outside Truck Scrap 5k Pile B  Outside Truck Scrap 5k Pile C | 0.25             | 0.25         | 0.13                   | 0.019                      | -        | -             | -     | -                      | -      | -         | <u>-</u>                          | <del>-</del>   |                                               |
| W51M<br>W51N           | W51M<br>W51N         | Outside Truck Scrap 5k Pile C Outside Truck Scrap 5k Pile D  | 0.25             | 0.25         | 0.13                   | 0.019                      | -        | -             | -     | -                      | -      | -         | <u>-</u>                          | <del>-</del>   | -                                             |
| W61                    | W61                  | Alloy Aggregate Storage Pile                                 | 0.25             | 0.0075       | 0.13                   | 0.0019                     | -        |               |       | -                      | -      | -         | <u> </u>                          |                | <del>-</del> -                                |
| W71A                   | W71A                 | SPP Slag Storage Pile                                        | 1.00             | 1.00         | 0.50                   | 0.00037                    | <u>-</u> |               |       | _                      | -      | _         | <u> </u>                          | <del>-</del> - | <del>-</del>                                  |
| VV 177                 | VV / 1/1             | Ji i Jiag Jiorage i iic                                      | 1.00             | 1.00         | 0.50                   | 0.070                      | •        | =             | =     | -                      | _      | =         | •                                 |                | <u>                                      </u> |

| <b>4</b> .                     |                   |                                                   |              |        |             |              |            |            |            |            |            |      | •        |          |         |
|--------------------------------|-------------------|---------------------------------------------------|--------------|--------|-------------|--------------|------------|------------|------------|------------|------------|------|----------|----------|---------|
| W71B                           | W71B              | SPP Piles                                         | 2.55         | 2.55   | 1.28        | 0.19         | <u> </u>   |            | <u> </u>   | _          |            |      |          |          | '       |
| W81                            | W81               | Residual Scrap Storage Pile in Scrap Yard         | 0.73         | 0.73   | 0.37        | 0.055        |            | -          |            | -          |            | -    |          | <u> </u> | ·       |
| W111                           | W111              | Mill Scale Pile                                   | 0.060        | 0.060  | 0.030       | 0.0046       |            | ·          |            |            |            | -    |          |          | ı/      |
|                                | Cooling Towers    |                                                   |              |        |             |              |            |            |            |            |            |      |          |          |         |
| CTNC11                         | CTNC11A           | Non-Contact Cooling Tower 1 - Cell 1              | 0.48         | 0.48   | 0.33        | 0.0010       |            |            |            |            |            |      |          |          | · - /   |
| CTNC11                         | CTNC11B           | Non-Contact Cooling Tower 1 - Cell 2              | 0.48         | 0.48   | 0.33        | 0.0010       | -          | -          | <u> </u>   | -          |            |      |          | -        | -       |
| CTNC12                         | CTNC12A           | Non-Contact Cooling Tower 2 - Cell 1              | 0.48         | 0.48   | 0.33        | 0.0010       | -          | -          | -          | -          | -          | -    | -        |          | -       |
| CTNC12                         | CTNC12B           | Non-Contact Cooling Tower 2 - Cell 2              | 0.48         | 0.48   | 0.33        | 0.0010       |            | -          |            | -          |            |      | _        | -        | 1       |
| CTC1                           | CTC1A             | Contact Cooling Tower - Cell 1                    | 0.24         | 0.24   | 0.16        | 0.0005       | -          | -          |            |            |            | -    |          | - I      | ·       |
| CTC1                           | CTC1B             | Contact Cooling Tower - Cell 2                    | 0.24         | 0.24   | 0.16        | 0.0005       |            |            | <u> </u>   |            |            | -    |          |          | -       |
| Haulroads                      |                   |                                                   |              |        |             |              |            |            |            |            |            |      |          |          |         |
| PR1                            | PR1               | Paved Roads                                       | 1.76         | 1.76   | 0.35        | 0.086        | -          | -          | - '        | -          | -          | -    | -        | 1 -      | -       |
| UR1                            | UR1               | Unpaved Roads                                     | 5.97         | 5.97   | 1.59        | 0.16         | - 1        | -          | - '        | -          | -          | -    | _        | 1 - 1    | · - '   |
|                                |                   |                                                   |              |        | Auxiliary E | quipment     |            |            |            |            |            |      |          |          |         |
| EGEN1                          | EGEN1             | Emergency Generator 1                             | 0.026        | 0.026  | 0.026       | 0.026        | 0.49       | 0.460      | 0.035      | 0.00087    |            |      | 0.00066  | 0.0022   | 91.62   |
| EFWP1                          | EFWP1             | Emergency Fire Water Pump 1                       | 0.0049       | 0.0049 | 0.0049      | 0.0049       | 0.09       | 0.086      | 0.007      | 0.00016    | -          | -    | 0.00012  | 0.00041  | 17.18   |
| DSLTK-GEN1                     | DSLTK-GEN1        | Diesel Storage Tank for Emergency Generator No. 1 | -            |        | '           |              | -          | -          | 0.00036    | -          |            | -    | 0.000144 | 0.000188 | - '     |
| DSLTK-FWP1                     | DSLTK-FWP1        | Diesel Storage Tank for Fire Water Pump No. 1     | -            | -      | -           | -            | -          | -          | 0.00036    | -          | -          | -    | 0.000144 | 0.000188 | - '     |
| DSLTK-VEH                      | DSLTK-VEH         | Diesel Storage Tank Supporting On-Site Vehicles   | <u>-</u> - ' | '      | '           | <u> </u>     |            | <u> </u>   | 0.0036     | -          | -          |      | 0.00142  | 0.00186  | -       |
| TORCH1                         | TORCH1            | Cutting Torches                                   | 0.20         | 0.20   | 0.20        | 0.20         | 9.13E-02   | 5.29E-02   | 5.62E-03   | 7.02E-03   | 3.15E-07   | -    | 1.13E-03 | 1.19E-03 | 89.39   |
| Total                          | Total             |                                                   | 67           | 155    | 145         | 139          | 137        | 1,328      | 100        | 101        | 0.53       | 3.29 | 1.69     | 2.84     | 157,635 |
|                                |                   |                                                   |              |        | Major NSR A | pplicability |            |            |            |            |            |      |          |          |         |
| Pollutant Attainment St        | catus             |                                                   |              |        | Attainment  | Attainment   | Attainment | Attainment | Attainment | Attainment | Attainment | -    |          |          |         |
| Potentially Applicable M       | 1ajor NSR Progra  | am                                                | PSD          |        | PSD         | PSD          | PSD        | PSD        | PSD        | PSD        | PSD        | PSD  |          |          | PSD     |
| Major NSR "Major Sour          | rce" Threshold 2, | ,4                                                | 100          | -      | 100         | 100          | 100        | 100        | 100        | 100        | 100        | 100  | -        |          | -       |
| Title V Threshold <sup>4</sup> |                   |                                                   | 100          |        | 100         | 100          | 100        | 100        | 100        | 100        |            |      | 10       | 25       | 100,000 |
| Project Exceeds Major I        | NSR "Major Sou    | rce" Threshold?                                   | No           | -      | Yes         | Yes          | Yes        | Yes        | Yes        | Yes        | No         | No   | _        | -        | No      |
| Project Exceeds Title V        | Thresholds?       |                                                   | No           |        | Yes         | Yes          | Yes        | Yes        | Yes        | Yes        |            | -    | No       | No       | Yes     |
| PSD Significant Emissio        | on Rates (SERs)   | 3                                                 | 25           | -      | 15          | 10           | 40         | 100        | 40         | 40         | 0.6        | 3    | !        | !        | 75,000  |
| Project Meets or Exceed        | ds PSD SER?       |                                                   | Yes          |        | Yes         | Yes          | Yes        | Yes        | Yes        | Yes        | No         | Yes  |          |          | Yes     |
| 1                              |                   |                                                   | <del></del>  |        |             |              |            |            |            |            | •          |      | ·        |          |         |

Emissions from the rolling mill vent and the cooling bed vents are conservatively represented using de minimis values. Total rolling mill vent emissions include de minimis values and combustion emissions.

Major source per 40 CFR 52.21(b). NOx is a regulated NSR pollutant for purposes of evaluating PSD applicability because NOx, as measured in the ambient air as nitrogen dioxide (NO2), is a pollutant for which a national ambient air quality standard (NAAQS) has been promulgated (see 40 CFR 50.11).

PSD Significant Emission Rates (SERs) as defined in 40 CFR 52.21.

VOC is not a criteria pollutant but is considered to be a precursor to ozone. Stated value corresponds to the ozone threshold.

Max Single HAP is: Manganese.

#### 16.1 Electric Arc Furnace (EAF) and Ladle Metallurgy Station (LMS)

The proposed EAF and LMS have the potential to emit criteria pollutants, fluorides excluding hydrogen fluoride (HF), GHGs, and HAPs. The majority of emissions from the EAF and the LMS are captured by the systems and efficiencies summarized in Table 16-3. The remaining emissions not captured at the EAF, LMS, canopy hood and building have the potential to exit through the caster vent. Estimation of fugitive emissions from the caster vent are based on the melting and refining operation mode in Table 16-3 and methodology below. Note that the following methodology is for illustrative purposes to support this permit application and associated dispersion modeling.

Capture System & Efficiency 1 Emissions Intensity (lb/ton)<sup>2</sup> Non-Canopy Building **Particulate Particulate DEC Enclosure Operation Mode** Hood Uncontrolled **Fugitive Fugitive** Active Active Active Melting and Refining 38 0.095 0.0095 (95%)(95%)(90%)Charging, Tapping, Inactive Active Active 1.4 0.070 0.0070 (0%)and Slagging (95%)(90%)

**Table 16-3. EAF & LMS Capture Efficiencies** 

Note that only "Particulate" is listed in the Table 5-3 under the rows for both "Melting and Refining" and "Charging, Tapping, and Slagging".

Therefore, "Particulate" is used as an indicator of emission intensity during the various EAF operation modes.

- ▶ For estimation of fugitive emissions of particulate matter (i.e., Filterable PM, Total PM<sub>10</sub>, and Total PM<sub>2.5</sub>):
  - Assuming the EAF/LMS generated X mass of particulate emissions.
  - 95% of X will be captured by the DEC and routed to the baghouse while the remaining 5% of X will be released inside the meltshop.
  - Of this 5% of X, 95% will be capture by the canopy and routed to the baghouse while the remaining 5% will be released inside the building.
  - Therefore:
    - The total emissions routed to the baghouse are 0.95X (from DEC) + 0.95 x 0.05X (from the canopy), or 99.75% of X.
    - The total emissions released inside the building are 0.05 x 0.05X, or 0.25% of X
  - The baghouse control efficiency is estimate to be 98% while the building efficiency is estimated to be 90%. Therefore:
    - The total emissions released from the baghouse are 2% of 99.75% of X, or 1.995% of X.
    - The total emissions released from the building are 10% of 0.25% of X, or 0.025% of X.
  - Based on the above considerations, fugitive particulate emissions are estimated by dividing the emissions from the baghouse by 1.995% and multiplying by 0.025%.
- ▶ For estimation of fugitive emissions of gaseous pollutants:
  - Assuming the EAF/LMS generated X mass of gaseous emissions.

<sup>&</sup>lt;sup>1</sup> DEC and Canopy Hood capture efficiency based on BACT for similar facilities.

<sup>&</sup>lt;sup>2</sup> Emission intensity per Energy and Environmental Profile of the U.S. Iron and Steel Industry, U.S. Department of Energy (Aug. 2000), Table 5-3, for EAF (melting, refining, charging, tapping, and slagging alloy steel).

- 95% of X will be captured by the DEC and routed to the baghouse while the remaining 5% of X will be released inside the meltshop.
- Of this 5% of X, 95% will be capture by the canopy and routed to the baghouse while the remaining 5% will be released inside the building.
- Therefore:
  - The total emissions routed to the baghouse are 0.95X (from DEC) + 0.95 x 0.05X (from the canopy), or 99.75% of X.
  - The total emissions released inside the building are 0.05 x 0.05X, or 0.25% of X
- It is conservatively assumed that the baghouse and building have no capture or control efficiency for gaseous pollutants. Therefore:
  - The total emissions released from the baghouse are 99.75% of X.
  - The total emissions released from the building are 0.25% of X.
- Based on the above considerations, fugitive gaseous emissions are estimated by dividing the emissions from the baghouse by 99.75% and multiplying by 0.25%.

#### 16.1.1 PM Emissions

Emissions of PM,  $PM_{10}$ , and  $PM_{2.5}$  from the meltshop baghouse are calculated based on the outlet baghouse grain loading proposed as BACT and the anticipated air flow rate to the baghouse. The grain loading proposed as BACT is discussed in more detail in Section 23 of the application. Note that pursuant to 77 FR 65107, October 25, 2012, calculated PM emissions include filterable particulate emissions only whereas  $PM_{10}$  and  $PM_{2.5}$  include both filterable and condensable fractions.

At the time of application, project engineering was still in progress and the flowrate has not been finalized. The flowrate presented in this application is the maximum anticipated and incorporates a conservative buffer. The final equipment flowrate will be at or under this flowrate representation.

Hourly and annual emissions of PM, PM<sub>10</sub>, and PM<sub>2.5</sub> from the meltshop baghouse are calculated according to the following equations:

Hourly Emissions 
$$\left(\frac{lb}{hr}\right)$$
 = Emission Factor  $\left(\frac{gr}{dscf}\right)$  x Flow Rate  $\left(\frac{dscf}{min}\right)$  x  $\frac{1}{7,000}\left(\frac{lb}{gr}\right)$  x 60  $\left(\frac{min}{hr}\right)$ 

$$\text{Annual Emissions } \left(\frac{\text{ton}}{\text{yr}}\right) = \text{Hourly Emissions } \left(\frac{\text{lb}}{\text{hr}}\right) \ge 8,760 \, \left(\frac{\text{hr}}{\text{yr}}\right) \ge \frac{1}{2,000} \left(\frac{\text{ton}}{\text{lb}}\right)$$

The hourly and annual emission for uncaptured emissions from the EAF and LMS is calculated using the methodology noted above.

#### 16.1.2 Criteria Pollutants (Except for PM) and Fluoride Emissions

Emissions of NO<sub>x</sub>, CO, VOC, SO<sub>2</sub>, Pb, and fluorides excluding hydrogen fluoride (HF) from the proposed meltshop baghouse are calculated based on emission factors and proposed micro mill's anticipated steel production rate. The emission limits proposed as BACT for NO<sub>x</sub>, CO, VOC, SO<sub>2</sub>, and Pb are used as short-term emission factors to calculate hourly and annual emissions. <sup>9</sup> The emission limits proposed as BACT are discussed in more detail in Section 23 of this application. Note that short-term emissions of NO<sub>x</sub>, SO<sub>2</sub>,

<sup>&</sup>lt;sup>9</sup> As noted in item 7c of the EPA letter to Colorado Department of Public Health and Environment, Ref: 8P-AR, concerning "Proposed Short Term Limits Policy."

and CO incorporate the following short-term variability factors based on process knowledge and engineering estimates:

- NOx short-term variability factor = 1.3
- CO short-term variability factor = 2.0
- SO<sub>2</sub> short-term variability factor = 1.4

The fluorides emission factor is based on process knowledge and a review of the Reasonably Available Control Technology (RACT)/BACT/Lowest Achievable Emission Reduction (LAER) Clearinghouse (RBLC).

Hourly and annual emissions of NO<sub>x</sub>, CO, VOC, SO<sub>2</sub>, Pb, and fluorides from the proposed meltshop baghouse are calculated according to the following equations:

Hourly Emissions 
$$\left(\frac{lb}{hr}\right)$$
 = Short Term EF  $\left(\frac{lb}{ton}\right)$  x Hourly Steel Production  $\left(\frac{ton}{hr}\right)$ 

$$\text{Annual Emissions } \left( \frac{\text{ton}}{\text{yr}} \right) = \text{Long Term EF } \left( \frac{\text{lb}}{\text{ton}} \right) \times \text{Annual Steel Production } \left( \frac{\text{ton}}{\text{yr}} \right) \times \frac{1}{2,000} \left( \frac{\text{ton}}{\text{lb}} \right)$$

Where,

EF = Emission factor

Uncaptured short-term and long-term emission factors for emissions of NO<sub>X</sub>, CO, VOC, SO<sub>2</sub>, Pb, and fluorides from the proposed EAF and LMS and the uncaptured emission factors for emissions of fluorides from the EAF are calculated using the methodology noted above.

#### 16.1.3 GHG Emissions

Emissions of GHGs are calculated as emissions of  $CO_2$  and then converted to  $CO_2e$ . Annual  $CO_2e$  emissions from the proposed EAF and LMS are calculated using the  $CO_2$  emission factor, annual proposed steel production rate, and the global warming potential (GWP) of  $CO_2$  from Table A-1 of 40 CFR Part 98. The  $CO_2$  emission factor is determined from stack tests performed on a similar baghouse at CMC's Durant, OK and Mesa, AZ facilities (other ECS micro-mills which are substantially similar to the proposed Project). The stack gas  $CO_2$  concentration and moisture content measured during the source tests are used to develop the  $CO_2$  emission rate using the following equation based on 40 CFR Part 98, Subpart Q, Equation Q-8 and 40 CFR §98.173(b)(2)(iii):

$$SSER\left(\frac{metric\ ton}{hr}\right) = 5.18\ x\ 10^{-7}\ x\ STC\ (\%,dry\ basis)\ x\ Q\ \left(\frac{scf}{hr}\right)\ x\ \frac{100-\ MC\ (\%)}{100}$$

Where,

SSER = Site-specific CO<sub>2</sub> emission rate

STC = Concentration of CO<sub>2</sub> measured during the stack test

Q = Hourly stack gas volumetric flow rate measured during the stack test

MC = Moisture content measured during the stack test

The CO<sub>2</sub> emission factor is developed from the CO<sub>2</sub> emission rate and the hourly steel production rate at the time of the stack tests:

Emission Factor 
$$\left(\frac{\text{metric ton}}{\text{metric ton}}\right) = \text{SSER}\left(\frac{\text{metric ton}}{\text{hr}}\right) \times \frac{1}{\text{Hourly Steel Production}} \left(\frac{\text{hr}}{\text{metric ton}}\right)$$

Where,

SSER = Site-specific CO<sub>2</sub> emission rate

The maximum emission factor is then selected to account for possible variations in the carbon source at the proposed Project and its potential impact on emissions. Annual CO<sub>2</sub>e emissions from the meltshop baghouse are calculated using the following equation:

$$\text{Annual Emissions (tpy)} = \text{Emission Factor} \left( \frac{\text{metric ton}}{\text{metric ton}} \right) \\ \text{x Annual Steel Production} \left( \frac{\text{ton}}{\text{yr}} \right) \\ \text{x CO}_2 \text{ GWP}$$

Uncaptured emissions from the EAF and LMS are calculated using the methodology noted above.

#### 16.1.4 HAP Emissions

Emissions of HAPs are based on emission factors and the anticipated steel production rate at the Facility. Emission factors for the EAF and LMS captured HAP emissions are based on process experience from other CMC micro mills. Emission factors for the EAF and LMS uncaptured emissions are calculated are using the methodology noted above.

Hourly and annual emissions of HAPs from the EAF and LMS for captured and uncaptured emissions are calculated using the following equations:

Hourly Emissions 
$$\left(\frac{lb}{hr}\right)$$
 = Emission Factor  $\left(\frac{lb}{ton}\right)$ x Hourly Steel Production  $\left(\frac{ton}{hr}\right)$ 

$$\text{Annual Emissions } \left( \frac{ton}{yr} \right) = \text{Emission Factor } \left( \frac{lb}{ton} \right) \times \text{Annual Steel Production } \left( \frac{ton}{yr} \right) \times \frac{1}{2,000} \left( \frac{ton}{lb} \right)$$

# 16.2 Rolling Mill, Cooling Beds, & Spooler Vents

The proposed micro mill's rolling mill, cooling beds, and spooler will each have an associated building roof vent (i.e., the rolling mill vent, cooling bed vent, and spooler vent). The rolling mill has the potential to emit PM, PM<sub>10</sub>, PM<sub>2.5</sub>, and VOC via the rolling mill vent. The cooling beds and spooler have the potential to emit PM, PM<sub>10</sub>, PM<sub>2.5</sub>, and VOC via the cooling beds and spooler vents. Emissions from these vents are expected to be negligible; as such, de minimis values are assumed as a conservative representation of the hourly and annual emission rates from the vents. Emissions from the bit furnaces are also vented from the rolling mill vents and are therefore also included in the rolling mill vent emissions.

#### **16.3 Silos**

The proposed silos have the potential to emit PM, PM<sub>10</sub>, and PM<sub>2.5</sub>. Emissions from the silos are each controlled by their own bin vent (the bin vents are primarily used for material recovery purposes). Emissions from the silos, via the bin vents, only occur when the silos are being loaded, which occurs at the base of the silo during truck deliveries (fluxing agent and carbon silos) and during the transfer of dust from the baghouse (baghouse dust silo). Loading the silo at the base forces air through the top of the silo through the bin vent and into the atmosphere. During the unloading of the silos, air is pulled into the silo through the bin vent. During the

unloading of the baghouse dust from the silo, any resulting exhaust is routed back to the silo and the associated fabric filter.

Emissions of PM,  $PM_{10}$ , and  $PM_{2.5}$  are calculated based on the fabric filter or baghouse outlet grain loading and the anticipated air flow rates. The grain loadings proposed as BACT are used to calculate emissions and are discussed in more detail in Section 23 of this application. Annual emission calculations are conservatively calculated using a reasonable upper bound for all silos other than the EAF Baghouse Dust silo, and 8,760 annual operating hours for the baghouse dust silo. The following equations are used to calculate hourly and annual PM,  $PM_{10}$ , and  $PM_{2.5}$  emissions:

Hourly Emissions 
$$\left(\frac{lb}{hr}\right)$$
 = Emission Factor  $\left(\frac{gr}{dscf}\right)$  x Flow Rate  $\left(\frac{dscf}{min}\right)$  x  $\frac{1}{7,000}\left(\frac{lb}{gr}\right)$  x 60  $\left(\frac{min}{hr}\right)$ 

Annual Emissions 
$$\left(\frac{ton}{yr}\right)$$
 = Hourly Emissions  $\left(\frac{lb}{hr}\right)$  x Annual Operating Hours  $\left(\frac{hr}{yr}\right)$  x  $\frac{1}{2,000}\left(\frac{ton}{lb}\right)$ 

#### 16.4 Caster Teeming

Caster teeming operations have the potential to emit PM, PM<sub>10</sub>, PM<sub>2.5</sub>, and VOC. Emissions from caster teeming will be routed to the caster vent. Emissions are determined from emission factors and proposed micro mill and Facility's respective maximum steel production rates.

No emission factors are available for teeming associated with continuous casting so 10% of the factor for PM emissions from conventional ingot teeming of unleaded steel (uncontrolled) from AP-42 Section 12.5, Table 12.5-1, January 1995 and 10% of the factor for VOC emissions from conventional ingot teeming of unleaded steel (SCC 3-03-009) from the Point Sources Committee's *Emission Inventory Improvement Program: Uncontrolled Emission Factor Listing for Criteria Air Pollutants*, July 2001 are used. The 10% assumptions are used because (1) the transfer of steel from ladles to the tundish to the mold for continuous casting is more enclosed than the transfer for conventional ingot casting and (2) the continuous caster mold is water-cooled while conventional molds are not. The emission factors for PM<sub>10</sub> and PM<sub>2.5</sub> are conservatively assumed to be equal to the emission factor for PM.

The following equations are used to calculate hourly and annual PM, PM<sub>10</sub>, PM<sub>2.5</sub>, and VOC emissions from caster teeming emitted through each of the caster vent:

Hourly Emissions 
$$\left(\frac{lb}{hr}\right)$$
 = Emission Factor  $\left(\frac{lb}{ton}\right)$  x Hourly Steel Production  $\left(\frac{ton}{hr}\right)$ 

$$\text{Annual Emissions } \left( \frac{\text{ton}}{\text{yr}} \right) = \text{Emission Factor } \left( \frac{\text{lb}}{\text{ton}} \right) x \text{ Annual Steel Production } \left( \frac{\text{ton}}{\text{yr}} \right) x \frac{1}{2,000} \left( \frac{\text{ton}}{\text{lb}} \right)$$

# **16.5 Cooling Towers**

The proposed cooling towers (two non-contact and one contact) have the potential to emit PM, PM<sub>10</sub>, and PM<sub>2.5</sub>. Each of the three cooling towers will be equipped with two individual cells. Some of the liquid will become entrained in the air stream and will be carried out of the towers as drift droplets. These droplets will contain dissolved solids that contribute to potential particulate emissions. Potential emissions from the proposed replacement cooling towers are based on the anticipated maximum cooling water flow rate, the anticipated maximum Total Dissolved Solids (TDS) content, and the drift loss percentage. The drift loss

percentage proposed as BACT is used in the emission calculations. The drift loss percentage proposed as BACT is discussed in more detail in Section 23 of this application. All potential PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions from the cooling towers are determined using the Reisman and Frisbie method.<sup>10</sup> Annual emissions are based on 8,760 hours of normal operation for the cooling tower.

#### 16.6 Fuel Combustion

The sources of fuel combustion emissions will be as follows. These combustion sources will vent emissions inside the buildings.

- ► Three ladle preheaters;
- ▶ Two ladle dryers;
- Two tundish preheaters;
- One tundish dryer;
- One tundish mandril dryer;
- One shroud heater;
- Twenty Melt Shop comfort heaters;
- Twenty Rolling Mill comfort heaters;
- One bit furnace; and
- Cutting Torches.

The combustion sources will utilize propane fuel or natural gas. The proposed sources of propane and natural gas combustion have the potential to emit criteria pollutants, GHGs, and HAPs.

#### 16.6.1 Criteria Pollutant Emissions

Emissions of PM,  $PM_{10}$ ,  $PM_{2.5}$ ,  $NO_X$ , CO, VOC, and  $SO_2$  from each combustion emission source type are calculated based on the anticipated total heat input rating, the annual utilization percentage, and emission factors. Emission factors for PM,  $PM_{10}$ ,  $PM_{2.5}$ ,  $NO_X$ , CO, VOC,  $SO_2$ , and lead are based on the proposed BACT as described in Section 23 of this application and are generally equivalent to the factors in AP-42 Section 1.5, dated July 2008 for propane combustion or AP-42 Section 1.4, dated July 1998 for natural gas combustion. All emission factors are converted to a lb/MMBtu basis and the maximum factor from propane or natural ga combustion is used to complete the calculations.

Hourly and annual emissions are calculated using the following two equations, respectively:

$$\text{Hourly Emissions } \left( \frac{lb}{hr} \right) = \text{Maximum EF } \left( \frac{lb}{\text{MMBtu}} \right) \text{ x Hourly THIR } \left( \frac{\text{MMBtu}}{hr} \right)$$

Annual Emissions 
$$\left(\frac{\text{ton}}{\text{yr}}\right)$$

$$= \text{Maximum EF}\left(\frac{\text{lb}}{\text{MMBtu}}\right) \times \text{Hourly THIR}\left(\frac{\text{MMBtu}}{\text{hr}}\right) \times 8,760 \left(\frac{\text{hr}}{\text{yr}}\right) \times \frac{\text{AU (\%)}}{100} \times \frac{1}{2,000} \left(\frac{\text{ton}}{\text{lb}}\right)$$

<sup>&</sup>lt;sup>10</sup> Per Calculating Realistic PM<sub>10</sub> Emissions from Cooling Towers. Joel Reisman and Gordon Frisbie, 2003.

Maximum EF = Maximum emission factor between propane and natural gas THIR = Total heat input rate

AU = Annual utilization

## 16.6.2 GHG Emissions

Emissions of the GHGs CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O are calculated from the anticipated total heat rating for each combustion source type and emission factors. The emission factors for CO<sub>2</sub> are obtained from 40 CFR Part 98, Table C–1 to Subpart C, December 2016, for natural gas and propane. Emission factors for CH<sub>4</sub> and N<sub>2</sub>O are obtained from 40 CFR Part 98, Table C–2 to Subpart C, December 2016, for natural gas and propane. The following equation is used to calculate annual GHG specie emissions:

Annual Emissions 
$$\left(\frac{\text{ton}}{\text{yr}}\right)$$

$$= \text{Maximum EF} \left(\frac{\text{lb}}{\text{MMBtu}}\right) \times \text{Hourly THIR} \left(\frac{\text{MMBtu}}{\text{hr}}\right) \times 8,760 \left(\frac{\text{hr}}{\text{yr}}\right) \times \frac{\text{AU (\%)}}{100} \times \frac{1}{2,000} \left(\frac{\text{ton}}{\text{lb}}\right)$$

Where,

Maximum EF = Maximum emission factor between propane and natural gas THIR = Total heat input rate

AU = Annual utilization

The emissions of CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O along with each respective global warming potential are used to calculate the emissions of CO<sub>2</sub>e. The global warming potentials for the GHGs are obtained from 40 CFR Part 98, Table A-1, December 2014. The following equation is used to calculate annual CO<sub>2</sub>e emissions:

$$\mbox{Annual Emissions} \left( \frac{ton}{yr} \right) = \\ \sum_{i} \left[ \mbox{GWP}_{i} \ x \ \mbox{Annual Emissions}_{i} \left( \frac{ton}{yr} \right) \right] \label{eq:emissions}$$

Where,

GWP = Global warming potential  $i = CO_2$ , CH<sub>4</sub>, N<sub>2</sub>O

## 16.6.3 HAP Emissions

No HAP emissions are contained in AP-42 for propane combustion. Therefore, emissions of HAPs are calculated from the anticipated total heat input rating, the annual utilization, and natural gas combustion emission factors. Natural gas combustion HAP emission factors are from AP-42 Section 1.4, Tables 1.4-3 and 1.4-4, July 1998. The following two equations are used to calculate the hourly and annual HAP emissions from natural gas combustion sources:

$$\text{Hourly Emissions } \left(\frac{\text{lb}}{\text{hr}}\right) = \text{EF } \left(\frac{\text{lb}}{\text{MMscf}}\right) \times \text{Hourly THIR } \left(\frac{\text{MMBtu}}{\text{hr}}\right) \times \frac{1}{1,020} \left(\frac{\text{scf}}{\text{Btu}}\right)$$

$$\mathsf{AE}\left(\frac{\mathsf{ton}}{\mathsf{yr}}\right) = \ \mathsf{EF}\left(\frac{\mathsf{lb}}{\mathsf{MMscf}}\right) \times \mathsf{Hourly} \ \mathsf{THIR}\left(\frac{\mathsf{MMBtu}}{\mathsf{hr}}\right) \times \mathsf{8,760}\left(\frac{\mathsf{hr}}{\mathsf{yr}}\right) \times \frac{\mathsf{AU}\left(\%\right)}{\mathsf{100}} \times \frac{1}{\mathsf{1,020}}\left(\frac{\mathsf{scf}}{\mathsf{Btu}}\right) \times \frac{1}{\mathsf{2,000}}\left(\frac{\mathsf{ton}}{\mathsf{lb}}\right) \times \frac{\mathsf{AU}\left(\%\right)}{\mathsf{hr}} \times \frac{\mathsf{AU}\left(\%\right)}{\mathsf{h$$

EF = Emission Factor THIR = Total heat input rate AE = Annual Emissions

# 16.7 Binder Usage

The proposed usage of binder for tundish and ladle refractory repair and replacement has the potential to emit PM,  $PM_{10}$ ,  $PM_{2.5}$ , CO, and VOC. Emissions from the binder usage will enter the atmosphere through the caster vent. Emissions are calculated using emission factors and the proposed rate of binder usage.

The binder usage emission factors for PM, PM<sub>10</sub>, PM<sub>2.5</sub>, and CO emissions are based on process experience from other CMC micro mills. The binder usage emission factors for VOC emissions are based on an estimated percent of binder resin pyrolyzed/oxidized. The percent of binder resin pyrolyzed/oxidized is estimated based on process experience from other CMC micro-mills. The following equations are used to calculate hourly and annual emissions from binder usage, respectively:

Hourly Emissions 
$$\left(\frac{lb}{hr}\right)$$
 = Emission Factor  $\left(\frac{lb}{lb}\right)$ x Hourly Binder Usage  $\left(\frac{lb}{hr}\right)$ 

Annual Emissions 
$$\left(\frac{ton}{yr}\right)$$
 = Emission Factor  $\left(\frac{lb}{lb}\right)$  x Annual Binder Usage  $\left(\frac{ton}{yr}\right)$ 

## 16.8 Material Transfers

Emissions from material transfers are expected to occur when transferring the following types of materials:

- Scrap;
- Fluxing agent;
- Alloy aggregate;
- Spent refractory/other waste;
- Slag;
- ▶ Residual scrap<sup>11</sup>; and
- Mill scale.

The proposed material transfers have the potential to emit PM,  $PM_{10}$ , and  $PM_{2.5}$ . Emissions of PM,  $PM_{10}$ , and  $PM_{2.5}$  from material transfers are calculated based on emission factors, the maximum throughput of material, the fine content of the material, and control efficiencies from partial enclosures, if applicable. Emission factors for PM,  $PM_{10}$ , and  $PM_{2.5}$  from material transfers (i.e., drop points) are calculated based on the material's moisture content, the mean wind speed, and a particle size multiplier and by using the following equation from AP-42 Section 13.2.4, November 2006:

<sup>&</sup>lt;sup>11</sup> Residual scrap is loose scrap at the bottom of scrap piles or scrap trucks (also known as "truck sweeps") that has been commingled with other materials (such as dirt).

Emission Factor 
$$\left(\frac{\text{lb}}{\text{ton}}\right) = \frac{\text{FC (\%)}}{100} \times k \times 0.0032 \times \frac{\left[\frac{\text{U (mph)}}{5}\right]^{1.3}}{\left[\frac{\text{M (\%)}}{2}\right]^{1.4}} \times (1 - \frac{\text{CE (\%)}}{100})$$

k = Particle size multiplier

U = Mean wind speed

M = Material moisture content

FC = Fine content of material

CE = Control efficiency from partial enclosure (if applicable)

A proposed screening operation will be used as a part of the material handling of slag. Emission factors for the controlled triple deck screening operation are obtained from AP-42 Section 11.19.2, Table 11.19.2-2, August 2004.

The PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions from material transfers, including intermingled slag screening operations, are calculated by using the following equations:

Hourly Emissions 
$$\left(\frac{lb}{hr}\right) = EF\left(\frac{lb}{ton}\right) x$$
 Hourly MT  $\left(\frac{ton}{hr}\right) x$ 

Annual Emissions 
$$\left(\frac{\text{ton}}{\text{vr}}\right) = \text{EF}\left(\frac{\text{lb}}{\text{ton}}\right) \times \text{Annual MT}\left(\frac{\text{ton}}{\text{vr}}\right) \times \frac{1}{2,000}\left(\frac{\text{ton}}{\text{lb}}\right)$$

Where,

EF = Emission Factor

MT = Maximum throughput rate of material

# 16.9 Ball Drop Crushing

The ball drop crushing of large scrap (also known as "reclaim" or "skulls", from the process) has the potential to emit PM, PM<sub>10</sub>, and PM<sub>2.5</sub>. Emissions of PM, PM<sub>10</sub>, and PM<sub>2.5</sub> from the ball drop crushing of large scrap are calculated based on emission factors and the maximum throughput rates of large scrap. Emission factors for the crushing operation are obtained from AP-42 Section 11.19.2, Table 11.19.2-2, August 2004. The emission factors listed for controlled tertiary crushing are conservatively used to represent emissions from the ball drop crushing operations. The hourly and annual PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions from the ball drop crushing of large scrap are calculated using the following equations:

$$\text{Hourly Emissions } \left(\frac{lb}{hr}\right) = \text{Emission Factor } \left(\frac{lb}{ton}\right) \text{ x Hourly MT } \left(\frac{ton}{hr}\right)$$

$$\text{Annual Emissions } \left( \frac{\text{ton}}{\text{yr}} \right) = \text{Emission Factor } \left( \frac{\text{lb}}{\text{ton}} \right) \times \text{Annual MT } \left( \frac{\text{ton}}{\text{hr}} \right) \times \frac{1}{2,000} \left( \frac{\text{ton}}{\text{lb}} \right)$$

Where,

MT = Maximum Throughput Rate of Material Storage Piles

# 16.10 Storage Piles

Emissions from storage piles are expected to occur from the storage of the following types of materials:

- Scrap;
- Alloy aggregate;
- Slag;
- Residual scrap; and
- Mill scale.

The proposed storage piles have the potential to emit PM, PM<sub>10</sub>, and PM<sub>2.5</sub>. Emissions of PM, PM<sub>10</sub>, and PM<sub>2.5</sub> from storage piles are calculated based on the anticipated maximum pile area and an emission factor. PM emission factors for storage pile emissions are based on the following equation from the *Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures*, EPA-450/2-92-004, September 1992:

Emission Factor 
$$\left(\frac{\frac{\text{lb}}{\text{day}}}{\text{acre}}\right) = 1.7 \text{ x} \frac{\text{s (\%)}}{1.5} \text{ x} \frac{365 - \text{P (days)}}{235} \text{ x} \frac{\text{f (\%)}}{15} \text{ x } (1 - \frac{\text{CE (\%)}}{100})$$

Where,

s = Silt content

P = Days per year with at least 0.01 inches of precipitation, based on AP-42 Section 13.2, Figure 13.2.2-1, November 2006

f = Percentage of time the unobstructed wind speed exceeds 12 miles per meteorological data collected at Martinsburg Eastern West Virginia (KMRB) Airport station for period between 2017 to 2021

CE = Control efficiency from partial enclosure (if applicable)

Per the Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures, EPA-450/2-92-004, September 1992, the following ratio is used to convert the PM emission factors to  $PM_{10}$  emission factors:

Emission Factor<sub>PM<sub>10</sub></sub> 
$$\left(\frac{\frac{lb}{day}}{acre}\right) = 0.5 \text{ x Emission Factor}_{PM} \left(\frac{\frac{lb}{day}}{acre}\right)$$

Per AP-42 Section 13.2.4, November 2006, the following ratio is used to convert PM emission factors to PM<sub>2.5</sub> emission factors:

Emission Factor<sub>PM<sub>2.5</sub></sub> 
$$\left(\frac{\text{lb}}{\text{day}}\right) = 0.053 \text{ x Emission Factor}_{\text{PM}} \left(\frac{\text{lb}}{\text{day}}\right)$$

The following equations are used to calculate hourly and annual PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions from storage piles:

Hourly Emissions 
$$\left(\frac{\text{lb}}{\text{hr}}\right) = \text{EF}\left(\frac{\frac{\text{lb}}{\text{day}}}{\text{acre}}\right) \times \text{MPA (ft}^2) \times \frac{1}{43,560} \left(\frac{\text{acre}}{\text{ft}^2}\right) \times \frac{1}{24} \left(\frac{\text{day}}{\text{hr}}\right)$$

Annual Emissions 
$$\left(\frac{\text{ton}}{\text{yr}}\right) = \text{ EF}\left(\frac{\frac{\text{lb}}{\text{day}}}{\text{acre}}\right) \times \text{MPA (ft}^2) \times \frac{1}{43,560} \left(\frac{\text{acre}}{\text{ft}^2}\right) \times 365 \left(\frac{\text{day}}{\text{yr}}\right) \times \frac{1}{2,000} \left(\frac{\text{ton}}{\text{lb}}\right)$$

EF = Emission factor MPA = Maximum pile area

## 16.11 Roads

Emissions of PM, PM<sub>10</sub>, and PM<sub>2.5</sub> are generated from vehicular traffic on roads. Road emissions are calculated based on vehicle miles travelled (VMT), emission factors, and control efficiencies. The vehicular VMT is calculated by multiplying number of trips and round-trip distance. The number of trips was estimated based on process knowledge or material throughput with vehicle capacity. Additional details on the road segments utilized in developing the road emissions estimates are contained in Appendix C.

## 16.11.1 Emissions from Unpaved Roads

Uncontrolled PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emission factors for vehicles traveling on unpaved roads are calculated using the following equations from AP-42, Section 13.2.2 (November 2006):

$$E = (k) \left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$$

 $E_{\text{ext}} = E[(365 - P)/365]$ 

Where,

E = size-specific hourly emission factor (lb/VMT)

E<sub>ext</sub> = size-specific annual emission factor (lb/VMT)

k = particle size multiplier, per AP-42 Table 13.2.2-2 (November 2006)

s = surface material silt content (%), 6% as accepted by MCAQD and EPA Region 9 for the PSD permit actions at the CMC operations in Arizona, which are substantially similar to the proposed project.

W = mean vehicle weight (tons)

a, b = constant, per AP-42 Table 13.2.2-2 (November 2006)

P = days per year with at least 0.01 inch precipitation, per AP-42 Figure 13.2.2-1, November 2006

The following equations are used to calculate hourly and annual emissions from vehicle traffic on unpaved roads:

Hourly Emissions 
$$\left(\frac{lb}{hr}\right)$$
 = Emission Factor  $\left(\frac{lb}{VMT}\right)$  x Hourly Vehicle Miles  $\left(\frac{VMT}{hr}\right)$ 

$$\text{Annual Emissions } \left( \frac{\text{ton}}{\text{yr}} \right) = \text{Emission Factor } \left( \frac{\text{lb}}{\text{VMT}} \right) \times \text{Annual Vehicle Miles } \left( \frac{\text{VMT}}{\text{yr}} \right) \times \frac{1}{2,000} \left( \frac{\text{ton}}{\text{lb}} \right)$$

Unpaved roads associated with the slag quench operations will be watered only as all other emission reduction techniques are infeasible. These unpaved roads are subject to watering based on the results of the top-down BACT. Per Table 6 of Preliminary Determination/Fact Sheet for the Construction of Nucor Steel West Virginia LLC, dated March 29, 2022, watering is expected to provide a 90% control efficiency. Unpaved roads not associated with the slag quench operations will deploy work practices (e.g., watering, etc.) consistent with the BACT proposal in Section 23 of this application. These unpaved roads are subject to a 95% control efficiency per U.S. EPA AP-42 Section 13.2.2, November 2006.

## 16.11.2 Emissions from Paved Roads

PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emission factors for vehicles traveling on paved roads are calculated using the following equations from AP-42, Section 13.2.1 (January 2011):

$$E = k(sL)^{0.91} \times (W)^{1.02}$$

$$E_{\text{ext}} = [k(sL)^{0.91} \times (W)^{1.02}](1 - P/4N)$$

Where,

E = size-specific hourly emission factor (lb/VMT)

 $E_{ext}$  = size-specific annual emission factor (lb/VMT)

k = constant for equation, 0.011 for PM, 0.0022 for PM<sub>10</sub>, 0.00054 for PM<sub>2.5</sub>, per AP-42 Table 13.2.1-1 (January 2011)

sL = road surface silt loading (g/m²), 3.34 g/m² as accepted by MCAQD and EPA Region 9 for the PSD permit actions at the CMC operations in Arizona, which are substantially similar to the proposed project.

W = mean vehicle weight (tons)

P = days per year with at least 0.01 inches of precipitation, per AP-42 Figure 13.2.1-2, January 2011

N = number of days in the averaging period, 365 for annual averaging period

Control efficiency of 90% is applied to account for control measures to be implemented on the paved roads, consistent with the work practices proposed as BACT in Section 23 of this application.

## 16.12 Diesel Combustion

The proposed Tier 3 diesel combustion emergency generator and emergency fire water pump have the potential to emit criteria pollutants, GHGs, and HAPs. Emissions from these emergency units will enter the atmosphere via the unit's stack.

## 16.12.1 Criteria Pollutant Emissions

Emissions of PM, PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>x</sub>, CO, and VOC, and SO<sub>2</sub> are calculated based on the unit's rating, hours of operation (which are 100 hours/year and inclusive of testing and maintenance consistent with the requirements of 40 CFR Part 60, Subpart IIII), and emission factors.

The emission factors for emissions of PM, PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>X</sub>, CO, and VOC are based on the requirements of 40 CFR Part 60, Subpart IIII, referencing 40 CFR Part 1039, Appendix I with the emission factors of VOC and NO<sub>X</sub> speciated based Table 6 of the EPA publication "Exhaust and Crankcase Emission Factors"

for Nonroad Engine Modeling – Compression Ignition", EPA420-P-02-016. The emission factor for  $SO_2$  is based on the utilization of ultra-low sulfur diesel (ULSD) which contains no more than 15 ppmv sulfur. The sulfur content of diesel is converted to an emission factor using an average brake specific fuel consumption of 7,000 Btu/hp-hr, and the diesel heating value of 19,300 Btu/lb.

Hourly and annual emissions of PM, PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>X</sub>, CO, VOC, and SO<sub>2</sub> from the diesel combustion are calculated using the following two equations, respectively:

Hourly Emissions 
$$\left(\frac{lb}{hr}\right) = EF\left(\frac{g}{hp - hr}\right) \times \left(\frac{lb}{453.6 \text{ g}}\right)$$

Annual Emissions 
$$\left(\frac{\text{ton}}{\text{yr}}\right)$$
 = Hourly Emissions  $\left(\frac{\text{lb}}{\text{hr}}\right)$  x 100  $\left(\frac{\text{hr}}{\text{yr}}\right)$  x  $\left(\frac{\text{ton}}{\text{2,000 lb}}\right)$ 

Where,

EF = Emission factor

## 16.12.2 GHG Emissions

Emissions of the GHGs CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O are calculated from the unit's rating and emission factors. The emission factors for CO<sub>2</sub> are obtained from 40 CFR Part 98, Table C–1 to Subpart C, December 2016, for distillate fuel oil No. 2. Emission factors for CH<sub>4</sub> and N<sub>2</sub>O are obtained from 40 CFR Part 98, Table C–2 to Subpart C, December 2016, for natural gas. The following equation is used to calculate annual GHG specie emissions:

Annual Emissions 
$$\left(\frac{\text{ton}}{\text{yr}}\right)$$

$$= \text{EF}\left(\frac{\text{kg}}{\text{MMBtu}}\right) \times \left(\frac{7,000 \text{ Btu}}{10^6 \text{hp} - \text{hr}}\right) \times 1.341 \left(\frac{\text{hp}}{\text{kW}}\right) \times \left(\frac{1,000 \text{ g}}{\text{kg}}\right) \times (\text{hp}) \times \left(\frac{\text{lb}}{453.6 \text{ g}}\right) \times 100 \left(\frac{\text{hr}}{\text{yr}}\right) \times \left(\frac{\text{ton}}{2,000 \text{ lb}}\right)$$

Where,

EF = Emission factor

The emissions of CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O along with each respective global warming potential are used to calculate the emissions of CO<sub>2</sub>e. The global warming potentials for the GHGs are obtained from 40 CFR Part 98, Table A-1, December 2014. The following equation is used to calculate annual CO<sub>2</sub>e emissions:

Annual Emissions 
$$\left(\frac{\text{ton}}{\text{yr}}\right) = \sum_{i} \left[\text{GWP}_{i} \times \text{Annual Emissions}_{i} \left(\frac{\text{ton}}{\text{yr}}\right)\right]$$

Where,

GWP = Global warming potential  $i = CO_2$ , CH<sub>4</sub>, N<sub>2</sub>O

### 16.12.3 HAP Emissions

Emissions of HAPs are calculated from the unit's rating and emission factors. HAP emission factors are from AP-42 Section 3.3, Table 3.3-2. The following two equations are used to calculate the hourly and annual HAP emissions from diesel combustion:

Hourly Emissions 
$$\left(\frac{lb}{hr}\right) = \text{EF}\left(\frac{lb}{\text{MMBtu}}\right) \times \left(\frac{7,000 \text{ Btu}}{10^6 \text{hp} - \text{hr}}\right) \times (\text{hp})$$

Annual Emissions  $\left(\frac{\text{ton}}{\text{yr}}\right) = \text{Hourly Emissions}\left(\frac{lb}{\text{hr}}\right) \times 100 \left(\frac{\text{hr}}{\text{yr}}\right) \times \left(\frac{\text{ton}}{2,000 \text{ lb}}\right)$ 

Where,

EF = Emission Factor

# 16.13 Torch Cutting

Emissions of PM, PM<sub>10</sub>, and PM<sub>2.5</sub> from the cutting torches are estimated based on the amount of scrap to be cut, the scrap removal rate per cut (approximately 1 inch of material per cut), the maximum cutting rate (approximately 0.4 cuts/ft of material to be cut), maximum daily operation, and emission factor. The emission factor of 0.00016 lb/inch cut is for oxyacetylene cutting per the American Welding Society (AWS). It is assumed that the emission rate from propane or natural gas cutting is similar to that of oxyacetylene cutting.

# 16.14 Storage Tanks

Emissions of VOC from the diesel storage tanks located at the Facility were estimated using the equations for horizontal and vertical fixed roof storage tanks located in AP-42 Section 7.1, dated June 2020.

## 16.15 De Minimis Sources

Pursuant to 45 CSR 13-2.2.6

"De minimis source" means any emissions unit listed in Table 45-13B below, whether individual or a part of a common plan (i.e., a common set of new sources or physical changes in or changes in the method of operation of any existing stationary source). A "de minimis source" is deemed to have insignificant emissions and/or is not usually a source of quantifiable emissions which can be practically regulated in determining potential to emit or actual emissions for the purpose of determining whether a permit is required under this rule. Emissions to the extent quantifiable from emissions units listed in Table 45-13B do not need to be added together by the source unless otherwise required by the Secretary.

No emission calculations were performed for the following list of proposed equipment types because each is considered a De minimis source.

- ▶ Air compressors and pneumatically-operated equipment, including hand tools; instrument air systems (excluding fuel-fired compressors); emissions from pneumatic starters on reciprocating engines, turbines or other equipment; and periodic use of air for cleanup (excluding all sandblasting activities).
- ▶ Bench-scale laboratory equipment used for physical or chemical analysis, excluding lab fume hoods or vents.

<sup>&</sup>lt;sup>12</sup> Pursuant to "EUG 2 Torch Cutting's Parameters" in the Okhahoma Department of Environmental Quality Evaluation of Permit Application No. 2021-0086-O for CMC Recycling Tulsa Recycling Plant, dated March 10, 2022.

<sup>13</sup> Ibid.

- ▶ Portable brazing, soldering, gas cutting or welding equipment used as an auxiliary to the principal equipment at the source.
- ► Comfort air conditioning or ventilation systems not used to remove air contaminants generated by or released from specific units of equipment.
- ► Hand-held equipment for buffing, polishing, cutting, drilling, sawing, grinding, turning or machining wood, metal or plastic.

# 17. ATTACHMENT O: MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS

| Attachment D: Regulatory Discussion provides details on the state and federal regulatory applicability analysis as well as all proposed monitoring/recordkeeping/reporting/testing plan. |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                          |  |  |  |  |  |

# **18. ATTACHMENT P: PUBLIC NOTICE**

| Attached is the public notice and affidavit of publication for the proposed permitting action. |  |
|------------------------------------------------------------------------------------------------|--|
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |
|                                                                                                |  |



### Journal (Martinsburg) 207 W. King St (304) 263-8931

I, Carol Bush, of lawful age, being duly sworn upon oath, deposes and says that I am the Notary Public of Journal (Martinsburg), a publication that is a "legal newspaper" as that phrase is defined for the city of Martinsburg, for the County of Berkeley, in the state of West Virginia, that this affidavit is Page 1 of 2 with the full text of the sworn-to notice set forth on the pages that follow, and that the attachment hereto contains the correct copy of what was published in said legal newspaper in consecutive issues on the following dates:

## **PUBLICATION DATES:**

5 Jan 2023

Notice ID: O0WbiqHkRvXPr9X8PCxy Notice Name: CMC Kent Public Notice

**PUBLICATION FEE: \$113.32** 

VERIFICATION STATE OF WEST VIRGINIA COUNTY OF BERKELEY

Signed or attested before me on this

0<u>-23</u>. ^~~~

> OFFICIAL SEAL NOTARY PUBLIC STATE OF WEST WIRGIN

STATE OF WEST VIRGINIA Carol Bush

23 Armstrong Way Martinsburg, WV 25403

My Commission Expires April 29, 2023

## AIR QUALITY PERMIT NOTICE

#### Notice of Application

Notice is given that CMC Steel US, LLC has applied to the West Virginia Department of Environmental

Protection, Division of Air Quality, for a new Prevention of Significant Deterioration (PSD) Construction

Permit for a steel micro mill to be located off Dupont Road near Martinsburg, Berkeley County, West

Virginia. The site latitude and longitude coordinates are; 99.598133 °N, -77.888409°W.

OMC is proposing to construct a new micro mill and associated support operations. Specifically, the

proposed project will include the installation of a meltshop (including an Electric Arc Furnace and Ladie

Metallurgy Station), casting operations, heaters and dryers, rolling mill, and finishing operations. The project

also involves installation of a slag processing plant, and ancillary equipment related to the production

#### process.

The applicant estimates the potential to discharge the following Regulated Air Pollutants associated with

the project after the installation of the proposed equipment:

#### **Pollutant**

### Emissions in tpy

(tons per year)

NOX

co

1,309

VOC

SO2 98

Filterable PM

77

Total PM\*1

Total PM10

Total PM2.5

174

Total HAPs

2.33

Carbon Dioxide Equivalents (CO2e) 120,600

'1 Total PM includes filterable and condensable PM fractions.

Start of project will begin in June 2023. Anticipated start-up is December 2025. Written comments will be

received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th

Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Written comments will also be received via email at DEPAirQualityPermitting@VW.gov. Any questions

regarding this permit application should be directed to the DAQ at (304) 926-0499 extension 41281 during normal business hours.

Dated this the 3rd day of January, 2023.

By: CMC Steel US, LLC

Billy Milligan

Vice President, Sustainability and Government Affairs

6565 North MacArthur Blvd.

Suite,800

Irving, TX 75039

# 19. ATTACHMENT Q: BUSINESS CONFIDENTIAL CLAIMS (NOT APPLICABLE)

# **20. ATTACHMENT R: AUTHORITY FORMS (NOT APPLICABLE)**

# 21. ATTACHMENT S: TITLE V PERMIT REVISION INFORMATION (NOT APPLICABLE)

# **22. APPLICATION FEES**

Pursuant to the requirements of 45CSR22 Section 3.4, CMC will submitting an initial permit application fee of \$14,500 based on the following:

Base application fee = \$1,000
 NSPS applicability fee = \$1,000
 NESHAP applicability fee = \$2,500
 PSD permit application fee = \$10,000

# 23. BEST AVAILABLE CONTROL TECHNOLOGY (BACT)

The requirement to use the best available control technology (BACT) applies to each new or modified emission unit from which there are emissions increases of pollutants subject to PSD review. The proposed Project is subject to PSD review for NO<sub>X</sub>, CO, SO<sub>2</sub>, PM, PM<sub>10</sub>, PM<sub>2.5</sub>, Fluorides excluding Hydrogen Fluoride (HF), VOC, and GHG measured as CO<sub>2</sub>e, and is therefore subject to BACT for these pollutants. The estimated site-wide lead (Pb) emissions are below the PSD significant emission rate (SER) and as such, Pb is not subject to PSD and not included in this BACT analysis. Because this is a proposed Project, all project emission units are considered new for purposes of the BACT review. The top-down BACT analysis is presented in tabular format for each emission unit and respective pollutant.

# 23.1 PSD BACT Top-Down Approach

The following sections contain a description of the five (5) basic steps of U.S. EPA's preferred "top-down" approach for selecting BACT.

# 23.1.1 Step 1 – Identify Air Pollution Control Technologies

Available control technologies with the practical potential for application to the emission unit and regulated air pollutant in question are identified. The selected control technologies vary widely depending on the process technology and pollutant being controlled. The application of demonstrated control technologies in other similar source categories to the emission unit in question may also be considered in this step.

# 23.1.2 Step 2 – Eliminate Technically Infeasible Options

"Technically infeasible" control options from the list of "potentially available" control options are eliminated. A control option is "technically feasible" if it has been "demonstrated" or if it is both "available" and "applicable."

# 23.1.3 Step 3 – Rank Remaining Control Technologies

All remaining technically feasible control options are ranked based on their overall control effectiveness for the pollutant under review. If there is only one remaining option or if all remaining technologies could achieve equivalent control efficiencies, ranking based on control efficiency is not required. Collateral effects are usually not considered until step four of the five step top-down BACT analysis.

# 23.1.4 Step 4 – Evaluate and Document Most Effective Controls

After identifying and ranking available and technically feasible control technologies, the economic, environmental, and energy impacts are evaluated to select the best control option. In the judgment of the permitting agency, if inappropriate economic, environmental, or energy impacts are associated with the top control option, the next most stringent option is evaluated. This process continues until a control technology is identified. This step validates the suitability of the top identified control option or provides a clear justification as to why the top option should not be selected as BACT.

## 23.1.5 Step 5 - Select BACT

The BACT emission limit is determined for each emission unit under review based on evaluations from the previous step.

Although the first four steps of the top-down BACT process involve technical and economic evaluations of potential control options (i.e., defining the appropriate technology), the selection of BACT in the fifth step involves an evaluation of emission rates achievable with the selected control technology.

The most effective control alternative not eliminated in Step 4 is selected with a corresponding emission limit as BACT. BACT is a numeric emissions limit (along with appropriate averaging times and a compliance determination method) unless technological or economic limitations of the measurement methodology would make the imposition of a numeric emissions standard infeasible, in which case a work practice or operating standard can be imposed. Selected BACT can be no less stringent than an applicable NSPS or NESHAP.

# 23.2 Steel Mill Types

Steel production has evolved over the last century, from integrated steel mills with production capacities in excess of 2,000,000 tons of steel per year to mini mills typically producing around 1,000,000 tons of steel per year. Integrated steel mills have slowly been phased out as start-up costs are prohibitive when compared with a mini mill. A mini mill relies solely on the EAF to melt recycled scrap metal and produce a variety of steel products (rebar, sheets, bars, plates, etc.). There are roughly less than 100 mini mills within the United States. These mini mills are the largest recyclers in the United States. The next generation of technology for steel production from recycled scrap is referred to as a "micro mill." This micro mill technology is being proposed for the Project.

# 23.2.1 Steel Micro Mills and Endless Charging System (ECS)

A micro mill is similar to a mini mill except smaller in size producing up to approximately 650,000 tons of steel per year. Micro mills use the heat in the waste gas from the EAF to preheat the scrap that is charged to the EAF which results in recovering some energy to offset the additional energy required to melt the scrap. Mini mills typically do not use such heat recovery. Techniques for scrap preheating have been applied world-wide, primarily in countries with high electricity costs, with varying success. The two types of scrap preheating techniques that have been applied in the United States are (1) the Fuchs shaft furnace, which is a batch type preheater, and (2) the ECS preheating system, which is a continuous charge feeding, preheating, and melting process. ECS is proposed for the Project. The Fuchs shaft furnace has been used on mini mills while the ECS has been used on both mini mills and micro mills in the United States.

For an EAF that uses a heat recovery process (i.e., Fuchs shaft furnace or ECS) and depending on the meltshop's overall operations, about two-thirds of the total additional energy requirement is electrical, and the balance is chemical energy from the oxidation of elements such as carbon, iron, and silicon and the combustion of propane/natural gas, typically using specially designed oxy-injectors. A little over 50% of the total energy leaves the furnace with the liquid steel, while the remainder is lost to the slag, waste gas, and cooling water. Approximately 20% of the total energy normally leaves the furnace via the waste gas. In an ECS process, this waste gas is used to preheat the scrap being charged to the EAF which results in recovering some of this otherwise wasted thermal energy, thus offsetting some of the electrical energy required to melt the scrap.

In the ECS process, the recycled scrap metal is loaded on a conveyor and passes through a dynamic seal into the preheating conveyor section. After moving through the preheating section, the scrap is discharged onto a connecting conveyor that enters the EAF and drops the scrap into the molten steel bath.<sup>14</sup> Heat transferred to the scrap metal is provided by heat and chemical energy from the EAF exhaust gas. The

<sup>&</sup>lt;sup>14</sup> Per The State-of-the-Art Clean Technologies (SOACT) for Steelmaking Handbook - Raw materials through Steelmaking, including recycling technologies, Common Systems, and General Energy Saving Measures. The Asia Pacific Partnership for Clean Development and Climate, December 2010.

EAF gases exit the furnace through the charge conveyor opening and travel through the preheater countercurrent to the scrap charge direction. The ECS provides many benefits including:

- Reduced energy consumption;
- Reduced electrode consumption;
- Reduced refractory consumption;
- Reduced noise and electrical disturbances; and
- Reduced maintenance.

CMC's proposed micro mill will utilize the ECS process which is considered a material part of the Project scope.

## 23.2.2 Scrap Metal Quality

Recycled scrap metal is the primary raw material used in the steel production process. The quality of the scrap metal used can impact the quality of the steel produced and associated air emissions. Steel mills producing long steel products such as rebar, T-Post, and rebar spools, are able to utilize scrap that mills producing flat steel products, such as flat-rolled steel or sheet metal, are not. Mills producing flat steel require scrap that has a higher density, and often incorporate higher-quality scrap along with other metallic raw materials such as hot-briquetted iron (HBI) and direct-reduced iron (DRI) to meet the required finished steel quality standards. These characteristics, in addition to being essential to flat steel production, typically result in lower levels of CO, SO<sub>2</sub>, and VOC emissions from the EAF as compared to the production of long products. The proposed Project is a micro mill for long products (i.e., rebar) production.

A list of EAF and LMS facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B.

# 23.3 EAF and LMS Emissions Routed to Meltshop Baghouse

The proposed EAF (EAF1) and LMS (LMS1) will be routed to discharge from the meltshop baghouse (BH1). Any emissions from the EAF and LMS not captured by the baghouse will be vented to the caster vent. The BACT controls and emission limits are proposed for the combined EAF and LMS emissions that exhaust from the baghouse stack. The emission limits are provided as a 30-day rolling average as opposed to averages over a shorter time periods to account for process variabilities that may affect the emissions from the EAF and LMS as well as furnace delays where there may not be any active production but there will still be emissions during that time. Table 23-1 provides a summary of the selected BACT controls and emission limits for pollutants emitted by the EAF and LMS system through the meltshop baghouse.

Table 23-1. Summary of Selected BACT for EAF/LMS

| Pollutant                                | Selected BACT Control                                                 | Selected BACT Limit<br>(lb/ton, on a 30-day rolling<br>average)                                                          |  |
|------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| СО                                       | Direct Evacuation Control<br>(DEC)/Good Combustion<br>Practices (GCP) | 4                                                                                                                        |  |
| NO <sub>X</sub>                          | Direct Evacuation Control (DEC)/Oxy-Injectors 0.3                     |                                                                                                                          |  |
| SO <sub>2</sub>                          | Good Process Operation (Scrap Management Plan)                        | 0.3                                                                                                                      |  |
| PM/PM <sub>2.5</sub> /PM <sub>10</sub>   | Baghouse/Fabric Filter                                                | 0.0018 gr/dscf (PM Filterable)<br>0.0052 gr/dscf (total PM <sub>10</sub> /PM <sub>2.5</sub><br>Filterable + Condensable) |  |
| VOC                                      | Good Process Control                                                  | 0.3                                                                                                                      |  |
| GHG as measured in CO₂e                  | Various Technologies and Work<br>Practices                            | 119,513 tons per year (tpy)                                                                                              |  |
| Fluorides excluding<br>Hydrogen Fluoride | Baghouse/Fabric Filter                                                | 0.01                                                                                                                     |  |

It should be noted that the U.S. EPA RBLC database contains separate BACT limits for the EAF and LMS at steel mills in the United States and other facilities may use natural gas combustion as a part of their LMS operations. In many cases, the exhaust from the EAF and LMS are combined into a single stream for the highest levels of emission reductions. As a result, it is unclear in some cases whether the limits presented in the RBLC apply to the EAF and LMS separately or to the combined exhaust stream. With this uncertainty, CMC has chosen to compare the proposed BACT limits for the combined EAF and LMS exhaust streams with the assumed EAF limits for facilities listed in the RBLC. This is a conservative approach as the individual EAF BACT limit is expected to be lower than the combined BACT limit for the EAF and LMS exhaust.

As discussed in Sections 23.2 and 23.3, many of the mills listed in the RBLC do not produce comparable products or may produce comparable products using a different raw material mix and melting process. Variability in raw material mix, raw material supplier, and melting processes will ultimately determine the amount of emissions emitted from the EAF and LMS. The following sections will provide a brief explanation behind the selected BACT limits.

## 23.3.1 CO BACT Limit

The proposed Project is not comparable to the recent Nucor West Virginia facility from a raw material, process, and product perspective. Furthermore, the Nucor West Virginia facility utilizes charge buckets to load the EAF which requires the roof of the EAF to open during the loading process. The excess oxygen during the charge bucket loading of the EAF would reduce any CO emissions significantly. The proposed Project utilizes the more energy efficient ECS technology which does not open the EAF roof to conserve and capture heat energy. This method of operation reduces the introduction of excess oxygen. Therefore, the CO emissions profile from the proposed Project is expected to be very different than that of the Nucor West Virginia facility.

Only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar ECS technologies to the proposed Project. The 4 lb/ton emission limit from the CMC Mesa and CMC Durant facilities is more stringent than the 4.4 lb/ton emission limit from the Gerdau Ameristeel facility. Actual CEMs data from the CMC Mesa facility, a facility very similar to the proposed facility, demonstrates that a lower emission limit of 3.5 lb/ton of Nucor Frostproof and Nucor Sedalia facilities is not achievable in practice due to process and scrap variability.

## 23.3.2 NO<sub>X</sub> BACT Limit

While only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar technologies to the proposed EAF/LMS (i.e., ECS Process and Micro Mill), CMC has provided comparisons to other, recent, mini-mill NOx BACT limits as well. NOx generation in both miniand micro-mills is driven predominantly by thermal NOx, in which atmospheric nitrogen is oxidized at very high temperatures (in both mini- and micro-mills) to form NOx. CMC cautions that simply comparing the numerical value of the BACT limit among various mills is inappropriate because the overall stringency of the BACT limit depends not only on the numerical value but also the averaging time and the method of compliance, in addition to factors such as the product type, among others. An additional critical aspect is the form of the standard itself, expressed as lb/ton. Because mill operations often result in unanticipated delays (i.e., when the EAF's heat cycle is extended in order to address other shop-related problems such as downstream equipment including the LMS, caster, etc.), the NOx formation and generation at the EAF (i.e., the numerator in the lb/ton form of the standard) continues to increase with the delay but the production (i.e., the denominator) of steel does not, making the lb/ton ratio greater as the delay progresses. Even otherwise, NOx generation in steel production is highly variable within a single heat cycle given the highly stochastic nature of the underlying thermal NOx chemistry. Given these factors, most of which (i.e., NOx generation chemistry to a large extent and unexpected delays not just at the EAF but in the shop as a whole) are not under the control of the operator and given the form of the standard expressed as lb/ton, an averaging time of 30-days is appropriate for the proposed 0.3 numerical value of the standard. As the comparison to recent BACT determinations shows, this proposed NOx BACT limit, using a 30-day rolling average is appropriate. CMC notes that any downward deviations from the 0.3 lb/ton values will likely necessitate extending the 30-day average to even longer time periods for the reasons noted.

## 23.3.3 SO<sub>2</sub> BACT Limit

The generation and emissions of SO<sub>2</sub> from the EAF/LMS are stoichiometric (i.e., depend on the totality of the sulfur inputs to the production process from all required inputs including scrap, limestone, and other additives). Because SO<sub>2</sub> generation and emissions are mainly driven by EAF inputs and chemistry, and because the inputs are inherently site-specific and depend on the availability of the various raw materials such as scrap (appropriate for the desired product-mix), limestone, carbon, etc., comparing numerical

limits established for other mills can result in inappropriate determinations for BACT. The proposed BACT limit of 0.3 lb/ton steel was developed via a reasonable balancing of site-specific inputs consistent with the product mix and availability of local inputs that are proposed for the Project along with a reasonable compliance margin.

### 23.3.4 PM BACT Limit

Filterable PM generation in an EAF (whether a micro- or mini-mill) is due to the complex and vigorous physical and chemical processes that occur during the charging, melting, and tapping of the EAF. This can be inherently variable (i.e., with no ability of the operator to control these processes) over time in a single heat. Regardless of the generation mechanisms, however, the filterable PM emissions depend largely on the air pollution control device, which, in the case of both mini- and micro-mills is universally a baghouse. The proposed Project will utilize a baghouse, therefore, CMC has summarized recent BACT determinations for both mini- and micro-mills. While the analysis shows that there is one lower determination of 0.0015 grains/dscf, CMC believes a BACT limit of 0.0018 grains/dscf is more appropriate considering a proper compliance margin as well as accounting for measurement aspects at these low levels.

In contrast to filterable PM, whose generation in the EAF is highly variable, condensable PM generation can vary even more because it can be created not just in the EAF (and survive the high-temperature environment of the EAF) but also in the exhaust gas path from the EAF to the baghouse and more, importantly, after the baghouse, as the gases cool and certain types of compounds such as sulfurcompounds and semi-volatile organics form via condensation. Due to the myriad formation mechanisms, condensable PM formation after the baghouse is inherently variable with little to no control of the operator other than managing proper scrap mix and additive injections. The proposed Project will use the best scrap quality consistent with its product mix. Based on these considerations, setting the BACT limit is largely a matter of determining the inherent variability of the condensable PM that is determined at the exist of the baghouse and using a reasonable compliance margin such that inherent, uncontrollable variability during a test (with its own set of measurement challenges) does not result in non-compliance that is no fault of the operator. The proposed BACT limit for total PM (i.e., 0.0052 grains/dscf, including both filterable and condensable components) is based on CMC's review of test data from baghouseequipped mini- and micro-mills in the US that have been reported by various operators and, specifically, the large variability observed in such tests, even on a run-to-run basis under close to identical EAF and test conditions.

### 23.3.5 VOC BACT Limit

The lowest VOC emission limit identified in the RBLC database for comparable facilities is 0.3 lb/ton and CMC proposes an emission limit of 0.3 lb VOC/ton for the combined EAF and LMS exhaust.

## 23.3.6 GHGs (CO<sub>2</sub>e) BACT Limit

GHG emissions, measured in  $CO_2e$ , are affected by the individual processes at every facility and are not comparable between different steel mills. Utilizing similar technologies and work practices other similar ECS facilities, CMC proposes an annual emission limit of 119,513 tpy for the combined EAF and LMS exhaust as reported to EPA pursuant to the requirements of 40 CFR Part 98.

## 23.3.7 Fluorides (excluding Hydrogen Fluoride) BACT Limit

Emissions of fluorides (excluding Hydrogen Fluoride) depend on additives used for fluidization and the maintenance of bath temperatures during tapping and refining, which depends on EAF design and product considerations. The lowest emission limit for fluorides (excluding hydrogen fluoride) in the RBLC database

for comparable ECS facilities is 0.01 lb/ton and CMC proposes an emission limit of 0.01 lb/ton for the combined EAF and LMS exhaust.

Table 23-2 to Table 23-8 top-down BACT analyses for each pollutant emitted from the meltshop baghouse.

Table 23-2. CO Top-Down BACT Analysis for EAF and LMS

| = 0     |           |
|---------|-----------|
| Process | Pollutant |
| EAF/LMS | СО        |

| Step Control Technology              | Thermal Oxidation <sup>1</sup>                                                                                                                                                         | Catalytic Oxidation <sup>2</sup>                                                                                                                                                               | Oxygen Injection                                                                                                                                                                               | Operating Practice<br>Modification                                                | Direct Evacuation Control (DEC)/ Good Combustion Practices (GCP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control<br>Technology<br>Description | complete combustion. Thermal Oxidation has<br>been a proven technology in controlling Carbon<br>Monoxide (CO) emissions from Portland Cement<br>Kilns, Petroleum Refining, and Polymer | oxidation. CO emissions can be controlled via catalytic oxidation. The oxidation is facilitated by the presence of the catalyst and carried out by the same basic chemical reaction as thermal | increase the oxidation of CO to CO <sub>2</sub> by injecting oxygen at a location where conditions for this reaction are favorable. The increased availability of oxygen increases the rate of | materials fed to the EAF, in order to reduce the formation of CO. An example of a | The proposed BACT methods for the EAF/LMS include good combustion/process operation and operation of a direct evacuation control (DEC) system on the EAF. The DEC system maximizes thermal oxidation of CO by regulating the amount of air introduced into the ductwork downstream of the furnace. Air injectors are employed in the Consteel Process to optimize the amount of oxygen available for CO combustion in the scrap preheating conveyor. CO combustion is progressively carried out through air injection in the preheater section. This technology is similar to oxygen injection, however oxidation is optimized throughout the ductwork. |

CMC Steel US, LLC Page 1 of 4

Table 23-2. CO Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant |
|---------|-----------|
| EAF/LMS | СО        |

|         | Step                                        | Control<br>Technology           | Thermal Oxidation <sup>1</sup>                                                                                                                                                                                                               | Catalytic Oxidation <sup>2</sup>                                                                                   | Oxygen Injection                                                | Operating Practice<br>Modification                                                                                 | Direct Evacuation Control (DEC)/ Good Combustion Practices (GCP)                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|---------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES | Other<br>Considerations         | ignition temperature of the waste gas stream as<br>the typical operating temperatures are between<br>1,300 °F and 2,000 °F. Oxidizers are not<br>recommended for controlling gases with halogen<br>or sulfur containing compounds due to the |                                                                                                                    | of the EAF exhaust gas stream causing thermal $NO_X$ formation. | As used in the proposed process, carbon serves as an ingredient that alters the                                    | Similar to oxygen injection, the increased oxygen concentration would lead to increases in $NO_X$ emissions due to the high temperature of the EAF exhaust gas stream causing thermal $NO_X$ formation. The key difference is in a DEC system the oxygen is injected downstream of the furnace where the EAF exhaust is allowed to cool and preheat the scrap resulting in the optimization of CO combustion, rather than thermal $NO_X$ formation. |
|         |                                             | RBLC<br>Database<br>Information | Not included in the RBLC database as a form of control of CO from Electric Arc Furnaces/Ladle Metallurgy Stations.                                                                                                                           | Not included in the RBLC database as a form of control of CO from Electric Arc Furnaces/Ladle Metallurgy Stations. |                                                                 | Not included in the RBLC database as a form of control of CO from Electric Arc Furnaces/Ladle Metallurgy Stations. | Included in the RBLC database as a form of control of CO from Electric Arc Furnaces/Ladle Metallurgy Stations.                                                                                                                                                                                                                                                                                                                                      |

CMC Steel US, LLC Page 2 of 4

Table 23-2. CO Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant |
|---------|-----------|
| EAF/LMS | СО        |

|         | Step                                              | Control<br>Technology             | Thermal Oxidation <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Catalytic Oxidation <sup>2</sup>                                                                                                                                                                                                                  | Oxygen Injection | Operating Practice<br>Modification                                                                                                                                                                    | Direct Evacuation Control (DEC)/ Good Combustion Practices (GCP)       |
|---------|---------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion         | exhaust stream from the EAF/LMS, thermal oxidation controls would need to be located downstream of a particulate emission control technology (i.e., the baghouse). Thermal oxidization would require raising the exhaust gas temperature to at least a temperature of 1,300 ° F at a residence time of 0.5 seconds. Below this temperature the reaction rate drops significantly and the oxidation of CO to CO <sub>2</sub> is no longer feasible.  Since the exhaust temperature of the process is less than 150 °F, which is well below the typical operating range of thermal oxidizers and based on the high volume of airflow, large amounts of auxiliary fuel would be required to heat the stream to the required temperature for thermal oxidation. This will create additional combustion emissions. The high temperatures involved in | would require raising the exhaust gas temperature to at least a temperature of 400 ° F. Below this temperature the reaction rate drops significantly and the oxidation of CO is no longer feasible.  Since the exhaust temperature of the process | ,                | Due to marketplace<br>demands on the type of<br>products produced and the<br>required product quality, any<br>additional operating practice<br>modifications that will alter<br>CO emissions from the | Technically feasible. DEC systems are widely demonstrated in practice. |
| Step 3. | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES      | Overall<br>Control<br>Efficiency  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                  |                                                                                                                                                                                                       | Base Case                                                              |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS     | Cost<br>Effectiveness<br>(\$/ton) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                   |                  |                                                                                                                                                                                                       | Base Case                                                              |

CMC Steel US, LLC Page 3 of 4

Table 23-2. CO Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant |
|---------|-----------|
| EAF/LMS | СО        |

|         | Step        | Control<br>Technology | Thermal Oxidation <sup>1</sup> | Catalytic Oxidation <sup>2</sup> | Oxygen Injection | Operating Practice<br>Modification |                       | n Control (DEC)/<br>n Practices (GCP)                                                          |
|---------|-------------|-----------------------|--------------------------------|----------------------------------|------------------|------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|
|         |             |                       |                                |                                  |                  |                                    | Facility              | CO Emission Limit<br>(lb/ton)                                                                  |
|         |             |                       |                                |                                  |                  |                                    | Comparable            | e Facilities <sup>3,4</sup>                                                                    |
|         |             |                       |                                |                                  |                  |                                    | Gerdau Ameristeel, NC | 4.4                                                                                            |
|         |             |                       |                                |                                  |                  |                                    | CMC Mesa, AZ          | 4                                                                                              |
|         |             |                       |                                |                                  |                  |                                    | CMC Durant, OK        | 4                                                                                              |
| Step 5. | SELECT BACT |                       |                                |                                  |                  |                                    | Nucor Frostproof, FL  | 3.5                                                                                            |
|         |             |                       |                                |                                  |                  |                                    | Nucor Sedalia, MO     | 3.5                                                                                            |
|         |             |                       |                                |                                  |                  |                                    | Proposed BACT:        | 4 lb CO/ton steel<br>produced, on a 30-<br>day rolling average<br>basis, using DEC and<br>GCP. |

<sup>&</sup>lt;sup>1</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Regenerative Incinerator)," EPA-452/F-03-021. U.S. EPA, Office of Air Quality Planning and Standards, "Draft CAM Technical Guidance Document - Thermal Oxidizers", dated April 2002

CMC Steel US, LLC Page 4 of 4

<sup>&</sup>lt;sup>2</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Catalytic Incinerator)," EPA-452/F-03-018

<sup>&</sup>lt;sup>3</sup> A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B. Because CO emissions will depend to a greater extent on the type of furnace, CMC has appropriately included comparable facilities accordingly.

<sup>&</sup>lt;sup>4</sup> Only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar ECS technologies to the proposed Project. The 4.0 lb/ton emission limit from the Gerdau Ameristeel facility. Actual CEMs data from the CMC Mesa facility, a facility very similar to the proposed facility, demonstrates that a lower emission limit of 3.5 lb/ton of Nucor Frostproof and Nucor Sedalia facilities is not achievable in practice due to process and scrap variability.

Table 23-3. NO<sub>X</sub> Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant       |
|---------|-----------------|
| EAF/LMS | NO <sub>X</sub> |

|         | Step                                        | Control<br>Technology   | Selective Catalytic Reduction (SCR) <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                         | Selective Non-Catalytic<br>Reduction (SNCR) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Non-Selective Catalytic Reduction <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Low NO <sub>x</sub> Controls                                                                                                                                                                                                                                                                   | SCONOx Control <sup>4</sup>                                                                                                                                                                                            | Direct Evacuation Control (DEC)/ Oxy-Injectors                                                                                                                                                                      |
|---------|---------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES | Control<br>Technology   | ammonia (NH $_3$ ) is injected into exhaust gas upstream of a catalyst bed. SCR utilizes a catalytic reaction of Nitrogen Oxide (NO) or Nitrogen Dioxide (NO $_2$ ) with ammonia to form diatomic nitrogen and water. The chemical reaction is shown below:  Ammonia Injection $4NO + 4NH_3 + O_2 -> 4N_2 + 6H_2O$ $2NO_2 + 4NH_3 + O_2 -> 3N_2 + 6H_2O$ Relative to SNCR, the purpose of the catalyst in SCR is to reduce the temperature required for the reduction reaction to occur. | Selective Non-Catalytic Reduction (SNCR) is an exhaust gas treatment technology based on the reaction of urea or ammonia (NH <sub>3</sub> ) and NO or NO <sub>2</sub> . The urea or ammonia is injected into the exhaust gas to reduce NO to diatomic nitrogen and water. There are two basic designs for the application of SNCR: an ammonia based system and a ureabased process. The chemical reaction involving ammonia is the same as in SCR. The chemical reaction involving urea is shown below:  Urea Injection 4NO + 2NH <sub>2</sub> CONH <sub>2</sub> + O <sub>2</sub> -> 4N <sub>2</sub> + 2CO <sub>2</sub> + 4H <sub>2</sub> O 4NO <sub>2</sub> + 2NH <sub>2</sub> CONH <sub>2</sub> + O <sub>2</sub> -> 3N <sub>2</sub> + 2CO <sub>3</sub> + 4H <sub>3</sub> O | and hydrocarbons (HC) to water, carbon dioxide, and nitrogen. The catalyst is usually a noble metal, and relies on the addition of hydrogen or a hydrogen-donating material such as natural gas in order to convert $NO_X$ to $N_2$ and water. The conversion occurs in two sequential steps, as shown in the following equations: $Step \ 1 \ Reactions: \\ 2CO + O_2 -> 2CO_2 \\ 2H_2 + O_2 -> 2H_2O \\ HC + O_2 -> CO_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | include strategies to reduce the formation of NO <sub>X</sub> by reducing the flame temperature or limiting the availability of oxygen. This includes overfire air, low excess air, and flue gas recirculation. These methods of control are commonly used on boilers that have a steady-state | gas turbines for the control of $NO_X$ emissions. Gas turbines have relatively stable exhaust temperatures and flow rates during operation. An EAF exhaust temperature and flow rate can vary substantially during the | Oxy-injectors achieve combustion using oxygen rather than air, which reduces nitrogen levels in the furnace. The lower nitrogen levels result in a reduction in NO <sub>x</sub> emissions generated in the furnace. |
|         |                                             | Other<br>Considerations | noble metals, base metal oxides such as vanadium and titanium, and zeolite-based material. These catalysts are susceptible to fouling over time, and generally have an active life of between two and five years. Exhaust gas temperatures greater than the upper limit of the catalyst will allow unreacted oxides of nitrogen ( $NO_X$ )                                                                                                                                               | relies on the use of ammonia at a proper stoichiometric ratio to react with the exhaust stream. As a result, SNCR has a lower tolerance to fluctuations in inlet $NO_X$ concentrations than an SCR. The optimum exhaust gas temperature range for implementation of SNCR is 1,600 °F to 2,100 °F. For $NH_3$ systems, operation at temperatures below this range results in unreacted ammonia, while operation above this temperature range results in oxidation of ammonia, forming                                                                                                                                                                                                                                                                                         | One type of NSCR system injects a reducing agent into the exhaust gas stream prior to the catalyst reactor to reduce the $NO_x$ . Another type of NSCR system has an afterburner and two catalytic reactors (one reduction catalyst and one oxidation catalyst). In this system, natural gas is injected into the afterburner to combust unburned HC (at a minimum temperature of $1700^{\circ}$ F). The gas stream is cooled prior to entering the first catalytic reactor where CO and $NO_x$ are reduced. A second heat exchanger cools the gas stream (to reduce any $NO_x$ reformation) before entering the second catalytic reactor where remaining CO is converted to $CO_2$ . The operating temperatures for NSCR system range from approximately $700^{\circ}$ to $1500^{\circ}$ F, depending on the catalyst. For $NO_x$ reductions of 90 percent, the temperature must be between $800^{\circ}$ to $1200^{\circ}$ F. |                                                                                                                                                                                                                                                                                                | None                                                                                                                                                                                                                   | None                                                                                                                                                                                                                |

CMC Steel US, LLC Page 1 of 3

Table 23-3. NO<sub>X</sub> Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant |  |  |  |
|---------|-----------|--|--|--|
| EAF/LMS | $NO_X$    |  |  |  |

|         | Step                                              | Control<br>Technology             | Selective Catalytic Reduction (SCR) <sup>1</sup>                                                                                                                                                                                                                                                             | Selective Non-Catalytic Reduction (SNCR) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Non-Selective Catalytic Reduction <sup>3</sup>                                                                                                                                                                                                                                                                                                                                        | Low NO <sub>X</sub> Controls                                                                                                                                                                                                                                                                                   | SCONOx Control <sup>4</sup>                                                                                                                                                                                                                           | Direct Evacuation Control (DEC)/ Oxy-Injectors                                                                              |
|---------|---------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|         |                                                   | RBLC<br>Database<br>Information   |                                                                                                                                                                                                                                                                                                              | Not included in the RBLC database<br>as a form of control of NO <sub>X</sub> from<br>Electric Arc Furnaces/Ladle<br>Metallurgy Stations.                                                                                                                                                                                                                                                                                                                                                                                                                            | Not included in the RBLC database as a form of control of NO <sub>X</sub> from Electric Arc Furnaces/Ladle Metallurgy Stations.                                                                                                                                                                                                                                                       | One facility listed in the RBLC search results refers to the use of "low-NO <sub>X</sub> burners" for their EAF (GA-0142). Further review shows this facility utilizes fundamentally different technology then the proposed CMC facility.                                                                      | database as a form of control of NO <sub>X</sub> from Electric Arc Furnaces/Ladle Metallurgy Stations.                                                                                                                                                | Included in the RBLC database as a form of control of NO <sub>X</sub> from Electric Arc Furnaces/Ladle Metallurgy Stations. |
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion         | SCR controls would need to be located downstream of a particulate emission control technology (i.e., the baghouse). SCR would require raising the exhaust gas temperature to at least 500 °F. Below this temperature, the reaction rate drops significantly and the control of $NO_X$ is no longer feasible. | well below the operating range of SNCR and the reaction rate drops significantly such that the control of $NO_X$ is no longer feasible. If SCNR was employed further upstream in the EAF and LMS exhaust, significant variations in the exhaust temperature and $NO_X$ concentration would make the implementation of SCNR technically infeasible. This control technology has not been demonstrated in practice for control of $NO_X$ emissions from the EAF/LMS. As a result, SNCR is considered infeasible for the control of $NO_X$ emissions from the EAF/LMS. | due to the particulate loading of the exhaust stream from the EAF/LMS, NSCR controls would need to be located downstream of a particulate emission control technology (i.e., the baghouse). NSCR would require raising the exhaust gas temperature to at least 700 °F. Below this temperature, the reaction rate drops significantly and the control of $NO_X$ is no longer feasible. | rate and air/fuel ratio in order to reduce $NO_X$ emissions. These controls are not readily available on an EAF. Additionally, an EAF requires high temperatures of approximately 3000 °F to melt the steel scraps and a lance to inject oxygen into the molten bath. A low $NO_X$ burner would not be able to | demonstrated for turbines and has not been demonstrated in practice for control of NO <sub>X</sub> emissions from the EAF/LMS. As a result SCONO <sub>X</sub> is considered infeasible for the control of NO <sub>X</sub> emissions from the EAF/LMS. | Technically feasible. Oxy-injectors are widely demonstrated in practice.                                                    |
| Step 3. | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES      | Overall<br>Control<br>Efficiency  |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       | Base Case                                                                                                                   |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS     | Cost<br>Effectiveness<br>(\$/ton) |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       | Base Case                                                                                                                   |

CMC Steel US, LLC Page 2 of 3

Table 23-3. NO<sub>X</sub> Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant       |  |  |  |  |
|---------|-----------------|--|--|--|--|
| EAF/LMS | NO <sub>X</sub> |  |  |  |  |

|         | Step        | Control<br>Technology | Selective Catalytic Reduction (SCR) <sup>1</sup> | Selective Non-Catalytic<br>Reduction (SNCR) <sup>2</sup> | Non-Selective Catalytic Reduction <sup>3</sup> | Low NO <sub>X</sub> Controls | SCONOx Control <sup>4</sup> | Direct Evacuation<br>Oxy-Inj | 2 2 -                                      |
|---------|-------------|-----------------------|--------------------------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------|-----------------------------|------------------------------|--------------------------------------------|
|         |             |                       |                                                  |                                                          |                                                |                              |                             | Facility                     | NO <sub>x</sub> Emission Limit<br>(lb/ton) |
|         |             |                       |                                                  |                                                          |                                                |                              |                             | Comparable I                 | Facilities 5, 6                            |
|         |             |                       |                                                  |                                                          |                                                |                              |                             | Nucor Decatur, AL            | 0.42                                       |
|         |             |                       |                                                  |                                                          |                                                |                              |                             | Nucor Norfolk, NE            | 0.42                                       |
|         |             |                       |                                                  |                                                          |                                                |                              |                             | Nucor Tuscaloosa, AL         | 0.35                                       |
|         |             |                       |                                                  |                                                          |                                                |                              |                             | Gerdau Ameristeel, NC        | 0.34                                       |
| Ston E  | SELECT BACT |                       |                                                  |                                                          |                                                |                              |                             | CMC Mesa, AZ                 | 0.3                                        |
| Step 5. | SELECT BACT |                       |                                                  |                                                          |                                                |                              |                             | Nucor Frostproof, FL         | 0.3                                        |
|         |             |                       |                                                  |                                                          |                                                |                              |                             | CMC Durant, OK               | 0.3                                        |
|         |             |                       |                                                  |                                                          |                                                |                              |                             | Nucor Sedalia, MO            | 0.3                                        |
|         |             |                       |                                                  |                                                          |                                                |                              |                             | Gerdau Macsteel, MI          | 0.27                                       |
|         |             |                       |                                                  |                                                          |                                                |                              |                             |                              | 0.3 lb NO <sub>x</sub> / ton               |
|         |             |                       |                                                  |                                                          |                                                |                              | Duamagad DACT               | steel produced               |                                            |
|         |             |                       |                                                  |                                                          |                                                |                              |                             | Proposed BACT:               | using DEC and Oxy-                         |
|         |             |                       |                                                  |                                                          |                                                |                              |                             |                              | Injectors.                                 |

CMC Steel US, LLC Page 3 of 3

<sup>&</sup>lt;sup>1</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Selective Catalytic Reduction (SCR))," EPA-452/F-03-032 <sup>2</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Selective Non-Catalytic Reduction (SNCR))," EPA-452/F-03-031 U.S. EPA, Air Economics Group, "Selective Noncatalytic Reduction", John Sorrels, et. al., dated April 2019.

<sup>&</sup>lt;sup>3</sup> U.S. EPA, Office of Air Quality Planning and Standards, "CAM Technical Guidance Document - Nonselective Catalytic Reduction", dated April 2002.

<sup>&</sup>lt;sup>4</sup> December 20, 1999 Letter from John Devillars, Regional Administrator to Arthur Rocque, Jr., Commissioner of the EPA Department of Environmental Protection, titled "Recent SCONOx Pollution Prevention Control System Development".

<sup>&</sup>lt;sup>5</sup> A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B. CMC has selected comparable facilities taking into account not just the type of furnace and product but also the pollutant's generation factors.

6 While only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar technologies to the proposed EAF/LMS (i.e., ECS Process and Micro Mill), CMC has provided comparisons to other, recent, mini-mill NOX BACT limits as well. NOX generation in both mini- and micro-mills is driven predominantly by thermal NOX, in which atmospheric

Table 23-4. SO<sub>2</sub> Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant       |  |  |
|---------|-----------------|--|--|
| EAF/LMS | SO <sub>2</sub> |  |  |

|         | Step                                              | Control<br>Technology             | Impingement-Plate/Tray-Tower Scrubber <sup>1</sup>                                                                                                                                                      | Packed-Bed/Packed-Tower Wet Scrubber <sup>2</sup>                                                                                                                                                                                                                         | Spray-Chamber/Spray-Tower Wet Scrubber <sup>3</sup>                                                                                                                                                                                                                                                                                                                      | Flue Gas Desulfurization (FGD) <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lime Fluxing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Good Process Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|---------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES       |                                   | slurry in a vertical column with transversely<br>mounted perforated trays. Absorption of SO <sub>2</sub> is<br>accomplished by countercurrent contact                                                   | Scrubbing liquid (e.g., NaOH), which is introduced above layers of variously shaped packing material, flows concurrently against the flue gas stream. The acid gases are absorbed into the scrubbing solution and react with alkaline compounds to produce neutral salts. | Spray tower scrubbers introduce a reagent slurry as atomized droplets through an array of spray nozzles within the scrubbing chamber. The waste gas enters the bottom of the column and travels upward in a countercurrent flow. Absorption of $SO_2$ is accomplished by the contact between the gas and reagent slurry, which reacts in the formation of neutral salts. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | acidic metal oxides and protect the lining of the EAF and ladle but not for purposes of emission (SO2) control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sulfur enters the EAF steelmaking process as a component of scrap metal and carbon sources. The carbon products and scrap metals are combined in the EAF for steelmaking chemistry and the foamy slag process. A small amount of sulfur may be present as extraneous materials (i.e., oil, grease, plastics, etc.) in the scrap metal.  Sulfur in the feed materials tends to collect in the slag. Sulfur reacts in the molten metal to form calcium and magnesium sulfides in the slag, with excess principally in the form of calcium sulfide, since there is free calcium residual in the slag from the added lime. Some of the sulfur may react with injected oxygen or oxidize at the slag surface or in the furnace head space to form SO <sub>2</sub> and be exhausted from the furnace. |
|         |                                                   | Other<br>Considerations           | a wet gas scrubber is 40 to 100 °F. Waste slurry formed in the bottom of the scrubber requires                                                                                                          | The ideal temperature range for $SO_2$ removal in a wet gas scrubber is 40 to 100 °F. To avoid clogging, packed bed wet scrubbers are generally limited to applications in which PM concentrations are less than 0.20 gr/dscf.                                            | The ideal temperature range for $SO_2$ removal in a wet gas scrubber is 40 to 100 °F. Waste slurry formed in the bottom of the scrubber requires disposal.                                                                                                                                                                                                               | Flue Gas Desulfurization is 100 to 1,830 °F,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lime is added in the steel making process remove impurities (e.g., silica, phosphorus, etc.) but not for purposes of emission control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | It is estimated that most of the input sulfur is retained in the steel and reaction compounds in the slag and baghouse dust. Thus, the nature of the EAF process results in good control of potential $SO_2$ emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                   | RBLC<br>Database<br>Information   | control of SO <sub>2</sub> from Electric Arc Furnaces/Ladle                                                                                                                                             | control of SO <sub>2</sub> from Electric Arc Furnaces/Ladle<br>Metallurgy Stations.<br>Furnace outlet temperature is above the normal                                                                                                                                     | Not included in the RBLC database as a form of control of SO <sub>2</sub> from Electric Arc Furnaces/Ladle Metallurgy Stations.  Furnace outlet temperature is above the normal operating range. This control technology has not                                                                                                                                         | control of $SO_2$ from Electric Arc Furnaces/Ladle Metallurgy Stations.  The proposed Project will be a producer of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Not included in the RBLC database as a form of control of SO <sub>2</sub> from Electric Arc Furnaces/Ladle Metallurgy Stations.  Steelmaking textbooks state that sulfur will remain dissolved in the steel at the electric arc                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Included in the RBLC database as a form of control of SO <sub>2</sub> from Electric Arc Furnaces/Ladle Metallurgy Stations.  In order to ensure that low amounts of sulfur enter the process, CMC maintains a scrap management plan to ensure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS |                                   | been demonstrated in practice for control of SO <sub>2</sub> emissions from the EAF/LMS. As a result, Impingement-Plate/Tray-Tower Scrubber is considered infeasible for the control of SO <sub>2</sub> | been demonstrated in practice for control of SO <sub>2</sub> emissions from the EAF/LMS. As a result, Impingement-Plate/Tray-Tower Scrubber is                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                          | lower sulfur feedstocks. These feedstocks result in lower SO2 exhaust concentrations. The high volumetric flow rate associated with EAF exhaust and the low SO2 concentrations of the exhaust stream are outside the levels generally controlled by flue gas desulfurization systems such as lime injection and would make efficient operation of the Flue Gas Desulfurization infeasible. Gerdau Macsteel is an electric arc furnace utilizing a lime injection baghouse but is more dissimilar to the proposed Project than similar. The Macsteel operation is a producer of specialty grade higher-sulfur steel using a | furnace because the steel in the EAF has dissolved oxygen in it. Injecting lime in addition to what is required by the process to protect the EAF vessel will only increase operating costs and will not impact SO2 emissions. The ladle metallurgy station also has a process requirement for lime but adding more lime than required will impact the viscosity and effectiveness of the slag in the ladle which will deteriorate the transfer of sulfur and other impurities from the steel to the ladle slag. For these reasons lime fluxing for the control of SO2 emissions is not supported by steelmaking chemistry and is technically infeasible for the proposed EAF/LMS. | minimal addition of sulfur from unwanted non-process materials.  This option is considered technically feasible. Good Process Operation is widely demonstrated in practice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Step 3. | RANK REMAINING<br>CONTROL<br>TECHNOLOGIES         | Overall<br>Control<br>Efficiency  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Base Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS     | Cost<br>Effectiveness<br>(\$/ton) |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Base Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

CMC Steel US, LLC Page 1 of 2

Table 23-4. SO<sub>2</sub> Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant       |
|---------|-----------------|
| EAF/LMS | SO <sub>2</sub> |

|         | Step        | Control<br>Technology | Impingement-Plate/Tray-Tower Scrubber <sup>1</sup> | Packed-Bed/Packed-Tower Wet Scrubber <sup>2</sup> | Spray-Chamber/Spray-Tower Wet Scrubber <sup>3</sup> | Flue Gas Desulfurization (FGD) <sup>4</sup> | Lime Fluxing | Good Proce              | ss Operation                                                                    |
|---------|-------------|-----------------------|----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|---------------------------------------------|--------------|-------------------------|---------------------------------------------------------------------------------|
|         |             |                       |                                                    |                                                   |                                                     |                                             |              | Facility                | SO <sub>2</sub> Emission Limit<br>(lb/ton)                                      |
|         |             |                       |                                                    |                                                   |                                                     |                                             |              | Comparable              | Facilities 4,5                                                                  |
|         |             |                       |                                                    |                                                   |                                                     |                                             |              | Nucor Frostproof, FL    | 0.6                                                                             |
|         |             |                       |                                                    |                                                   |                                                     |                                             |              | CMC Durant, OK          | 0.6                                                                             |
|         |             |                       |                                                    |                                                   |                                                     |                                             |              | Nucor Sedalia, MO       | 0.5                                                                             |
|         |             |                       |                                                    |                                                   |                                                     |                                             |              | Nucor Tuscaloosa, AL    | 0.44                                                                            |
| Step 5. | SELECT BACT |                       |                                                    |                                                   |                                                     |                                             |              | Outokumpu Stainless, AL | 0.38                                                                            |
| Step 5. | SELECT BACT |                       |                                                    |                                                   |                                                     |                                             |              | Nucor Decatur, AL       | 0.35                                                                            |
|         |             |                       |                                                    |                                                   |                                                     |                                             |              | CMC Mesa, AZ            | 0.3                                                                             |
|         |             |                       |                                                    |                                                   |                                                     |                                             |              | SDSW STEEL MILL         | 0.24                                                                            |
|         |             |                       |                                                    |                                                   |                                                     |                                             |              | Nucor Blytheville, AR   | 0.2                                                                             |
|         |             |                       |                                                    |                                                   |                                                     |                                             |              | Big River Steel, AR     | 0.2                                                                             |
|         |             |                       |                                                    |                                                   |                                                     |                                             |              | Gerdau Ameristeel, NC   | 0.16                                                                            |
|         |             |                       |                                                    |                                                   |                                                     |                                             |              | Proposed BACT:          | 0.3 lb SO <sub>2</sub> / ton steel<br>produced using Good<br>Process Operation. |

U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Impingement-Plate/Tray-Tower Scrubber)," EPA-452/F-03-012

<sup>&</sup>lt;sup>2</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Packed-Bed/Packed-Tower Wet Scrubbers)," EPA-452/F-03-015

<sup>&</sup>lt;sup>3</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Spray-Chamber/Spray-Tower Wet Scrubber)," EPA-452/F-03-016

<sup>&</sup>lt;sup>4</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Flue Gas Desulfurization)," EPA-452/F-03-034

<sup>&</sup>lt;sup>5</sup> A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B. CMC has selected a broad list of comparable facilities because SO<sub>2</sub> generation and emissions are stoichiometric, i.e., depend on the totality of the sulfur inputs to the production process from all requirement inputs including scrap, limestone, and other additives.

<sup>&</sup>lt;sup>6</sup> Because SO2 generation and emissions are mainly driven by furnace inputs and chemistry, and because the inputs are inherently site-specific and depend on the availability of the various raw materials such as scrap (appropriate for the desired product-mix), limestone, and carbon, etc., comparing numerical limits established for other mills can result in inappropriate determinations for BACT. The proposed BACT limit of 0.3 lb/ton steel was developed via a reasonable balancing of site-specific inputs consistent with the product mix and availability of local inputs that are proposed for the Project along with a reasonable compliance margin.

Table 23-5. PM Top-Down BACT Analysis for EAF and LMS

| <b>Process</b> | Pollutant                              |  |  |
|----------------|----------------------------------------|--|--|
| EAF/LMS        | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |  |  |

|         | Step                                        | Control                 | Electrostatic                                                                                                                                                                                                                                                                                                                                                                                       | <b>Inertial Collection Systems</b>                                                                                                                              | Wet Scrubber <sup>4</sup>                                                                                                                                                | Incinerators <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                   | Baghouse/Fabric Filter <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                    |
|---------|---------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Эсер                                        | Technology              | Precipitator (ESP) <sup>1,2</sup>                                                                                                                                                                                                                                                                                                                                                                   | (Cyclones) <sup>3</sup>                                                                                                                                         |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                                             |                         | entrained within a exhaust stream onto a collection surfaces (i.e., an electrode). A wet ESP can be used in this application to reduce condensable and filterable particulate matter (PM) emissions formed due to SO <sub>2</sub> ; a dry ESP would reduce filterable particulate matter only. ESPs have been used on solid fuel combustion devices and in non-ferrous metal processing facilities. | follows a circular motion prior to<br>the outlet. PM enters the<br>cyclone suspended in the gas<br>stream, which is forced into a<br>vortex by the shape of the | Scrubbers can have high removal efficiency for streams with a steady state exhaust. The scrubber operates with a high pressure drop to maintain high removal efficiency. | Thermal Incinerators are also referred to as direct flame incinerators, thermal oxidizers, or afterburners. They are primary used for volatile organic compounds (VOC) but some particulate matter commonly described as soot will be destroyed to various degrees. Soot are particles formed from the incomplete combustion of hydrocarbons, coke, or carbon residue.                      | Process exhaust gasses are collected and passed through a tightly woven or felted fabric arranged in sheets, cartridges, or bags that collect PM via sieving and other mechanisms. The dust cake that accumulates on the filters increases collection efficiency, and eventually falls into a hopper for removal. Various cleaning techniques include pulse-jet, reverse-air, and shaker technologies. |
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES | Other<br>Considerations | used periodically to impart a vibration or shock to dislodge the deposited PM on dry ESP electrodes. The dislodged PM is collected in hoppers. In wet ESP, the collected particles are washed off of the collection plates by a small flow of trickling water.                                                                                                                                      |                                                                                                                                                                 | and produces a wastewater                                                                                                                                                | Depending on the chemical composition of the particulate, the control efficiency for an incinerator can vary from to 99% for particulate matter 10 microns or less aerodynamic diameter (PM <sub>10</sub> ). This control technology has been demonstrated in the petroleum and coal, chemical products, primary metal, electronics, electric and gas, food, mining, and lumber industries. | Fabric filters are susceptible to corrosion and blinding by moisture. Appropriate fabrics must be selected for specific process conditions. Accumulations of dust may present fire or explosion hazards.                                                                                                                                                                                               |

Table 23-5. PM Top-Down BACT Analysis for EAF and LMS

| <b>Process</b> | Pollutant                              |
|----------------|----------------------------------------|
| EAF/LMS        | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |

|         | Shore                                             | Control                          | Electrostatic                                                                                                                                                                                                                                                                        | Inertial Collection Systems                                                                                                                                                                                                                                                               | M. I G. 11 4                                                                                                                                                                                                                                                      | ** <b>5</b>                                                                                                                                                                                                                                                                                                                                                      | Dankson (F. 1. 1. Fu. 6                                                                                                                                                                                                    |
|---------|---------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Step                                              | Technology                       | Precipitator (ESP) <sup>1,2</sup>                                                                                                                                                                                                                                                    | (Cyclones) <sup>3</sup>                                                                                                                                                                                                                                                                   | Wet Scrubber <sup>4</sup>                                                                                                                                                                                                                                         | Incinerators <sup>5</sup>                                                                                                                                                                                                                                                                                                                                        | Baghouse/Fabric Filter <sup>6</sup>                                                                                                                                                                                        |
|         |                                                   | RBLC<br>Database<br>Information  | Not included in RBLC for<br>the control of particulate<br>emissions from the Electric<br>Arc Furnaces/Ladle<br>Metallurgy Stations.  The proposed control train                                                                                                                      | Not included in RBLC for the control of particulate emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.  The proposed control train                                                                                                                                        | Not included in RBLC for<br>the control of particulate<br>emissions from the Electric<br>Arc Furnace/Ladle<br>Metallurgy Stations.  The proposed control train                                                                                                    | Not included in RBLC for<br>the control of particulate<br>emissions from the Electric<br>Arc Furnace/Ladle<br>Metallurgy Stations.  The proposed control train                                                                                                                                                                                                   | Baghouses are included in the RBLC as a common form of control for particulate emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.  Technically feasible. The proposed control train employs a baghouse and |
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion        | employs a baghouse for control of PM, PM <sub>10</sub> and PM <sub>2.5</sub> emissions. Additional particulate removal is not practical; moreover, the ESP would create adverse energy and environmental impacts (due to the power needed to generate the high voltage electrostatic | employs a baghouse for control of PM, PM <sub>10</sub> and PM <sub>2.5</sub> emissions. Additional particulate removal is not practical and a cyclone would be less efficient than a baghouse.  This control technology has not been demonstrated in practice for control of PM emissions | employs a baghouse for control of PM, PM <sub>10</sub> and PM <sub>2.5</sub> emissions. Additional particulate removal is not practical; moreover, the Wet Scrubber would create adverse energy impacts (due to the increase in pressure drop across the system). | employs a baghouse for control of PM, PM <sub>10</sub> and PM <sub>2.5</sub> emissions. Additional particulate removal is not practical; moreover, the Incinerator would create adverse environmental impacts (by creating additional combustion emissions).  This control technology has not been demonstrated in practice for control of PM emissions from the | baghouses are widely demonstrated in practice.                                                                                                                                                                             |
| Step 3. | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES      | Overall<br>Control<br>Efficiency |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                  | Base Case                                                                                                                                                                                                                  |

Table 23-5. PM Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant                              |
|---------|----------------------------------------|
| EAF/LMS | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |

|         | Step                                          | Control<br>Technology             | Electrostatic Precipitator (ESP) <sup>1,2</sup> | Inertial Collection Systems (Cyclones) <sup>3</sup> | Wet Scrubber <sup>4</sup> | Incinerators <sup>5</sup> | Baghouse/Fabric Filter <sup>6</sup> |
|---------|-----------------------------------------------|-----------------------------------|-------------------------------------------------|-----------------------------------------------------|---------------------------|---------------------------|-------------------------------------|
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS | Cost<br>Effectiveness<br>(\$/ton) |                                                 |                                                     |                           |                           | Base Case                           |

Table 23-5. PM Top-Down BACT Analysis for EAF and LMS

| <b>Process</b> | Pollutant                              |
|----------------|----------------------------------------|
| EAF/LMS        | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |

|         | Step        | Control<br>Technology | Electrostatic Precipitator (ESP) <sup>1,2</sup> | Inertial Collection Systems (Cyclones) <sup>3</sup> | Wet Scrubber <sup>4</sup> | Incinerators <sup>5</sup> |                             | Baghouse/Fabric Filter <sup>6</sup>                                     |                             |
|---------|-------------|-----------------------|-------------------------------------------------|-----------------------------------------------------|---------------------------|---------------------------|-----------------------------|-------------------------------------------------------------------------|-----------------------------|
|         |             |                       |                                                 |                                                     |                           |                           | Facility                    | РМ Туре                                                                 | PM Emission Limit (gr/dscf) |
|         |             |                       |                                                 |                                                     |                           |                           |                             | Comparable Facilities 7,8,9                                             |                             |
|         |             |                       |                                                 |                                                     |                           |                           |                             | Particulate matter, total < 10 μ (TDM10)                                | 0.0052                      |
|         |             |                       |                                                 |                                                     |                           |                           | Nucor Steel, WV             | Particulate matter, total < 2.5 μ (TPM2.5)                              | 0.0052                      |
|         |             |                       |                                                 |                                                     |                           |                           |                             | Particulate matter, filterable (FPM)                                    | 0.0018                      |
|         |             |                       |                                                 |                                                     |                           |                           | Nucor Decatur,              | Particulate matter, total (TPM)                                         | 0.0052                      |
|         |             |                       |                                                 |                                                     |                           |                           | AL  Nucor Tuscaloosa, –  AL | Particulate matter, filterable (FPM)                                    | 0.0018                      |
|         |             |                       |                                                 |                                                     |                           |                           |                             | Particulate matter, total < 10 μ<br>(TPM10)                             | 0.0052                      |
| Step 5. | SELECT BACT |                       |                                                 |                                                     |                           |                           |                             | Particulate matter, total < 2.5 μ<br>(TPM2.5)                           | 0.0049                      |
| 3334    |             |                       |                                                 |                                                     |                           |                           |                             | Particulate matter, filterable (FPM)                                    | 0.0018                      |
|         |             |                       |                                                 |                                                     |                           |                           | CMC Durant, OK              | Particulate matter, total < 10 μ<br>(TPM10)                             | 0.0024                      |
|         |             |                       |                                                 |                                                     |                           |                           | CMC Durant, OK              | Particulate matter, total < 2.5 μ<br>(TPM2.5)                           | 0.0024                      |
|         |             |                       |                                                 |                                                     |                           |                           |                             | PM10 Filterable and Condensable                                         | 0.0024                      |
|         |             |                       |                                                 |                                                     |                           |                           | CMC Mesa, AZ                | PM2.5 Filterable and Condensable                                        | 0.0024                      |
|         |             |                       |                                                 |                                                     |                           |                           |                             | PM filterable                                                           | 0.0018                      |
|         |             |                       |                                                 |                                                     |                           |                           | Nucor Frostproof,           | Particulate matter, total (TPM)                                         | 0.0024                      |
|         |             |                       |                                                 |                                                     |                           |                           | FL                          | Particulate matter, filterable (FPM)                                    | 0.0018                      |
|         |             |                       |                                                 |                                                     |                           |                           | Nucor Sedalia, MO           | Total PM10, PM2.5, and PM                                               | 0.0024                      |
|         |             |                       |                                                 |                                                     |                           |                           |                             | Filterable PM                                                           | 0.0015                      |
|         |             |                       |                                                 |                                                     |                           |                           | Proposed BACT:              | 0.0052 gr/dscf (total F<br>0.0018 gr/dscf (PM filter<br>Baghouse/Fabric | able) using a               |

Table 23-5. PM Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant                              |
|---------|----------------------------------------|
| EAF/LMS | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |

| Ston | Control    | Electrostatic                     | Inertial Collection Systems | W. G. 11. 4               | <b>*</b> * 5 | Dankarra (Fabria Filha 6            |
|------|------------|-----------------------------------|-----------------------------|---------------------------|--------------|-------------------------------------|
| Step | Technology | Precipitator (ESP) <sup>1,2</sup> | (Cyclones) <sup>3</sup>     | Wet Scrubber <sup>4</sup> | Incinerators | Baghouse/Fabric Filter <sup>6</sup> |

<sup>&</sup>lt;sup>1</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (ESP) - Wire Pipe Type)," EPA-452/F-03-029.

<sup>&</sup>lt;sup>2</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (ESP) - Wire Plate Type)," EPA-452/F-03-030.

<sup>&</sup>lt;sup>3</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Momentum Separators)," EPA-452/F-03-008

<sup>&</sup>lt;sup>4</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Flue Gas Desulfurization (FGD) - Wet, Spray Dry, and Dry Scrubbers)," EPA-452/F-03-034.

<sup>&</sup>lt;sup>5</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Thermal Incinerator)," EPA-452/F-03-022.

<sup>&</sup>lt;sup>6</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-Jet Cleaned Type)," EPA-452/F-03-025.

<sup>&</sup>lt;sup>7</sup> A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B. CMC has selected comparable facilities taking into account not just the type of furnace and product but also the pollutant's generation and control aspects.

<sup>&</sup>lt;sup>8</sup> Filterable PM generation in an EAF (whether a micro- or mini-mill) is due to the complex and vigorous physical and chemical processes that occur during the charging, melting, and tapping of the furnace. This can be inherently variable (i.e., with no ability of the operator to control these processes) over time in a single heat. Regardless of the generation mechanisms, however, the filterable PM emissions depend largely on the air pollution control device, which, in the case of both mini- and micro-mills is universally a baghouse. The proposed Project will utilize a baghouse, therefore, CMC has summarized recent BACT determinations for both mini- and micro-mills. While the analysis shows that there is one lower determination of 0.0018 grains/dscf, CMC believes a BACT limit of 0.0018 grains/dscf is more appropriate considering a proper compliance margin as well as accounting for measurement aspects at these low levels.

<sup>&</sup>lt;sup>9</sup> In contrast to filterable PM, whose generation in the EAF is highly variable, condensable PM generation can vary even more variable because it can be created not just in the EAF (and survive the high-temperature environment of the EAF) but also in the exhaust gas path from the EAF to the baghouse and more, importantly, after the baghouse, as the gases cool and certain types of compounds such as sulfur-compounds and semi-volatile organics can form via condensable PM formation after the baghouse is inherently variable with little to no control of the operator other than managing proper scrap mix and additive injections. The proposed Project will use the best scrap quality consistent with its product mix. Based on these considerations, setting the BACT limit is largely a matter of determining the inherent variability of the condensable PM that is determined at the exist of the baghouse and using a reasonable compliance margin such that inherent, uncontrollable variability during a test (with its own set of measurement challenges) does not result in non-compliance that is no fault of the operator. The proposed BACT limit for total PM, i.e., 0.0052 grains/dscf, including both filterable and condensable components is based on CMC's review of test data from baghouse-equipped mini- and micro-mills in the US that have been reported by various operators - and, specifically, the large variability observed in such tests, even on a run-to-run basis under close to identical EAF and test conditions.

Table 23-6. VOC Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant |
|---------|-----------|
| EAF/LMS | VOC       |

|         | Step                                        | Control<br>Technology                | Thermal Oxidation <sup>1</sup>                                                                                                                                                                                                                                                                           | Catalytic Oxidation <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carbon Adsorption <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                | Biofiltration <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Condenser <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                        | Good Process Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|---------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                             | Control<br>Technology<br>Description | Utilizes an open flame or combustion within an enclosed chamber to oxidize pollutants. Thermal Oxidation has been a proven technology in controlling Volatile Organic Compounds (VOC) emissions from processes with high VOC usage (i.e., painting, polymer manufacturing, cleaning, etc.) but not EAFs. | a faster rate and at a lower temperature than is possible with thermal oxidation. VOC emissions can be controlled via catalytic oxidation. The oxidation is facilitated by the presence of the catalyst and carried out by the same basic chemical reaction as thermal oxidation.                                                                                                                                                                                                                                                                                           | Carbon Adsorption utilizes a highly porous solid with a large surface area to selectively adsorb VOC. Adsorption collects VOC on the surface of the porous solid instead of destroying the compound through a chemical reaction. The most common porous solid used is activated carbon which is a relatively low cost adsorbent. The adsorption capacity is affected by factors such as organic compound concentration in exhaust, temperature, and humidity. | Biofiltration utilizes a bed of microorganisms to decompose biodegradable organic compounds. This technology has been successfully applied in full-scale applications to control VOC from a range of industrial and public-sector sources. Biofiltration also requires large land areas to house the microorganisms. The land required is proportional to the amount of exhaust gas that needs to be treated. Particulate matter in the exhaust stream can clog the biofilter.                      | cool and condense the vapor stream. Condensers are                                                                                                                                                                                                                                                                                                                                                                                                            | The scrap metal used in the steelmaking process can contain plastics and organic liquids (i.e., oils) that may emit VOC during processing. In order to reduce the amount of VOC containing material introduced in the process a scrap management plan is used. The scrap management plan outlines procedures for sorting scrap and removing unwanted materials that may emit VOC. The operating temperature of the EAF is approximately 3,000 °F which is high enough to oxidize any VOC in the system. Thus, the nature of the EAF process results in good control of potential VOC emissions. |
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES | Other<br>Considerations              |                                                                                                                                                                                                                                                                                                          | entering the catalyst bed where the oxidation reaction occurs, the temperature of the exhaust gas must be between 400 °F to 800 °F. Below this temperature range, the reaction rate drops sharply and effective oxidation of VOC is no longer feasible. Above this temperature, conventional oxidation catalysts break down and are unable to perform their desired functions.  Dust and compounds in the exhaust gas may foul the catalyst, leading to decreased activity. Catalyst fouling occurs slowly under normal operating conditions and may be accelerated by even | with greater than 1,000 parts per million (PPM) of VOC, it may not operate effectively below this concentration. The ideal temperature range for physical adsorption is 130 °F. Above this temperature, the adsorption capacity of the adsorbent decreases. Particulates in the exhaust stream can clog the porous material decreasing the lifespan of the process.                                                                                           | The optimum temperature range of biofiltration is approximately 100 °F in order to keep a viable population of microorganisms. Biofilters are also limited to organic compound concentrations of approximately 1,000 ppm or less. Biofilters are best suited to steady-state processes that do not have significant outages; the microorganisms tend to die off during extended process downtimes that tend to result in changes to the temperature, humidity, or nutrient levels in their habitat. | A typical condenser cannot reach temperatures below 100 °F and as a result high VOC removal rates are not possible unless the VOC condenses at high temperatures. Particulates in the exhaust stream can cause fouling leading to excessive maintenance and decreased efficiency. Additionally, low VOC concentrations in the exhaust streams cause the partial pressures of the VOC to be too low for condensation to occur resulting in a low removal rate. | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 23-6. VOC Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant |
|---------|-----------|
| EAF/LMS | VOC       |

|         | Step                                              | Control<br>Technology             | Thermal Oxidation <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Catalytic Oxidation <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Carbon Adsorption <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Biofiltration <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Condenser <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                              | Good Process Control                                                                                                                                                                                                                                       |
|---------|---------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                   |                                   | Not included in the RBLC database as a form of control of VOC emissions from Electric Arc Furnaces/Ladle Metallurgy Stations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not included in the RBLC database as a form of control of VOC emissions from Electric Arc Furnaces/Ladle Metallurgy Stations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not included in the RBLC database as a form of control of VOC emissions from Electric Arc Furnaces/Ladle Metallurgy Stations.                                                                                                                                                                                                                                                                                                                                                                      | Not included in the RBLC database<br>as a form of control of VOC<br>emissions from Electric Arc<br>Furnaces/Ladle Metallurgy<br>Stations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                     | Included in RBLC. Good Combustion and/or Process Control are included in the RBLC as a common form of control for VOC emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.                                                                   |
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion         | exhaust stream from the EAF/LMS, thermal oxidation controls would need to be located downstream of a particulate emission control technology (i.e., the baghouse). Thermal Oxidization of emissions for VOC destruction would require raising the exhaust gas temperature to at least a temperature of 1,100 °F. Below this temperature, the reaction rate drops significantly and the oxidation of VOC is no longer feasible.  Since the exhaust temperature of the process after the particulate control device is less than 150 °F, which is well below the typical operating range of thermal oxidizers, and based on the high volume of airflow, large amounts of auxiliary fuel would be required to heat the stream to the required temperature for thermal oxidation. This will create additional combustion emissions. The high temperatures involved in | due to the particulate loading of the exhaust stream from the EAF/LMS, catalytic oxidation controls would need to be located downstream of a particulate emission control technology (i.e., the baghouse). Catalytic oxidization of emissions for VOC destruction would require raising the exhaust gas temperature to at least a temperature of 400 °F. Below this temperature, the reaction rate drops significantly and the oxidation of VOC is no longer feasible.  Since the exhaust temperature of the process after the particulate control device is less than 150 °F, which is well below the typical operating range of catalytic oxidizers, and based on the high volume of airflow, large amounts of auxiliary fuel would be required to heat the stream to the required temperature for catalytic oxidation. This will create additional combustion emissions. This control technology has not been demonstrated in practice for control of VOC emissions from the EAF/LMS. As a result, catalytic oxidation of VOC emissions is | adverse environmental impacts by potentially increasing the amount of solid waste disposal. The high volumetric flow rate associated with EAF exhaust and the low VOC concentrations of the exhaust stream would make efficient operation of Carbon Adsorption infeasible. This control technology has not been demonstrated in practice for control of VOC emissions from the EAF/LMS. As a result, Carbon Adsorption is considered infeasible for the control of VOC emissions from the EAF/LMS. | Biofiltration would create adverse environmental impacts by potentially increasing the amount of solid waste disposal. A Biofilter must be located downstream of the particulate control device and the exhaust is at approximately 150 °F at that point. This is above the operational temperature of a biofilter. The high volumetric flow rate associated with EAF exhaust and the low VOC concentrations of the exhaust stream would make efficient operation of Biofiltration infeasible. This control technology has not been demonstrated in practice for control of VOC emissions from the EAF/LMS. As a result, Biofiltration is considered infeasible for the control of VOC emissions from the EAF/LMS. | adverse environmental impacts (by potentially increasing the amount of liquid waste disposal). The high volumetric flow rate associated with EAF exhaust and the low VOC concentrations of the exhaust stream would make efficient operation of a Condenser infeasible. This control technology has not been demonstrated in practice for control of VOC emissions from the EAF/LMS. As a result, a | In order to ensure that low amounts of VOC enter the process, CMC maintains a scrap management plan to ensure minimal addition of VOC from unwanted non-process materials.  Technically feasible. Good Process Control is widely demonstrated in practice. |
| Step 3. | RANK REMAINING CONTROL TECHNOLOGIES               | Overall<br>Control<br>Efficiency  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                     | Base Case                                                                                                                                                                                                                                                  |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE              | Cost<br>Effectiveness<br>(\$/ton) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                     | Base Case                                                                                                                                                                                                                                                  |

**Table 23-6. VOC Top-Down BACT Analysis for EAF and LMS** 

| Process | Pollutant |
|---------|-----------|
| EAF/LMS | VOC       |

|         | Step        | Control<br>Technology | Thermal Oxidation <sup>1</sup> | Catalytic Oxidation <sup>2</sup> | Carbon Adsorption <sup>3</sup> | Biofiltration <sup>4</sup> | Condenser <sup>5</sup> | Good Process                                                           | s Control                                                                         |
|---------|-------------|-----------------------|--------------------------------|----------------------------------|--------------------------------|----------------------------|------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|         |             |                       |                                |                                  |                                |                            |                        | Facility  Comparable Facility                                          | VOC Emission Limit (lb/ton) acilities 6,7                                         |
|         |             |                       |                                |                                  |                                |                            |                        | Gerdau Ameristeel, NC CMC Mesa, AZ Nucor Frostproof, FL CMC Durant, OK | 0.34<br>0.3<br>0.3<br>0.3                                                         |
| Step 5. | SELECT BACT |                       |                                |                                  |                                |                            |                        | Nucor Sedalia, MO  Proposed BACT:                                      | 0.3  0.3 lb VOC/ ton steel produced using Good Combustion and/or Process Control. |

<sup>1</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Regenerative Incinerator)," EPA-452/F-03-021. U.S. EPA, Office of Air Quality Planning and Standards, "Draft CAM Technical Guidance Document - Thermal Oxidizers", dated April 2002 U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Catalytic Incinerator)," EPA-452/F-03-018

<sup>&</sup>lt;sup>3</sup> U.S. EPA, Air Economics Group, "Carbon Adsorbers", dated October 2018.

<sup>&</sup>lt;sup>4</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Using Bioreactors to Control Air Pollution" EPA-456/R-03-003.

<sup>&</sup>lt;sup>5</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Refrigerated Condensers" EPA-452/B-02-001.

<sup>&</sup>lt;sup>6</sup> A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B. Because VOC emissions will depend to a greater extent on the type of furnace, CMC has appropriately included comparable facilities accordingly.

<sup>&</sup>lt;sup>7</sup> Only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia and CMC Oklahoma facilities utilize similar technologies for the EAF/LMS (i.e., ECS Process and Micro Mill). The 0.30 lb/ton emission limit from the CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities is more stringent than the emission limit from the Gerdau Ameristeel facility.

Table 23-7. GHG Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant               |
|---------|-------------------------|
| EAF/LMS | GHG as measured in CO₂e |

| St      | ер                             | Control<br>Technology                | DC Arc Furnace <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scrap Preheating, Post-<br>Combustion—Shaft<br>Furnace <sup>1</sup>                                                                        | Airtight Operation <sup>1</sup>                                                                                                                                                                                         | CONTIARC® Furnace <sup>1</sup>                                                                                                                                                                                                                          | Twin-Shell Furnace with Scrap Heating (CONARC®) <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|--------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL | Control<br>Technology<br>Description | The DC Arc Furnace technology replaces the normal three electrodes (one for each phase) with one large electrode that uses direct current instead of alternating current for heating the scrap in the EAF. Based on the distinctive feature of using the heat and magnetic force generated by the current in melting, this arc furnace achieves an energy saving of approximately 5 percent in terms of power unit consumption in comparison to the 3-phase alternating current arc furnace. | being introduced into the EAF for melting. This design was developed as a method of reducing power consumption during the heating process. | ambient air enters the EAF. This air is heated in the furnace and exits with the fumes at high temperature (around 1,800°F); heating the air results in significant thermal losses. Of the associated cost savings that | fed continuously with material in a ring between the CONTIARC shaft and the outer furnace vessel; where the charged material is continuously preheated by the rising process gas in a counter-current flow, while the material continuously moves down. | A twin-shell furnace includes two EAF vessels with a common arc and power supply. In the two furnace shells, blowing lance and electrodes are used in turns. This makes it possible to process the charge materials of steel scrap, crude iron and direct-reduced iron (DRI) in various mixing ratios. This system increases productivity by decreasing tap-to-tap times, reducing refractory and electrode consumption, and improved ladle life. |
|         | TECHNOLOGIES                   | Other<br>Considerations              | This technology is limited to new installations because of the prohibitive scale of the retrofit costs. As of 2007 there are eight DC powered EAF operating in the U.S.                                                                                                                                                                                                                                                                                                                      | (0.40 GJ/tonne) liquid steel,                                                                                                              | to operate an airtight EAF is<br>the need to evaluate the<br>material within the EAF<br>continuously while charging                                                                                                     | removing slag from the melted steel and thus limits its application to steel processes where slag removal is not required.                                                                                                                              | The Twin Shell Furnace design is very effective at improving productivity and reducing the energy required for the melting process but it represents a significantly larger capital expenditure and would therefore be typically utilized for facilities that produce over 1 million tpy of steel.                                                                                                                                                |

Table 23-7. GHG Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant                            |
|---------|--------------------------------------|
| EAF/LMS | GHG as measured in CO <sub>2</sub> e |

| Step    |                                                   | Control<br>Technology           | DC Arc Furnace <sup>1</sup>                                                                                                                                                                                                                                                                                          | Scrap Preheating, Post-<br>Combustion—Shaft<br>Furnace <sup>1</sup>                                                                                                                                                                                                           | Airtight Operation <sup>1</sup>                                                                                                                                                | CONTIARC® Furnace <sup>1</sup>                                                                                                      | Twin-Shell Furnace with<br>Scrap Heating<br>(CONARC®) <sup>1</sup>                                                                                                                                                                                                                                                         |
|---------|---------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                   | RBLC<br>Database<br>Information | Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations at an ECS Micro Mill.                                                                                                                                                                                  | Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.                                                                                                                                                                | Furnace/Ladle Metallurgy                                                                                                                                                       |                                                                                                                                     | Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.                                                                                                                                                                                                             |
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion       | This option may reduce GHG emissions but may also increase the emission of other pollutants. Per the Section IV.A.3 of the New Source Review Workshop Manual, the use of a DC Arc Furnace would be classified as "redefining the source" and as a result, is not a feasible option for the control of GHG emissions. | This option may reduce GHG emissions but has the propensity to emit high levels of CO. The use of Scrap Preheating, Post Combustion - Shaf Furnace would be classified as "redefining the source" and as a result, is not a feasible option for the control of GHG emissions. | practice for control of GHG emissions from the EAF/LMS in a ECS Micro Mill process. As a result, Airtight Operation is not a feasible option for the control of GHG emissions. | would not be appropriate. This option may reduce GHG emissions but may also increase the emission of other pollutants. As a result, | This option may reduce GHG emissions but may increase emissions of other pollutants. This control technology has not been demonstrated in practice for control of GHG emissions from the EAF/LMS in a ECS Micro Mill process. As a result, a Twin-Shell Furnace is not a feasible option for the control of GHG emissions. |

Table 23-7. GHG Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant               |
|---------|-------------------------|
| EAF/LMS | GHG as measured in CO₂e |

| St      | ер                             | Control<br>Technology                | DC Arc Furnace <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scrap Preheating, Post-<br>Combustion—Shaft<br>Furnace <sup>1</sup>                                                                        | Airtight Operation <sup>1</sup>                                                                                                                                                                                         | CONTIARC® Furnace <sup>1</sup>                                                                                                                                                                                                                          | Twin-Shell Furnace with Scrap Heating (CONARC®) <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|--------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL | Control<br>Technology<br>Description | The DC Arc Furnace technology replaces the normal three electrodes (one for each phase) with one large electrode that uses direct current instead of alternating current for heating the scrap in the EAF. Based on the distinctive feature of using the heat and magnetic force generated by the current in melting, this arc furnace achieves an energy saving of approximately 5 percent in terms of power unit consumption in comparison to the 3-phase alternating current arc furnace. | being introduced into the EAF for melting. This design was developed as a method of reducing power consumption during the heating process. | ambient air enters the EAF. This air is heated in the furnace and exits with the fumes at high temperature (around 1,800°F); heating the air results in significant thermal losses. Of the associated cost savings that | fed continuously with material in a ring between the CONTIARC shaft and the outer furnace vessel; where the charged material is continuously preheated by the rising process gas in a counter-current flow, while the material continuously moves down. | A twin-shell furnace includes two EAF vessels with a common arc and power supply. In the two furnace shells, blowing lance and electrodes are used in turns. This makes it possible to process the charge materials of steel scrap, crude iron and direct-reduced iron (DRI) in various mixing ratios. This system increases productivity by decreasing tap-to-tap times, reducing refractory and electrode consumption, and improved ladle life. |
|         | TECHNOLOGIES                   | Other<br>Considerations              | This technology is limited to new installations because of the prohibitive scale of the retrofit costs. As of 2007 there are eight DC powered EAF operating in the U.S.                                                                                                                                                                                                                                                                                                                      | (0.40 GJ/tonne) liquid steel,                                                                                                              | to operate an airtight EAF is<br>the need to evaluate the<br>material within the EAF<br>continuously while charging                                                                                                     | removing slag from the melted steel and thus limits its application to steel processes where slag removal is not required.                                                                                                                              | The Twin Shell Furnace design is very effective at improving productivity and reducing the energy required for the melting process but it represents a significantly larger capital expenditure and would therefore be typically utilized for facilities that produce over 1 million tpy of steel.                                                                                                                                                |

Table 23-7. GHG Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant                            |  |  |
|---------|--------------------------------------|--|--|
| EAF/LMS | GHG as measured in CO <sub>2</sub> e |  |  |

| Step    |                                                   | Control<br>Technology           | DC Arc Furnace <sup>1</sup>                                                                                                                                                                                                                                                                                          | Scrap Preheating, Post-<br>Combustion—Shaft<br>Furnace <sup>1</sup>                                                                                                                                                                                                           | Airtight Operation <sup>1</sup>                                                                                                                                                | CONTIARC® Furnace <sup>1</sup>                                                                                                      | Twin-Shell Furnace with<br>Scrap Heating<br>(CONARC®) <sup>1</sup>                                                                                                                                                                                                                                                         |
|---------|---------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 2. |                                                   | RBLC<br>Database<br>Information | Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations at an ECS Micro Mill.                                                                                                                                                                                  | Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.                                                                                                                                                                | Furnace/Ladle Metallurgy                                                                                                                                                       |                                                                                                                                     | Not included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.                                                                                                                                                                                                             |
|         | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion       | This option may reduce GHG emissions but may also increase the emission of other pollutants. Per the Section IV.A.3 of the New Source Review Workshop Manual, the use of a DC Arc Furnace would be classified as "redefining the source" and as a result, is not a feasible option for the control of GHG emissions. | This option may reduce GHG emissions but has the propensity to emit high levels of CO. The use of Scrap Preheating, Post Combustion - Shaf Furnace would be classified as "redefining the source" and as a result, is not a feasible option for the control of GHG emissions. | practice for control of GHG emissions from the EAF/LMS in a ECS Micro Mill process. As a result, Airtight Operation is not a feasible option for the control of GHG emissions. | would not be appropriate. This option may reduce GHG emissions but may also increase the emission of other pollutants. As a result, | This option may reduce GHG emissions but may increase emissions of other pollutants. This control technology has not been demonstrated in practice for control of GHG emissions from the EAF/LMS in a ECS Micro Mill process. As a result, a Twin-Shell Furnace is not a feasible option for the control of GHG emissions. |

Table 23-7. GHG Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant                            |  |  |
|---------|--------------------------------------|--|--|
| EAF/LMS | GHG as measured in CO <sub>2</sub> e |  |  |

| St      | Step                                          |                                   | DC Arc Furnace <sup>1</sup> | Scrap Preheating, Post-<br>Combustion—Shaft<br>Furnace <sup>1</sup> | Airtight Operation <sup>1</sup> | CONTIARC® Furnace <sup>1</sup> | Twin-Shell Furnace with<br>Scrap Heating<br>(CONARC®) <sup>1</sup> |
|---------|-----------------------------------------------|-----------------------------------|-----------------------------|---------------------------------------------------------------------|---------------------------------|--------------------------------|--------------------------------------------------------------------|
| Step 3. | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES  | Overall<br>Control<br>Efficiency  |                             |                                                                     |                                 |                                |                                                                    |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS | Cost<br>Effectiveness<br>(\$/ton) |                             |                                                                     |                                 |                                |                                                                    |
| Step 5. | SELECT BACT                                   |                                   |                             |                                                                     |                                 |                                |                                                                    |

<sup>&</sup>lt;sup>1</sup> U.S. EPA, Office of Air and Radiation, "Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Iron and Steel Industry", Sept. 2012.

Table 23-7. GHG Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant                            |  |  |
|---------|--------------------------------------|--|--|
| EAF/LMS | GHG as measured in CO <sub>2</sub> e |  |  |

| St      | Step                           |                                      | Carbon Capture and<br>Sequestration                                                                                                                                                                                                                             | Foamy Slag Practice <sup>1</sup>                                             | Oxy-Fuel Injectors <sup>1</sup>                                                         | Post Combustion of the Flue Gases <sup>1</sup> | Engineered Refractories <sup>1</sup>                                                                                              | Eccentric Bottom Tapping<br>on Furnace <sup>1</sup>                                                              |
|---------|--------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL | Control<br>Technology<br>Description | capture and sequestration (CCS) technologies generally                                                                                                                                                                                                          | radiation heat losses and increase the electric power efficiency of the EAF. | Use of oxy-fuel injectors reduces the consumption of electricity and electrode material | chemical energy in the CO to preheat scrap     | Controlled microstructure or other engineered refractories reduce ladle leakages and formation of slag during transfer operations | Eccentric bottom tapping or similar methods reduce refractory and electrode consumption, and improve ladle life. |
|         | TECHNOLOGIES                   | Other<br>Considerations              | Amine absorption has been applied to processes in the petroleum refining and natural gas processing industries and for exhausts from gas-fired industrial boilers. Other potential absorption and membrane technologies are currently considered developmental. | None                                                                         | None                                                                                    | None                                           | None                                                                                                                              | None                                                                                                             |

Table 23-7. GHG Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant                            |  |  |
|---------|--------------------------------------|--|--|
| EAF/LMS | GHG as measured in CO <sub>2</sub> e |  |  |

| Step    |                                                   | Control<br>Technology           | Carbon Capture and<br>Sequestration                                                                                                                                                                                                                                                                                                                                                                                               | Foamy Slag Practice <sup>1</sup>                                                                           | Oxy-Fuel Injectors <sup>1</sup>                                                                            | Post Combustion of the Flue Gases <sup>1</sup>                                                             | Engineered Refractories <sup>1</sup>                                                                       | Eccentric Bottom Tapping<br>on Furnace <sup>1</sup>                                                        |
|---------|---------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Step 2. |                                                   | RBLC<br>Database<br>Information | control of GHG emissions<br>from the Electric Arc<br>Furnace/Ladle Metallurgy                                                                                                                                                                                                                                                                                                                                                     | Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations. | Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations. | Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations. | Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations. | Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations. |
|         | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion       | The EAF/LMS exhaust has significantly lower volumes and concentrations of GHGs then petroleum refining and natural gas processing facilities which makes Carbon Capture and Sequestration infeasible. Also, this control technology has not been demonstrated in practice for control of GHG emissions from the EAF/LMS. As a result, Carbon Capture and Sequestration is not a feasible option for the control of GHG emissions. | Т                                                                                                          | echnically feasible. These techi                                                                           | nologies and work practices are                                                                            | e widely demonstrated in pract                                                                             | ice.                                                                                                       |

Table 23-7. GHG Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant                            |  |  |
|---------|--------------------------------------|--|--|
| EAF/LMS | GHG as measured in CO <sub>2</sub> e |  |  |

| Step Control<br>Technology |                                               | Carbon Capture and<br>Sequestration | Foamy Slag Practice <sup>1</sup> | Oxy-Fuel Injectors <sup>1</sup> | Post Combustion of the Flue Gases <sup>1</sup> | Engineered Refractories <sup>1</sup> | Eccentric Bottom Tapping<br>on Furnace <sup>1</sup> |  |
|----------------------------|-----------------------------------------------|-------------------------------------|----------------------------------|---------------------------------|------------------------------------------------|--------------------------------------|-----------------------------------------------------|--|
| Step 3.                    | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES  | Overall<br>Control<br>Efficiency    |                                  | Base Case                       |                                                |                                      |                                                     |  |
| Step 4.                    | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS | Cost<br>Effectiveness<br>(\$/ton)   |                                  | Base Case                       |                                                |                                      |                                                     |  |
|                            |                                               |                                     |                                  |                                 |                                                | Emission Limit Evaluation            |                                                     |  |
|                            |                                               |                                     |                                  |                                 |                                                | Comparable Facilities <sup>2,3</sup> |                                                     |  |
| Step 5.                    | SELECT BACT                                   |                                     |                                  |                                 |                                                | (see end of table)                   |                                                     |  |
|                            |                                               |                                     |                                  |                                 |                                                |                                      |                                                     |  |

Table 23-7. GHG Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant               |  |  |
|---------|-------------------------|--|--|
| EAF/LMS | GHG as measured in CO₂e |  |  |

| St      | ер                             | Control<br>Technology   | Bottom Stirring/Stirring Gas Injection <sup>1</sup>                                       | Transformer Efficiency-<br>Ultra-High Power                                                                                                                                         | Adjustable Speed Drives <sup>1</sup>                                                                                              | Improved Process Control <sup>1</sup>                                               | Scrap Preheating Using<br>the ECS Process <sup>1</sup>                                                                             |
|---------|--------------------------------|-------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL |                         | Bottom stirring (injecting an inert gas to stir the steel in the LMS) or similar methods, | Transformers¹  Ultra-high-power (UHP), or similar, transformers reduce energy loss through modern design.                                                                           | When practicable, use of variable speed drives lowers the speed of the dust collection fans to achieve power consumption savings. | A modern control and<br>monitoring system integrates<br>real-time monitoring of the | Scrap preheating, as the primary method of operation, reduces power consumption of the EAF by using the offgases of the EAF as the |
|         | TECHNOLOGIES                   | Other<br>Considerations |                                                                                           | UHP operations may lead to heat fluxes and increased refractory wear, making cooling of the furnace panels necessary. The additional heat loss partially offsets the power savings. | None                                                                                                                              | None                                                                                | None                                                                                                                               |

Table 23-7. GHG Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant               |
|---------|-------------------------|
| EAF/LMS | GHG as measured in CO₂e |

| Step    |                                                   | Control<br>Technology     | Bottom Stirring/Stirring<br>Gas Injection <sup>1</sup>                                                     | Transformer Efficiency-<br>Ultra-High Power<br>Transformers <sup>1</sup>                                   | Adjustable Speed Drives <sup>1</sup>                                                                       | Improved Process<br>Control <sup>1</sup>                                                                   | Scrap Preheating Using<br>the ECS Process <sup>1</sup>                                                     |
|---------|---------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|         |                                                   | RBLC<br>Database          | Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations. | Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations. | Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations. | Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations. | Included in RBLC for the control of GHG emissions from the Electric Arc Furnace/Ladle Metallurgy Stations. |
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion | Te                                                                                                         | echnically feasible. These techr                                                                           | nologies and work practices are                                                                            | e widely demonstrated in pract                                                                             | ice.                                                                                                       |

Table 23-7. GHG Top-Down BACT Analysis for EAF and LMS

| Process | Pollutant                            |
|---------|--------------------------------------|
| EAF/LMS | GHG as measured in CO <sub>2</sub> e |

| STAN I  |                                               | Control<br>Technology             | Bottom Stirring/Stirring<br>Gas Injection <sup>1</sup>            | Transformer Efficiency-<br>Ultra-High Power<br>Transformers <sup>1</sup> | Adjustable Speed Drives <sup>1</sup> | Improved Process<br>Control <sup>1</sup> | Scrap Preheating Using the ECS Process <sup>1</sup> |
|---------|-----------------------------------------------|-----------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|------------------------------------------|-----------------------------------------------------|
| Step 3. | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES  | Overall<br>Control<br>Efficiency  | Base Case                                                         |                                                                          |                                      |                                          |                                                     |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS | Cost<br>Effectiveness<br>(\$/ton) | Base Case                                                         |                                                                          |                                      |                                          |                                                     |
|         |                                               |                                   | Facility                                                          | GHG Emission Limit<br>(lb/ton)                                           |                                      |                                          |                                                     |
|         |                                               |                                   |                                                                   |                                                                          | Comparable Facilities <sup>2,3</sup> |                                          |                                                     |
|         |                                               |                                   | Gerdau Ameristeel, NC                                             | -                                                                        |                                      |                                          |                                                     |
| Step 5. | SELECT BACT                                   |                                   | CMC Mesa, AZ                                                      | -                                                                        |                                      |                                          |                                                     |
|         |                                               |                                   | Nucor Frostproof, FL                                              | 438                                                                      |                                      |                                          |                                                     |
|         |                                               |                                   | CMC Durant, OK                                                    | 535                                                                      |                                      |                                          |                                                     |
|         |                                               |                                   | Nucor Sedalia, MO                                                 | 438                                                                      |                                      |                                          |                                                     |
|         |                                               |                                   | Proposed BACT: <sup>2</sup> See Appendix B for a list of pon-comp |                                                                          | 19,513 tpy using the techno          | ologies and work practices               | described above.                                    |

<sup>&</sup>lt;sup>2</sup> See Appendix B for a list of non-comparable facilities from the RBLC database.

<sup>3</sup> Only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar technologies for the EAF/LMS (i.e., ECS Process and Micro Mill). All these facilities utilize one or more of the above feasible technologies/work practices.

**Table 23-8. Fluoride Top-Down BACT Analysis for EAF and LMS** 

| Process | Pollutant                               |
|---------|-----------------------------------------|
| EAF/LMS | Fluoride excluding<br>Hydrogen Fluoride |

| Step | Control<br>Technology                | Electrostatic Precipitator (ESP) <sup>1,2</sup>                                                                                                                                                                                                                                                                                                                                                          | Inertial Collection Systems (Cyclones) <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wet Scrubber <sup>4</sup> | Baghouse/Fabric Filter <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                       |
|------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Control<br>Technology<br>Description | forces to move particles entrained within a exhaust stream onto a collection surfaces (i.e., an electrode). A wet ESP can be used in this application to reduce condensable and filterable fluoride containing particulate matter (PM) emissions formed; a dry ESP would reduce filterable PM only. ESPs have been used on solid fuel combustion devices and in non-ferrous metal processing facilities. | Consists of one or more conically shaped vessels in which the exhaust gas stream follows a circular motion prior to the outlet. Fluoride containing PM enters the cyclone suspended in the gas stream, which is forced into a vortex by the shape of the cyclone. The inertia of the PM resists the directional change of the gas, resulting in an outward movement under the influence of centrifugal forces until they strike the cyclone wall. The PM is caught in a thin laminar layer of air next to the cyclone wall and is carried downward by gravity to the collection hopper. | 1.                        | Process exhaust gasses are collected and passed through a tightly woven or felted fabric arranged in sheets, cartridges, or bags that collect fluoride containing PM via sieving and other mechanisms. The dust cake that accumulates on the filters increases collection efficiency and eventually falls into a hopper for removal. Various cleaning techniques include pulse-jet, reverse-air, and shaker technologies. |

**Table 23-8. Fluoride Top-Down BACT Analysis for EAF and LMS** 

| Process | Pollutant                               |
|---------|-----------------------------------------|
| EAF/LMS | Fluoride excluding<br>Hydrogen Fluoride |

|         | Step                                        | Control<br>Technology           | Electrostatic Precipitator (ESP) <sup>1,2</sup>                                                                                                                                                                                             | Inertial Collection Systems (Cyclones) <sup>3</sup>                                                                                                                                                                                                                                                                                              | Wet Scrubber <sup>4</sup>                                                                                                       | Baghouse/Fabric Filter <sup>5</sup>                                                                                                                                                                      |
|---------|---------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES | Other<br>Considerations         | are used periodically to impart a vibration or shock to dislodge the deposited fluoride containing PM on dry ESP electrodes. The dislodged PM is collected in hoppers. In wet ESP, the collected particles are washed off of the collection | In some cases, thermal insulation is used to reduce heat loss and cold air from entering the system. Cold air can cause gas quenching and condensation which leads to corrosion, dust buildup, and plugging of the hopper or dust removal system.  Inertial collection systems have been operated with inlet gas temperatures as high as 1000°F. |                                                                                                                                 | Fabric filters are susceptible to corrosion and blinding by moisture. Appropriate fabrics must be selected for specific process conditions. Accumulations of dust may present fire or explosion hazards. |
|         |                                             | RBLC<br>Database<br>Information | the control of fluoride                                                                                                                                                                                                                     | Not included in RBLC for the control of fluoride emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.                                                                                                                                                                                                                              | Not included in RBLC for<br>the control of fluoride<br>emissions from the Electric<br>Arc Furnace/Ladle<br>Metallurgy Stations. | Baghouses are included in the RBLC as a common form of control for fluoride emissions from the Electric Arc Furnace/Ladle Metallurgy Stations.                                                           |

**Table 23-8. Fluoride Top-Down BACT Analysis for EAF and LMS** 

| Process | Pollutant                               |
|---------|-----------------------------------------|
| EAF/LMS | Fluoride excluding<br>Hydrogen Fluoride |

|         | Step                                              | Control<br>Technology             | Electrostatic Precipitator (ESP) <sup>1,2</sup>                                                                                                                                                                                                                                                        | Inertial Collection Systems (Cyclones) <sup>3</sup>                                                                                                                                                                                                                         | Wet Scrubber <sup>4</sup>                                                                                                                                                                       | Baghouse/Fabric Filter <sup>5</sup> |
|---------|---------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion         | control of Fluoride containing PM emissions. Additional Fluoride removal is not practical; moreover, the ESP would create adverse energy and environmental impacts (due to the power needed to generate the high voltage electrostatic fields, and with wet ESP, to dispose of the wastewater stream). | cyclone would be less efficient than a baghouse.  This control technology has not been demonstrated in practice for control of Fluoride emissions from the EAF/LMS. As a result, a cyclone is considered infeasible for the control of Fluoride emissions from the EAF/LMS. | control of Fluoride containing PM emissions. Additional Fluoride removal is not practical; moreover, the Wet Scrubber would create adverse energy impacts (due to the increase in pressure drop |                                     |
| Step 3. | RANK REMAINING<br>CONTROL<br>TECHNOLOGIES         | Overall<br>Control<br>Efficiency  |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 | Base Case                           |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS     | Cost<br>Effectiveness<br>(\$/ton) |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 | Base Case                           |

**Table 23-8. Fluoride Top-Down BACT Analysis for EAF and LMS** 

| Process | Pollutant                               |
|---------|-----------------------------------------|
| EAF/LMS | Fluoride excluding<br>Hydrogen Fluoride |

|         | Step Control Technology         |  | Electrostatic Precipitator (ESP) <sup>1,2</sup> | ' Mot Couphor' |  | Baghouse/Fabric Filter <sup>5</sup> |                                                                          |
|---------|---------------------------------|--|-------------------------------------------------|----------------|--|-------------------------------------|--------------------------------------------------------------------------|
|         |                                 |  |                                                 |                |  | Facility                            | Fluoride Emission Limit<br>(lb/ton)                                      |
|         |                                 |  |                                                 |                |  | Comparable                          | e Facilities <sup>6,7</sup>                                              |
|         |                                 |  |                                                 |                |  | Nucor Frostproof, FL                | 0.059                                                                    |
|         |                                 |  |                                                 |                |  | Nucor Sedalia, FL                   | 0.059                                                                    |
|         |                                 |  |                                                 |                |  | SDSW Steel, TX                      | 0.01                                                                     |
| Chara E | CELECT DACT                     |  |                                                 |                |  | SDSW Steel, TX                      | 0.01                                                                     |
| Step 5. | SELECT BACT                     |  |                                                 |                |  | CMC Mesa, AZ                        | 0.01                                                                     |
|         |                                 |  |                                                 |                |  | Nucor Norfolk, NE                   | 0.0059                                                                   |
|         |                                 |  |                                                 |                |  | Steel Mini Mill                     | 0.0035                                                                   |
|         | fine of Air Quality Diagning on |  |                                                 |                |  | Proposed BACT:                      | 0.01 lb/ton for fluorides<br>produced using a<br>Baghouse/Fabric Filter. |

<sup>&</sup>lt;sup>1</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (ESP) - Wire Pipe Type)," EPA-452/F-03-029.

<sup>&</sup>lt;sup>2</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (ESP) - Wire Plate Type)," EPA-452/F-03-030.

<sup>&</sup>lt;sup>3</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Momentum Separators)," EPA-452/F-03-008

<sup>&</sup>lt;sup>4</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Flue Gas Desulfurization (FGD) - Wet, Spray Dry, and Dry Scrubbers)," EPA-452/F-03-034.

<sup>&</sup>lt;sup>5</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-Jet Cleaned Type)," EPA-452/F-03-025.

<sup>&</sup>lt;sup>6</sup> A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B. Because fluoride emissions depend on additives used for fluidization and the maintenance of bath temperatures during tapping and refining, which depends on EAF design and product considerations, CMC has included an appropriate list of comparable facilities accordingly.

<sup>&</sup>lt;sup>7</sup> Only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar technologies for the EAF/LMS (i.e., ECS Process and Micro Mill), but only CMC Mesa, Nucor Frostproof, and Nucor Sedalia have BACT determinations for fluoride. The 0.01 lb/ton emission limit for fluorides excluding hydrogen fluoride is in line with the emission limit at the CMC Mesa facility and more conservative than the emission limits at the Nucor Frostproof and Nucor Sedalia facilities.

## 23.4 Non-Combustion Emission Sources Routed to Caster Vent

Non-combustion emission units routed to the Caster Vent (CV1) are listed below:

- Uncaptured emissions from the EAF and LMS
- One Continuous Caster (CAST1)
- Binder Usage associated with Ladle Refractory Repair (LB1)
- Binder Usage associated with Tundish Refractory Repair (TB1)
- Cutting Torches (TORCH1)

Some fraction of the emissions from these sources will be captured by the canopy and routed to the baghouse while the remainder of these emissions will be routed to CV1. For emission calculation purposes it is conservatively assumed that all these emissions will be routed to CV1.

Uncaptured emissions from the EAF and LMS are directly tied to the BACT analysis for the EAF/LMS as noted in Section 23.3. Uncaptured emissions from the continuous caster, binder usage, and cutting torches are small (ranging from 0.065 to 2.28 tpy) and not expected to generate a feasible BACT control proposal. Other potential emission reduction options (e.g., electrification of the cutting torches) constitute "redefining the source".

## 23.5 Combustion Emission Sources Routed to Caster Vent

Combustion emission units routed to the Caster Vent (CV1) are listed below:

- Three Ladle Preheaters (LPH1)
- Two Ladle Dryers (LD1)
- Two Tundish Preheaters (TPH1)
- One Tundish Dryer (TD1)
- One Tundish Mandril Dryer (TMD1)
- One shroud heater (SRDHTR1)
- 20 Meltshop Comfort Heaters (MSAUXHT)

Some fraction of the emissions from these sources will be captured by the canopy and routed to baghouse while the remainder of these emissions will be routed to CV1. For emission calculation purposes it is conservatively assumed that all these emissions will be routed to CV1.

Typically, a BACT analysis would be performed for each individual emission unit. However, it is conservative to group emission units that are routed to a single exhaust point (i.e., the caster vent) because the higher the magnitude of emissions, the more cost effective a potential control would be. The majority of the combustion equipment listed above have similar capacities ranging from 1 to 8 MMBtu/hr per unit which will yield substantially similar BACT evaluations based on RBLC reviews. Based on these considerations this BACT analysis assumes all of the above emission units are a single source for simplicity.

All of the listed combustion units can combust natural gas or propane. The RBLC search for combustion units rated under 100 MMBtu/hr did not yield any combustion units using propane as a primary fuel. Therefore, CMC is unable to identify any BACT limits for propane combustion. The top-down BACT analyses contained in this section were performed using the RBLC results for combustion units combusting natural gas only. Because no BACT limits could be developed for propane combustion, CMC is proposing Good Combustion Practices as BACT for all pollutants due to the combustion of natural gas or propane at the heaters. Table 23-9 to Table 23-14 contain the natural gas combustion only top-down BACT analyses.

Table 23-9. CO Top-Down BACT Analysis for Natural Gas Combustion Emission Sources

| Process            | Pollutant |
|--------------------|-----------|
| Combustion Units   |           |
| (including Small   | CO        |
| Heaters and Dryers | CO        |
| <100 MMBtu/hr)     |           |

|                                  |                                                    | Control Technology                | Non-Selective Catalytic<br>Reduction (NSCR) <sup>1,2</sup>                                                  | SCONOX Catalytic Absorption<br>System <sup>3</sup>                                                                                                                | Xonox Cool Combustion <sup>3</sup>                                                                                                                                        | Recuperative Thermal Oxidation <sup>4,5,6</sup>                                                                                                                                                                    | Regenerative Thermal<br>Oxidation <sup>6</sup>                                                                                            | Catalytic Oxidation <sup>7</sup>                                                                                                                                                                                           | Good Operating Practices                                                                                                                                              |
|----------------------------------|----------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                    |                                   | Metallic catalysts convert NO <sub>x</sub> , CO, and hydrocarbons to water, nitrogen, and CO <sub>2</sub> . | This system utilizes a single catalyst to remove NO <sub>x</sub> , CO, and VOC through oxidation.                                                                 | A catalyst integrated into gas turbine combustors limits the production of NO <sub>X</sub> through temperature control also resulting in reduced emissions of CO and VOC. | Oxidizes combustible materials by raising the temperature of the material above the auto-ignition point in the                                                                                                     | Oxidizes combustible materials by raising the temperature of the material above the auto-ignition point in the presence of oxygen and     |                                                                                                                                                                                                                            | Operate and maintain the equipment in accordance with good air pollution control practices and with good combustion practices.                                        |
| Step 1.                          | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES        |                                   | between 700 and 1,500 °F. This technique uses a fuel rich mixture.                                          | The SCONOX Catalyst is sensitive to contamination by sulfur, so it must be used in conjunction with the SCOSOX catalyst, which favors sulfur compound absorption. | N/A                                                                                                                                                                       | ignition temperature of the waste gas<br>stream as typical operating<br>temperatures are between 1,100 and<br>2,000°F. Oxidizers are not<br>recommended for controlling gases<br>with halogen or sulfur containing | the ignition temperature as typical operating temperatures are between 1,400 and 2,000 °F. Pretreatment to remove PM may be necessary for | Catalyst can be deactivated by certain catalyst poisons or other fouling contaminants such as silicone, sulfur, heavy hydrocarbons, and particulates. Operating temperatures between 600 800°F and not to exceed 1,250 °F. | N/A                                                                                                                                                                   |
|                                  |                                                    |                                   | dryers, preheaters, boilers,                                                                                | Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.                                                                            | Not included in RBLC for mini-mill<br>dryers, preheaters, boilers,<br>heaters, furnaces etc.                                                                              | Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.                                                                                                                             | dryers, preheaters, boilers, heaters,                                                                                                     | Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.                                                                                                                                     | Included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.                                                                                    |
| Step 2.                          | ELIMINATE<br>TECHNINCALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion         | Technically infeasible. Typically applied only to rich burn engine emissions.                               | Technically infeasible. Typically applied to power generation turbines.                                                                                           | Technically infeasible. Integrated only in gas turbine combustors.                                                                                                        |                                                                                                                                                                                                                    | oxidizers do not reduce emissions of CO from properly operated natural gas combustion units without the use of a catalyst.                | Technically infeasible. Catalytic oxidation would require a large amount of auxiliary fuel, creating additional combustion emissions, to raise the exhaust gas temperature to the operating temperature.                   | Technically feasible. Good Operating Practices including good combustion practices has been widely selected as BACT for CO control from natural gas combustion units. |
| Step 3.                          | RANK REMAINING<br>CONTROL<br>TECHNOLOGIES          | Overall<br>Control Efficiency     |                                                                                                             |                                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                                                                            | Base Case                                                                                                                                                             |
| Step 4.                          | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS      | Cost<br>Effectiveness<br>(\$/ton) |                                                                                                             |                                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                                                                            | Base Case                                                                                                                                                             |
| Step 5.  1 U.S. EPA, "Nitrogen O | Step 5. Select BACT                                |                                   |                                                                                                             |                                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                                                                            | Good Operating Practices                                                                                                                                              |

<sup>&</sup>lt;sup>1</sup> U.S. EPA, "Nitrogen Oxides (NO<sub>X</sub>), Why and How they are Controlled," EPA-456/F-99-006R.

<sup>&</sup>lt;sup>2</sup> U.S. EPA, "CAM Technical Guidance Document," Section B-16, January 2005.

<sup>&</sup>lt;sup>3</sup> California EPA, Air Resources Board, "Report to the Legislature: Gas-Fired Power Plant NOX Emission Controls and Related Environmental Impacts," http://www.arb.ca.go/research/apr/reports/12069.pdf

<sup>&</sup>lt;sup>4</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Thermal Incinerator)," EPA-452/F-03-020.

<sup>&</sup>lt;sup>5</sup>U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Incinerator - Recuperative Type)," EPA-452/F-03-020.

<sup>&</sup>lt;sup>6</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Regenerative Incinerator)," EPA-452/F-03-021.

<sup>&</sup>lt;sup>7</sup>U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Catalytic Incinerator)," EPA-452/F-03-018.

Table 23-10. NOx Top-Down BACT Analysis for Natural Gas Combustion Emission Sources

| Process            | Pollutant       |
|--------------------|-----------------|
| Combustion Units   |                 |
| (including Small   | NO <sub>v</sub> |
| Heaters and Dryers | NO <sub>X</sub> |
| <100 MMBtu/hr)     |                 |

|         |                                                    | Control<br>Technology                | Selective Catalytic Reduction (SCR) <sup>1</sup>                                                                                                                                                                                                                             | Selective Non-Catalytic<br>Reduction (SNCR) <sup>2</sup>                                                                                                                                                                                                                      | Non-Selective Catalytic<br>Reduction (NSCR) <sup>3,4</sup>                                                  | SCONOX Catalytic Absorption System <sup>5</sup>                                                                                                                                                                         | Xonon Cool Combustion <sup>5</sup>                                                                                                                               | Low-Nox Burners (LNBs) <sup>3</sup>                                                                                                                                                                                                                  | Oxy-Fuel Burners <sup>3</sup>                                                                                                         | Good Operating Practices                                                                                                   |
|---------|----------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES        | Control<br>Technology<br>Description | A nitrogen-nased reagent (e.g.,<br>ammonia, urea) is injected into<br>the exhaust stream downstream<br>of the combustion unit. The<br>reagent reacts selectively with                                                                                                        | A nitrogen based reagent (e.g., ammonia, urea) is injected into the exhaust stream and reacts selectively with $NO_X$ to produce molecular $N_2$ and water within the combustion unit.                                                                                        | Metallic catalysts convert NO <sub>x</sub> , CO, and hydrocarbons to water, nitrogen, and CO <sub>2</sub> . | Utilizes a single catalyst to remove NO <sub>X</sub> , CO, and VOC through oxidation.                                                                                                                                   | A catalyst integrated into gas turbine combustors limits the production of $NO_X$ through temperature control also resulting in reduced emissions of CO and VOC. | Low-NO <sub>x</sub> burners emplot multistaged combustion to inhibit the formation of NO <sub>x</sub> . Primary combustion occurs at lower temperatures under oxygendeficient conditions; secondary combustion occurs in the presence of excess air. | combustion using oxygen rather than air, which reduces nitrogen                                                                       | Operate and maintain the equipment in accordance with good air pollution control practices with good combustion practices. |
|         |                                                    | Other<br>Considerations              | Typical operating temperatures are between 480-800°F. Unreacted reagent (ammonia slip) may form ammonium sulfates that may plug or corrode downstream equipment.                                                                                                             | Typical operating temperatures are between 1,600-2,100°F. Unreacted reagent (ammonia slip) may form ammonium sulfates that may plug or corrode downstream equipment. The SNCR process produces N2O as a byproduct.                                                            |                                                                                                             | Typical operating temperatures are between 300-700°F. The SCONOX Catalyst is sensitvie to contamination by sulfur, so it must be used in conjunction with the SCOSOX catalyst, which favors sulfur compound absorption. | N/A                                                                                                                                                              | N/A                                                                                                                                                                                                                                                  | Oxy-fuel burners must be properly applied to prevent the formation of thermal NO <sub>X</sub> due to the elevated flame temperatures. | N/A                                                                                                                        |
|         |                                                    | RBLC<br>Database<br>Information      | Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.                                                                                                                                                                                       | Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.                                                                                                                                                                                        | Not included in RBLC for mini-<br>mill dryers, preheaters, boilers,<br>heaters, furnaces etc.               | Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.                                                                                                                                  | Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.                                                                           | Included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.                                                                                                                                                                   | Not included in RBLC for mini-mill<br>dryers, preheaters, boilers,<br>heaters, furnaces etc.                                          | Included in RBLC for mini-<br>mill dryers, preheaters,<br>boilers, heaters, furnaces<br>etc.                               |
| Step 2. | ELIMINATE<br>TECHNINCALLY<br>INFEASIBLE<br>OPTIONS | Feasibility                          | Technically infeasible. SCR would require a large amount of auxiliary fuel, creating additional combustion emissions, to raise the exhaust gas temperature to the operating temperature. These add-on controls are not appropriate for small combustion units ≤100 MMBtu/hr. | Technically infeasible. SNCR would require a large amount of auxiliary fuel, creating additional combustion emissions, to raise the exhaust gas temperature to the operating temperature. These add-on controls are not appropriate for small combustion units ≤100 MMBtu/hr. | combustion emissions, to raise the exhaust gas temperature to                                               | Technically infeasible. Typically applied to power generation turbines and has not been demonstrated in practice for small combustion units.                                                                            | Technically infeasible. Integrated only in gas turbine combustors.                                                                                               | Feasible                                                                                                                                                                                                                                             | Potentially Feasible                                                                                                                  | Feasible                                                                                                                   |
| Step 3. | RANK REMAINING<br>CONTROL<br>TECHNOLOGIES          | Overall<br>Control<br>Efficiency     |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                               |                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                  | Up to 80%                                                                                                                                                                                                                                            | 20%                                                                                                                                   | Base Case                                                                                                                  |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS      | Cost<br>Effectiveness<br>(\$/ton)    |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                               |                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                            |
| Step 5. | SELECT                                             | ВАСТ                                 |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                               |                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                  | Low-NO <sub>x</sub> Burners and Good<br>Operating Practices                                                                                                                                                                                          |                                                                                                                                       |                                                                                                                            |

<sup>&</sup>lt;sup>1</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Selective Catalytic Reduction (SCR))," EPA-452/F-03-032.
<sup>2</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Selective Non-Catalytic Reduction (SNCR))," EPA-452/F-03-031.

<sup>&</sup>lt;sup>3</sup> U.S. EPA, "Nitrogen Oxides (NOX), Why and How they are Controlled," EPA-456/F-99-006R.

<sup>&</sup>lt;sup>4</sup> U.S. EPA, "CAM Technical Guidance Document" Section B-16, January 2005

<sup>&</sup>lt;sup>5</sup> California EPA, Air Resources Board, "Report to the Legislature: Gas-Fired Power Plant NOX Emission Controls and Related Environmental Impacts," http://www.arb.ca.gov/reasearch/apr/reports/12069.pdf

Table 23-11. SO<sub>2</sub> Top-Down BACT Analysis for Natural Gas Combustion Emission Sources

| Process            | Pollutant       |
|--------------------|-----------------|
| Combustion Units   |                 |
| (including Small   | SO <sub>2</sub> |
| Heaters and Dryers | 302             |
| <100 MMBtu/hr)     |                 |

|         |                                                    | Control                              |                                                                                                                                                                                    | Packed-Bed/Packed-Tower                                                                                                                                                                                                                                                 | Spray-Chamber/Spray-                                                                                                                                                                                                                                                                                                                                                                  | Flue Gas Desulfurization <sup>4</sup>                                                                                                                                                                                                                                                                                                                          | Good Operating                                                                                                                                                   |
|---------|----------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                    | Technology                           | Tray-Tower Scrubber <sup>1</sup>                                                                                                                                                   | Wet Scrubber <sup>2</sup>                                                                                                                                                                                                                                               | Tower Wet Scrubber <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                | Practices                                                                                                                                                        |
| Step 1. | IDENTIFY AIR<br>POLLUTION<br>CONTROL               | Control<br>Technology<br>Description | between the flue gas and a sorbent slurry in a vertical column with transversely mounted perforated trays. Absorption of SO <sub>2</sub> is accomplished by countercurrent contact | Scrubbing liquid (e.g., NaOH) which is introduced above layers of variously shaped packing material, flows concurrently against the flue gas stream. The acid gases are absorbed into the scrubbing solution and react with alkaline compunds to produce neutral salts. | Spray-tower scrubbers introduce a reagent slurry as atomized droplets through an array of spray nozzles within the scrubbing chamber. The waste gas enters the bottom of the column and travles upward in a countercurrent flow. Absorption of SO <sub>2</sub> is accomplished by the contact between the gas and reagent slurry or powder, which results in the formation of neutral |                                                                                                                                                                                                                                                                                                                                                                | Operate and maintain the equipment in accordance with good air pollution control practices and with good combustion practices, including the use of natural gas. |
|         | TECHNOLOGIES                                       |                                      | scrubber is 40 to 100°F.<br>Waste slurry formed in the<br>bottom of the scrubber<br>requires disposal.                                                                             |                                                                                                                                                                                                                                                                         | The ideal temperature range for SO <sub>2</sub> removal in a wet gas scrubber is 40 to 100°F. Waste slurry formed in the bottom of the scrubber requires disposal.                                                                                                                                                                                                                    | The ideal temperature range for $SO_2$ removal in a wet gas scrubber is 40 to 1,380°F. Chlorine emissions can result in salt deposition on the absorber and downstream equipment. Wet systems may require flue gas reheating downstream of the absorber to prevent corrosive condensation. Dry systems may require cooling inlet streams to minimize deposits. | N/A                                                                                                                                                              |
|         | ELIMINATE<br>TECHNINCALLY<br>INFEASIBLE<br>OPTIONS | RBLC<br>Database<br>Information      | boilers, heaters, furnaces etc.                                                                                                                                                    | mill dryers, preheaters, boilers,<br>heaters, furnaces etc.                                                                                                                                                                                                             | Not included in RBLC for mini-<br>mill dryers, preheaters, boilers,<br>heaters, furnaces etc.                                                                                                                                                                                                                                                                                         | heaters, furnaces etc.                                                                                                                                                                                                                                                                                                                                         | mill dryers, preheaters,<br>boilers, heaters, furnaces<br>etc.                                                                                                   |
| Step 2. |                                                    | Feasibility<br>Discussion            | SO <sub>2</sub> concentrations of the<br>exhaust stream would make<br>the efficient operation of the<br>impingement-plate/tray-tower                                               | Technically infeasible. The low SO <sub>2</sub> concentrations of the exhaust stream would make the efficient operation of the packed-bed/packed-tower wet scrubber infeasible.                                                                                         | Technically infeasible. The low SO <sub>2</sub> concentrations of the exhaust stream would make the efficient operation of the spray-chamber/spray-tower wet scrubber infeasible.                                                                                                                                                                                                     | SO <sub>2</sub> concentrations of the exhaust<br>stream would make the efficient<br>operation of the flue gas                                                                                                                                                                                                                                                  | Feasible                                                                                                                                                         |

Table 23-11. SO<sub>2</sub> Top-Down BACT Analysis for Natural Gas Combustion Emission Sources

| Process            | Pollutant       |
|--------------------|-----------------|
| Combustion Units   |                 |
| (including Small   | SO <sub>2</sub> |
| Heaters and Dryers | 302             |
| <100 MMBtu/hr)     |                 |

|         |                                                        | Control<br>Technology             | Impingement-Plate/<br>Tray-Tower Scrubber <sup>1</sup> | Packed-Bed/Packed-Tower<br>Wet Scrubber <sup>2</sup> | Spray-Chamber/Spray-<br>Tower Wet Scrubber <sup>3</sup> | Flue Gas Desulfurization <sup>4</sup> | Good Operating<br>Practices |
|---------|--------------------------------------------------------|-----------------------------------|--------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|---------------------------------------|-----------------------------|
| Step 3. | RANK REMAINING CONTROL TECHNOLOGIES                    | Overall<br>Control<br>Efficiency  |                                                        |                                                      |                                                         |                                       | Base Case                   |
| Step 4. | EVALUATE AND<br>DOCUMENT<br>MOST EFFECTIVE<br>CONTROLS | Cost<br>Effectiveness<br>(\$/ton) |                                                        |                                                      |                                                         |                                       | N/A                         |
| Step 5. | Select BACT                                            |                                   |                                                        |                                                      |                                                         |                                       | Good Operating<br>Practices |

<sup>&</sup>lt;sup>1</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Impingement-Plate/Tray-Tower Scrubber)," EPA-452/F-03-012.

<sup>&</sup>lt;sup>2</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Packed-Bed/Packed-Tower Wet Scrubber)," EPA-452/F-03-015.

<sup>&</sup>lt;sup>3</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Spray-Chamber/Spray-Tower Wet Scrubber)," EPA-452/F-03-016.

<sup>&</sup>lt;sup>4</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Flue Gas Desulfurization)," EPA-452/F-03-034.

**Table 23-12. PM Top-Down BACT Analysis for Natural Gas Combustion Emission Sources** 

| Process            | Pollutant                                      |
|--------------------|------------------------------------------------|
| Combustion Units   |                                                |
| (including Small   | PM/PM <sub>10</sub> /PM <sub>2.5</sub>         |
| Heaters and Dryers | FIVI/ FIVI <sub>10</sub> / FIVI <sub>2.5</sub> |
| <100 MMBtu/hr)     |                                                |

|         |                                             | Control Technology                | Baghouse/Fabric Filter <sup>1</sup>                                                                                                                                                                                                                                                                                              | Electrostic Precipitator (ESP) <sup>2,3,4,5</sup>                                                                                                                                                                  | Incincerator <sup>6,7</sup>                                                                                                                                                                                                                 | Wet Scrubber <sup>8</sup>                                                                                                                                                                                                                                                                                                                                               | Cyclone <sup>9</sup>                                                                                                                                                                                                                     | Good Operating Practices                                                                    |
|---------|---------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES | Control Technology<br>Description | Process exhaust gas passes through a tightly woven or felted fabric arranged in sheets, cartridges, or bags that collect PM via sieving and other mechanisms. The dust cake that accumulates on the filters increases collection efficiency. Various cleaning techniques include pulse-jet, reverseair, and shaker technologies. | waste gas and induce an electrical charge in the entrained particles. The resulting electrical field forces the charged particles to the collector walls form which the material may be mechanically dislodged and | promote the thermal oxidation of partially combusted particulate hydrocarbons in exhaust stream. Recuperative incinerators utilize heat exchangers to recover heat from the outlet gas which is used to pre-heat the incoming waste stream. | A scrubbing liquid introduced into the gas stream captures and collects entrained particles. In the case of a venturi scrubber, the turbulent airflow atomizes the scrubbing liquid to increase droplet-particle interaction. The droplets containing particles are typically seperated from the exhaust gas in a downstream cyclonic seperator and/or mist eliminator. | Centrifugal forces drive particles in the gas stream toward the cyclone wall as waste gas flows through the conical unit. The captured particles are collected in a material hopper below the unit.                                      | Operate and maintain the equipment in accordance with good air pollution control practices. |
|         |                                             | Other<br>Considerations           | Fabric filters are susceptiple to corrosion and blinding by moisture. Appropriate fabrics must be selected for specific process conditions. Accumulations of dust may present fire or explosion hazards. Typical operating temperatures are up to 500°F.                                                                         | significantly with dust<br>resistivity. Air leakage and                                                                                                                                                            | Halogenated or sulfurous compounds may cause corrosion within the incinerator. Typical operating temperarures                                                                                                                               | Effluent stream requires wastewater treatment and solid was disposal. Sludge disposal may be costly. Wet scrubbers are particuarlt susceptible to corrosion. Typical operating temperatures between 40 - 750°F.                                                                                                                                                         | Cyclones typically exhibit lower efficiencies when collecting smaller particles. High-efficiency units may require substantial pressure drop. Unable to handle sticky and tacky materials. Typical operating temperatures Up to 1,000°F. | N/A                                                                                         |

**Table 23-12. PM Top-Down BACT Analysis for Natural Gas Combustion Emission Sources** 

| Process            | Pollutant                                      |
|--------------------|------------------------------------------------|
| Combustion Units   |                                                |
| (including Small   | PM/PM <sub>10</sub> /PM <sub>2 5</sub>         |
| Heaters and Dryers | FIVI/ FIVI <sub>10</sub> / FIVI <sub>2.5</sub> |
| <100 MMBtu/hr)     |                                                |

|         |                                                    | Control Technology                | Baghouse/Fabric Filter <sup>1</sup>                                                                                                                       | Electrostic Precipitator<br>(ESP) <sup>2,3,4,5</sup>                                                                                                                        | Incincerator <sup>6,7</sup>                                                                                                                                                                                                                              | Wet Scrubber <sup>8</sup>                                                              | Cyclone <sup>9</sup>                                                                                                                                     | Good Operating<br>Practices                                                       |
|---------|----------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|         |                                                    | RBLC<br>Database<br>Information   | Not Included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.                                                                    | Not Included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.                                                                                      | Not Included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.                                                                                                                                                                   | Not Included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc. | Not Included in RBLC for<br>mini-mill dryers, preheaters,<br>boilers, heaters, furnaces<br>etc.                                                          | Included in RBLC for minimill dryers, preheaters, boilers, heaters, furnaces etc. |
| Step 2. | ELIMINATE<br>TECHNINCALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion         | Technically infeasible. Baghouses have not been demonstrated in practice for control of PM emissions from small combustion units located at a steel mill. | Technically infeasible. Electrostatic precipitators have not been demonstrated in practice for control of PM emissions from small combustion units located at a steel mill. | Technically infeasible. An incinerator would create adverse environmental impacts by creating additional combustion emissions and has not been demonstrated in practice for control of PM emissions from small combustion units located at a steel mill. |                                                                                        | Technically infeasible. Cyclones have not been demonstrated in practice for control of PM emissions from small combustion units located at a steel mill. |                                                                                   |
| Step 3. | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES       | Overall<br>Control<br>Efficiency  |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                        |                                                                                                                                                          | Base Case                                                                         |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS      | Cost<br>Effectiveness<br>(\$/ton) |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                        |                                                                                                                                                          | N/A                                                                               |
| Step 5. |                                                    | ct BACT                           |                                                                                                                                                           | Chaot (Fabric Filtor Dulgo I                                                                                                                                                |                                                                                                                                                                                                                                                          |                                                                                        |                                                                                                                                                          | Good Operating<br>Practices                                                       |

<sup>&</sup>lt;sup>1</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-Jet Cleaned Type)," EPA-452/F-03-025.

<sup>&</sup>lt;sup>2</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Dry Electronic Precipitator (ESP)-Wire-Pipe Type)," EPA-452/F-03-027.

<sup>&</sup>lt;sup>3</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Dry Electronic Precipitator (ESP)-Wire-Plate Type)," EPA-452/F-03-028.

<sup>&</sup>lt;sup>4</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electronic Precipitator (ESP)-Wire-Pipe Type)," EPA-452/F-03-029.

<sup>&</sup>lt;sup>5</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Wet Electronic Precipitator (ESP)-Wire-Plate Type)," EPA-452/F-03-030.

<sup>&</sup>lt;sup>6</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Incinerator - Recuperative Type)," EPA-452/F-03-020.

<sup>&</sup>lt;sup>7</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Incinerator - Regemenative Type)," EPA-452/F-03-021.

<sup>&</sup>lt;sup>8</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Venuri Scrubber)," EPA-452/F-03-017.

<sup>&</sup>lt;sup>9</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Cyclone)," EPA-452/F-03-005.

Table 23-13. VOC Top-Down BACT Analysis for Natural Gas Combustion Emission Sources

| Process                                                                   | Pollutant |  |  |
|---------------------------------------------------------------------------|-----------|--|--|
| Combustion Units (including<br>Small Heaters and Dryers<br><100 MMBtu/hr) | VOC       |  |  |

|         |                                                    | Control<br>Technology                | Thermal Oxidation <sup>1,2,3</sup>                                                                                                                                                                                 | Catalytic Oxidation⁴                                                                                                                                                                                                            | Carbon/Zeolite Adsorption <sup>5</sup>                                                                                                            | Biofiltration <sup>6</sup>                                                                                                                                              | Condenser <sup>7</sup>                                                                                                                                                                                                                                                                                                                  | Good Operating Practices                                                                                                       |
|---------|----------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES        | Control<br>Technology<br>Description | Oxidizes combustible materials by raising the temperature of the material above the auto-ignition point in the presence of oxygen and maintaining the high temperature for sufficient time to complete combustion. | Similar to thermal incineration; waste stream is heated by a flame and then passes through a catalyst bed that increases the oxidation rate more quickly and at lower temperatures.                                             | Adsorption technology utilizes a porous solid to selectively collect VOC from the gas stream. Adsorption collects VOC but does not destroy it.    |                                                                                                                                                                         | 5 5                                                                                                                                                                                                                                                                                                                                     | Operate and maintain the equipment in accordance with good air pollution control practices and with good combustion practices. |
|         |                                                    | Other<br>Considerations              |                                                                                                                                                                                                                    | Catalyst can be deactivated by certain catalyst poisons or other fouling contaminants such as silicone, sulfur, heavy hydrocarbons, and particulates. Operating temperatures are between 600 - 800°F and not to exceed 1,250°F. | Excessive temperatures may cause desorption of the hydrocarbons or may melt the adsorbent. Adsorbed hydrocarbons may oxidize and cause bed fires. | the microorganisms. Biofiltration systems occupy a large equipment footprint. Large land requirement for traditional design. Operating temperatures between 60 - 105°F. | Energy required to drive the refrigeration system, typical condensers cannot reach temperatures below 100°F and thus removal rates are not possible unless VOC condenses at high temperature. Certain compounds may corrode the cooling coils and associated equipment. Particulate material may accumulate within the cooling chamber. | N/A                                                                                                                            |
|         | ELIMINATE<br>TECHNINCALLY<br>INFEASIBLE<br>OPTIONS | RBLC<br>Database<br>Information      | Not included in RBLC for mini-mill dryers, preheaters, boilers, heaters, furnaces etc.                                                                                                                             | Not included in RBLC for mini-mill<br>dryers, preheaters, boilers,<br>heaters, furnaces etc.                                                                                                                                    | Not included in RBLC for mini-mill<br>dryers, preheaters, boilers,<br>heaters, furnaces etc.                                                      | Not included in RBLC for minimill dryers, preheaters, boilers, heaters, furnaces etc.                                                                                   | Not included in RBLC for minimill dryers, preheaters, boilers, heaters, furnaces etc.                                                                                                                                                                                                                                                   |                                                                                                                                |
| Step 2. |                                                    | Feasibility<br>Discussion            | Technically infeasible. Thermal oxidation would require a large amount of auxiliary fuel, creating additional combustion emissions, to raise the exhaust gas temperature to the operating temperature.             | Technically infeasible. Catalytic oxidation would require a large amount of auxiliary fuel, creating additional combustion emissions, to raise the exhaust gas temperature to the operating temperature.                        | of solid waste disposal and the low                                                                                                               | amount of solid waste disposal<br>and the exhaust stream<br>temperature is above the                                                                                    | Technically infeasible. Condensers would create adverse environmental impacts by potentially increasing the amount of solid waste disposal and the low VOC concentrations of the exhaust stream would make efficient operation infeasible.                                                                                              | Feasible                                                                                                                       |
| Step 3. | RANK REMAINING<br>CONTROL<br>TECHNOLOGIES          | Overall<br>Control<br>Efficiency     |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         | Base Case                                                                                                                      |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS      | Cost<br>Effectiveness<br>(\$/ton)    |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                            |
| Step 5. | Select BAC                                         |                                      | hnology Fact Sheet (Themral Incinerato                                                                                                                                                                             |                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                         | Good Operating Practices                                                                                                       |

<sup>&</sup>lt;sup>1</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Themral Incinerator)," EPA-452/F-03-022.

<sup>&</sup>lt;sup>2</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Incinerator - Recuperative Type)," EPA-452/F-03-020.

<sup>&</sup>lt;sup>3</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Regenerative Incinerator)," EPA-452/F-03-021.

<sup>&</sup>lt;sup>4</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Catalytic Incinerator)," EPA-452/F-03-018.

<sup>&</sup>lt;sup>5</sup> U.S. EPA, "Choosing an Adsorption System for VOC: Carbon, Zeolite, or Polymers?" EPA-456/F-99-004

<sup>&</sup>lt;sup>6</sup> U.S. EPA, "Using Bioreactors to Control Air Pollution," EPA\_456/F-03-003

<sup>&</sup>lt;sup>7</sup> U.S. EPA, "Refrigerated Condensers for Control of Organic Air Emissions," EPA-456/F-01-004

Table 23-14. GHG Top-Down BACT Analysis for Natural Gas Combustion Emission Sources

| Process                                                                   | Pollutant    |
|---------------------------------------------------------------------------|--------------|
| Combustion Units (including<br>Small Heaters and Dryers<br><100 MMBtu/hr) | GHGs as CO₂e |

|         |                                               | Control                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                        |
|---------|-----------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                               | Technology                           | Carbon Capture and Sequestration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Good Operating Practices                                                                                                                                                                                                                                               |
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES   | Control<br>Technology<br>Description | Emerging carbon capture and sequestration (CCS) technologies generally consist of processes that separate $\mathrm{CO}_2$ from combustion process flue gas, compress, transport and then inject it into geologic formations such as oil and gas reservoirs, unmineable coal seams, and underground saline formations. Of the emerging $\mathrm{CO}_2$ capture technologies that have been identified, only amine absorption is currently commercially used for state-of the art $\mathrm{CO}_2$ separation processes. | Good Operating Practices for the emission sources from a steel mill routed to the Caster Vent includes good combustion practices and the use of natural gas in the Ladle/Tundish Preheaters and Dryers, and the use of all selected BACT technologies for the EAF/LMS. |
|         |                                               | Other<br>Considerations              | Amine absorption has been applied to processes in the petroleum refining and natural gas processing industries and for exhausts from gas-fired industrial boilers. Other potential absorption and membrane technologies are currently considered developmental.                                                                                                                                                                                                                                                       | N/A                                                                                                                                                                                                                                                                    |
|         | ELIMINATE                                     | RBLC<br>Database<br>Information      | Not included in RBLC for the control of GHG emissions from the emission sources associated with a steel mill routed to the Caster Vent.                                                                                                                                                                                                                                                                                                                                                                               | associated with a steel mill routed to the Caster Vent.                                                                                                                                                                                                                |
| Step 2. | TECHNICALLY<br>INFEASIBLE<br>OPTIONS          | Feasibility<br>Discussion            | This control technology has not been demonstrated in practice for control of GHG emissions from the emission sources located at a steel mill routed to the Caster Vent. As a result, Carbon Capture and Sequestration is not a feasible option for the control of GHG emissions.                                                                                                                                                                                                                                      | Technically feasible. Good Operating Practices have been demonstrated in practice for GHG control from the emission sources located at a steel mill routed to the Caster Vent.                                                                                         |
| Step 3. | RANK REMAINING<br>CONTROL<br>TECHNOLOGIES     | Overall<br>Control<br>Efficiency     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Base Case                                                                                                                                                                                                                                                              |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS | Cost<br>Effectiveness<br>(\$/ton)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Base Case                                                                                                                                                                                                                                                              |
| Step 5. | Step 5. SELECT BACT                           |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Good Operating Practices                                                                                                                                                                                                                                               |

## 23.6 Rolling Mill, Cooling Beds, & Spooler Vents

After continuous casting, the steel is conveyed through the rolling mill which is a series of rolling stands that reduce the cross-sectional area and form the final rolled steel shapes. A 0.225 MMBtu/hr propane/natural gasfired bit furnace (BF1) is used to heat sample bars to verify sizing prior to rolling and 20 0.4 MMBtu/hr rolling mill comfort heaters (RMAUXHT) are used in the rolling mill system. Particulate and VOC emissions generated by the rolling mill will be routed through the rolling mill vent (RMV1). The products that exit the rolling mill are sent to the cooling beds where they will either receive a water quench or be allowed to cool in ambient air. Particulate and VOC emissions generated at the cooling beds will be routed through the cooling mill vent (CBV1). Steel that is not cast into straight products at the rolling mill is routed to the spooler to be spun into circular spools. Particulate and VOC emissions generated at the spooler will be routed through the spooler vent (SPV1). Table 23-15 provides a summary of the selected BACT controls and emission limits for pollutants emitted by the rolling mill, cooling beds and spooler vents, and Table 23-16 and Table 23-17 contain the top-down BACT analyses for emissions shown in Table 23-15.

Table 23-15. Summary of Selected BACT for Rolling Mill, Cooling Beds, & Spooler Vents

| Pollutant                              | Selected BACT Control    | Selected BACT Limit (lb/hr)                                                                                                                                                                                                   |
|----------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PM/PM <sub>2.5</sub> /PM <sub>10</sub> | Good Process Operation   | 0.01 per source (PM Filterable, excluding Bit Furnace) 0.01 per source (PM <sub>10</sub> Filterable + Condensable, excluding Bit Furnace) 0.01 per source (PM <sub>2.5</sub> Filterable + Condensable, excluding Bit Furnace) |
| VOC                                    | Good Operating Practices | 0.01 per source (excluding Bit Furnace)                                                                                                                                                                                       |

Table 23-16. PM Top-Down BACT Analysis for Rolling Mill, Cooling Beds, & Spooler Vent

| Process  | Pollutant                              |
|----------|----------------------------------------|
| Rolling  |                                        |
| Mill &   |                                        |
| Cooling  | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |
| Beds &   |                                        |
| Connolor |                                        |

|         | Step                                              | Control<br>Technology                | Electrostatic Precipitator (ESP) <sup>1,2</sup>                                                                                                                                                                                                                                                                                                                                  | Inertial Collection Systems<br>(Cyclones) <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wet Scrubber <sup>4</sup>                                                                                                                                                                                                                                                                         | Incinerators <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                          | Baghouse/Fabric Filter <sup>6</sup>                                                                                                                                                                                               | Good Process Operation                                                                            |
|---------|---------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|         |                                                   | Control<br>Technology<br>Description | An ESP uses electrical forces to move particles entrained within a exhaust stream onto a collection surfaces (i.e., an electrode). A wet ESP can be used in this application to reduce condensable and filterable particulate matter (PM) emissions formed due to SO <sub>2</sub> ; a dry ESP would reduce filterable particulate matter only. ESPs have been used on solid fuel | Consists of one or more conically shaped vessels in which the exhaust gas stream follows a circular motion prior to the outlet. PM enters the cyclone suspended in the gas stream, which is forced into a vortex by the shape of the cyclone. The inertia of the PM resists the directional change of the gas, resulting in an outward movement under the influence of centrifugal forces until they strike the cyclone wall. The PM is caught in a thin laminar layer of air next to the cyclone wall and is carried downward by gravity to the collection hopper. | Wet Scrubbers remove<br>particulates through the<br>impact of particles with<br>water droplets. Wet<br>Scrubbers can have high<br>removal efficiency for<br>streams with a steady state<br>exhaust. The scrubber<br>operates with a high<br>pressure drop to maintain<br>high removal efficiency. | Thermal Incinerators are also referred to as direct flame incinerators, thermal flame incinerators, thermal oxidizers, or afterburners. They are primary used for volatile organic compounds (VOC) but some particulate matter commonly described as soot will be destroyed to various degrees. Soot are particles formed from the incomplete combustion of hydrocarbons, coke, or carbon residue. |                                                                                                                                                                                                                                   | Operate and maintain the equipment in accordance with good air pollution control practices.       |
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES       | Other<br>Considerations              | The dislodged PM is<br>collected in hoppers. In<br>wet ESP, the collected<br>particles are washed off of<br>the collection plates by a                                                                                                                                                                                                                                           | In some cases, thermal insulation is used to reduce heat loss and cold air from entering the system. Cold air can cause gas quenching and condensation which leads to corrosion, dust buildup, and plugging of the hopper or dust removal system.  Inertial collection systems have been operated with inlet gas temperatures as high as 1000°F.                                                                                                                                                                                                                    | Wet scrubbing uses a<br>significant amount of water<br>and produces a wastewater<br>stream that must be<br>properly disposed.                                                                                                                                                                     | Depending on the chemical composition of the particulate, the control efficiency for an incinerator can vary from to 99% for particulate matter 10 microns or less aerodynamic diameter (PM <sub>10</sub> ). This control technology has been demonstrated in the petroleum and coal, chemical products, primary metal, electronics, electric and gas, food, mining, and lumber industries.        | Fabric filters are<br>susceptible to corrosion<br>and bilinding by moisture.<br>Appropriate fabrics must<br>be selected for specific<br>process conditions.<br>Accumulations of dust may<br>present fire or explosion<br>hazards. | No other considerations                                                                           |
|         |                                                   | RBLC<br>Database<br>Information      | Not included in RBLC for<br>the control of particulate<br>emissions from Rolling<br>Mills.                                                                                                                                                                                                                                                                                       | Not included in RBLC for the control of particulate emissions from Rolling Mills.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Not included in RBLC for<br>the control of particulate<br>emissions from Rolling<br>Mills.                                                                                                                                                                                                        | Not included in RBLC for<br>the control of particulate<br>emissions from Rolling<br>Mills.                                                                                                                                                                                                                                                                                                         | Not included in RBLC for<br>the control of particulate<br>emissions from Rolling<br>Mills.                                                                                                                                        | Included in the RBLC as a common form of control for<br>particulate emissions from Rolling Mills. |
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion            | to generate the high                                                                                                                                                                                                                                                                                                                                                             | This control technology has not been demonstrated in practice for control of PM emissions from Rolling Mills. As a result, a cyclone is considered infeasible for the control of PM emissions from Rolling Mills.                                                                                                                                                                                                                                                                                                                                                   | create adverse energy<br>impacts (due to the<br>increase in pressure drop<br>across the system).  This control technology has                                                                                                                                                                     | The Incinerator would create adverse environmental impacts (by creating additional combustion emissions).  This control technology has not been demonstrated in practice for control of PM emissions from Rolling Mills. As a result, an Incinerator is considered infeasible for the control of PM emissions from Rolling Mills.                                                                  | This control technology has not been demonstrated in practice for control PM emissions from Rolling Mills. As a result, a Baghouse/Fabric Filter is considered infeasible for the control of PM emissions from Rolling Mills.     | Technically feasible. Good Process Operation is widely demonstrated in practice.                  |

Table 23-16. PM Top-Down BACT Analysis for Rolling Mill, Cooling Beds, & Spooler Vent

| Process | Pollutant                              |  |  |  |  |
|---------|----------------------------------------|--|--|--|--|
| Rolling |                                        |  |  |  |  |
| Mill &  |                                        |  |  |  |  |
| Cooling | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |  |  |  |  |
| Beds &  |                                        |  |  |  |  |
| Cocolor |                                        |  |  |  |  |

|                                                                                                                  | Step                                                                                                                         | Control<br>Technology                                                                                            | Electrostatic<br>Precipitator (ESP) <sup>1,2</sup>                                                                                                               | Inertial Collection Systems (Cyclones) <sup>3</sup>                                                                                                                                                                                                                                   | Wet Scrubber <sup>4</sup>                                                    | Incinerators <sup>5</sup> | Baghouse/Fabric Filter <sup>6</sup> | Good Proc                | ess Operation                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------|-------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 3.                                                                                                          | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES                                                                                 | Overall<br>Control<br>Efficiency                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                              |                           |                                     | Bas                      | se Case                                                                                                                                                                                                                                                                                                         |
| Step 4.                                                                                                          | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS                                                                                | Cost<br>Effectiveness<br>(\$/ton)                                                                                |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                              |                           |                                     | Bas                      | se Case                                                                                                                                                                                                                                                                                                         |
|                                                                                                                  |                                                                                                                              |                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                              |                           |                                     | Facility                 | Emission Limit (lb/hr)                                                                                                                                                                                                                                                                                          |
|                                                                                                                  |                                                                                                                              |                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                              |                           |                                     | Compara                  | ble Facilities                                                                                                                                                                                                                                                                                                  |
|                                                                                                                  |                                                                                                                              |                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                              |                           |                                     | Nucor Steel Kankakee, IL | 0.027 lb/hr (PM filterable)<br>0.027 lb/hr (PM <sub>10</sub> filterable +<br>condensable)<br>0.01 lb/hr (PM <sub>2.5</sub> filterable +<br>condensable)                                                                                                                                                         |
| Step 5.                                                                                                          | SELECT BACT                                                                                                                  |                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                              |                           |                                     | Proposed BACT:           | 0.01 Ib/hr per source (PM<br>filterable, excluding Bit<br>Furnace)<br>0.01 Ib/hr per source<br>(PM <sub>10</sub> filterable +<br>condensable, excluding<br>Bit Furnace)<br>0.01 Ib/hr per source<br>(PM <sub>25</sub> filterable +<br>condensable, excluding<br>Bit Furnace)<br>using Good Process<br>Operation |
| <sup>2</sup> U.S. EPA, Of<br><sup>3</sup> U.S. EPA, Of<br><sup>4</sup> U.S. EPA, Of<br><sup>5</sup> U.S. EPA, Of | fice of Air Quality Planning<br>fice of Air Quality Planning<br>fice of Air Quality Planning<br>fice of Air Quality Planning | and Standards, "Air Polls<br>and Standards, "Air Polls<br>and Standards, "Air Polls<br>and Standards, "Air Polls | ution Control Technology Fact Sheet (<br>ution Control Technology Fact Sheet (<br>ution Control Technology Fact Sheet (<br>ution Control Technology Fact Sheet ( | Wet Electrostatic Precipitator (ESP) - Wire P<br>Wet Electrostatic Precipitator (ESP) - Wire P<br>Momentum Separators)," EPA-452/F-03-008<br>Flue Gas Desulfurization (FGD) - Wet, Spray<br>Thermal Incinerator)," EPA-452/F-03-022.<br>Fabric Filter - Pulse-Jet Cleaned Type)," EPA | Plate Type)," EPA-452/F-03-030.<br>3<br>y Dry, and Dry Scrubbers)," EPA-452/ | F-03-034.                 |                                     |                          |                                                                                                                                                                                                                                                                                                                 |

Table 23-17. VOC Top-Down BACT Analysis for Rolling Mill, Cooling Beds, & Spooler Vent

| Process        | Pollutant |
|----------------|-----------|
| Rolling Mill & |           |
| Cooling Beds & | VOC       |
| Spooler        |           |

|         |                                                   | Control<br>Technology                | Thermal Oxidation <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Catalytic Oxidation <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Carbon Adsorption <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Biofiltration <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Condenser <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Good Operating Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|---------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES       | Control<br>Technology<br>Description | Utilizes an open flame or combustion within an enclosed chamber to oxidize pollutants. Thermal Oxidation has been a proven technology in controlling Volatile Organic Compounds (VOC) emissions from processes with high VOC usage (i.e., painting, polymer manufacturing, cleaning, etc.) but not the emission sources from a steel mill routed to the Caster Vent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Catalytic oxidation allows oxidation to take place at a faster rate and at a lower temperature than is possible with thermal oxidation. VOC emissions can be controlled via catalytic oxidation. The oxidation is facilitated by the presence of the catalyst and carried out by the same basic chemical reaction as thermal oxidation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carbon Adsorption utilizes a highly porous solid with a large surface area to selectively adsorb VOC. Adsorption collects VOC on the surface are to selectively adsorb vOC. Adsorption collects VOC on the surface of the porous solid instead of destroying the compound through a chemical reaction. The most common porous solid used in activated carbon which is a relatively low cost adsorbent. The adsorption capacity is affected by factors such as organic compound concentration in exhaust, temperature, and humidity. | Biofiltration utilizes a bed of microorganisms to decompose biodegradable organic compounds. This technology has been successfully applied in full-scale applications to control VOC from a range of industrial and public-sector sources. Biofiltration also requires large land areas to house the microorganisms. The land required is proportional to the amount of exhaust gas that needs to be treated. Particulate matter in the exhaust stream can clog the biofilter.                        | Condensers convert gas or vapors into liquids through condensation. This allows VOC within a exhaust stream to be recovered before the stream is exhausted to the atmosphere. Condensers typically use water or air to cool and condense the vapor stream. Condensers are designed for a specified throughput of fluid and cannot deviate sustainably from its designed capacity.                                                                                                                   | Good Operating Practices for the emission sources from a steel mill routed to the Caster Vent includes good combustion practices and the use of natural gas in the auxiliary heaters. Operation of the auxiliary heaters at the appropriate oxygen range and temperature promotes complete combustion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                   | Other<br>Considerations              | no longer feasible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Several noble metal-enriched catalysts at high temperatures promote this reaction. Prior to entering the catalyst bed where the oxidation reaction occurs, the temperature of the exhaust gas must be between 400 °F to 800 °F. Below this temperature range, the reaction rate drops sharply and effective oxidation of VOC is no longer feasible. Above this temperature, conventional oxidation catalysts break down and are unable to perform their desired functions.                                                                                                                                                                                                                                                                                                                                                                 | Carbon adsorption streams are designed for specific inlet concentrations of VOC. For example, if a carbon adsorption system was designed for streams with greater than 1,000 parts per million (PPM) of VOC it may not operate effectively below this concentration. The ideal temperature range for physical adsorption is 130 °F. Above this temperature the adsorption capacity of the adsorbent decreases. Particulates in the exhaust stream can clog the porous material decreasing the lifespan of the process.              | The optimum temperature range of biofiltration is approximately 100 °F in order to keep a viable population of microorganisms. Biofilters are also limited to organic compound concentrations of approximately 1,000 ppm or less. Biofilters are best suited to steady-state processes that do not have significant outages; the microorganisms tend to die off during extended process downtimes that tend to result in changes to the temperature, humidity, or nutrient levels in their habitat.   | A typical condenser cannot reach temperatures below 100 °F and as a result high VOC removal rates are not possible unless the VOC condenses at high temperatures. Particulates in the exhaust stream can cause fouling leading to excessive maintenance and decreased efficiency. Additionally, low VOC concentrations in the exhaust streams cause the partial pressures of the VOC to be to low for condensation to occur resulting in a low removal rate.                                        | None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                                                   | RBLC<br>Database<br>Information      | Not included in RBLC for the control of VOC from the<br>emission sources associated with a steel rolling mill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Not included in RBLC for the control of VOC from the<br>emission sources associated with a steel rolling mill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not included in RBLC for the<br>control of VOC from the emission<br>sources associated with a steel<br>rolling mill                                                                                                                                                                                                                                                                                                                                                                                                                 | Not included in RBLC for the control of VOC from the emission sources associated with a steel rolling mill                                                                                                                                                                                                                                                                                                                                                                                            | Not included in RBLC for the<br>control of VOC from the emission<br>sources associated with a steel<br>rolling mill                                                                                                                                                                                                                                                                                                                                                                                 | Included in the RBLC database as a form of control for VOC from the emission sources associated with a steel rolling mill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion            | Thermal Oxidization of emissions for VOC destruction would require raising the exhaust gas temperature to at least a temperature of 1,100 °F. Below this temperature the reaction rate drops significantly and the oxidation of VOC is no longer feasible.  Since the exhaust temperature of the rolling mill is below the typical operating range of thermal oxidizers, large amounts of auxiliary fuel would be required to heat the stream to the required temperature for thermal oxidation. This will create additional combustion emissions. The high temperatures involved in thermal oxidation will also result in additional NO <sub>X</sub> emissions.  This control technology has not been demonstrated in practice for control of VOC emissions from the emission sources located at a steel rolling mill, thermal oxidation of VOC emissions is considered infeasible for the control of VOC emissions from the emission sources from the rolling mill. | Catalytic oxidization of emissions for VOC destruction would require raising the exhaust gas temperature to at least a temperature of 400 °F. Below this temperature the reaction rate drops significantly and the oxidation of VOC is no longer feasible.  Since the exhaust temperature of the rolling mill is below the typical operating range of catalytic oxidizers, additional auxiliary fuel would be required to heat the stream to the required temperature for catalytic oxidation. This will create additional combustion emissions.  This control technology has not been demonstrated in practice for control of VOC emissions from the emission sources located at a steel rolling mill. As a result, catalytic oxidation of VOC emissions is considered infeasible for the control of VOC emissions from the rolling mill. | by potentially increasing the amount of solid waste disposal. The low VOC concentrations of the exhaust stream would make efficient operation of Carbon Adsorption infeasible.  This control technology has not been demonstrated in practice for                                                                                                                                                                                                                                                                                   | Biofiltration would create adverse environmental impacts by potentially increasing the amount of solid waste disposal. The low VOC concentrations of the exhaust stream would make efficient operation of Biofiltration infeasible. This control technology has not been demonstrated in practice for control of VOC emissions from the emission sources located at a steel colling mill. As a result, Biofiltration is considered infeasible for the control of VOC emissions from the rolling mill. | A Condenser would create adverse environmental impacts (by potentially increasing the amount of liquid waste disposal). The low VOC concentrations of the exhaust stream would make efficient operation of a Condenser infeasible.  This control technology has not been demonstrated in practice for control of VOC emissions from the emission sources located at a steel rolling mill. As a result, a Condenser is considered infeasible for the control of VOC emissions from the rolling mill. | Technically feasible. Good combustion practices and the use of pipeline dependent process and the second process and process a |

Table 23-17. VOC Top-Down BACT Analysis for Rolling Mill, Cooling Beds, & Spooler Vent

| Process        | Pollutant |
|----------------|-----------|
| Rolling Mill & |           |
| Cooling Beds & | VOC       |
| Spooler        |           |

| Step 3. | RANK REMAINING CONTROL TECHNOLOGIES  RANK Overa Control Efficien | ıl İ |  |  | Base Case                                                                          |
|---------|------------------------------------------------------------------|------|--|--|------------------------------------------------------------------------------------|
| Step 4. | EVALUATE AND DOCUMENT Cost MOST Effective EFFECTIVE (\$/ton      | ness |  |  | Base Case                                                                          |
| Step 5. | SELECT BACT <sup>6</sup>                                         |      |  |  | 0.01 lb/hr per source (excluding Bit<br>Furnace) using Good Operating<br>Practices |

<sup>\*</sup>U.S. EPA. Office of Air Quality Planning and Standards. "Air Pollution Control Technoloay Fact Sheet (Recenerative Incinerator)." EPA-452/F-03-021. U.S. EPA. Office of Air Quality Planning and Standards. "Draft CAM Technical Guidance Document - Thermal Oxidizers". dated April 2002
\*\*U.S. EPA, are Coronnics Group, "Carbon Associates," dated Oxide 2015, "dated Oxide 2015," EPA-452/F-03-018
\*\*U.S. EPA, Are Coronnics Group, "Carbon Associates," dated Oxide 2015," dated Oxide 2015," dated Oxide 2015," dated Oxide 2015," and EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Using Biorectors to Control Air Pollution" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Refrigerated Condenses" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Refrigerated Condenses" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Refrigerated Condenses" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Refrigerated Condenses" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Refrigerated Condenses" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Refrigerated Condenses" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Refrigerated Condenses" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Refrigerated Condenses" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Refrigerated Condenses" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Refrigerated Condenses" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Refrigerated Condenses" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Refrigerated Condenses" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standards, "Refrigerated Condenses" EPA-456/R-03-003.
\*\*U.S. EPA, Coffice of Air Quality Planning and Standar

### 23.7 Storage Silos

Emission Units included under Storage Silos are listed below:

- Two Fluxing Agent Storage Silos (FLXSLO1)
- Fluxing Agent Transfer Hopper at Silo Loadout (FLXHOPPER)
- One Carbon Storage Silo (CARBSLO1)
- Carbon Unloading Hopper (CARBHOPPER)
- One EAF Baghouse Dust Silo (DUSTSLO1)

The materials stored in these silos will be used in the steelmaking process or collected from the meltshop baghouse. When the material is loaded into the silo, fine particles in the displaced air will be forced out of the silo contributing to PM<sub>2.5</sub>, PM<sub>10</sub>, and PM emissions. The particulate emissions generated by material loading of the silos will be routed through bin vents. Table 23-18 below contains the selected BACT controls and emission limits for PM emissions emitted by storage silos and Table 23-19 provides the top-down BACT analysis for PM emissions.

**Table 23-18. Summary of Selected BACT for Storage Silos** 

| Pollutant                              | Selected BACT Control | Selected BACT Limit           |
|----------------------------------------|-----------------------|-------------------------------|
| PM/PM <sub>2.5</sub> /PM <sub>10</sub> | Bin Vent              | 0.005 gr/dscf (PM Filterable) |

Table 23-19. PM Top-Down BACT Analysis for Storage Silos

| Process | Pollutant                                    |  |
|---------|----------------------------------------------|--|
| Storage | PM/PM <sub>10</sub> /PM <sub>2 5</sub>       |  |
| Silos   | PIVI/PIVI <sub>10</sub> /PIVI <sub>2.5</sub> |  |

|         | Step                                              | Control                              | Electrostatic                                                                                                                                                                                                                                                                                             | Inertial Collection Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wet Scrubber <sup>4</sup>                                                                                                                                                                                                                                           | Bin Vent/Fabric Filter <sup>5</sup>                                                                                                                          |
|---------|---------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ston 1  | IDENTIFY AIR                                      | Control<br>Technology<br>Description | Precipitator (ESP) <sup>1,2</sup> An ESP uses electrical forces to move particles entrained within a exhaust stream onto a collection surfaces (i.e., an electrode). ESPs have been used on solid fuel combustion devices and in non-ferrous metal processing facilities.                                 | (Cyclones) <sup>3</sup> Consists of one or more conically shaped vessels in which the exhaust gas stream follows a circular motion prior to the outlet. PM enters the cyclone suspended in the gas stream, which is forced into a vortex by the shape of the cyclone. The inertia of the PM resists the directional change of the gas, resulting in an outward movement under the influence of centrifugal forces until they strike the cyclone wall. The PM is caught in a thin laminar layer of air next to the cyclone wall and is carried downward by gravity to the collection hopper. | Wet Scrubbers remove particulates through the impact of particles with water droplets. Wet Scrubbers can have high removal efficiency for streams with a steady state exhaust. The scrubber operates with a high pressure drop to maintain high removal efficiency. | When material is loaded into a silo the displaced air is emitted to the atmosphere. The air can contain fine dust particles that contribute to PM emissions. |
| Step 1. | POLLUTION<br>CONTROL<br>TECHNOLOGIES              | Other<br>Considerations              | Rappers or other mechanical mechanisms are used periodically to impart a vibration or shock to dislodge the deposited PM on dry ESP electrodes. The dislodged PM is collected in hoppers. In wet ESP, the collected particles are washed off of the collection plates by a small flow of trickling water. | In some cases, thermal insulation is used to reduce heat loss and cold air from entering the system. Cold air can cause gas quenching and condensation which leads to corrosion, dust buildup, and plugging of the hopper or dust removal system.                                                                                                                                                                                                                                                                                                                                           | Wet scrubbing uses a significant amount of water and produces a wastewater stream that must be properly disposed.                                                                                                                                                   | Bin Vent dust collectors are specifically designed to capture PM emissions from the top of a storage silo for loading and unloading operations.              |
|         |                                                   | RBLC<br>Database<br>Information      | Not included in RBLC for<br>the control of particulate<br>emissions from Storage<br>Silos.                                                                                                                                                                                                                | Not included in RBLC for the control of particulate emissions from Storage Silos.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     | Bin Vents/Fabric Filters are included in the RBLC as a common form of control for particulate emissions from Storage Silos.                                  |
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion            | employs a bin vent for control of PM, PM <sub>10</sub> and PM <sub>2.5</sub> emissions. Additional particulate removal is not practical.  This control technology has not been used in                                                                                                                    | The proposed control train employs a Bin Vent for control of PM, $PM_{10}$ and $PM_{2.5}$ emissions. Additional particulate removal is not practical.  This control technology has not been used in practice for control of PM emissions from the Storage Silos. As a result, a Cyclone is considered infeasible for the control of PM emissions from the Storage Silos.                                                                                                                                                                                                                    | for control of PM, PM <sub>10</sub> and PM <sub>2.5</sub> emissions. Additional particulate removal is not practical. This control technology has not been used in practice for control of PM emissions from the                                                    | Technically feasible. The proposed control train employs a Bin Vent and Bin Vents are widely demonstrated in practice.                                       |

#### Table 23-19. PM Top-Down BACT Analysis for Storage Silos

| Process | Pollutant                                    |  |
|---------|----------------------------------------------|--|
| Storage | PM/PM <sub>10</sub> /PM <sub>2.5</sub>       |  |
| Silos   | FI'I/FI'I <sub>10</sub> /PI'I <sub>2.5</sub> |  |

|         | Step                                          | Control<br>Technology             | Electrostatic Precipitator (ESP) <sup>1,2</sup> | Inertial Collection Systems (Cyclones) <sup>3</sup> | Wet Scrubber <sup>4</sup> | Bin Vent/Fa           | bric Filter <sup>5</sup>                                            |
|---------|-----------------------------------------------|-----------------------------------|-------------------------------------------------|-----------------------------------------------------|---------------------------|-----------------------|---------------------------------------------------------------------|
| Step 3. | RANK REMAINING CONTROL TECHNOLOGIES           | Overall<br>Control<br>Efficiency  |                                                 |                                                     |                           | Base                  | Case                                                                |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS | Cost<br>Effectiveness<br>(\$/ton) |                                                 |                                                     |                           | Base ·                | Case                                                                |
|         |                                               |                                   |                                                 |                                                     |                           | Facility              | PM Emission Limit<br>(gr/dscf)                                      |
|         |                                               |                                   |                                                 |                                                     |                           | Comparable            | Facilities 6,7                                                      |
|         |                                               |                                   |                                                 |                                                     |                           | Gerdau Ameristeel, NC | -                                                                   |
|         |                                               |                                   |                                                 |                                                     |                           | CMC Mesa, AZ          | -                                                                   |
| a       |                                               |                                   |                                                 |                                                     |                           | Nucor Frostproof, FL  | 0.005                                                               |
| Step 5. | SELECT                                        | BACI                              |                                                 |                                                     |                           | CMC Durant, OK        | 0.01                                                                |
|         |                                               |                                   |                                                 |                                                     |                           | Nucor Sedalia, MO     | 0.01                                                                |
|         |                                               |                                   |                                                 |                                                     |                           | Nucor Brandenburg, KY | 0.001                                                               |
|         |                                               |                                   |                                                 |                                                     |                           | Proposed BACT:        | 0.005 gr/dscf for<br>filterable PM<br>produced using a<br>Bin Vent. |

<sup>1</sup> U.S. EPA. Office of Air Quality Planning and Standards. "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (ESP) - Wire Pipe Type)." EPA-452/F-03-029.

2 U.S. EPA. Office of Air Quality Planning and Standards. "Air Pollution Control Technology Fact Sheet (Wet Electrostatic Precipitator (ESP) - Wire Plate Type)." EPA-452/F-03-030.

3 U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Momentum Separators)," EPA-452/F-03-030.

3 U.S. EPA, Office of Air Quality Planning and Standards. "Air Pollution Control Technology Fact Sheet (Mee Gas Desulfurization (FGD) - Wet. Spray Drv. and Drv Scrubbers)." EPA-452/F-03-034.

5 U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-Jet Cleaned Type)," EPA-452/F-03-025.

6 A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B.

<sup>&</sup>lt;sup>7</sup> Only the Gerdau Ameristeel, CMC Mesa, Nucor Frostproof, Nucor Sedalia, and CMC Oklahoma facilities utilize similar technologies for the EAF/LMS (i.e., ECS Process and Micro Mill). The proposed 0.005 gr/dscf from the Nucor Frostproof facility is more conservative than the 0.01 gr/dscf emission limit from the CMC Durant and Nucor Sedalia facilities. The Nucor Brandenburg facility has not yet demonstrated compliance with the emission limit for PM and as a result it is not feasible as a BACT limit.

## 23.8 Storage Piles & Material Transfer

Emission Units included under Storage Piles and Material Transfer are listed below:

- Five Scrap Storage Piles (EAF1P)
- One Alloy Aggregate Storage Pile (AAP1)
- One Slag Storage Pile (SP1)
- Piles associated with the Slag Processing Plant (SPP1), which consist of seven smaller piles:
  - SPP A-Scrap Pile;
  - SPP B-Scrap Pile;
  - SPP C-Scrap Pile;
  - SPP No. 1 Products Pile;
  - SPP No. 2 Products Pile;
  - o SPP No. 3 Products Pile; and
  - o SPP Overs Pile.
- One Residual Scrap Storage Pile (RSP1)
- One Mill Scale Pile (MSP1)
- Various material transfer points (DPEAF1, DPSLC1, DPF1, DPAA1, DPRW1, DPS1, DPRS1, and DPMS1)

The material transfer points include both indoor and outdoor transfer where materials are moved from equipment to equipment by being dropped. Particulate matter emissions will be generated due to wind erosion at the piles or wind activity around the material transfer points. Table 23-20 contains the selected BACT controls and emission limits for pollutants emitted by storage piles and material transfers and Table 23-21 provides the top-down BACT analysis for PM emissions.

**Table 23-20. Summary of Selected BACT for Storage Piles** 

| Pollutant                              | Selected BACT Control                                                                                                   | Selected BACT Limit |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------|
| PM/PM <sub>2.5</sub> /PM <sub>10</sub> | Work Practices (Enclosures,<br>Wetting/Watering as needed <sup>1, 2</sup> ,<br>Minimizing Drop Heights for Drop Points) | -                   |

Note that moisture should not be introduced to the scrap being processed at the proposed Project due to safety considerations. Specifically wet scrap will cause violent explosions in the EAF when electricity from the melting electrodes is introduced, as documented by many catastrophic explosion event logs, videos, etc.

<sup>&</sup>lt;sup>2</sup> CMC proposes to apply wetting/watering, as needed, pursuant to other environmental conditions. For example, no wetting/watering will be applied during rain event, when there is sufficient moisture on the piles following a rain/snow event, etc.

Table 23-21. Top-Down BACT Analysis for Storage Piles & Material Transfers - PM/PM<sub>10</sub>/PM<sub>2.5</sub>

| Process   | Pollutant                              |
|-----------|----------------------------------------|
| Storage   |                                        |
| Piles &   | DM/DM /DM                              |
| Material  | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |
| Transfers |                                        |

|         | Step                                        | Control<br>Technology                | Enclosures                                                                                                                                                                                                                                                                                                                  | Wetting/Watering                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|---------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                             | Control<br>Technology<br>Description | Enclosure or covering of inactive piles can be utilized to minimize wind erosion and therefore reduce emissions. Partial enclosures include wind fences or barriers that reduce windblown dust from storage piles or large exposed areas. The wind fence or barrier creates an area of reduced wind velocity and emissions. | As a supplement to natural precipitation, when needed, wetting/watering - the spraying storage piles with water or chemical agents such as surfactants - can be used to reduce wind erosion emissions. Water sprays are known to have a more temporary effect on total emissions while chemical agents offer a more extensive wetting and therefore more effect control of emissions.                                              |
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES | Other<br>Considerations              | No other considerations.                                                                                                                                                                                                                                                                                                    | Wetting/watering should not be applied to the EAF Feedstock, Alloy Aggregate or Residual Scrap storage piles, as these storage piles include feed material for the EAF and water will violently react with molten steel in the EAF.  Additionally, wetting/watering should not be used on storage piles where it may result in unacceptable solidification of slag or other materials discharged from high-temperature operations. |
|         | ELIMINATE                                   | RBLC<br>Database<br>Information      | Included in RBLC. Enclosures such as wind breaks are used as a form of control for particulate emissions from storage piles.                                                                                                                                                                                                | Included in RBLC. Water sprays are included in the RBLC as a common form of control for particulate emissions from storage piles.                                                                                                                                                                                                                                                                                                  |
| Step 2. | TECHNICALLY INFEASIBLE                      |                                      | Technically feasible. Enclosures can be used, as practicable, to reduce winderosion PM emissions.                                                                                                                                                                                                                           | Wetting/watering is feasible as a supplement to natural precipitation for controlling wind erosion PM emissions except where it would create safety hazards or unacceptable changes in material properties.                                                                                                                                                                                                                        |

CMC Steel US, LLC Page 1 of 2

Table 23-21. Top-Down BACT Analysis for Storage Piles & Material Transfers - PM/PM<sub>10</sub>/PM<sub>2.5</sub>

| Process   | Pollutant                              |
|-----------|----------------------------------------|
| Storage   |                                        |
| Piles &   | DM/DM /DM                              |
| Material  | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |
| Transfers |                                        |

|         | Step                                          | Control<br>Technology                           | Enclosures                      | Wetting/Watering                                                                                                                                                                          |
|---------|-----------------------------------------------|-------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 3. | RANK REMAINING CONTROL TECHNOLOGIES           | Overall<br>Control<br>Efficiency <sup>1,2</sup> | 85% for partial enclosures      | 80-90%                                                                                                                                                                                    |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS | Cost<br>Effectiveness<br>(\$/ton)               | Base Case                       | Base Case                                                                                                                                                                                 |
|         |                                               |                                                 | Facility                        | Control Technology                                                                                                                                                                        |
|         |                                               |                                                 | Comparable Facilities 3,4,5     |                                                                                                                                                                                           |
|         |                                               |                                                 | Nucor Steel Frostproof, FL      | Enclosures, Wetting/Watering,<br>Minimizing Drop Height                                                                                                                                   |
|         |                                               |                                                 | Nucor Steel Sedalia, MO         | Wetting/Watering, Minimizing Drop<br>Height                                                                                                                                               |
|         |                                               |                                                 | Gerdau Ameristeel Charlotte, NC | None                                                                                                                                                                                      |
| Step 5. | SELECT BACT                                   |                                                 | CMC Steel Oklahoma City, OK     | Enclosures, Wetting/Watering,<br>Minimizing Drop Height                                                                                                                                   |
|         |                                               |                                                 | CMC Steel Mesa, AZ              | Enclosures, Wetting/Watering,<br>Material Moisture Content                                                                                                                                |
|         |                                               |                                                 | PROPOSED BACT:                  | Work Practices: As applicable, Enclosures and Wetting/Watering. Additionally, the drop heights associated with the Drop Points for the piles will be minimized to the extent practicable. |

<sup>&</sup>lt;sup>1</sup> Partial enclosure control efficiency per Table 7 of TCEQ Technical Guidance for Rock Crushing Plants.

CMC Steel US, LLC Page 2 of 2

<sup>&</sup>lt;sup>2</sup> Wetting/watering control efficiency per AP-42 Chapter 11.19.1 Sand and Gravel Processing (11/95). https://www3.epa.gov/ttn/chief/ap42/ch11/final/c11s19-1.pdf, Accessed March 2020.

<sup>&</sup>lt;sup>3</sup> A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B.

<sup>&</sup>lt;sup>4</sup> CMC Steel notes that watering may result in unacceptable solidification of slag or other materials discharged from high-temperature operations and that most of the materials in the outdoor piles are scrap steel which have very little brittle materials that are susceptible to becoming fugitive dust.

## 23.9 Diesel-Fired Engines Associated with Emergency Generators

The proposed Project will utilize two diesel-fired engines associated with emergency generators and fire pumps. The emergency generator (EGEN1) will be powered by a 1,600 hp engine and the emergency fire water pump (EFWP1) will be powered by a 300 hp engine. Table 23-22 provides a summary of the selected BACT controls and limits and Table 23-23 to Table 23-28 contain the top-down BACT analyses for the two engines.

**Table 23-22. Summary of Selected BACT for Emergency Engines** 

| Pollutant                              | Selected BACT Control                                                                               | Selected BACT Limit                           |
|----------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------|
| СО                                     | Purchase an engine that is certified to comply with emission limitations of 40 CFR 60, Subpart IIII | As specified in 40 CFR 60,<br>Subpart IIII    |
| NO <sub>x</sub>                        | Purchase an engine that is certified to comply with emission limitations of 40 CFR 60, Subpart IIII | As specified in 40 CFR 60,<br>Subpart IIII    |
| SO <sub>2</sub>                        | Ultra-low sulfur diesel fuel                                                                        | Fuel composition of ≤0.0015% sulfur by weight |
| PM/PM <sub>2.5</sub> /PM <sub>10</sub> | Purchase an engine that is certified to comply with emission limitations of 40 CFR 60, Subpart IIII | As specified in 40 CFR 60,<br>Subpart IIII    |
| GHG as measured in CO <sub>2</sub> e   | Good Combustion<br>Practices                                                                        | 108.8 tpy                                     |

Table 23-23. CO Top-Down BACT Analysis for Emergency Engines

| Process              | Pollutant |
|----------------------|-----------|
| Emergency<br>Engines | СО        |

|                                             |                                                           | Control<br>Technology                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tier Certification                                                                                                            |
|---------------------------------------------|-----------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES |                                                           | Control<br>Technology<br>Description | Part 60 Subpart IIII for s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fier Emission Standards as outlined in 40 CFR tationary CI internal combustion emergency pump engines, per the maximum engine |
|                                             |                                                           | Other Considerations                 | No other considerations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |
| Step 2.                                     | ELIMINATE<br>TECHNICALLY                                  | RBLC Database Information            | Included in the RBLC dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | abase as an emission standard.                                                                                                |
|                                             | INFEASIBLE<br>OPTIONS                                     | Feasibility                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g an EPA Tier certified engine has been                                                                                       |
|                                             |                                                           | Discussion                           | demonstrated in practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for emergency engines.                                                                                                        |
| Step 3.                                     | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES              | Overall<br>Control<br>Efficiency     | Base Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                               |
| Step 4.                                     | EVALUATE AND<br>DOCUMENT<br>MOST<br>EFFECTIVE<br>CONTROLS | Cost<br>Effectiveness<br>(\$/ton)    | In its 2010 Maximum Achievable Control Technology (MACT)/General Available Control Technology (GACT) evaluation for Reciprocating Internal Combustion Engines (RICE), EPA concluded for emergency RICE: "Because these engines are typically used only a few number of hours per year, the costs of emission control are not warranted when compared to the emission reductions that would be achieved." Based on EPA's assessment and the fact that the RBLC contains no records of DOC installation on emergency-use RICE, DOC is eliminated from consideration as BACT. This conclusion is substantiated by multiple state and local regulatory authorities, including the San Joaquin Valley Air Pollution Control District (APCD) (see Guideline 3.1.1. and Guideling 3.1.4 at the San Joaquin Valley Unified APCD BACT Clearinghouse). |                                                                                                                               |
|                                             | •                                                         |                                      | Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO Emission Standard                                                                                                          |
|                                             |                                                           |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | icable Emission Standards                                                                                                     |
| Step 5.                                     | Step 5. SELECT BACT                                       |                                      | PROPOSED BACT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Purchase an engine that is certified to comply with emission limitations of 40 CFR 60. Subpart IIII.                          |

<sup>&</sup>lt;sup>1</sup> U.S. EPA, Memorandum: Response to Public Comments on Proposed National Emission Standards for Hazardous Air Pollutants for Existing Stationary Reciprocating Internal Combustion Engines Located at Area Sources of Hazardous Air Pollutant Emissions or Have a Site Rating Less Than or Equal to 500 Brake HP Located at Major Sources of Hazardous Air Pollutant Emissions, August 10, 2010, p. 172-173. (EPA-HQ-OAR-2008-0708).

Table 23-24. NOx Top-Down BACT Analysis for Emergency Engines

| Process              | Pollutant       |
|----------------------|-----------------|
| Emergency<br>Engines | NO <sub>X</sub> |

|         |                                             | Control<br>Technology           | Tier Certification                                                                                                                                                                                                               |
|---------|---------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES | Control Technology              | Certified to comply with Tier Emission Standards as outlined in 40 CFR Part 60 Subpart IIII for stationary CI internal combustion emergency engine or stationary fire pump engines, per the maximum engine power and model year. |
|         |                                             | Other<br>Considerations         | No other considerations.                                                                                                                                                                                                         |
| Step 2. | ELIMINATE<br>TECHNICALLY                    | RBLC<br>Database<br>Information | Included in the RBLC database as an emission standard.                                                                                                                                                                           |
|         | INFEASIBLE<br>OPTIONS                       | Feasibility<br>Discussion       | Technically feasible. Using an EPA Tier certified engine has been demonstrated in practice for emergency engines.                                                                                                                |

Table 23-24. NOx Top-Down BACT Analysis for Emergency Engines

| Process              | Pollutant       |
|----------------------|-----------------|
| Emergency<br>Engines | NO <sub>X</sub> |

| Step 3. | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES              | Overall<br>Control<br>Efficiency  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Base Case                                                                                            |
|---------|-----------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Step 4. | EVALUATE AND<br>DOCUMENT<br>MOST<br>EFFECTIVE<br>CONTROLS | Cost<br>Effectiveness<br>(\$/ton) | In its 2010 Maximum Achievable Control Technology (MACT)/Generally Available Control Technology (GACT) evaluation for Reciprocating Internal Combustion Engines (RICE), EPA concluded for emergency RICE: "Because these engines are typically used only a few number of hours per year, the costs of emission control are not warranted when compared to the emission reductions that would be achieved." Based on EPA's assessment and the fact that the RBLC contains no records on DOC installation on emergency-use RICE, DOC is eliminated from consideration as BACT. This conclusion is substantiated by multiple state and local regulatory authorities, including the San Joaquin Valley Air Pollution Control District (APCD) (see Guideline 3.1.1. and Guideline 3.1.4 at the San Joaquin Valley Unified APCD BACT Clearinghouse). |                                                                                                      |
|         |                                                           |                                   | Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NO <sub>X</sub> Emission Standard                                                                    |
|         | SELECT BACT                                               |                                   | Аррі                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | licable Emission Standards                                                                           |
| Step 5. |                                                           |                                   | PROPOSED BACT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Purchase an engine that is certified to comply with emission limitations of 40 CFR 60, Subpart IIII. |

<sup>&</sup>lt;sup>1</sup> U.S. EPA, Memorandum: Response to Public Comments on Proposed National Emission Standards for Hazardous Air Pollutants for Existing Stationary Reciprocating Internal Combustion Engines Located at Area Sources of Hazardous Air Pollutant Emissions or Have a Site Rating Less Than or Equal to 500 Brake HP Located at Major Sources of Hazardous Air Pollutant Emissions, August 10, 2010, p. 172-173. (EPA-HQ-OAR-2008-0708).

Table 23-25. SO2 Top-Down BACT Analysis for Emergency Engines

| Process              | Pollutant       |
|----------------------|-----------------|
| Emergency<br>Engines | SO <sub>2</sub> |

|         |                                               | Control<br>Technology                | Ultra-Lo                                            | w Sulfur Diesel                                                    |
|---------|-----------------------------------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES   | Control<br>Technology<br>Description |                                                     | SD) contains less than 0.0015% uced sulfur content reduces the ns. |
|         | 1201110200125                                 | Other<br>Considerations              | No other considerations.                            |                                                                    |
| Step 2. | ELIMINATE<br>TECHNICALLY                      | RBLC<br>Database<br>Information      | control for SO <sub>2</sub> from eme                |                                                                    |
| Step 2. | INFEASIBLE<br>OPTIONS                         | Feasibility<br>Discussion            | Technically feasible. The demonstrated in practice. |                                                                    |
| Step 3. | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES  | Overall<br>Control<br>Efficiency     | E                                                   | Base Case                                                          |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS | Cost<br>Effectiveness<br>(\$/ton)    | E                                                   | Base Case                                                          |
|         | SELECT BACT                                   |                                      | Specifications  Applicable                          | SO <sub>2</sub> Emission Standard Emission Standards               |
| Step 5. |                                               |                                      | PROPOSED BACT:                                      | Ultra-low sulfur diesel fuel.                                      |

Table 23-26. PM Top-Down BACT Analysis for Emergency Engines

| Process              | Pollutant                              |
|----------------------|----------------------------------------|
| Emergency<br>Engines | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |

|         | Control<br>Technology                        |                                                                                                | Ultra-Low Sulfur Diesel                                                                                            | Diesel Particulate Filter <sup>1</sup>                                                                                                                                                                                                                              | Tier Certification                                                                                                                                                                                                               |
|---------|----------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES  | Control<br>Technology<br>Description                                                           | reduced sulfur content reduces the potential for aggregation of sulfur containing compounds and thus reduces PM2.5 | A diesel particulate filter (DPF) is placed in<br>the exhaust pathway to prevent the<br>release of PM. A DPF uses a porous<br>ceramic or cordierite substrate or metallic<br>filter to physically trap particulate matter<br>and remove it from the exhaust stream. | Certified to comply with Tier Emission Standards as outlined in 40 CFR Part 60 Subpart IIII for stationary CI internal combustion emergency engine or stationary fire pump engines, per the maximum engine power and model year. |
|         |                                              | Other<br>Considerations                                                                        | No other considerations.                                                                                           | No other considerations.                                                                                                                                                                                                                                            | No other considerations.                                                                                                                                                                                                         |
| Step 2. | RBLC                                         |                                                                                                | common form of control for PM from emergency, diesel-fired RICE.                                                   | Not included in the RBLC database as a control technology for emergency, diesel-fired RICE. DPF is nonetheless carried forward in this BACT analysis.                                                                                                               | Included in the RBLC database as an emission standard.                                                                                                                                                                           |
|         | OPTIONS                                      | Feasibility Discussion  Technically feasible. The use of ULSD habeen demonstrated in practice. |                                                                                                                    | Technically feasible. The use of DPF has been demonstrated in practice for engines.                                                                                                                                                                                 | Technically feasible. Using an EPA Tier certified engine has been demonstrated in practice for emergency engines.                                                                                                                |
| Step 3. | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES | Overall<br>Control<br>Efficiency                                                               | Base Case                                                                                                          | 85-90%                                                                                                                                                                                                                                                              | Base Case                                                                                                                                                                                                                        |

Table 23-26. PM Top-Down BACT Analysis for Emergency Engines

| Process              | Pollutant                              |
|----------------------|----------------------------------------|
| Emergency<br>Engines | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |

| Step 4. | EVALUATE AND<br>DOCUMENT<br>MOST<br>EFFECTIVE<br>CONTROLS | Cost<br>Effectiveness<br>(\$/ton) | In its 2010 Maximum Achievable Control Technology (MACT)/Generally Available Control Technology (GACT) evaluation for Reciprocating Internal Combustion Engines (RICE), EPA concluded for emergency RICE: "Because these engines are typically used only a few number of hours per year, the costs of emission control are not warranted when compared to the emission reductions that would be achieved."2 Based on EPA's assessment and the fact that the RBLC contains no records of DOC installation on emergency-use RICE, DOC is eliminated from consideration as BACT. This conclusion is substantiated by multiple state and local regulatory authorities, including the San Joaquin Valley Air Pollution Control District (APCD) (see Guideline 3.1.1. and Guideline 3.1.4 at the San Joaquin Valley Unified APCD BACT Clearinghouse). |  | Base Case      |                                                                                                                  |
|---------|-----------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------|------------------------------------------------------------------------------------------------------------------|
|         |                                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  | Specifications | PM Emission Standard                                                                                             |
|         |                                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  | Applicable     | Emission Standards                                                                                               |
| Step 5. | SELEC                                                     | T BACT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  | PROPOSED BACT: | Purchase an engine that<br>is certified to comply<br>with emission limitations<br>of 40 CFR 60, Subpart<br>IIII. |

<sup>&</sup>lt;sup>1</sup> Technical Bulletin, Diesel Particulate Filter General Information, EPA-420-F-10-029, May 2010.

<sup>2</sup> U.S. EPA, Memorandum: Response to Public Comments on Proposed National Emission Standards for Hazardous Air Pollutants for Existing Stationary Reciprocating Internal Combustion Engines Located at Area Sources of Hazardous Air Pollutant Emissions or Have a Site Rating Less Than or Equal to 500 Brake HP Located at Major Sources of Hazardous Air Pollutant Emissions, August 10, 2010, p. 172-173. (EPA-HQ-OAR-2008-0708).

Table 23-27. VOC Top-Down BACT Analysis for Emergency Engines

| Process              | Pollutant |
|----------------------|-----------|
| Emergency<br>Engines | VOC       |

|         |                                                                             | Control<br>Technology     | Tier Certification                                                                                                                                                                                                               |
|---------|-----------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES  Control Technology Description |                           | Certified to comply with Tier Emission Standards as outlined in 40 CFR Part 60 Subpart IIII for stationary CI internal combustion emergency engine or stationary fire pump engines, per the maximum engine power and model year. |
|         |                                                                             |                           | No other considerations.                                                                                                                                                                                                         |
|         |                                                                             | Considerations            |                                                                                                                                                                                                                                  |
|         |                                                                             | RBLC                      | Included in the RBLC database as an emission standard.                                                                                                                                                                           |
|         | ELIMINATE                                                                   | Database                  |                                                                                                                                                                                                                                  |
| Step 2. | TECHNICALLY                                                                 | Information               |                                                                                                                                                                                                                                  |
| 3.ep 2. | INFEASIBLE<br>OPTIONS                                                       | Feasibility<br>Discussion | Technically feasible. Using an EPA Tier certified engine has been demonstrated in practice for emergency engines.                                                                                                                |

**Table 23-27. VOC Top-Down BACT Analysis for Emergency Engines** 

| Process              | Pollutant |
|----------------------|-----------|
| Emergency<br>Engines | VOC       |

| Step 3. | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES              | Overall<br>Control<br>Efficiency  | Base Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |
|---------|-----------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Step 4. | EVALUATE AND<br>DOCUMENT<br>MOST<br>EFFECTIVE<br>CONTROLS | Cost<br>Effectiveness<br>(\$/ton) | In its 2010 Maximum Achievable Control Technology (MACT)/General Available Control Technology (GACT) evaluation for Reciprocating Internal Combustion Engines (RICE), EPA concluded for emergency RICE: "Because these engines are typically used only a few number of hours per year, the costs of emission control are not warranted when compared to the emission reductions that would be achieved." Based on EPA's assessment and the fact that the RBLC contains no records DOC installation on emergency-use RICE, DOC is eliminated from consideration as BACT. This conclusion is substantiated by multiple state and local regulatory authorities, including the San Joaquin Valle Air Pollution Control District (APCD) (see Guideline 3.1.1. and Guidelin 3.1.4 at the San Joaquin Valley Unified APCD BACT Clearinghouse). |                                                                                                      |
|         |                                                           |                                   | Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VOC Emission Standard                                                                                |
|         | SELECT BACT                                               |                                   | Applicable Emission Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      |
| Step 5. |                                                           |                                   | PROPOSED BACT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purchase an engine that is certified to comply with emission limitations of 40 CFR 60, Subpart IIII. |

<sup>&</sup>lt;sup>1</sup> U.S. EPA, Memorandum: Response to Public Comments on Proposed National Emission Standards for Hazardous Air Pollutants for Existing Stationary Reciprocating Internal Combustion Engines Located at Area Sources of Hazardous Air Pollutant Emissions or Have a Site Rating Less Than or Equal to 500 Brake HP Located at Major Sources of Hazardous Air Pollutant Emissions, August 10, 2010, p. 172-173. (EPA-HQ-OAR-2008-0708).

Table 23-28. GHG Top-Down BACT Analysis for Emergency Engines

| Process   | Pollutant        |
|-----------|------------------|
| Emergency | GHGs as          |
| Engines   | measured in CO₂e |

|         | IDENTIFY AIR                                                                          | Control<br>Technology           | Good Combu                                                                   | stion Practices                                             |
|---------|---------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|
| Step 1. | POLITION                                                                              |                                 | Operation of the engines at high opposition products of incomplete combustic | combustion efficiency to reduce the on.                     |
|         | TECHNOLOGIES                                                                          | Other Considerations            | No other considerations                                                      |                                                             |
|         | ELIMINATE                                                                             | RBLC<br>Database<br>Information | Included in the RBLC database as<br>GHGs from emergency, diesel-fire         |                                                             |
| Step 2. | TECHNICALLY<br>INFEASIBLE<br>OPTIONS                                                  | Feasibility<br>Discussion       | Technically feasible. Good combuselected as BACT for GHG control             |                                                             |
| Step 3. | RANK REMAINING CONTROL TECHNOLOGIES  RANK Overall Control Efficiency                  |                                 | Base                                                                         | e Case                                                      |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS  CONTROLS  CONTROLS  CONTROLS  CONTROLS |                                 |                                                                              | e Case                                                      |
|         | Step 5. SELECT BACT                                                                   |                                 | Specifications  Applicable V                                                 | GHG BACT<br>Work Practices                                  |
| Step 5. |                                                                                       |                                 | PROPOSED BACT:                                                               | 91.65 tpy of GHG (CO₂e) using<br>Good combustion practices. |

## 23.10 Cooling Towers

Emission Units under Cooling Towers are listed below:

- One Contact Cooling Tower (CTC1)
- Two Non-Contact Cooling Towers (CTNC11, CTNC12)

Each of the cooling towers have two individual cells. Cooling towers have the potential to emit PM<sub>2.5</sub>, PM<sub>10</sub>, and PM emissions. The contact cooling towers will provide direct contact between cooling water and air passing through the tower. Some of the liquid will become entrained in the air stream and will be carried out of the tower as drift droplets. These droplets will contain either dissolved or suspended solid particles that contribute to particulate emissions. Table 23-29 below provides a summary of the selected BACT controls and limits for cooling towers and Table 23-30 contains the top down BACT analysis for PM emissions.

**Table 23-29. Summary of Selected BACT for Cooling Towers** 

| Pollutant                              | Selected BACT Control                | Selected BACT Limit |
|----------------------------------------|--------------------------------------|---------------------|
| PM/PM <sub>2.5</sub> /PM <sub>10</sub> | High Efficiency Drift<br>Eliminators | 0.001% Drift Loss   |

Table 23-30. PM Top-Down BACT Analysis for Non-Contact Cooling Towers

| Process                       | Pollutant                              |
|-------------------------------|----------------------------------------|
| Non-Contact<br>Cooling Towers | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |

|         |                                                        | Control                           |                                                                                                                                                                 | Limitations on TDS                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|--------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| :       | Step                                                   | Control<br>Technology             | Dry Cooling Towers <sup>1</sup>                                                                                                                                 | Concentrations in the                                                                                                                                                                                                                                                                                                                                                                                                                                | Drift Eliminators <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Step 1. | IDENTIFY AIR POLLUTION CONTROL                         |                                   | from the cooling water rather than evaporation. Since<br>there is no contact between the cooling water and<br>outside air, there is no drift loss and thus zero | Circulating Water <sup>2</sup> The total dissolved solids (TDS) in the circulating water can be limited to lower the amount of dissolved salts entrained in the air stream before exiting the tower. This results in lower particulate emissions because less salts can precipitate from the "drift" droplets.                                                                                                                                       | Wet cooling towers provide direct contact between the cooling water and air passing through the tower. Some of the liquid water may become entrained in the air stream and carried out of the tower as "drift" droplets. The TDS in the water contributes to particulate emissions. To reduce these particulate emissions drift eliminators are usually incorporated into the tower design to remove water droplets in the air stream. This is accomplished through inertial separation caused by directional changes in the fluid while passing through the eliminator. |
|         | TECHNOLOGIES                                           | Other<br>Considerations           | None                                                                                                                                                            | In order to reduce TDS higher volumetric flow rates of make-<br>up water must be introduced into the tower.                                                                                                                                                                                                                                                                                                                                          | The use of high-efficiency drift eliminating media to de-entrain particulate droplets from the air flow exiting the cooling tower is commercially proven technique to reduce PM/PM <sub>10</sub> /PM <sub>2.5</sub> emissions.  Compared to "conventional" drift eliminators, high-efficiency drift eliminators can reduce the PM/PM <sub>10</sub> /PM <sub>2.5</sub> emission rate by more than 90 % with a drift loss as low as 0.0005%.                                                                                                                               |
|         |                                                        | RBLC<br>Database<br>Information   | Not included in RBLC for the control of particulate emissions from cooling towers.                                                                              | Not included in RBLC for the control of particulate emissions from cooling towers for a similar facility (i.e., Micro mill and ECS process).                                                                                                                                                                                                                                                                                                         | Drift Eliminators are included in the RBLC as a common form of control for particulate emissions from cooling towers.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS      | Feasibility<br>Discussion         | Technically infeasible. Dry Cooling Towers have not been demonstrated for use at steel micro-mills.                                                             | The TDS content of the make up water is dependent on fluctuations in the water supply. Additionally, this control technology has not been demonstrated in practice, for a facility with similar technology (i.e., an ECS and Micro Mill Process), for control of PM emissions from cooling towers. As a result, limitations on TDS concentrations in circulating water is considered infeasible for the control of PM emissions from cooling towers. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Step 3. | RANK REMAINING CONTROL TECHNOLOGIES                    | Overall<br>Control<br>Efficiency  |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Base Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Step 4. | EVALUATE AND<br>DOCUMENT<br>MOST EFFECTIVE<br>CONTROLS | Cost<br>Effectiveness<br>(\$/ton) |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Base Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 23-30. PM Top-Down BACT Analysis for Non-Contact Cooling Towers

| Process                       | Pollutant                              |
|-------------------------------|----------------------------------------|
| Non-Contact<br>Cooling Towers | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |

| Step    |             | Control<br>Technology | Dry Cooling Towers <sup>1</sup> | Limitations on TDS<br>Concentrations in the<br>Circulating Water <sup>2</sup> | Drift Elimi             | inators <sup>2</sup>                                                     |
|---------|-------------|-----------------------|---------------------------------|-------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------|
|         |             |                       |                                 |                                                                               |                         |                                                                          |
|         |             |                       |                                 |                                                                               | Facility                | Drift Loss (%)                                                           |
|         |             |                       |                                 |                                                                               | Comparable F            | Facilities 3, 4                                                          |
|         |             |                       |                                 |                                                                               | CMC Mesa, AZ            | 0.0005                                                                   |
|         |             |                       |                                 |                                                                               | Nucor Frostproof,<br>FL | 0.0010                                                                   |
|         |             |                       |                                 |                                                                               | CMC Durant, OK          | 0.0010                                                                   |
| Step 5. | SELECT BACT |                       |                                 |                                                                               | Nucor Sedalia, MO       | 0.0010<br>2,500 TDS                                                      |
|         |             |                       |                                 |                                                                               | Proposed BACT:          | 0.001% drift<br>loss using a<br>high-efficiency<br>drift<br>eliminators. |

<sup>1</sup> California Energy Commission, "Comparison of Alternate Cooling Technologies for California Power Plants Economic, Environmental and Other Tradeoffs", EPA 500-02-079F.

 $<sup>^2</sup>$  U.S. EPA, AP-42 Section 13.4, "Wet Cooling Towers", January 1995.  $^3$  A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B.

<sup>&</sup>lt;sup>4</sup> Only the Nucor Frostproof, Nucor Sedalia, CMC Durant, and CMC Mesa facilities utilize a similar process (i.e., ECS Process and Micro Mill). The 0.001% drift loss is consistent with Nucor Frostproof, Nucor Sedalia, and CMC Durant. The CMC Mesa operations are located in a PM10 non-attrainment area and the 0.0005% drift loss is reflective of PM10 requirements in that non-attrainment area which are not applicable to the proposed Project attrainment areas.

## 23.11 Ball Drop Crushing

Ball drop crushing (CR1) is used to reduce the size of large pieces of scrap (also known as "reclaim" or "skulls", from the process). The proposed ball drop crushing of large scrap has the potential to emit PM,  $PM_{10}$ ,  $PM_{2.5}$  as fine particulates will rise into the air as the scrap is being crushed. Table 23-31 below provides a summary of the selected BACT controls for ball drop crushing and Table 23-32 contains the top down BACT analysis for PM emissions.

**Table 23-31. Summary of Selected BACT for Ball Drop Crushing** 

| Pollutant                              | <b>Selected BACT Control</b>                                                                  | Selected BACT Limit |
|----------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|
| PM/PM <sub>2.5</sub> /PM <sub>10</sub> | Work Practices:<br>Wetting/Watering, Material<br>Moisture Content, Good<br>Process Operations | -                   |

Table 23-32. Top-Down BACT Analysis for Ball Drop Crushing

| Process            | Pollutant                                |
|--------------------|------------------------------------------|
| Ball Drop Crushing | PM, PM <sub>10</sub> , PM <sub>2.5</sub> |

|         |                                                   | Control<br>Technology                          | Baghouse/Fabric Filter <sup>1</sup>                                                                                                                                                                                                                                                                                                                    | Cyclone <sup>2</sup>                                                                                                                                                                                     | Enclosures <sup>3,4</sup>                                                                                                                                                                                                                                                                                                   | Wetting/Watering/Material Moisture<br>Content <sup>3,4</sup>                                                                                                                                                                    | Good Process Operations                                                                    |
|---------|---------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES       | Control Technology<br>Description              | Process exhaust gasses are collected and passed through a tightly woven or felted fabric arranged in sheets, cartridges, or bags that collect PM via sieving and other mechanisms. The dust cake that accumulates on the filters increases collection efficiency. Various cleaning techniques include pulse-jet, reverse-air, and shaker technologies. | Centrifugal forces drive particles in the gas stream toward the cyclone walls as the waste gas flows through the conical unit. The captured particles are collected in a material hopper below the unit. | Enclosure or covering of inactive piles can be utilized to minimize wind erosion and therefore reduce emissions. Partial enclosures include wind fences or barriers that reduce windblown dust from storage piles or large exposed areas. The wind fence or barrier creates an area of reduced wind velocity and emissions. | The inherent moisture content of certain materials may limit the generation and dispersion of fugitive dust. For dry materials, spray bars or spray nozzles may be utilized to apply water as necessary throughout the process. | Operate and maintain the equipment in accordance with good air pollution control practices |
|         | 1201110200225                                     | Other<br>Considerations                        | Fabric filters are susceptible to corrosion and blinding by moisture. Appropriate fabrics must be selected for specific process conditions. Accumulations of dust may present fire or explosion hazards.                                                                                                                                               | Cyclones typically exhibit lower efficiencies when collecting smaller particles. Highefficiency units may require substantial pressure drop.                                                             | No other considerations.                                                                                                                                                                                                                                                                                                    | No other considerations.                                                                                                                                                                                                        | No other considerations.                                                                   |
|         |                                                   | RBLC<br>Database<br>Information                | Not included in RBLC for the control of PM emissions from ball drop crushing.                                                                                                                                                                                                                                                                          | Not included in RBLC for the control of PM emissions from ball drop crushing.                                                                                                                            | Not included in RBLC for the control of PM emissions from ball drop crushing.                                                                                                                                                                                                                                               | Included in RBLC for the control of PM emissions from ball drop crushing.                                                                                                                                                       | Included in RBLC for the control of PM emissions from ball drop crushing.                  |
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion                      | Technically infeasible. Emissions are fugitive in nature and equipment is moved within the slag handling area to meet processing needs. Capture/control systems may not be feasibly utilized.                                                                                                                                                          | Technically infeasible. Emissions are fugitive in nature and equipment is moved within the slag handling area to meet processing needs. Capture/control systems may not be feasibly utilized.            | Technically infeasible. Emissions are fugitive in nature and equipment is moved within the slag handling area to meet processing needs. Enclosures may not be feasibly utilized.                                                                                                                                            | Feasible. Water sprays are applied as needed to prevent emissions of fugitive dust.                                                                                                                                             | Feasible. Good Process Operations are widely demonstrated in practice                      |
| Step 3. | RANK REMAINING<br>CONTROL<br>TECHNOLOGIES         | Overall<br>Control<br>Efficiency               |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             | 70%                                                                                                                                                                                                                             | Base Case                                                                                  |
| Step 4. | EVALUATE AND DOCUMENT MOST EFFECTIVE CONTROLS     | Cost<br>Effectiveness <sup>8</sup><br>(\$/ton) |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             | Base Case                                                                                                                                                                                                                       | Base Case                                                                                  |
|         |                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             | Facility                                                                                                                                                                                                                        | Control Technology Used                                                                    |
|         |                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             | Comparable                                                                                                                                                                                                                      |                                                                                            |
|         |                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             | Nucor Frostproof, FL                                                                                                                                                                                                            | Equipment Enclosures, Watering, Minimizing Wind Erosion and Drop Points                    |
| Step 5. | SELEC                                             | Т ВАСТ                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             | Nucor Sedalia, MO                                                                                                                                                                                                               | Dust Suppressant Emission Control System,<br>Minimize Drop Heights                         |
|         |                                                   |                                                | ology Fact Sheet (Fabric Filter - Pulse-Jet Cleaned Type)," E                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             | Proposed BACT:                                                                                                                                                                                                                  | Work Practices: Wetting/Watering,<br>Material Moisture Content, Good Process<br>Operations |

<sup>&</sup>lt;sup>1</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Fabric Filter - Pulse-Jet Cleaned Type)," EPA-452/F-03-025.

<sup>2</sup> U.S. EPA, Office of Air Quality Planning and Standards, "Air Pollution Control Technology Fact Sheet (Cyclone)," EPA-452/F-03-005.

<sup>3</sup> Ohio EPA, "Reasonably Available Control Measures for Fugitive Dust Sources," Section 2.1 - General Fugitive Dust Sources.

<sup>4</sup> Texas Commission on Environmental Quality, "Technical Guidance for Rock Crushing Plants", Draft RG058.

<sup>5</sup> A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B.

CMC Steel US, LLC Page 1 of 1

#### 23.12 Roads

As part of the chosen BACT control, where practicable, roads (PR1) will be paved to reduce emissions of PM. Resurfacing is impracticable in two specific scenarios: in areas of road utilized by the slag haul truck and in areas of road where vehicle traffic takes place near accumulated piles. The slag haul truck's chains, which are necessary to prevent its tires from melting in the meltshop, would destroy pavement as well as pulverize and disperse gravel or recycled asphalt, rendering its use impracticable. Additionally, while vehicle traffic is necessary in areas where piles accumulate, resurfacing is impracticable due to the accumulation of dust and other materials. Unpaved roads (UR1) associated with such scenarios will have an engineered surface in place of pavement, gravel, or recycled asphalt. Sweeping dust from roads and mimicking precipitation by spraying roads with water or surfactants can aid in reducing particulate emissions. Vehicle restrictions may also be used to restrict vehicle weight, vehicle speed, and number of vehicles on the road to reduce particulate emissions from vehicle traffic. Table 23-33 provides a summary of the selected BACT controls and limits for roads and Table 23-34 contains the top down BACT analysis.

**Table 23-33. Summary of Selected BACT for Roads** 

| Pollutant                              | Selected BACT Control                                                                                                                                | Selected BACT Limit |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| PM/PM <sub>2.5</sub> /PM <sub>10</sub> | Work Practices (Fugitive Dust Control<br>Plan including, as practicable:<br>Vacuuming/Sweeping, Vehicle<br>Restrictions, and/or<br>Wetting/Watering) | -                   |

**Table 23-34. PM Top-Down BACT Analysis for Roads** 

| Process | Pollutant                              |
|---------|----------------------------------------|
| Roads   | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |

|         | Step                                        | Control<br>Technology                | Vacuuming/Sweeping <sup>1</sup>                                  | Vehicle Restrictions <sup>2</sup>                                                                                                | Resurfacing                                                                                                             | Wetting/Watering                                                                                                                                                                                                                                                                                                                                                          |
|---------|---------------------------------------------|--------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. | IDENTIFY AIR POLLUTION CONTROL TECHNOLOGIES | Control<br>Technology<br>Description |                                                                  | number of vehicles on the road to                                                                                                | gravel, recycled asphalt, or other suitable material to reduce emissions by reducing silt content.                      | As a supplement to natural precipitation, when needed, wetting/watering - spraying roads with water or chemical agents such as surfactants - can be used to reduce wind erosion emissions. Water sprays are known to have a more temporary effect on total emissions while chemical agents offer a more extensive wetting and therefore more effect control of emissions. |
|         |                                             | Other<br>Considerations              | Vacuuming/sweeping is most effective on paved roads.             | No other considerations.                                                                                                         | No other considerations.                                                                                                | Wetting/watering is most effective on<br>unpaved roads. Use of chemical<br>surfactants on roads may have<br>adverse effects on plant and animal<br>life. <sup>3</sup>                                                                                                                                                                                                     |
|         |                                             | RBLC<br>Database<br>Information      | sweeping are included in the RBLC as common forms of control for | Included in RBLC. Setting speed limits is included in the RBLC as a common form of control for particulate emissions from roads. | Included in RBLC. Resurfacing is included in the RBLC as a common form of control for particulate emissions from roads. | Included in RBLC. Road watering is included in the RBLC as a common form of control for particulate emissions from roads.                                                                                                                                                                                                                                                 |

CMC Steel US, LLC Page 1 of 3

**Table 23-34. PM Top-Down BACT Analysis for Roads** 

| Process | Pollutant                              |
|---------|----------------------------------------|
| Roads   | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |

| S       | Step                                              | Control<br>Technology     | Vacuuming/Sweeping <sup>1</sup>                                                                      | Vehicle Restrictions <sup>2</sup>                                                       | Resurfacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Wetting/Watering |
|---------|---------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Step 2. | ELIMINATE<br>TECHNICALLY<br>INFEASIBLE<br>OPTIONS | Feasibility<br>Discussion | Technically feasible. Vacuuming and/or sweeping can be used, as practicable, to reduce PM emissions. | Technically feasible. Speed limits can be used, as practicable, to reduce PM emissions. | Technically feasible. Resurfacing can be used, as practicable, to reduce PM emissions.  Resurfacing is not practicable in two scenarios: (1) in areas of road utilized by the slag haul truck, and (2) in areas of road where vehicle traffic takes place near accumulated piles. The slag haul truck has chains which are necessary to prevent the tires from melting in the meltshop, but which would also destroy pavement, and pulverize and disperse gravel or recycled asphalt. In areas where piles are accumulated, an allowance for vehicle traffic is necessary, but resurfacing is impracticable due to the accumulation of dust and other materials. Unpaved roads associated with such scenarios will have an engineered surface in place of pavement, gravel, or recycled asphalt. |                  |

CMC Steel US, LLC Page 2 of 3

**Table 23-34. PM Top-Down BACT Analysis for Roads** 

| Process | Pollutant                              |
|---------|----------------------------------------|
| Roads   | PM/PM <sub>10</sub> /PM <sub>2.5</sub> |

|         | Step                                                       | Control<br>Technology                         | Vacuuming/Sweeping <sup>1</sup>    | Vehicle Restrictions <sup>2</sup>                               | Resurfacing                                                                                                                             | Wetting/Watering           |  |  |
|---------|------------------------------------------------------------|-----------------------------------------------|------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|
| Step 3. | RANK<br>REMAINING<br>CONTROL<br>TECHNOLOGIES               | Overall<br>Control<br>Efficiency <sup>4</sup> | Highly Variable                    | Reduction of speed is linearly related to control of emissions. | ~95%                                                                                                                                    | 80-90%                     |  |  |
| Step 4. | Step 4. EVALUATE AND DOCUMENT MOST Effe EFFECTIVE CONTROLS |                                               | Base Case                          | Base Case                                                       | Base Case                                                                                                                               | Base Case                  |  |  |
|         |                                                            |                                               | Facility                           |                                                                 | Control Technology                                                                                                                      |                            |  |  |
|         |                                                            |                                               | Comparable Facilities <sup>5</sup> |                                                                 |                                                                                                                                         |                            |  |  |
|         |                                                            |                                               | Nucor Steel I                      | Nucor Steel Frostproof, FL                                      |                                                                                                                                         | Fugitive Dust Control Plan |  |  |
|         |                                                            |                                               | Nucor Steel Sedalia, MO            |                                                                 | Fugitive Dust Control Plan, including Vacuuming/Sweeping, Vehicle Restrictions, and/or Wetting/Watering                                 |                            |  |  |
| Step 5. | SELECT                                                     | BACT                                          | CMC Steel                          | Durant, OK                                                      | Paving, Sweeping, Vehicle Restrictions (Speed Limit)                                                                                    |                            |  |  |
|         |                                                            | CMC Stee                                      | l Mesa, AZ                         | Watering/Wetting or Vacuuming or Vehicle Restrictions           |                                                                                                                                         |                            |  |  |
|         |                                                            |                                               | PROPOSED BACT:                     |                                                                 | Work Practices: Fugitive Dust Control Plan including, as practicable Vacuuming/Sweeping, Vehicle Restrictions, and/or Wetting/Watering. |                            |  |  |

<sup>&</sup>lt;sup>1</sup> AP-42 Chapter 13.2.1 Paved Roads (10/02), https://www3.epa.gov/ttn/chief/old/ap42/ch13/s021/final/c13s02-1\_2002.pdf.

CMC Steel US, LLC Page 3 of 3

<sup>&</sup>lt;sup>2</sup> AP-42 Chapter 13.2.2 Unpaved Roads (9/98), https://www3.epa.gov/ttn/chief/old/ap42/ch13/s022/final/c13s02-2.pdf.

<sup>&</sup>lt;sup>3</sup> AP-42 Chapter 13.2 Fugitive Dust Sources (1/95), https://www3.epa.gov/ttn/chief/ap42/ch13/final/c13s02.pdf.
<sup>4</sup> Wetting/watering control efficiency per AP-42 Chapter 11.19.1 Sand and Gravel Processing (11/95). https://www3.epa.gov/ttn/chief/ap42/ch11/final/c11s19-1.pdf, Accessed March 2020.

<sup>&</sup>lt;sup>5</sup> A list of non-comparable facilities, as well as review of the EPA RACT/BACT/LAER Clearinghouse (RBLC) database, is provided in Appendix B.

# **APPENDIX A. EMISSION CALCULATIONS DETAILS**

Table A-1a. Material Throughput

| Material            | Material Throughput |                 |  |  |  |
|---------------------|---------------------|-----------------|--|--|--|
|                     | Hourly<br>(ton/hr)  | Annual<br>(tpy) |  |  |  |
| Steel<br>Production | 117                 | 650,000         |  |  |  |
| Scrap               | 146                 | 812,500         |  |  |  |
| Slag                | 12                  | 65,000          |  |  |  |

Table A-1b. Throughput - Baghouse Flowrate

| Emission<br>Unit ID | Emission<br>Point ID | Description       | Flow Rate (scfm) 30-day rolling <sup>1</sup> |
|---------------------|----------------------|-------------------|----------------------------------------------|
| EAF1                | BH1                  | Meltshop Baghouse | 679,000                                      |
| LMS1                | DUI                  | Meitshop baghouse | 079,000                                      |

<sup>&</sup>lt;sup>1</sup> At the time of application, project engineering was still in progress and the flowrate has not been finalized.

The final equipment flowrate will be at or under this flowrate.

Table A-1c. Throughput - Silos

| Fusicales                          | Fusicaion |                                  | Mat           | erial                  | Bin Vents                              |                   |
|------------------------------------|-----------|----------------------------------|---------------|------------------------|----------------------------------------|-------------------|
| Emission Emission Unit ID Point ID |           | Emission Unit Description        | Name          | Throughput<br>(ton/yr) | Exhaust Flow<br>(ft <sup>3</sup> /min) | Annual<br>(hr/yr) |
| FLXSLO11                           | FLXSLO11  | Fluxing Agent Storage Silo No. 1 | Fluxing Agent | 35,500                 | 3,000                                  | 1,000             |
| FLXSLO12                           | FLXSLO12  | Fluxing Agent Storage Silo No. 2 | Fluxing Agent | 33,300                 | 3,000                                  | 1,000             |
| CARBSLO1                           | CARBSLO1  | Carbon Storage Silo No. 1        | Coal/Coke     | 16,500                 | 2,050                                  | 1,000             |
| DUSTSLO1                           | DUSTSLO1  | EAF Baghouse Dust Silo           | Baghouse Dust | -                      | 1,300                                  | 8,760             |

Table A-1d. Throughput - Cooling Towers

| Fusicais a          | Emission |                                      | Co                  | oling Water Flow Ra    | ite                    | TDC Combons           | Drift Loss |
|---------------------|----------|--------------------------------------|---------------------|------------------------|------------------------|-----------------------|------------|
| Emission<br>Unit ID | Point ID | Emission Unit Description            | Per Minute<br>(gpm) | Hourly<br>(10³ gal/hr) | Annual<br>(10³ gal/yr) | TDS Content<br>(ppmw) | (%)        |
| CTNC11              | CTNC11A  | Non-Contact Cooling Tower 1 - Cell 1 | 11,000              | 660                    | 5,781,600              | 2,000                 | 0.001%     |
| CTNC11              | CTNC11B  | Non-Contact Cooling Tower 1 - Cell 2 | 11,000              | 660                    | 5,781,600              | 2,000                 | 0.001%     |
| CTNC12              | CTNC12A  | Non-Contact Cooling Tower 2 - Cell 1 | 11,000              | 660                    | 5,781,600              | 2,000                 | 0.001%     |
| CTNC12              | CTNC12B  | Non-Contact Cooling Tower 2 - Cell 2 | 11,000              | 660                    | 5,781,600              | 2,000                 | 0.001%     |
| CTC1                | CTC1A    | Contact Cooling Tower - Cell 1       | 5,500               | 330                    | 2,890,800              | 2,000                 | 0.001%     |
| CTC1                | CTC1B    | Contact Cooling Tower - Cell 2       | 5,500               | 330                    | 2,890,800              | 2,000                 | 0.001%     |

The flowrate presented is the maximum anticipated and incorporates a conservative buffer.

Table A-1e. Throughput - Fuel Combustion

| Emission<br>Unit ID | Emission<br>Point ID | Emission Unit Description    | Number of Units | Single Unit Rating<br>(MMBtu/hr) | Annual<br>Utilization Rate<br>(%) | Fuel                    |
|---------------------|----------------------|------------------------------|-----------------|----------------------------------|-----------------------------------|-------------------------|
| LPH1                | CV1                  | Ladle Preheaters             | 3               | 6                                | 100%                              | Propane/<br>Natural Gas |
| LD1                 | CV1                  | Ladle Dryers                 | 2               | 8                                | 100%                              | Propane/<br>Natural Gas |
| TPH1                | CV1                  | Tundish Preheaters           | 2               | 6                                | 100%                              | Propane/<br>Natural Gas |
| TD1                 | CV1                  | Tundish Dryer                | 1               | 6                                | 100%                              | Propane/<br>Natural Gas |
| TMD1                | CV1                  | Tundish Mandril Dryer        | 1               | 1                                | 100%                              | Propane/<br>Natural Gas |
| SRDHTR1             | CV1                  | Shroud Heater                | 1               | 0.5                              | 100%                              | Propane/<br>Natural Gas |
| MSAUXHT             | CV1                  | Meltshop Comfort Heaters     | 20              | 0.4                              | 50%                               | Propane/<br>Natural Gas |
| BF1                 | RMV1                 | Bit Furnace                  | 1               | 0.225                            | 100%                              | Propane/<br>Natural Gas |
| RMAUXHT             | RMV1                 | Rolling Mill Comfort Heaters | 20              | 0.4                              | 50%                               | Propane/<br>Natural Gas |

Table A-1f. Throughput - Torch Cutting

| I | Emission | Emission | Emission Unit Description | Steel Th | roughput | Max. Fuel Usage | Heat Rating          | (MMBtu/hr)               | Annual<br>Operation | Fuel                    |
|---|----------|----------|---------------------------|----------|----------|-----------------|----------------------|--------------------------|---------------------|-------------------------|
|   | Unit ID  | Point ID |                           | (lb/hr)  | (tpy)    | (scf/hr)        | Propane <sup>1</sup> | Natural Gas <sup>2</sup> | (hr/yr)             |                         |
| I | TORCH1   | TORCH1   | Cutting Torches           | 10,000   | 10,000   | 130             | 0.32                 | 0.13                     | 4,000               | Propane/<br>Natural Gas |

Per propane heating value of 91.5 MBtu/gal and conversion of 0.027 gal/scf
(per Technical Data for Propane, Butane and LPG Mixtures: http://www.altenergy.com/Downloads/PDF\_Public/PropDataPDF.pdf, page 2)
Per natural gas heating value of 1,020 Btu/scf

Table A-1g. Throughput - Refractory Binder

| Emission Emission |          | Binder                            | <sup>·</sup> Usage         |      |
|-------------------|----------|-----------------------------------|----------------------------|------|
| Unit ID           | Point ID | Description                       | Description Hourly (lb/hr) |      |
| LB1               | CV1      | Refractory Binder Usage - Ladle   | 2.12                       | 7.52 |
| TB1               | CV1      | Refractory Binder Usage - Tundish | 1.28                       | 4.51 |

Table A-1h. Throughput - Material Transfers

| Emissis:            | Emissis -            |                                                                | Throu              | ghput           |
|---------------------|----------------------|----------------------------------------------------------------|--------------------|-----------------|
| Emission<br>Unit ID | Emission<br>Point ID | Transfer Description                                           | Hourly<br>(ton/hr) | Annual<br>(tpy) |
| TR51A               | TR51A                | Inside ECS Building Drop Points, Scrap                         | 830                | 3,380,000       |
| TR51B               | TR51B                | Outside ECS Building Drop Points, Scrap,<br>Storage Area       | 330                | 2,145,000       |
| TR51C               | TR51C                | Outside Rail Bins Drop Point, Scrap                            | 110                | 715,000         |
| TR51E               | TR51E                | Outside Truck Bins Drop Point, Scrap                           | 110                | 715,000         |
| TR71                | TR71                 | Inside ECS Building Drop Points, Fluxing<br>Agent              | 30                 | 30,695          |
| TR81                | TR81                 | Outside Drop Points, Alloy Aggregate                           | 60                 | 9,800           |
| TR91A               | TR91A                | Inside Drop Points, Removed Refractory and Other Materials     | 25                 | 2,800           |
| TR91B               | TR91B                | Outside Drop Points, Removed<br>Refractory and Other Materials | 25                 | 2,800           |
| TR11A               | TR11A                | Outside SPP Pile Drop Points, Slag                             | 100                | 182,500         |
| TR11B               | TR11B                | Drop from Loader to SPP Feed Hopper,<br>Slag                   | 100                | 182,500         |
| TR131               | TR131                | Outside Drop Points, Residual Scrap Pile                       | 25                 | 2,800           |
| TR141               | TR141                | Outside Drop Points, Mill Scale Pile                           | 60                 | 9,800           |

Table A-1i. Throughput - Ball Drop Crushing

| Emission | Emission<br>Point ID | Drop Description   | Moisture Content | Throug | ghput |
|----------|----------------------|--------------------|------------------|--------|-------|
| Unit ID  |                      |                    | (%)              | (tph)  | (tpy) |
| CR1      | CR1                  | Ball Drop Crushing | 1                | 8      | 8,200 |

Table A-1j. Throughput - Storage Piles

| Emission         | Emission | sion Bile Description                 | Material        | Approximate D | Dimension (m) | Area               |  |
|------------------|----------|---------------------------------------|-----------------|---------------|---------------|--------------------|--|
| Unit ID Point ID |          | Pile Description                      | Material        | X Length      | Y Length      | (ft <sup>2</sup> ) |  |
| W51A             | W51A     | ECS Scrap Building Storage Pile A     | Scrap           | 20.0          | 27.5          | 5,900              |  |
| W51B             | W51B     | ECS Scrap Building Storage Pile B     | Scrap           | 27.8          | 18.0          | 5,400              |  |
| W51C             | W51C     | ECS Scrap Building Storage Pile C     | Scrap           | 26.5          | 18.7          | 5,300              |  |
| W51D             | W51D     | ECS Scrap Building Overage Scrap Pile | Scrap           | 52.4          | 21.5          | 12,100             |  |
| W51E             | W51E     | Outside Rail Scrap 5k Pile A          | Scrap           | 29.9          | 28.4          | 9,100              |  |
| W51F             | W51F     | Outside Rail Scrap 5k Pile B          | Scrap           | 29.9          | 28.4          | 9,100              |  |
| W51G             | W51G     | Outside Rail Scrap 5k Pile C          | Scrap           | 29.9          | 28.4          | 9,100              |  |
| W51H             | W51H     | Outside Rail Scrap 5k Pile D          | Scrap           | 29.9          | 28.4          | 9,100              |  |
| W51K             | W51K     | Outside Truck Scrap 5k Pile A         | Scrap           | 29.9          | 28.4          | 9,100              |  |
| W51L             | W51L     | Outside Truck Scrap 5k Pile B         | Scrap           | 29.9          | 28.4          | 9,100              |  |
| W51M             | W51M     | Outside Truck Scrap 5k Pile C         | Scrap           | 29.9          | 28.4          | 9,100              |  |
| W51N             | W51N     | Outside Truck Scrap 5k Pile D         | Scrap           | 29.9          | 28.4          | 9,100              |  |
| W61              | W61      | Alloy Aggregate Storage Pile          | Alloy Aggregate | 6.6           | 14.6          | 1,000              |  |
| W71A             | W71A     | SPP Slag Storage Pile                 | Slag            | -             | -             | 29,100             |  |
| W71B1            | W71B1    | SPP A-Scrap Pile                      | SPP Product     |               |               |                    |  |
| W71B2            | W71B2    | SPP B-Scrap Pile                      | SPP Product     |               |               |                    |  |
| W71B3            | W71B3    | SPP C-Scrap Pile                      | SPP Product     |               |               |                    |  |
| W71B4            | W71B4    | SPP No. 1 Products Pile               | SPP Product     | -             | -             | 74,100             |  |
| W71B5            | W71B5    | SPP No. 2 Products Pile               | SPP Product     |               |               |                    |  |
| W71B6            | W71B6    | SPP No. 3 Products Pile               | SPP Product     |               |               |                    |  |
| W71B7            | W71B7    | SPP Overs Pile                        | SPP Product     |               |               |                    |  |
| W81              | W81      | Residual Scrap Storage Pile in Scrap  | Residual Scrap  | 99.1          | 19.9          | 21,200             |  |
| W111             | W111     | Mill Scale Pile                       | Mill Scale      | 15.6          | 20.9          | 3,500              |  |

Table A-1k. Emergency Generators

| Emission<br>Unit ID | Emission<br>Point ID | Emission Unit Description   | Engine Tier                        | Rating<br>(hp) |
|---------------------|----------------------|-----------------------------|------------------------------------|----------------|
| EGEN1               | EGEN1                | Emergency Generator 1       | Model Year 2006+,<br>Tier 3 Engine | 1,600          |
| EFWP1               | EFWP1                | Emergency Fire Water Pump 1 | Model Year 2006+,<br>Tier 3 Engine | 300            |

Table A-11. Diesel Storage Tanks

| Emission<br>Unit ID | Emission<br>Point ID | Emission Unit Description                            | Tank Type                | Maximum Fill<br>Rate<br>(gal/hr) | Tank Capacity<br>(gal) | Annual<br>Throughput<br>(gal/yr) | Maximum<br>Annual<br>Turnovers | Tank Diameter<br>(ft) | Tank<br>Length/<br>Height<br>(ft) |
|---------------------|----------------------|------------------------------------------------------|--------------------------|----------------------------------|------------------------|----------------------------------|--------------------------------|-----------------------|-----------------------------------|
| DSLTK-GEN1          | DSLTK-GEN1           | Diesel Storage Tank for Emergency<br>Generator No. 1 | Horizontal Fixed<br>Roof | 500                              | 500                    | 25,000                           | 50                             | 4                     | 6                                 |
| DSLTK-FWP1          | DSLTK-FWP1           | Diesel Storage Tank for Fire Water<br>Pump No. 1     | Horizontal Fixed<br>Roof | 500                              | 500                    | 25,000                           | 50                             | 4                     | 6                                 |
| DSLTK-VEH           | DSLTK-VEH            | Diesel Storage Tank Supporting On-Site<br>Vehicles   | Vertical Fixed Roof      | 5,000                            | 5,000                  | 250,000                          | 50                             | 8.5                   | 12.6                              |

Table A-2. Road Traffic

| Origin                    | Destination            | Material                             | Vehicle Type          | Nu                  | ımber of Tr          | ips                 | Trip Dista | nce (one- | Trip Type | Vehicle Miles Travelled |           |          |
|---------------------------|------------------------|--------------------------------------|-----------------------|---------------------|----------------------|---------------------|------------|-----------|-----------|-------------------------|-----------|----------|
|                           |                        |                                      |                       | (hr <sup>-1</sup> ) | (day <sup>-1</sup> ) | (yr <sup>-1</sup> ) | (ft)       | (mile)    | ]         | (VMT/hr)                | (VMT/day) | (VMT/yr) |
| Off-Site                  | ECS Building Scrap Bay | Scrap                                | Haul Truck            | 2                   | 40                   | 10,533              | 2,696      | 0.51      | Round     | 2.04                    | 40.84     | 10,755   |
| Off-Site                  | Scrap Yard             | Scrap                                | Haul Truck            | 1                   | 18                   | 4,514               | 3,852      | 0.73      | Round     | 1.46                    | 26.26     | 6,586    |
| Around Scrap Yard         | Around Scrap Yard      | Scrap                                | Euclid/Roll-Off Truck | 1                   | 18                   | 4,514               | 2,194      | 0.42      | Round     | 0.83                    | 14.96     | 3,751    |
| Around Scrap Yard         | Around Scrap Yard      | Scrap                                | Haul Truck            | 1                   | 18                   | 4,514               | 2,194      | 0.42      | Round     | 0.83                    | 14.96     | 3,751    |
| Off-Site                  | Silos                  | Coal/Coke                            | Haul Truck            | 1                   | 2                    | 474                 | 2,888      | 0.55      | Round     | 1.09                    | 2.19      | 519      |
| Off-Site                  | Storage                | Raw Materials / Supplies             | Euclid/Roll-off Truck | 2                   | 2                    | 232                 | 3,439      | 0.65      | Round     | 2.61                    | 2.61      | 302      |
| Storage                   | Meltshop               | Raw Materials / Supplies             | Forklift/Loader       | 2                   | 2                    | 232                 | 338        | 0.06      | Round     | 0.26                    | 0.26      | 30       |
| Off-Site                  | Silos                  | Fluxing Agent                        | Haul Truck            | 1                   | 5                    | 1,111               | 2,888      | 0.55      | Round     | 1.09                    | 5.47      | 1,215    |
| Off-Site                  | Alloy Pile             | Alloy Aggregate                      | Haul Truck            | 2                   | 3                    | 476                 | 3,051      | 0.58      | Round     | 2.31                    | 3.47      | 550      |
| Meltshop                  | Off-Site               | Removed Refractory / Other Materials | Haul Truck            | 1                   | 1                    | 52                  | 3,215      | 0.61      | Round     | 1.22                    | 1.22      | 63       |
| Finished Products Storage | Off-Site               | Finished Product                     | Haul Truck            | 3                   | 72                   | 18,959              | 7,598      | 1.44      | Round     | 8.63                    | 207.21    | 54,562   |
| Off-Site                  | Gas Storage Area       | Gas                                  | Gas Truck             | 2                   | 4                    | 754                 | 3,439      | 0.65      | Round     | 2.61                    | 5.21      | 982      |
| Mill Scale Pile           | Off-Site               | Mill Scale                           | Haul Truck            | 1                   | 5                    | 542                 | 4,480      | 0.85      | Round     | 1.70                    | 8.48      | 920      |
| Meltshop                  | Quench Building        | Slag                                 | Euclid/Roll-off Truck | 2                   | 30                   | 6,191               | 501        | 0.09      | Round     | 0.38                    | 5.70      | 1,176    |
| Quench Building           | SPP Area               | Slag                                 | Euclid/Roll-off Truck | 2                   | 30                   | 6,191               | 454        | 0.09      | Round     | 0.34                    | 5.16      | 1,064    |
| Within SPP Area           | Within SPP Area        | Slag                                 | Loader                | 2                   | 30                   | 6,191               | 549        | 0.10      | Round     | 0.42                    | 6.24      | 1,287    |
| SPP Area                  | Off-Site               | Slag                                 | Haul Truck            | 1                   | 12                   | 3,456               | 3,021      | 0.57      | Round     | 1.14                    | 13.73     | 3,954    |
| Trailer Parking Area      | Trailer Parking Area   | -                                    | Trailer               | 1                   | 15                   | 3,792               | 1,918      | 0.36      | Round     | 0.73                    | 10.90     | 2,756    |
| General Support           | General Support        | -                                    | Loader                | 2                   | 16                   | 3,212               | 11,002     | 2.08      | Round     | 8.34                    | 66.68     | 13,386   |

Table A-3a. Controls - Material Transfers

|          |          | Material Transfers                                             |                                            | Fine    | Moisture |                     |                |                                                    |  |  |
|----------|----------|----------------------------------------------------------------|--------------------------------------------|---------|----------|---------------------|----------------|----------------------------------------------------|--|--|
| Emission | Emission | Transfer Description                                           | Material                                   | Content | Content  | Control Application |                |                                                    |  |  |
| Unit ID  | Point ID | •                                                              |                                            | (%)     | (%)      | Control             | Efficiency (%) | Basis                                              |  |  |
| TR51A    | TR51A    | Inside ECS Building Drop Points,<br>Scrap                      | Scrap                                      | 1       | 1        | Partial Enclosure   | 50             | WVDEP General Permit G40-C<br>Instructions Table A |  |  |
| TR51B    | TR51B    | Outside ECS Building Drop<br>Points, Scrap, Storage Area       | Scrap                                      | 1       | 1        | None                | 0              |                                                    |  |  |
| TR51C    | TR51C    | Outside Rail Bins Drop Point,<br>Scrap                         | Scrap                                      | 1       | 1        | None                | 0              |                                                    |  |  |
| TR51E    | TR51E    | Outside Truck Bins Drop Point,<br>Scrap                        | Scrap                                      | 1       | 1        | None                | 0              |                                                    |  |  |
| TR71     | TR71     | Inside ECS Building Drop Points,<br>Fluxing Agent              | Fluxing Agent                              | 7       | 1        | Full Enclosure      | 80             | WVDEP General Permit G40-C<br>Instructions Table A |  |  |
| TR81     | TR81     | Outside Drop Points, Alloy<br>Aggregate                        | Alloy Aggregate                            | 1       | 1        | Partial Enclosure   | 50             | WVDEP General Permit G40-C<br>Instructions Table A |  |  |
| TR91A    | TR91A    | Inside Drop Points, Removed<br>Refractory and Other Materials  | Removed<br>Refractory / Other<br>Materials | 10      | 1        | Full Enclosure      | 80             | WVDEP General Permit G40-C<br>Instructions Table A |  |  |
| TR91B    | TR91B    | Outside Drop Points, Removed<br>Refractory and Other Materials | Removed<br>Refractory / Other<br>Materials | 10      | 1        | None                | 0              |                                                    |  |  |
| TR11A    | TR11A    | Outside SPP Pile Drop Points,<br>Slag                          | Slag                                       | 2       | 12       | None                | 0              |                                                    |  |  |
| TR11B    | TR11B    | Proposed Drop Points, Metallic Materials                       | Metallic Materials                         | 1       | 4        | Moisture Content    |                |                                                    |  |  |
| IKIID    | IKIID    | Proposed Drop Points, Non-<br>Metallic Materials               | Non-Metallic<br>Materials                  | 2       | 4        | of Material         | <u>-</u>       |                                                    |  |  |
| TR131    | TR131    | Outside Drop Points, Residual<br>Scrap Pile                    | Residual Scrap                             | 2       | 1        | None                | 0              |                                                    |  |  |
| TR141    | TR141    | Outside Drop Points, Mill Scale<br>Pile                        | Mill Scale                                 | 15      | 1        | Partial Enclosure   | 50             | WVDEP General Permit G40-C<br>Instructions Table A |  |  |

Table A-3b. Controls - Storage Piles

| Emission | Emission | Dila Description                             | Matarial        |     | Silt Content                                                          | Control Application |                |                                                    |  |
|----------|----------|----------------------------------------------|-----------------|-----|-----------------------------------------------------------------------|---------------------|----------------|----------------------------------------------------|--|
| Unit ID  | Point ID |                                              | Material -      | (%) | Basis                                                                 | Control             | Efficiency (%) | Basis                                              |  |
| W51A     | W51A     | ECS Scrap Building Storage Pile<br>A         | Scrap           | 4.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | Partial Enclosure   | 50             | WVDEP General Permit G40-C<br>Instructions Table A |  |
| W51B     | W51B     | ECS Scrap Building Storage Pile<br>B         | Scrap           | 4.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006 Partial Enclosure 50 |                     | 50             | WVDEP General Permit G40-C<br>Instructions Table A |  |
| W51C     | W51C     | ECS Scrap Building Storage Pile<br>C         | Scrap           | 4.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | Partial Enclosure   | 50             | WVDEP General Permit G40-C<br>Instructions Table A |  |
| W51D     | W51D     | ECS Scrap Building Overage<br>Scrap Pile     | Scrap           | 4.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | None                | -              |                                                    |  |
| W51E     | W51E     | Outside Rail Scrap 5k Pile A                 | Scrap           | 4.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | None                | -              |                                                    |  |
| W51F     | W51F     | Outside Rail Scrap 5k Pile B                 | Scrap           | 4.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | None                | -              |                                                    |  |
| W51G     | W51G     | Outside Rail Scrap 5k Pile C                 | Scrap           | 4.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | None                | -              |                                                    |  |
| W51H     | W51H     | Outside Rail Scrap 5k Pile D                 | Scrap           | 4.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | None                | -              |                                                    |  |
| W51K     | W51K     | Outside Truck Scrap 5k Pile A                | Scrap           | 4.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | None                | -              |                                                    |  |
| W51L     | W51L     | Outside Truck Scrap 5k Pile B                | Scrap           | 4.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | None                | -              |                                                    |  |
| W51M     | W51M     | Outside Truck Scrap 5k Pile C                | Scrap           | 4.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | None                | -              |                                                    |  |
| W51N     | W51N     | Outside Truck Scrap 5k Pile D                | Scrap           | 4.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | None                | -              |                                                    |  |
| W61      | W61      | Alloy Aggregate Storage Pile                 | Alloy Aggregate | 2.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | Partial Enclosure   | 50             | WVDEP General Permit G40-C<br>Instructions Table A |  |
| W71A     | W71A     | SPP Slag Storage Pile                        | Slag            | 5.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | None                | -              |                                                    |  |
| W71B1    | W71B1    | SPP A-Scrap Pile                             | SPP Product     |     |                                                                       |                     |                |                                                    |  |
| W71B2    | W71B2    | SPP B-Scrap Pile                             | SPP Product     |     |                                                                       |                     |                |                                                    |  |
| W71B3    | W71B3    | SPP C-Scrap Pile                             | SPP Product     |     |                                                                       |                     |                |                                                    |  |
| W71B4    | W71B4    | SPP No. 1 Products Pile                      | SPP Product     | 5.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | None                | -              |                                                    |  |
| W71B5    | W71B5    | SPP No. 2 Products Pile                      | SPP Product     |     |                                                                       |                     |                |                                                    |  |
| W71B6    | W71B6    | SPP No. 3 Products Pile                      | SPP Product     |     |                                                                       |                     |                |                                                    |  |
| W71B7    | W71B7    | SPP Overs Pile                               | SPP Product     |     |                                                                       |                     |                |                                                    |  |
| W81      | W81      | Residual Scrap Storage Pile in<br>Scrap Yard | Residual Scrap  | 5.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | None                | -              |                                                    |  |
| W111     | W111     | Mill Scale Pile                              | Mill Scale      | 5.3 | Per U.S. EPA AP-42 Section 13.2.4, November 2006                      | Partial Enclosure   | 50             | WVDEP General Permit G40-C Instructions Table A    |  |

Table A-3c. Controls - Roads

| <b>Emission Emission</b> |          | Description                               | Silt Loading |                  |                                                     | Control Application |                |                                                                 |  |
|--------------------------|----------|-------------------------------------------|--------------|------------------|-----------------------------------------------------|---------------------|----------------|-----------------------------------------------------------------|--|
| Unit ID                  | Point ID | <b>3 3 3 3 3 3 3 3 3 3</b>                | Value        | Value Unit Basis |                                                     | Control             | Efficiency (%) | Basis                                                           |  |
| PR1                      | PR1      | Paved Roads                               | 3.34         | g/m²             | WVDEP General Permit G40-C<br>Instructions Table A  | Watering + Sweeping | 96             | 2008 TSD of CMC AZ MCAQD Permit V07-001 contained in Appendix C |  |
| UR1                      | UR1      | Unpaved Roads - Slag Quench<br>Operations | 6            | %                | Per U.S. EPA AP-42 Section<br>13.2.2, November 2006 | Watering            | 70             | WVDEP General Permit G40-C Instructions Table A                 |  |

Table A-4a. Emissions - Baghouse - EAF and LMS

| Emission   | Emission | Emission Unit | Steel Pro          | duction Rate    | Flow Rate          |                                      | Pollutant     |           |                        |                         |                         |          |          |                 |          |           |
|------------|----------|---------------|--------------------|-----------------|--------------------|--------------------------------------|---------------|-----------|------------------------|-------------------------|-------------------------|----------|----------|-----------------|----------|-----------|
| Unit ID    | Point ID | Description   | Hourly<br>(ton/hr) | Annual<br>(tpy) | Standard<br>(scfm) | Dry Standard <sup>1, 2</sup> (dscfm) | Filterable PM | Total PM  | Total PM <sub>10</sub> | Total PM <sub>2.5</sub> | NO <sub>x</sub>         | СО       | voc      | SO <sub>2</sub> | Pb       | Fluorides |
|            |          |               |                    |                 |                    |                                      |               |           |                        | Emission Fac            | ctor <sup>3</sup>       |          |          |                 |          |           |
|            |          |               |                    |                 |                    |                                      | (gr/dscf)     | (gr/dscf) | (gr/dscf)              | (gr/dscf)               | (lb/ton)                | (lb/ton) | (lb/ton) | (lb/ton)        | (lb/ton) | (lb/ton)  |
|            |          | Meltshop      |                    |                 |                    |                                      | 0.0018        | 0.0052    | 0.0052                 | 0.0052                  | 0.3                     | 4        | 0.3      | 0.3             | 0.0016   | 0.010     |
| EAF1, LMS1 | BH1      | Baghouse      | 117                | 650,000         | 679,000            | 671,192                              |               |           |                        | <b>Hourly Emissions</b> | (lb/hr) <sup>4, 5</sup> |          |          |                 |          |           |
|            |          |               |                    |                 |                    |                                      | 10.36         | 29.92     | 29.92                  | 29.92                   | 45.63                   | 936      | 35.10    | 49.14           | 0.19     | 1.17      |
|            |          |               |                    |                 |                    |                                      |               |           |                        | Annual Emissions        | s <sup>6, 7</sup> (tpy) |          |          |                 |          |           |
|            |          |               |                    |                 |                    |                                      | 45.36         | 131.03    | 131.03                 | 131.03                  | 97.50                   | 1,300    | 97.50    | 97.50           | 0.52     | 3.25      |

<sup>&</sup>lt;sup>1</sup> Dry Standard Flow Rate (dscfm) = Standard (scfm) x (1 - Moisture Content (%) / 100).

NOx short-term variability factor 1.3

CO short-term variability factor 2.0

SO<sub>2</sub> short-term variability factor 1.4

Pursuant to 77 FR 65107, October 25, 2012, PM emissions include filterable particulate emissions only whereas  $PM_{10}$  and  $PM_{2.5}$  include both filterable and condensable fractions.

Table A-4b. Emissions - Uncaptured - EAF and LMS

| Emission   | Emission | Emission Unit |               |          |                        | ı                       | Emission Estimate <sup>1</sup> |      |       |                 |        |           |
|------------|----------|---------------|---------------|----------|------------------------|-------------------------|--------------------------------|------|-------|-----------------|--------|-----------|
| Unit ID    | Point ID | Description   | Filterable PM | Total PM | Total PM <sub>10</sub> | Total PM <sub>2.5</sub> | NO <sub>x</sub>                | СО   | voc   | SO <sub>2</sub> | Pb     | Fluorides |
|            |          |               |               |          |                        | Но                      | urly Emissions (lb/            | nr)  |       |                 |        |           |
| EAF1, LMS1 | CV1      | Caster Vent   | 0.13          | 0.37     | 0.37                   | 0.37                    | 0.11                           | 2.35 | 0.088 | 0.12            | 0.0023 | 0.015     |
| CAFI, LMSI | CVI      | Caster Vent   |               |          |                        | Ar                      | nual Emissions (tp             | y)   |       |                 |        |           |
|            |          |               | 0.57          | 1.64     | 1.64                   | 1.64                    | 0.24                           | 3.26 | 0.24  | 0.24            | 0.0065 | 0.041     |

<sup>&</sup>lt;sup>1</sup> Fugitive emissions, associated with the EAF/LMS, are calculated by based on the following:

DEC Capture Efficiency 95% Capture efficiency based on BACT for similar facilities.
Canopy Hood Capture Efficiency 95% Capture efficiency based on BACT for similar facilities.
Building Capture Efficiency 90% Capture efficiency based on BACT for similar facilities.
Baghouse Control Efficiency 98% Based on process knowledge

Estimation of fugitive emissions based on the melting and refining operation mode based on the following evaluation.

| EAF/LMS                         |            |                    | Building Enclosure | C   | apture Efficiency <sup>b</sup> |                       | Emission     | ns Intensity (lb/ton) <sup>c</sup> |                         |
|---------------------------------|------------|--------------------|--------------------|-----|--------------------------------|-----------------------|--------------|------------------------------------|-------------------------|
| Operation Mode <sup>a</sup>     | DEC Status | Canopy Hood Status | Status             | DEC | Canopy Hood                    | Building<br>Enclosure | Uncontrolled | Non-Particulate<br>Fugitive        | Particulate<br>Fugitive |
| Melting and Refining            | Active     | Active             | Active             | 95% | 95%                            | 90%                   | 38           | 0.095                              | 0.0095                  |
| Charging, Tapping, and Slagging | Inactive   | Active             | Active             | 0%  | 95%                            | 90%                   | 1.4          | 0.070                              | 0.0070                  |

<sup>&</sup>lt;sup>a</sup> Note that similar to the EAF, the LMS is also covered with a DEC lid that operates similar to the EAF DEC cover.

The following moisture content was determined from average measurements during the February 25-26, 2014 performance testing conducted on the CMC steel micro-mill in Mesa, AZ for a substantially similar process and baghous 1.15%

<sup>&</sup>lt;sup>3</sup> Emission factors for PM, PM<sub>10</sub>, PM<sub>2.5</sub>, NO<sub>X</sub>, CO, VOC, SO<sub>2</sub>, and Fluorides per BACT determination; Pb emission factors is based on process knowledge and a review of the RBLC.

<sup>&</sup>lt;sup>4</sup> PM, PM<sub>10</sub>, PM<sub>2.5</sub> Hourly Emissions (lb/hr) = Short-Term Emission Factor (gr/dscf x Flow Rate (dscfm) / 7,000 (gr/lb) x 60 (min/hr).

<sup>&</sup>lt;sup>5</sup> NOx, CO, VOC, SO<sub>2</sub>, Pb, Fluorides Hourly Emissions lb/hr) = Short-Term Emission Factor (lb/ton) x Hourly Proposed Steel Production (ton/hr) Short-term emissions of NOx, SO<sub>2</sub>, and CO incorporate the following short-term variability factors based on process knowledge and engineering estimates:

<sup>&</sup>lt;sup>6</sup> PM, PM<sub>10</sub>, PM<sub>2.5</sub> Annual Emissions (tpy) = Short-Term Emission Factor (gr/dscf x Flow Rate (dscfm) / 7,000 (gr/lb) x 60 (min/hr) x 8,760 (hr/yr) / 2,000 lb/ton).

<sup>&</sup>quot;By contrast, "particulate matter emissions" is regulated as a non-criteria pollutant under the portion of the definition that refers to "[a]ny pollutant that is subject to any standard promulgated under section 111 of the Act," where the condensable PM fraction generally is not required to be included in measurements to determine compliance with standards performance for PM. See 40 CFR 51.166(b)(49)(ii) and 52.21(b)(50)(ii)."

NOx, CO, VOC, SO<sub>2</sub>, Pb, Fluorides Annual Emissions (tpy) = Emission Factor (lb/ton) x Annual Proposed Steel Production (tpy) / 2,000 (lb/ton)

<sup>&</sup>lt;sup>b</sup> DEC and Canopy Hood capture efficiency based on BACT for similar facilities.

<sup>&</sup>lt;sup>c</sup> Emission intensity per Energy and Environmental Profile of the U.S. Iron and Steel Industry, U.S. Department of Energy (Aug. 2000), Table 5-3, for EAF (melting, refining, charging, tapping, and slagging alloy steel). Note that only "Particulate" is listed in the Table 5-3 under the rows for both "Melting and Refining" and "Charging, Tapping, and Slagging".

Therefore, "Particulate" is used as an indicator of emission intensity during the various EAF operation modes

Table A-4c. GHG Emissions - EAF and LMS

|                     |                      |                              | Production<br>Rate | CO <sub>2</sub> Emission<br>Factor <sup>1</sup> | Annual Emissions <sup>1, 2</sup><br>(tpy) |                   |  |  |
|---------------------|----------------------|------------------------------|--------------------|-------------------------------------------------|-------------------------------------------|-------------------|--|--|
| Emission<br>Unit ID | Emission<br>Point ID | Emission Unit<br>Description | (tpy)              | (metric<br>ton/metric ton)                      | CO <sub>2</sub>                           | CO <sub>2</sub> e |  |  |
| EAF1, LMS1          | BH1                  | Meltshop<br>Baghouse         | 650,000            | 0.18                                            | 119,513                                   | 119,513           |  |  |
| EAF1, LMS1          | CV1                  | Caster Vent                  | 030,000            | -                                               | 300                                       | 300               |  |  |

<sup>1</sup> Emissions of CO<sub>2</sub> calculated per 40 CFR Part 98, Subpart Q, Equation Q-8 and 40 CFR §98.173(b)(2)(iii).

$$CO_2 = 5.18x10^{-7}xC_{CO2}xQx\left(\frac{100 - \%H2O}{100}\right)$$

Calculation paramaters based on the following.

|                  |           |         | C <sub>co2</sub> | Q          |      | CO <sub>2</sub>  | Pr        | ocess Rate       | CO2 Emission Factor     |
|------------------|-----------|---------|------------------|------------|------|------------------|-----------|------------------|-------------------------|
| Location         | Test Date | Run No. | (% dry)          | (SCFH)     | %H₂O | (metric tons/hr) | (tons/hr) | (metric tons/hr) | (metric ton/metric ton) |
|                  |           | 1       | 0.91             | 15,200,000 | 3.90 | 6.89             | 58.64     | 53.20            | 0.129                   |
|                  | 6/26/2018 | 2       | 0.91             | 18,200,000 | 3.50 | 8.28             | 59.89     | 54.33            | 0.152                   |
|                  |           | 3       | 0.60             | 18,900,000 | 3.10 | 5.69             | 54.45     | 49.40            | 0.115                   |
|                  |           | 1       | 0.75             | 16,922,105 | 2.28 | 6.42             | 67.85     | 61.55            | 0.104                   |
| CMC Durant, OK   | 9/21/2021 | 2       | 0.78             | 17,023,242 | 2.68 | 6.69             | 65.34     | 59.28            | 0.113                   |
|                  |           | 3       | 0.81             | 17,105,437 | 2.63 | 6.99             | 67.36     | 61.11            | 0.114                   |
|                  | 7/28/2022 | 1       | 0.57             | 22,827,480 | 2.64 | 6.56             | 67.24     | 61.00            | 0.108                   |
|                  | 7/20/2022 | 2       | 0.59             | 23,052,900 | 2.3  | 6.88             | 67.98     | 61.67            | 0.112                   |
|                  | 7/29/2022 | 3       | 0.57             | 23,246,940 | 2.68 | 6.68             | 67.88     | 61.58            | 0.108                   |
|                  |           | 1       | 0.74             | 15,520,000 | 1.6  | 5.85             | 60.19     | 54.6             | 0.107                   |
|                  | 2/12/2010 | 2       | 0.84             | 15,520,000 | 1.6  | 6.65             | 63.60     | 57.7             | 0.115                   |
|                  | 2/12/2019 | 3       | 0.79             | 16,610,000 | 1.7  | 6.68             | 71.54     | 64.9             | 0.103                   |
|                  |           | 4       | 0.73             | 16,610,000 | 1.7  | 6.17             | 62.83     | 57.0             | 0.108                   |
|                  |           | 1       | 0.88             | 18,700,000 | 2.8  | 8.29             | 57.98     | 52.6             | 0.158                   |
|                  | 2/10/2020 | 2       | 1.05             | 18,700,000 | 2.8  | 9.89             | 65.37     | 59.3             | 0.167                   |
| CMC Mesa, AZ     | 2/18/2020 | 3       | 0.79             | 18,370,000 | 2.9  | 7.30             | 59.41     | 53.9             | 0.135                   |
| CIVIC IVIESA, AZ |           | 4       | 1.00             | 18,370,000 | 2.9  | 9.24             | 66.25     | 60.1             | 0.154                   |
|                  |           | 1       | 0.81             | 19,020,000 | 1.5  | 7.86             | 58.09     | 52.7             | 0.149                   |
|                  |           | 2       | 0.73             | 19,020,000 | 1.5  | 7.08             | 45.53     | 41.3             | 0.172                   |
|                  | 2/22/2021 | 3       | 0.83             | 19,590,000 | 2.2  | 8.24             | 49.38     | 44.8             | 0.184                   |
|                  | 2/23/2021 | 4       | 0.63             | 19,590,000 | 2.2  | 6.25             | 47.40     | 43.0             | 0.145                   |
|                  |           | 5       | 0.79             | 19,590,000 | 2.2  | 7.84             | 56.66     | 51.4             | 0.153                   |
|                  |           | 6       | 0.78             | 19,590,000 | 2.2  | 7.74             | 56.66     | 51.4             | 0.151                   |
| Max              |           |         |                  |            |      |                  |           |                  | 0.184                   |

The operations at CMC Durant, OK and CMC Mesa, AZ are associated with an ECS micro-mill and are substantially similar to the proposed Project. The maximum emission factor is used to account for possible variations in the carbon source at the proposed Project and its potential impact on emissions.

 $CO_2$  Emission Factor (metric ton/metric ton) =  $CO_2$  Emission Rate (metric ton/hr) / Hourly Steel Production Rate (metric ton/hr).

 $<sup>^2\,</sup>$  CO $_2$ e calculated using Global Warming Potentials (GWPs) from Table A-1 of 40 CFR Part 98, December 2014.

Table A-4d. HAP Emissions - EAF and LMS

| Emission<br>Unit ID | Emission<br>Point ID | Emission Unit Description |       | oduction Rate | Species                                     | Emission Factors | 2        | Annual<br>Emissions <sup>3</sup> |
|---------------------|----------------------|---------------------------|-------|---------------|---------------------------------------------|------------------|----------|----------------------------------|
|                     |                      | -                         | (tph) | (tpy)         |                                             | (lb/ton)         | (lb/hr)  | (tpy)                            |
|                     |                      |                           |       |               | Lead Compounds                              | 1.60E-03         | 1.87E-01 | 5.20E-01                         |
|                     |                      |                           |       |               | Arsenic                                     | 1.10E-05         | 1.28E-03 | 3.56E-03                         |
|                     |                      |                           |       |               | Beryllium                                   | 1.29E-05         | 1.51E-03 | 4.19E-03                         |
|                     |                      |                           |       |               | Cadmium                                     | 2.10E-04         | 2.46E-02 | 6.83E-02                         |
|                     |                      |                           |       |               | Chromium                                    | 7.53E-04         | 8.80E-02 | 2.45E-01                         |
|                     |                      |                           |       |               | Manganese                                   | 3.72E-03         | 4.36E-01 | 1.21E+00                         |
| EAF1, LMS1          | BH1                  | Meltshop                  | 117   | 650,000       | Mercury                                     | 6.20E-04         | 7.25E-02 | 2.02E-01                         |
| LAI 1, LI151        | DIT                  | Baghouse                  | 117   | 030,000       | Nickel                                      | 4.36E-05         | 5.10E-03 | 1.42E-02                         |
|                     |                      |                           |       |               | 2,3,7,8-<br>Tetrachlorodibenzo-p-<br>dioxin | 6.63E-08         | 7.75E-06 | 2.15E-05                         |
|                     |                      |                           |       |               | Cobalt                                      | 4.53E-05         | 5.30E-03 | 1.47E-02                         |
|                     |                      |                           |       |               | Antimony                                    | 4.98E-05         | 5.83E-03 | 1.62E-02                         |
|                     |                      |                           |       |               | Selenium                                    | 2.74E-05         | 3.21E-03 | 8.91E-03                         |
|                     |                      |                           |       |               | Lead Compounds                              | 2.01E-05         | 2.35E-03 | 6.52E-03                         |
|                     |                      |                           |       |               | Arsenic                                     | 1.37E-07         | 1.61E-05 | 4.46E-05                         |
|                     |                      |                           |       |               | Beryllium                                   | 1.61E-07         | 1.89E-05 | 5.25E-05                         |
|                     |                      |                           |       |               | Cadmium                                     | 2.63E-06         | 3.08E-04 | 8.55E-04                         |
|                     |                      |                           |       |               | Chromium                                    | 9.43E-06         | 1.10E-03 | 3.06E-03                         |
|                     |                      |                           |       |               | Manganese                                   | 4.67E-05         | 5.46E-03 | 1.52E-02                         |
| EAF1, LMS1          | CV1                  | Caster Vent               | 117   | 650,000       | Mercury                                     | 7.77E-06         | 9.09E-04 | 2.53E-03                         |
|                     |                      |                           |       | ·             | Nickel                                      | 5.47E-07         | 6.40E-05 | 1.78E-04                         |
|                     |                      |                           |       |               | 2,3,7,8-<br>Tetrachlorodibenzo-p-           | 8.30E-10         | 9.71E-08 | 2.70E-07                         |
|                     |                      |                           |       |               | dioxin                                      | F 67F 07         | 6.645.05 | 1 045 04                         |
|                     |                      |                           |       |               | Cobalt                                      | 5.67E-07         | 6.64E-05 | 1.84E-04                         |
|                     |                      |                           |       |               | Antimony                                    | 6.24E-07         | 7.30E-05 | 2.03E-04                         |
|                     |                      |                           |       |               | Selenium                                    | 3.43E-07         | 4.02E-05 | 1.12E-(                          |

HAP emission factors are based on process experience from other CMC micro mills
 Hourly Emissions lb/hr) = Hourly Steel Production Rate (ton/hr) x Emission Factor lb/ton).

Table A-5. Emissions - Fabric Filters

|                     |                      |                                     |                  |                   | Annual<br>Operation |             | Emission Factor <sup>1</sup><br>(gr/dscf) |                            | Hourly Emissions 2,4<br>(lb/hr) |                           |                            | Annual Emissions <sup>3</sup> (tpy) |                           |                            |
|---------------------|----------------------|-------------------------------------|------------------|-------------------|---------------------|-------------|-------------------------------------------|----------------------------|---------------------------------|---------------------------|----------------------------|-------------------------------------|---------------------------|----------------------------|
| Emission<br>Unit ID | Emission<br>Point ID | Emission Unit Description           | Material         | Flow Rate (dscfm) | (hr/yr)             | Total<br>PM | Total<br>PM <sub>10</sub>                 | Total<br>PM <sub>2.5</sub> | Total<br>PM                     | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total<br>PM                         | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> |
| FLXSLO11            | FLXSLO11             | Fluxing Agent Storage Silo No.<br>1 | Fluxing Agent    | 3,000             | 1,000               | 0.005       | 0.005                                     | 0.005                      | 0.13                            | 0.13                      | 0.13                       | 0.064                               | 0.064                     | 0.064                      |
| FLXSLO12            | FLXSLO12             | Fluxing Agent Storage Silo No. 2    | Fluxing Agent    | 3,000             | 1,000               | 0.005       | 0.005                                     | 0.005                      | 0.13                            | 0.13                      | 0.13                       | 0.064                               | 0.064                     | 0.064                      |
| CARBSLO1            | CARBSLO1             | Carbon Storage Silo No. 1           | Coal/Coke        | 2,050             | 1,000               | 0.005       | 0.005                                     | 0.005                      | 0.088                           | 0.088                     | 0.088                      | 0.044                               | 0.044                     | 0.044                      |
| DUSTSLO1            | DUSTSLO1             | EAF Baghouse Dust Silo              | Baghouse<br>Dust | 1,300             | 8,760               | 0.005       | 0.005                                     | 0.005                      | 0.056                           | 0.056                     | 0.056                      | 0.24                                | 0.24                      | 0.24                       |

<sup>&</sup>lt;sup>1</sup> Emission factors per BACT determination.

<sup>2</sup> Hourly Emissions Ib/hr) = Emission Factor (gr/dscf x Flow Rate (dscfm) / 7,000 (gr/lb) x 60 (min/hr).

3 Annual Emissions (tpy) = Hourly Emissions Ib/hr) x (hr/yr) / 2,000 lb/ton).

Emissions through the filter vents only occur when the silo is being loaded which occurs at the base of the silo during truck deliveries and transfer of dust from the meltshop baghouse.

Table A-6. Emissions - Caster Teeming

|    | Emission | Emission Unit<br>Description | Steel Pro<br>Ra    | oduction<br>ite |          | Emission<br>(lb/          |                            |        |          | Hourly Er<br>(lb)         | nissions <sup>2</sup><br>'hr) |      |          | Annual Er<br>(tp          |                            |      |       |
|----|----------|------------------------------|--------------------|-----------------|----------|---------------------------|----------------------------|--------|----------|---------------------------|-------------------------------|------|----------|---------------------------|----------------------------|------|-------|
|    | Point ID |                              | Hourly<br>(ton/hr) | Annual<br>(tpy) | Total PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | voc    | Total PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub>    | voc  | Total PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | voc  |       |
| CA | ST1      | CV1                          | Caster Teeming     | 117             | 650,000  | 0.0070                    | 0.0070                     | 0.0070 | 0.00020  | 0.82                      | 0.82                          | 0.82 | 0.023    | 2.28                      | 2.28                       | 2.28 | 0.065 |

No emission factors are available for teeming associated with continuous casting so 10% of the factor for PM emissions from conventional ingot teeming of unleaded steel (uncontrolled) from AP-42 Section 12.5, Table 12.5-1, January 1995 and 10% of the factor for VOC emissions from conventional ingot teeming of unleaded steel (SCC 3-03-009) from Point Sources Committee's Emission Inventory Improvement Program: Uncontrolled Emission Factor Listing for Criteria Air Pollutants, July 2001 were used. The 10% assumption was made because (1) the transfer of steel from ladles to the tundish to the mold for the continuous caster is more enclosed than the transfer for conventional ingot casting and (2) the continuous caster mold is water-cooled while conventional molds are not. The emission factors for PM<sub>10</sub> and PM<sub>2.5</sub> are conservatively assumed to be equal to the emission factor for PM.

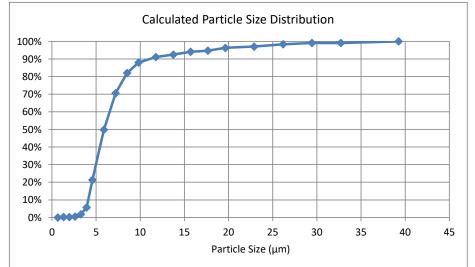
<sup>&</sup>lt;sup>2</sup> Hourly Emissions lb/hr) = Hourly Steel Production Rate (ton/hr) x Emission Factor lb/ton).

<sup>&</sup>lt;sup>3</sup> Annual Emissions (tpy) = Annual Steel Production Rate (tpy) x Emission Factor lb/ton) / 2,000 lb/ton).

Table A-7a. Emissions - Cooling Towers

| Emission | Emission | Emission Unit                           | Water Flow | Drift Loss | Drift Loss | TDS    | TDS<br>Density | Hour        | ly Emissi<br>(lb/hr)      | ions <sup>1</sup>          | Annual Emissions <sup>2</sup> (tpy) |                           |                            |
|----------|----------|-----------------------------------------|------------|------------|------------|--------|----------------|-------------|---------------------------|----------------------------|-------------------------------------|---------------------------|----------------------------|
| Unit ID  | Point ID | Description                             | (gal/min)  | (%)        | (gal/hr)   | (mg/l) | (mg/l)         | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total<br>PM                         | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> |
| CTNC11   | CTNC11A  | Non-Contact Cooling<br>Tower 1 - Cell 1 | 11,000     | 0.001%     | 7          | 2,000  | 2.5            | 0.11        | 0.08                      | 0.0002                     | 0.48                                | 0.33                      | 0.0010                     |
| CTNC11   | CTNC11B  | Non-Contact Cooling<br>Tower 1 - Cell 2 | 11,000     | 0.001%     | 7          | 2,000  | 2.5            | 0.11        | 0.08                      | 0.0002                     | 0.48                                | 0.33                      | 0.0010                     |
| CTNC12   | CTNC12A  | Non-Contact Cooling<br>Tower 2 - Cell 1 | 11,000     | 0.001%     | 7          | 2,000  | 2.5            | 0.11        | 0.08                      | 0.0002                     | 0.48                                | 0.33                      | 0.0010                     |
| CTNC12   | CTNC12B  | Non-Contact Cooling<br>Tower 2 - Cell 2 | 11,000     | 0.001%     | 7          | 2,000  | 2.5            | 0.11        | 0.08                      | 0.0002                     | 0.48                                | 0.33                      | 0.0010                     |
| CTC1     | CTC1A    | Contact Cooling Tower -<br>Cell 1       | 5,500      | 0.001%     | 3          | 2,000  | 2.5            | 0.06        | 0.04                      | 0.00012                    | 0.24                                | 0.16                      | 0.0005                     |
| CTC1     | CTC1B    | Contact Cooling Tower -<br>Cell 2       | 5,500      | 0.001%     | 3          | 2,000  | 2.5            | 0.06        | 0.04                      | 0.00012                    | 0.24                                | 0.16                      | 0.0005                     |

PM Hourly Emissions lb/hr) = Hourly Cooling Water Flow Rate (thou gal/hr) x 1,000 (gal/thou gal) x Drift Loss (%) / 100 x 8.34 lb/gal) x TDS Content (ppmw) / 1,000,000 (ppm).

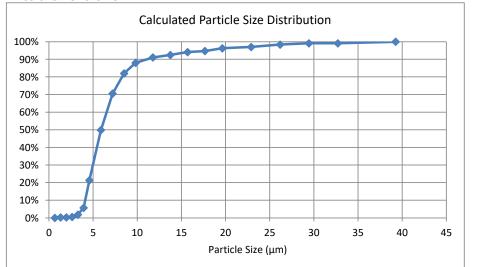

Annual emissions (tpy) calculated based on:

8,760 hr/yr hr/yr

Table A-7b. Emissions - Cooling Towers - Particulate Matter Emissions - Short-Term

| Tubic A 7 bi Ellissions   | - Cooling Towers - Farticulate Matt |
|---------------------------|-------------------------------------|
|                           | Data Entry                          |
| Emission Unit ID          | CTNC11                              |
| Emission Point ID         | CTNC11A                             |
| Emission Unit Description | Non-Contact Cooling                 |
| Emission Unit Description | Tower 1 - Cell 1                    |
| Water Circulation Rate    | 11,000 gal/min                      |
| PM Drift Rate             | 0.0010%                             |
| TDS                       | 2,000 ppmw                          |
| Droplet Density           | 1 g/cm³                             |
| Solids Density            | 2.5 g/cm <sup>3</sup>               |

| Calcul                      | ations       |
|-----------------------------|--------------|
| PM <sub>10</sub> Fraction   | 68.15%       |
| PM <sub>2.5</sub> Fraction  | 0.22%        |
| PM Emissions                | 0.11 lb/hr   |
| PM <sub>10</sub> Emissions  | 0.08 lb/hr   |
| PM <sub>2.5</sub> Emissions | 0.0002 lb/hr |

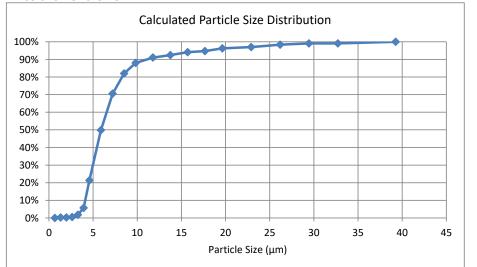



|          |             |          | Solid    | Solid     | Solid           | Mass Size    |           |                   |
|----------|-------------|----------|----------|-----------|-----------------|--------------|-----------|-------------------|
| Droplet  | Droplet     | Droplet  | Particle | Particle  | <b>Particle</b> | Distribution | $PM_{10}$ | PM <sub>2.5</sub> |
| Diameter | Volume      | Mass     | Mass     | Volume    | Diameter        | CDF          | Fraction  | Fraction          |
| (µm)     | (µm³)       | (µg)     | (µg)     | (µm³)     | (µm)            | (%)          | (%)       | (%)               |
| 10       | 524         | 1.31E-03 | 1.05E-06 | 0.42      | 0.93            | 0.00%        | 0.00%     | 0.00%             |
| 20       | 4,189       | 1.05E-02 | 8.38E-06 | 3.35      | 1.86            | 0.20%        | 0.00%     | 0.00%             |
| 30       | 14,137      | 3.53E-02 | 2.83E-05 | 11.31     | 2.78            | 0.23%        | 0.00%     | 0.22%             |
| 40       | 33,510      | 8.38E-02 | 6.70E-05 | 26.81     | 3.71            | 0.51%        | 0.00%     | 0.00%             |
| 50       | 65,450      | 1.64E-01 | 1.31E-04 | 52.36     | 4.64            |              | 0.00%     | 0.00%             |
| 60       | 113,097     | 2.83E-01 | 2.26E-04 | 90.48     | 5.57            |              | 0.00%     | 0.00%             |
| 70       | 179,594     | 4.49E-01 | 3.59E-04 | 143.68    | 6.50            | 21.35%       | 0.00%     | 0.00%             |
| 90       | 381,704     | 9.54E-01 | 7.63E-04 | 305.36    | 8.35            | 49.81%       | 0.00%     | 0.00%             |
| 110      | 696,910     | 1.74E+00 | 1.39E-03 | 557.53    | 10.21           | 70.51%       | 68.15%    | 0.00%             |
| 130      | 1,150,347   | 2.88E+00 | 2.30E-03 | 920.28    | 12.07           | 82.02%       | 0.00%     | 0.00%             |
| 150      | 1,767,146   | 4.42E+00 | 3.53E-03 | 1,413.72  | 13.92           | 88.01%       | 0.00%     | 0.00%             |
| 180      | 3,053,628   | 7.63E+00 | 6.11E-03 | 2,442.90  | 16.71           | 91.03%       | 0.00%     | 0.00%             |
| 210      | 4,849,048   | 1.21E+01 | 9.70E-03 | 3,879.24  | 19.49           | 92.47%       | 0.00%     | 0.00%             |
| 240      | 7,238,229   | 1.81E+01 | 1.45E-02 | 5,790.58  | 22.28           | 94.09%       | 0.00%     | 0.00%             |
| 270      | 10,305,995  | 2.58E+01 | 2.06E-02 | 8,244.80  | 25.06           | 94.69%       | 0.00%     | 0.00%             |
| 300      | 14,137,167  | 3.53E+01 | 2.83E-02 | 11,309.73 | 27.85           | 96.29%       | 0.00%     | 0.00%             |
| 350      | 22,449,298  | 5.61E+01 | 4.49E-02 | 17,959.44 | 32.49           | 97.01%       | 0.00%     | 0.00%             |
| 400      | 33,510,322  | 8.38E+01 | 6.70E-02 | 26,808.26 | 37.13           | 98.34%       | 0.00%     | 0.00%             |
| 450      | 47,712,938  | 1.19E+02 | 9.54E-02 | 38,170.35 | 41.77           | 99.07%       | 0.00%     | 0.00%             |
| 500      | 65,449,847  | 1.64E+02 | 1.31E-01 | 52,359.88 | 46.42           | 99.07%       | 0.00%     | 0.00%             |
| 600      | 113,097,336 | 2.83E+02 | 2.26E-01 | 90,477.87 | 55.70           | 100.00%      | 0.00%     | 0.00%             |

Table A-7c. Emissions - Cooling Towers - Particulate Matter Emissions - Short-Term

| cooming rowers runticulate riatte       |  |  |  |  |  |  |  |  |
|-----------------------------------------|--|--|--|--|--|--|--|--|
| Data Entry                              |  |  |  |  |  |  |  |  |
| CTNC11                                  |  |  |  |  |  |  |  |  |
| CTNC11B                                 |  |  |  |  |  |  |  |  |
| Non-Contact Cooling<br>Tower 1 - Cell 2 |  |  |  |  |  |  |  |  |
| 11,000 gal/min                          |  |  |  |  |  |  |  |  |
| 0.0010%                                 |  |  |  |  |  |  |  |  |
| 2,000 ppmw                              |  |  |  |  |  |  |  |  |
| 1 g/cm <sup>3</sup>                     |  |  |  |  |  |  |  |  |
| 2.5 g/cm <sup>3</sup>                   |  |  |  |  |  |  |  |  |
|                                         |  |  |  |  |  |  |  |  |

| Calculations                |              |  |  |  |  |  |  |
|-----------------------------|--------------|--|--|--|--|--|--|
| PM <sub>10</sub> Fraction   | 68.15%       |  |  |  |  |  |  |
| PM <sub>2.5</sub> Fraction  | 0.22%        |  |  |  |  |  |  |
| PM Emissions                | 0.11 lb/hr   |  |  |  |  |  |  |
| PM <sub>10</sub> Emissions  | 0.08 lb/hr   |  |  |  |  |  |  |
| PM <sub>2.5</sub> Emissions | 0.0002 lb/hr |  |  |  |  |  |  |

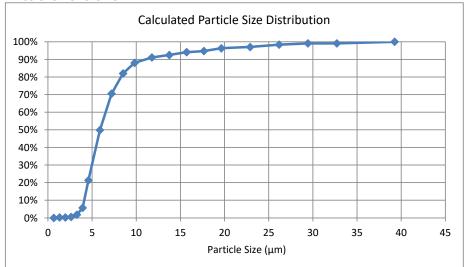



|          | Ī           |          | Calid    | Solid     | Solid    | Mana Cina    |          |                   |
|----------|-------------|----------|----------|-----------|----------|--------------|----------|-------------------|
| D        | D           | Down lat | Solid    |           |          | Mass Size    |          | DM                |
| Droplet  | Droplet     | Droplet  | Particle | Particle  |          | Distribution |          | PM <sub>2.5</sub> |
| Diameter | Volume      | Mass     | Mass     | Volume    | Diameter | CDF          | Fraction | Fraction          |
| (µm)     | (µm³)       | (µg)     | (µg)     | (µm³)     | (µm)     | (%)          | (%)      | (%)               |
| 10       | 524         | 1.31E-03 | 1.05E-06 | 0.42      | 0.93     | 0.00%        | 0.00%    | 0.00%             |
| 20       | 4,189       | 1.05E-02 | 8.38E-06 | 3.35      | 1.86     | 0.20%        | 0.00%    | 0.00%             |
| 30       | 14,137      | 3.53E-02 | 2.83E-05 | 11.31     | 2.78     | 0.23%        | 0.00%    | 0.22%             |
| 40       | 33,510      | 8.38E-02 | 6.70E-05 | 26.81     | 3.71     | 0.51%        | 0.00%    | 0.00%             |
| 50       | 65,450      | 1.64E-01 | 1.31E-04 | 52.36     | 4.64     | 1.82%        | 0.00%    | 0.00%             |
| 60       | 113,097     | 2.83E-01 | 2.26E-04 | 90.48     | 5.57     | 5.70%        | 0.00%    | 0.00%             |
| 70       | 179,594     | 4.49E-01 | 3.59E-04 | 143.68    | 6.50     | 21.35%       | 0.00%    | 0.00%             |
| 90       | 381,704     | 9.54E-01 | 7.63E-04 | 305.36    | 8.35     | 49.81%       | 0.00%    | 0.00%             |
| 110      | 696,910     | 1.74E+00 | 1.39E-03 | 557.53    | 10.21    | 70.51%       | 68.15%   | 0.00%             |
| 130      | 1,150,347   | 2.88E+00 | 2.30E-03 | 920.28    | 12.07    | 82.02%       | 0.00%    | 0.00%             |
| 150      | 1,767,146   | 4.42E+00 | 3.53E-03 | 1,413.72  | 13.92    | 88.01%       | 0.00%    | 0.00%             |
| 180      | 3,053,628   | 7.63E+00 | 6.11E-03 | 2,442.90  | 16.71    | 91.03%       | 0.00%    | 0.00%             |
| 210      | 4,849,048   | 1.21E+01 | 9.70E-03 | 3,879.24  | 19.49    | 92.47%       | 0.00%    | 0.00%             |
| 240      | 7,238,229   | 1.81E+01 | 1.45E-02 | 5,790.58  | 22.28    | 94.09%       | 0.00%    | 0.00%             |
| 270      | 10,305,995  | 2.58E+01 | 2.06E-02 | 8,244.80  | 25.06    | 94.69%       | 0.00%    | 0.00%             |
| 300      | 14,137,167  | 3.53E+01 | 2.83E-02 | 11,309.73 | 27.85    | 96.29%       | 0.00%    | 0.00%             |
| 350      | 22,449,298  | 5.61E+01 | 4.49E-02 | 17,959.44 | 32.49    | 97.01%       | 0.00%    | 0.00%             |
| 400      | 33,510,322  | 8.38E+01 | 6.70E-02 | 26,808.26 | 37.13    | 98.34%       | 0.00%    | 0.00%             |
| 450      | 47,712,938  | 1.19E+02 | 9.54E-02 | 38,170.35 | 41.77    | 99.07%       | 0.00%    | 0.00%             |
| 500      | 65,449,847  | 1.64E+02 | 1.31E-01 | 52,359.88 | 46.42    | 99.07%       | 0.00%    | 0.00%             |
| 600      | 113,097,336 | 2.83E+02 | 2.26E-01 | 90,477.87 | 55.70    | 100.00%      | 0.00%    | 0.00%             |

Table A-7d. Emissions - Cooling Towers - Particulate Matter Emissions - Short-Term

| Table A-7u. Lillissions - Cooling Towers - Particulate Matt |                       |  |  |  |  |  |  |  |
|-------------------------------------------------------------|-----------------------|--|--|--|--|--|--|--|
| Data Entry                                                  |                       |  |  |  |  |  |  |  |
| Emission Unit ID                                            | CTNC12                |  |  |  |  |  |  |  |
| Emission Point ID                                           | CTNC12A               |  |  |  |  |  |  |  |
| Emission Unit Description                                   | Non-Contact Cooling   |  |  |  |  |  |  |  |
| Linission onic Description                                  | Tower 2 - Cell 1      |  |  |  |  |  |  |  |
| Water Circulation Rate                                      | 11,000 gal/min        |  |  |  |  |  |  |  |
| PM Drift Rate                                               | 0.0010%               |  |  |  |  |  |  |  |
| TDS                                                         | 2,000 ppmw            |  |  |  |  |  |  |  |
| Droplet Density                                             | 1 g/cm <sup>3</sup>   |  |  |  |  |  |  |  |
| Solids Density                                              | 2.5 g/cm <sup>3</sup> |  |  |  |  |  |  |  |

| Calculations                |              |  |  |  |  |  |  |
|-----------------------------|--------------|--|--|--|--|--|--|
| PM <sub>10</sub> Fraction   | 68.15%       |  |  |  |  |  |  |
| PM <sub>2.5</sub> Fraction  | 0.22%        |  |  |  |  |  |  |
| PM Emissions                | 0.11 lb/hr   |  |  |  |  |  |  |
| PM <sub>10</sub> Emissions  | 0.08 lb/hr   |  |  |  |  |  |  |
| PM <sub>2.5</sub> Emissions | 0.0002 lb/hr |  |  |  |  |  |  |

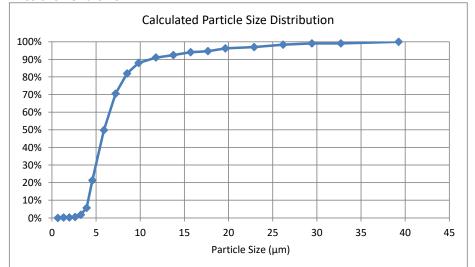



| ı        |             |          | Calid    | Calid     | Calid    | Mass Circ   |        |                   |
|----------|-------------|----------|----------|-----------|----------|-------------|--------|-------------------|
|          | D           | D l . t  | Solid    | Solid     | Solid    | Mass Size   | DM     | DM                |
| Droplet  | Droplet     | Droplet  | Particle | Particle  |          | Distributio |        | PM <sub>2.5</sub> |
| Diameter | Volume      | Mass     | Mass     | Volume    | Diameter | CDF         |        | Fraction          |
| (µm)     | (µm³)       | (µg)     | (µg)     | (µm³)     | (µm)     | (%)         | (%)    | (%)               |
| 10       | 524         | 1.31E-03 | 1.05E-06 | 0.42      | 0.93     | 0.00%       | 0.00%  | 0.00%             |
| 20       | 4,189       | 1.05E-02 | 8.38E-06 | 3.35      | 1.86     | 0.20%       | 0.00%  | 0.00%             |
| 30       | 14,137      | 3.53E-02 | 2.83E-05 | 11.31     | 2.78     | 0.23%       | 0.00%  | 0.22%             |
| 40       | 33,510      | 8.38E-02 | 6.70E-05 | 26.81     | 3.71     | 0.51%       | 0.00%  | 0.00%             |
| 50       | 65,450      | 1.64E-01 | 1.31E-04 | 52.36     | 4.64     | 1.82%       | 0.00%  | 0.00%             |
| 60       | 113,097     | 2.83E-01 | 2.26E-04 | 90.48     | 5.57     | 5.70%       | 0.00%  | 0.00%             |
| 70       | 179,594     | 4.49E-01 | 3.59E-04 | 143.68    | 6.50     | 21.35%      | 0.00%  | 0.00%             |
| 90       | 381,704     | 9.54E-01 | 7.63E-04 | 305.36    | 8.35     | 49.81%      | 0.00%  | 0.00%             |
| 110      | 696,910     | 1.74E+00 | 1.39E-03 | 557.53    | 10.21    | 70.51%      | 68.15% | 0.00%             |
| 130      | 1,150,347   | 2.88E+00 | 2.30E-03 | 920.28    | 12.07    | 82.02%      | 0.00%  | 0.00%             |
| 150      | 1,767,146   | 4.42E+00 | 3.53E-03 | 1,413.72  | 13.92    | 88.01%      | 0.00%  | 0.00%             |
| 180      | 3,053,628   | 7.63E+00 | 6.11E-03 | 2,442.90  | 16.71    | 91.03%      | 0.00%  | 0.00%             |
| 210      | 4,849,048   | 1.21E+01 | 9.70E-03 | 3,879.24  | 19.49    | 92.47%      | 0.00%  | 0.00%             |
| 240      | 7,238,229   | 1.81E+01 | 1.45E-02 | 5,790.58  | 22.28    | 94.09%      | 0.00%  | 0.00%             |
| 270      | 10,305,995  | 2.58E+01 | 2.06E-02 | 8,244.80  | 25.06    | 94.69%      | 0.00%  | 0.00%             |
| 300      | 14,137,167  | 3.53E+01 | 2.83E-02 | 11,309.73 | 27.85    | 96.29%      | 0.00%  | 0.00%             |
| 350      | 22,449,298  | 5.61E+01 | 4.49E-02 | 17,959.44 | 32.49    | 97.01%      | 0.00%  | 0.00%             |
| 400      | 33,510,322  | 8.38E+01 | 6.70E-02 | 26,808.26 | 37.13    | 98.34%      | 0.00%  | 0.00%             |
| 450      | 47,712,938  | 1.19E+02 | 9.54E-02 | 38,170.35 | 41.77    | 99.07%      | 0.00%  | 0.00%             |
| 500      | 65,449,847  | 1.64E+02 | 1.31E-01 | 52,359.88 | 46.42    | 99.07%      | 0.00%  | 0.00%             |
| 600      | 113,097,336 | 2.83E+02 | 2.26E-01 | 90,477.87 | 55.70    | 100.00%     | 0.00%  | 0.00%             |

Table A-7e. Emissions - Cooling Towers - Particulate Matter Emissions - Short-Term

| Table A-7e. Linissions - Cooling Towers - Particulate Mai |                       |  |  |  |  |  |  |
|-----------------------------------------------------------|-----------------------|--|--|--|--|--|--|
| Data Entry                                                |                       |  |  |  |  |  |  |
| Emission Unit ID                                          | CTNC12                |  |  |  |  |  |  |
| Emission Point ID                                         | CTNC12B               |  |  |  |  |  |  |
| Emission Unit Description                                 | Non-Contact Cooling   |  |  |  |  |  |  |
| Linission onic Description                                | Tower 2 - Cell 2      |  |  |  |  |  |  |
| Water Circulation Rate                                    | 11,000 gal/min        |  |  |  |  |  |  |
| PM Drift Rate                                             | 0.0010%               |  |  |  |  |  |  |
| TDS                                                       | 2,000 ppmw            |  |  |  |  |  |  |
| Droplet Density                                           | 1.0 g/cm <sup>3</sup> |  |  |  |  |  |  |
| Solids Density                                            | 2.5 g/cm <sup>3</sup> |  |  |  |  |  |  |

| Calculations                |              |  |  |  |  |  |  |
|-----------------------------|--------------|--|--|--|--|--|--|
| PM <sub>10</sub> Fraction   | 68.15%       |  |  |  |  |  |  |
| PM <sub>2.5</sub> Fraction  | 0.22%        |  |  |  |  |  |  |
| PM Emissions                | 0.11 lb/hr   |  |  |  |  |  |  |
| PM <sub>10</sub> Emissions  | 0.08 lb/hr   |  |  |  |  |  |  |
| PM <sub>2.5</sub> Emissions | 0.0002 lb/hr |  |  |  |  |  |  |

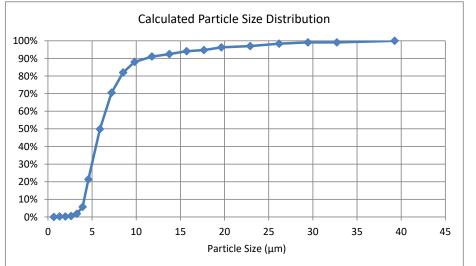



|          |             |          | Solid    | Solid     | Solid           | Mass Size    |           |                   |
|----------|-------------|----------|----------|-----------|-----------------|--------------|-----------|-------------------|
| Droplet  | Droplet     | Droplet  | Particle | Particle  | <b>Particle</b> | Distribution | $PM_{10}$ | PM <sub>2.5</sub> |
| Diameter | Volume      | Mass     | Mass     | Volume    | Diameter        | CDF          | Fraction  | Fraction          |
| (µm)     | (µm³)       | (µg)     | (µg)     | (µm³)     | (µm)            | (%)          | (%)       | (%)               |
| 10       | 524         | 1.31E-03 | 1.05E-06 | 0.42      | 0.93            | 0.00%        | 0.00%     | 0.00%             |
| 20       | 4,189       | 1.05E-02 | 8.38E-06 | 3.35      | 1.86            | 0.20%        | 0.00%     | 0.00%             |
| 30       | 14,137      | 3.53E-02 | 2.83E-05 | 11.31     | 2.78            | 0.23%        | 0.00%     | 0.22%             |
| 40       | 33,510      | 8.38E-02 | 6.70E-05 | 26.81     | 3.71            | 0.51%        | 0.00%     | 0.00%             |
| 50       | 65,450      | 1.64E-01 | 1.31E-04 | 52.36     | 4.64            | 1.82%        | 0.00%     | 0.00%             |
| 60       | 113,097     | 2.83E-01 | 2.26E-04 | 90.48     | 5.57            | 5.70%        | 0.00%     | 0.00%             |
| 70       | 179,594     | 4.49E-01 | 3.59E-04 | 143.68    | 6.50            | 21.35%       | 0.00%     | 0.00%             |
| 90       | 381,704     | 9.54E-01 | 7.63E-04 | 305.36    | 8.35            | 49.81%       | 0.00%     | 0.00%             |
| 110      | 696,910     | 1.74E+00 | 1.39E-03 | 557.53    | 10.21           | 70.51%       | 68.15%    | 0.00%             |
| 130      | 1,150,347   | 2.88E+00 | 2.30E-03 |           | 12.07           | 82.02%       | 0.00%     | 0.00%             |
| 150      | 1,767,146   | 4.42E+00 | 3.53E-03 | 1,413.72  | 13.92           | 88.01%       | 0.00%     | 0.00%             |
| 180      | 3,053,628   | 7.63E+00 | 6.11E-03 | 2,442.90  | 16.71           | 91.03%       | 0.00%     | 0.00%             |
| 210      | 4,849,048   | 1.21E+01 | 9.70E-03 | 3,879.24  | 19.49           | 92.47%       | 0.00%     | 0.00%             |
| 240      | 7,238,229   | 1.81E+01 | 1.45E-02 | 5,790.58  | 22.28           | 94.09%       | 0.00%     | 0.00%             |
| 270      | 10,305,995  | 2.58E+01 | 2.06E-02 | 8,244.80  | 25.06           | 94.69%       | 0.00%     | 0.00%             |
| 300      | 14,137,167  | 3.53E+01 | 2.83E-02 | 11,309.73 | 27.85           | 96.29%       | 0.00%     | 0.00%             |
| 350      | 22,449,298  | 5.61E+01 | 4.49E-02 | 17,959.44 | 32.49           | 97.01%       | 0.00%     | 0.00%             |
| 400      | 33,510,322  | 8.38E+01 | 6.70E-02 | 26,808.26 | 37.13           | 98.34%       | 0.00%     | 0.00%             |
| 450      | 47,712,938  | 1.19E+02 | 9.54E-02 | 38,170.35 | 41.77           | 99.07%       | 0.00%     | 0.00%             |
| 500      | 65,449,847  | 1.64E+02 | 1.31E-01 | 52,359.88 | 46.42           | 99.07%       | 0.00%     | 0.00%             |
| 600      | 113,097,336 | 2.83E+02 | 2.26E-01 | 90,477.87 | 55.70           | 100.00%      | 0.00%     | 0.00%             |

Table A-7f. Emissions - Cooling Towers - Particulate Matter Emissions - Short-Term

| Table A-71. Linissions - Cooling Towers - Particulate Matt |                       |  |  |  |  |  |  |
|------------------------------------------------------------|-----------------------|--|--|--|--|--|--|
| Data Entry                                                 |                       |  |  |  |  |  |  |
| Emission Unit ID                                           | CTC1                  |  |  |  |  |  |  |
| Emission Point ID                                          | CTC1A                 |  |  |  |  |  |  |
| Emission Unit Description                                  | Contact Cooling Tower |  |  |  |  |  |  |
| Linission onic Description                                 | Cell 1                |  |  |  |  |  |  |
| Water Circulation Rate                                     | 5,500 gal/min         |  |  |  |  |  |  |
| PM Drift Rate                                              | 0.0010%               |  |  |  |  |  |  |
| TDS                                                        | 2,000 ppmw            |  |  |  |  |  |  |
| Droplet Density                                            | 1.0 g/cm <sup>3</sup> |  |  |  |  |  |  |
| Solids Density                                             | 2.5 g/cm <sup>3</sup> |  |  |  |  |  |  |

| Calculations                |               |  |  |  |  |  |  |
|-----------------------------|---------------|--|--|--|--|--|--|
| PM <sub>10</sub> Fraction   | 68.15%        |  |  |  |  |  |  |
| PM <sub>2.5</sub> Fraction  | 0.22%         |  |  |  |  |  |  |
| PM Emissions                | 0.06 lb/hr    |  |  |  |  |  |  |
| PM <sub>10</sub> Emissions  | 0.04 lb/hr    |  |  |  |  |  |  |
| PM <sub>2.5</sub> Emissions | 0.00012 lb/hr |  |  |  |  |  |  |




|          |             |          | Solid    | Solid     | Solid           | Mass Size    |           |                   |
|----------|-------------|----------|----------|-----------|-----------------|--------------|-----------|-------------------|
| Droplet  | Droplet     | Droplet  | Particle | Particle  | <b>Particle</b> | Distribution | $PM_{10}$ | PM <sub>2.5</sub> |
| Diameter | Volume      | Mass     | Mass     | Volume    | Diameter        | CDF          | Fraction  | Fraction          |
| (µm)     | (µm³)       | (µg)     | (µg)     | (µm³)     | (µm)            | (%)          | (%)       | (%)               |
| 10       | 524         | 1.31E-03 | 1.05E-06 | 0.42      | 0.93            | 0.00%        | 0.00%     | 0.00%             |
| 20       | 4,189       | 1.05E-02 | 8.38E-06 | 3.35      | 1.86            | 0.20%        | 0.00%     | 0.00%             |
| 30       | 14,137      | 3.53E-02 | 2.83E-05 | 11.31     | 2.78            | 0.23%        | 0.00%     | 0.22%             |
| 40       | 33,510      | 8.38E-02 | 6.70E-05 | 26.81     | 3.71            | 0.51%        | 0.00%     | 0.00%             |
| 50       | 65,450      | 1.64E-01 | 1.31E-04 | 52.36     | 4.64            | 1.82%        | 0.00%     | 0.00%             |
| 60       | 113,097     | 2.83E-01 | 2.26E-04 | 90.48     | 5.57            | 5.70%        | 0.00%     | 0.00%             |
| 70       | 179,594     | 4.49E-01 | 3.59E-04 | 143.68    | 6.50            | 21.35%       | 0.00%     | 0.00%             |
| 90       | 381,704     | 9.54E-01 | 7.63E-04 | 305.36    | 8.35            | 49.81%       | 0.00%     | 0.00%             |
| 110      | 696,910     | 1.74E+00 | 1.39E-03 | 557.53    | 10.21           | 70.51%       | 68.15%    | 0.00%             |
| 130      | 1,150,347   | 2.88E+00 | 2.30E-03 |           | 12.07           | 82.02%       | 0.00%     | 0.00%             |
| 150      | 1,767,146   | 4.42E+00 | 3.53E-03 | 1,413.72  | 13.92           | 88.01%       | 0.00%     | 0.00%             |
| 180      | 3,053,628   | 7.63E+00 | 6.11E-03 | 2,442.90  | 16.71           | 91.03%       | 0.00%     | 0.00%             |
| 210      | 4,849,048   | 1.21E+01 | 9.70E-03 | 3,879.24  | 19.49           | 92.47%       | 0.00%     | 0.00%             |
| 240      | 7,238,229   | 1.81E+01 | 1.45E-02 | 5,790.58  | 22.28           | 94.09%       | 0.00%     | 0.00%             |
| 270      | 10,305,995  | 2.58E+01 | 2.06E-02 | 8,244.80  | 25.06           | 94.69%       | 0.00%     | 0.00%             |
| 300      | 14,137,167  | 3.53E+01 | 2.83E-02 | 11,309.73 | 27.85           | 96.29%       | 0.00%     | 0.00%             |
| 350      | 22,449,298  | 5.61E+01 | 4.49E-02 | 17,959.44 | 32.49           | 97.01%       | 0.00%     | 0.00%             |
| 400      | 33,510,322  | 8.38E+01 | 6.70E-02 | 26,808.26 | 37.13           | 98.34%       | 0.00%     | 0.00%             |
| 450      | 47,712,938  | 1.19E+02 | 9.54E-02 | 38,170.35 | 41.77           | 99.07%       | 0.00%     | 0.00%             |
| 500      | 65,449,847  | 1.64E+02 | 1.31E-01 | 52,359.88 | 46.42           | 99.07%       | 0.00%     | 0.00%             |
| 600      | 113,097,336 | 2.83E+02 | 2.26E-01 | 90,477.87 | 55.70           | 100.00%      | 0.00%     | 0.00%             |

Table A-7g. Emissions - Cooling Towers - Particulate Matter Emissions - Short-Term

| Tubic A 79. Ellissions     | Cooming Towers Turticulate Mai |
|----------------------------|--------------------------------|
|                            | Data Entry                     |
| Emission Unit ID           | CTC1                           |
| Emission Point ID          | CTC1B                          |
| Emission Unit Description  | Contact Cooling Tower          |
| Linission onic Description | Cell 2                         |
| Water Circulation Rate     | 5,500 gal/min                  |
| PM Drift Rate              | 0.0010%                        |
| TDS                        | 2,000 ppmw                     |
| Droplet Density            | 1.0 g/cm <sup>3</sup>          |
| Solids Density             | 2.5 g/cm <sup>3</sup>          |

| Calcul                      | ations        |
|-----------------------------|---------------|
| PM <sub>10</sub> Fraction   | 68.15%        |
| PM <sub>2.5</sub> Fraction  | 0.22%         |
| PM Emissions                | 0.06 lb/hr    |
| PM <sub>10</sub> Emissions  | 0.04 lb/hr    |
| PM <sub>2.5</sub> Emissions | 0.00012 lb/hr |



|          | Ī           |          | Calid    | Solid     | Solid    | Mana Cina    |          |                   |
|----------|-------------|----------|----------|-----------|----------|--------------|----------|-------------------|
| D        | D           | Down lat | Solid    |           |          | Mass Size    |          | DM                |
| Droplet  | Droplet     | Droplet  | Particle | Particle  |          | Distribution |          | PM <sub>2.5</sub> |
| Diameter | Volume      | Mass     | Mass     | Volume    | Diameter | CDF          | Fraction | Fraction          |
| (µm)     | (µm³)       | (µg)     | (µg)     | (µm³)     | (µm)     | (%)          | (%)      | (%)               |
| 10       | 524         | 1.31E-03 | 1.05E-06 | 0.42      | 0.93     | 0.00%        | 0.00%    | 0.00%             |
| 20       | 4,189       | 1.05E-02 | 8.38E-06 | 3.35      | 1.86     | 0.20%        | 0.00%    | 0.00%             |
| 30       | 14,137      | 3.53E-02 | 2.83E-05 | 11.31     | 2.78     | 0.23%        | 0.00%    | 0.22%             |
| 40       | 33,510      | 8.38E-02 | 6.70E-05 | 26.81     | 3.71     | 0.51%        | 0.00%    | 0.00%             |
| 50       | 65,450      | 1.64E-01 | 1.31E-04 | 52.36     | 4.64     | 1.82%        | 0.00%    | 0.00%             |
| 60       | 113,097     | 2.83E-01 | 2.26E-04 | 90.48     | 5.57     | 5.70%        | 0.00%    | 0.00%             |
| 70       | 179,594     | 4.49E-01 | 3.59E-04 | 143.68    | 6.50     | 21.35%       | 0.00%    | 0.00%             |
| 90       | 381,704     | 9.54E-01 | 7.63E-04 | 305.36    | 8.35     | 49.81%       | 0.00%    | 0.00%             |
| 110      | 696,910     | 1.74E+00 | 1.39E-03 | 557.53    | 10.21    | 70.51%       | 68.15%   | 0.00%             |
| 130      | 1,150,347   | 2.88E+00 | 2.30E-03 | 920.28    | 12.07    | 82.02%       | 0.00%    | 0.00%             |
| 150      | 1,767,146   | 4.42E+00 | 3.53E-03 | 1,413.72  | 13.92    | 88.01%       | 0.00%    | 0.00%             |
| 180      | 3,053,628   | 7.63E+00 | 6.11E-03 | 2,442.90  | 16.71    | 91.03%       | 0.00%    | 0.00%             |
| 210      | 4,849,048   | 1.21E+01 | 9.70E-03 | 3,879.24  | 19.49    | 92.47%       | 0.00%    | 0.00%             |
| 240      | 7,238,229   | 1.81E+01 | 1.45E-02 | 5,790.58  | 22.28    | 94.09%       | 0.00%    | 0.00%             |
| 270      | 10,305,995  | 2.58E+01 | 2.06E-02 | 8,244.80  | 25.06    | 94.69%       | 0.00%    | 0.00%             |
| 300      | 14,137,167  | 3.53E+01 | 2.83E-02 | 11,309.73 | 27.85    | 96.29%       | 0.00%    | 0.00%             |
| 350      | 22,449,298  | 5.61E+01 | 4.49E-02 | 17,959.44 | 32.49    | 97.01%       | 0.00%    | 0.00%             |
| 400      | 33,510,322  | 8.38E+01 | 6.70E-02 | 26,808.26 | 37.13    | 98.34%       | 0.00%    | 0.00%             |
| 450      | 47,712,938  | 1.19E+02 | 9.54E-02 | 38,170.35 | 41.77    | 99.07%       | 0.00%    | 0.00%             |
| 500      | 65,449,847  | 1.64E+02 | 1.31E-01 | 52,359.88 | 46.42    | 99.07%       | 0.00%    | 0.00%             |
| 600      | 113,097,336 | 2.83E+02 | 2.26E-01 | 90,477.87 | 55.70    | 100.00%      | 0.00%    | 0.00%             |

Filterable Total Total Total PM PM PM<sub>10</sub> PM<sub>2.5</sub>

0.0022 0.0077 0.0077 0.0077

0.0022 0.0077 0.0077 0.0077

0.0077 0.0077 0.0077

0.0077 0.0077 0.0077

0.0077 0.0077 0.0077

0.0077 0.0077 0.0077

0.0077 0.0077 0.0077

0.0077 0.0077 0.0077

0.0077 | 0.0077 | 0.0077

0.0077 | 0.0077 | 0.0077

со

0.082

0.082

0.082

0.082

0.082

0.082

0.082

0.082

0.082

0.082

voc

0.0054

0.0054

0.0054

0.0054

0.0054

0.0054

0.0054

0.0054

0.0054

0.0054

0.00059

0.00059

0.00059

0.00059

0.00059

0.00059

0.00059

0.00059 4.90E-07

0.00059 4.90E-07

0.00059 4.90E-07

4.90E-07

4.90E-07

4.90E-07

4.90E-07

4.90E-07

4.90E-07

4.90E-07

0.0022

0.0022

0.0022

0.0022

0.0022

0.0022

0.0022

0.0022

со

0.082

0.082

0.082

0.082

0.082

0.082

0.082

0.14

0.14

0.14

0.14

0.14

0.14

0.14

0.14

0.14

0.14

voc so<sub>2</sub>

0.0087 0.011

0.0087 0.011

0.0087 0.011

0.011

0.011

0.011

0.011

0.0087

0.082 0.0087 0.011

0.082 0.0087 0.011

0.082 0.0087 0.011

0.0087

0.0087

0.0087

Pb

4.90E-07

| Table A-8a. | Fmiccione | - Fuel | Combustion |
|-------------|-----------|--------|------------|
|             |           |        |            |

|                             |                    |                                                          |          | Single Unit       | Annual        |                        |                          |                 |          |                  |                   |                 |                  |          |                        | 1                       |                       |                 | Emission               | Factor (lb/M            |                 |
|-----------------------------|--------------------|----------------------------------------------------------|----------|-------------------|---------------|------------------------|--------------------------|-----------------|----------|------------------|-------------------|-----------------|------------------|----------|------------------------|-------------------------|-----------------------|-----------------|------------------------|-------------------------|-----------------|
| mission                     | Emission           | Emission Unit                                            | Number   | Rating            | Utilization   |                        | nput Rating <sup>1</sup> | Filterabl       |          | Total            | Total             | Propa           |                  |          |                        |                         | Filterable            | T               |                        |                         | ural Gas        |
| nit ID                      | Point ID           | Description                                              | of Units | (MMBtu/hr)        | (%)           | (MMBtu/hr)             | (MMBtu/yr)               | e PM            | Total PM | PM <sub>10</sub> | PM <sub>2.5</sub> | NO <sub>x</sub> | СО               | VOC      | SO <sub>2</sub>        | Pb                      | PM                    | Total PM        | Total PM <sub>10</sub> | Total PM <sub>2.5</sub> | NO <sub>x</sub> |
| LPH1                        | CV1                | Ladle Preheaters                                         | 3        | 6                 | 100%          | 18                     | 157,680                  | 0.0022          | 0.0077   | 0.0077           | 0.0077            | 0.14            | 0.082            | 0.0087   | 0.011                  | -                       | 0.0019                | 0.0075          | 0.0075                 | 0.0075                  | 0.098           |
| LD1                         | CV1                | Ladle Dryers                                             | 2        | 8                 | 100%          | 16                     | 140,160                  | 0.0022          | 0.0077   | 0.0077           | 0.0077            | 0.14            | 0.082            | 0.0087   | 0.011                  | -                       | 0.0019                | 0.0075          | 0.0075                 | 0.0075                  | 0.098           |
| TPH1                        | CV1                | Tundish Preheaters                                       | 2        | 6                 | 100%          | 12                     | 105,120                  | 0.0022          | 0.0077   | 0.0077           | 0.0077            | 0.14            | 0.082            | 0.0087   | 0.011                  | -                       | 0.0019                | 0.0075          | 0.0075                 | 0.0075                  | 0.098           |
| TD1                         | CV1                | Tundish Dryer                                            | 1        | 6                 | 100%          | 6                      | 52,560                   | 0.0022          | 0.0077   | 0.0077           | 0.0077            | 0.14            | 0.082            | 0.0087   | 0.011                  | -                       | 0.0019                | 0.0075          | 0.0075                 | 0.0075                  | 0.098           |
| TMD1                        | CV1                | Tundish Mandril<br>Dryer                                 | 1        | 1                 | 100%          | 1                      | 8,760                    | 0.0022          | 0.0077   | 0.0077           | 0.0077            | 0.14            | 0.082            | 0.0087   | 0.011                  | -                       | 0.0019                | 0.0075          | 0.0075                 | 0.0075                  | 0.098           |
| RDHTR1                      | CV1                | Shroud Heater                                            | 1        | 1                 | 100%          | 0.5                    | 4,380                    | 0.0022          | 0.0077   | 0.0077           | 0.0077            | 0.14            | 0.082            | 0.0087   | 0.011                  | -                       | 0.0019                | 0.0075          | 0.0075                 | 0.0075                  | 0.098           |
| ISAUXHT                     | CV1                | Meltshop Comfort<br>Heaters                              | 20       | 0.4               | 50%           | 8                      | 35,040                   | 0.0022          | 0.0077   | 0.0077           | 0.0077            | 0.14            | 0.082            | 0.0087   | 0.011                  | -                       | 0.0019                | 0.0075          | 0.0075                 | 0.0075                  | 0.098           |
| BF1                         | RMV1               | Bit Furnace                                              | 1        | 0.225             | 100%          | 0.23                   | 1,971                    | 0.0022          | 0.0077   | 0.0077           | 0.0077            | 0.14            | 0.082            | 0.0087   | 0.011                  | -                       | 0.0019                | 0.0075          | 0.0075                 | 0.0075                  | 0.098           |
| MAUXHT                      | RMV1               | Rolling Mill Comfort<br>Heaters                          | 20       | 0.4               | 50%           | 8                      | 35,040                   | 0.0022          | 0.0077   | 0.0077           | 0.0077            | 0.14            | 0.082            | 0.0087   | 0.011                  | -                       | 0.0019                | 0.0075          | 0.0075                 | 0.0075                  | 0.098           |
| TORCH1                      | TORCH1             | Cutting Torches                                          | -        | 0.32              | 46%           | 0.32                   | 1,285                    | 0.0022          | 0.0077   | 0.0077           | 0.0077            | 0.14            | 0.082            | 0.0087   | 0.011                  | -                       | 0.0019                | 0.0075          | 0.0075                 | 0.0075                  | 0.098           |
| mission                     | Emission           | Emission Unit                                            | Number   |                   | Į.            |                        | Hourly Emis<br>(lb/hr    |                 |          |                  | I                 | I               |                  |          | I                      | Anr                     | ual Emission<br>(tpy) | ns <sup>4</sup> | Л                      | <u>I</u>                | L               |
| Unit ID                     | Point ID           | Description                                              | of Units | Filterable<br>PM  | Total PM      | Total PM <sub>10</sub> | Total PM <sub>2.5</sub>  | NO <sub>x</sub> | со       | voc              | SO <sub>2</sub>   | Pb              | Filterable<br>PM | Total PM | Total PM <sub>10</sub> | Total PM <sub>2.5</sub> | NO <sub>x</sub>       | со              | voc                    | SO <sub>2</sub>         | Pb              |
| LPH1                        | CV1                | Ladle Preheaters                                         | 3        | 0.039             | 0.14          | 0.14                   | 0.14                     | 2.56            | 1.48     | 0.16             | 0.20              | 8.82E-06        | 0.17             | 0.60     | 0.60                   | 0.60                    | 11.20                 | 6.49            | 0.69                   | 0.86                    | 3.86E-05        |
| LD1                         | CV1                | Ladle Dryers                                             | 2        | 0.035             | 0.12          | 0.12                   | 0.12                     | 2.27            | 1.32     | 0.14             | 0.17              | 7.84E-06        | 0.15             | 0.54     | 0.54                   | 0.54                    | 9.96                  | 5.77            | 0.61                   | 0.77                    | 3.44E-05        |
| TPH1                        | CV1                | Tundish Preheaters                                       | 2        | 0.026             | 0.092         | 0.092                  | 0.092                    | 1.70            | 0.99     | 0.10             | 0.13              | 5.88E-06        | 0.11             | 0.40     | 0.40                   | 0.40                    | 7.47                  | 4.33            | 0.46                   | 0.57                    | 2.58E-05        |
| TD1                         | CV1                | Tundish Dryer                                            | 1        | 0.013             | 0.046         | 0.046                  | 0.046                    | 0.85            | 0.49     | 0.052            | 0.066             | 2.94E-06        | 0.057            | 0.20     | 0.20                   | 0.20                    | 3.73                  | 2.16            | 0.23                   | 0.29                    | 1.29E-05        |
| TMD1                        | CV1                | Tundish Mandril<br>Dryer                                 | 1        | 0.0022            | 0.0077        | 0.0077                 | 0.0077                   | 0.14            | 0.082    | 0.0087           | 0.011             | 4.90E-07        | 0.010            | 0.034    | 0.034                  | 0.034                   | 0.62                  | 0.36            | 0.038                  | 0.048                   | 2.15E-0         |
| SRDHTR1                     | CV1                | Shroud Heater                                            | 1        | 0.0011            | 0.0038        | 0.0038                 | 0.0038                   | 0.071           | 0.041    | 0.0044           | 0.0055            | 2.45E-07        | 0.0048           | 0.017    | 0.017                  | 0.017                   | 0.31                  | 0.18            | 0.019                  | 0.024                   | 1.07E-06        |
| <b>ISAUXHT</b>              | CV1                | Meltshop Comfort<br>Heaters                              | 20       | 0.017             | 0.061         | 0.061                  | 0.061                    | 1.14            | 0.66     | 0.070            | 0.087             | 3.92E-06        | 0.038            | 0.134    | 0.134                  | 0.134                   | 2.49                  | 1.44            | 0.15                   | 0.19                    | 8.59E-06        |
| BF1                         | RMV1               | Bit Furnace                                              | 1        | 0.00049           | 0.0017        | 0.0017                 | 0.0017                   | 0.032           | 0.019    | 0.0020           | 0.0025            | 1.10E-07        | 0.0022           | 0.0075   | 0.0075                 | 0.0075                  | 0.14                  | 0.081           | 0.0086                 | 0.011                   | 4.83E-0         |
| RMAUXHT                     | RMV1               | Rolling Mill Comfort<br>Heaters                          | 20       | 0.017             | 0.061         | 0.061                  | 0.061                    | 1.14            | 0.66     | 0.070            | 0.087             | 3.92E-06        | 0.038            | 0.134    | 0.134                  | 0.134                   | 2.49                  | 1.44            | 0.15                   | 0.19                    | 8.59E-06        |
| TORCH1                      | TORCH1             | Cutting Torches                                          | -        | 0.00070           | 0.0025        | 0.0025                 | 0.0025                   | 0.046           | 0.026    | 0.0028           | 0.0035            | 1.57E-07        | 0.00140          | 0.0049   | 0.0049                 | 0.0049                  | 0.091                 | 0.053           | 0.0056                 | 0.0070                  | 3.15E-0         |
|                             | CV1                | Proposed Caster<br>Vent                                  |          | 0.13              | 0.47          | 0.47                   | 0.47                     | 8.74            | 5.06     | 0.54             | 0.67              | 3.01E-05        | 0.55             | 1.93     | 1.93                   | 1.93                    | 35.78                 | 20.74           | 2.20                   | 2.75                    | 1.23E-0         |
|                             | RMV1               | Proposed Rolling Mill Vent                               | _        | 0.018             | 0.063         | 0.063                  | 0.063                    | 1.17            | 0.68     | 0.072            | 0.090             | 4.03E-06        | 0.040            | 0.142    | 0.142                  | 0.142                   | 2.63                  | 1.52            | 0.162                  | 0.20                    | 9.07E-0         |
|                             | TORCH1             | Cutting Torches                                          | _        | 0.00070           | 0.0025        | 0.0025                 | 0.0025                   | 0.046           | 0.026    | 0.0028           | 0.0035            | 1.57E-07        | 0.00140          | 0.0049   | 0.0049                 | 0.0049                  | 0.091                 | 0.053           | 0.0056                 | 0.0070                  | 3.15E-0         |
|                             | Heat Input Ra      | iting (MMBtu/hr) = Single B<br>ating (MMBtu/yr) = Hourly |          | 1MBtu/hr) x Numbe | r of Burners. |                        |                          |                 |          |                  |                   |                 |                  |          |                        |                         |                       |                 |                        |                         |                 |
| Emission fac<br>For Propane | ctors for per<br>e | le 1.5-1 for Commercial Boil                             |          |                   |               |                        |                          |                 |          |                  |                   |                 |                  |          |                        |                         |                       |                 |                        |                         |                 |

For Natural Gas

AP-42 Section 1.4, Table 1.4-2, July 1998 for Small Boilers (< 100 MMBtu/hr) and converted from lb/MMscf to lb/MMBtu based on the natural gas heating value of 1,020 Btu/scf.

Hourly Emissions lb/hr) = Emission Factor lb/MMBtu x Hourly Total Heat Input Rating (MMBtu/hr).

Annual Emissions (tpy) = Emission Factor lb/MMBtu x Annual Total Heat Input Rating (MMBtu/yr) / 2,000 lb/ton).

Table A-8b. GHG Emissions - Fuel Combustion

| Emission | Emission | Emission Unit                   | Number   | Single Unit | Annual      | Total Heat Ir | nnut Rating <sup>1</sup> |                 |                 |                  | Emis            | sion Factors    | (lb/MMBtu)       | 2               |                 |                  |                 | Annual Emis     | sions (tpy) <sup>3,</sup> | 4      |
|----------|----------|---------------------------------|----------|-------------|-------------|---------------|--------------------------|-----------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|-----------------|---------------------------|--------|
|          | Point ID | Description                     | of Units | Rating      | Utilization |               |                          |                 | Propane         |                  |                 | Natural Gas     |                  |                 | Maximum         |                  |                 |                 |                           |        |
|          |          | •                               |          | (MMBtu/hr)  | (%)         | (MMBtu/hr)    | (MMBtu/yr)               | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O          | CO₂e   |
| LPH1     | CV1      | Ladle Preheaters                | 3        | 6           | 100%        | 18            | 157,680                  | 138.60          | 6.61E-03        | 1.32E-03         | 116.98          | 2.20E-03        | 2.20E-04         | 138.60          | 6.61E-03        | 1.32E-03         | 10,928          | 0.52            | 0.10                      | 10,972 |
| LD1      | CV1      | Ladle Dryers                    | 2        | 8           | 100%        | 16            | 140,160                  | 138.60          | 6.61E-03        | 1.32E-03         | 116.98          | 2.20E-03        | 2.20E-04         | 138.60          | 6.61E-03        | 1.32E-03         | 9,713           | 0.46            | 0.093                     | 9,753  |
| TPH1     | CV1      | Tundish Preheaters              | 2        | 6           | 100%        | 12            | 105,120                  | 138.60          | 6.61E-03        | 1.32E-03         | 116.98          | 2.20E-03        | 2.20E-04         | 138.60          | 6.61E-03        | 1.32E-03         | 7,285           | 0.35            | 0.070                     | 7,314  |
| TD1      | CV1      | Tundish Dryer                   | 1        | 6           | 100%        | 6             | 52,560                   | 138.60          | 6.61E-03        | 1.32E-03         | 116.98          | 2.20E-03        | 2.20E-04         | 138.60          | 6.61E-03        | 1.32E-03         | 3,643           | 0.17            | 0.035                     | 3,657  |
| TMD1     | CV1      | Tundish Mandril<br>Dryer        | 1        | 1           | 100%        | 1             | 8,760                    | 138.60          | 6.61E-03        | 1.32E-03         | 116.98          | 2.20E-03        | 2.20E-04         | 138.60          | 6.61E-03        | 1.32E-03         | 607             | 0.029           | 0.0058                    | 610    |
| SRDHTR1  | CV1      | Shroud Heater                   | 1        | 1           | 100%        | 1             | 4,380                    | 138.60          | 6.61E-03        | 1.32E-03         | 116.98          | 2.20E-03        | 2.20E-04         | 138.60          | 6.61E-03        | 1.32E-03         | 304             | 0.014           | 0.0029                    | 305    |
| MSAUXHT  | CV1      | Meltshop Comfort<br>Heaters     | 20       | 0.4         | 50%         | 8             | 35,040                   | 138.60          | 6.61E-03        | 1.32E-03         | 116.98          | 2.20E-03        | 2.20E-04         | 138.60          | 6.61E-03        | 1.32E-03         | 2,428           | 0.12            | 0.023                     | 2,438  |
| BF1      | RMV1     | Bit Furnace                     | 1        | 0.225       | 100%        | 0.225         | 1,971                    | 138.60          | 6.61E-03        | 1.32E-03         | 116.98          | 2.20E-03        | 2.20E-04         | 138.60          | 6.61E-03        | 1.32E-03         | 137             | 0.0065          | 0.0013                    | 137    |
| RMAUXHT  | RMV1     | Rolling Mill Comfort<br>Heaters | 20       | 0.4         | 50%         | 8             | 35,040                   | 138.60          | 6.61E-03        | 1.32E-03         | 116.98          | 2.20E-03        | 2.20E-04         | 138.60          | 6.61E-03        | 1.32E-03         | 2,428           | 0.12            | 0.023                     | 2,438  |
| TORCH1   | TORCH1   | Cutting Torches                 | -        | 0.32        | 46%         | 0.32          | 1,285                    | 138.60          | 6.61E-03        | 1.32E-03         | 116.98          | 2.20E-03        | 2.20E-04         | 138.60          | 6.61E-03        | 1.32E-03         | 89              | 0.0042          | 0.00085                   | 89     |
|          | CV1      | Proposed Caster<br>Vent         | -        | -           | -           | -             | -                        | -               | -               | -                | -               | -               | -                | -               | -               | -                | -               | -               | -                         | 35,048 |
|          | RMV1     | Proposed Rolling<br>Mill Vent   |          | -           | -           | -             | -                        | -               | -               | -                | -               | -               | -                | -               | -               | -                | -               | -               | -                         | 2,575  |
|          | TORCH1   | Cutting Torches                 | -        | -           | -           | -             | -                        | -               | -               | -                | -               | -               | -                | -               | -               | -                | -               | -               | -                         | 89     |

<sup>Hourly Total Heat Input Rating (MMBtu/hr) = Single Burner Rating (MMBtu/hr) x Number of Burners.

Annual Total Heat Input Rating (MMBtu/yr) = Hourly Total Heat Input Rating (MMBtu/hr) x 8,760 (hr/yr) x Annual Utilization (%) / 100.</sup> 

Steel Mill

<sup>&</sup>lt;sup>2</sup> Emission factor for CO<sub>2</sub> is obtained from 40 CFR Part 98, Table C-1 to Subpart C, December 2016, for Natural Gas and Petroleum Products (All fuel types in Table C-1).

<sup>3</sup> CO<sub>2</sub>e calculated using Global Warming Potentials (GWPs) from of 40 CFR Part 98, Table A-1, December 2014.

CO<sub>2</sub> GWP = 1

CH<sub>4</sub> GWP = 25

N<sub>2</sub>O GWP = 298

<sup>4</sup> CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O Annual Emissions (tpy) = Annual Total Heat Input Rating (MMBtu/yr) x Emission Factor lb/MMBtu / 2,000 lb/ton).

CO<sub>2</sub>e Annual Emissions (tpy) = CO<sub>2</sub> GWP x CO<sub>2</sub> Annual Emissions (tpy) + CH<sub>4</sub> GWP x CH<sub>4</sub> Annual Emissions (tpy) + N<sub>2</sub>O GWP x N<sub>2</sub>O Annual Emissions (tpy).

Table A-8c. HAP Emissions - Natural Gas Combustion

|         |          | Emission Unit |          | Single Unit          | Annual          | Total Heat I | nput Rating |                                | Emission                        | Hourly                            | Annual                          |
|---------|----------|---------------|----------|----------------------|-----------------|--------------|-------------|--------------------------------|---------------------------------|-----------------------------------|---------------------------------|
| Unit ID | Point ID | Description   | of Units | Rating<br>(MMBtu/hr) | Utilization (%) | (MMBtu/hr)   | (MMBtu/yr)  | Species                        | Factors <sup>2</sup> (lb/MMscf) | Emissions <sup>3</sup><br>(lb/hr) | Emissions <sup>4</sup><br>(tpy) |
|         |          |               |          |                      |                 |              |             | 2-Methylnaphthalene            | 2.40E-05                        | 4.24E-07                          | 1.86E-06                        |
|         |          |               |          |                      |                 |              |             | 3-Methylcholanthrene           | 1.80E-06                        | 3.18E-08                          | 1.39E-07                        |
|         |          |               |          |                      |                 |              |             | 7,12-Dimethylbenz(a)anthracene | 1.60E-05                        | 2.82E-07                          | 1.24E-06                        |
|         |          |               |          |                      |                 |              |             | Acenaphthene                   | 1.80E-06                        | 3.18E-08                          | 1.39E-07                        |
|         |          |               |          |                      |                 |              |             | Acenaphthylene                 | 1.80E-06                        | 3.18E-08                          | 1.39E-07                        |
|         |          |               |          |                      |                 |              |             | Anthracene                     | 2.40E-06                        | 4.24E-08                          | 1.86E-07                        |
|         |          |               |          |                      |                 |              |             | Benz(a)anthracene              | 1.80E-06                        | 3.18E-08                          | 1.39E-07                        |
|         |          |               |          |                      |                 |              |             | Benzene                        | 0.0021                          | 3.71E-05                          | 1.62E-04                        |
|         |          |               |          |                      |                 |              |             | Benzo(a)pyrene                 | 1.20E-06                        | 2.12E-08                          | 9.28E-08                        |
|         |          |               |          |                      |                 |              |             | Benzo(b)fluoranthene           | 1.80E-06                        | 3.18E-08                          | 1.39E-07                        |
|         |          |               |          |                      |                 |              |             | Benzo(g,h,i)perylene           | 1.20E-06                        | 2.12E-08                          | 9.28E-08                        |
|         |          |               |          |                      |                 |              |             | Benzo(k)fluoranthene           | 1.80E-06                        | 3.18E-08                          | 1.39E-07                        |
|         |          |               |          |                      |                 |              |             | Chrysene                       | 1.80E-06                        | 3.18E-08                          | 1.39E-07                        |
|         |          |               |          |                      |                 |              |             | Dibenzo(a,h)anthracene         | 1.20E-06                        | 2.12E-08                          | 9.28E-08                        |
|         |          |               |          |                      |                 |              |             | Dichlorobenzene                | 1.20E-03                        | 2.12E-05                          | 9.28E-05                        |
|         |          | مالم          |          |                      |                 |              |             | Fluoranthene                   | 3.00E-06                        | 5.29E-08                          | 2.32E-07                        |
| LPH1    | CV1      | Ladle         | 3        | 6                    | 100%            | 18           | 157,680     | Fluorene                       | 2.80E-06                        | 4.94E-08                          | 2.16E-07                        |
|         |          | Preheaters    |          |                      |                 |              | ,           | Formaldehyde                   | 0.075                           | 1.32E-03                          | 5.80E-03                        |
|         |          |               |          |                      |                 |              |             | Hexane                         | 1.8                             | 3.18E-02                          | 1.39E-01                        |
|         |          |               |          |                      |                 |              |             | Indeno(1,2,3-cd)pyrene         | 1.80E-06                        | 3.18E-08                          | 1.39E-07                        |
|         |          |               |          |                      |                 |              |             | Naphthalene                    | 6.10E-04                        | 1.08E-05                          | 4.71E-05                        |
|         |          |               |          |                      |                 |              |             | Phenanthrene                   | 0.000017                        | 3.00E-07                          | 1.31E-06                        |
|         |          |               |          |                      |                 |              |             | Pyrene                         | 5.00E-06                        | 8.82E-08                          | 3.86E-07                        |
|         |          |               |          |                      |                 |              |             | Toluene                        | 0.0034                          | 6.00E-05                          | 2.63E-04                        |
|         |          |               |          |                      |                 |              |             | Arsenic                        | 2.00E-04                        | 3.53E-06                          | 1.55E-05                        |
|         |          |               |          |                      |                 |              |             | Beryllium                      | 1.20E-05                        | 2.12E-07                          | 9.28E-07                        |
|         |          |               |          |                      |                 |              |             | Cadmium                        | 1.10E-03                        | 1.94E-05                          | 8.50E-05                        |
|         |          |               |          |                      |                 |              |             | Chromium                       | 1.40E-03                        | 2.47E-05                          | 1.08E-04                        |
|         |          |               |          |                      |                 |              |             | Cobalt                         | 8.40E-05                        | 1.48E-06                          | 6.49E-06                        |
|         |          |               |          |                      |                 |              |             | Manganese                      | 3.80E-04                        | 6.71E-06                          | 2.94E-05                        |
| i       |          |               |          |                      |                 |              |             | Mercury                        | 2.60E-04                        | 4.59E-06                          | 2.01E-05                        |
|         |          |               |          |                      |                 |              |             | Molybdenum                     | 1.10E-03                        | 1.94E-05                          | 8.50E-05                        |
|         |          |               |          |                      |                 |              |             | Nickel                         | 0.0021                          | 3.71E-05                          | 1.62E-04                        |
|         |          |               |          |                      |                 |              |             | Selenium                       | 2.40E-05                        | 4.24E-07                          | 1.86E-06                        |

Table A-8c. HAP Emissions - Natural Gas Combustion

| Emission | Emission |               | Number   | Single Unit<br>Rating | Annual<br>Utilization | Total Heat I | nput Rating | Species                        | Emission<br>Factors <sup>2</sup> | Hourly<br>Emissions <sup>3</sup> | Annual<br>Emissions <sup>4</sup> |
|----------|----------|---------------|----------|-----------------------|-----------------------|--------------|-------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Unit ID  | Point ID | Description   | of Units | (MMBtu/hr)            | (%)                   | (MMBtu/hr)   | (MMBtu/yr)  | Species                        | (lb/MMscf)                       | (lb/hr)                          | (tpy)                            |
|          |          |               |          |                       |                       |              |             | 2-Methylnaphthalene            | 2.40E-05                         | 3.76E-07                         | 1.65E-06                         |
|          |          |               |          |                       |                       |              |             | 3-Methylcholanthrene           | 1.80E-06                         | 2.82E-08                         | 1.24E-07                         |
|          |          |               |          |                       |                       |              |             | 7,12-Dimethylbenz(a)anthracene | 1.60E-05                         | 2.51E-07                         | 1.10E-06                         |
|          |          |               |          |                       |                       |              |             | Acenaphthene                   | 1.80E-06                         | 2.82E-08                         | 1.24E-07                         |
|          |          |               |          |                       |                       |              |             | Acenaphthylene                 | 1.80E-06                         | 2.82E-08                         | 1.24E-07                         |
|          |          |               |          |                       |                       |              |             | Anthracene                     | 2.40E-06                         | 3.76E-08                         | 1.65E-07                         |
|          |          |               |          |                       |                       |              |             | Benz(a)anthracene              | 1.80E-06                         | 2.82E-08                         | 1.24E-07                         |
|          |          |               |          |                       |                       |              |             | Benzene                        | 0.0021                           | 3.29E-05                         | 1.44E-04                         |
|          |          |               |          |                       |                       |              |             | Benzo(a)pyrene                 | 1.20E-06                         | 1.88E-08                         | 8.24E-08                         |
|          |          |               |          |                       |                       |              |             | Benzo(b)fluoranthene           | 1.80E-06                         | 2.82E-08                         | 1.24E-07                         |
|          |          |               |          |                       |                       |              |             | Benzo(g,h,i)perylene           | 1.20E-06                         | 1.88E-08                         | 8.24E-08                         |
|          |          |               |          |                       |                       |              |             | Benzo(k)fluoranthene           | 1.80E-06                         | 2.82E-08                         | 1.24E-07                         |
|          |          |               |          |                       |                       |              |             | Chrysene                       | 1.80E-06                         | 2.82E-08                         | 1.24E-07                         |
|          |          |               |          |                       |                       |              |             | Dibenzo(a,h)anthracene         | 1.20E-06                         | 1.88E-08                         | 8.24E-08                         |
|          |          |               |          |                       |                       |              |             | Dichlorobenzene                | 1.20E-03                         | 1.88E-05                         | 8.24E-05                         |
|          |          |               |          |                       |                       |              |             | Fluoranthene                   | 3.00E-06                         | 4.71E-08                         | 2.06E-07                         |
| LD1      | CV1      | Ladle Dryers  | 2        | 8                     | 100%                  | 16           | 140,160     | Fluorene                       | 2.80E-06                         | 4.39E-08                         | 1.92E-07                         |
| LDI      | CVI      | Laule Di yers | 2        | 0                     | 10070                 | 10           | 140,100     | Formaldehyde                   | 0.08                             | 1.18E-03                         | 5.15E-03                         |
|          |          |               |          |                       |                       |              |             | Hexane                         | 1.8                              | 2.82E-02                         | 1.24E-01                         |
|          |          |               |          |                       |                       |              |             | Indeno(1,2,3-cd)pyrene         | 1.80E-06                         | 2.82E-08                         | 1.24E-07                         |
|          |          |               |          |                       |                       |              |             | Naphthalene                    | 6.10E-04                         | 9.57E-06                         | 4.19E-05                         |
|          |          |               |          |                       |                       |              |             | Phenanthrene                   | 1.70E-05                         | 2.67E-07                         | 1.17E-06                         |
|          |          |               |          |                       |                       |              |             | Pyrene                         | 5.00E-06                         | 7.84E-08                         | 3.44E-07                         |
|          |          |               |          |                       |                       |              |             | Toluene                        | 0.0034                           | 5.33E-05                         | 2.34E-04                         |
|          |          |               |          |                       |                       |              |             | Arsenic                        | 2.00E-04                         | 3.14E-06                         | 1.37E-05                         |
|          |          |               |          |                       |                       |              |             | Beryllium                      | 1.20E-05                         | 1.88E-07                         | 8.24E-07                         |
|          |          |               |          |                       |                       |              |             | Cadmium                        | 0.0011                           | 1.73E-05                         | 7.56E-05                         |
|          |          |               |          |                       |                       |              |             | Chromium                       | 0.0014                           | 2.20E-05                         | 9.62E-05                         |
|          |          |               |          |                       |                       |              |             | Cobalt                         | 8.40E-05                         | 1.32E-06                         | 5.77E-06                         |
|          |          |               |          |                       |                       |              |             | Manganese                      | 3.80E-04                         | 5.96E-06                         | 2.61E-05                         |
|          |          |               |          |                       |                       |              |             | Mercury                        | 2.60E-04                         | 4.08E-06                         | 1.79E-05                         |
|          |          |               |          |                       |                       |              |             | Molybdenum                     | 0.0011                           | 1.73E-05                         | 7.56E-05                         |
|          |          |               |          |                       |                       |              |             | Nickel                         | 0.0021                           | 3.29E-05                         | 1.44E-04                         |
|          |          |               |          |                       |                       |              |             | Selenium                       | 2.40E-05                         | 3.76E-07                         | 1.65E-06                         |

Table A-8c. HAP Emissions - Natural Gas Combustion

|       |          | Emission Unit |          | Single Unit          | Annual          | Total Heat I | nput Rating |                                | Emission                        | Hourly                            | Annual                          |
|-------|----------|---------------|----------|----------------------|-----------------|--------------|-------------|--------------------------------|---------------------------------|-----------------------------------|---------------------------------|
|       | Point ID | Description   | of Units | Rating<br>(MMBtu/hr) | Utilization (%) | (MMBtu/hr)   | (MMBtu/yr)  | Species                        | Factors <sup>2</sup> (lb/MMscf) | Emissions <sup>3</sup><br>(lb/hr) | Emissions <sup>4</sup><br>(tpy) |
|       |          |               |          |                      |                 |              |             | 2-Methylnaphthalene            | 2.40E-05                        | 2.82E-07                          | 1.24E-06                        |
|       |          |               |          |                      |                 |              |             | 3-Methylcholanthrene           | 1.80E-06                        | 2.12E-08                          | 9.28E-08                        |
|       |          |               |          |                      |                 |              |             | 7,12-Dimethylbenz(a)anthracene | 1.60E-05                        | 1.88E-07                          | 8.24E-07                        |
|       |          |               |          |                      |                 |              |             | Acenaphthene                   | 1.80E-06                        | 2.12E-08                          | 9.28E-08                        |
|       |          |               |          |                      |                 |              |             | Acenaphthylene                 | 1.80E-06                        | 2.12E-08                          | 9.28E-08                        |
|       |          |               |          |                      |                 |              |             | Anthracene                     | 2.40E-06                        | 2.82E-08                          | 1.24E-07                        |
|       |          |               |          |                      |                 |              |             | Benz(a)anthracene              | 1.80E-06                        | 2.12E-08                          | 9.28E-08                        |
|       |          |               |          |                      |                 |              |             | Benzene                        | 0.0021                          | 2.47E-05                          | 1.08E-04                        |
|       |          |               |          |                      |                 |              |             | Benzo(a)pyrene                 | 1.20E-06                        | 1.41E-08                          | 6.18E-08                        |
|       |          |               |          |                      |                 |              |             | Benzo(b)fluoranthene           | 1.80E-06                        | 2.12E-08                          | 9.28E-08                        |
|       |          |               |          |                      |                 |              |             | Benzo(g,h,i)perylene           | 1.20E-06                        | 1.41E-08                          | 6.18E-08                        |
|       |          |               |          |                      |                 |              |             | Benzo(k)fluoranthene           | 1.80E-06                        | 2.12E-08                          | 9.28E-08                        |
|       |          |               |          |                      |                 |              |             | Chrysene                       | 1.80E-06                        | 2.12E-08                          | 9.28E-08                        |
|       |          |               |          |                      |                 |              |             | Dibenzo(a,h)anthracene         | 1.20E-06                        | 1.41E-08                          | 6.18E-08                        |
|       |          |               |          |                      |                 |              |             | Dichlorobenzene                | 1.20E-03                        | 1.41E-05                          | 6.18E-05                        |
|       |          |               |          |                      |                 |              |             | Fluoranthene                   | 3.00E-06                        | 3.53E-08                          | 1.55E-07                        |
| TPH1  | CV1      | Tundish       | 2        | 6                    | 100%            | 12           | 105,120     | Fluorene                       | 2.80E-06                        | 3.29E-08                          | 1.44E-07                        |
| IFIII | CVI      | Preheaters    | 2        | 0                    | 10070           | 12           | 103,120     | Formaldehyde                   | 0.08                            | 8.82E-04                          | 3.86E-03                        |
|       |          |               |          |                      |                 |              |             | Hexane                         | 1.8                             | 2.12E-02                          | 9.28E-02                        |
|       |          |               |          |                      |                 |              |             | Indeno(1,2,3-cd)pyrene         | 1.80E-06                        | 2.12E-08                          | 9.28E-08                        |
|       |          |               |          |                      |                 |              |             | Naphthalene                    | 6.10E-04                        | 7.18E-06                          | 3.14E-05                        |
|       |          |               |          |                      |                 |              |             | Phenanthrene                   | 1.70E-05                        | 2.00E-07                          | 8.76E-07                        |
|       |          |               |          |                      |                 |              |             | Pyrene                         | 5.00E-06                        | 5.88E-08                          | 2.58E-07                        |
|       |          |               |          |                      |                 |              |             | Toluene                        | 0.0034                          | 4.00E-05                          | 1.75E-04                        |
|       |          |               |          |                      |                 |              |             | Arsenic                        | 2.00E-04                        | 2.35E-06                          | 1.03E-05                        |
|       |          |               |          |                      |                 |              |             | Beryllium                      | 1.20E-05                        | 1.41E-07                          | 6.18E-07                        |
|       |          |               |          |                      |                 |              |             | Cadmium                        | 0.0011                          | 1.29E-05                          | 5.67E-05                        |
|       |          |               |          |                      |                 |              |             | Chromium                       | 0.0014                          | 1.65E-05                          | 7.21E-05                        |
|       |          |               |          |                      |                 |              | Γ           | Cobalt                         | 8.40E-05                        | 9.88E-07                          | 4.33E-06                        |
|       |          |               |          |                      |                 |              | Γ           | Manganese                      | 3.80E-04                        | 4.47E-06                          | 1.96E-05                        |
|       |          |               |          |                      |                 |              |             | Mercury                        | 2.60E-04                        | 3.06E-06                          | 1.34E-05                        |
|       |          |               |          |                      |                 |              | Γ           | Molybdenum                     | 0.0011                          | 1.29E-05                          | 5.67E-05                        |
|       |          |               |          |                      |                 |              | Γ           | Nickel                         | 0.0021                          | 2.47E-05                          | 1.08E-04                        |
|       |          |               |          |                      |                 |              |             | Selenium                       | 2.40E-05                        | 2.82E-07                          | 1.24E-06                        |

Table A-8c. HAP Emissions - Natural Gas Combustion

|         |          | Emission Unit   |          | Single Unit          | Annual          | Total Heat I | nput Rating | Consider                       | Emission                        | Hourly                            | Annual                          |
|---------|----------|-----------------|----------|----------------------|-----------------|--------------|-------------|--------------------------------|---------------------------------|-----------------------------------|---------------------------------|
| Unit ID | Point ID | Description     | of Units | Rating<br>(MMBtu/hr) | Utilization (%) | (MMBtu/hr)   | (MMBtu/yr)  | Species                        | Factors <sup>2</sup> (lb/MMscf) | Emissions <sup>3</sup><br>(lb/hr) | Emissions <sup>4</sup><br>(tpy) |
|         |          |                 |          |                      |                 |              |             | 2-Methylnaphthalene            | 2.40E-05                        | 1.41E-07                          | 6.18E-07                        |
|         |          |                 |          |                      |                 |              |             | 3-Methylcholanthrene           | 1.80E-06                        | 1.06E-08                          | 4.64E-08                        |
|         |          |                 |          |                      |                 |              |             | 7,12-Dimethylbenz(a)anthracene | 1.60E-05                        | 9.41E-08                          | 4.12E-07                        |
|         |          |                 |          |                      |                 |              |             | Acenaphthene                   | 1.80E-06                        | 1.06E-08                          | 4.64E-08                        |
|         |          |                 |          |                      |                 |              |             | Acenaphthylene                 | 1.80E-06                        | 1.06E-08                          | 4.64E-08                        |
|         |          |                 |          |                      |                 |              |             | Anthracene                     | 2.40E-06                        | 1.41E-08                          | 6.18E-08                        |
|         |          |                 |          |                      |                 |              |             | Benz(a)anthracene              | 1.80E-06                        | 1.06E-08                          | 4.64E-08                        |
|         |          |                 |          |                      |                 |              |             | Benzene                        | 0.0021                          | 1.24E-05                          | 5.41E-05                        |
|         |          |                 |          |                      |                 |              |             | Benzo(a)pyrene                 | 1.20E-06                        | 7.06E-09                          | 3.09E-08                        |
|         |          |                 |          |                      |                 |              |             | Benzo(b)fluoranthene           | 1.80E-06                        | 1.06E-08                          | 4.64E-08                        |
|         |          |                 |          |                      |                 |              |             | Benzo(g,h,i)perylene           | 1.20E-06                        | 7.06E-09                          | 3.09E-08                        |
|         |          |                 |          |                      |                 |              |             | Benzo(k)fluoranthene           | 1.80E-06                        | 1.06E-08                          | 4.64E-08                        |
|         |          |                 |          |                      |                 |              |             | Chrysene                       | 1.80E-06                        | 1.06E-08                          | 4.64E-08                        |
|         |          |                 |          |                      |                 |              |             | Dibenzo(a,h)anthracene         | 1.20E-06                        | 7.06E-09                          | 3.09E-08                        |
|         |          |                 |          |                      |                 |              |             | Dichlorobenzene                | 1.20E-03                        | 7.06E-06                          | 3.09E-05                        |
|         |          |                 |          |                      |                 |              |             | Fluoranthene                   | 3.00E-06                        | 1.76E-08                          | 7.73E-08                        |
| TD1     | CV1      | Tundish Dryer   | 1        | 6                    | 100%            | 6            | 52,560      | Fluorene                       | 2.80E-06                        | 1.65E-08                          | 7.21E-08                        |
| 101     | CVI      | Tulluisii Diyei | 1        | U                    | 10070           | O            | 32,300      | Formaldehyde                   | 0.08                            | 4.41E-04                          | 1.93E-03                        |
|         |          |                 |          |                      |                 |              |             | Hexane                         | 1.8                             | 1.06E-02                          | 4.64E-02                        |
|         |          |                 |          |                      |                 |              |             | Indeno(1,2,3-cd)pyrene         | 1.80E-06                        | 1.06E-08                          | 4.64E-08                        |
|         |          |                 |          |                      |                 |              |             | Naphthalene                    | 6.10E-04                        | 3.59E-06                          | 1.57E-05                        |
|         |          |                 |          |                      |                 |              |             | Phenanthrene                   | 1.70E-05                        | 1.00E-07                          | 4.38E-07                        |
|         |          |                 |          |                      |                 |              |             | Pyrene                         | 5.00E-06                        | 2.94E-08                          | 1.29E-07                        |
|         |          |                 |          |                      |                 |              |             | Toluene                        | 0.0034                          | 2.00E-05                          | 8.76E-05                        |
|         |          |                 |          |                      |                 |              |             | Arsenic                        | 2.00E-04                        | 1.18E-06                          | 5.15E-06                        |
|         |          |                 |          |                      |                 |              |             | Beryllium                      | 1.20E-05                        | 7.06E-08                          | 3.09E-07                        |
|         |          |                 |          |                      |                 |              |             | Cadmium                        | 0.0011                          | 6.47E-06                          | 2.83E-05                        |
|         |          |                 |          |                      |                 |              |             | Chromium                       | 0.0014                          | 8.24E-06                          | 3.61E-05                        |
|         |          |                 |          |                      |                 |              | Γ           | Cobalt                         | 8.40E-05                        | 4.94E-07                          | 2.16E-06                        |
|         |          |                 |          |                      |                 |              | Γ           | Manganese                      | 3.80E-04                        | 2.24E-06                          | 9.79E-06                        |
|         |          |                 |          |                      |                 |              |             | Mercury                        | 2.60E-04                        | 1.53E-06                          | 6.70E-06                        |
|         |          |                 |          |                      |                 |              |             | Molybdenum                     | 0.0011                          | 6.47E-06                          | 2.83E-05                        |
|         |          |                 |          |                      |                 |              | Γ           | Nickel                         | 0.0021                          | 1.24E-05                          | 5.41E-05                        |
|         |          |                 |          |                      |                 |              |             | Selenium                       | 2.40E-05                        | 1.41E-07                          | 6.18E-07                        |

Table A-8c. HAP Emissions - Natural Gas Combustion

|        |          | Emission Unit   |          | Single Unit          | Annual             | Total Heat I | nput Rating |                                | Emission                        | Hourly                            | Annual                          |
|--------|----------|-----------------|----------|----------------------|--------------------|--------------|-------------|--------------------------------|---------------------------------|-----------------------------------|---------------------------------|
|        | Point ID | Description     | of Units | Rating<br>(MMBtu/hr) | Utilization<br>(%) | (MMBtu/hr)   | (MMBtu/yr)  | Species                        | Factors <sup>2</sup> (lb/MMscf) | Emissions <sup>3</sup><br>(lb/hr) | Emissions <sup>4</sup><br>(tpy) |
|        |          |                 |          |                      |                    |              |             | 2-Methylnaphthalene            | 2.40E-05                        | 2.35E-08                          | 1.03E-07                        |
|        |          |                 |          |                      |                    |              |             | 3-Methylcholanthrene           | 1.80E-06                        | 1.76E-09                          | 7.73E-09                        |
|        |          |                 |          |                      |                    |              |             | 7,12-Dimethylbenz(a)anthracene | 1.60E-05                        | 1.57E-08                          | 6.87E-08                        |
|        |          |                 |          |                      |                    |              |             | Acenaphthene                   | 1.80E-06                        | 1.76E-09                          | 7.73E-09                        |
|        |          |                 |          |                      |                    |              |             | Acenaphthylene                 | 1.80E-06                        | 1.76E-09                          | 7.73E-09                        |
|        |          |                 |          |                      |                    |              |             | Anthracene                     | 2.40E-06                        | 2.35E-09                          | 1.03E-08                        |
|        |          |                 |          |                      |                    |              |             | Benz(a)anthracene              | 1.80E-06                        | 1.76E-09                          | 7.73E-09                        |
|        |          |                 |          |                      |                    |              |             | Benzene                        | 0.0021                          | 2.06E-06                          | 9.02E-06                        |
|        |          |                 |          |                      |                    |              |             | Benzo(a)pyrene                 | 1.20E-06                        | 1.18E-09                          | 5.15E-09                        |
|        |          |                 |          |                      |                    |              |             | Benzo(b)fluoranthene           | 1.80E-06                        | 1.76E-09                          | 7.73E-09                        |
|        |          |                 |          |                      |                    |              |             | Benzo(g,h,i)perylene           | 1.20E-06                        | 1.18E-09                          | 5.15E-09                        |
|        |          |                 |          |                      |                    |              |             | Benzo(k)fluoranthene           | 1.80E-06                        | 1.76E-09                          | 7.73E-09                        |
|        |          |                 |          |                      |                    |              |             | Chrysene                       | 1.80E-06                        | 1.76E-09                          | 7.73E-09                        |
|        |          |                 |          |                      |                    |              |             | Dibenzo(a,h)anthracene         | 1.20E-06                        | 1.18E-09                          | 5.15E-09                        |
|        |          |                 |          |                      |                    |              |             | Dichlorobenzene                | 1.20E-03                        | 1.18E-06                          | 5.15E-06                        |
|        |          |                 |          |                      |                    |              |             | Fluoranthene                   | 3.00E-06                        | 2.94E-09                          | 1.29E-08                        |
| TMD1   | CV1      | Tundish Mandril | 1        | 1                    | 100%               | 1            | 8,760       | Fluorene                       | 2.80E-06                        | 2.75E-09                          | 1.20E-08                        |
| וטויוו | CVI      | Dryer           | 1        | 1                    | 100%               | 1            | 0,700       | Formaldehyde                   | 0.08                            | 7.35E-05                          | 3.22E-04                        |
|        |          |                 |          |                      |                    |              |             | Hexane                         | 1.8                             | 1.76E-03                          | 7.73E-03                        |
|        |          |                 |          |                      |                    |              |             | Indeno(1,2,3-cd)pyrene         | 1.80E-06                        | 1.76E-09                          | 7.73E-09                        |
|        |          |                 |          |                      |                    |              |             | Naphthalene                    | 6.10E-04                        | 5.98E-07                          | 2.62E-06                        |
|        |          |                 |          |                      |                    |              |             | Phenanthrene                   | 1.70E-05                        | 1.67E-08                          | 7.30E-08                        |
|        |          |                 |          |                      |                    |              |             | Pyrene                         | 5.00E-06                        | 4.90E-09                          | 2.15E-08                        |
|        |          |                 |          |                      |                    |              |             | Toluene                        | 0.0034                          | 3.33E-06                          | 1.46E-05                        |
|        |          |                 |          |                      |                    |              |             | Arsenic                        | 2.00E-04                        | 1.96E-07                          | 8.59E-07                        |
|        |          |                 |          |                      |                    |              |             | Beryllium                      | 1.20E-05                        | 1.18E-08                          | 5.15E-08                        |
|        |          |                 |          |                      |                    |              |             | Cadmium                        | 0.0011                          | 1.08E-06                          | 4.72E-06                        |
|        |          |                 |          |                      |                    |              |             | Chromium                       | 0.0014                          | 1.37E-06                          | 6.01E-06                        |
|        |          |                 |          |                      |                    |              | Γ           | Cobalt                         | 8.40E-05                        | 8.24E-08                          | 3.61E-07                        |
|        |          |                 |          |                      |                    |              | Γ           | Manganese                      | 3.80E-04                        | 3.73E-07                          | 1.63E-06                        |
|        |          |                 |          |                      |                    |              |             | Mercury                        | 2.60E-04                        | 2.55E-07                          | 1.12E-06                        |
|        |          |                 |          |                      |                    |              | Γ           | Molybdenum                     | 0.0011                          | 1.08E-06                          | 4.72E-06                        |
|        |          |                 |          |                      |                    |              | Γ           | Nickel                         | 0.0021                          | 2.06E-06                          | 9.02E-06                        |
|        |          |                 |          |                      |                    |              |             | Selenium                       | 2.40E-05                        | 2.35E-08                          | 1.03E-07                        |

Table A-8c. HAP Emissions - Natural Gas Combustion

|          |          | Emission Unit   |          | Single Unit          | Annual          | Total Heat I | nput Rating | Overden                        | Emission                        | Hourly                            | Annual                          |
|----------|----------|-----------------|----------|----------------------|-----------------|--------------|-------------|--------------------------------|---------------------------------|-----------------------------------|---------------------------------|
| Unit ID  | Point ID | Description     | of Units | Rating<br>(MMBtu/hr) | Utilization (%) | (MMBtu/hr)   | (MMBtu/yr)  | Species                        | Factors <sup>2</sup> (lb/MMscf) | Emissions <sup>3</sup><br>(lb/hr) | Emissions <sup>4</sup><br>(tpy) |
|          |          |                 |          |                      |                 |              |             | 2-Methylnaphthalene            | 2.40E-05                        | 1.18E-08                          | 5.15E-08                        |
|          |          |                 |          |                      |                 |              |             | 3-Methylcholanthrene           | 1.80E-06                        | 8.82E-10                          | 3.86E-09                        |
|          |          |                 |          |                      |                 |              |             | 7,12-Dimethylbenz(a)anthracene | 1.60E-05                        | 7.84E-09                          | 3.44E-08                        |
|          |          |                 |          |                      |                 |              |             | Acenaphthene                   | 1.80E-06                        | 8.82E-10                          | 3.86E-09                        |
|          |          |                 |          |                      |                 |              |             | Acenaphthylene                 | 1.80E-06                        | 8.82E-10                          | 3.86E-09                        |
|          |          |                 |          |                      |                 |              |             | Anthracene                     | 2.40E-06                        | 1.18E-09                          | 5.15E-09                        |
|          |          |                 |          |                      |                 |              |             | Benz(a)anthracene              | 1.80E-06                        | 8.82E-10                          | 3.86E-09                        |
|          |          |                 |          |                      |                 |              |             | Benzene                        | 0.0021                          | 1.03E-06                          | 4.51E-06                        |
|          |          |                 |          |                      |                 |              |             | Benzo(a)pyrene                 | 1.20E-06                        | 5.88E-10                          | 2.58E-09                        |
|          |          |                 |          |                      |                 |              |             | Benzo(b)fluoranthene           | 1.80E-06                        | 8.82E-10                          | 3.86E-09                        |
|          |          |                 |          |                      |                 |              |             | Benzo(g,h,i)perylene           | 1.20E-06                        | 5.88E-10                          | 2.58E-09                        |
|          |          |                 |          |                      |                 |              |             | Benzo(k)fluoranthene           | 1.80E-06                        | 8.82E-10                          | 3.86E-09                        |
|          |          |                 |          |                      |                 |              |             | Chrysene                       | 1.80E-06                        | 8.82E-10                          | 3.86E-09                        |
|          |          |                 |          |                      |                 |              |             | Dibenzo(a,h)anthracene         | 1.20E-06                        | 5.88E-10                          | 2.58E-09                        |
|          |          |                 |          |                      |                 |              |             | Dichlorobenzene                | 1.20E-03                        | 5.88E-07                          | 2.58E-06                        |
|          |          |                 |          |                      |                 |              |             | Fluoranthene                   | 3.00E-06                        | 1.47E-09                          | 6.44E-09                        |
| SRDHTR1  | CV1      | Shroud Heater   | 1        | 1                    | 100%            | 0.5          | 4,380       | Fluorene                       | 2.80E-06                        | 1.37E-09                          | 6.01E-09                        |
| SKUITIKI | CVI      | Silloud Fleater | 1        | 1                    | 100 /0          | 0.5          | 7,500       | Formaldehyde                   | 0.08                            | 3.68E-05                          | 1.61E-04                        |
|          |          |                 |          |                      |                 |              |             | Hexane                         | 1.8                             | 8.82E-04                          | 3.86E-03                        |
|          |          |                 |          |                      |                 |              |             | Indeno(1,2,3-cd)pyrene         | 1.80E-06                        | 8.82E-10                          | 3.86E-09                        |
|          |          |                 |          |                      |                 |              |             | Naphthalene                    | 6.10E-04                        | 2.99E-07                          | 1.31E-06                        |
|          |          |                 |          |                      |                 |              |             | Phenanthrene                   | 1.70E-05                        | 8.33E-09                          | 3.65E-08                        |
|          |          |                 |          |                      |                 |              |             | Pyrene                         | 5.00E-06                        | 2.45E-09                          | 1.07E-08                        |
|          |          |                 |          |                      |                 |              |             | Toluene                        | 0.0034                          | 1.67E-06                          | 7.30E-06                        |
|          |          |                 |          |                      |                 |              |             | Arsenic                        | 2.00E-04                        | 9.80E-08                          | 4.29E-07                        |
|          |          |                 |          |                      |                 |              |             | Beryllium                      | 1.20E-05                        | 5.88E-09                          | 2.58E-08                        |
|          |          |                 |          |                      |                 |              |             | Cadmium                        | 0.0011                          | 5.39E-07                          | 2.36E-06                        |
|          |          |                 |          |                      |                 |              |             | Chromium                       | 0.0014                          | 6.86E-07                          | 3.01E-06                        |
|          |          |                 |          |                      |                 |              | Γ           | Cobalt                         | 8.40E-05                        | 4.12E-08                          | 1.80E-07                        |
|          |          |                 |          |                      |                 |              |             | Manganese                      | 3.80E-04                        | 1.86E-07                          | 8.16E-07                        |
|          |          |                 |          |                      |                 |              |             | Mercury                        | 2.60E-04                        | 1.27E-07                          | 5.58E-07                        |
|          |          |                 |          |                      |                 |              | Ī           | Molybdenum                     | 0.0011                          | 5.39E-07                          | 2.36E-06                        |
|          |          |                 |          |                      |                 |              |             | Nickel                         | 0.0021                          | 1.03E-06                          | 4.51E-06                        |
|          |          |                 |          |                      |                 |              |             | Selenium                       | 2.40E-05                        | 1.18E-08                          | 5.15E-08                        |

Table A-8c. HAP Emissions - Natural Gas Combustion

|         |          | Emission Unit |          | Single Unit          | Annual<br>Utilization | Total Heat I | nput Rating | Species                        | Emission                        | Hourly                            | Annual                          |
|---------|----------|---------------|----------|----------------------|-----------------------|--------------|-------------|--------------------------------|---------------------------------|-----------------------------------|---------------------------------|
| Unit ID | Point ID | Description   | of Units | Rating<br>(MMBtu/hr) |                       | (MMBtu/hr)   | (MMBtu/yr)  | Species                        | Factors <sup>2</sup> (lb/MMscf) | Emissions <sup>3</sup><br>(lb/hr) | Emissions <sup>4</sup><br>(tpy) |
|         |          |               |          |                      |                       |              |             | 2-Methylnaphthalene            | 2.40E-05                        | 1.88E-07                          | 4.12E-07                        |
|         |          |               |          |                      |                       |              |             | 3-Methylcholanthrene           | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|         |          |               |          |                      |                       |              |             | 7,12-Dimethylbenz(a)anthracene | 1.60E-05                        | 1.25E-07                          | 2.75E-07                        |
|         |          |               |          |                      |                       |              |             | Acenaphthene                   | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|         |          |               |          |                      |                       |              |             | Acenaphthylene                 | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|         |          |               |          |                      |                       |              |             | Anthracene                     | 2.40E-06                        | 1.88E-08                          | 4.12E-08                        |
|         |          |               |          |                      |                       |              |             | Benz(a)anthracene              | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|         |          |               |          |                      |                       |              |             | Benzene                        | 0.0021                          | 1.65E-05                          | 3.61E-05                        |
|         |          |               |          |                      |                       |              |             | Benzo(a)pyrene                 | 1.20E-06                        | 9.41E-09                          | 2.06E-08                        |
|         |          |               |          |                      |                       |              |             | Benzo(b)fluoranthene           | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|         |          |               |          |                      |                       |              |             | Benzo(g,h,i)perylene           | 1.20E-06                        | 9.41E-09                          | 2.06E-08                        |
|         |          |               |          |                      |                       |              |             | Benzo(k)fluoranthene           | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|         |          |               |          |                      |                       |              |             | Chrysene                       | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|         |          |               |          |                      |                       |              |             | Dibenzo(a,h)anthracene         | 1.20E-06                        | 9.41E-09                          | 2.06E-08                        |
|         |          |               |          |                      |                       |              |             | Dichlorobenzene                | 1.20E-03                        | 9.41E-06                          | 2.06E-05                        |
|         |          | Meltshop      |          |                      |                       |              |             | Fluoranthene                   | 3.00E-06                        | 2.35E-08                          | 5.15E-08                        |
| MSAUXHT | CV1      | Comfort       | 20       | 0.4                  | 50%                   | 8            | 35,040      | Fluorene                       | 2.80E-06                        | 2.20E-08                          | 4.81E-08                        |
| MOAUANI | CVI      |               | 20       | 0.4                  | 30%                   | 0            | 35,040      | Formaldehyde                   | 0.08                            | 5.88E-04                          | 1.29E-03                        |
|         |          | Heaters       |          |                      |                       |              |             | Hexane                         | 1.8                             | 1.41E-02                          | 3.09E-02                        |
|         |          |               |          |                      |                       |              |             | Indeno(1,2,3-cd)pyrene         | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|         |          |               |          |                      |                       |              |             | Naphthalene                    | 6.10E-04                        | 4.78E-06                          | 1.05E-05                        |
|         |          |               |          |                      |                       |              |             | Phenanthrene                   | 1.70E-05                        | 1.33E-07                          | 2.92E-07                        |
|         |          |               |          |                      |                       |              |             | Pyrene                         | 5.00E-06                        | 3.92E-08                          | 8.59E-08                        |
|         |          |               |          |                      |                       |              |             | Toluene                        | 0.0034                          | 2.67E-05                          | 5.84E-05                        |
|         |          |               |          |                      |                       |              |             | Arsenic                        | 2.00E-04                        | 1.57E-06                          | 3.44E-06                        |
|         |          |               |          |                      |                       |              |             | Beryllium                      | 1.20E-05                        | 9.41E-08                          | 2.06E-07                        |
|         |          |               |          |                      |                       |              |             | Cadmium                        | 0.0011                          | 8.63E-06                          | 1.89E-05                        |
|         |          |               |          |                      |                       |              |             | Chromium                       | 0.0014                          | 1.10E-05                          | 2.40E-05                        |
|         |          |               |          |                      |                       |              |             | Cobalt                         | 8.40E-05                        | 6.59E-07                          | 1.44E-06                        |
|         |          |               |          |                      |                       |              | F           | Manganese                      | 3.80E-04                        | 2.98E-06                          | 6.53E-06                        |
|         |          |               |          |                      |                       |              | F           | Mercury                        | 2.60E-04                        | 2.04E-06                          | 4.47E-06                        |
|         |          |               |          |                      |                       |              | F           | Molybdenum                     | 0.0011                          | 8.63E-06                          | 1.89E-05                        |
|         |          |               |          |                      |                       |              | <u> </u>    | Nickel                         | 0.0021                          | 1.65E-05                          | 3.61E-05                        |
|         |          |               |          |                      |                       |              |             | Selenium                       | 2.40E-05                        | 1.88E-07                          | 4.12E-07                        |

Table A-8c. HAP Emissions - Natural Gas Combustion

|     |          | Emission Unit |          | Single Unit          | Annual          | Total Heat I | nput Rating |                                | Emission                        | Hourly                            | Annual                          |
|-----|----------|---------------|----------|----------------------|-----------------|--------------|-------------|--------------------------------|---------------------------------|-----------------------------------|---------------------------------|
|     | Point ID | Description   | of Units | Rating<br>(MMBtu/hr) | Utilization (%) | (MMBtu/hr)   | (MMBtu/yr)  | Species                        | Factors <sup>2</sup> (lb/MMscf) | Emissions <sup>3</sup><br>(lb/hr) | Emissions <sup>4</sup><br>(tpy) |
|     |          |               |          |                      |                 |              |             | 2-Methylnaphthalene            | 2.40E-05                        | 5.29E-09                          | 2.32E-08                        |
|     |          |               |          |                      |                 |              |             | 3-Methylcholanthrene           | 1.80E-06                        | 3.97E-10                          | 1.74E-09                        |
|     |          |               |          |                      |                 |              |             | 7,12-Dimethylbenz(a)anthracene | 1.60E-05                        | 3.53E-09                          | 1.55E-08                        |
|     |          |               |          |                      |                 |              |             | Acenaphthene                   | 1.80E-06                        | 3.97E-10                          | 1.74E-09                        |
|     |          |               |          |                      |                 |              |             | Acenaphthylene                 | 1.80E-06                        | 3.97E-10                          | 1.74E-09                        |
|     |          |               |          |                      |                 |              |             | Anthracene                     | 2.40E-06                        | 5.29E-10                          | 2.32E-09                        |
|     |          |               |          |                      |                 |              |             | Benz(a)anthracene              | 1.80E-06                        | 3.97E-10                          | 1.74E-09                        |
|     |          |               |          |                      |                 |              |             | Benzene                        | 0.0021                          | 4.63E-07                          | 2.03E-06                        |
|     |          |               |          |                      |                 |              |             | Benzo(a)pyrene                 | 1.20E-06                        | 2.65E-10                          | 1.16E-09                        |
|     |          |               |          |                      |                 |              |             | Benzo(b)fluoranthene           | 1.80E-06                        | 3.97E-10                          | 1.74E-09                        |
|     |          |               |          |                      |                 |              |             | Benzo(g,h,i)perylene           | 1.20E-06                        | 2.65E-10                          | 1.16E-09                        |
|     |          |               |          |                      |                 |              |             | Benzo(k)fluoranthene           | 1.80E-06                        | 3.97E-10                          | 1.74E-09                        |
|     |          |               |          |                      |                 |              |             | Chrysene                       | 1.80E-06                        | 3.97E-10                          | 1.74E-09                        |
|     |          |               |          |                      |                 |              |             | Dibenzo(a,h)anthracene         | 1.20E-06                        | 2.65E-10                          | 1.16E-09                        |
|     |          |               |          |                      |                 |              |             | Dichlorobenzene                | 1.20E-03                        | 2.65E-07                          | 1.16E-06                        |
|     |          |               |          |                      |                 |              |             | Fluoranthene                   | 3.00E-06                        | 6.62E-10                          | 2.90E-09                        |
| BF1 | RMV1     | Bit Furnace   | 1        | 0.225                | 100%            | 0            | 1,971       | Fluorene                       | 2.80E-06                        | 6.18E-10                          | 2.71E-09                        |
| DII | KINVI    | Dit i dillace | 1        | 0.223                | 100 /0          | U            | 1,3/1       | Formaldehyde                   | 0.08                            | 1.65E-05                          | 7.25E-05                        |
|     |          |               |          |                      |                 |              |             | Hexane                         | 1.8                             | 3.97E-04                          | 1.74E-03                        |
|     |          |               |          |                      |                 |              |             | Indeno(1,2,3-cd)pyrene         | 1.80E-06                        | 3.97E-10                          | 1.74E-09                        |
|     |          |               |          |                      |                 |              |             | Naphthalene                    | 6.10E-04                        | 1.35E-07                          | 5.89E-07                        |
|     |          |               |          |                      |                 |              |             | Phenanthrene                   | 1.70E-05                        | 3.75E-09                          | 1.64E-08                        |
|     |          |               |          |                      |                 |              |             | Pyrene                         | 5.00E-06                        | 1.10E-09                          | 4.83E-09                        |
|     |          |               |          |                      |                 |              |             | Toluene                        | 0.0034                          | 7.50E-07                          | 3.29E-06                        |
|     |          |               |          |                      |                 |              |             | Arsenic                        | 2.00E-04                        | 4.41E-08                          | 1.93E-07                        |
|     |          |               |          |                      |                 |              |             | Beryllium                      | 1.20E-05                        | 2.65E-09                          | 1.16E-08                        |
|     |          |               |          |                      |                 |              |             | Cadmium                        | 0.0011                          | 2.43E-07                          | 1.06E-06                        |
|     |          |               |          |                      |                 |              |             | Chromium                       | 0.0014                          | 3.09E-07                          | 1.35E-06                        |
|     |          |               |          |                      |                 |              |             | Cobalt                         | 8.40E-05                        | 1.85E-08                          | 8.12E-08                        |
|     |          |               |          |                      |                 |              |             | Manganese                      | 3.80E-04                        | 8.38E-08                          | 3.67E-07                        |
|     |          |               |          |                      |                 |              |             | Mercury                        | 2.60E-04                        | 5.74E-08                          | 2.51E-07                        |
|     |          |               |          |                      |                 |              |             | Molybdenum                     | 0.0011                          | 2.43E-07                          | 1.06E-06                        |
|     |          |               |          |                      |                 |              |             | Nickel                         | 0.0021                          | 4.63E-07                          | 2.03E-06                        |
|     |          |               |          |                      |                 |              |             | Selenium                       | 2.40E-05                        | 5.29E-09                          | 2.32E-08                        |

Table A-8c. HAP Emissions - Natural Gas Combustion

|           |          | Emission Unit |          | Single Unit          | Annual          | Total Heat I | nput Rating | Overden                        | Emission                        | Hourly                            | Annual                          |
|-----------|----------|---------------|----------|----------------------|-----------------|--------------|-------------|--------------------------------|---------------------------------|-----------------------------------|---------------------------------|
| Unit ID   | Point ID | Description   | of Units | Rating<br>(MMBtu/hr) | Utilization (%) | (MMBtu/hr)   | (MMBtu/yr)  | Species                        | Factors <sup>2</sup> (lb/MMscf) | Emissions <sup>3</sup><br>(lb/hr) | Emissions <sup>4</sup><br>(tpy) |
|           |          |               |          |                      |                 |              |             | 2-Methylnaphthalene            | 2.40E-05                        | 1.88E-07                          | 4.12E-07                        |
|           |          |               |          |                      |                 |              |             | 3-Methylcholanthrene           | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|           |          |               |          |                      |                 |              |             | 7,12-Dimethylbenz(a)anthracene | 1.60E-05                        | 1.25E-07                          | 2.75E-07                        |
|           |          |               |          |                      |                 |              |             | Acenaphthene                   | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|           |          |               |          |                      |                 |              |             | Acenaphthylene                 | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|           |          |               |          |                      |                 |              |             | Anthracene                     | 2.40E-06                        | 1.88E-08                          | 4.12E-08                        |
|           |          |               |          |                      |                 |              |             | Benz(a)anthracene              | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|           |          |               |          |                      |                 |              |             | Benzene                        | 0.0021                          | 1.65E-05                          | 3.61E-05                        |
|           |          |               |          |                      |                 |              |             | Benzo(a)pyrene                 | 1.20E-06                        | 9.41E-09                          | 2.06E-08                        |
|           |          |               |          |                      |                 |              |             | Benzo(b)fluoranthene           | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|           |          |               |          |                      |                 |              |             | Benzo(g,h,i)perylene           | 1.20E-06                        | 9.41E-09                          | 2.06E-08                        |
|           |          |               |          |                      |                 |              |             | Benzo(k)fluoranthene           | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|           |          |               |          |                      |                 |              |             | Chrysene                       | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|           |          |               |          |                      |                 |              |             | Dibenzo(a,h)anthracene         | 1.20E-06                        | 9.41E-09                          | 2.06E-08                        |
|           |          |               |          |                      |                 |              |             | Dichlorobenzene                | 1.20E-03                        | 9.41E-06                          | 2.06E-05                        |
|           |          | Rolling Mill  |          |                      |                 |              |             | Fluoranthene                   | 3.00E-06                        | 2.35E-08                          | 5.15E-08                        |
| RMAUXHT   | RMV1     | Comfort       | 20       | 0.4                  | 50%             | 8            | 35,040      | Fluorene                       | 2.80E-06                        | 2.20E-08                          | 4.81E-08                        |
| KINAUATTI | KINI     | Heaters       | 20       | 0.4                  | 30 70           | O            | 33,040      | Formaldehyde                   | 0.08                            | 5.88E-04                          | 1.29E-03                        |
|           |          | Heaters       |          |                      |                 |              |             | Hexane                         | 1.8                             | 1.41E-02                          | 3.09E-02                        |
|           |          |               |          |                      |                 |              |             | Indeno(1,2,3-cd)pyrene         | 1.80E-06                        | 1.41E-08                          | 3.09E-08                        |
|           |          |               |          |                      |                 |              |             | Naphthalene                    | 6.10E-04                        | 4.78E-06                          | 1.05E-05                        |
|           |          |               |          |                      |                 |              |             | Phenanthrene                   | 1.70E-05                        | 1.33E-07                          | 2.92E-07                        |
|           |          |               |          |                      |                 |              |             | Pyrene                         | 5.00E-06                        | 3.92E-08                          | 8.59E-08                        |
|           |          |               |          |                      |                 |              |             | Toluene                        | 0.0034                          | 2.67E-05                          | 5.84E-05                        |
|           |          |               |          |                      |                 |              |             | Arsenic                        | 2.00E-04                        | 1.57E-06                          | 3.44E-06                        |
|           |          |               |          |                      |                 |              |             | Beryllium                      | 1.20E-05                        | 9.41E-08                          | 2.06E-07                        |
|           |          |               |          |                      |                 |              |             | Cadmium                        | 0.0011                          | 8.63E-06                          | 1.89E-05                        |
|           |          |               |          |                      |                 |              |             | Chromium                       | 0.0014                          | 1.10E-05                          | 2.40E-05                        |
|           |          |               |          |                      |                 |              |             | Cobalt                         | 8.40E-05                        | 6.59E-07                          | 1.44E-06                        |
|           |          |               |          |                      |                 |              |             | Manganese                      | 3.80E-04                        | 2.98E-06                          | 6.53E-06                        |
|           |          |               |          |                      |                 |              |             | Mercury                        | 2.60E-04                        | 2.04E-06                          | 4.47E-06                        |
|           |          |               |          |                      |                 |              |             | Molybdenum                     | 0.0011                          | 8.63E-06                          | 1.89E-05                        |
|           |          |               |          |                      |                 |              |             | Nickel                         | 0.0021                          | 1.65E-05                          | 3.61E-05                        |
|           |          |               |          |                      |                 |              |             | Selenium                       | 2.40E-05                        | 1.88E-07                          | 4.12E-07                        |

Table A-8c. HAP Emissions - Natural Gas Combustion

|        |          | Emission Unit    |          | Single Unit          | Annual          | Total Heat I | nput Rating |                                | Emission                        | Hourly                            | Annual                          |
|--------|----------|------------------|----------|----------------------|-----------------|--------------|-------------|--------------------------------|---------------------------------|-----------------------------------|---------------------------------|
|        | Point ID | Description      | of Units | Rating<br>(MMBtu/hr) | Utilization (%) | (MMBtu/hr)   | (MMBtu/yr)  | Species                        | Factors <sup>2</sup> (lb/MMscf) | Emissions <sup>3</sup><br>(lb/hr) | Emissions <sup>4</sup><br>(tpy) |
|        |          |                  |          |                      |                 |              |             | 2-Methylnaphthalene            | 2.40E-05                        | 7.56E-09                          | 1.51E-08                        |
|        |          |                  |          |                      |                 |              |             | 3-Methylcholanthrene           | 1.80E-06                        | 5.67E-10                          | 1.13E-09                        |
|        |          |                  |          |                      |                 |              |             | 7,12-Dimethylbenz(a)anthracene | 1.60E-05                        | 5.04E-09                          | 1.01E-08                        |
|        |          |                  |          |                      |                 |              |             | Acenaphthene                   | 1.80E-06                        | 5.67E-10                          | 1.13E-09                        |
|        |          |                  |          |                      |                 |              |             | Acenaphthylene                 | 1.80E-06                        | 5.67E-10                          | 1.13E-09                        |
|        |          |                  |          |                      |                 |              |             | Anthracene                     | 2.40E-06                        | 7.56E-10                          | 1.51E-09                        |
|        |          |                  |          |                      |                 |              |             | Benz(a)anthracene              | 1.80E-06                        | 5.67E-10                          | 1.13E-09                        |
|        |          |                  |          |                      |                 |              |             | Benzene                        | 0.0021                          | 6.61E-07                          | 1.32E-06                        |
|        |          |                  |          |                      |                 |              |             | Benzo(a)pyrene                 | 1.20E-06                        | 3.78E-10                          | 7.56E-10                        |
|        |          |                  |          |                      |                 |              |             | Benzo(b)fluoranthene           | 1.80E-06                        | 5.67E-10                          | 1.13E-09                        |
|        |          |                  |          |                      |                 |              |             | Benzo(g,h,i)perylene           | 1.20E-06                        | 3.78E-10                          | 7.56E-10                        |
|        |          |                  |          |                      |                 |              |             | Benzo(k)fluoranthene           | 1.80E-06                        | 5.67E-10                          | 1.13E-09                        |
|        |          |                  |          |                      |                 |              |             | Chrysene                       | 1.80E-06                        | 5.67E-10                          | 1.13E-09                        |
|        |          |                  |          |                      |                 |              |             | Dibenzo(a,h)anthracene         | 1.20E-06                        | 3.78E-10                          | 7.56E-10                        |
|        |          |                  |          |                      |                 |              |             | Dichlorobenzene                | 1.20E-03                        | 3.78E-07                          | 7.56E-07                        |
|        |          |                  |          |                      |                 |              |             | Fluoranthene                   | 3.00E-06                        | 9.45E-10                          | 1.89E-09                        |
| TORCH1 | TODCH1   | Cutting Torches  | _        | 0.32                 | 46%             | 0.32         | 1,284.66    | Fluorene                       | 2.80E-06                        | 8.82E-10                          | 1.76E-09                        |
| TORCHI | TORCHI   | cutting rollines | _        | 0.52                 | 40 /0           | 0.52         | 1,204.00    | Formaldehyde                   | 0.08                            | 2.36E-05                          | 4.72E-05                        |
|        |          |                  |          |                      |                 |              |             | Hexane                         | 1.8                             | 5.67E-04                          | 1.13E-03                        |
|        |          |                  |          |                      |                 |              |             | Indeno(1,2,3-cd)pyrene         | 1.80E-06                        | 5.67E-10                          | 1.13E-09                        |
|        |          |                  |          |                      |                 |              |             | Naphthalene                    | 6.10E-04                        | 1.92E-07                          | 3.84E-07                        |
|        |          |                  |          |                      |                 |              |             | Phenanthrene                   | 1.70E-05                        | 5.35E-09                          | 1.07E-08                        |
|        |          |                  |          |                      |                 |              |             | Pyrene                         | 5.00E-06                        | 1.57E-09                          | 3.15E-09                        |
|        |          |                  |          |                      |                 |              |             | Toluene                        | 0.0034                          | 1.07E-06                          | 2.14E-06                        |
|        |          |                  |          |                      |                 |              |             | Arsenic                        | 2.00E-04                        | 6.30E-08                          | 1.26E-07                        |
|        |          |                  |          |                      |                 |              |             | Beryllium                      | 1.20E-05                        | 3.78E-09                          | 7.56E-09                        |
|        |          |                  |          |                      |                 |              |             | Cadmium                        | 0.0011                          | 3.46E-07                          | 6.93E-07                        |
|        |          |                  |          |                      |                 |              |             | Chromium                       | 0.0014                          | 4.41E-07                          | 8.82E-07                        |
|        |          |                  |          |                      |                 |              |             | Cobalt                         | 8.40E-05                        | 2.64E-08                          | 5.29E-08                        |
|        |          |                  |          |                      |                 |              |             | Manganese                      | 3.80E-04                        | 1.20E-07                          | 2.39E-07                        |
|        |          |                  |          |                      |                 |              |             | Mercury                        | 2.60E-04                        | 8.19E-08                          | 1.64E-07                        |
|        |          |                  |          |                      |                 |              |             | Molybdenum                     | 0.0011                          | 3.46E-07                          | 6.93E-07                        |
|        |          |                  |          |                      |                 |              |             | Nickel                         | 0.0021                          | 6.61E-07                          | 1.32E-06                        |
|        |          |                  |          |                      | ĺ               |              | Ī           | Selenium                       | 2.40E-05                        | 7.56E-09                          | 1.51E-08                        |

Table A-8c. HAP Emissions - Natural Gas Combustion

| Emission      | Emission | Emission Unit  | Number   | Single Unit | Annual      | Total Heat I | nput Rating |                                | Emission             | Hourly                 | Annual    |
|---------------|----------|----------------|----------|-------------|-------------|--------------|-------------|--------------------------------|----------------------|------------------------|-----------|
| Unit ID       | Point ID | Description    | of Units | Rating      | Utilization |              |             | Species                        | Factors <sup>2</sup> | Emissions <sup>3</sup> | Emissions |
| · · · · · · · |          | 2 coci i pulon | 01 01110 | (MMBtu/hr)  | (%)         | (MMBtu/hr)   | (MMBtu/yr)  |                                | (lb/MMscf)           | (lb/hr)                | (tpy)     |
|               |          |                |          |             |             |              |             | 2-Methylnaphthalene            | -                    | 1.44E-06               | 5.87E-06  |
|               |          |                |          |             |             |              |             | 3-Methylcholanthrene           | -                    | 1.08E-07               | 4.41E-0   |
|               |          |                |          |             |             |              |             | 7,12-Dimethylbenz(a)anthracene | -                    | 9.57E-07               | 3.92E-06  |
|               |          |                |          |             |             |              |             | Acenaphthene                   | -                    | 1.08E-07               | 4.41E-0   |
|               |          |                |          |             |             |              |             | Acenaphthylene                 | -                    | 1.08E-07               | 4.41E-0   |
|               |          |                |          |             |             |              |             | Anthracene                     | -                    | 1.44E-07               | 5.87E-0   |
|               |          |                |          |             |             |              |             | Benz(a)anthracene              | -                    | 1.08E-07               | 4.41E-0   |
|               |          |                |          |             |             |              | Benzene     | -                              | 1.26E-04             | 5.14E-0                |           |
|               |          |                |          |             |             |              |             | Benzo(a)pyrene                 | -                    | 7.18E-08               | 2.94E-0   |
|               |          |                |          |             |             |              |             | Benzo(b)fluoranthene           | -                    | 1.08E-07               | 4.41E-0   |
|               |          |                |          |             |             |              |             | Benzo(g,h,i)perylene           | -                    | 7.18E-08               | 2.94E-0   |
|               |          |                |          |             |             |              |             | Benzo(k)fluoranthene           | -                    | 1.08E-07               | 4.41E-0   |
|               |          |                |          |             |             |              |             | Chrysene                       | -                    | 1.08E-07               | 4.41E-0   |
|               |          |                |          |             |             |              |             | Dibenzo(a,h)anthracene         | -                    | 7.18E-08               | 2.94E-0   |
|               |          |                |          |             |             |              |             | Dichlorobenzene                | -                    | 7.18E-05               | 2.94E-0   |
|               |          | Proposed       |          |             |             |              |             | Fluoranthene                   | -                    | 1.79E-07               | 7.34E-0   |
| -             | CV1      | Caster Vent    | -        | -           | -           | -            | -           | Fluorene                       | -                    | 1.67E-07               | 6.85E-0   |
|               |          | Caster Vent    |          |             |             |              |             | Formaldehyde                   | -                    | 4.49E-03               | 1.84E-0   |
|               |          |                |          |             |             |              |             | Hexane                         | -                    | 1.08E-01               | 4.41E-0   |
|               |          |                |          |             |             |              |             | Indeno(1,2,3-cd)pyrene         | -                    | 1.08E-07               | 4.41E-0   |
|               |          |                |          |             |             |              |             | Naphthalene                    | -                    | 3.65E-05               | 1.49E-0   |
|               |          |                |          |             |             |              |             | Phenanthrene                   | -                    | 1.02E-06               | 4.16E-0   |
|               |          |                |          |             |             |              |             | Pyrene                         | -                    | 2.99E-07               | 1.22E-0   |
|               |          |                |          |             |             |              |             | Toluene                        | -                    | 2.03E-04               | 8.32E-0   |
|               |          |                |          |             |             |              |             | Arsenic                        | -                    | 1.20E-05               | 4.90E-0   |
|               |          |                |          |             |             |              |             | Beryllium                      | -                    | 7.18E-07               | 2.94E-0   |
|               |          |                |          |             |             |              | Ī           | Cadmium                        | -                    | 6.58E-05               | 2.69E-0   |
|               |          |                |          |             |             |              | Ī           | Chromium                       | -                    | 8.37E-05               | 3.43E-0   |
|               |          |                |          |             |             |              | ļ           | Cobalt                         | -                    | 5.02E-06               | 2.06E-0   |
|               |          |                |          |             |             |              | ļ           | Manganese                      | -                    | 2.27E-05               | 9.30E-0   |
|               |          |                |          |             |             |              | ļ           | Mercury                        | -                    | 1.55E-05               | 6.36E-0   |
|               |          |                |          |             |             |              | ļ           | Molybdenum                     | -                    | 6.58E-05               | 2.69E-0   |
|               |          |                |          |             |             |              |             | Nickel                         | -                    | 1.26E-04               | 5.14E-0   |
|               |          |                |          |             |             |              |             | Selenium                       | -                    | 1.44E-06               | 5.87E-0   |

Table A-8c. HAP Emissions - Natural Gas Combustion

|         |          | Emission Unit | Number   | Single Unit          | Annual          | Total Heat I |   |                                | Emission                        | Hourly                            | Annual          |
|---------|----------|---------------|----------|----------------------|-----------------|--------------|---|--------------------------------|---------------------------------|-----------------------------------|-----------------|
| Unit ID | Point ID | Description   | of Units | Rating<br>(MMBtu/hr) | Utilization (%) | (MMBtu/hr)   |   | Species                        | Factors <sup>2</sup> (lb/MMscf) | Emissions <sup>3</sup><br>(lb/hr) | Emissions (tpy) |
|         |          |               |          |                      |                 |              |   | 2-Methylnaphthalene            | -                               | 1.94E-07                          | 4.35E-07        |
|         |          |               |          |                      |                 |              | - | 3-Methylcholanthrene           | -                               | 1.45E-08                          | 3.27E-08        |
|         |          |               |          |                      |                 |              |   | 7,12-Dimethylbenz(a)anthracene | -                               | 1.29E-07                          | 2.90E-07        |
|         |          |               |          |                      |                 |              | - | Acenaphthene                   | -                               | 1.45E-08                          | 3.27E-08        |
|         |          |               |          |                      |                 |              |   | Acenaphthylene                 | -                               | 1.45E-08                          | 3.27E-08        |
|         |          |               |          |                      |                 |              |   | Anthracene                     | -                               | 1.94E-08                          | 4.35E-08        |
|         |          |               |          |                      |                 |              |   | Benz(a)anthracene              | -                               | 1.45E-08                          | 3.27E-08        |
|         |          |               |          |                      |                 |              |   | Benzene                        | -                               | 1.69E-05                          | 3.81E-05        |
|         |          |               |          |                      |                 |              |   | Benzo(a)pyrene                 | -                               | 9.68E-09                          | 2.18E-08        |
|         |          |               |          |                      |                 |              |   | Benzo(b)fluoranthene           | -                               | 1.45E-08                          | 3.27E-08        |
|         |          |               |          |                      |                 |              |   | Benzo(g,h,i)perylene           | -                               | 9.68E-09                          | 2.18E-08        |
|         |          |               |          |                      |                 |              |   | Benzo(k)fluoranthene           | -                               | 1.45E-08                          | 3.27E-08        |
|         |          |               |          |                      |                 |              |   | Chrysene                       | -                               | 1.45E-08                          | 3.27E-08        |
|         |          |               |          |                      |                 |              |   | Dibenzo(a,h)anthracene         | -                               | 9.68E-09                          | 2.18E-08        |
|         |          |               |          |                      |                 |              |   | Dichlorobenzene                | -                               | 9.68E-06                          | 2.18E-05        |
|         |          | Proposed      |          |                      |                 |              |   | Fluoranthene                   | -                               | 2.42E-08                          | 5.44E-08        |
| -       | RMV1     | Rolling Mill  | -        | -                    | -               | -            | - | Fluorene                       | -                               | 2.26E-08                          | 5.08E-08        |
|         |          | Vent          |          |                      |                 |              |   | Formaldehyde                   | -                               | 6.05E-04                          | 1.36E-03        |
|         |          |               |          |                      |                 |              |   | Hexane                         | -                               | 1.45E-02                          | 3.27E-02        |
|         |          |               |          |                      |                 |              |   | Indeno(1,2,3-cd)pyrene         | -                               | 1.45E-08                          | 3.27E-08        |
|         |          |               |          |                      |                 |              |   | Naphthalene                    | -                               | 4.92E-06                          | 1.11E-05        |
|         |          |               |          |                      |                 |              |   | Phenanthrene                   | -                               | 1.37E-07                          | 3.08E-07        |
|         |          |               |          |                      |                 |              |   | Pyrene                         | -                               | 4.03E-08                          | 9.07E-08        |
|         |          |               |          |                      |                 |              |   | Toluene                        | -                               | 2.74E-05                          | 6.17E-05        |
|         |          |               |          |                      |                 |              |   | Arsenic                        | -                               | 1.61E-06                          | 3.63E-06        |
|         |          |               |          |                      |                 |              |   | Beryllium                      | -                               | 9.68E-08                          | 2.18E-07        |
|         |          |               |          |                      |                 |              |   | Cadmium                        | -                               | 8.87E-06                          | 2.00E-05        |
|         |          |               |          |                      |                 |              |   | Chromium                       | -                               | 1.13E-05                          | 2.54E-05        |
|         |          |               |          |                      |                 |              |   | Cobalt                         | -                               | 6.77E-07                          | 1.52E-06        |
|         |          |               |          |                      |                 |              |   | Manganese                      | -                               | 3.06E-06                          | 6.89E-06        |
|         |          |               |          |                      |                 |              |   | Mercury                        | -                               | 2.10E-06                          | 4.72E-06        |
|         |          |               |          |                      |                 |              |   | Molybdenum                     | -                               | 8.87E-06                          | 2.00E-05        |
|         |          |               |          |                      |                 |              |   | Nickel                         | -                               | 1.69E-05                          | 3.81E-05        |
|         |          |               |          |                      |                 |              |   | Selenium                       | -                               | 1.94E-07                          | 4.35E-07        |

Table A-8c. HAP Emissions - Natural Gas Combustion

| Emission                              | Emission | Emission Unit     | Number   | Single Unit | Annual      | Total Heat I | nput Rating    |                                | Emission             | Hourly                 | Annual      |
|---------------------------------------|----------|-------------------|----------|-------------|-------------|--------------|----------------|--------------------------------|----------------------|------------------------|-------------|
|                                       | Point ID | Description       | of Units | Rating      | Utilization |              |                | Species                        | Factors <sup>2</sup> | Emissions <sup>3</sup> | Emissions ' |
| · · · · · · · · · · · · · · · · · · · |          | 2 G5 G11 P G10 11 |          | (MMBtu/hr)  | (%)         | (MMBtu/hr)   | (MMBtu/yr)     |                                | (lb/MMscf)           | (lb/hr)                | (tpy)       |
|                                       |          |                   |          |             |             |              |                | 2-Methylnaphthalene            | -                    | 7.56E-09               | 1.51E-08    |
|                                       |          |                   |          |             |             |              |                | 3-Methylcholanthrene           | -                    | 5.67E-10               | 1.13E-09    |
|                                       |          |                   |          |             |             |              |                | 7,12-Dimethylbenz(a)anthracene | -                    | 5.04E-09               | 1.01E-08    |
|                                       |          |                   |          |             |             |              |                | Acenaphthene                   | -                    | 5.67E-10               | 1.13E-09    |
|                                       |          |                   |          |             |             |              |                | Acenaphthylene                 | -                    | 5.67E-10               | 1.13E-09    |
|                                       |          |                   |          |             |             |              |                | Anthracene                     | -                    | 7.56E-10               | 1.51E-09    |
|                                       |          |                   |          |             |             |              |                | Benz(a)anthracene              | -                    | 5.67E-10               | 1.13E-09    |
|                                       |          |                   |          |             |             |              | Benzene        | -                              | 6.61E-07             | 1.32E-06               |             |
|                                       |          |                   |          |             |             |              | Benzo(a)pyrene | -                              | 3.78E-10             | 7.56E-10               |             |
|                                       |          |                   |          |             |             |              |                | Benzo(b)fluoranthene           | -                    | 5.67E-10               | 1.13E-09    |
|                                       |          |                   |          |             |             |              |                | Benzo(g,h,i)perylene           | -                    | 3.78E-10               | 7.56E-10    |
|                                       |          |                   |          |             |             |              |                | Benzo(k)fluoranthene           | -                    | 5.67E-10               | 1.13E-09    |
|                                       |          |                   |          |             |             |              |                | Chrysene                       | -                    | 5.67E-10               | 1.13E-09    |
|                                       |          |                   |          |             |             |              |                | Dibenzo(a,h)anthracene         | -                    | 3.78E-10               | 7.56E-10    |
|                                       |          |                   |          |             |             |              |                | Dichlorobenzene                | -                    | 3.78E-07               | 7.56E-07    |
|                                       |          | Cutting           |          |             |             |              |                | Fluoranthene                   | -                    | 9.45E-10               | 1.89E-09    |
| -                                     | TORCH1   | Torches           | -        | -           | -           | -            | -              | Fluorene                       | -                    | 8.82E-10               | 1.76E-09    |
|                                       |          | Torches           |          |             |             |              |                | Formaldehyde                   | -                    | 2.36E-05               | 4.72E-05    |
|                                       |          |                   |          |             |             |              |                | Hexane                         | -                    | 5.67E-04               | 1.13E-03    |
|                                       |          |                   |          |             |             |              |                | Indeno(1,2,3-cd)pyrene         | -                    | 5.67E-10               | 1.13E-09    |
|                                       |          |                   |          |             |             |              |                | Naphthalene                    | -                    | 1.92E-07               | 3.84E-07    |
|                                       |          |                   |          |             |             |              |                | Phenanthrene                   | -                    | 5.35E-09               | 1.07E-08    |
|                                       |          |                   |          |             |             |              |                | Pyrene                         | -                    | 1.57E-09               | 3.15E-09    |
|                                       |          |                   |          |             |             |              |                | Toluene                        | -                    | 1.07E-06               | 2.14E-06    |
|                                       |          |                   |          |             |             |              |                | Arsenic                        | -                    | 6.30E-08               | 1.26E-07    |
|                                       |          |                   |          |             |             |              |                | Beryllium                      | -                    | 3.78E-09               | 7.56E-09    |
|                                       |          |                   |          |             |             |              |                | Cadmium                        | -                    | 3.46E-07               | 6.93E-07    |
|                                       |          |                   |          |             |             |              |                | Chromium                       | -                    | 4.41E-07               | 8.82E-07    |
|                                       |          |                   |          |             |             |              |                | Cobalt                         | -                    | 2.64E-08               | 5.29E-08    |
|                                       |          |                   |          |             |             |              |                | Manganese                      | -                    | 1.20E-07               | 2.39E-07    |
|                                       |          |                   |          |             |             |              |                | Mercury                        | -                    | 8.19E-08               | 1.64E-07    |
|                                       |          |                   |          |             |             |              |                | Molybdenum                     | -                    | 3.46E-07               | 6.93E-07    |
|                                       |          |                   |          |             |             |              | <u> </u>       | Nickel                         | -                    | 6.61E-07               | 1.32E-06    |
|                                       |          |                   |          |             |             |              | <u> </u>       | Selenium                       | _                    | 7.56E-09               | 1.51E-08    |

Hourly Total Heat Input Rating (MMBtu/hr) = Single Burner Rating (MMBtu/hr) x Number of Burners.
 Annual Total Heat Input Rating (MMBtu/yr) = Hourly Total Heat Input Rating (MMBtu/hr) x 8,760 (hr/yr) x Annual Utilization (%) / 100.

 Emission factors are from AP-42 Section 1.4, Tables 1.4-3 and 1.4-4, July 1998.

Hourly Emissions (lb/hr) = Hourly Total Heat Input Rating (MMBtu/hr) x Emission Factor (lb/MMscf) / 1,020 (Btu/scf).
 Annual Emissions (tpy) = Annual Total Heat Input Rating (MMBtu/yr) x Emission Factor (lb/MMscf) / 1,020 (Btu/scf) / 2,000 (lb/ton).

Table A-9. Emissions - Binder Usage

| Emission | Emission | Emission Unit                        | Binder            | Usage              |             | Emissi<br>(lb/ | on Fact<br>Ib bind         |      |      |             |       | y Emiss<br>(lb/hr)         |      |       |             | Annua                     | al Emiss<br>(tpy)          | ions <sup>4</sup> |       |
|----------|----------|--------------------------------------|-------------------|--------------------|-------------|----------------|----------------------------|------|------|-------------|-------|----------------------------|------|-------|-------------|---------------------------|----------------------------|-------------------|-------|
| Unit ID  | Point ID | Description                          | Hourly<br>(lb/hr) | Annual<br>(ton/yr) | Total<br>PM |                | Total<br>PM <sub>2.5</sub> |      | voc  | Total<br>PM |       | Total<br>PM <sub>2.5</sub> | СО   | voc   | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | со                | voc   |
| LB1      | CV1      | Refractory Binder<br>Usage - Ladle   | 2.12              | 7.52               | 0.010       | 0.010          | 0.010                      | 0.15 | 0.02 | 0.021       | 0.021 | 0.021                      | 0.32 | 0.042 | 0.075       | 0.075                     | 0.075                      | 1.13              | 0.15  |
| TB1      | CV1      | Refractory Binder<br>Usage - Tundish | 1.28              | 4.51               | 0.010       | 0.010          | 0.010                      | 0.15 | 0.02 | 0.013       | 0.013 | 0.013                      | 0.19 | 0.026 | 0.045       | 0.045                     | 0.045                      | 0.68              | 0.090 |
| CV1      | CV1      | Caster Vent                          | -                 | -                  | -           | -              | -                          | -    | -    | 0.034       | 0.034 | 0.034                      | 0.51 | 0.068 | 0.12        | 0.12                      | 0.12                       | 1.80              | 0.24  |

Emission factors for PM, PM<sub>10</sub>, PM<sub>2.5</sub>, and CO based on process experience from other CMC micro-mills.

Emission factors for VOC per estimated percent of binder resin pyrolyzed/oxidized.

Hourly Emissions lb/hr) = Hourly Binder Usage lb/hr) x Emission Factor lb/lb binder).

Annual Emissions (tpy) = Annual Binder Usage (tpy) x Emission Factor lb/lb binder).

Table A-10. Emissions - Material Handling

| Emission | Emission     | Transfer Description                                                             | Material                                   | Fine<br>Content |      | Throughp | out       | Moisture<br>Content | Control                            | Control<br>Efficiency | Emi         | ission Fac<br>(lb/ton)    | tor <sup>1</sup>           | Hou         | rly Emissi<br>(lb/hr)     | ions <sup>2</sup>          | Annı        | ıal Emissi<br>(tpy)       | ons <sup>3</sup>           |
|----------|--------------|----------------------------------------------------------------------------------|--------------------------------------------|-----------------|------|----------|-----------|---------------------|------------------------------------|-----------------------|-------------|---------------------------|----------------------------|-------------|---------------------------|----------------------------|-------------|---------------------------|----------------------------|
| Unit ID  | Point ID     | Transfer Description                                                             | Material                                   | (%)             | (%)  | (ton/hr) | (tpy)     | (%)                 | Application                        | (%)                   | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2,5</sub> | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> |
| TR51A    | TR51A        | Inside ECS Building Drop Points,<br>Scrap                                        | Scrap                                      | 1               | -    | 830      | 3,380,000 | 1                   | Partial<br>Enclosure               | 50                    | 4.95E-05    | 2.34E-05                  | 3.54E-06                   | 4.11E-02    | 1.94E-02                  | 2.94E-03                   | 8.36E-02    |                           |                            |
| TR51B    | TR51B        | Outside ECS Building Drop Points,<br>Scrap, Storage Area                         | Scrap                                      | 1               | -    | 330      | 2,145,000 | 1                   | None                               | 0                     | 9.90E-05    | 4.68E-05                  | 7.09E-06                   | 3.27E-02    | 1.54E-02                  | 2.34E-03                   | 1.06E-01    | 5.02E-02                  | 7.60E-03                   |
| TR51C    | TR51C        | Outside Rail Bins Drop Point, Scrap                                              | Scrap                                      | 1               | -    | 110      | 715,000   | 1                   | None                               | 0                     | 9.90E-05    | 4.68E-05                  | 7.09E-06                   | 1.09E-02    | 5.15E-03                  | 7.80E-04                   | 3.54E-02    | 1.67E-02                  | 2.53E-03                   |
| TR51E    | TR51E        | Outside Truck Bins Drop Point, Scrap                                             | Scrap                                      | 1               | -    | 110      | 715,000   | 1                   | None                               | 0                     | 9.90E-05    | 4.68E-05                  | 7.09E-06                   | 1.09E-02    | 5.15E-03                  | 7.80E-04                   | 3.54E-02    | 1.67E-02                  | 2.53E-03                   |
| TR71     | TR71         | Inside ECS Building Drop Points,<br>Fluxing Agent                                | Fluxing Agent                              | 7               | -    | 30       | 30,695    | 1                   | Full Enclosure                     | 80                    | 1.39E-04    | 6.55E-05                  | 9.92E-06                   | 4.16E-03    | 1.97E-03                  | 2.98E-04                   | 2.13E-03    | 1.01E-03                  | 1.52E-04                   |
| TR81     | TR81         | Outside Drop Points, Alloy<br>Aggregate                                          | Alloy Aggregate                            | 1               | 1    | 60       | 9,800     | 1                   | Partial<br>Enclosure               | 50                    | 4.95E-05    | 2.34E-05                  | 3.54E-06                   | 2.97E-03    | 1.40E-03                  | 2.13E-04                   | 2.42E-04    | 1.15E-04                  | 1.74E-05                   |
| TR91A    | TR91A        | Inside Drop Points, Removed<br>Refractory and Other Materials                    | Removed<br>Refractory / Other<br>Materials | 10              | 1    | 25       | 2,800     | 1                   | Full Enclosure                     | 80                    | 1.98E-04    | 9.36E-05                  | 1.42E-05                   | 4.95E-03    | 2.34E-03                  | 3.54E-04                   | 2.77E-04    | 1.31E-04                  | 1.98E-05                   |
| TR91B    | TR91B        | Outside Drop Points, Removed<br>Refractory and Other Materials                   | Removed<br>Refractory / Other<br>Materials | 10              | -    | 25       | 2,800     | 1                   | None                               | 0                     | 9.90E-04    | 4.68E-04                  | 7.09E-05                   | 2.47E-02    | 1.17E-02                  | 1.77E-03                   | 1.39E-03    | 6.55E-04                  | 9.92E-05                   |
| TR11A    | TR11A        | Outside SPP Pile Drop Points, Slag                                               | Slag                                       | 2               | -    | 100      | 182,500   | 12                  | None                               | 0                     | 6.11E-06    | 2.89E-06                  | 4.37E-07                   | 6.11E-04    | 2.89E-04                  | 4.37E-05                   | 5.57E-04    | 2.63E-04                  | 3.99E-05                   |
| TR11B1   | TR11B1       | Drop from Loader to SPP Feed<br>Hopper, Slag                                     | Slag                                       | 2               | 100% | 100      | 182,500   | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 2.84E-03    | 1.34E-03                  | 2.04E-04                   | 2.59E-03    | 1.23E-03                  | 1.86E-04                   |
| TR11B2   | TR11B2       | Drop from SPP Feed Hopper to SPP<br>Grizzly                                      | Slag                                       | 2               | 100% | 100      | 182,500   | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 2.84E-03    | 1.34E-03                  | 2.04E-04                   | 2.59E-03    | 1.23E-03                  | 1.86E-04                   |
| TR11B3   | TR11B3       | Drop from SPP Grizzly to SPP Feed<br>Belt                                        | Slag                                       | 2               | 100% | 100      | 182,500   | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 2.84E-03    | 1.34E-03                  | 2.04E-04                   | 2.59E-03    | 1.23E-03                  | 1.86E-04                   |
| TR11B4   | TR11B4       | Drop from SPP Feed Belt to SPP<br>Metallics Conveyor                             | Slag                                       | 1               | 15%  | 15       | 27,375    | 4                   | Moisture<br>Content of<br>Material | -                     | 1.42E-05    | 6.72E-06                  | 1.02E-06                   | 2.13E-04    | 1.01E-04                  | 1.53E-05                   | 1.95E-04    | 9.20E-05                  | 1.39E-05                   |
| TR11B5   | TR11B5       | Drop from SPP Metallics Conveyor to<br>SPP Triple Deck Metallics Screen          | Slag                                       | 1               | 15%  | 15       | 27,375    | 4                   | Moisture<br>Content of<br>Material | -                     | 1.42E-05    | 6.72E-06                  | 1.02E-06                   | 2.13E-04    | 1.01E-04                  | 1.53E-05                   | 1.95E-04    | 9.20E-05                  | 1.39E-05                   |
| TR11B6   | TR11B6       | Drop from SPP Feed Belt to SPP<br>Triple Deck Non-Metallics Screen               | Slag                                       | 2               | 85%  | 85       | 155,125   | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 2.42E-03    | 1.14E-03                  | 1.73E-04                   | 2.20E-03    | 1.04E-03                  | 1.58E-04                   |
| MTLSCR   | MTLSCR       | SPP Triple Deck Metallics Screen                                                 | Slag                                       | 1               | 15%  | 15       | 27,375    | 4                   | Moisture<br>Content of<br>Material | -                     | 2.20E-05    | 7.40E-06                  | 5.00E-07                   | 3.30E-04    | 1.11E-04                  | 7.50E-06                   | 3.01E-04    | 1.01E-04                  | 6.84E-06                   |
| NOMTLSCR | NOMTLSC<br>R | SPP Triple Deck Non-Metallics<br>Screen                                          | Slag                                       | 2               | 85%  | 85       | 155,125   | 4                   | Moisture<br>Content of<br>Material | -                     | 4.40E-05    | 1.48E-05                  | 1.00E-06                   | 3.74E-03    | 1.26E-03                  | 8.50E-05                   | 3.41E-03    | 1.15E-03                  | 7.76E-05                   |
| TR11B7   | TR11B7       | Drop from SPP Triple Deck Metallics<br>Screen to Stacking Conveyor No. 1         | Slag                                       | 1               | 3%   | 3        | 5,475     | 4                   | Moisture<br>Content of<br>Material | -                     | 1.42E-05    | 6.72E-06                  | 1.02E-06                   | 4.26E-05    | 2.02E-05                  | 3.05E-06                   | 3.89E-05    | 1.84E-05                  | 2.79E-06                   |
| TR11B8   | TR11B8       | Drop from SPP Triple Deck Metallics<br>Screen to Stacking Conveyor No. 2         | Slag                                       | 1               | 3%   | 3        | 5,475     | 4                   | Moisture<br>Content of<br>Material | -                     | 1.42E-05    | 6.72E-06                  | 1.02E-06                   | 4.26E-05    | 2.02E-05                  | 3.05E-06                   | 3.89E-05    | 1.84E-05                  | 2.79E-06                   |
| TR11B9   | TR11B9       | Drop from SPP Triple Deck Non-<br>Metallics Screen to Stacking<br>Conveyor No. 3 | Slag                                       | 2               | 43%  | 43       | 78,475    | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 1.22E-03    | 5.78E-04                  | 8.75E-05                   | 1.12E-03    | 5.27E-04                  | 7.99E-05                   |

Table A-10. Emissions - Material Handling

| Emission | Emission | Transfer Description                                                             | Material       | Fine<br>Content |     | Throughp | ut     | Moisture<br>Content | Control                            | Control<br>Efficiency | Emi         | ission Fac<br>(lb/ton)    | tor <sup>1</sup>           | Hou         | rly Emissi<br>(lb/hr)     | ons <sup>2</sup>           | Annu        | ıal Emissi<br>(tpy)       | ons <sup>3</sup>           |
|----------|----------|----------------------------------------------------------------------------------|----------------|-----------------|-----|----------|--------|---------------------|------------------------------------|-----------------------|-------------|---------------------------|----------------------------|-------------|---------------------------|----------------------------|-------------|---------------------------|----------------------------|
| Unit ID  | Point ID | Transfer Description                                                             | riaceriai      | (%)             | (%) | (ton/hr) | (tpy)  | (%)                 | Application                        | (%)                   | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> |
| TR11B10  | TR11B10  | Drop from SPP Triple Deck Non-<br>Metallics Screen to Stacking<br>Conveyor No. 4 | Slag           | 2               | 14% | 14       | 25,550 | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    |                           | 2.0                        |             | 1.88E-04                  | 2.85E-05                   | 3.63E-04    | 1.72E-04                  | 2.60E-0                    |
| TR11B11  | TR11B11  | Drop from SPP Triple Deck Non-<br>Metallics Screen to Stacking<br>Conveyor No. 5 | Slag           | 2               | 14% | 14       | 25,550 | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 3.98E-04    | 1.88E-04                  | 2.85E-05                   | 3.63E-04    | 1.72E-04                  | 2.60E-0                    |
| TR11B12  | TR11B12  | Drop from SPP Triple Deck Non-<br>Metallics Screen to Stacking<br>Conveyor No. 6 | Slag           | 2               | 14% | 14       | 25,550 | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 3.98E-04    | 1.88E-04                  | 2.85E-05                   | 3.63E-04    | 1.72E-04                  | 2.60E-0                    |
| TR11B13  | TR11B13  | Drop from Stacking Conveyor No. 1<br>to SPP C-Scrap Pile                         | SPP Product    | 1               | 3%  | 3        | 5,475  | 4                   | Moisture<br>Content of<br>Material | -                     | 1.42E-05    | 6.72E-06                  | 1.02E-06                   | 4.26E-05    | 2.02E-05                  | 3.05E-06                   | 3.89E-05    | 1.84E-05                  | 2.79E-0                    |
| TR11B14  | TR11B14  | Drop from Stacking Conveyor No. 2<br>to SPP B-Scrap Pile                         | SPP Product    | 1               | 3%  | 3        | 5,475  | 4                   | Moisture<br>Content of<br>Material | -                     | 1.42E-05    | 6.72E-06                  | 1.02E-06                   | 4.26E-05    | 2.02E-05                  | 3.05E-06                   | 3.89E-05    | 1.84E-05                  | 2.79E-0                    |
| TR11B15  | TR11B15  | Drop from SPP Triple Deck Metallics<br>Screen to SPP A-Scrap Pile                | SPP Product    | 1               | 9%  | 9        | 16,425 | 4                   | Moisture<br>Content of<br>Material | -                     | 1.42E-05    | 6.72E-06                  | 1.02E-06                   | 1.28E-04    | 6.05E-05                  | 9.16E-06                   | 1.17E-04    | 5.52E-05                  | 8.36E-0                    |
| TR11B16  | TR11B16  | Drop from Stacking Conveyor No. 3<br>to SPP No. 1 Products Pile                  | SPP Product    | 2               | 43% | 43       | 78,475 | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 1.22E-03    | 5.78E-04                  | 8.75E-05                   | 1.12E-03    | 5.27E-04                  | 7.99E-0                    |
| TR11B17  | TR11B17  | Drop from Stacking Conveyor No. 4<br>to SPP No. 3 Products Pile                  | SPP Product    | 2               | 14% | 14       | 25,550 | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 3.98E-04    | 1.88E-04                  | 2.85E-05                   | 3.63E-04    | 1.72E-04                  | 2.60E-0                    |
| TR11B18  | TR11B18  | Drop from Stacking Conveyor No. 5<br>to SPP Overs Pile                           | SPP Product    | 2               | 14% | 14       | 25,550 | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 3.98E-04    | 1.88E-04                  | 2.85E-05                   | 3.63E-04    | 1.72E-04                  | 2.60E-0                    |
| TR11B19  | TR11B19  | Drop from Stacking Conveyor No. 6<br>to SPP No. 2 Products Pile                  | SPP Product    | 2               | 14% | 14       | 25,550 | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 3.98E-04    | 1.88E-04                  | 2.85E-05                   | 3.63E-04    | 1.72E-04                  | 2.60E-0                    |
| TR11B20  | TR11B20  | Drop from SPP A-Scrap Pile to<br>Trucks                                          | SPP Product    | 1               | 9%  | 9        | 16,425 | 4                   | Moisture<br>Content of<br>Material | -                     | 1.42E-05    | 6.72E-06                  | 1.02E-06                   | 1.28E-04    | 6.05E-05                  | 9.16E-06                   | 1.17E-04    | 5.52E-05                  | 8.36E-0                    |
| TR11B21  | TR11B21  | Drop from SPP B-Scrap Pile to<br>Trucks                                          | SPP Product    | 1               | 3%  | 3        | 5,475  | 4                   | Moisture<br>Content of<br>Material | -                     | 1.42E-05    | 6.72E-06                  | 1.02E-06                   | 4.26E-05    | 2.02E-05                  | 3.05E-06                   | 3.89E-05    | 1.84E-05                  | 2.79E-0                    |
| TR11B22  | TR11B22  | Drop from SPP C-Scrap Pile to<br>Trucks                                          | SPP Product    | 1               | 3%  | 3        | 5,475  | 4                   | Moisture<br>Content of<br>Material | -                     | 1.42E-05    | 6.72E-06                  | 1.02E-06                   | 4.26E-05    | 2.02E-05                  | 3.05E-06                   | 3.89E-05    | 1.84E-05                  | 2.79E-0                    |
| TR11B23  | TR11B23  | Drop from SPP No. 1 Products Pile to<br>Trucks                                   | SPP Product    | 2               | 43% | 43       | 78,475 | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 1.22E-03    | 5.78E-04                  | 8.75E-05                   | 1.12E-03    | 5.27E-04                  | 7.99E-0                    |
| TR11B24  | TR11B24  | Drop from SPP No. 2 Products Pile to<br>Trucks                                   | SPP Product    | 2               | 14% | 14       | 25,550 | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 3.98E-04    | 1.88E-04                  | 2.85E-05                   | 3.63E-04    | 1.72E-04                  | 2.60E-0                    |
| TR11B25  | TR11B25  | Drop from SPP No. 3 Products Pile to<br>Trucks                                   | SPP Product    | 2               | 14% | 14       | 25,550 | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 3.98E-04    | 1.88E-04                  | 2.85E-05                   | 3.63E-04    | 1.72E-04                  | 2.60E-0                    |
| TR11B26  | TR11B26  | Drop from SPP Overs Pile to Trucks                                               | SPP Product    | 2               | 14% | 14       | 25,550 | 4                   | Moisture<br>Content of<br>Material | -                     | 2.84E-05    | 1.34E-05                  | 2.04E-06                   | 3.98E-04    | 1.88E-04                  | 2.85E-05                   | 3.63E-04    | 1.72E-04                  | 2.60E-0                    |
| TR131    | TR131    | Outside Drop Points, Residual Scrap<br>Pile                                      | Residual Scrap | 2               | -   | 25       | 2,800  | 1                   | None                               | 0                     | 1.98E-04    | 9.36E-05                  | 1.42E-05                   | 4.95E-03    | 2.34E-03                  | 3.54E-04                   | 2.77E-04    | 1.31E-04                  | 1.98E-0                    |
| TR141    | TR141    | Outside Drop Points, Mill Scale Pile                                             | Mill Scale     | 15              | -   | 60       | 9,800  | 1                   | Partial<br>Enclosure               | 50                    | 7.42E-04    | 3.51E-04                  | 5.32E-05                   | 4.45E-02    | 2.11E-02                  | 3.19E-03                   | 3.64E-03    |                           |                            |
|          | 1        | Total                                                                            | Emissions      | 1               | 1   | 1        |        |                     | l                                  | 1                     | ı           | 1                         | l                          | ı           | l                         | l                          | 0.29        | 0.14                      | 0.021                      |

<sup>&</sup>lt;sup>1</sup> Emission factors for material handling per AP-42, Section 13.2.4, November 2006.

 $\begin{array}{ccc} & \text{where} & & \text{k = Particle size multiplier (dimensionless)} \\ \left( \begin{array}{c} \underline{U} \\ \end{array} \right)_{13} & & \text{PM} & \text{PM}_{10} & \text{PM}_{2.5} \\ \end{array}$ 

Table A-10. Emissions - Material Handling

| Emission |          | Transfer Description | Material | Fine<br>Content | Throughp | out   | Moisture<br>Content | Control     | Control<br>Efficiency |             | ssion Fac<br>(lb/ton)     | tor <sup>1</sup>           | Hou         | rly Emissio<br>(lb/hr)    | ons <sup>2</sup>           | Annu        | ıal Emissi<br>(tpy)       | ons <sup>3</sup>           |
|----------|----------|----------------------|----------|-----------------|----------|-------|---------------------|-------------|-----------------------|-------------|---------------------------|----------------------------|-------------|---------------------------|----------------------------|-------------|---------------------------|----------------------------|
| Unit ID  | Point ID |                      |          | (%)             | (ton/hr) | (tpy) | (%)                 | Application | (%)                   | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> |

E = k(0.0032) (5)

0.74 0.35 U = Mean wind speed (mph) 7.12

Per meteorological data collected at Martinsburg Airport station for period between 2017 and 2021.

M = Material moisture content (%)

Emission factors for controlled screen per AP-42 Section 11.19.2, Table 11.19.2-2, August 2004.

Hourly Emissions (b/hr) = Max Hourly Throughput (ton/hr) x Fine Content (%) / 100 x Emission Factor lb/ton) x (1 - Control Efficiency (%) / 100).

Annual Emissions (tpy) = Annual Throughput (tpy) x Fine Content (%) / 100 x Emission Factor lb/ton) x (1 - Control Efficiency (%) / 100) / 2,000 lb/ton).

Table A-11. Emissions - Ball Drop Crushing

|                     |                      |                         |                | Moisture    |          | Throughput<br>/hr) | Emi         | ssion Fact<br>(lb/ton)    | tor <sup>2</sup>           | Hour        | ly Emissi<br>(lb/hr)      | ons <sup>3</sup>           | Annu        | ıal Emissi<br>(tpy)       | ons <sup>4</sup>           |
|---------------------|----------------------|-------------------------|----------------|-------------|----------|--------------------|-------------|---------------------------|----------------------------|-------------|---------------------------|----------------------------|-------------|---------------------------|----------------------------|
| Emission<br>Unit ID | Emission<br>Point ID | Transfer<br>Description | Material       | Content (%) | (ton/hr) | (tpy)              | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> |
| CR1                 | CR1                  | Ball Drop<br>Crushing   | Large<br>Scrap | 1           | 8        | 8,200              | 0.0012      | 0.00054                   | 0.00010                    | 0.0096      | 0.0043                    | 0.00080                    | 0.0049      | 0.0022                    | 0.00041                    |

<sup>&</sup>lt;sup>1</sup> Ball drop throughput is nominal maximum capacity based on CMC's operational experience.

 $<sup>^{2}</sup>$  Emission factor for controlled tertiary crushing per AP-42 Section 11.19.2, Table 11.19.2-2, August 2004.

<sup>&</sup>lt;sup>3</sup> Hourly Emissions Increase lb/hr) = Max Hourly Throughput Increase (ton/hr) x Emission Factor (lb/ton)

<sup>&</sup>lt;sup>4</sup> Annual Emissions Increase (tpy) = Annual Throughput Increase (tpy) x Emission Factor lb/ton) / 2,000 (lb/ton)

Table A-12. Emissions - Storage Piles

|         |          |                                          |                    |        | Control<br>Application | Control<br>Efficiency | Emission Factor <sup>1, 2</sup><br>(lb/day/acre) |             |                  | Hour              | y Emissio<br>(lb/hr) | ons <sup>3, 4</sup> | Annual Emissions <sup>3, 5</sup><br>(tpy) |             |                  |                   |
|---------|----------|------------------------------------------|--------------------|--------|------------------------|-----------------------|--------------------------------------------------|-------------|------------------|-------------------|----------------------|---------------------|-------------------------------------------|-------------|------------------|-------------------|
|         | Emission |                                          |                    | (ft²)  | (%)                    | пррпоистоп            | -                                                | Total<br>PM | Total            | Total             | Total                | Total               | Total                                     | Total<br>PM | Total            | Total             |
| Unit ID | Point ID | Pile Description                         | Material           | (11.)  | (%)                    |                       | (%)                                              | PM          | PM <sub>10</sub> | PM <sub>2.5</sub> | PM                   | PM <sub>10</sub>    | PM <sub>2.5</sub>                         | PM          | PM <sub>10</sub> | PM <sub>2.5</sub> |
| W51A    | W51A     | ECS Scrap Building<br>Storage Pile A     | Scrap              | 5,900  | 4.3                    | Partial<br>Enclosure  | 50                                               | 3.34        | 1.67             | 0.25              | 0.019                | 0.009               | 0.0014                                    | 0.083       | 0.041            | 0.0062            |
| W51B    | W51B     | ECS Scrap Building<br>Storage Pile B     | Scrap              | 5,400  | 4.3                    | Partial<br>Enclosure  | 50                                               | 3.34        | 1.67             | 0.25              | 0.017                | 0.009               | 0.0013                                    | 0.076       | 0.038            | 0.0057            |
| W51C    | W51C     | ECS Scrap Building<br>Storage Pile C     | Scrap              | 5,300  | 4.3                    | Partial<br>Enclosure  | 50                                               | 3.34        | 1.67             | 0.25              | 0.017                | 0.008               | 0.0013                                    | 0.074       | 0.037            | 0.0056            |
| W51D    | W51D     | ECS Scrap Building<br>Overage Scrap Pile | Scrap              | 12,100 | 4.3                    | None                  | -                                                | 6.68        | 3.34             | 0.51              | 0.077                | 0.039               | 0.0059                                    | 0.34        | 0.17             | 0.026             |
| W51E    | W51E     | Outside Rail Scrap 5k<br>Pile A          | Scrap              | 9,100  | 4.3                    | None                  | -                                                | 6.68        | 3.34             | 0.51              | 0.058                | 0.029               | 0.0044                                    | 0.25        | 0.13             | 0.019             |
| W51F    | W51F     | Outside Rail Scrap 5k<br>Pile B          | Scrap              | 9,100  | 4.3                    | None                  | -                                                | 6.68        | 3.34             | 0.51              | 0.058                | 0.029               | 0.0044                                    | 0.25        | 0.13             | 0.019             |
| W51G    | W51G     | Outside Rail Scrap 5k<br>Pile C          | Scrap              | 9,100  | 4.3                    | None                  | -                                                | 6.68        | 3.34             | 0.51              | 0.058                | 0.029               | 0.0044                                    | 0.25        | 0.13             | 0.019             |
| W51H    | W51H     | Outside Rail Scrap 5k<br>Pile D          | Scrap              | 9,100  | 4.3                    | None                  | -                                                | 6.68        | 3.34             | 0.51              | 0.058                | 0.029               | 0.0044                                    | 0.25        | 0.13             | 0.019             |
| W51K    | W51K     | Outside Truck Scrap 5k<br>Pile A         | Scrap              | 9,100  | 4.3                    | None                  | -                                                | 6.68        | 3.34             | 0.51              | 0.058                | 0.029               | 0.0044                                    | 0.25        | 0.13             | 0.019             |
| W51L    | W51L     | Outside Truck Scrap 5k<br>Pile B         | Scrap              | 9,100  | 4.3                    | None                  | 1                                                | 6.68        | 3.34             | 0.51              | 0.058                | 0.029               | 0.0044                                    | 0.25        | 0.13             | 0.019             |
| W51M    | W51M     | Outside Truck Scrap 5k<br>Pile C         | Scrap              | 9,100  | 4.3                    | None                  | -                                                | 6.68        | 3.34             | 0.51              | 0.058                | 0.029               | 0.0044                                    | 0.25        | 0.13             | 0.019             |
| W51N    | W51N     | Outside Truck Scrap 5k<br>Pile D         | Scrap              | 9,100  | 4.3                    | None                  | -                                                | 6.68        | 3.34             | 0.51              | 0.058                | 0.029               | 0.0044                                    | 0.25        | 0.13             | 0.019             |
| W61     | W61      | Alloy Aggregate<br>Storage Pile          | Alloy<br>Aggregate | 1,000  | 2.3                    | Partial<br>Enclosure  | 50                                               | 1.79        | 0.89             | 0.14              | 0.0017               | 0.0009              | 0.00013                                   | 0.0075      | 0.0037           | 0.00057           |
| W71A    | W71A     | SPP Slag Storage Pile                    | Slag               | 29,100 | 5.3                    | None                  | -                                                | 8.23        | 4.11             | 0.62              | 0.23                 | 0.115               | 0.017                                     | 1.00        | 0.50             | 0.076             |

Table A-12. Emissions - Storage Piles

|                     |                   | is Storage Fries                             |                   | Max. Pile<br>Area | Silt<br>Content | Control<br>Application | Control<br>Efficiency | (II         | sion Fact<br>o/day/ac     | re)                        |             | y Emissio<br>(lb/hr)      |                            |             | al Emissio<br>(tpy)       |                            |
|---------------------|-------------------|----------------------------------------------|-------------------|-------------------|-----------------|------------------------|-----------------------|-------------|---------------------------|----------------------------|-------------|---------------------------|----------------------------|-------------|---------------------------|----------------------------|
| Emission<br>Unit ID | Emission Point ID | Pile Description                             | Material          | (ft²)             | (%)             |                        | (%)                   | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total<br>PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> |
| W71B1               | W71B1             | SPP A-Scrap Pile                             | SPP<br>Product    |                   |                 |                        |                       |             |                           |                            |             |                           |                            |             |                           |                            |
| W71B2               | W71B2             | SPP B-Scrap Pile                             | SPP<br>Product    |                   |                 |                        |                       |             |                           |                            |             |                           |                            |             |                           |                            |
| W71B3               | W71B3             | SPP C-Scrap Pile                             | SPP<br>Product    |                   |                 |                        |                       |             |                           |                            |             |                           |                            |             |                           |                            |
| W71B4               | W71B4             | SPP No. 1 Products Pile                      | SPP<br>Product    | 74,100            | 5.3             | None                   | -                     | 8.23        | 4.11                      | 0.62                       | 0.58        | 0.29                      | 0.044                      | 2.55        | 1.28                      | 0.19                       |
| W71B5               | W71B5             | SPP No. 2 Products Pile                      | SPP<br>Product    |                   |                 |                        |                       |             |                           |                            |             |                           |                            |             |                           |                            |
| W71B6               | W71B6             | SPP No. 3 Products Pile                      | SPP<br>Product    |                   |                 |                        |                       |             |                           |                            |             |                           |                            |             |                           |                            |
| W71B7               | W71B7             | SPP Overs Pile                               | SPP<br>Product    |                   |                 |                        |                       |             |                           |                            |             |                           |                            |             |                           |                            |
| W81                 | W81               | Residual Scrap Storage<br>Pile in Scrap Yard | Residual<br>Scrap | 21,200            | 5.3             | None                   | -                     | 8.23        | 4.11                      | 0.62                       | 0.17        | 0.083                     | 0.013                      | 0.73        | 0.37                      | 0.055                      |
| W111                | W111              | Mill Scale Pile                              | Mill Scale        | 3,500             | 5.3             | Partial<br>Enclosure   | 50                    | 4.11        | 2.06                      | 0.31                       | 0.014       | 0.0069                    | 0.0010                     | 0.060       | 0.030                     | 0.0046                     |

<sup>1</sup> Emission factors for storage piles per Fugitive Dust Background Document and Technical Information Document for Best Available Control Measures, EPA-450/2-92-004, September 1992. The PM<sub>10</sub> emission factor is half the PM emission.

EF = 1.7 
$$\left(\frac{s}{1.5}\right) \left(\frac{365 - P}{235}\right) \left(\frac{f}{15}\right)$$

EF = PM Emission factor lb/day/acre) where

s = Silt Content (%)

f = % of time the unobstructed wind speed exceeds 12 mph at the pile height

Per meteorological data collected at Martinsburg Airport station for period between 2017 to 2021.

P = Days per year with at least 0.01 inch precipitation (days)

Per AP-42 figure 13.2.2-1, November 2006.

 $PM_{10} =$ 

 $PM_{2.5} =$ 0.053

<sup>3</sup> The conversion from acre to ft<sup>2</sup> is 43,560 ft<sup>2</sup>/acre

<sup>4</sup> Hourly Emissions lb/hr) = Emission Factor (lb/day/acre) x Max. Pile Area (ft²) / 43,560 (ft²/acre) / 24 (hr/day).

<sup>&</sup>lt;sup>2</sup> Per AP-42, Section 13.2.4, November 2006, the particle size multiplier used for calculating emission factors is as follows:

<sup>&</sup>lt;sup>5</sup> Annual Emissions (tpy) = Emission Factor (lb/day/acre) x Max. Pile Area ( $ft^2$ ) / 43,560 ( $ft^2$ /acre) x 365 (day/yr) / 2,000 lb/ton).

Table A-13a. Emission Factors - Paved Road

|          |             |                       |         |       |            |              | Control  | Paved Hourly Emission Factor |          |                  | Paved Daily Emission Factor |                  |                  | <b>Paved Annual Emission Factor</b> |                  |                  |                   |
|----------|-------------|-----------------------|---------|-------|------------|--------------|----------|------------------------------|----------|------------------|-----------------------------|------------------|------------------|-------------------------------------|------------------|------------------|-------------------|
|          |             |                       |         |       | Vehicle We | eight (tons) |          | Efficiency                   | (lb/     | Paved VM         | T) <sup>1</sup>             | (lb/Paved VMT) 1 |                  |                                     | (lb/Paved VMT) 1 |                  |                   |
| Emission |             |                       | Silt    |       |            |              | _        |                              | _        | Total            | Total                       | _                | Total            | Total                               | _                | Total            | Total             |
| Point ID | Description | Truck Type            | Loading | Empty | Full       | Average      | Capacity | (%)                          | Total PM | PM <sub>10</sub> | PM <sub>2.5</sub>           | Total PM         | PM <sub>10</sub> | PM <sub>2.5</sub>                   | Total PM         | PM <sub>10</sub> | PM <sub>2.5</sub> |
|          |             | Haul Truck            | 3.34    | 15    | 40         | 27.5         | 25       | 96                           | 0.039    | 0.0077           | 0.0019                      | 0.039            | 0.0077           | 0.0019                              | 0.035            | 0.0070           | 0.0017            |
|          |             | Trailer               | 3.34    | 15    | ı          | 15           | 2        | 96                           | 0.021    | 0.0042           | 0.0010                      | 0.021            | 0.0042           | 0.0010                              | 0.019            | 0.0037           | 0.00092           |
| PR1      | Paved Roads | Loader                | 3.34    | 26    | 43         | 34.5         | 17       | 96                           | 0.049    | 0.010            | 0.0024                      | 0.049            | 0.010            | 0.0024                              | 0.044            | 0.0088           | 0.0022            |
| PKI      | Paveu Roaus | Euclid/Roll-Off Truck | 3.34    | 26    | 36         | 31           | 10       | 96                           | 0.044    | 0.0088           | 0.0021                      | 0.044            | 0.0088           | 0.0021                              | 0.039            | 0.0079           | 0.0019            |
|          |             | Gas Truck             | 3.34    | 4     | 8          | 6            | 4        | 96                           | 0.0082   | 0.0016           | 0.00040                     | 0.0082           | 0.0016           | 0.00040                             | 0.0074           | 0.0015           | 0.00036           |
|          |             | Forklift/Loader       | 3.34    | 4     | 8          | 6            | 4        | 96                           | 0.0082   | 0.0016           | 0.00040                     | 0.0082           | 0.0016           | 0.00040                             | 0.0074           | 0.0015           | 0.00036           |

<sup>&</sup>lt;sup>1</sup> Emission factors for vehicular traffic on paved roads per U.S. EPA AP-42, Section 13.2.1 (Paved Roads), January 2011.

Short-Term

$$E = k (sL)^{0.91} \times (W)^{1.02}$$

Annua

$$E_{ext} = [k (sL)^{0.91} \times (W)^{1.02}] (1 - P/4N)$$

E = size-specific emission factor lb/VMT)

k = Constant for equation

 $\label{eq:mass_eq} \begin{array}{ccccc} & \text{PM} & \text{PM}_{10} & \text{PM}_{2.5} \\ \text{c} = & 0.011 & 0.0022 & 0.00054 \\ & \text{Per AP-42 Table 13.2.1-1, January 2011} \end{array}$ 

sL = road surface silt loading (g/m<sup>2</sup>)

3.34

as accepted by MCAQD and EPA Region 9 for the PSD permit actions at the CMC operations

in Arizona, which are substantially similar to the proposed project.

W = mean vehicle weight (tons)

P = Days per year with at least 0.01 inch precipitation

150

Per AP-42 Figure 13.2.1-2, January 2011, for West Virginia

N = Number of days in the averaging period

365

Table A-13b. Emission Factors - Unpaved Roads

|                   |             |                       |                 |       | Vehicle Wei | ight <sup>3</sup> (tons) |          | Control<br>Efficiency | Unpaved Hourly Emission<br>Factor (lb/Unpaved VMT) <sup>1</sup> |                           |                            | Factor (lb/Unpaved VMT) 1 |                           |                            | Unpaved Annual Emission<br>Factor (lb/Unpaved VMT) <sup>1</sup> |                           |                            |
|-------------------|-------------|-----------------------|-----------------|-------|-------------|--------------------------|----------|-----------------------|-----------------------------------------------------------------|---------------------------|----------------------------|---------------------------|---------------------------|----------------------------|-----------------------------------------------------------------|---------------------------|----------------------------|
| Emission Point ID | Description | Truck Type            | Silt<br>Content | Empty | Full        | Average                  | Capacity | (%)                   | Total PM                                                        | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total PM                  | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total PM                                                        | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> |
|                   |             | Haul Truck            | 6.0             | 15    | 40          | 27.5                     | 25       | 70                    | 2.45                                                            | 0.65                      | 0.065                      | 2.45                      | 0.65                      | 0.065                      | 1.44                                                            | 0.38                      | 0.038                      |
|                   |             | Trailer               | 6.0             | 15    | ı           | 15                       | 2        | 70                    | 1.87                                                            | 0.498                     | 0.050                      | 1.87                      | 0.50                      | 0.050                      | 1.10                                                            | 0.29                      | 0.029                      |
| UR1               | Unpaved     | Loader                | 6.0             | 26    | 43          | 34.5                     | 17       | 70                    | 2.72                                                            | 0.72                      | 0.072                      | 2.72                      | 0.72                      | 0.072                      | 1.60                                                            | 0.43                      | 0.043                      |
| UKI               | Roads       | Euclid/Roll-Off Truck | 6.0             | 26    | 36          | 31                       | 10       | 70                    | 2.59                                                            | 0.69                      | 0.069                      | 2.59                      | 0.69                      | 0.069                      | 1.52                                                            | 0.41                      | 0.041                      |
|                   |             | Gas Truck             | 6.0             | 4     | 8           | 6                        | 4        | 70                    | 1.24                                                            | 0.329                     | 0.033                      | 1.24                      | 0.33                      | 0.033                      | 0.73                                                            | 0.19                      | 0.019                      |
|                   |             | Forklift/Loader       | 6.0             | 4     | 8           | 6                        | 4        | 70                    | 1.24                                                            | 0.33                      | 0.033                      | 1.24                      | 0.33                      | 0.033                      | 0.73                                                            | 0.19                      | 0.019                      |

<sup>&</sup>lt;sup>1</sup> Emission factors for vehicular traffic on unpaved roads per U.S. EPA AP-42, Section 13.2.2 (Unpaved Roads), November 2006. Short-Term

$$E = k (s/12)^a (W/3)^b$$

$$E_{ext} = E [(365 - P)/365]$$

E = size-specific emission factor lb/VMT) k, a, b = Constants for equation 1a

| $\begin{array}{c ccccc} & PM & PM_{10} & PM_{15} \\ k = & 4.9 & 1.5 & 0.15 \\ a = & 0.7 & 0.9 & 0.9 \\ b = & 0.45 & 0.45 & 0.45 \\ Per AP-42 Table 13.2.2-2, November 2006 \\ s = surface material slit content (%) \end{array}$ |     |                 |                    |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|--------------------|------------|
| a = 0.7 0.9 0.9<br>b = 0.45 0.45 0.45<br>Per AP-42 Table 13.2.2-2, November 2006                                                                                                                                                 |     | PM              | PM <sub>10</sub>   | $PM_{2.5}$ |
| b = 0.45 0.45 0.45<br>Per AP-42 Table 13.2.2-2, November 2006                                                                                                                                                                    | k = | 4.9             | 1.5                | 0.15       |
| Per AP-42 Table 13.2.2-2, November 2006                                                                                                                                                                                          | a = | 0.7             | 0.9                | 0.9        |
|                                                                                                                                                                                                                                  |     |                 |                    |            |
| s = surface material silt content (%)                                                                                                                                                                                            |     | Per AP-42 Table | e 13.2.2-2, Novemb | oer 2006   |
|                                                                                                                                                                                                                                  | s = | surface materia | l silt content (%) |            |

Per U.S. EPA AP-42 Section 13.2.2, November 2006
W = mean vehicle weight (tons)

P = Days per year with at least 0.01 inch precipitation 150

Per AP-42 Figure 13.2.1-2, January 2011, for West Virginia

Table A-14. Roads Post-Project PTE

| Table A-14. Re   | oads Post-Pr | oject PTE | T                     |                           |                        |                                         |       |             |       |        |              |        |        |            |        |
|------------------|--------------|-----------|-----------------------|---------------------------|------------------------|-----------------------------------------|-------|-------------|-------|--------|--------------|--------|--------|------------|--------|
|                  |              |           |                       |                           |                        |                                         |       |             |       | Vehic  | le Miles Tra | velled |        |            |        |
| Tours In TD      |              |           | Truck Type            | Outste                    | Double at law          | Matarial                                | Но    | ourly (VMT/ | hr)   | Da     | ily (VMT/da  | ay)    | An     | nual (VMT/ | yr)    |
| Truck ID         | Road Ty      | /pe (%)   |                       | Origin                    | Destination            | Material                                |       |             |       |        |              |        |        |            |        |
|                  | Paved        | Unpaved   |                       |                           |                        |                                         | Paved | Unpaved     | Total | Paved  | Unpaved      | Total  | Paved  | Unpaved    | Total  |
| TRK1             | 100%         | 0%        | Haul Truck            | Off-Site                  | ECS Building Scrap Bay | Scrap                                   | 2.04  | 0           | 2.04  | 40.84  | 0            | 40.84  | 10,755 | 0          | 10,755 |
| TRK2             | 68%          | 32%       | Haul Truck            | Off-Site                  | Scrap Yard             | Scrap                                   | 1.00  | 0.46        | 1.46  | 17.95  | 8.31         | 26.26  | 4,501  | 2,085      | 6,586  |
| TRK3             | 100%         | 0%        | Euclid/Roll-Off Truck | Around Scrap Yard         | Around Scrap Yard      | Scrap                                   | 0.83  | 0           | 0.83  | 14.96  | 0            | 14.96  | 3,751  | 0          | 3,751  |
| TRK4             | 100%         | 0%        | Haul Truck            | Around Scrap Yard         | Around Scrap Yard      | Scrap                                   | 0.83  | 0           | 0.83  | 14.96  | 0            | 14.96  | 3,751  | 0          | 3,751  |
| TRK5             | 97%          | 3%        | Haul Truck            | Off-Site                  | Silos                  | Coal/Coke                               | 1.07  | 0.03        | 1.09  | 2.13   | 0.06         | 2.19   | 505    | 13         | 519    |
| TRK6             | 100%         | 0%        | Euclid/Roll-off Truck | Off-Site                  | Storage                | Raw Materials / Supplies                | 2.61  | 0           | 2.61  | 2.61   | 0            | 2.61   | 302    | 0          | 302    |
| TRK7             | 100%         | 0%        | Forklift/Loader       | Storage                   | Meltshop               | Raw Materials / Supplies                | 0.26  | 0           | 0.26  | 0.26   | 0            | 0.26   | 30     | 0          | 30     |
| TRK8             | 97%          | 3%        | Haul Truck            | Off-Site                  | Silos                  | Fluxing Agent                           | 1.07  | 0.03        | 1.09  | 5.33   | 0.14         | 5.47   | 1,184  | 31         | 1,215  |
| TRK9             | 100%         | 0%        | Haul Truck            | Off-Site                  | Alloy Pile             | Alloy Aggregate                         | 2.31  | 0           | 2.31  | 3.47   | 0            | 3.47   | 550    | 0          | 550    |
| TRK10            | 100%         | 0%        | Haul Truck            | Meltshop                  | Off-Site               | Removed Refractory / Other<br>Materials | 1.22  | 0           | 1.22  | 1.22   | 0            | 1.22   | 63     | 0          | 63     |
| TRK11            | 100%         | 0%        | Haul Truck            | Finished Products Storage | Off-Site               | Finished Product                        | 8.63  | 0           | 8.63  | 207.21 | 0            | 207.21 | 54,562 | 0          | 54,562 |
| TRK12            | 100%         | 0%        | Gas Truck             | Off-Site                  | Gas Storage Area       | Gas                                     | 2.61  | 0           | 2.61  | 5.21   | 0            | 5.21   | 982    | 0          | 982    |
| TRK13            | 100%         | 0%        | Haul Truck            | Mill Scale Pile           | Off-Site               | Mill Scale                              | 1.70  | 0           | 1.70  | 8.48   | 0            | 8.48   | 920    | 0          | 920    |
| TRK14            | 74%          | 26%       | Euclid/Roll-off Truck | Meltshop                  | Quench Building        | Slag                                    | 0.28  | 0.10        | 0.38  | 4.20   | 1.50         | 5.70   | 866    | 310        | 1,176  |
| TRK15            | 0%           | 100%      | Euclid/Roll-off Truck | Quench Building           | SPP Area               | Slag                                    | 0     | 0.34        | 0.34  | 0      | 5.16         | 5.16   | 0      | 1,064      | 1,064  |
| TRK16            | 0%           | 100%      | Loader                | Within SPP Area           | Within SPP Area        | Slag                                    | 0     | 0.42        | 0.42  | 0      | 6.24         | 6.24   | 0      | 1,287      | 1,287  |
| TRK17            | 91%          | 9%        | Haul Truck            | SPP Area                  | Off-Site               | Slag                                    | 1.04  | 0.10        | 1.14  | 12.54  | 1.19         | 13.73  | 3,610  | 344        | 3,954  |
| TRK18            | 100%         | 0%        | Trailer               | Trailer Parking Area      | Trailer Parking Area   | -                                       | 0.73  | 0           | 0.73  | 10.90  | 0            | 10.90  | 2,756  | 0          | 2,756  |
| TRK19            | 80%          | 20%       | Loader                | General Support           | General Support        | -                                       | 6.70  | 1.64        | 8.34  | 53.57  | 13.11        | 66.68  | 10,755 | 2,632      | 13,386 |
| Paved<br>Unpaved |              |           | Total<br>Total        |                           |                        |                                         | 34.91 | 3.12        |       | 405.82 | 35.71        |        | 99,844 | 7,766      |        |

Steel Mill

Table A-14. Roads Post-Project PTE

|                  |         |         |                       |                           |          |                           |                            |          |                           |                            |          | Em                        | ission Fac | tor (lb/V | MT)                       |                            |          |                           |                            |          |                           |                            |          |                           |                            |          |                           |                            |          |                           |                            |
|------------------|---------|---------|-----------------------|---------------------------|----------|---------------------------|----------------------------|----------|---------------------------|----------------------------|----------|---------------------------|------------|-----------|---------------------------|----------------------------|----------|---------------------------|----------------------------|----------|---------------------------|----------------------------|----------|---------------------------|----------------------------|----------|---------------------------|----------------------------|----------|---------------------------|----------------------------|
| Truck ID         |         |         | Truck Type            | Origin                    |          |                           | Но                         | urly     |                           |                            |          |                           | Da         | ily       |                           |                            |          |                           | Anı                        | nual     |                           |                            |          |                           |                            | Hourly   | Emissions                 | (lb/hr)                    |          |                           |                            |
| Truck 1D         | Road Ty | ype (%) |                       | Origin                    |          | Paved                     |                            |          | Unpaved                   |                            |          | Paved                     |            |           | Unpaved                   |                            |          | Paved                     |                            |          | Unpaved                   | l                          |          | Paved                     |                            |          | Unpaved                   |                            |          | Total                     |                            |
|                  | Paved   | Unpaved |                       |                           | Total PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total PM | Total<br>PM <sub>10</sub> |            | Total PM  | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> | Total PM | Total<br>PM <sub>10</sub> | Total<br>PM <sub>2.5</sub> |
| TRK1             | 100%    | 0%      | Haul Truck            | Off-Site                  | 0.039    | 0.0077                    | 0.0019                     | 2.45     | 0.65                      | 0.065                      | 0.039    | 0.0077                    | 0.0019     | 2.45      | 0.65                      | 0.065                      | 0.035    | 0.0070                    | 0.0017                     | 1.44     | 0.38                      | 0.038                      | 7.91E-02 | 1.58E-02                  | 3.88E-03                   | 0.00E+00 | 0.00E+00                  | 0.00E+00                   | 7.91E-02 | 1.58E-02                  | 3.88E-03                   |
| TRK2             | 68%     | 32%     | Haul Truck            | Off-Site                  | 0.039    | 0.0077                    | 0.0019                     | 2.45     | 0.65                      | 0.065                      | 0.039    | 0.0077                    | 0.0019     | 2.45      | 0.65                      | 0.065                      | 0.035    | 0.0070                    | 0.0017                     | 1.44     | 0.38                      | 0.038                      | 3.86E-02 | 7.73E-03                  | 1.90E-03                   | 1.13E+00 | 3.02E-01                  | 3.02E-02                   | 1.17E+00 | 3.10E-01                  | 3.21E-02                   |
| TRK3             | 100%    | 0%      | Euclid/Roll-Off Truck | Around Scrap Yard         | 0.044    | 0.0088                    | 0.0021                     | 2.59     | 0.69                      | 0.069                      | 0.044    | 0.0088                    | 0.0021     | 2.59      | 0.69                      | 0.069                      | 0.039    | 0.0079                    | 0.0019                     | 1.52     | 0.41                      | 0.041                      | 3.64E-02 | 7.28E-03                  | 1.79E-03                   | 0.00E+00 | 0.00E+00                  | 0.00E+00                   | 3.64E-02 | 7.28E-03                  | 1.79E-03                   |
| TRK4             | 100%    | 0%      | Haul Truck            | Around Scrap Yard         | 0.039    | 0.0077                    | 0.0019                     | 2.45     | 0.65                      | 0.065                      | 0.039    | 0.0077                    | 0.0019     | 2.45      | 0.65                      | 0.065                      | 0.035    | 0.0070                    | 0.0017                     | 1.44     | 0.38                      | 0.038                      | 3.22E-02 | 6.44E-03                  | 1.58E-03                   | 0.00E+00 | 0.00E+00                  | 0.00E+00                   | 3.22E-02 | 6.44E-03                  | 1.58E-03                   |
| TRK5             | 97%     | 3%      | Haul Truck            | Off-Site                  | 0.039    | 0.0077                    | 0.0019                     | 2.45     | 0.65                      | 0.065                      | 0.039    | 0.0077                    | 0.0019     | 2.45      | 0.65                      | 0.065                      | 0.035    | 0.0070                    | 0.0017                     | 1.44     | 0.38                      | 0.038                      | 4.13E-02 | 8.26E-03                  | 2.03E-03                   | 6.85E-02 | 1.82E-02                  | 1.82E-03                   | 1.10E-01 | 2.65E-02                  | 3.85E-03                   |
| TRK6             | 100%    | 0%      | Euclid/Roll-off Truck | Off-Site                  | 0.044    | 0.0088                    | 0.0021                     | 2.59     | 0.69                      | 0.069                      | 0.044    | 0.0088                    | 0.0021     | 2.59      | 0.69                      | 0.069                      | 0.039    | 0.0079                    | 0.0019                     | 1.52     | 0.41                      | 0.041                      | 1.14E-01 | 2.28E-02                  | 5.60E-03                   | 0.00E+00 | 0.00E+00                  | 0.00E+00                   | 1.14E-01 | 2.28E-02                  | 5.60E-03                   |
| TRK7             | 100%    | 0%      | Forklift/Loader       | Storage                   | 0.008    | 0.0016                    | 0.0004                     | 1.24     | 0.33                      | 0.033                      | 0.008    | 0.0016                    | 0.0004     | 1.24      | 0.33                      | 0.033                      | 0.007    | 0.0015                    | 0.0004                     | 0.73     | 0.19                      | 0.019                      | 2.10E-03 | 4.20E-04                  | 1.03E-04                   | 0.00E+00 | 0.00E+00                  | 0.00E+00                   | 2.10E-03 | 4.20E-04                  | 1.03E-04                   |
| TRK8             | 97%     | 3%      | Haul Truck            | Off-Site                  | 0.039    | 0.0077                    | 0.0019                     | 2.45     | 0.65                      | 0.065                      | 0.039    | 0.0077                    | 0.0019     | 2.45      | 0.65                      | 0.065                      | 0.035    | 0.0070                    | 0.0017                     | 1.44     | 0.38                      | 0.038                      | 4.13E-02 | 8.26E-03                  | 2.03E-03                   | 6.85E-02 | 1.82E-02                  | 1.82E-03                   | 1.10E-01 | 2.65E-02                  | 3.85E-03                   |
| TRK9             | 100%    | 0%      | Haul Truck            | Off-Site                  | 0.039    | 0.0077                    | 0.0019                     | 2.45     | 0.65                      | 0.065                      | 0.039    | 0.0077                    | 0.0019     | 2.45      | 0.65                      | 0.065                      | 0.035    | 0.0070                    | 0.0017                     | 1.44     | 0.38                      | 0.038                      | 8.95E-02 | 1.79E-02                  | 4.40E-03                   | 0.00E+00 | 0.00E+00                  | 0.00E+00                   | 8.95E-02 | 1.79E-02                  | 4.40E-03                   |
| TRK10            | 100%    | 0%      | Haul Truck            | Meltshop                  | 0.039    | 0.0077                    | 0.0019                     | 2.45     | 0.65                      | 0.065                      | 0.039    | 0.0077                    | 0.0019     | 2.45      | 0.65                      | 0.065                      | 0.035    | 0.0070                    | 0.0017                     | 1.44     | 0.38                      | 0.038                      | 4.72E-02 | 9.44E-03                  | 2.32E-03                   | 0.00E+00 | 0.00E+00                  | 0.00E+00                   | 4.72E-02 | 9.44E-03                  | 2.32E-03                   |
| TRK11            | 100%    | 0%      | Haul Truck            | Finished Products Storage | 0.039    | 0.0077                    | 0.0019                     | 2.45     | 0.65                      | 0.065                      | 0.039    | 0.0077                    | 0.0019     | 2.45      | 0.65                      | 0.065                      | 0.035    | 0.0070                    | 0.0017                     | 1.44     | 0.38                      | 0.038                      | 3.34E-01 | 6.69E-02                  | 1.64E-02                   | 0.00E+00 | 0.00E+00                  | 0.00E+00                   | 3.34E-01 | 6.69E-02                  | 1.64E-02                   |
| TRK12            | 100%    | 0%      | Gas Truck             | Off-Site                  | 0.008    | 0.0016                    | 0.0004                     | 1.24     | 0.33                      | 0.033                      | 0.008    | 0.0016                    | 0.0004     | 1.24      | 0.33                      | 0.033                      | 0.007    | 0.0015                    | 0.0004                     | 0.73     | 0.19                      | 0.019                      | 2.14E-02 | 4.27E-03                  | 1.05E-03                   | 0.00E+00 | 0.00E+00                  | 0.00E+00                   | 2.14E-02 | 4.27E-03                  | 1.05E-03                   |
| TRK13            | 100%    | 0%      | Haul Truck            | Mill Scale Pile           | 0.039    | 0.0077                    | 0.0019                     | 2.45     | 0.65                      | 0.065                      | 0.039    | 0.0077                    | 0.0019     | 2.45      | 0.65                      | 0.065                      | 0.035    | 0.0070                    | 0.0017                     | 1.44     | 0.38                      | 0.038                      | 6.57E-02 | 1.31E-02                  | 3.23E-03                   | 0.00E+00 | 0.00E+00                  | 0.00E+00                   | 6.57E-02 | 1.31E-02                  | 3.23E-03                   |
| TRK14            | 74%     | 26%     | Euclid/Roll-off Truck | Meltshop                  | 0.044    | 0.0088                    | 0.0021                     | 2.59     | 0.69                      | 0.069                      | 0.044    | 0.0088                    | 0.0021     | 2.59      | 0.69                      | 0.069                      | 0.039    | 0.0079                    | 0.0019                     | 1.52     | 0.41                      | 0.041                      | 1.22E-02 | 2.45E-03                  | 6.01E-04                   | 2.59E-01 | 6.90E-02                  | 6.90E-03                   | 2.71E-01 | 7.15E-02                  | 7.51E-03                   |
| TRK15            | 0%      | 100%    | Euclid/Roll-off Truck | Quench Building           | 0.044    | 0.0088                    | 0.0021                     | 2.59     | 0.69                      | 0.069                      | 0.044    | 0.0088                    | 0.0021     | 2.59      | 0.69                      | 0.069                      | 0.039    | 0.0079                    | 0.0019                     | 1.52     | 0.41                      | 0.041                      | 0.00E+00 | 0.00E+00                  | 0.00E+00                   | 8.90E-01 | 2.37E-01                  | 2.37E-02                   | 8.90E-01 | 2.37E-01                  | 2.37E-02                   |
| TRK16            | 0%      | 100%    | Loader                | Within SPP Area           | 0.049    | 0.0098                    | 0.0024                     | 2.72     | 0.72                      | 0.072                      | 0.049    | 0.0098                    | 0.0024     | 2.72      | 0.72                      | 0.072                      | 0.044    | 0.0088                    | 0.0022                     | 1.60     | 0.43                      | 0.043                      | 0.00E+00 | 0.00E+00                  | 0.00E+00                   | 1.13E+00 | 3.01E-01                  | 3.01E-02                   | 1.13E+00 | 3.01E-01                  | 3.01E-02                   |
| TRK17            | 91%     | 9%      | Haul Truck            | SPP Area                  | 0.039    | 0.0077                    | 0.0019                     | 2.45     | 0.65                      | 0.065                      | 0.039    | 0.0077                    | 0.0019     | 2.45      | 0.65                      | 0.065                      | 0.035    | 0.0070                    | 0.0017                     | 1.44     | 0.38                      | 0.038                      | 4.05E-02 | 8.09E-03                  | 1.99E-03                   | 2.44E-01 | 6.50E-02                  | 6.50E-03                   | 2.84E-01 | 7.31E-02                  | 8.49E-03                   |
| TRK18            | 100%    | 0%      | Trailer               | Trailer Parking Area      | 0.021    | 0.0042                    | 0.0010                     | 1.87     | 0.50                      | 0.050                      | 0.021    | 0.0042                    | 0.0010     | 1.87      | 0.50                      | 0.050                      | 0.019    | 0.0037                    | 0.0009                     | 1.10     | 0.29                      | 0.029                      | 1.52E-02 | 3.03E-03                  | 7.45E-04                   | 0.00E+00 | 0.00E+00                  | 0.00E+00                   | 1.52E-02 | 3.03E-03                  | 7.45E-04                   |
| TRK19            | 80%     | 20%     | Loader                | General Support           | 0.049    | 0.0098                    | 0.0024                     | 2.72     | 0.72                      | 0.072                      | 0.049    | 0.0098                    | 0.0024     | 2.72      | 0.72                      | 0.072                      | 0.044    | 0.0088                    | 0.0022                     | 1.60     | 0.43                      | 0.043                      | 3.27E-01 | 6.54E-02                  | 1.61E-02                   | 4.45E+00 | 1.19E+00                  | 1.19E-01                   | 4.78E+00 | 1.25E+00                  | 1.35E-01                   |
| Paved<br>Unpaved |         |         | Total<br>Total        |                           |          |                           |                            |          |                           |                            |          |                           |            |           |                           |                            |          |                           |                            |          |                           |                            | 1.34     | 0.27                      | 0.07                       | 8.24     | 2.20                      | 0.22                       |          |                           | 1                          |

Table A-14. Roads Post-Project PTE

| Truck ID         |         |         | Truck Type            | Origin                    |          |                  |                   | Daily E  | missions (l      | b/day)            |          |                  |                   |          |                  |                   | Annua    | l Emission       | s (tpy)           | 1        |                  |                   |
|------------------|---------|---------|-----------------------|---------------------------|----------|------------------|-------------------|----------|------------------|-------------------|----------|------------------|-------------------|----------|------------------|-------------------|----------|------------------|-------------------|----------|------------------|-------------------|
|                  | Road Ty | /pe (%) |                       |                           |          | Paved<br>Total   | Total             |          | Unpaved<br>Total | Total             |          | Total<br>Total   | Total             |          | Paved<br>Total   | Total             |          | Unpaved<br>Total | Total             |          | Total<br>Total   | Total             |
|                  | Paved   | Unpaved |                       |                           | Total PM | PM <sub>10</sub> | PM <sub>2.5</sub> | Total PM | PM <sub>10</sub> | PM <sub>2.5</sub> | Total PM | PM <sub>10</sub> | PM <sub>2.5</sub> | Total PM | PM <sub>10</sub> | PM <sub>2.5</sub> | Total PM | PM <sub>10</sub> | PM <sub>2.5</sub> | Total PM | PM <sub>10</sub> | PM <sub>2.5</sub> |
| TRK1             | 100%    | 0%      | Haul Truck            | Off-Site                  | 1.58E+00 | 3.16E-01         | 7.77E-02          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 1.58E+00 | 3.16E-01         | 7.77E-02          | 1.87E-01 | 3.74E-02         | 9.18E-03          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 1.87E-01 | 3.74E-02         | 9.18E-03          |
| TRK2             | 68%     | 32%     | Haul Truck            | Off-Site                  | 6.95E-01 | 1.39E-01         | 3.41E-02          | 2.04E+01 | 5.43E+00         | 5.43E-01          | 2.11E+01 | 5.57E+00         | 5.77E-01          | 7.82E-02 | 1.56E-02         | 3.84E-03          | 1.51E+00 | 4.01E-01         | 4.01E-02          | 1.58E+00 | 4.17E-01         | 4.40E-02          |
| TRK3             | 100%    | 0%      | Euclid/Roll-Off Truck | Around Scrap Yard         | 6.55E-01 | 1.31E-01         | 3.21E-02          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 6.55E-01 | 1.31E-01         | 3.21E-02          | 7.37E-02 | 1.47E-02         | 3.62E-03          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 7.37E-02 | 1.47E-02         | 3.62E-03          |
| TRK4             | 100%    | 0%      | Haul Truck            | Around Scrap Yard         | 5.79E-01 | 1.16E-01         | 2.84E-02          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 5.79E-01 | 1.16E-01         | 2.84E-02          | 6.52E-02 | 1.30E-02         | 3.20E-03          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 6.52E-02 | 1.30E-02         | 3.20E-03          |
| TRK5             | 97%     | 3%      | Haul Truck            | Off-Site                  | 8.26E-02 | 1.65E-02         | 4.05E-03          | 1.37E-01 | 3.65E-02         | 3.65E-03          | 2.20E-01 | 5.30E-02         | 7.70E-03          | 8.78E-03 | 1.76E-03         | 4.31E-04          | 9.56E-03 | 2.55E-03         | 2.55E-04          | 1.83E-02 | 4.30E-03         | 6.86E-04          |
| TRK6             | 100%    | 0%      | Euclid/Roll-off Truck | Off-Site                  | 1.14E-01 | 2.28E-02         | 5.60E-03          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 1.14E-01 | 2.28E-02         | 5.60E-03          | 5.94E-03 | 1.19E-03         | 2.91E-04          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 5.94E-03 | 1.19E-03         | 2.91E-04          |
| TRK7             | 100%    | 0%      | Forklift/Loader       | Storage                   | 2.10E-03 | 4.20E-04         | 1.03E-04          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 2.10E-03 | 4.20E-04         | 1.03E-04          | 1.09E-04 | 2.19E-05         | 5.37E-06          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 1.09E-04 | 2.19E-05         | 5.37E-06          |
| TRK8             | 97%     | 3%      | Haul Truck            | Off-Site                  | 2.06E-01 | 4.13E-02         | 1.01E-02          | 3.42E-01 | 9.12E-02         | 9.12E-03          | 5.49E-01 | 1.33E-01         | 1.93E-02          | 2.06E-02 | 4.12E-03         | 1.01E-03          | 2.24E-02 | 5.97E-03         | 5.97E-04          | 4.30E-02 | 1.01E-02         | 1.61E-03          |
| TRK9             | 100%    | 0%      | Haul Truck            | Off-Site                  | 1.34E-01 | 2.69E-02         | 6.59E-03          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 1.34E-01 | 2.69E-02         | 6.59E-03          | 9.56E-03 | 1.91E-03         | 4.69E-04          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 9.56E-03 | 1.91E-03         | 4.69E-04          |
| TRK10            | 100%    | 0%      | Haul Truck            | Meltshop                  | 4.72E-02 | 9.44E-03         | 2.32E-03          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 4.72E-02 | 9.44E-03         | 2.32E-03          | 1.10E-03 | 2.20E-04         | 5.40E-05          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 1.10E-03 | 2.20E-04         | 5.40E-05          |
| TRK11            | 100%    | 0%      | Haul Truck            | Finished Products Storage | 8.03E+00 | 1.61E+00         | 3.94E-01          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 8.03E+00 | 1.61E+00         | 3.94E-01          | 9.48E-01 | 1.90E-01         | 4.66E-02          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 9.48E-01 | 1.90E-01         | 4.66E-02          |
| TRK12            | 100%    | 0%      | Gas Truck             | Off-Site                  | 4.27E-02 | 8.54E-03         | 2.10E-03          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 4.27E-02 | 8.54E-03         | 2.10E-03          | 3.61E-03 | 7.23E-04         | 1.77E-04          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 3.61E-03 | 7.23E-04         | 1.77E-04          |
| TRK13            | 100%    | 0%      | Haul Truck            | Mill Scale Pile           | 3.29E-01 | 6.57E-02         | 1.61E-02          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 3.29E-01 | 6.57E-02         | 1.61E-02          | 1.60E-02 | 3.20E-03         | 7.85E-04          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 1.60E-02 | 3.20E-03         | 7.85E-04          |
| TRK14            | 74%     | 26%     | Euclid/Roll-off Truck | Meltshop                  | 1.84E-01 | 3.67E-02         | 9.02E-03          | 3.89E+00 | 1.04E+00         | 1.04E-01          | 4.07E+00 | 1.07E+00         | 1.13E-01          | 1.70E-02 | 3.40E-03         | 8.35E-04          | 2.36E-01 | 6.29E-02         | 6.29E-03          | 2.53E-01 | 6.63E-02         | 7.13E-03          |
| TRK15            | 0%      | 100%    | Euclid/Roll-off Truck | Quench Building           | 0.00E+00 | 0.00E+00         | 0.00E+00          | 1.33E+01 | 3.56E+00         | 3.56E-01          | 1.33E+01 | 3.56E+00         | 3.56E-01          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 8.11E-01 | 2.16E-01         | 2.16E-02          | 8.11E-01 | 2.16E-01         | 2.16E-02          |
| TRK16            | 0%      | 100%    | Loader                | Within SPP Area           | 0.00E+00 | 0.00E+00         | 0.00E+00          | 1.69E+01 | 4.51E+00         | 4.51E-01          | 1.69E+01 | 4.51E+00         | 4.51E-01          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 1.03E+00 | 2.74E-01         | 2.74E-02          | 1.03E+00 | 2.74E-01         | 2.74E-02          |
| TRK17            | 91%     | 9%      | Haul Truck            | SPP Area                  | 4.86E-01 | 9.71E-02         | 2.38E-02          | 2.93E+00 | 7.80E-01         | 7.80E-02          | 3.41E+00 | 8.77E-01         | 1.02E-01          | 6.27E-02 | 1.25E-02         | 3.08E-03          | 2.48E-01 | 6.62E-02         | 6.62E-03          | 3.11E-01 | 7.87E-02         | 9.70E-03          |
| TRK18            | 100%    | 0%      | Trailer               | Trailer Parking Area      | 2.28E-01 | 4.55E-02         | 1.12E-02          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 2.28E-01 | 4.55E-02         | 1.12E-02          | 2.58E-02 | 5.16E-03         | 1.27E-03          | 0.00E+00 | 0.00E+00         | 0.00E+00          | 2.58E-02 | 5.16E-03         | 1.27E-03          |
| TRK19            | 80%     | 20%     | Loader                | General Support           | 2.62E+00 | 5.23E-01         | 1.28E-01          | 3.56E+01 | 9.49E+00         | 9.49E-01          | 3.82E+01 | 1.00E+01         | 1.08E+00          | 2.36E-01 | 4.71E-02         | 1.16E-02          | 2.10E+00 | 5.61E-01         | 5.61E-02          | 2.34E+00 | 6.08E-01         | 6.77E-02          |
| Paved<br>Unpaved |         |         | Total<br>Total        |                           | 16.01    | 3.20             | 0.79              | 93.57    | 24.94            | 2.49              | TDUE     | TDUE             |                   | 1.76     | 0.35             | 0.086             | 5.97     | 1.59             | 0.16              |          |                  |                   |

Table A-15a. Emissions - Emergency Generators

|                  |          |                              |               | Ra    | ting  | Operation <sup>1</sup> |                                                 |                 |       | Pollutan                  | t                          |                 |         |                  |       |
|------------------|----------|------------------------------|---------------|-------|-------|------------------------|-------------------------------------------------|-----------------|-------|---------------------------|----------------------------|-----------------|---------|------------------|-------|
| Emission Unit ID | Point ID | Emission Unit<br>Description | Engine Tier   | (hp)  | (kW)  | (hr/yr)                | Total<br>PM/PM <sub>10</sub> /PM <sub>2.5</sub> | NO <sub>X</sub> | СО    | voc                       | SO <sub>2</sub> (wt%<br>S) | CO <sub>2</sub> | СН₄     | N <sub>2</sub> O | CO₂e  |
|                  |          |                              |               |       |       |                        |                                                 |                 | Emis  | ssion Factor <sup>2</sup> | (g/kW-hr)                  |                 |         |                  |       |
|                  |          |                              |               |       |       |                        | 0.20                                            | 3.73            | 3.50  | 0.27                      | 0.0015                     | 694.26          | 0.028   | 0.0056           | 697   |
|                  |          | _                            | Model Year    |       |       |                        |                                                 |                 | Emi   | ssion Factor <sup>3</sup> | (g/hp-hr)                  |                 |         | •                |       |
| EGEN1            | EGEN1    | Emergency                    | 2006+, Tier 3 | 1,600 | 1,193 | 100                    | 0.15                                            | 2.78            | 2.61  | 0.20                      | -                          | 517.72          | 0.021   | 0.0042           | 519   |
| 202.11           |          | Generator 1                  | Engine        | 2,000 | 1,133 |                        |                                                 |                 | Ho    | urly Emissions            | s <sup>4</sup> (lb/hr)     |                 |         |                  |       |
|                  |          |                              | gc            |       |       |                        | 0.53                                            | 9.82            | 9.21  | 0.70                      | 0.017                      | 1826.20         | 0.074   | 0.0148           | 1,832 |
|                  |          |                              |               |       |       |                        |                                                 |                 | A     | nnual Emissio             | ns (tpy)                   |                 |         |                  |       |
|                  |          |                              |               |       |       |                        | 0.026                                           | 0.49            | 0.46  | 0.035                     | 0.00087                    | 91.31           | 0.00370 | 0.00074          | 92    |
|                  |          |                              |               |       |       |                        |                                                 |                 | Emis  | ssion Factor <sup>2</sup> | (g/kW-hr)                  |                 |         |                  |       |
|                  |          |                              |               |       |       |                        | 0.20                                            | 3.73            | 3.50  | 0.27                      | 0.0015                     | 694.26          | 0.028   | 0.0056           | 697   |
|                  |          |                              | Model Year    |       |       |                        |                                                 |                 | Emi   | ssion Factor <sup>3</sup> | (g/hp-hr)                  |                 |         |                  |       |
| EFWP1            | EFWP1    | Emergency Fire               | 2006+, Tier 3 | 300   | 224   | 100                    | 0.15                                            | 2.78            | 2.61  | 0.20                      | -                          | 517.72          | 0.021   | 0.0042           | 519   |
| LI AAL T         | LIVVII   | Water Pump 1                 | Engine        | 300   | 227   | 100                    |                                                 |                 | Ho    | urly Emissions            | s <sup>4</sup> (lb/hr)     |                 |         |                  |       |
|                  |          |                              |               |       |       |                        | 0.10                                            | 1.84            | 1.73  | 0.13                      | 0.0033                     | 342.41          | 0.014   | 0.0028           | 344   |
|                  |          |                              |               |       |       |                        |                                                 |                 | Α     | nnual Emissio             | ns (tpy)                   |                 |         |                  |       |
|                  |          |                              |               |       |       |                        | 0.0049                                          | 0.09            | 0.086 | 0.0066                    | 0.00016                    | 17.12           | 0.00069 | 0.00014          | 17    |

Hours of operation for testing and maintenance, are being limited consistent with the requirements of 40 CFR Part 60, Subpart IIII

For  $CO_2$  73.96 kg/MMBtu per 40 CFR Part 98, Subpart C, Table C-1 For  $CH_4$  0.0030 kg/MMBtu per 40 CFR Part 98, Subpart C, Table C-2 For  $N_2O$  0.00060 kg/MMBtu per 40 CFR Part 98, Subpart C, Table C-2  $CO_2e$  calculated using Global Warming Potentials (GWPs) from of 40 CFR Part 98, Table A-1, December 2014.

 $CO_2 \text{ GWP} = 1$   $CH_4 \text{ GWP} = 25$   $N_2O \text{ GWP} = 298$ 

Emission factor converted to g/hp-hr from g/kW-hr assuming
 Sulfur Dioxide calculated based on maximum fuel sulfur content
 Average brake specific fuel consumption of
 Diesel heating value of
 1.341 hp/kW
 15 ppmw
 7,000 Btu/hp-hr
 19,300 Btu/lb

Based on NSPS Subpart IIII, referencing 40 CFR Part 1039, Appendix I with emissions of VOC and NC<sub>x</sub> speciated based Table 4-6 of the EPA publication "Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling – Compression Ignition", EPA420-P-02-016 GHG emission based on the following

Table A-15b. HAP Emissions - Diesel Emergency Water Pump

| Table A-15b. HAP EIIIIS   | Emission  | Hourly                 | Annual                 | Hourly                 | Annual                 |
|---------------------------|-----------|------------------------|------------------------|------------------------|------------------------|
| Pollutant                 | Factors 1 | Emissions <sup>2</sup> | Emissions <sup>3</sup> | Emissions <sup>2</sup> | Emissions <sup>3</sup> |
|                           | lb/MMBtu  | (lb/hr)                | (tpy)                  | (lb/hr)                | (tpy)                  |
| Emission Unit ID          | •         | EGI                    |                        | EFV                    |                        |
| Emission Point ID         |           | EGI                    | EN1                    | EFV                    | VP1                    |
| Emission Unit Description |           | Emergency              | Generator 1            | Emergency Fire         | Water Pump 1           |
| Benzene                   | 9.33E-04  | 1.04E-02               | 5.22E-04               | 1.96E-03               | 9.80E-05               |
| Toluene                   | 4.09E-04  | 4.58E-03               | 2.29E-04               | 8.59E-04               | 4.29E-05               |
| Xylene                    | 2.85E-04  | 3.19E-03               | 1.60E-04               | 5.99E-04               | 2.99E-05               |
| 1,3-Butadiene             | 3.91E-05  | 4.38E-04               | 2.19E-05               | 8.21E-05               | 4.11E-06               |
| Formaldehyde              | 1.18E-03  | 1.32E-02               | 6.61E-04               | 2.48E-03               | 1.24E-04               |
| Acetaldehyde              | 7.67E-04  | 8.59E-03               | 4.30E-04               | 1.61E-03               | 8.05E-05               |
| Acrolein                  | 9.25E-05  | 1.04E-03               | 5.18E-05               | 1.94E-04               | 9.71E-06               |
| Naphthalene               | 8.48E-05  | 9.50E-04               | 4.75E-05               | 1.78E-04               | 8.90E-06               |
| Acenaphthylene            | 5.06E-06  | 5.67E-05               | 2.83E-06               | 1.06E-05               | 5.31E-07               |
| Acenaphthene              | 1.42E-06  | 1.59E-05               | 7.95E-07               | 2.98E-06               | 1.49E-07               |
| Fluorene                  | 2.92E-05  | 3.27E-04               | 1.64E-05               | 6.13E-05               | 3.07E-06               |
| Phenanthrene              | 2.94E-05  | 3.29E-04               | 1.65E-05               | 6.17E-05               | 3.09E-06               |
| Anthracene                | 1.87E-06  | 2.09E-05               | 1.05E-06               | 3.93E-06               | 1.96E-07               |
| Fluoranthene              | 7.61E-06  | 8.52E-05               | 4.26E-06               | 1.60E-05               | 7.99E-07               |
| Pyrene                    | 4.78E-06  | 5.35E-05               | 2.68E-06               | 1.00E-05               | 5.02E-07               |
| Benz(a)anthracene         | 1.68E-06  | 1.88E-05               | 9.41E-07               | 3.53E-06               | 1.76E-07               |
| Chrysene                  | 3.53E-07  | 3.95E-06               | 1.98E-07               | 7.41E-07               | 3.71E-08               |
| Benzo(b)fluoranthene      | 9.91E-08  | 1.11E-06               | 5.55E-08               | 2.08E-07               | 1.04E-08               |
| Benzo(k)fluoranthene      | 1.55E-07  | 1.74E-06               | 8.68E-08               | 3.26E-07               | 1.63E-08               |
| Benzo(a)pyrene            | 1.88E-07  | 2.11E-06               | 1.05E-07               | 3.95E-07               | 1.97E-08               |
| Indeno(1,2,3-cd)pyrene    | 3.75E-07  | 4.20E-06               | 2.10E-07               | 7.88E-07               | 3.94E-08               |
| Dibenzo(a,h)anthracene    | 5.83E-07  | 6.53E-06               | 3.26E-07               | 1.22E-06               | 6.12E-08               |
| Benzo(g,h,i)perylene      | 4.89E-07  | 5.48E-06               | 2.74E-07               | 1.03E-06               | 5.13E-08               |

<sup>&</sup>lt;sup>1</sup> HAP emissions are calculated based on emission factors for diesel engines per AP-42 Section 3.3, Table 3.3-2.

 $<sup>^{2}</sup>$  Hourly Emissions lb/hr) = Rating (hp) x Avg. Brake Specific Fuel Consumption (Btu/hp-hr) x 1/106 (MMBtu/Btu x Emission Factor lb/MMBtu.

<sup>&</sup>lt;sup>3</sup> Annual Emissions (tpy) = Rating (hp) x Avg. Brake Specific Fuel Consumption (Btu/hp-hr)x Emission Factor lb/MMBtu \* 100 (hours/yr) / 2,000 lb/ton).

Table A-16. Emissions - Torch Cutting - Removal/Oxidation of Steel During Torch Cutting

| Emission<br>Unit ID | Emission<br>Point ID | Emission<br>Unit   | Steel Thro | ughput | Steel<br>Removal<br>Rate | Maximum Cutting<br>Rate | Maximum<br>Daily<br>Operation | PM/PM <sub>10</sub> /PM <sub>2.5</sub> Emission<br>Factor <sup>1, 2</sup> | PM/PM <sub>1</sub> | <sub>0</sub> /PM <sub>2.5</sub> Er | nission Rate <sup>3</sup> |
|---------------------|----------------------|--------------------|------------|--------|--------------------------|-------------------------|-------------------------------|---------------------------------------------------------------------------|--------------------|------------------------------------|---------------------------|
| OIIIC ID            | Pollic 1D            | Description        | (lb/hr)    | (tpy)  | (in width cut/cut)       | (cuts/ft throughput)    | (hr/day)                      | (lb/inch cut)                                                             | (lb/hr)            | (lb/day)                           | (tpy)                     |
| TORCH1              | TORCH1               | Cutting<br>Torches | 10,000     | 10,000 | 1                        | 0.4                     | 12                            | 1.62E-04                                                                  | 0.19               | 2.34                               | 0.19                      |

<sup>&</sup>lt;sup>1</sup> Emission factor for oxyacetylene cutting per American Welding Society (AWS).

<sup>&</sup>lt;sup>3</sup> Sample emission calculations

| Hourly Emission Rate (lb/hr) = | 10,000 lb steel throughput | 1 in width cut | 1 ft  | I (lb steel cut/lb steel throughput | 0.4 cuts             | ft length cut x ft thick cut x ft width cu | 1              | (12 in cut) <sup>3</sup> | 1.62E-04 lb PM           | = | 0.19 lb/hr  |
|--------------------------------|----------------------------|----------------|-------|-------------------------------------|----------------------|--------------------------------------------|----------------|--------------------------|--------------------------|---|-------------|
|                                | hr                         | cut            | 12 in | (ft steel cut /ft steel throughput) | eet steel throughput | 480 lb steel cut                           | 1 in width cut | (1 ft cut) <sup>3</sup>  | n length cut, 1 in thick |   |             |
| Daily Emission Rate (lb/day) = | 0.19 lb PM                 | 12 hr          |       |                                     |                      |                                            |                |                          | •                        | = | 2.34 lb/day |
|                                | hr                         | day            |       |                                     |                      |                                            |                |                          |                          |   |             |
|                                | Í                          |                | 1     | 1                                   |                      | 1                                          | 1              |                          | Ī                        |   |             |
| Annual Emission Rate (tpy) =   | 10,000 ton steel throughpu | 1 in width cut | 1 ft  | I (lb steel cut/lb steel throughput | 0.4 cuts             | ft length cut x ft thick cut x ft width cu | 1              | (12 in cut) <sup>3</sup> | 1.62E-04 lb PM           | = | 0.19 lb/hr  |
|                                | yr                         | cut            | 12 in | (ft steel cut /ft steel throughput) | eet steel throughput | 480 lb steel cut                           | 1 in width cut | (1 ft cut) <sup>3</sup>  | n length cut, 1 in thick |   |             |

It is assumed that the emission rate from propane or natural gas cutting is similar to that of oxyacetylene cutting.

<sup>&</sup>lt;sup>2</sup> Because no  $PM_{10}$  or  $PM_{2.5}$  emission factors are available, it is conservatively estimated that  $PM_{10}$  and  $PM_{2.5}$  are equal to PM.

| Table A-17. | Emissions - | - Storage | Tanks - | · Emission | Calcul | ations |
|-------------|-------------|-----------|---------|------------|--------|--------|
|             |             |           |         |            |        |        |

| Table A-17. Emiss | ions - Storage Tanks - Emission Cald                | culations                                                                                               |                                  |                           |                  |                     |                     |                                                                  |
|-------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|------------------|---------------------|---------------------|------------------------------------------------------------------|
|                   |                                                     |                                                                                                         |                                  | Emission Unit ID          | DSLTK-GEN1       | DSLTK-FWP1          | DSLTK-VEH           |                                                                  |
|                   |                                                     |                                                                                                         |                                  | Emission Point ID         | DSLTK-GEN1       | DSLTK-FWP1          | DSLTK-VEH           |                                                                  |
|                   |                                                     |                                                                                                         |                                  |                           | Diesel Storage   | Diesel Storage      | Diesel Storage      |                                                                  |
|                   |                                                     |                                                                                                         |                                  | Emission Unit             | Tank for         | Tank for Fire Water | Tank Supporting     |                                                                  |
|                   |                                                     |                                                                                                         |                                  | Description               | Emergency        | Pump No. 1          | On-Site Vehicles    |                                                                  |
|                   |                                                     |                                                                                                         |                                  |                           | Generator No. 1  |                     | On one remains      |                                                                  |
|                   |                                                     |                                                                                                         |                                  | Tank Type                 | Horizontal Fixed | Horizontal Fixed    | Vertical Fixed Roof |                                                                  |
| AP-42 Section 7.1 |                                                     |                                                                                                         |                                  |                           | Roof             | Roof                |                     |                                                                  |
| Equation          | Equation                                            | Parameter Description                                                                                   | <b>Equation Parameter</b>        |                           | Value            | Value               | Value               | Reference                                                        |
| Equation 1-1      | $L_T = L_S + L_W$                                   | Total Routine Losses - Diesel                                                                           | L <sub>T</sub> , Diesel          | lb/yr, Diesel             | 0.72             | 0.72                | 7.18                | AP-42 Section 7.1 Equation 1-1                                   |
| Equation 1-2      | $L_S = 365 V_V W_V K_E K_S$                         | Total Routine Losses - Diesel                                                                           | LT, Diesel                       | tpy, Diesel               | 0.00036          | 0.00036             | 0.0036              | lb/year / 2,000 lb/ton                                           |
| Equation 1-3      | $V_V = (Pi/4* D^2) * H_{VO}$                        | Total Routine Losses - Ethylbenzene                                                                     | L <sub>T</sub> , Ethylbenzene    | lb/yr, Ethylbenzene       | 0.29             | 0.29                | 2.85                | AP-42 Section 7.1 Equation 40-1                                  |
| Equation 1-5      | $K_E = dT_V/T_{LA} + (dP_V - dP_B)/(P_A - P_{VA})$  | Total Routine Losses - Ethylbenzene                                                                     | L <sub>T</sub> , Ethylbenzene    | tpy, Ethylbenzene         | 0.000144         | 0.000144            | 0.00142             | lb/year / 2,000 lb/ton                                           |
| Equation 1-7      | $dT_V = 0.7*dT_A + (0.02 \times alpha \times I)$    | Total Routine Losses - Naphthalene                                                                      | L <sub>T</sub> , Naphthalene     | lb/yr, Naphthalene        | 0.088            | 0.088               | 0.87                | AP-42 Section 7.1 Equation 40-1                                  |
| Equation 1-9      | $dP_V = P_{VX} - P_{VN}$                            | Total Routine Losses - Naphthalene                                                                      | L <sub>T</sub> , Naphthalene     | tpy, Naphthalene          | 0.000044         | 0.000044            | 0.00044             | lb/year / 2,000 lb/ton                                           |
| Equation 1-10     | $dP_B = P_{BP} - P_{BV}$                            | Standing Loss                                                                                           | Ls                               | lb/year                   | 0.16             | 0.16                | 1.56                | AP-42 Section 7.1 Equation 1-2                                   |
| Equation 1-11     | $dT_A = T_{AX} - T_{AN}$                            | Standing Loss Maximum Filling Rate                                                                      | Ls                               | tpy<br>gai/hr             | 0.000081<br>500  | 0.000081<br>500     | 0.00078<br>5,000    | lb/year / 2,000 lb/ton                                           |
| Equation 1-14     | $D_E = \sqrt{(LD/(Pi/4))}$                          | _                                                                                                       | FR <sub>M</sub>                  | gai/III                   |                  |                     |                     | Equipment Specifications                                         |
| Equation 1-15     | $H_E = (Pi/4) * D$                                  | Vapor Space Volume                                                                                      | V <sub>V</sub>                   | ft³                       | 37.70            | 37.70               | 362.52              | AP-42 Section 7.1 Equation 1-3                                   |
| Equation 1-21     | $K_S = 1 / (1 + (0.053*P_{VA}*H_{VO}))$             | Stock Vapor Density                                                                                     | W <sub>V</sub>                   | lb/ft <sup>3</sup>        | 0.00017          | 0.00017             | 0.00017             | AP-42 Section 7.1 Equation 1-22                                  |
| Equation 1-22     | $W_V = (M_V P_{VA}) / (R Tv)$                       | Vapor Space Expansion Factor (per day)                                                                  | K <sub>E</sub>                   | -                         | 0.070            | 0.070               | 0.070               | AP-42 Section 7.1 Equation 1-5                                   |
| Equation 1-25     | $P_{VA} = EXP [A - (B/T_{LA})]$                     | Effective tank diameter (For horizontal tanks)                                                          | D <sub>E</sub>                   | ft                        | 5.53             | 5.53                | -                   | AP-42 Section 7.1 Equation 1-14                                  |
| Equation 1-28     | $T_{LA} = 0.4*T_{AA} + 0.6*T_{B} + (0.005*alpha*I)$ | Effective tank height (For horizontal tanks)                                                            | H <sub>E</sub>                   | ft                        | 3.14             | 3.14                | -                   | AP-42 Section 7.1 Equation 1-15                                  |
| Equation 1-30     | $T_{AA} = (T_{AX} + T_{AN})/2$                      | Vented Vapor Saturation Factor                                                                          | K <sub>S</sub>                   | -                         | 1.00             | 1.00                | 1.00                | AP-42 Section 7.1 Equation 1-21                                  |
| Equation 1-31     | $T_B = T_{AA} + 0.003 \times alpha \times I$        | Tank Diameter                                                                                           | D                                | ft                        | 4                | 4                   | 8.5                 | Equipment Specifications                                         |
| Figure 7.1-17     | $T_{LX} = T_{LA} + 0.25*dT_{V}$                     | Tank Height/Length                                                                                      | $H_s$                            | ft                        | 6                | 6                   | 12.6                | Equipment Specifications                                         |
| Figure 7.1-17     | $T_{LN} = T_{LA} - 0.25*dT_{V}$                     | Vapor Space Outage                                                                                      | H <sub>VO</sub>                  | ft                        | 1.57             | 1.57                | 6.39                | AP-42 Section 7.1 Equation 1-4                                   |
| Equation 1-35     | $L_W = V_Q K_N K_P W_V K_B$                         | Average Daily Vapor Temperature Range                                                                   | dΤ <sub>V</sub>                  | deg R                     | 38.88            | 38.88               | 38.88               | AP-42 Section 7.1 Equation 1-7                                   |
| Equation 1-39     | V <sub>Q</sub> = 5.614 Q                            | Average Daily Vapor Pressure - Diesel                                                                   | dP <sub>v</sub> , Diesel         | psi                       | 0.0047           | 0.0047              | 0.0047              | AP-42 Section 7.1 Equation 1-9                                   |
| Equation 40-1     | $L_{Ti} = (Z_{Vi})(L_T)$                            | Average Daily Vapor Pressure - Ethylbenzene                                                             | dP <sub>V</sub> , Ethylbenzene   | psi                       | 0.67             | 0.67                | 0.67                | AP-42 Section 7.1 Equation 1-9                                   |
| Equation 40-3     | $P_i = (P)(x_i)$                                    | Average Daily Vapor Pressure - Naphthalene                                                              | dP <sub>v</sub> , Naphthalene    | psi                       | 0.25             | 0.25                | 0.25                | AP-42 Section 7.1 Equation 1-9                                   |
| Equation 40-4     | $x_i = (Z_{Li} M_L) / M_i$                          | Breather Vent Pressure Setting Range                                                                    | dP <sub>B</sub>                  | psi                       | 0.060            | 0.060               | 0.060               | AP-42 Section 7.1 Equation 1-10                                  |
| Equation 40-5     | $y_i = P_i / P_{VA}$                                | Atmospheric Pressure                                                                                    | P <sub>A</sub>                   | psia                      | 14.55            | 14.55               | 14.55               | AP-42 Section 7.1 Table 7.1-7                                    |
| Equation 40-6     | $Zv_i = y_i M_i / M_V$                              | Vapor Pressure at Daily Average Liquid Surface Temperature - Diesel                                     | P <sub>VA</sub> , Diesel         | psia                      | 0.0073           | 0.0073              | 0.0073              | AP-42 Section 7.1 Equation 1-25                                  |
|                   |                                                     | Average Daily Liquid Surface Temperature                                                                | T <sub>LA</sub>                  | deg R                     | 523              | 523                 | 523                 | AP-42 Section 7.1 Equation 1-28                                  |
|                   |                                                     | Daily Ambient Temperature Range                                                                         | dT <sub>A</sub>                  | deg R                     | 20.1             | 20.1                | 20.1                | AP-42 Section 7.1 Equation 1-11                                  |
|                   |                                                     | Vapor Pressure @ Average Daily Max. Liquid Surface Temp. (TLX) - Diesel                                 | P <sub>VX</sub> , Diesel         | psia                      | 0.010            | 0.010               | 0.010               | AP-42 Section 7.1 Equation 1-25                                  |
|                   |                                                     | Vapor Pressure @ Average Daily Min. Liquid Surface Temp. (T <sub>LN</sub> ) - Diesel                    | P <sub>VN</sub> , Diesel         | psia                      | 0.0053           | 0.0053              | 0.0053              | AP-42 Section 7.1 Equation 1-25                                  |
|                   |                                                     | Vapor Pressure @ Average Daily Max. Liquid Surface Temp. (TLX) - Ethylbenzene                           | P <sub>VX</sub> , Ethylbenzene   | psia                      | 3.44             | 3.44                | 3.44                | AP-42 Section 7.1 Equation 1-25                                  |
|                   |                                                     | Vapor Pressure @ Average Daily Min. Liquid Surface Temp. (T <sub>LN</sub> ) - Ethylbenzene              | P <sub>VN</sub> , Ethylbenzene   | psia                      | 2.77             | 2.77                | 2.77                | AP-42 Section 7.1 Equation 1-25                                  |
|                   |                                                     | Vapor Pressure @ Average Daily Max. Liquid Surface Temp. (TLX) - Naphthalene                            | P <sub>VX</sub> , Naphthalene    | psia                      | 1.04             | 1.04                | 1.04                | AP-42 Section 7.1 Equation 1-25                                  |
|                   |                                                     | Vapor Pressure @ Average Daily Min. Liquid Surface Temp. (T <sub>LN</sub> ) - Naphthalene               | P <sub>VN</sub> , Naphthalene    | psia                      | 0.79             | 0.79                | 0.79                | AP-42 Section 7.1 Equation 1-25                                  |
|                   |                                                     | Breather Vent Pressure Setting                                                                          | P <sub>BP</sub>                  | psig                      | 0.03             | 0.03                | 0.03                | AP-42 Section 7.1 Equation 1-10                                  |
|                   |                                                     | Breather Vent Vacuum Setting                                                                            | P <sub>BV</sub>                  | psig                      | -0.03            | -0.03               | -0.03               | AP-42 Section 7.1 Equation 1-10                                  |
|                   |                                                     | Average daily maximum ambient temperature (for DC-Dulles, VA)                                           | T <sub>AX</sub>                  | deg R                     | 524.97           | 524.97              | 524.97              | AP-42 Section 7.1 Table 7.1-7                                    |
|                   |                                                     | Average daily minimum ambient temperature (for DC-Dulles, VA)                                           | T <sub>AN</sub>                  | deg R                     | 504.87           | 504.87              | 504.87              | AP-42 Section 7.1 Table 7.1-7                                    |
|                   |                                                     | Vapor Molecular Weight - Diesel                                                                         | M <sub>V</sub> , Diesel          | lb/lbmol                  | 130              | 130                 | 130                 | AP-42 Section 7.1 Table 7.1-2                                    |
|                   |                                                     | Liquid Molecular Weight - Diesel                                                                        | M <sub>L</sub> , Diesel          | lb/lbmol                  | 188              | 188                 | 188                 | AP-42 Section 7.1 Table 7.1-2                                    |
|                   |                                                     | Liquid Molecular Weight - Ethylbenzene                                                                  | M <sub>i</sub> , Ethylbenzene    | lb/lbmol                  | 106.17           | 106.17              | 106.17              | AP-42 Section 7.1 Table 7.1-3                                    |
|                   |                                                     | Liquid Molecular Weight - Naphthalene                                                                   | M <sub>i</sub> , Naphthalene     | lb/lbmol                  | 128.17           | 128.17              | 128.17              | AP-42 Section 7.1 Table 7.1-3                                    |
|                   |                                                     | Weight Fraction of Ethylbenzene                                                                         | Z <sub>ii</sub> , Ethylbenzene   | lb/lb                     | 0.0030           | 0.003               | 0.003               | Diesel SDS                                                       |
|                   |                                                     | Weight Fraction of Naphthalene                                                                          | Z <sub>ii</sub> , Naphthalene    | lb/lb                     | 0.0025           | 0.0025              | 0.0025              | Diesel SDS                                                       |
|                   |                                                     | Liquid Mole Fraction - Ethylbenzene                                                                     | x <sub>i</sub> , Ethylbenzene    | lbmol/lbmol               | 0.0053           | 0.0053              | 0.0053              | AP-42 Section 7.1 Equation 40-4                                  |
|                   |                                                     | Liquid Mole Fraction - Naphthalene                                                                      | x <sub>i</sub> , Naphthalene     | lbmol/lbmol               | 0.0037           | 0.0037              | 0.0037              | AP-42 Section 7.1 Equation 40-4                                  |
|                   |                                                     | Partial Pressure of Component - Ethylbenzene                                                            | P <sub>i</sub> , Ethylbenzene    | psia                      | 0.0036           | 0.0036              | 0.0036              | AP-42 Section 7.1 Equation 40-3                                  |
|                   |                                                     | Partial Pressure of Component - Naphthalene                                                             | P <sub>i</sub> , Naphthalene     | psia                      | 0.00090          | 0.00090             | 0.00090             | AP-42 Section 7.1 Equation 40-3                                  |
|                   |                                                     | Vapor Mole Fraction of Component - Ethylbenzene                                                         | y <sub>i</sub> , Ethylbenzene    | Ibmol/Ibmol               | 0.49             | 0.49                | 0.49                | AP-42 Section 7.1 Equation 40-5                                  |
|                   |                                                     | Vapor Mole Fraction of Component - Naphthalene                                                          | y <sub>i</sub> , Naphthalene     | lbmol/lbmol               | 0.12             | 0.12                | 0.12                | AP-42 Section 7.1 Equation 40-5                                  |
|                   |                                                     | Vapor Weight Fraction of Component - Ethylbenzene                                                       | Z <sub>vi</sub> , Ethylbenzene   | lb/lb                     | 0.40             | 0.40                | 0.40                | AP-42 Section 7.1 Equation 40-6                                  |
|                   |                                                     | Vapor Weight Fraction of Component - Naphthalene                                                        | Z <sub>vi</sub> , Naphthalene    | lb/lb                     | 0.12             | 0.12                | 0.12                | AP-42 Section 7.1 Equation 40-6                                  |
|                   |                                                     | Ideal Gas Constant                                                                                      | R                                | (psia ft^3)/(lbmol deg R) | 10.731           | 10.731              | 10.731              | AP-42 Section 7.1 Equation 3-6                                   |
|                   |                                                     | Constant in vapor pressure equation - Diesel                                                            | A, Diesel                        | -                         | 12.101           | 12.101              | 12.101              | AP-42 Section 7.1 Table 7.1-2                                    |
|                   |                                                     | Constant in the vapor pressure equation - Diesel                                                        | B, Diesel                        | deg R                     | 8,907            | 8,907               | 8,907               | AP-42 Section 7.1 Table 7.1-2                                    |
|                   |                                                     | Constant in vapor pressure equation - Ethylbenzene                                                      | A, Ethylbenzene                  | -<br>                     | 7                | 7                   | 7                   | AP-42 Section 7.1 Table 7.1-3                                    |
|                   |                                                     | Constant in the vapor pressure equation - Ethylbenzene                                                  | B, Ethylbenzene                  | deg R                     | 3,046            | 3,046               | 3,046               | AP-42 Section 7.1 Table 7.1-3                                    |
|                   |                                                     | Constant in vapor pressure equation - Naphthalene Constant in the vapor pressure equation - Naphthalene | A, Naphthalene<br>B, Naphthalene | dea P                     | 3,789            | 3,789               | 3,789               | AP-42 Section 7.1 Table 7.1-3<br>AP-42 Section 7.1 Table 7.1-3   |
| <b>-</b>          |                                                     | Daily Average Ambient Temperature                                                                       | T <sub>AA</sub>                  | deg R<br>deg R            | 3,789<br>514.92  | 3,789<br>514.92     | 3,789<br>514.92     | AP-42 Section 7.1 Table 7.1-3  AP-42 Section 7.1 Equation 1-30   |
| <b>-</b>          |                                                     | Liquid Bulk Temperature                                                                                 | T <sub>B</sub>                   | deg R                     | 514.92           | 514.92              | 514.92              | AP-42 Section 7.1 Equation 1-30  AP-42 Section 7.1 Equation 1-31 |
| <b>-</b>          |                                                     | Tank Paint Solar Absorptance (based on black paint color)                                               | alpha                            | -                         | 0.97             | 0.97                | 0.97                | AP-42 Section 7.1 Equation 1-31 AP-42 Section 7.1 Table 7.1-6    |
|                   | 1                                                   | Trank raint Joiat Ausorptance (based on black paint color)                                              | аірпа                            | I <sup>-</sup>            | 0.37             | 0.57                | 0.97                | Ar 72 Jellion /.1 Table /.1-0                                    |

Table A-17. Emissions - Storage Tanks - Emission Calculations

| Table A-17. Emissi | ions - Storage Tanks - Emission Calc | ulations                                                  |                              |                              |                                                            |                                                     |                                                       |                                                               |
|--------------------|--------------------------------------|-----------------------------------------------------------|------------------------------|------------------------------|------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|
|                    |                                      |                                                           |                              | Emission Unit ID             | DSLTK-GEN1                                                 | DSLTK-FWP1                                          | DSLTK-VEH                                             |                                                               |
|                    |                                      |                                                           |                              | Emission Point ID            | DSLTK-GEN1                                                 | DSLTK-FWP1                                          | DSLTK-VEH                                             |                                                               |
|                    |                                      |                                                           |                              | Emission Unit<br>Description | Diesel Storage<br>Tank for<br>Emergency<br>Generator No. 1 | Diesel Storage<br>Tank for Fire Water<br>Pump No. 1 | Diesel Storage<br>Tank Supporting<br>On-Site Vehicles |                                                               |
| AP-42 Section 7.1  |                                      |                                                           |                              | Tank Type                    | Horizontal Fixed<br>Roof                                   | Horizontal Fixed<br>Roof                            | Vertical Fixed Roof                                   |                                                               |
| Equation           | Equation                             | Parameter Description                                     | Equation Parameter           | Parameter Units              | Value                                                      | Value                                               | Value                                                 | Reference                                                     |
|                    | -                                    | Average Daily Total Insulation Factor (for DC-Dulles, VA) | I                            | Btu/ft²/day                  | 1,279                                                      | 1,279                                               | 1,279                                                 | AP-42 Section 7.1 Table 7.1-7                                 |
|                    |                                      | Daily Maximum Liquid Surface Temperature                  | T <sub>LX</sub>              | deg R                        | 533.08                                                     | 533.08                                              | 533.08                                                | AP-42 Section 7.1 Figure 7.1-17                               |
|                    |                                      | Daily Minimum Liquid Surface Temperature                  | T <sub>LN</sub>              | deg R                        | 513.64                                                     | 513.64                                              | 513.64                                                | AP-42 Section 7.1 Figure 7.1-17                               |
|                    |                                      | Average vapor temperature                                 | T <sub>V</sub>               | deg R                        | 527.20                                                     | 527.20                                              | 527.20                                                | AP-42 Section 7.1 Equation 1-33                               |
|                    |                                      | Working Loss                                              | L <sub>W</sub>               | lb/year                      | 0.56                                                       | 0.56                                                | 5.62                                                  | AP-42 Section 7.1 Equation 1-35                               |
|                    |                                      | Working Loss                                              |                              | tpy                          | 0.000281                                                   | 0.000281                                            | 0.0028                                                | lb/year / 2,000 lb/ton                                        |
|                    |                                      | Net Working Loss Throughput                               | V <sub>Q</sub>               | ft³/yr                       | 3,342                                                      | 3,342                                               | 33,417                                                | AP-42 Section 7.1 Equation 1-39                               |
|                    |                                      | Working Loss Turnover (Saturation) Factor                 | K <sub>N</sub>               | =                            | 1                                                          | 1                                                   | 1                                                     | AP-42 Section 7.1 Equation 1-35                               |
|                    |                                      | Working Loss Product Factor                               | K <sub>p</sub>               | -                            | 1                                                          | 1                                                   | 1                                                     | AP-42 Section 7.1 Equation 1-35                               |
|                    |                                      | Vent Setting Correction Factor                            | K <sub>B</sub>               | =                            | 1                                                          | 1                                                   | 1                                                     | AP-42 Section 7.1 Equation 1-35                               |
|                    |                                      | Annual Net Throughput                                     | Q                            | bbl/yr                       | 595.24                                                     | 595.24                                              | 5,952.38                                              | ga/yr / 42 gal/bbl                                            |
|                    |                                      | Annual Net Throughput                                     |                              | ga/yr                        | 25,000                                                     | 25,000                                              |                                                       | Equipment Specifications                                      |
|                    |                                      | Max Short-Term Emissions, Diesel                          | 3,                           | lb/hr, Diesel                | 0.015                                                      | 0.015                                               |                                                       | (M <sub>V</sub> x P <sub>VA</sub> ) / (R x T) x Max Fill Rate |
|                    |                                      | Max Short-Term Emissions, Ethylbenzene                    |                              | lb/hr, Ethylbenzene          | 0.0060                                                     | 0.0060                                              |                                                       | $(M_V \times P_{VA}) / (R \times T) \times Max Fill Rate$     |
|                    |                                      | Max Short-Term Emissions, Naphthalene                     | L <sub>s</sub> , Naphthalene | lb/hr, Naphthalene           | 0.0018                                                     | 0.0018                                              | 0.018                                                 | (M <sub>V</sub> x P <sub>VA</sub> ) / (R x T) x Max Fill Rate |

Table A-18a. Site-Wide HAP Emissions Increase Summary - Hourly

|                   | Site-Wide HAP Emissi           | Max Single     | Max Single   |                      | 1,3-                 | 2-<br>Methylnapht | 2,3,7,8-<br>Tetrachlorod<br>ibenzo-p- |                    | 7,12-<br>Dimethylben<br>z(a)anthrace | Acenaphthe    |                | -            |                     |                       |
|-------------------|--------------------------------|----------------|--------------|----------------------|----------------------|-------------------|---------------------------------------|--------------------|--------------------------------------|---------------|----------------|--------------|---------------------|-----------------------|
| Emission Point ID | Emission Point<br>Description  | HAP<br>(lb/hr) | НАР          | Total HAP<br>(lb/hr) | Butadiene<br>(lb/hr) | halene<br>(lb/hr) | dioxin<br>(lb/hr)                     | nthrene<br>(lb/hr) | ne<br>(lb/hr)                        | ne<br>(lb/hr) | ene<br>(lb/hr) | e<br>(lb/hr) | Acrolein<br>(lb/hr) | Anthracene<br>(lb/hr) |
| BH1               | Meltshop Baghouse              | 0.44           | Manganese    | 0.83                 | -                    | -                 | 7.75E-06                              | -                  | -                                    | -             | -              | -            | -                   | -                     |
| CV1               | From EAF & LMS                 | 0.0055         | Manganese    | 0.0104               | -                    | -                 | 9.71E-08                              | -                  | -                                    | -             | -              | -            | -                   | -                     |
| CV1               | From NG Comb                   | 0.11           | Hexane       | 0.11                 | -                    | 1.44E-06          | -                                     | 1.08E-07           | 9.57E-07                             | 1.08E-07      | 1.08E-07       | -            | -                   | 1.44E-07              |
| RMV1              | Rolling Mill Vent              | 0.015          | Hexane       | 0.015                | -                    | 1.94E-07          | -                                     | 1.45E-08           | 1.29E-07                             | 1.45E-08      | 1.45E-08       | -            | -                   | 1.94E-08              |
| EGEN1             | Emergency Generator            | 0.013          | Formaldehyde | 0.043                | 4.38E-04             | -                 | -                                     | -                  | -                                    | 1.59E-05      | 5.67E-05       | 8.59E-03     | 1.04E-03            | 2.09E-05              |
| EFWP1             | Emergency Fire Water<br>Pump 1 | 0.0025         | Formaldehyde | 0.0081               | 8.21E-05             | -                 | -                                     | -                  | -                                    | 2.98E-06      | 1.06E-05       | 1.61E-03     | 1.94E-04            | 3.93E-06              |
| DSLTK-GEN1        | DSLTK-GEN1                     | 0.0060         | Ethylbenzene | 0.0078               |                      |                   |                                       |                    |                                      |               |                |              |                     |                       |
| DSLTK-FWP1        | DSLTK-FWP1                     | 0.0060         | Ethylbenzene | 0.0078               |                      |                   |                                       |                    |                                      |               |                |              |                     |                       |
| DSLTK-VEH         | DSLTK-VEH                      | 0.0601         | Ethylbenzene | 0.0785               |                      |                   |                                       |                    |                                      |               |                |              |                     |                       |
| TORCH1            | Cutting Torches                | 5.67E-04       | Hexane       | 5.95E-04             | -                    | 7.56E-09          | -                                     | 5.67E-10           | 5.04E-09                             | 5.67E-10      | 5.67E-10       | -            | -                   | 7.56E-10              |
| Max Single<br>HAP |                                | 0.44           | Manganese    |                      |                      |                   |                                       |                    |                                      |               |                |              |                     |                       |
| Total HAP         |                                |                |              | 1.12                 |                      |                   |                                       |                    |                                      |               |                |              |                     |                       |

Table A-18b. Site-Wide HAP Emissions Increase Summary - Annual

| Emission<br>Point ID | Emission Point  Description    | Max Single<br>HAP<br>(tpy) | Max Single<br>HAP<br>(tpy) | Total HAP<br>(tpy) | 1,3-<br>Butadiene<br>(tpy) | 2-<br>Methylnapht<br>halene<br>(tpy) | 2,3,7,8-<br>Tetrachlorod<br>ibenzo-p-<br>dioxin<br>(tpy) | 3-<br>Methylchola<br>nthrene<br>(tpy) | 7,12-<br>Dimethylben<br>z(a)anthrace<br>ne<br>(tpy) |          | Acenaphthyl<br>ene<br>(tpy) | Acetaldehyd<br>e<br>(tpy) | Acrolein<br>(tpy) | Anthracene<br>(tpy) |
|----------------------|--------------------------------|----------------------------|----------------------------|--------------------|----------------------------|--------------------------------------|----------------------------------------------------------|---------------------------------------|-----------------------------------------------------|----------|-----------------------------|---------------------------|-------------------|---------------------|
| BH1                  | Meltshop Baghouse              | 1.21                       | Manganese                  | 2.31               | -                          | -                                    | 2.15E-05                                                 | -                                     | -                                                   | -        | -                           | -                         | -                 | -                   |
| CV1                  | From EAF & LMS                 | 0.0152                     | Manganese                  | 0.029              | -                          | -                                    | 2.70E-07                                                 | -                                     | -                                                   | -        | -                           | -                         | -                 | -                   |
| CV1                  | From NG Comb                   | 0.4406                     | Hexane                     | 0.4624             | -                          | 5.87E-06                             | -                                                        | 4.41E-07                              | 3.92E-06                                            | 4.41E-07 | 4.41E-07                    | -                         | -                 | 5.87E-07            |
| RMV1                 | Rolling Mill Vent              | 0.03266                    | Hexane                     | 0.03427            | -                          | 4.35E-07                             | -                                                        | 3.27E-08                              | 2.90E-07                                            | 3.27E-08 | 3.27E-08                    | -                         | -                 | 4.35E-08            |
| EGEN1                | Emergency Generator            | 0.00066                    | Formaldehyde               | 0.0022             | 2.19E-05                   | -                                    | -                                                        | -                                     | -                                                   | 7.95E-07 | 2.83E-06                    | 4.30E-04                  | 5.18E-05          | 1.05E-06            |
| EFWP1                | Emergency Fire Water<br>Pump 1 | 0.00012                    | Formaldehyde               | 0.00041            | 4.11E-06                   | -                                    | -                                                        | -                                     | -                                                   | 1.49E-07 | 5.31E-07                    | 8.05E-05                  | 9.71E-06          | 1.96E-07            |
| DSLTK-GEN1           | DSLTK-GEN1                     | 0.00014                    | Ethylbenzene               | 0.000188           |                            |                                      |                                                          |                                       |                                                     |          |                             |                           |                   |                     |
| DSLTK-FWP1           | DSLTK-FWP1                     | 0.00014                    | Ethylbenzene               | 0.000188           |                            |                                      |                                                          |                                       |                                                     |          |                             |                           |                   |                     |
| DSLTK-VEH            | DSLTK-VEH                      | 0.00142                    | Ethylbenzene               | 0.00186            |                            |                                      |                                                          |                                       |                                                     |          |                             |                           |                   |                     |
| TORCH1               | Cutting Torches                | 1.13E-03                   | Hexane                     | 1.19E-03           | -                          | 1.51E-08                             | -                                                        | 1.13E-09                              | 1.01E-08                                            | 1.13E-09 | 1.13E-09                    | -                         | -                 | 1.51E-09            |
| Max Single<br>HAP    |                                | 1.21                       | Manganese                  |                    |                            |                                      |                                                          |                                       |                                                     |          |                             |                           |                   |                     |
| Total HAP            | Total HAP                      |                            |                            | 2.84               | 2.60E-05                   | 6.32E-06                             | 2.18E-05                                                 | 4.74E-07                              | 4.22E-06                                            | 1.42E-06 | 3.84E-06                    | 5.10E-04                  | 6.15E-05          | 1.88E-06            |

Table A-18a. Site-Wide HAP Emissions Increase

| Emission<br>Point ID | Emission Point<br>Description  | Max Single<br>HAP<br>(lb/hr) | Antimony<br>(lb/hr) | Arsenic<br>(lb/hr) | Benz(a)anth<br>racene<br>(lb/hr) | Benzene<br>(lb/hr) | Benzo(a)pyr<br>ene<br>(lb/hr) | Benzo(b)fluo<br>ranthene<br>(lb/hr) | Benzo(g,h,i)<br>perylene<br>(lb/hr) | Benzo(k)fluo<br>ranthene<br>(lb/hr) | Beryllium<br>(lb/hr) | Cadmium<br>(lb/hr) | Chromium<br>(lb/hr) | Chrysene<br>(lb/hr) |
|----------------------|--------------------------------|------------------------------|---------------------|--------------------|----------------------------------|--------------------|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|--------------------|---------------------|---------------------|
| BH1                  | Meltshop Baghouse              | 0.44                         | 5.83E-03            | 1.28E-03           | -                                | -                  | -                             | -                                   | -                                   | -                                   | 1.51E-03             | 2.46E-02           | 8.80E-02            | -                   |
| CV1                  | From EAF & LMS                 | 0.0055                       | 7.30E-05            | 1.61E-05           | -                                | -                  | -                             | -                                   | -                                   | -                                   | 1.89E-05             | 3.08E-04           | 1.10E-03            | -                   |
| CV1                  | From NG Comb                   | 0.11                         | -                   | 1.20E-05           | 1.08E-07                         | 1.26E-04           | 7.18E-08                      | 1.08E-07                            | 7.18E-08                            | 1.08E-07                            | 7.18E-07             | 6.58E-05           | 8.37E-05            | 1.08E-07            |
| RMV1                 | Rolling Mill Vent              | 0.015                        | -                   | 1.61E-06           | 1.45E-08                         | 1.69E-05           | 9.68E-09                      | 1.45E-08                            | 9.68E-09                            | 1.45E-08                            | 9.68E-08             | 8.87E-06           | 1.13E-05            | 1.45E-08            |
| EGEN1                | Emergency Generator            | 0.013                        | -                   | -                  | 1.88E-05                         | 1.04E-02           | 2.11E-06                      | 1.11E-06                            | 5.48E-06                            | 1.74E-06                            | -                    | -                  | -                   | 3.95E-06            |
| EFWP1                | Emergency Fire Water<br>Pump 1 | 0.0025                       | -                   | -                  | 3.53E-06                         | 1.96E-03           | 3.95E-07                      | 2.08E-07                            | 1.03E-06                            | 3.26E-07                            | -                    | -                  | -                   | 7.41E-07            |
| DSLTK-GEN1           | DSLTK-GEN1                     | 0.0060                       |                     |                    |                                  |                    |                               |                                     |                                     |                                     |                      |                    |                     |                     |
| DSLTK-FWP1           | DSLTK-FWP1                     | 0.0060                       |                     |                    |                                  |                    |                               |                                     |                                     |                                     |                      |                    |                     |                     |
| DSLTK-VEH            | DSLTK-VEH                      | 0.0601                       |                     |                    |                                  |                    |                               |                                     |                                     |                                     |                      |                    |                     |                     |
| TORCH1               | Cutting Torches                | 5.67E-04                     | -                   | 6.30E-08           | 5.67E-10                         | 6.61E-07           | 3.78E-10                      | 5.67E-10                            | 3.78E-10                            | 5.67E-10                            | 3.78E-09             | 3.46E-07           | 4.41E-07            | 5.67E-10            |
| Max Single<br>HAP    |                                | 0.44                         |                     |                    |                                  |                    |                               |                                     |                                     |                                     |                      |                    |                     |                     |
| Total HAP            |                                |                              |                     |                    |                                  |                    |                               |                                     |                                     |                                     |                      |                    |                     |                     |

Table A-18b. Site-Wide HAP Emissions Increase

| Emission<br>Point ID | Emission Point<br>Description  | Max Single<br>HAP<br>(tpy) | Antimony<br>(tpy) | Arsenic<br>(tpy) | Benz(a)anth<br>racene<br>(tpy) | Benzene<br>(tpy) | Benzo(a)pyr<br>ene<br>(tpy) | Benzo(b)fluo<br>ranthene<br>(tpy) | Benzo(g,h,i)<br>perylene<br>(tpy) | Benzo(k)fluo<br>ranthene<br>(tpy) | Beryllium<br>(tpy) | Cadmium<br>(tpy) | Chromium<br>(tpy) | Chrysene<br>(tpy) |
|----------------------|--------------------------------|----------------------------|-------------------|------------------|--------------------------------|------------------|-----------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------|------------------|-------------------|-------------------|
| BH1                  | Meltshop Baghouse              | 1.21                       | 1.62E-02          | 3.56E-03         | -                              | -                | -                           | -                                 | -                                 | -                                 | 4.19E-03           | 6.83E-02         | 2.45E-01          | -                 |
| CV1                  | From EAF & LMS                 | 0.0152                     | 2.03E-04          | 4.46E-05         | -                              | -                | -                           | -                                 | -                                 | -                                 | 5.25E-05           | 8.55E-04         | 3.06E-03          | -                 |
| CV1                  | From NG Comb                   | 0.4406                     | -                 | 4.90E-05         | 4.41E-07                       | 5.14E-04         | 2.94E-07                    | 4.41E-07                          | 2.94E-07                          | 4.41E-07                          | 2.94E-06           | 2.69E-04         | 3.43E-04          | 4.41E-07          |
| RMV1                 | Rolling Mill Vent              | 0.03266                    | -                 | 3.63E-06         | 3.27E-08                       | 3.81E-05         | 2.18E-08                    | 3.27E-08                          | 2.18E-08                          | 3.27E-08                          | 2.18E-07           | 2.00E-05         | 2.54E-05          | 3.27E-08          |
| EGEN1                | Emergency Generator            | 0.00066                    | -                 | -                | 9.41E-07                       | 5.22E-04         | 1.05E-07                    | 5.55E-08                          | 2.74E-07                          | 8.68E-08                          | -                  | -                | -                 | 1.98E-07          |
| EFWP1                | Emergency Fire Water<br>Pump 1 | 0.00012                    | -                 | -                | 1.76E-07                       | 9.80E-05         | 1.97E-08                    | 1.04E-08                          | 5.13E-08                          | 1.63E-08                          | -                  | -                | -                 | 3.71E-08          |
| DSLTK-GEN1           | DSLTK-GEN1                     | 0.00014                    |                   |                  |                                |                  |                             |                                   |                                   |                                   |                    |                  |                   |                   |
| DSLTK-FWP1           | DSLTK-FWP1                     | 0.00014                    |                   |                  |                                |                  |                             |                                   |                                   |                                   |                    |                  |                   |                   |
| DSLTK-VEH            | DSLTK-VEH                      | 0.00142                    |                   |                  |                                |                  |                             |                                   |                                   |                                   |                    |                  |                   |                   |
| TORCH1               | Cutting Torches                | 1.13E-03                   | -                 | 1.26E-07         | 1.13E-09                       | 1.32E-06         | 7.56E-10                    | 1.13E-09                          | 7.56E-10                          | 1.13E-09                          | 7.56E-09           | 6.93E-07         | 8.82E-07          | 1.13E-09          |
| Max Single<br>HAP    |                                | 1.21                       |                   |                  |                                |                  |                             |                                   |                                   |                                   |                    |                  |                   |                   |
| Total HAP            | Total HAP                      |                            | 1.64E-02          | 3.66E-03         | 1.59E-06                       | 1.17E-03         | 4.41E-07                    | 5.40E-07                          | 6.41E-07                          | 5.77E-07                          | 4.24E-03           | 6.94E-02         | 2.48E-01          | 7.09E-07          |

Table A-18a. Site-Wide HAP Emissions Increase

| Emission<br>Point ID | Emission Point<br>Description  | Max Single<br>HAP<br>(lb/hr) | Cobalt<br>(lb/hr) | Dibenzo(a,h)<br>anthracene<br>(lb/hr) | Dichlorobenz<br>ene<br>(lb/hr) | Ethylbenzen<br>e<br>(lb/hr) | Fluoranthen<br>e<br>(lb/hr) | Fluorene<br>(lb/hr) | Formaldehyd<br>e<br>(lb/hr) | Hexane<br>(lb/hr) | Indeno(1,2,<br>3-cd)pyrene<br>(lb/hr) | Lead<br>Compounds<br>(lb/hr) | Manganese<br>(lb/hr) | Mercury<br>(lb/hr) |
|----------------------|--------------------------------|------------------------------|-------------------|---------------------------------------|--------------------------------|-----------------------------|-----------------------------|---------------------|-----------------------------|-------------------|---------------------------------------|------------------------------|----------------------|--------------------|
| BH1                  | Meltshop Baghouse              | 0.44                         | 5.30E-03          | -                                     | -                              |                             | -                           | -                   | -                           | -                 | -                                     | 1.87E-01                     | 4.36E-01             | 7.25E-02           |
| CV1                  | From EAF & LMS                 | 0.0055                       | 6.64E-05          | -                                     | -                              |                             | -                           | -                   | -                           | -                 | -                                     | 2.35E-03                     | 5.46E-03             | 9.09E-04           |
| CV1                  | From NG Comb                   | 0.11                         | 5.02E-06          | 7.18E-08                              | 7.18E-05                       |                             | 1.79E-07                    | 1.67E-07            | 4.49E-03                    | 1.08E-01          | 1.08E-07                              | -                            | 2.27E-05             | 1.55E-05           |
| RMV1                 | Rolling Mill Vent              | 0.015                        | 6.77E-07          | 9.68E-09                              | 9.68E-06                       |                             | 2.42E-08                    | 2.26E-08            | 6.05E-04                    | 1.45E-02          | 1.45E-08                              | -                            | 3.06E-06             | 2.10E-06           |
| EGEN1                | Emergency Generator            | 0.013                        | -                 | 6.53E-06                              | -                              |                             | 8.52E-05                    | 3.27E-04            | 1.32E-02                    | -                 | 4.20E-06                              | -                            | -                    | -                  |
| EFWP1                | Emergency Fire Water<br>Pump 1 | 0.0025                       | -                 | 1.22E-06                              | -                              |                             | 1.60E-05                    | 6.13E-05            | 2.48E-03                    | -                 | 7.88E-07                              | -                            | -                    | -                  |
| DSLTK-GEN1           | DSLTK-GEN1                     | 0.0060                       |                   |                                       |                                | 6.01E-03                    |                             |                     |                             |                   |                                       |                              |                      |                    |
| DSLTK-FWP1           | DSLTK-FWP1                     | 0.0060                       |                   |                                       |                                | 6.01E-03                    |                             |                     |                             |                   |                                       |                              |                      |                    |
| DSLTK-VEH            | DSLTK-VEH                      | 0.0601                       |                   |                                       |                                | 6.01E-02                    |                             |                     |                             |                   |                                       |                              |                      |                    |
| TORCH1               | Cutting Torches                | 5.67E-04                     | 2.64E-08          | 3.78E-10                              | 3.78E-07                       |                             | 9.45E-10                    | 8.82E-10            | 2.36E-05                    | 5.67E-04          | 5.67E-10                              | -                            | 1.20E-07             | 8.19E-08           |
| Max Single<br>HAP    |                                | 0.44                         |                   |                                       |                                |                             |                             |                     |                             |                   |                                       |                              |                      |                    |
| Total HAP            |                                |                              |                   |                                       |                                |                             |                             |                     |                             |                   |                                       |                              |                      |                    |

Table A-18b. Site-Wide HAP Emissions Increase

| Emission<br>Point ID | Emission Point<br>Description  | Max Single<br>HAP<br>(tpy) | Cobalt<br>(tpy) | Dibenzo(a,h)<br>anthracene<br>(tpy) | Dichlorobenz<br>ene<br>(tpy) | Ethylbenzen<br>e | Fluoranthen<br>e<br>(tpy) | Fluorene<br>(tpy) | Formaldehyd<br>e<br>(tpy) | Hexane<br>(tpy) | Indeno(1,2,<br>3-cd)pyrene<br>(tpy) | Lead<br>Compounds<br>(tpy) | Manganese<br>(tpy) | Mercury<br>(tpy) |
|----------------------|--------------------------------|----------------------------|-----------------|-------------------------------------|------------------------------|------------------|---------------------------|-------------------|---------------------------|-----------------|-------------------------------------|----------------------------|--------------------|------------------|
| BH1                  | Meltshop Baghouse              | 1.21                       | 1.47E-02        | -                                   | -                            |                  | -                         | -                 | -                         | -               | -                                   | 5.20E-01                   | 1.21E+00           | 2.02E-01         |
| CV1                  | From EAF & LMS                 | 0.0152                     | 1.84E-04        | -                                   | -                            |                  | -                         | -                 | -                         | -               | -                                   | 6.52E-03                   | 1.52E-02           | 2.53E-03         |
| CV1                  | From NG Comb                   | 0.4406                     | 2.06E-05        | 2.94E-07                            | 2.94E-04                     |                  | 7.34E-07                  | 6.85E-07          | 1.84E-02                  | 4.41E-01        | 4.41E-07                            | -                          | 9.30E-05           | 6.36E-05         |
| RMV1                 | Rolling Mill Vent              | 0.03266                    | 1.52E-06        | 2.18E-08                            | 2.18E-05                     |                  | 5.44E-08                  | 5.08E-08          | 1.36E-03                  | 3.27E-02        | 3.27E-08                            | -                          | 6.89E-06           | 4.72E-06         |
| EGEN1                | Emergency Generator            | 0.00066                    | -               | 3.26E-07                            | -                            |                  | 4.26E-06                  | 1.64E-05          | 6.61E-04                  | -               | 2.10E-07                            | -                          | -                  | -                |
| EFWP1                | Emergency Fire Water<br>Pump 1 | 0.00012                    | -               | 6.12E-08                            | -                            |                  | 7.99E-07                  | 3.07E-06          | 1.24E-04                  | -               | 3.94E-08                            | -                          | -                  | -                |
| DSLTK-GEN1           | DSLTK-GEN1                     | 0.00014                    |                 |                                     |                              | 1.44E-04         |                           |                   |                           |                 |                                     |                            |                    |                  |
| DSLTK-FWP1           | DSLTK-FWP1                     | 0.00014                    |                 |                                     |                              | 1.44E-04         |                           |                   |                           |                 |                                     |                            |                    |                  |
| DSLTK-VEH            | DSLTK-VEH                      | 0.00142                    |                 |                                     |                              | 1.42E-03         |                           |                   |                           |                 |                                     |                            |                    |                  |
| TORCH1               | Cutting Torches                | 1.13E-03                   | 5.29E-08        | 7.56E-10                            | 7.56E-07                     |                  | 1.89E-09                  | 1.76E-09          | 4.72E-05                  | 1.13E-03        | 1.13E-09                            | -                          | 2.39E-07           | 1.64E-07         |
| Max Single<br>HAP    |                                | 1.21                       |                 |                                     |                              |                  |                           |                   |                           |                 |                                     |                            |                    |                  |
| Total HAP            | Total HAP                      |                            | 1.49E-02        | 7.04E-07                            | 3.16E-04                     | 1.71E-03         | 5.85E-06                  | 2.02E-05          | 2.05E-02                  | 4.74E-01        | 7.24E-07                            | 5.27E-01                   | 1.23E+00           | 2.04E-01         |

Table A-18a. Site-Wide HAP Emissions Increase

| Emission<br>Point ID | Emission Point<br>Description  | Max Single<br>HAP<br>(lb/hr) | Molybdenum<br>(lb/hr) | Naphthalene<br>(lb/hr) | Nickel<br>(lb/hr) | Phenanthren<br>e<br>(Ib/hr) | Pyrene<br>(lb/hr) | Selenium<br>(Ib/hr) | Toluene<br>(lb/hr) | Xylene<br>(lb/hr) |
|----------------------|--------------------------------|------------------------------|-----------------------|------------------------|-------------------|-----------------------------|-------------------|---------------------|--------------------|-------------------|
| BH1                  | Meltshop Baghouse              | 0.44                         | -                     | -                      | 5.10E-03          | -                           | -                 | 3.21E-03            | -                  | -                 |
| CV1                  | From EAF & LMS                 | 0.0055                       | -                     | -                      | 6.40E-05          | -                           | -                 | 4.02E-05            | -                  | -                 |
| CV1                  | From NG Comb                   | 0.11                         | 6.58E-05              | 3.65E-05               | 1.26E-04          | 1.02E-06                    | 2.99E-07          | 1.44E-06            | 2.03E-04           | -                 |
| RMV1                 | Rolling Mill Vent              | 0.015                        | 8.87E-06              | 4.92E-06               | 1.69E-05          | 1.37E-07                    | 4.03E-08          | 1.94E-07            | 2.74E-05           | -                 |
| EGEN1                | Emergency Generator            | 0.013                        | -                     | 9.50E-04               | -                 | 3.29E-04                    | 5.35E-05          | -                   | 4.58E-03           | 3.19E-03          |
| EFWP1                | Emergency Fire Water<br>Pump 1 | 0.0025                       | -                     | 1.78E-04               | -                 | 6.17E-05                    | 1.00E-05          | -                   | 8.59E-04           | 5.99E-04          |
| DSLTK-GEN1           | DSLTK-GEN1                     | 0.0060                       |                       | 1.84E-03               |                   |                             |                   |                     |                    |                   |
| DSLTK-FWP1           | DSLTK-FWP1                     | 0.0060                       |                       | 1.84E-03               |                   |                             |                   |                     |                    |                   |
| DSLTK-VEH            | DSLTK-VEH                      | 0.0601                       |                       | 1.84E-02               |                   |                             |                   |                     |                    |                   |
| TORCH1               | Cutting Torches                | 5.67E-04                     | 3.46E-07              | 1.92E-07               | 6.61E-07          | 5.35E-09                    | 1.57E-09          | 7.56E-09            | 1.07E-06           | -                 |
| Max Single<br>HAP    |                                | 0.44                         |                       |                        |                   |                             |                   |                     |                    |                   |
| Total HAP            |                                |                              |                       |                        |                   |                             |                   |                     |                    |                   |

Table A-18b. Site-Wide HAP Emissions Increase

| Emission          | Emission Point                 | Max Single<br>HAP |          | Naphthalene | Nickel   | Phenanthren<br>e | Pyrene   | Selenium | Toluene  | Xylene   |
|-------------------|--------------------------------|-------------------|----------|-------------|----------|------------------|----------|----------|----------|----------|
| Point ID          | Description                    | (tpy)             | (tpy)    | (tpy)       | (tpy)    | (tpy)            | (tpy)    | (tpy)    | (tpy)    | (tpy)    |
| BH1               | Meltshop Baghouse              | 1.21              | -        | -           | 1.42E-02 | -                | -        | 8.91E-03 | -        | -        |
| CV1               | From EAF & LMS                 | 0.0152            | -        | -           | 1.78E-04 | -                | -        | 1.12E-04 | -        | -        |
| CV1               | From NG Comb                   | 0.4406            | 2.69E-04 | 1.49E-04    | 5.14E-04 | 4.16E-06         | 1.22E-06 | 5.87E-06 | 8.32E-04 | -        |
| RMV1              | Rolling Mill Vent              | 0.03266           | 2.00E-05 | 1.11E-05    | 3.81E-05 | 3.08E-07         | 9.07E-08 | 4.35E-07 | 6.17E-05 | -        |
| EGEN1             | Emergency Generator            | 0.00066           | -        | 4.75E-05    | -        | 1.65E-05         | 2.68E-06 | -        | 2.29E-04 | 1.60E-04 |
| EFWP1             | Emergency Fire Water<br>Pump 1 | 0.00012           | -        | 8.90E-06    | -        | 3.09E-06         | 5.02E-07 | -        | 4.29E-05 | 2.99E-05 |
| DSLTK-GEN1        | DSLTK-GEN1                     | 0.00014           |          | 4.39E-05    |          |                  |          |          |          |          |
| DSLTK-FWP1        | DSLTK-FWP1                     | 0.00014           |          | 4.39E-05    |          |                  |          |          |          |          |
| DSLTK-VEH         | DSLTK-VEH                      | 0.00142           |          | 4.35E-04    |          |                  |          |          |          |          |
| TORCH1            | Cutting Torches                | 1.13E-03          | 6.93E-07 | 3.84E-07    | 1.32E-06 | 1.07E-08         | 3.15E-09 | 1.51E-08 | 2.14E-06 | 1        |
| Max Single<br>HAP |                                | 1.21              |          |             |          |                  |          |          |          |          |
| Total HAP         | Total HAP                      |                   | 2.90E-04 | 7.40E-04    | 1.49E-02 | 2.40E-05         | 4.50E-06 | 9.03E-03 | 1.17E-03 | 1.90E-04 |

Table A-19. Site-Wide Emissions Increase Summary - Hourly

|                   |          | Increase Summary - Hourly                                  |                  |          |                        |                         |                 | Hourly P | TE (lb/hr) |                 |        |                                |           |           |
|-------------------|----------|------------------------------------------------------------|------------------|----------|------------------------|-------------------------|-----------------|----------|------------|-----------------|--------|--------------------------------|-----------|-----------|
| Emission Unit ID  | ID       | t Emission Point Description                               | Filterable<br>PM | Total PM | Total PM <sub>10</sub> | Total PM <sub>2.5</sub> | NO <sub>x</sub> | со       | voc        | SO <sub>2</sub> | Pb     | Max Single<br>HAP <sup>2</sup> | Total HAP | Fluorides |
|                   |          |                                                            |                  |          | leltshop               |                         |                 |          |            |                 |        |                                |           |           |
| EAF1, LMS1        | BH1      | Meltshop Baghouse                                          | 10.36            | 29.92    | 29.92                  | 29.92                   | 45.63           | 936.00   | 35.10      | 49.14           | 0.19   | 0.44                           | 0.83      | 1.17      |
| EAF1, LMS1, CAST1 | CV1      | Caster Vent                                                | 1.12             | 1.70     | 1.70                   | 1.70                    | 8.85            | 7.92     | 0.72       | 0.80            | 0.0024 | 0.11                           | 0.12      | 0.015     |
|                   |          |                                                            |                  | Ro       | lling Mills            |                         |                 |          |            |                 |        |                                |           |           |
| RMV1              | RMV1     | Rolling Mill Vent <sup>1</sup>                             | 0.028            | 0.073    | 0.073                  | 0.073                   | 1.17            | 0.68     | 0.082      | 0.090           | -      | 0.015                          | 0.015     | -         |
| CBV1              | CBV1     | Cooling Beds Vent <sup>1</sup>                             | 0.010            | 0.010    | 0.010                  | 0.010                   | -               | -        | 0.010      | -               | -      | -                              | -         | -         |
| SPV1              | SPV1     | Spooler Vent <sup>1</sup>                                  | 0.010            | 0.010    | 0.010                  | 0.010                   | -               | -        | 0.010      | -               | _      | _                              | -         | -         |
|                   |          | poore. Vent                                                |                  |          | l Storage Si           |                         |                 | 1        |            |                 | 1      |                                |           |           |
| FLXSLO11          | FLXSLO11 | Fluxing Agent Storage Silo No. 1                           | 0.13             | 0.13     | 0.13                   | 0.13                    | _               | _        | <u> </u>   | <u> </u>        | _      | I -                            | _         |           |
| FLXSLO12          | FLXSLO12 | Fluxing Agent Storage Silo No. 2                           | 0.13             | 0.13     | 0.13                   | 0.13                    | _               | _        | _          | _               | _      | _                              | _         | _         |
| CARBSLO1          | CARBSLO1 | Carbon Storage Silo No. 1                                  | 0.088            | 0.088    | 0.088                  | 0.088                   | _               | _        | _          | _               | _      | _                              | _         | _         |
| DUSTSLO1          | DUSTSLO1 | EAF Baghouse Dust Silo                                     | 0.056            | 0.056    | 0.056                  | 0.056                   | _               | _        | _          | _               | _      | _                              | _         | _         |
| D0010201          | 50515261 | En a bagnouse buse sno                                     | 0.030            |          | ial Handling           |                         |                 |          |            |                 | l      |                                |           |           |
| TR51A             | TR51A    | Inside ECS Building Drop Points, Scrap                     | 0.041            | 0.041    | 0.0194                 | 0.00294                 | _               | _        | _          | _               | _      | _                              | _         | _         |
| TR51B             | TR51B    | Outside ECS Building Drop Points, Scrap, Storage Area      | 0.033            | 0.033    | 0.015                  | 0.0023                  | _               | _        | _          | _               | _      | _                              | _         | _         |
| TR51C             | TR51C    | Outside Rail Bins Drop Point, Scrap                        | 0.011            | 0.011    | 0.005                  | 0.0008                  | _               | -        | -          | -               | _      | -                              | -         | -         |
| TR51E             | TR51E    | Outside Truck Bins Drop Point, Scrap                       | 0.011            | 0.011    | 0.005                  | 0.0008                  | _               | _        | _          | _               | _      | _                              | _         | _         |
| TR71              | TR71     | Inside ECS Building Drop Points, Fluxing Agent             | 0.0042           | 0.0042   | 0.0020                 | 0.00030                 | _               | -        | -          | -               | _      | -                              | -         | -         |
| TR81              | TR81     | Outside Drop Points, Alloy Aggregate                       | 0.0030           | 0.0030   | 0.0014                 | 0.00021                 | _               | -        | -          | -               | _      | -                              | -         | -         |
| TR91A             | TR91A    | Inside Drop Points, Removed Refractory and Other Materials |                  | 0.0049   | 0.0023                 | 0.00035                 | _               | -        | -          | -               | _      | -                              | -         | -         |
| TR91B             | TR91B    | Outside Drop Points, Removed Refractory and Other          | 0.0247           | 0.0247   | 0.012                  | 0.0018                  | _               | -        | -          | -               | -      | -                              | -         | -         |
| TR11A             | TR11A    | Outside SPP Pile Drop Points, Slag                         | 0.00061          | 0.00061  | 0.00029                | 0.00004                 | -               | -        | -          | -               | -      | -                              | -         | -         |
| TR11B1            | TR11B1   | SPP Material Transfers and Screens                         | 0.023            | 0.023    | 0.010                  | 0.0015                  | _               | -        | -          | -               | -      | _                              | -         | -         |
| TR131             | TR131    | Outside Drop Points, Residual Scrap Pile                   | 0.0049           | 0.0049   | 0.0023                 | 0.00035                 | -               | -        | -          | -               | -      | -                              | -         | -         |
| TR141             | TR141    | Outside Drop Points, Mill Scale Pile                       | 0.045            | 0.045    | 0.0211                 | 0.00319                 | -               | -        | -          | -               | -      | -                              | -         | -         |
| CR1               | CR1      | Ball Drop Crushing                                         | 0.0096           | 0.0096   | 0.0043                 | 0.00080                 | -               | -        | -          | -               | -      | -                              | -         | -         |
|                   |          |                                                            |                  | Materia  | l Storage Pi           | les                     |                 |          |            |                 |        |                                |           |           |
| W51A              | W51A     | ECS Scrap Building Storage Pile A                          | 0.019            | 0.019    | 0.009                  | 0.0014                  | -               | -        | -          | -               | -      | -                              | -         | -         |
| W51B              | W51B     | ECS Scrap Building Storage Pile B                          | 0.017            | 0.017    | 0.009                  | 0.0013                  | -               | -        | -          | -               | -      | -                              | -         | -         |
| W51C              | W51C     | ECS Scrap Building Storage Pile C                          | 0.017            | 0.017    | 0.008                  | 0.0013                  | -               | -        | -          | -               | -      | -                              | -         | -         |
| W51D              | W51D     | ECS Scrap Building Overage Scrap Pile                      | 0.077            | 0.077    | 0.039                  | 0.0059                  | -               | -        | -          | -               | -      | -                              | -         | -         |
| W51E              | W51E     | Outside Rail Scrap 5k Pile A                               | 0.058            | 0.058    | 0.029                  | 0.0044                  | -               | -        | -          | -               | -      | -                              | 1         | -         |
| W51F              | W51F     | Outside Rail Scrap 5k Pile B                               | 0.058            | 0.058    | 0.029                  | 0.0044                  | -               | -        | -          | -               | -      | -                              | 1         | -         |
| W51G              | W51G     | Outside Rail Scrap 5k Pile C                               | 0.058            | 0.058    | 0.029                  | 0.0044                  | -               | -        | -          | -               | -      | -                              | 1         | -         |
| W51H              | W51H     | Outside Rail Scrap 5k Pile D                               | 0.058            | 0.058    | 0.029                  | 0.0044                  | -               | -        | -          | -               | -      | -                              | 1         | -         |
| W51K              | W51K     | Outside Truck Scrap 5k Pile A                              | 0.058            | 0.058    | 0.029                  | 0.0044                  | -               | -        | -          | -               | -      | -                              | ı         | -         |
| W51L              | W51L     | Outside Truck Scrap 5k Pile B                              | 0.058            | 0.058    | 0.029                  | 0.0044                  | -               | _        | -          | -               | -      | -                              |           |           |
| W51M              | W51M     | Outside Truck Scrap 5k Pile C                              | 0.058            | 0.058    | 0.029                  | 0.0044                  | -               | -        | -          | -               | -      | -                              | _         |           |
| W51N              | W51N     | Outside Truck Scrap 5k Pile D                              | 0.058            | 0.058    | 0.029                  | 0.0044                  | -               | -        | -          | -               | -      | -                              | -         | -         |
| W61               | W61      | Alloy Aggregate Storage Pile                               | 0.0017           | 0.0017   | 0.0009                 | 0.00013                 | -               | -        | -          | -               | -      | -                              | -         | -         |
| W71A              | W71A     | SPP Slag Storage Pile                                      | 0.23             | 0.23     | 0.11                   | 0.017                   | -               | -        | -          | -               | -      | -                              | -         |           |
| W71B              | W71B     | SPP Piles                                                  | 0.58             | 0.58     | 0.29                   | 0.044                   | -               | -        | -          | -               | -      | -                              | -         | -         |
| W81               | W81      | Residual Scrap Storage Pile in Scrap Yard                  | 0.17             | 0.17     | 0.083                  | 0.013                   | -               | -        | -          | -               | -      | -                              | -         | -         |
| W111              | W111     | Mill Scale Pile                                            | 0.014            | 0.014    | 0.0069                 | 0.0010                  |                 |          | -          |                 |        |                                | _         | -         |

Table A-19. Site-Wide Emissions Increase Summary - Hourly

|                  | Endada Balat |                                                   |                  |          |                        |                         |                 | Hourly P1 | TE (lb/hr) |                 |          |                                |           |           |
|------------------|--------------|---------------------------------------------------|------------------|----------|------------------------|-------------------------|-----------------|-----------|------------|-----------------|----------|--------------------------------|-----------|-----------|
| Emission Unit ID | ID ID        | Emission Point Description                        | Filterable<br>PM | Total PM | Total PM <sub>10</sub> | Total PM <sub>2.5</sub> | NO <sub>x</sub> | со        | voc        | SO <sub>2</sub> | Pb       | Max Single<br>HAP <sup>2</sup> | Total HAP | Fluorides |
|                  |              |                                                   |                  | Cooli    | ing Towers             |                         |                 |           |            |                 |          |                                |           |           |
| CTNC11           | CTNC11A      | Non-Contact Cooling Tower 1 - Cell 1              | 0.11             | 0.11     | 0.075                  | 0.00024                 | -               | -         | -          | -               | -        | -                              | -         | -         |
| CTNC11           | CTNC11B      | Non-Contact Cooling Tower 1 - Cell 2              | 0.11             | 0.11     | 0.075                  | 0.00024                 | -               | -         | -          | -               | -        | -                              | -         | -         |
| CTNC12           | CTNC12A      | Non-Contact Cooling Tower 2 - Cell 1              | 0.11             | 0.11     | 0.075                  | 0.00024                 | 1               | -         | 1          | -               | -        | -                              | -         | -         |
| CTNC12           | CTNC12B      | Non-Contact Cooling Tower 2 - Cell 2              | 0.11             | 0.11     | 0.075                  | 0.00024                 | 1               | -         | 1          | -               | -        | -                              | -         | -         |
| CTC1             | CTC1A        | Contact Cooling Tower - Cell 1                    | 0.055            | 0.055    | 0.038                  | 0.00012                 | 1               | -         | 1          | -               | -        | -                              | -         | -         |
| CTC1             | CTC1B        | Contact Cooling Tower - Cell 2                    | 0.055            | 0.055    | 0.038                  | 0.00012                 | 1               | -         | 1          | -               | -        | -                              | -         | -         |
|                  |              |                                                   |                  | Ha       | aulroads               |                         |                 |           |            |                 |          |                                |           |           |
| PR1              | PR1          | Paved Roads                                       | 1.34             | 1.34     | 0.27                   | 0.066                   | -               | -         | -          | -               | -        | -                              | -         | -         |
| UR1              | UR1          | Unpaved Roads                                     | 8.24             | 8.24     | 2.20                   | 0.22                    | -               | -         | -          | -               | -        | -                              | -         | _         |
|                  |              |                                                   |                  | Auxilia  | ry Equipme             | ent                     |                 |           |            |                 |          |                                |           |           |
| EGEN1            | EGEN1        | Emergency Generator 1                             | 0.53             | 0.53     | 0.53                   | 0.53                    | 9.82            | 9.21      | 0.70       | 0.017           | -        | 0.013                          | 0.043     | -         |
| EFWP1            | EFWP1        | Emergency Fire Water Pump 1                       | 0.10             | 0.10     | 0.10                   | 0.10                    | 1.84            | 1.73      | 0.13       | 0.0033          | -        | 0.0025                         | 0.0081    | -         |
| DSLTK-GEN1       | DSLTK-GEN1   | Diesel Storage Tank for Emergency Generator No. 1 | -                | -        | -                      | -                       | ı               | -         | 0.015      | -               | -        | 0.0060                         | 0.0078    | -         |
| DSLTK-FWP1       | DSLTK-FWP1   | Diesel Storage Tank for Fire Water Pump No. 1     | -                | -        | -                      | -                       | ı               | -         | 0.015      | -               | -        | 0.0060                         | 0.0078    | -         |
| DSLTK-VEH        | DSLTK-VEH    | Diesel Storage Tank Supporting On-Site Vehicles   | -                | -        | -                      | -                       | ı               |           | 0.15       | -               | -        | 0.060                          | 0.078     | -         |
| TORCH1           | TORCH1       | Cutting Torches                                   | 0.20             | 0.20     | 0.20                   | 0.20                    | 0.046           | 0.026     | 0.0028     | 0.0035          | 1.57E-07 | 5.67E-04                       | 5.95E-04  | -         |
| Total            | Total        |                                                   | 24.68            | 44.87    | 36.67                  | 33.35                   | 67.36           | 955.56    | 36.94      | 50.05           | 0.19     | 0.65                           | 1.12      | 1.18      |

<sup>&</sup>lt;sup>1</sup> Emissions from the rolling mill vent and the cooling bed vents are conservatively represented using de minimis values. Total rolling mill vent emissions include de minimis values and combustion emissions.

<sup>2</sup> Max Single HAP is Manganese

Table A-20. Site-Wide Emissions Increase Summary - Annual

|                  | Emission |                                                            |                  |          |                        |                         |                 | An                                               | nual PTE (tp | y)              |                                                  |                                                  |                                |           |                   |
|------------------|----------|------------------------------------------------------------|------------------|----------|------------------------|-------------------------|-----------------|--------------------------------------------------|--------------|-----------------|--------------------------------------------------|--------------------------------------------------|--------------------------------|-----------|-------------------|
| Emission Unit ID | Point ID | Emission Point Description                                 | Filterable<br>PM | Total PM | Total PM <sub>10</sub> | Total PM <sub>2.5</sub> | NO <sub>x</sub> | СО                                               | voc          | SO <sub>2</sub> | Pb                                               | Fluorides                                        | Max Single<br>HAP <sup>5</sup> | Total HAP | CO <sub>2</sub> e |
|                  |          |                                                            |                  |          | Melts                  | hop                     |                 |                                                  |              |                 |                                                  |                                                  |                                |           |                   |
| EAF1, LMS1       | BH1      | Meltshop Baghouse                                          | 45.36            | 131.03   | 131.03                 | 131.03                  | 97.50           | 1,300                                            | 97.50        | 97.50           | 0.52                                             | 3.25                                             | 1.21                           | 2.31      | 119,513           |
| AF1, LMS1, CAST1 | CV1      | Caster Vent                                                | 3.51             | 5.96     | 5.96                   | 5.96                    | 36.03           | 25.80                                            | 2.75         | 3.00            | 0.0066                                           | 0.041                                            | 0.44                           | 0.49      | 35,348            |
|                  |          |                                                            |                  |          | Rolling                | Mills                   |                 |                                                  |              |                 |                                                  |                                                  |                                |           |                   |
| RMV1             | RMV1     | Rolling Mill Vent <sup>1</sup>                             | 0.050            | 0.152    | 0.152                  | 0.152                   | 2.63            | 1.52                                             | 0.172        | 0.20            | -                                                | -                                                | 0.033                          | 0.034     | 2,575             |
| CBV1             | CBV1     | Cooling Beds Vent <sup>1</sup>                             | 0.010            | 0.010    | 0.010                  | 0.010                   | -               | -                                                | 0.010        | -               | -                                                | -                                                | -                              | -         |                   |
| SPV1             |          | Spooler Vent <sup>1</sup>                                  | 0.010            | 0.010    | 0.010                  | 0.010                   | _               | _                                                | 0.010        | _               | _                                                | _                                                | _                              | _         |                   |
| 5. 11            | 0. 11    | Spooler Vent                                               | 0.010            |          | Material Sto           |                         |                 | ı                                                | 0.010        | 1               | <u> </u>                                         | <u> </u>                                         | ı                              |           |                   |
| FLXSLO11         | FLXSLO11 | Fluxing Agent Storage Silo No. 1                           | 0.064            | 0.064    | 0.064                  | 0.064                   |                 | _                                                | _            | _               | Ι -                                              | 1 -                                              | _                              | _ 1       | _                 |
| FLXSLO12         |          | Fluxing Agent Storage Silo No. 2                           | 0.064            | 0.064    | 0.064                  | 0.064                   |                 | _                                                | _            | _               | <del>                                     </del> | <del>                                     </del> | _                              | _         |                   |
| CARBSLO1         |          | Carbon Storage Silo No. 1                                  | 0.004            | 0.044    | 0.004                  | 0.044                   |                 |                                                  | _            | _               | <del>                                     </del> | -                                                | _                              | _         |                   |
| DUSTSLO1         |          | EAF Baghouse Dust Silo                                     | 0.011            | 0.24     | 0.24                   | 0.24                    |                 |                                                  | _            | _               | _                                                | _                                                | _                              | _         |                   |
| D0313E01         | D0313L01 | TEAL DayHouse Dust Silo                                    | 0.21             | 0.21     | Material H             |                         |                 | L                                                |              |                 |                                                  |                                                  | L                              |           |                   |
| TR51A            | TR51A    | Inside ECS Building Drop Points, Scrap                     | 0.084            | 0.084    | 0.040                  | 0.0060                  | _               | _                                                | _            | _               | _                                                | _                                                | _                              | _         |                   |
| TR51B            |          | Outside ECS Building Drop Points, Scrap, Storage Area      | 0.004            | 0.004    | 0.050                  | 0.0076                  | <del></del>     | <del></del>                                      | _            |                 | <del>                                     </del> | <del>-</del>                                     | <del>  </del>                  | _         | <del></del>       |
| TR51C            |          | Outside Rail Bins Drop Points, Scrap, Storage Area         | 0.035            | 0.035    | 0.030                  | 0.0076                  |                 | <del>                                     </del> | _            | _               | <del>                                     </del> |                                                  |                                |           |                   |
| TR51E            |          | Outside Truck Bins Drop Point, Scrap                       | 0.035            | 0.035    | 0.017                  | 0.0025                  |                 | _                                                | _            | _               | _                                                | -                                                |                                | _         |                   |
| TR71             | TR71     | Inside ECS Building Drop Points, Fluxing Agent             | 0.0021           | 0.0021   | 0.0010                 | 0.0023                  |                 | _                                                | _            | _               | <del>-</del>                                     | -                                                | _                              | _         |                   |
| TR81             | TR81     | Outside Drop Points, Alloy Aggregate                       | 0.00024          | 0.0021   | 0.00010                | 0.00017                 |                 | _                                                | _            | _               | _                                                | _                                                | _                              | _         |                   |
| TR91A            | TR91A    | Inside Drop Points, Removed Refractory and Other Materials |                  | 0.00021  | 0.00011                | 0.000017                |                 | _                                                | _            | _               | <del> </del> -                                   | _                                                | _                              | _         |                   |
| TR91B            |          | Outside Drop Points, Removed Refractory and Other          | 0.0014           | 0.00020  | 0.00015                | 0.00010                 |                 | _                                                | _            | _               | <del> </del> -                                   | _                                                | _                              | _         |                   |
| TR11A            |          | Outside SPP Pile Drop Points, Slag                         | 0.00056          | 0.00155  | 0.00026                | 0.000040                | _               | _                                                | _            | _               | -                                                | -                                                | _                              | _         |                   |
| TR11B1           |          | SPP Material Transfers and Screens                         | 0.021            | 0.021    | 0.010                  | 0.0013                  | _               | _                                                | _            | _               | -                                                | -                                                | _                              | _         | _                 |
| TR131            | TR131    | Outside Drop Points, Residual Scrap Pile                   | 0.00028          | 0.00028  | 0.00013                | 0.000020                | _               | _                                                | -            | _               | _                                                | _                                                | _                              | _         |                   |
| TR141            |          | Outside Drop Points, Mill Scale Pile                       | 0.0036           | 0.0036   | 0.0017                 | 0.00026                 | _               | -                                                | _            | _               | _                                                | _                                                | _                              | _         | -                 |
| CR1              | CR1      | Ball Drop Crushing                                         | 0.0049           | 0.0049   | 0.0022                 | 0.00041                 | _               | _                                                | _            | _               | _                                                | _                                                | _                              | _         | -                 |
| <u> </u>         |          |                                                            | 0.00.0           |          | Material Sto           |                         |                 |                                                  |              |                 |                                                  |                                                  |                                |           |                   |
| W51A             | W51A     | ECS Scrap Building Storage Pile A                          | 0.083            | 0.083    | 0.041                  | 0.0062                  | _               | _                                                | _            | _               | -                                                | _                                                | _                              | _         |                   |
| W51B             |          | ECS Scrap Building Storage Pile B                          | 0.076            | 0.076    | 0.038                  | 0.0057                  | _               | _                                                | _            | _               | -                                                | _                                                | _                              | _         | -                 |
| W51C             | W51C     | ECS Scrap Building Storage Pile C                          | 0.074            | 0.074    | 0.037                  | 0.0056                  | _               | -                                                | _            | _               | _                                                | _                                                | _                              | _         |                   |
| W51D             |          | ECS Scrap Building Overage Scrap Pile                      | 0.34             | 0.34     | 0.17                   | 0.026                   | -               | -                                                | -            | -               | -                                                | -                                                | -                              | -         |                   |
| W51E             |          | Outside Rail Scrap 5k Pile A                               | 0.25             | 0.25     | 0.13                   | 0.019                   | -               | -                                                | -            | -               | -                                                | -                                                | -                              | -         |                   |
| W51F             |          | Outside Rail Scrap 5k Pile B                               | 0.25             | 0.25     | 0.13                   | 0.019                   | -               | -                                                | -            | -               | -                                                | -                                                | -                              | -         | -                 |
| W51G             |          | Outside Rail Scrap 5k Pile C                               | 0.25             | 0.25     | 0.13                   | 0.019                   | -               | -                                                | -            | -               | -                                                | -                                                | -                              | -         | -                 |
| W51H             |          | Outside Rail Scrap 5k Pile D                               | 0.25             | 0.25     | 0.13                   | 0.019                   | -               | -                                                | -            | -               | -                                                | -                                                | -                              | -         | -                 |
| W51K             |          | Outside Truck Scrap 5k Pile A                              | 0.25             | 0.25     | 0.13                   | 0.019                   | -               | -                                                | -            | -               | -                                                | -                                                | -                              | -         | -                 |
| W51L             |          | Outside Truck Scrap 5k Pile B                              | 0.25             | 0.25     | 0.13                   | 0.019                   | -               | -                                                | -            | -               | -                                                | -                                                | -                              | -         | _                 |
| W51M             |          | Outside Truck Scrap 5k Pile C                              | 0.25             | 0.25     | 0.13                   | 0.019                   | -               | -                                                | -            | -               | -                                                | -                                                | -                              | -         | -                 |
| W51N             |          | Outside Truck Scrap 5k Pile D                              | 0.25             | 0.25     | 0.13                   | 0.019                   | -               | -                                                | -            | -               | -                                                | -                                                | -                              | -         | -                 |
| W61              |          | Alloy Aggregate Storage Pile                               | 0.0075           | 0.0075   | 0.0037                 | 0.00057                 |                 | -                                                | -            | -               | -                                                | -                                                | -                              | -         | -                 |
| W71A             |          | SPP Slag Storage Pile                                      | 1.00             | 1.00     | 0.50                   | 0.076                   | -               | -                                                | -            | -               | _                                                | -                                                | -                              | -         | -                 |
| W71B             |          | SPP Piles                                                  | 2.55             | 2.55     | 1.28                   | 0.19                    | -               | -                                                | -            | -               | -                                                | -                                                | -                              | -         | -                 |
| W81              |          | Residual Scrap Storage Pile in Scrap Yard                  | 0.73             | 0.73     | 0.37                   | 0.055                   | -               | -                                                | -            | -               | -                                                | -                                                | -                              | -         | -                 |
| W111             | W111     | Mill Scale Pile                                            | 0.060            | 0.060    | 0.030                  | 0.0046                  | -               | -                                                | -            | -               | -                                                | -                                                | -                              | -         | -                 |

Table A-20. Site-Wide Emissions Increase Summary - Annual

|                         | Fusionion            |                                                   |                  |            |                        |                         |                 | Anı        | nual PTE (tp | y)              |            |           |                                |           |                   |
|-------------------------|----------------------|---------------------------------------------------|------------------|------------|------------------------|-------------------------|-----------------|------------|--------------|-----------------|------------|-----------|--------------------------------|-----------|-------------------|
| Emission Unit ID        | Emission<br>Point ID | Emission Point Description                        | Filterable<br>PM | Total PM   | Total PM <sub>10</sub> | Total PM <sub>2.5</sub> | NO <sub>x</sub> | со         | voc          | SO <sub>2</sub> | Pb         | Fluorides | Max Single<br>HAP <sup>5</sup> | Total HAP | CO <sub>2</sub> e |
|                         |                      |                                                   |                  |            | Cooling T              | owers                   |                 |            |              |                 |            |           |                                |           | •                 |
| CTNC11                  | CTNC11A              | Non-Contact Cooling Tower 1 - Cell 1              | 0.48             | 0.48       | 0.33                   | 0.0010                  | -               | -          | -            | ı               | -          | -         | -                              | -         |                   |
| CTNC11                  | CTNC11B              | Non-Contact Cooling Tower 1 - Cell 2              | 0.48             | 0.48       | 0.33                   | 0.0010                  | -               | -          | 1            | -               | -          | -         | -                              | -         | -                 |
| CTNC12                  | CTNC12A              | Non-Contact Cooling Tower 2 - Cell 1              | 0.48             | 0.48       | 0.33                   | 0.0010                  | -               | -          | -            | ı               | -          | -         | -                              | -         |                   |
| CTNC12                  | CTNC12B              | Non-Contact Cooling Tower 2 - Cell 2              | 0.48             | 0.48       | 0.33                   | 0.0010                  | -               | -          | 1            | ı               | -          | -         | -                              | -         | ı                 |
| CTC1                    | CTC1A                | Contact Cooling Tower - Cell 1                    | 0.24             | 0.24       | 0.16                   | 0.0005                  | -               | -          | -            | -               | -          | -         | -                              | -         | -                 |
| CTC1                    | CTC1B                | Contact Cooling Tower - Cell 2                    | 0.24             | 0.24       | 0.16                   | 0.0005                  | -               | -          | -            | ı               | -          | -         | -                              | -         | -                 |
|                         |                      |                                                   |                  |            | Haulro                 | ads                     |                 |            |              |                 |            |           |                                |           |                   |
| PR1                     | PR1                  | Paved Roads                                       | 1.76             | 1.76       | 0.35                   | 0.086                   | -               | -          | -            | -               | -          | -         | -                              | -         | -                 |
| UR1                     | UR1                  | Unpaved Roads                                     | 5.97             | 5.97       | 1.59                   | 0.16                    | -               | -          | -            | -               | -          | -         | -                              | -         | •                 |
|                         |                      |                                                   |                  | ı          | Auxiliary Ed           | uipment                 |                 |            |              |                 |            |           |                                |           |                   |
| EGEN1                   | EGEN1                | Emergency Generator 1                             | 0.026            | 0.026      | 0.026                  | 0.026                   | 0.49            | 0.460      | 0.035        | 0.00087         | -          | -         | 0.00066                        | 0.0022    | 91.62             |
| EFWP1                   | EFWP1                | Emergency Fire Water Pump 1                       | 0.0049           | 0.0049     | 0.0049                 | 0.0049                  | 0.09            | 0.086      | 0.007        | 0.00016         | -          | -         | 0.00012                        | 0.00041   | 17.18             |
| DSLTK-GEN1              | DSLTK-GEN1           | Diesel Storage Tank for Emergency Generator No. 1 | -                | -          | -                      | -                       | -               | -          | 0.00036      | ı               | -          | -         | 0.000144                       | 0.000188  | -                 |
| DSLTK-FWP1              | DSLTK-FWP1           | Diesel Storage Tank for Fire Water Pump No. 1     | -                | -          | -                      | -                       | -               | -          | 0.00036      | ı               | -          | -         | 0.000144                       | 0.000188  | 1                 |
| DSLTK-VEH               | DSLTK-VEH            | Diesel Storage Tank Supporting On-Site Vehicles   | -                | -          | -                      | -                       | -               | -          | 0.0036       | ı               | -          | -         | 0.00142                        | 0.00186   | 1                 |
| TORCH1                  | TORCH1               | Cutting Torches                                   | 0.20             | 0.20       | 0.20                   | 0.20                    | 9.13E-02        | 5.29E-02   | 5.62E-03     | 7.02E-03        | 3.15E-07   | -         | 1.13E-03                       | 1.19E-03  | 89.39             |
| Total                   | Total                |                                                   | 67               | <i>155</i> | 145                    | <i>139</i>              | <i>137</i>      | 1,328      | 100          | 101             | 0.53       | 3.29      | 1.69                           | 2.84      | 157,635           |
| Pollutant Attainment S  | itatus               |                                                   | -                | -          | Attainment             | Attainment              | Attainment      | Attainment | Attainment   | Attainment      | Attainment | -         | -                              | -         | -                 |
| Potentially Applicable  | Major NSR Pro        | ogram                                             | PSD              | -          | PSD                    | PSD                     | PSD             | PSD        | PSD          | PSD             | PSD        | PSD       | -                              | -         | PSD               |
| Major NSR "Major Sou    | rce" Threshold       | d <sup>2, 4</sup>                                 | 100              | -          | 100                    | 100                     | 100             | 100        | 100          | 100             | 100        | 100       | -                              | -         | -                 |
| Title V Threshold 4     |                      |                                                   | 100              | _          | 100                    | 100                     | 100             | 100        | 100          | 100             | -          | -         | 10                             | 25        | 100,000           |
| Project Exceeds Major   | NSR "Major S         | Source" Threshold?                                | No               | -          | Yes                    | Yes                     | Yes             | Yes        | Yes          | Yes             | No         | No        | -                              | -         | No                |
| Project Exceeds Title ' |                      |                                                   | No               | -          | Yes                    | Yes                     | Yes             | Yes        | Yes          | Yes             | -          | -         | No                             | No        | Yes               |
| PSD Significant Emissi  | on Rates (SER        | ds) <sup>3</sup>                                  | 25               | -          | 15                     | 10                      | 40              | 100        | 40           | 40              | 0.6        | 3         | -                              | -         | 75,000            |
| Project Meets or Exce   |                      | •                                                 | Yes              | _          | Yes                    | Yes                     | Yes             | Yes        | Yes          | Yes             | No         | Yes       | -                              | _         | Yes               |

<sup>&</sup>lt;sup>1</sup> Emissions from the rolling mill vent and the cooling bed vents are conservatively represented using de minimis values. Total rolling mill vent emissions include de minimis values and combustion emissions.

<sup>&</sup>lt;sup>2</sup> Major source per 40 CFR 52.21(b). NOx is a regulated NSR pollutant for purposes of evaluating PSD applicability because NOx, as measured in the ambient air as nitrogen dioxide (NO2), is a pollutant for which a national ambient air quality standard (NAAQS) has been promulgated (see 40 CFR 50.11).

<sup>&</sup>lt;sup>3</sup> PSD Significant Emission Rates (SERs) as defined in 40 CFR 52.21.

<sup>&</sup>lt;sup>4</sup> VOC is not a criteria pollutant but is considered to be a precursor to ozone. Stated value corresponds to the ozone threshold.

<sup>&</sup>lt;sup>5</sup> Max Single HAP is Manganese

# **APPENDIX B. EPA RBLC SEARCH RESULTS**

| Process                                                           | RBLC ID  | Facility                             | Permit Date<br>(from RBLC) |                   | n Capacity<br>tpy) | Permitte             | d CO Limit                          | Control                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------|----------|--------------------------------------|----------------------------|-------------------|--------------------|----------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   |          |                                      |                            | Value             | Unit               | Value                | Unit                                |                                                                                                                                                                                                                                                                                                                                  |
|                                                                   |          |                                      |                            | Facilities With P | ermits Issued Aft  | er 2016 <sup>1</sup> |                                     |                                                                                                                                                                                                                                                                                                                                  |
| EAF/LMF                                                           | WV-0034  | Nucor Steel West<br>Virginia         | 5/5/2022                   | 3,000,000         | tons steel/yr      | 2.02                 | lb/ton                              | Good Combustion Practices                                                                                                                                                                                                                                                                                                        |
| EAFs and LMFs                                                     | AR-0173  | BIG RIVER STEEL LLC                  | 1/31/2022                  | 250               | tons steel/hr      | 2.02                 | lb/ton                              | Scrap Management Plan and Good Operating Practices                                                                                                                                                                                                                                                                               |
| SN-01 EAF                                                         | AR-0172  | STEEL MILL                           | 9/1/2021                   | 250               | tons steel/hr      | 3                    | lb/ton                              | Direct Shell Evacuation                                                                                                                                                                                                                                                                                                          |
| Melt Shop #1 (EU<br>01<br>Baghouse #1 & #2<br>Stack)              | 1        | Steel Mill Mini                      | 4/19/2021                  | 2,000,000         | tons steel/yr      | 2                    | lb/ton                              | Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan.                                                                                                                                                                                                                                         |
| Melt Shop (EU 01) &<br>Melt Shop<br>Combustion Sources<br>(EU 02) | _        | Steel Mill                           | 7/23/2020                  | 1,750,000         | tons steel/yr      | 1.98                 | lb/ton                              | The facility is equipped with Continuous Emission Monitors (CEMS) to enable real-time monitoring of CO emissions, allowing adjustments to the process as needed to reduce emissions.  Additionally, All EPs are required to have with a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan. |
| ELECTRIC ARC<br>FURNACE                                           | -        | Steel Mill                           | 1/20/2020                  | -                 | -                  | 3.275                | lb/ton                              | GOOD COMBUSTION PRACTICES                                                                                                                                                                                                                                                                                                        |
| Electric Arc<br>Furnaces (EAF)                                    | *TX-0882 | SDSW STEEL MILL                      | 01/17/2020                 | -                 | -                  | 2.02                 | lb/ton                              | GOOD COMBUSTION PRACTICES, CLEAN<br>FUEL                                                                                                                                                                                                                                                                                         |
| Ladle Metallurgical<br>Stations (LMS)                             | *TX-0882 | SDSW STEEL MILL                      | 01/17/2020                 | -                 | -                  | 2.02                 | lb/ton                              | GOOD COMBUSTION PRACTICES, CLEAN FUEL                                                                                                                                                                                                                                                                                            |
| Electric Arc<br>Furnaces<br>(EAF)                                 | OH-0383  | Steel Mill Mini                      | 1/17/2020                  | -                 | -                  | 2.02                 | lb/ton                              | GOOD COMBUSTION PRACTICES, CLEAN FUEL                                                                                                                                                                                                                                                                                            |
| ELECTRIC ARC<br>FURNACE                                           | *TX-0867 | STEEL<br>MANUFACTURING<br>FACILITY   | 01/02/2020                 | -                 | -                  | 3.275                | lb/ton                              | GOOD COMBUSTION PRACTICES                                                                                                                                                                                                                                                                                                        |
| MELT SHOP LADLE<br>PREHEATERS                                     | *TX-0867 | STEEL<br>MANUFACTURING<br>FACILITY   | 01/02/2020                 | -                 | -                  | -                    | -                                   | GOOD COMBUSTION PRACTICES                                                                                                                                                                                                                                                                                                        |
| Electric Arc Furnace<br>#2 (P905)                                 | *OH-0381 | LLC                                  | 09/27/2019                 | 250               | tons steel/hr      | 500                  | lb/hr                               | DEC systems with air gap                                                                                                                                                                                                                                                                                                         |
| Electric Arc Furnace<br>#2 (P905)                                 | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL,<br>LLC | 09/27/2019                 | 250               | tons steel/hr      | 11603.57             | ton/yr, rolling 12-<br>month period | DEC systems with air gap                                                                                                                                                                                                                                                                                                         |

| Process                                                                            | RBLC ID  | Facility                             | Permit Date<br>(from RBLC) | Productio | n Capacity<br>tpy) |          | d CO Limit                               | Control                                                                                      |
|------------------------------------------------------------------------------------|----------|--------------------------------------|----------------------------|-----------|--------------------|----------|------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                                    |          |                                      | (                          | Value     | Unit               | Value    | Unit                                     |                                                                                              |
| Twin-Station Ladle<br>Metallurgy Facility<br>(LMF 3/4) (P906)                      | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL,<br>LLC | 9/27/2019                  | 250       | tons steel/hr      | 500      | lb/hr                                    | DEC systems with air gap                                                                     |
| Twin-Station Ladle<br>Metallurgy Facility<br>(LMF 3/4) (P906)                      | *OH-0381 | LLC                                  | 9/27/2019                  | 250       | tons steel/hr      | 11603.57 | ton/yr                                   | DEC systems with air gap                                                                     |
| Electric Arc<br>Furnaces                                                           | *AL-0327 | NUCOR STEEL<br>DECATUR, LLC          | 08/14/2019                 | -         | -                  | 2.3      | lb/ton                                   | Direct evacuation control                                                                    |
| Electric Arc<br>Furnaces                                                           | *AL-0327 | NUCOR STEEL<br>DECATUR, LLC          | 08/14/2019                 | -         | -                  | 1240     | lb/hr                                    | Direct evacuation control                                                                    |
| Meltshop Operations                                                                | -        | Gerdau Ameristeel, NC                | 5/1/2019                   | 90        | tons steel/hr      | 4.4      | lb/ton                                   | Direct Evacuation System                                                                     |
| Meltshop Baghouse<br>& Fugitives                                                   | FL-0368  | Nucor Frostproof, FL                 | 2/14/2019                  | 450,000   | tons steel/yr      | 3.5      | lb/ton, average<br>of 3 one hour<br>runs | DEC system, use of a scrap management plan & good combustion practices                       |
| Meltshop Baghouse<br>& Fugitives                                                   | FL-0368  | Nucor Frostproof, FL                 | 2/14/2019                  | 450,000   | tons steel/yr      | 210      |                                          | DEC system, use of a scrap management plan & good combustion practices                       |
| Ladle metallurgy<br>furnace (EULMF)<br>and two vacuum<br>tank degassers<br>(EUVTD) | MI-0438  | GERDAU MACSTEEL<br>MONROE            | 10/29/2018                 | 130       | tons steel/hr      | 2        | lb/ton, averaged monthly                 | -                                                                                            |
| Ladle metallurgy<br>furnace (EULMF)<br>and two vacuum<br>tank degassers<br>(EUVTD) | MI-0438  | GERDAU MACSTEEL<br>MONROE            | 10/29/2018                 | 130       | tons steel/hr      | 70.69    | ton/yr                                   | -                                                                                            |
| EUEAF (Electric arc furnace)                                                       | MI-0438  | GERDAU MACSTEEL<br>MONROE            | 10/29/2018                 | 130       | tons steel/hr      | 18.55    | lb/hr                                    | Direct-Shell Evacuation Control and CO reaction chamber                                      |
| Electric Arc Furnace<br>and Ladle<br>Metallurgy Furnace                            | TX-0848  | STEEL MILL                           | 09/14/2018                 | -         | -                  | 2        | lb/ton                                   | good combustion                                                                              |
| Electric Arc Furnace                                                               | -        | Nucor Sedalia, MO                    | 9/12/2018                  | 450,000   | tons steel/yr      | 3.5      | lb/ton                                   | Baghouse/DEC                                                                                 |
| Electric Arc Furnace<br>and Ladle<br>Metallurgy Station                            | -        | CMC Mesa, AZ                         | 6/14/2018                  | 435,000   | tons steel/yr      | 4        | lb/ton                                   | Use of air flaps in Consteel DEC to maximize CO combustion. Employ good combustion practices |
| ELECTRIC ARC<br>FURNACE                                                            | *NE-0063 | DIVISION                             | 11/07/2017                 | 1,350,000 | tons steel/yr      | 3.1      | lb/ton                                   | BAGHOUSE                                                                                     |
| Melt Shop                                                                          | SC-0188  | CMC STEEL SOUTH<br>CAROLINA          | 10/3/2017                  | 1,000,000 | tons billet/yr     | 1.7      | lb/ton                                   | Good combustion practices with the use of Direct Evacuation Control (DEC)                    |

| Process                                                                   | RBLC ID  | Facility                         | Permit Date<br>(from RBLC) |                   | n Capacity<br>tpy) | Permitte  | d CO Limit | Control                                                                                               |
|---------------------------------------------------------------------------|----------|----------------------------------|----------------------------|-------------------|--------------------|-----------|------------|-------------------------------------------------------------------------------------------------------|
|                                                                           |          |                                  | ,                          | Value             | Unit               | Value     | Unit       |                                                                                                       |
| Electric Arc Furnace<br>(P900)                                            | OH-0373  | CHARTER STEEL -<br>CLEVELAND INC | 10/02/2017                 | 110               | tons steel/hr      | 356.4     | lb/hr      | Direct Evacuation Control (DEC) system with adjustable air gap and water-cooled elbow and duct        |
| Electric Arc Furnace<br>(P900)                                            | OH-0373  | CHARTER STEEL -<br>CLEVELAND INC | 10/02/2017                 | 110               | tons steel/hr      | 3.24      | lb/ton     | Direct Evacuation Control (DEC) system with adjustable air gap and water-cooled elbow and duct        |
| Ladle Metallurgy<br>Furnace (P901)                                        | OH-0373  | CHARTER STEEL -<br>CLEVELAND INC | 10/02/2017                 | 110               | tons steel/hr      | 33        | lb/hr      | -                                                                                                     |
| Ladle Metallurgy<br>Furnace (P901)                                        | OH-0373  | CHARTER STEEL -<br>CLEVELAND INC | 10/02/2017                 | 110               | tons steel/hr      | 126.32    | ton/yr     | -                                                                                                     |
| Electric Arc Furnace                                                      | AL-0319  | NUCOR STEEL<br>TUSCALOOSA, INC.  | 03/09/2017                 | -                 | -                  | 2.2       | lb/ton     | -                                                                                                     |
| Electric Arc Furnace                                                      | AL-0319  | NUCOR STEEL<br>TUSCALOOSA, INC.  | 03/09/2017                 | -                 | -                  | 660       | lb/hr      | -                                                                                                     |
| TWO (2) ELECTRIC<br>ARC FURNACES<br>WITH TWO (2)<br>MELTSHOP<br>BAGHOUSES | AL-0309  | NUCOR STEEL<br>DECATUR, LLC      | 03/02/2016                 | -                 | -                  | 2.3       | lb/ton     | DIRECT EVACUATION CONTROL                                                                             |
| TWO (2) ELECTRIC<br>ARC FURNACES<br>WITH TWO (2)<br>MELTSHOP<br>BAGHOUSES | AL-0309  | NUCOR STEEL<br>DECATUR, LLC      | 03/02/2016                 | -                 | -                  | 1012      | lb/hr      | DIRECT EVACUATION CONTROL                                                                             |
| Electric Arc Furnace                                                      | OK-0173  | CMC Durant, OK                   | 1/19/2016                  | -                 | -                  | 4         | lb/ton     | Pre-cleaned scrap.                                                                                    |
|                                                                           |          |                                  |                            | Facilities With F | Permits Issued Ber | fore 2016 |            |                                                                                                       |
| Fume Treatment<br>Plant (EAF)                                             | LA-0309  | BENTELER STEEL<br>TUBE FACILITY  | 6/4/2015                   | 90                | tons steel/hr      | 4.8       | lb/ton     | -                                                                                                     |
| FG-MELTSHOP (Melt Shop)                                                   | M11-0417 | GERDAU MACSTEEL,<br>INC.         | 10/27/2014                 | 130               | tons steel/hr      | 2         | lb/ton     | Direct Evacuation Control (DEC) and Co<br>Reaction Chamber                                            |
| FG-MELTSHOP (Melt<br>Shop)                                                | MI-0417  | GERDAU MACSTEEL,<br>INC.         | 10/27/2014                 | 130               | tons steel/hr      | 260       | lb/hr      | Direct Evacuation Control (DEC) and Co<br>Reaction Chamber                                            |
| Electric Arc Furnace                                                      | TX-0705  | STEEL MINIMILL<br>FACILITY       | 07/24/2014                 | 1,300,000         | tons steel/yr      | 1.3273    | lb/ton     | Good combustion practices with the operation of a DEC as the method typically employed to control CO. |
| ELECTRIC ARC<br>FURNACE                                                   | NE-0055  | NUCOR STEEL                      | 10/09/2013                 | 206               | tons scrap/hr      | 2         | lb/ton     | -                                                                                                     |
| ELECTRIC ARC<br>FURNACE                                                   | NE-0055  | NUCOR STEEL                      | 10/09/2013                 | 206               | tons scrap/hr      | 383.3     | lb/hr      | -                                                                                                     |
| ELECTRIC ARC<br>FURNACE                                                   | *TX-0651 | STEEL MILL                       | 10/02/2013                 | 316               | tons steel/hr      | 2.27      | lb/ton     | GOOD COMBUSTION PRACTICE                                                                              |

|                             | RBLC ID  | Facility                                  | Permit Date<br>(from RBLC) | Productio | n Capacity<br>tpy)   |       | I CO Limit | Control                                                                                         |
|-----------------------------|----------|-------------------------------------------|----------------------------|-----------|----------------------|-------|------------|-------------------------------------------------------------------------------------------------|
|                             |          |                                           |                            | Value     | Unit                 | Value | Unit       |                                                                                                 |
| LADLE FURNACE               | *TX-0651 | STEEL MILL                                | 10/02/2013                 | 316       | tons steel/hr        | 0.174 | lb/ton     | GOOD COMBUSTION PRACTICE                                                                        |
| EAFS SN-01 AND SN-<br>02    | AR-0140  | BIG RIVER STEEL LLC                       | 09/18/2013                 | -         | -                    | 2     | lb/ton     | -                                                                                               |
| MELTSHOP                    | IN-0196  | NUCOR STEEL                               | 09/17/2013                 | 502       | tons steel/hr        | 2     | lb/ton     | -                                                                                               |
| MELTSHOP                    | IN-0196  | NUCOR STEEL                               | 09/17/2013                 | 502       | tons steel/hr        | 1004  | lb/hr      | -                                                                                               |
| Melt Shop (FG-<br>MELTSHOP) | MI-0404  | GERDAU MACSTEEL,<br>INC.                  | 01/04/2013                 | 130       | tons liquid steel/hr | 2     | lb/ton     | Direct Evacuation Control (DEC) and Co<br>Reaction Chamber                                      |
| Melt Shop (FG-<br>MELTSHOP) | MI-0404  | GERDAU MACSTEEL,<br>INC.                  | 01/04/2013                 | 130       | tons liquid steel/hr | 260   | lb/hr      | Direct Evacuation Control (DEC) and Co<br>Reaction Chamber                                      |
| Electric Arc Furnace        | OH-0350  | REPUBLIC STEEL                            | 07/18/2012                 | 150       | tons steel/hr        | 2     | lb/ton     | Direct-Shell Evacuation Control system with adjustable air gap and water-cooled elbow and duct. |
| Electric Arc Furnace        | OH-0350  | REPUBLIC STEEL                            | 07/18/2012                 | 150       | tons steel/hr        | 1200  | ton/yr     | Direct-Shell Evacuation Control system with adjustable air gap and water-cooled elbow and duct. |
| LADLE<br>METALLURGY SN-01   | AR-0138  | NUCOR CORPORATION - NUCOR STEEL, ARKANSAS | 2/17/2012                  | -         | -                    | 0.02  | lb/ton     | -                                                                                               |

<sup>&</sup>lt;sup>1</sup> The CMC Mesa, Nucor Sedalia, and Gerdau Ameristeel facilities were not in the RBLC but they are ECS processes/micro mills and are similar to the proposed facility.

<sup>\*</sup> Indicates that the facilities are draft determination in the RBLC database.

| Process                                                              | RBLC ID  | Facility                           | Permit Date<br>(from RBLC) | Production   | n Capacity<br>tpy)  | Permitted               | NO <sub>x</sub> Limit                 | Control                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------|----------|------------------------------------|----------------------------|--------------|---------------------|-------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                      |          |                                    | , ,                        | Value        | Unit                | Value                   | Unit                                  |                                                                                                                                                                                                                                                                                                                                  |
|                                                                      |          |                                    |                            | Facilities V | Vith Permits Issued | After 2016 <sup>1</sup> |                                       |                                                                                                                                                                                                                                                                                                                                  |
| EAF/LMF                                                              | WV-0034  | Nucor Steel West<br>Virginia       | 5/5/2022                   | 3,000,000    | tons steel/yr       | 56.86                   | lb/hr                                 | EAF - Oxyfuel Burners LMF - Good<br>Combustion Practices                                                                                                                                                                                                                                                                         |
| EAFs and LMFs                                                        | AR-0173  | BIG RIVER STEEL LLC                | 1/31/2022                  | 250          | tons steel/hr       | 0.35                    | lb/ton                                | Scrap Management Plan and Good Operating Practices                                                                                                                                                                                                                                                                               |
| SN-01 EAF                                                            | AR-0172  | Nucor Steel Arkansas               | 9/1/2021                   | 250          | tons steel/hr       | 2.2                     | lb/ton                                | Low Nox Burners                                                                                                                                                                                                                                                                                                                  |
| Melt Shop (EU 01)<br>& Melt Shop<br>Combustion<br>Sources<br>(EU 02) | J 01)    |                                    | 7/23/2021                  | 1,750,000    | tons steel/yr       | 0.42                    | lb/ton                                | The facility is equipped with Continuous Emission Monitors (CEMS) to enable real-time monitoring of NOx emissions, allowing adjustments to the process as needed to reduce emissions. Additionally, All EPs are required to have with a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan. |
| Melt Shop #1 (EU<br>01<br>Baghouse #1 & #2<br>Stack)                 | -        | Steel Mini Mill                    | 4/19/2021                  | 2,000,000    | tons steel/yr       | 0.42                    | lb/ton                                | Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan. New equipment in the meltshop is equipped with low-NOx burners (70 lb/MMscf).                                                                                                                                                           |
| ELECTRIC ARC<br>FURNACE                                              | -        | Steel Mill                         | 1/20/2020                  | -            | -                   | 0.58                    | lb/ton                                | GOOD COMBUSTION PRACTICES                                                                                                                                                                                                                                                                                                        |
| Electric Arc<br>Furnaces (EAF)                                       | *TX-0882 | SDSW STEEL MILL                    | 01/17/2020                 | -            | -                   | 0.35                    | lb/ton                                | ELECTRIC                                                                                                                                                                                                                                                                                                                         |
| Ladle Metallurgical<br>Stations (LMS)                                | *TX-0882 | SDSW STEEL MILL                    | 01/17/2020                 | -            | -                   | 0.35                    | lb/ton                                | GOOD COMBUSTION PRACTICES, CLEAN FUEL                                                                                                                                                                                                                                                                                            |
| Electric Arc<br>Furnaces<br>(EAF)                                    | -        | SDSW Steel, TX                     | 1/17/2020                  | -            | -                   | 0.35                    | lb/ton                                | ELECTRIC                                                                                                                                                                                                                                                                                                                         |
| ELECTRIC ARC<br>FURNACE                                              | *TX-0867 | STEEL<br>MANUFACTURING<br>FACILITY | 01/02/2020                 | -            | -                   | 0.58                    | lb/ton                                | GOOD COMBUSTION PRACTICES                                                                                                                                                                                                                                                                                                        |
| MELT SHOP LADLE<br>PREHEATERS                                        | *TX-0867 | STEEL<br>MANUFACTURING<br>FACILITY | 01/02/2020                 | -            | -                   | -                       | -                                     | GOOD COMBUSTION PRACTICES                                                                                                                                                                                                                                                                                                        |
| Twin-Station Ladle<br>Metallurgy Facility<br>(LMF 3/4) (P906)        | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC  | 09/27/2019                 | 250          | tons steel/hr       | 105                     | lb/hr                                 | DEC systems with air gap                                                                                                                                                                                                                                                                                                         |
| Twin-Station Ladle<br>Metallurgy Facility<br>(LMF 3/4) (P906)        | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC  | 09/27/2019                 | 250          | tons steel/hr       | 828.5                   | ton/yr per 12-month<br>rolling period | DEC systems with air gap                                                                                                                                                                                                                                                                                                         |
| Electric Arc<br>Furnace #2 (P905)                                    | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC  | 09/27/2019                 | 250          | tons steel/hr       | 105                     | lb/hr                                 | DEC systems with air gap                                                                                                                                                                                                                                                                                                         |
| Electric Arc<br>Furnace #2 (P905)                                    | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC  | 09/27/2019                 | 250          | tons steel/hr       | 828.5                   | ton/yr per 12-month<br>rolling period | DEC systems with air gap                                                                                                                                                                                                                                                                                                         |

| Process                                                                            | RBLC ID  | Facility                        | Permit Date<br>(from RBLC) | Productio | n Capacity<br>tpy) | Permitted | NO <sub>x</sub> Limit                  | Control                                                                                                              |
|------------------------------------------------------------------------------------|----------|---------------------------------|----------------------------|-----------|--------------------|-----------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                                                                                    |          |                                 | (                          | Value     | Unit               | Value     | Unit                                   |                                                                                                                      |
| Electric Arc<br>Furnaces                                                           | *AL-0327 | Nucor Decatur, AL               | 08/14/2019                 | -         | -                  | 0.42      | lb/ton                                 | Oxy-fuel fired burners                                                                                               |
| Electric Arc<br>Furnaces                                                           | *AL-0327 | Nucor Decatur, AL               | 08/14/2019                 | -         | -                  | 226.8     | lb/hr                                  | Oxy-fuel fired burners                                                                                               |
| Meltshop<br>Operations                                                             | -        | Gerdau Ameristeel, NC           | 5/1/2019                   | 90        | tons steel/hr      | 0.34      | lb/ton                                 | -                                                                                                                    |
| Meltshop<br>Baghouse &<br>Fugitives                                                | FL-0368  | Nucor Frostproof, FL            | 2/14/2019                  | 450,000   | tons steel/yr      | 0.3       | lb/ton                                 | Oxy-fuel burners on the EAF, DEC System and baghouse controls.                                                       |
| Meltshop<br>Baghouse &<br>Fugitives                                                | FL-0368  | Nucor Frostproof, FL            | 2/14/2019                  | 450,000   | tons steel/yr      | 18        | lb/hour, average of 3<br>one hour runs | Oxy-fuel burners on the EAF, DEC System and baghouse controls.                                                       |
| EUEAF (Electric arc furnace)                                                       | MI-0438  | Gerdau Macsteel, MI             | 10/29/2018                 | 130       | tons steel/hr      | 0.27      | lb/ton                                 | Real time process optimization (RTPO) combustion controls and oxy-fuel burners.                                      |
| EUEAF (Electric arc furnace)                                                       | MI-0438  | GERDAU MACSTEEL<br>MONROE       | 10/29/2018                 | 130       | tons steel/hr      | 35.1      | lb/hr                                  | Real time process optimization (RTPO) combustion controls and oxy-fuel burners.                                      |
| Ladle metallurgy<br>furnace (EULMF)<br>and two vacuum<br>tank degassers<br>(EUVTD) | MI-0438  | GERDAU MACSTEEL<br>MONROE       | 10/29/2018                 | 130       | tons steel/hr      | 10.3      | lb/hr                                  | -                                                                                                                    |
| Ladle metallurgy<br>furnace (EULMF)<br>and two vacuum<br>tank degassers<br>(EUVTD) | MI-0438  | GERDAU MACSTEEL<br>MONROE       | 10/29/2018                 | 130       | tons steel/hr      | 42.23     | ton/yr per 12-month<br>rolling period  | -                                                                                                                    |
| Electric Arc<br>Furnace and Ladle<br>Metallurgy Furnace                            | TX-0848  | STEEL MILL                      | 09/14/2018                 | -         | -                  | 0.158     | lb/ton                                 | Oxy-fuel burners                                                                                                     |
| Electric Arc<br>Furnace                                                            | -        | Nucor Sedalia, MO               | 9/12/2018                  | 450,000   | tons steel/yr      | 0.3       | lb/ton                                 | Baghouse/DEC                                                                                                         |
| Electric Arc<br>Furnace and Ladle<br>Metallurgy Station                            | -        | CMC Mesa, AZ                    | 6/14/2018                  | 435,000   | tons steel/yr      | 0.3       | lb/ton                                 | Use of good furnace melting practices and oxy-fuel burners to reduce NOx emissions. Employ good combustion practices |
| ELECTRIC ARC<br>FURNACE                                                            | *NE-0063 | Nucor Norfolk, NE               | 11/07/2017                 | 1,350,000 | tons steel/yr      | 0.42      | lb/ton                                 | BAGHOUSE                                                                                                             |
| Electric Arc<br>Furnace                                                            | AL-0323  | OUTOKUMPU<br>STAINLESS USA, LLC | 06/13/2017                 | -         | -                  | 0.6       | lb/ton                                 | Direct Evacuation Control                                                                                            |
| Electric Arc<br>Furnace                                                            | AL-0323  | OUTOKUMPU<br>STAINLESS USA, LLC | 06/13/2017                 | -         | -                  | 75.6      | lb/hr                                  | Direct Evacuation Control                                                                                            |
| Electric Arc<br>Furnace                                                            | AL-0319  | Nucor Tuscaloosa, AL            | 03/09/2017                 | -         | -                  | 0.35      | lb/ton                                 | -                                                                                                                    |
| Electric Arc<br>Furnace                                                            | AL-0319  | Nucor Tuscaloosa, AL            | 03/09/2017                 | -         | -                  | 105       | lb/hr                                  | -                                                                                                                    |

| Process                                                       | RBLC ID  | Facility                        | Permit Date<br>(from RBLC) |            | n Capacity<br>tpy)    | Permitted   | d NO <sub>x</sub> Limit | Control                                                                                                                                                            |
|---------------------------------------------------------------|----------|---------------------------------|----------------------------|------------|-----------------------|-------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               |          |                                 | (                          | Value      | Unit                  | Value       | Unit                    |                                                                                                                                                                    |
| TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES | AL-0309  | NUCOR STEEL<br>DECATUR, LLC     | 03/02/2016                 | -          | -                     | 0.42        | lb/ton                  | OXY-FUEL BURNERS                                                                                                                                                   |
| TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES | AL-0309  | NUCOR STEEL<br>DECATUR, LLC     | 03/02/2016                 | -          | -                     | 184.8       | lb/hr                   | OXY-FUEL BURNERS                                                                                                                                                   |
| Electric Arc<br>Furnace                                       | OK-0173  | CMC Durant, OK                  | 1/19/2016                  | -          | -                     | 0.3         | lb/ton                  | Oxy-firing.                                                                                                                                                        |
|                                                               |          |                                 |                            | Facilities | With Permits Issued I | Before 2016 |                         |                                                                                                                                                                    |
| Fume Treatment<br>Plant (EAF)                                 | LA-0309  | BENTELER STEEL TUBE<br>FACILITY | 6/4/2015                   | 90         | tons steel/hr         | 0.35        | lb/ton                  | -                                                                                                                                                                  |
| FG-MELTSHOP<br>(Melt Shop)                                    | MI-0417  | GERDAU MACSTEEL,<br>INC.        | 10/27/2014                 | 130        | tons steel/hr         | 0.2         | lb/ton                  | No controls. Real time process optimization (combustion controls) and the use of oxy-fuel burners.                                                                 |
| FG-MELTSHOP<br>(Melt Shop)                                    | MI-0417  | GERDAU MACSTEEL,<br>INC.        | 10/27/2014                 | 130        | tons steel/hr         | 26          | lb/hr                   | No controls. Real time process optimization (combustion controls) and the use of oxy-fuel burners.                                                                 |
| Electric Arc<br>Furnace                                       | TX-0705  | STEEL MINIMILL<br>FACILITY      | 07/24/2014                 | 1,300,000  | tons steel/yr         | 0.2159      | lb/ton                  | Good Combustion and/or Process Operation including an EAF carbon injection and furnace burner system that injects carbon and oxygen into the metal/slag interface. |
| ELECTRIC ARC<br>FURNACE                                       | NE-0055  | NUCOR STEEL                     | 10/09/2013                 | 206        | tons scrap/hr         | 0.28        | lb/ton                  | -                                                                                                                                                                  |
| ELECTRIC ARC<br>FURNACE                                       | NE-0055  | NUCOR STEEL                     | 10/09/2013                 | 206        | tons scrap/hr         | 53.67       | lb/hr                   | -                                                                                                                                                                  |
| ELECTRIC ARC<br>FURNACE                                       | *TX-0651 | STEEL MILL                      | 10/02/2013                 | 316        | tons steel/hr         | 0.9         | lb/ton                  | OXY FIRED BURNERS                                                                                                                                                  |
| LADLE FURNACE                                                 | *TX-0651 | STEEL MILL                      | 10/02/2013                 | 316        | tons steel/hr         | 0.548       | lb/ton                  | GOOD COMBUSTION PRACTICE                                                                                                                                           |
| EAFS SN-01 AND<br>SN-02                                       | AR-0140  | BIG RIVER STEEL LLC             | 09/18/2013                 | -          | -                     | 0.3         | lb/ton                  | -                                                                                                                                                                  |
| MELTSHOP                                                      | IN-0196  | NUCOR STEEL                     | 09/17/2013                 | 502        | tons steel/hr         | 0.35        | lb/ton                  | -                                                                                                                                                                  |
| MELTSHOP                                                      | IN-0196  | NUCOR STEEL                     | 09/17/2013                 | 502        | tons steel/hr         | 175.7       | lb/hr                   | -                                                                                                                                                                  |
| Melt Shop (FG-<br>MELTSHOP)                                   | MI-0404  | GERDAU MACSTEEL,<br>INC.        | 01/04/2013                 | 130        | tons liquid steel/hr  | 0.2         | lb/ton                  | Real time process optimization (combustion controls) and the use of oxy-fuel burners.                                                                              |
| Melt Shop (FG-<br>MELTSHOP)                                   | MI-0404  | GERDAU MACSTEEL,<br>INC.        | 01/04/2013                 | 130        | tons liquid steel/hr  | 26          | lb/hr                   | Real time process optimization (combustion controls) and the use of oxy-fuel burners.                                                                              |

| Process                 | RBLC ID | Facility       | Permit Date<br>(from RBLC) | (IIS fnv) |               | Permitted | NO <sub>x</sub> Limit              | Control |
|-------------------------|---------|----------------|----------------------------|-----------|---------------|-----------|------------------------------------|---------|
|                         |         |                |                            | Value     | Value Unit    |           | Unit                               |         |
| Electric Arc<br>Furnace | OH-0350 | REPUBLIC STEEL | 07/18/2012                 | 150       | tons steel/hr | 0.5       | lb/ton                             | -       |
| Electric Arc<br>Furnace | OH-0350 | REPUBLIC STEEL | 07/18/2012                 | 150       | tons steel/hr | 300       | ton/yr per 12-month rolling period | -       |

<sup>&</sup>lt;sup>1</sup> The CMC Mesa, Nucor Sedalia and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility. \* Indicates that the facilities are draft determination in the RBLC database.

Table B-3. EAF/LMS Recent Permit Limitations and Determinations of BACT for SO<sub>2</sub> (Prior 10 years)

| Process                                                              | RBLC ID  | Facility                           | Permit Date<br>(from RBLC) |                | n Capacity<br>tpy)   | Permitted             | I SO <sub>2</sub> Limit               | Control                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------|----------|------------------------------------|----------------------------|----------------|----------------------|-----------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                      |          |                                    | (Hom RDEC)                 | Value          | Unit                 | Value                 | Unit                                  |                                                                                                                                                                                                                                                                                                                                   |
|                                                                      |          |                                    |                            | Facilities Wit | th Permits Issued Af | ter 2016 <sup>1</sup> |                                       |                                                                                                                                                                                                                                                                                                                                   |
| EAF/LMF                                                              | WV-0034  | Nucor Steel West<br>Virginia       | 5/5/2022                   | 3,000,000      | tons steel/yr        | 38.99                 | lb/hr                                 | Scrap Management Plan and Lime Fluxing                                                                                                                                                                                                                                                                                            |
| EAFs and LMFs                                                        | AR-0173  | Big River Steel, AR                | 1/31/2022                  | 250            | tons steel/hr        | 0.2                   | lb/ton                                | Scrap Management Plan                                                                                                                                                                                                                                                                                                             |
| SN-01 EAF                                                            | AR-0172  | Nucor Blytheville, AR              | 9/1/2021                   | 250            | tons steel/hr        | 0.2                   | lb/ton                                | Good Operating Practices                                                                                                                                                                                                                                                                                                          |
| Melt Shop #1 (EU<br>01<br>Baghouse #1 & #2<br>Stack)                 | -        | Steel Mini Mill                    | 4/19/2021                  | 2,000,000      | tons steel/yr        | 0.35                  | lb/ton                                | Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and the permittee shall limit the sulfur content of the EAF feedstock utilizing scrap management and/or shall add appropriate fluxes to the charge such that the emission limitations for SO2 are met.                                    |
| Melt Shop (EU 01)<br>& Melt Shop<br>Combustion<br>Sources<br>(EU 02) | -        | STEEL MILL                         | 7/23/2020                  | 1,750,000      | tons steel/yr        | 0.35                  | lb/ton                                | The facility is equipped with Continuous Emission Monitors (CEMS) to enable real-time monitoring of SO2 emissions, allowing adjustments to the process as needed to reduce emissions.  Additionally, All EPs are required to have with a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan. |
| Electric Arc<br>Furnaces (EAF)                                       | *TX-0882 | SDSW STEEL MILL                    | 01/17/2020                 | -              | -                    | 0.24                  | lb/ton                                | CLEAN SCRAP                                                                                                                                                                                                                                                                                                                       |
| Ladle Metallurgical<br>Stations (LMS)                                | *TX-0882 | SDSW STEEL MILL                    | 01/17/2020                 | -              | -                    | 0.24                  | lb/ton                                | CLEAN SCRAP                                                                                                                                                                                                                                                                                                                       |
| Electric Arc<br>Furnaces<br>(EAF)                                    | -        | SDSW Steel, TX                     | 1/17/2020                  | -              | -                    | 0.24                  | lb/ton                                | CLEAN SCRAP                                                                                                                                                                                                                                                                                                                       |
| ELECTRIC ARC<br>FURNACE                                              | *TX-0867 | STEEL<br>MANUFACTURING<br>FACILITY | 01/02/2020                 | -              | -                    | 0.216                 | lb/ton                                | CLEAN SCRAP                                                                                                                                                                                                                                                                                                                       |
| MELT SHOP LADLE<br>PREHEATERS                                        | *TX-0867 | STEEL<br>MANUFACTURING<br>FACILITY | 01/02/2020                 | -              | -                    | -                     | -                                     | CLEAN FUEL AND SCRAP                                                                                                                                                                                                                                                                                                              |
| ELECTRIC ARC<br>FURNACE                                              | -        | STEEL<br>MANUFACTURING<br>FACILITY | 1/2/2020                   | -              | -                    | 0.216                 | lb/ton                                | CLEAN SCRAP                                                                                                                                                                                                                                                                                                                       |
| Twin-Station Ladle<br>Metallurgy Facility<br>(LMF 3/4) (P906)        | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC  | 09/27/2019                 | 250            | tons steel/hr        | 87.5                  | lb/hr                                 | The development, implementation, and maintenance of: (a) a scrap management plan; and (b) a work practice plan addressing argon stirring during LMF desulfurization process.                                                                                                                                                      |
| Twin-Station Ladle<br>Metallurgy Facility<br>(LMF 3/4) (P906)        | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC  | 09/27/2019                 | 250            | tons steel/hr        | 575.9                 | ton/yr per 12-month<br>rolling period | The development, implementation, and maintenance of: (a) a scrap management plan; and (b) a work practice plan addressing argon stirring during LMF desulfurization process.                                                                                                                                                      |

Table B-3. EAF/LMS Recent Permit Limitations and Determinations of BACT for SO<sub>2</sub> (Prior 10 years)

| Process                                                                            | RBLC ID  | Facility                          | Permit Date<br>(from RBLC) | Production | n Capacity<br>tpy) | Permitted | I SO <sub>2</sub> Limit               | Control                                                                                                                                                                      |
|------------------------------------------------------------------------------------|----------|-----------------------------------|----------------------------|------------|--------------------|-----------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    |          |                                   |                            | Value      | Unit               | Value     | Unit                                  |                                                                                                                                                                              |
| Electric Arc<br>Furnace #2 (P905)                                                  | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019                 | 250        | tons steel/hr      | 87.5      | lb/hr                                 | The development, implementation, and maintenance of: (a) a scrap management plan; and (b) a work practice plan addressing argon stirring during LMF desulfurization process. |
| Electric Arc<br>Furnace #2 (P905)                                                  | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019                 | 250        | tons steel/hr      | 575.9     | ton/yr per 12-month<br>rolling period | The development, implementation, and maintenance of: (a) a scrap management plan; and (b) a work practice plan addressing argon stirring during LMF desulfurization process. |
| Electric Arc<br>Furnaces                                                           | *AL-0327 | Nucor Decatur, AL                 | 08/14/2019                 | -          | -                  | 0.35      | lb/ton                                | Low sulfur injection carbon (less than or equal to 2% sulfur)                                                                                                                |
| Electric Arc<br>Furnaces                                                           | *AL-0327 | Nucor Decatur, AL                 | 08/14/2019                 | -          | -                  | 189       | lb/hr                                 | Low sulfur injection carbon (less than or equal to 2% sulfur)                                                                                                                |
| Meltshop<br>Operations                                                             | -        | Gerdau Ameristeel, NC             | 5/1/2019                   | 90         | tons steel/hr      | 0.16      | lb/ton                                | -                                                                                                                                                                            |
| Meltshop<br>Baghouse &<br>Fugitives                                                | FL-0368  | Nucor Frostproof, FL              | 02/14/2019                 | 450,000    | tons steel/yr      | 0.6       | lb/ton                                | Use of natural gas fuel, low-sulfur available carbon-based feed and charge material, as well as good combustion and/or process operations                                    |
| Meltshop<br>Baghouse &<br>Fugitives                                                | FL-0368  | Nucor Frostproof, FL              | 02/14/2019                 | 450,000    | tons steel/yr      | 36        | lb/hr, 30 day rolling<br>average      | Use of natural gas fuel, low-sulfur available carbon-based feed and charge material, as well as good combustion and/or process operations                                    |
| EUEAF (Electric arc<br>furnace)                                                    | M1-0438  | GERDAU MACSTEEL<br>MONROE         | 10/29/2018                 | 130        | tons steel/hr      | 0.25      | lb/ton                                | lime coating of the baghouse bags.                                                                                                                                           |
| EUEAF (Electric arc furnace)                                                       | MI-0438  | GERDAU MACSTEEL<br>MONROE         | 10/29/2018                 | 130        | tons steel/hr      | 32.5      | lb/hr                                 | lime coating of the baghouse bags.                                                                                                                                           |
| Ladle metallurgy<br>furnace (EULMF)<br>and two vacuum<br>tank degassers<br>(EUVTD) | MI-0438  | GERDAU MACSTEEL<br>MONROE         | 10/29/2018                 | 130        | tons steel/hr      | 13.05     | lb/hr                                 | lime coated baghouse bags                                                                                                                                                    |
| Ladle metallurgy<br>furnace (EULMF)<br>and two vacuum<br>tank degassers<br>(EUVTD) | MI-0438  | GERDAU MACSTEEL<br>MONROE         | 10/29/2018                 | 130        | tons steel/hr      | 45.22     | ton/yr per 12-month<br>rolling period | lime coated baghouse bags                                                                                                                                                    |
| Electric Arc<br>Furnace and Ladle<br>Metallurgy Furnace                            |          | STEEL MILL                        | 09/14/2018                 | -          | -                  | 0.23      | lb/ton                                | scrap management                                                                                                                                                             |
| Electric Arc<br>Furnace                                                            | -        | Nucor Sedalia, MO                 | 9/12/2018                  | 450,000    | tons steel/yr      | 0.5       | lb/ton                                | Good process control                                                                                                                                                         |
| Electric Arc<br>Furnace and Ladle<br>Metallurgy Station                            | -        | CMC Mesa, AZ                      | 6/14/2018                  | 435,000    | tons steel/yr      | 0.3       | lb/ton                                | Use good process operation practices, scrap management and proper management of carbon injection. Employ good combustion practices                                           |

Table B-3. EAF/LMS Recent Permit Limitations and Determinations of BACT for SO<sub>2</sub> (Prior 10 years)

| Process                                                       | RBLC ID | Facility                         | Permit Date<br>(from RBLC) |       | n Capacity<br>tpy) | Permitted | I SO <sub>2</sub> Limit | Control                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------|---------|----------------------------------|----------------------------|-------|--------------------|-----------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               |         |                                  |                            | Value | Unit               | Value     | Unit                    |                                                                                                                                                                                                                                                                                                                          |
| Electric Arc<br>Furnace (P900)                                | OH-0373 | CHARTER STEEL -<br>CLEVELAND INC | 10/02/2017                 | 110   | tons steel/hr      | 1.51      | lb/ton                  | Melt Shop Sulfur-based Good Operating Practices: The permittee shall follow the melt shop's standard operating procedures as it relates to achieving each heater's final elemental chemistry specification for sulfur content. This includes any procedures for adjusting the sulfur content in the EAF, LMF and/or VTD. |
| Electric Arc<br>Furnace (P900)                                | OH-0373 | CHARTER STEEL -<br>CLEVELAND INC | 10/02/2017                 | 110   | tons steel/hr      | 166.16    | lb/hr                   | Melt Shop Sulfur-based Good Operating Practices: The permittee shall follow the melt shop's standard operating procedures as it relates to achieving each heater's final elemental chemistry specification for sulfur content. This includes any procedures for adjusting the sulfur content in the EAF, LMF and/or VTD. |
| Ladle Metallurgy<br>Furnace (P901)                            | OH-0373 | CHARTER STEEL -<br>CLEVELAND INC | 10/02/2017                 | 110   | tons steel/hr      | 1.51      | lb/ton                  | Melt Shop Sulfur-based Good Operating Practices: The permittee shall follow the melt shop's standard operating procedures as it relates to achieving each heater's final elemental chemistry specification for sulfur content. This includes any procedures for adjusting the sulfur content in the EAF, LMF and/or VTD. |
| Ladle Metallurgy<br>Furnace (P901)                            | OH-0373 | CHARTER STEEL -<br>CLEVELAND INC | 10/02/2017                 | 110   | tons steel/hr      | 166.16    | lb/hr                   | Melt Shop Sulfur-based Good Operating Practices: The permittee shall follow the melt shop's standard operating procedures as it relates to achieving each heater's final elemental chemistry specification for sulfur content. This includes any procedures for adjusting the sulfur content in the EAF, LMF and/or VTD. |
| Electric Arc<br>Furnace                                       | AL-0323 | Outokumpu Stainless,<br>AL       | 06/13/2017                 | -     | -                  | 0.375     | lb/ton                  | -                                                                                                                                                                                                                                                                                                                        |
| Electric Arc<br>Furnace                                       | AL-0323 | Outokumpu Stainless,<br>AL       | 06/13/2017                 | -     | -                  | 47.25     | lb/hr                   | -                                                                                                                                                                                                                                                                                                                        |
| Electric Arc<br>Furnace                                       | AL-0319 | Nucor Tuscaloosa, AL             | 03/09/2017                 | -     | -                  | 0.44      | lb/ton                  | -                                                                                                                                                                                                                                                                                                                        |
| Electric Arc<br>Furnace                                       | AL-0319 | Nucor Tuscaloosa, AL             | 03/09/2017                 | -     | -                  | 132       | lb/hr                   | -                                                                                                                                                                                                                                                                                                                        |
| TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES | AL-0309 | NUCOR STEEL<br>DECATUR, LLC      | 03/02/2016                 | -     | -                  | 0.35      | lb/ton                  | LOW SULFUR CHARGE CARBON (< 2.0 % SULFUR BY WEIGHT)                                                                                                                                                                                                                                                                      |

| Process                                                       | RBLC ID  | Facility                                   | Permit Date<br>(from RBLC) |                | n Capacity<br>tpy)   | Permitted | I SO <sub>2</sub> Limit               | Control                                                                                                                                                                                                     |
|---------------------------------------------------------------|----------|--------------------------------------------|----------------------------|----------------|----------------------|-----------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               |          |                                            | (II oiii KB20)             | Value          | Unit                 | Value     | Unit                                  |                                                                                                                                                                                                             |
| TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES | AL-0309  | NUCOR STEEL<br>DECATUR, LLC                | 03/02/2016                 | -              | -                    | 154       | lb/hr                                 | LOW SULFUR CHARGE CARBON (< 2.0 %<br>SULFUR BY WEIGHT)                                                                                                                                                      |
| Electric Arc<br>Furnace                                       | OK-0173  | CMC Durant, OK                             | 01/19/2016                 | -              | -                    | 0.6       | lb/ton                                | -                                                                                                                                                                                                           |
|                                                               |          |                                            |                            | Facilities Wit | th Permits Issued Be | fore 2016 |                                       |                                                                                                                                                                                                             |
| Fume Treatment<br>Plant (EAF)                                 | LA-0309  | BENTELER STEEL TUBE<br>FACILITY            | 6/4/2015                   | 90             | tons steel/hr        | 0.6       | lb/ton                                | Scrap management plan                                                                                                                                                                                       |
| FG-MELTSHOP<br>(Melt Shop)                                    | MI-0417  | GERDAU MACSTEEL,<br>INC.                   | 10/27/2014                 | 130            | tons steel/hr        | 0.2       | lb/ton                                | -                                                                                                                                                                                                           |
| FG-MELTSHOP<br>(Melt Shop)                                    | MI-0417  | GERDAU MACSTEEL,<br>INC.                   | 10/27/2014                 | 130            | tons steel/hr        | 26        | lb/hr                                 | -                                                                                                                                                                                                           |
| Electric Arc<br>Furnace                                       | TX-0705  | STEEL MINIMILL<br>FACILITY                 | 07/24/2014                 | 1,300,000      | tons steel/yr        | 0.4       | lb/ton                                | The EAF currently combusts sweet natural gas and low-sulfur carbon feedstock, and uses good management practices to prevent feeding unnecessary sulfur containing materials to the steel producing process. |
| ELECTRIC ARC<br>FURNACE                                       | NE-0055  | NUCOR STEEL                                | 10/09/2013                 | 206            | tons scrap/hr        | 1.5       | lb/ton                                | -                                                                                                                                                                                                           |
| ELECTRIC ARC<br>FURNACE                                       | NE-0055  | NUCOR STEEL                                | 10/09/2013                 | 206            | tons scrap/hr        | 546.26    | lb/hr                                 | -                                                                                                                                                                                                           |
| ELECTRIC ARC<br>FURNACE                                       | *TX-0651 | STEEL MILL                                 | 10/02/2013                 | 316            | tons steel/hr        | 1.76      | lb/ton                                | GOOD PROCESS OPERATION AND SCRAP<br>MANAGEMENT                                                                                                                                                              |
| LADLE FURNACE                                                 | *TX-0651 | STEEL MILL                                 | 10/02/2013                 | 316            | tons steel/hr        | 1.76      | lb/ton                                | GOOD PROCESS OPERATION AND SCRAP<br>MANAGEMENT                                                                                                                                                              |
| EAFS SN-01 AND<br>SN-02                                       | AR-0140  | BIG RIVER STEEL LLC                        | 09/18/2013                 | -              | -                    | 0.18      | lb/ton                                | SCRAP MANAGEMENT PLAN                                                                                                                                                                                       |
| MELTSHOP                                                      | IN-0196  | NUCOR STEEL                                | 09/17/2013                 | 502            | tons steel/hr        | 0.33      | lb/ton                                | -                                                                                                                                                                                                           |
| MELTSHOP                                                      | IN-0196  | NUCOR STEEL                                | 09/17/2013                 | 502            | tons steel/hr        | 167       | lb/hr per 3-hour block<br>average     | -                                                                                                                                                                                                           |
| Melt Shop (FG-<br>MELTSHOP)                                   | MI-0404  | GERDAU MACSTEEL,<br>INC.                   | 01/04/2013                 | 130            | tons liquid steel/hr | 0.2       | lb/ton                                | -                                                                                                                                                                                                           |
| Melt Shop (FG-<br>MELTSHOP)                                   | MI-0404  | GERDAU MACSTEEL,<br>INC.                   | 01/04/2013                 | 130            | tons liquid steel/hr | 26        | lb/hr                                 | -                                                                                                                                                                                                           |
| Electric Arc<br>Furnace                                       | OH-0350  | REPUBLIC STEEL                             | 07/18/2012                 | 150            | tons steel/hr        | 0.39      | lb/ton                                | -                                                                                                                                                                                                           |
| Electric Arc<br>Furnace                                       | OH-0350  | REPUBLIC STEEL                             | 07/18/2012                 | 150            | tons steel/hr        | 234       | ton/yr per 12-month<br>rolling period | -                                                                                                                                                                                                           |
| LADLE<br>METALLURGY SN-<br>01                                 | AR-0138  | NUCOR CORPORATION NUCOR STEEL,<br>ARKANSAS | 02/17/2012                 | -              | -                    | 0.102     | lb/ton                                | -                                                                                                                                                                                                           |

The CMC Mesa, Nucor Sedalia and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

<sup>\*</sup> Indicates that the facilities are draft determination in the RBLC database.

| Process   | RBLC ID                                                                                               | Facility                                                                                      | Permit Date     |                   | n Capacity<br>tpy) | Particulate Matter Type                                                                                                              | Permitted                           | I PM Limit                                                | Control                                                                                                                                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------|-------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process   | KBLC ID                                                                                               | raciiity                                                                                      | (from RBLC)     | Value             | Unit               | raiticulate Matter Type                                                                                                              | Value                               | Unit                                                      | Control                                                                                                                                                                                                                 |
|           |                                                                                                       |                                                                                               | Electric Arc Fo | ırnaces NSPS AAa  | 1                  |                                                                                                                                      | 3% Opacity from control             | 0.0052 gr/dscf)<br>device, 6% opacity from<br>AF          |                                                                                                                                                                                                                         |
|           |                                                                                                       | Electric A                                                                                    | rc Furnaces Ma  | ajor Sources NESI |                    |                                                                                                                                      | gr/dscf<br>f total metal HAP        |                                                           |                                                                                                                                                                                                                         |
|           | Ir                                                                                                    | netallurgy at a new Basic<br>Furnace (BOPF)<br>etallurgy at an existing<br>ess Furnace (BOPF) |                 |                   |                    |                                                                                                                                      |                                     |                                                           |                                                                                                                                                                                                                         |
|           |                                                                                                       | Electric A                                                                                    | rc Furnaces A   | rea Sources NESH  | АР ҮҮҮҮҮ           |                                                                                                                                      | 0.8 lb/ton for production           | 0.0052 gr/dscf)<br>capacity < 150,000 tons<br>y from EAF  |                                                                                                                                                                                                                         |
|           |                                                                                                       | New Large Iron a                                                                              | and Steel Foun  | daries Area Sourc | es NESHAP ZZZZZ    |                                                                                                                                      | 0.008 lb me<br>20% opacity from fug | o/ton<br>stal HAP/ton<br>sitive emissions (6 min<br>gage) |                                                                                                                                                                                                                         |
|           |                                                                                                       |                                                                                               |                 |                   | Facilities         | With Permits Issued After                                                                                                            | 2016 <sup>1</sup>                   |                                                           |                                                                                                                                                                                                                         |
| EAF/LMF   | WV-0034                                                                                               | Nucor Steel, WV                                                                               | 5/5/2022        | 3,000,000         | tons steel/yr      | Particulate matter, total < 10<br>μ (TPM10)                                                                                          | 0.0052                              | gr/dscf                                                   | Direct-shell evacuation control (DEC) system designed and operated to achieve a minimum capture efficiency of 95% of all potential particulate matter emissions from the EAFs and LMFs and evacuate the exhaust to each |
| EAF/LMF   | WV-0034                                                                                               | Nucor Steel, WV                                                                               | 5/5/2022        | 3,000,000         | tons steel/yr      | Particulate matter, total < 2.5<br>μ (TPM2.5)                                                                                        | 0.0052                              | gr/dscf                                                   | Direct-shell evacuation control (DEC) system designed and operated to achieve a minimum capture efficiency of 95% of all potential particulate matter emissions from the EAFs and LMFs and evacuate the exhaust to each |
| EAF/LMF   | EAF/LMF WV-0034 Nucor Steel, WV 5/5/2022 3,000,000 tons steel/yr Particulate matter, filterable (FPM) |                                                                                               |                 |                   |                    |                                                                                                                                      | 0.0018                              | gr/dscf                                                   | Direct-shell evacuation control (DEC) system designed and operated to achieve a minimum capture efficiency of 95% of all potential particulate matter emissions from the EAFs and LMFs and evacuate the exhaust to each |
| EAF/LMF   | (грм)                                                                                                 |                                                                                               |                 |                   |                    |                                                                                                                                      | 0.0018                              | gr/dscf                                                   | Fabric Filter                                                                                                                                                                                                           |
| SN-01 EAF | AR-0172                                                                                               | Nucor Steel Arkansas                                                                          | 9/1/2021        | 250               | tons steel/hr      | Particulate matter, total $< 10$ $\mu$ (TPM10)<br>Particulate matter, total $< 2.5$ $\mu$ (TPM2.5)<br>Particulate matter, filterable | 0.0018                              | gr/dscf                                                   | Fabric Filter                                                                                                                                                                                                           |

| Process                                                      | RBLC ID  | ecent Permit Limitatio  Facility | Permit Date | Production |               | Particulate Matter Type                       | Permitted | I PM Limit | Control                                                                                                                                                                                            |
|--------------------------------------------------------------|----------|----------------------------------|-------------|------------|---------------|-----------------------------------------------|-----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process                                                      | KBLC ID  | racinty                          | (from RBLC) | Value      | Unit          | Particulate Matter Type                       | Value     | Unit       | Control                                                                                                                                                                                            |
| SN-01 EAF                                                    | 1        | STEEL MILL                       | 9/1/2021    | 585        | tons steel/yr | PM10                                          | 0.0052    | gr/dscf    | BAGHOUSE                                                                                                                                                                                           |
| SN-01 EAF                                                    | -        | STEEL MILL                       | 9/1/2021    | 585        | tons steel/yr | PM2.5                                         | 0.052     | gr/dscf    | BAGHOUSE                                                                                                                                                                                           |
| Melt Shop<br>#1 (EU 01<br>Baghouse<br>#1 & #2<br>Stack)      | -        | Steel Mini Mill                  | 4/19/2021   | 2,000,000  | tons steel/yr | РМ                                            | 31.49     | lb/hr      | Emissions are controlled by 2 baghouses (combined stack). Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and noncombustion processes must develop a Good  |
| Melt Shop<br>#1 (EU 01<br>Baghouse<br>#1 & #2<br>Stack)      | -        | Steel Mini Mill                  | 4/19/2021   | 2,000,000  | tons steel/yr | PM10                                          | 90.97     | lb/hr      | Emissions are controlled by 2 baghouses (combined stack). Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and noncombustion processes must develop a Good  |
| Melt Shop<br>#1 (EU 01<br>Baghouse<br>#1 & #2<br>Stack)      | -        | Steel Mini Mill                  | 4/19/2021   | 2,000,000  | tons steel/yr | PM2.5                                         | 59.48     | lb/yr      | Emissions are controlled by 2 baghouses (combined stack). Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good |
| Melt Shop<br>(EU 01)<br>& Melt Shop<br>Combustion<br>Sources | -        | Steel Mill                       | 7/23/2020   | 1,750,000  | tons steel/yr | PM                                            | 0.0018    | gr/dscf    | Negative Pressure Pulse-Jet Baghouse (C0101). The Melt Shop is equipped with canopy hoods to capture and vent emissions that are not captured by the direct shell evacuation system (DEC or DSE).  |
| Melt Shop<br>(EU 01)<br>& Melt Shop<br>Combustion<br>Sources | -        | STEEL MILL                       | 7/23/2020   | 1,750,000  | tons steel/yr | PM10                                          | 0.0052    | gr/dscf    | Negative Pressure Pulse-Jet Baghouse (C0101). The Melt Shop is equipped with canopy hoods to capture and vent emissions that are not captured by the direct shell evacuation system (DEC or DSE).  |
| Melt Shop<br>(EU 01)<br>& Melt Shop<br>Combustion<br>Sources | -        | STEEL MILL                       | 7/23/2020   | 1,750,000  | tons steel/yr | PM2.5                                         | 0.0034    | gr/dscf    | Negative Pressure Pulse-Jet Baghouse (C0101). The Melt Shop is equipped with canopy hoods to capture and vent emissions that are not captured by the direct shell evacuation system (DEC or DSE).  |
| ELECTRIC<br>ARC<br>FURNACE                                   | -        | STEEL MILL                       | 1/20/2020   | -          | -             | PM10                                          | -         | -          | -                                                                                                                                                                                                  |
| ELECTRIC<br>ARC<br>FURNACE                                   | -        | STEEL MILL                       | 1/20/2020   | -          | -             | PM2.5                                         | -         | -          | -                                                                                                                                                                                                  |
| Electric Arc<br>Furnaces<br>(EAF)                            | *TX-0882 | SDSW STEEL MILL                  | 01/17/2020  | -          | -             | Particulate matter, filterable (FPM)          | 0.0052    | gr/dscf    | BAGHOUSE                                                                                                                                                                                           |
| Electric Arc<br>Furnaces<br>(EAF)                            | *TX-0882 | SDSW STEEL MILL                  | 01/17/2020  | -          | -             | Particulate matter, filterable < 10 μ (FPM10) | 0.0052    | gr/dscf    | BGAHOUSE                                                                                                                                                                                           |

| Process                                                             | RBLC ID  | Facility                          | Permit Date<br>(from RBLC) | ninations of BACT for PM (Prior 10 y<br>Production Capacity<br>(US tpy) |               |                                                 | Permitted PM Limit |         | Control                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------|----------|-----------------------------------|----------------------------|-------------------------------------------------------------------------|---------------|-------------------------------------------------|--------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |          |                                   |                            | Value                                                                   | Unit          | Particulate Matter Type                         | Value              | Unit    | Control                                                                                                                                                                                                                                                                                                                                                      |
| Electric Arc<br>Furnaces<br>(EAF)                                   | *TX-0882 | SDSW STEEL MILL                   | 01/17/2020                 | -                                                                       | -             | Particulate matter, filterable < 2.5 μ (FPM2.5) | 0.0052             | gr/dscf | BAGHOUSE                                                                                                                                                                                                                                                                                                                                                     |
| Electric Arc<br>Furnaces<br>(EAF)                                   | -        | SDSW STEEL MILL                   | 1/17/2020                  | -                                                                       | -             | РМ                                              | 0.0052             | gr/dscf | BAGHOUSE                                                                                                                                                                                                                                                                                                                                                     |
| Electric Arc<br>Furnaces<br>(EAF)                                   | -        | SDSW STEEL MILL                   | 1/17/2020                  | -                                                                       | -             | PM10                                            | -                  | -       | -                                                                                                                                                                                                                                                                                                                                                            |
| Electric Arc<br>Furnaces<br>(EAF)                                   | -        | SDSW STEEL MILL                   | 1/17/2020                  | -                                                                       | -             | PM2.5                                           | -                  | -       | -                                                                                                                                                                                                                                                                                                                                                            |
| ELECTRIC<br>ARC<br>FURNACE                                          | -        | Steel Mill                        | 1/2/2020                   | -                                                                       | -             | -                                               | -                  | -       | -                                                                                                                                                                                                                                                                                                                                                            |
| Twin-Station<br>Ladle<br>Metallurgy<br>Facility (LMF<br>3/4) (P906) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019                 | 250                                                                     | tons steel/hr | Particulate matter, filterable<br>(FPM)         | 19.93              | lb/hr   | Operation of a baghouse control system a consisting of the following:  (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF;  (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems; |
| Twin-Station<br>Ladle<br>Metallurgy<br>Facility (LMF<br>3/4) (P906) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019                 | 250                                                                     | tons steel/hr | Particulate matter, filterable<br>(FPM)         | 87.69              | ton/yr  | Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;   |
| Twin-Station<br>Ladle<br>Metallurgy<br>Facility (LMF<br>3/4) (P906) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019                 | 250                                                                     | tons steel/hr | Particulate matter, fugitive                    | 20.96              | ton/yr  | Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;   |

|                                                                     | Process RBLC ID Facility |                                   | Permit Date | Production (US | n Capacity    | Particulate Matter Type                       | Permitted | I PM Limit | Control                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------|--------------------------|-----------------------------------|-------------|----------------|---------------|-----------------------------------------------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process                                                             | KBLC ID                  | racility                          | (from RBLC) | Value          | Unit          | Particulate Matter Type                       | Value     | Unit       | Control                                                                                                                                                                                                                                                                                                                                                      |
| Twin-Station<br>Ladle<br>Metallurgy<br>Facility (LMF<br>3/4) (P906) | *OH-0381                 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250            | tons steel/hr | Particulate matter, total < 10<br>μ (TPM10)   | 26.57     | lb/hr      | Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;   |
| Twin-Station<br>Ladle<br>Metallurgy<br>Facility (LMF<br>3/4) (P906) | *OH-0381                 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250            | tons steel/hr | Particulate matter, total < 10<br>μ (TPM10)   | 116.38    | ton/yr     | Operation of a baghouse control system a consisting of the following:  (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF;  (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems; |
| Twin-Station<br>Ladle<br>Metallurgy<br>Facility (LMF<br>3/4) (P906) | *OH-0381                 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250            | tons steel/hr | Particulate matter, total < 2.5<br>μ (TPM2.5) | 26.57     | lb/hr      | Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;   |
| Twin-Station<br>Ladle<br>Metallurgy<br>Facility (LMF<br>3/4) (P906) | *OH-0381                 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250            | tons steel/hr | Particulate matter, total < 2.5<br>μ (TPM2.5) | 116.38    | ton/yr     | Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;   |

| Process                              | RBLC ID  | Recent Permit Limitation Facility | Permit Date |       | n Capacity    | Particulate Matter Type                     | Permitted | I PM Limit                            | Control                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------|----------|-----------------------------------|-------------|-------|---------------|---------------------------------------------|-----------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process                              | RBLC ID  | raciiity                          | (from RBLC) | Value | Unit          | Particulate Matter Type                     | Value     | Unit                                  | Control                                                                                                                                                                                                                                                                                                                                                    |
| Electric Arc<br>Furnace #2<br>(P905) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250   | tons steel/hr | Particulate matter, filterable<br>(FPM)     | 19.93     | lb/hr                                 | Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems; |
| Electric Arc<br>Furnace #2<br>(P905) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250   | tons steel/hr | Particulate matter, filterable<br>(FPM)     | 87.69     | ton/yr per 12-month rolling<br>period | Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems; |
| Electric Arc<br>Furnace #2<br>(P905) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250   | tons steel/hr | Particulate matter, total < 10<br>μ (TPM10) | 26.57     | lb/hr                                 | Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems; |
| Electric Arc<br>Furnace #2<br>(P905) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250   | tons steel/hr | Particulate matter, total < 10<br>μ (TPM10) | 116.38    | ton/yr per 12-month rolling<br>period | Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems; |

| Process                              | RBLC ID  | ecent Permit Limitatio Facility   | Permit Date | Production | n Capacity<br>tpy) | Particulate Matter Type                       | Permitted | I PM Limit                            | Control                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------|----------|-----------------------------------|-------------|------------|--------------------|-----------------------------------------------|-----------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process                              | KBLC ID  | racility                          | (from RBLC) | Value      | Unit               | Particulate Matter Type                       | Value     | Unit                                  | Control                                                                                                                                                                                                                                                                                                                                                    |
| Electric Arc<br>Furnace #2<br>(P905) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250        | tons steel/hr      | Particulate matter, total < 2.5<br>μ (TPM2.5) | 26.57     | lb/hr                                 | Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems; |
| Electric Arc<br>Furnace #2<br>(P905) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250        | tons steel/hr      | Particulate matter, total < 2.5<br>μ (TPM2.5) | 116.38    | ton/yr per 12-month rolling<br>period | Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems; |
| Electric Arc<br>Furnace #2<br>(P905) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250        | tons steel/hr      | Particulate matter, fugitive                  | 20.96     | ton/yr per 12-month rolling<br>period | Operation of a baghouse control system a consisting of the following: (a)direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b)roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems; |
| Electric Arc<br>Furnaces             | *AL-0327 | Nucor Decatur, AL                 | 08/14/2019  | -          | -                  | Particulate matter, filterable (FPM)          | 0.0018    | gr/dscf                               | Baghouse                                                                                                                                                                                                                                                                                                                                                   |
| Electric Arc<br>Furnaces             | *AL-0327 | Nucor Decatur, AL                 | 08/14/2019  | -          | -                  | Particulate matter, filterable (FPM)          | 33.9      | lb/hr                                 | Baghouse                                                                                                                                                                                                                                                                                                                                                   |
| Electric Arc<br>Furnaces             | *AL-0327 | Nucor Decatur, AL                 | 08/14/2019  | -          | -                  | Particulate matter, total (TPM)               | 0.0052    | gr/dscf                               | Baghouse                                                                                                                                                                                                                                                                                                                                                   |
| Electric Arc<br>Furnaces             | *AL-0327 | Nucor Decatur, AL                 | 08/14/2019  | -          | -                  | Particulate matter, total (TPM)               | 98.1      | lb/hr                                 | Baghouse                                                                                                                                                                                                                                                                                                                                                   |
| Meltshop<br>Operations               | -        | Gerdau Ameristeel, NC             | 5/1/2019    | 90         | tons steel/hr      | PM10 Filterable                               | 0.05      | lb/ton                                | Fabric Filter                                                                                                                                                                                                                                                                                                                                              |
| Meltshop<br>Operations               | -        | Gerdau Ameristeel, NC             | 5/1/2019    | 90         | tons steel/hr      | PM10 Filterable +<br>Condensable              | 0.24      | lb/ton                                | Fabric Filter                                                                                                                                                                                                                                                                                                                                              |
| Meltshop<br>Baghouse &<br>Fugitives  | FL-0368  | Nucor Frostproof, FL              | 02/14/2019  | 450,000    | tons steel/yr      | Particulate matter, filterable (FPM)          | 0.0018    | gr/dscf                               | Baghouse                                                                                                                                                                                                                                                                                                                                                   |
| Meltshop<br>Baghouse &<br>Fugitives  | FL-0368  | Nucor Frostproof, FL              | 02/14/2019  | 450,000    | tons steel/yr      | Particulate matter, filterable (FPM)          | 9.24      | lb/hr, average of 3 one-<br>hour runs | Baghouse                                                                                                                                                                                                                                                                                                                                                   |

| Process                                                                | RBLC ID | ecent Permit Limitation Facility | Permit Date | Production | n Capacity<br>tpy) | Particulate Matter Type                       | Permitted | I PM Limit                            | Control                                                                                                   |
|------------------------------------------------------------------------|---------|----------------------------------|-------------|------------|--------------------|-----------------------------------------------|-----------|---------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Process                                                                | KBLC ID | raciiity                         | (from RBLC) | Value      | Unit               | Particulate Matter Type                       | Value     | Unit                                  | Control                                                                                                   |
| Meltshop<br>Baghouse &<br>Fugitives                                    | FL-0368 | Nucor Frostproof, FL             | 02/14/2019  | 450,000    | tons steel/yr      | Particulate matter, total (TPM)               | 0.0024    | gr/dscf                               | Baghouse                                                                                                  |
| Meltshop<br>Baghouse &<br>Fugitives                                    | FL-0368 | Nucor Frostproof, FL             | 02/14/2019  | 450,000    | tons steel/yr      | Particulate matter, total<br>(TPM)            | 12.32     | lb/hr, average of 3 one-<br>hour runs | Baghouse                                                                                                  |
| EUEAF<br>(Electric arc<br>furnace)                                     | MI-0438 | GERDAU MACSTEEL<br>MONROE        | 10/29/2018  | 130        | tons steel/hr      | Particulate matter, filterable (FPM)          | 7.84      | lb/hr                                 | Direct-Shell Evacuation Control, reaction chamber, and baghouse with high temperature fabric filter bags. |
| EUEAF<br>(Electric arc<br>furnace)                                     | MI-0438 | GERDAU MACSTEEL<br>MONROE        | 10/29/2018  | 130        | tons steel/hr      | Particulate matter, filterable (FPM)          | 32.15     | ton/yr per 12-month rolling<br>period | Direct-Shell Evacuation Control, reaction chamber, and baghouse with high temperature fabric filter bags. |
| EUEAF<br>(Electric arc<br>furnace)                                     | MI-0438 | GERDAU MACSTEEL<br>MONROE        | 10/29/2018  | 130        | tons steel/hr      | Particulate matter, total < 10<br>μ (TPM10)   | 12.91     | lb/hr                                 | Direct-Shell Evacuation Control, reaction chamber, and baghouse with high temperature fabric filter bags. |
| EUEAF<br>(Electric arc<br>furnace)                                     | MI-0438 | GERDAU MACSTEEL<br>MONROE        | 10/29/2018  | 130        | tons steel/hr      | Particulate matter, total < 10<br>μ (TPM10)   | 49.7      | ton/yr per 12-month rolling<br>period | Direct-Shell Evacuation Control, reaction chamber, and baghouse with high temperature fabric filter bags. |
| EUEAF<br>(Electric arc<br>furnace)                                     | MI-0438 | GERDAU MACSTEEL<br>MONROE        | 10/29/2018  | 130        | tons steel/hr      | Particulate matter, total < 2.5<br>μ (TPM2.5) | 12.91     | lb/hr                                 | Direct-Shell Evacuation Control, reaction chamber, and baghouse with high temperature fabric filter bags. |
| EUEAF<br>(Electric arc<br>furnace)                                     | MI-0438 | GERDAU MACSTEEL<br>MONROE        | 10/29/2018  | 130        | tons steel/hr      | Particulate matter, total < 2.5<br>μ (TPM2.5) | 49.7      | ton/yr per 12-month rolling<br>period | Direct-Shell Evacuation Control, reaction chamber, and baghouse with high temperature fabric filter bags. |
| Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD) | MI-0438 | GERDAU MACSTEEL<br>MONROE        | 10/29/2018  | 130        | tons steel/hr      | Particulate matter, filterable (FPM)          | 0.0018    | gr/dscf                               | Baghouse and evacuation system                                                                            |
| Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD) | MI-0438 | GERDAU MACSTEEL<br>MONROE        | 10/29/2018  | 130        | tons steel/hr      | Particulate matter, filterable<br>(FPM)       | 3.88      | lb/hr                                 | Baghouse and evacuation system                                                                            |
| Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD) | MI-0438 | GERDAU MACSTEEL<br>MONROE        | 10/29/2018  | 130        | tons steel/hr      | Particulate matter, total < 10<br>μ (TPM10)   | 8.95      | lb/hr                                 | Baghouse and evacuation system                                                                            |

| Process                                                                | RBLC ID | Facility                  | Permit Date | Production | n Capacity<br>tpy) | Particulate Matter Type                        | Permitted | I PM Limit                            | Control                                                                                                                                                |
|------------------------------------------------------------------------|---------|---------------------------|-------------|------------|--------------------|------------------------------------------------|-----------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process                                                                | KBLC ID | racility                  | (from RBLC) | Value      | Unit               | Particulate Matter Type                        | Value     | Unit                                  | Control                                                                                                                                                |
| Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD) | MI-0438 | GERDAU MACSTEEL<br>MONROE | 10/29/2018  | 130        | tons steel/hr      | Particulate matter, total $< 10$ $\mu$ (TPM10) | 33.47     | ton/yr per 12-month rolling<br>period | Baghouse and evacuation system                                                                                                                         |
| Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD) | MI-0438 | GERDAU MACSTEEL<br>MONROE | 10/29/2018  | 130        | tons steel/hr      | Particulate matter, total < 2.5<br>μ (TPM2.5)  | 0.0018    | gr/dscf                               | Baghouse and evacuation system                                                                                                                         |
| Ladle metallurgy furnace (EULMF) and two vacuum tank degassers (EUVTD) | MI-0438 | GERDAU MACSTEEL<br>MONROE | 10/29/2018  | 130        | tons steel/hr      | Particulate matter, total < 2.5<br>μ (TPM2.5)  | 3.88      | lb/hr                                 | Baghouse and evacuation system                                                                                                                         |
| Electric Arc<br>Furnace and<br>Ladle<br>Metallurgy<br>Furnace          | TX-0848 | STEEL MILL                | 09/14/2018  | -          | -                  | Particulate matter, total < 10<br>μ (TPM10)    | 0.0024    | gr/dscf                               | baghouse                                                                                                                                               |
| Electric Arc<br>Furnace and<br>Ladle<br>Metallurgy<br>Furnace          | TX-0848 | STEEL MILL                | 09/14/2018  | -          | -                  | Particulate matter, total < 2.5<br>μ (TPM2.5)  | 0.002     | gr/dscf                               | baghouse                                                                                                                                               |
| Electric Arc<br>Furnace                                                | -       | Nucor Sedalia, MO         | 9/12/2018   | 450,000    | tons steel/yr      | Filterable PM                                  | 0.0015    | gr/dscf                               | Baghouse                                                                                                                                               |
| Electric Arc<br>Furnace                                                | -       | Nucor Sedalia, MO         | 9/12/2018   | 450,000    | tons steel/yr      | Total PM10, PM2.5, and PM                      | 0.0024    | gr/dscf                               | Baghouse                                                                                                                                               |
| Electric Arc<br>Furnace and<br>Ladle<br>Metallurgy<br>Station          | -       | CMC Mesa, AZ              | 6/14/2018   | 435,000    | tons steel/yr      | PM filterable                                  | 0.0018    | gr/dscf                               | Use of DEC and Meltshop canopy hood for capture. Use of meltshop baghouse. Use of ladle station roof that shall be exhausted to the meltshop baghouse. |
| Electric Arc<br>Furnace and<br>Ladle<br>Metallurgy<br>Station          | -       | CMC Mesa, AZ              | 6/14/2018   | 435,000    | tons steel/yr      | PM10 Filterable and<br>Condensable             | 0.0024    | gr/dscf                               | Use of DEC and Meltshop canopy hood for capture. Use of meltshop baghouse. Use of ladle station roof that shall be exhausted to the meltshop baghouse. |

| Process                                                                            | RBLC ID | ecent Permit Limitatio Facility | Permit Date | Productio | n Capacity<br>tpy) | Particulate Matter Type                         | Permitted | I PM Limit | Control                                                                                                                                                |
|------------------------------------------------------------------------------------|---------|---------------------------------|-------------|-----------|--------------------|-------------------------------------------------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process                                                                            | KBLC ID | racinty                         | (from RBLC) | Value     | Unit               | raiticulate matter Type                         | Value     | Unit       | Condo                                                                                                                                                  |
| Electric Arc<br>Furnace and<br>Ladle<br>Metallurgy<br>Station                      | -       | CMC Mesa, AZ                    | 6/14/2018   | 435,000   | tons steel/yr      | PM2.5 Filterable and<br>Condensable             | 0.0024    | gr/dscf    | Use of DEC and Meltshop canopy hood for capture. Use of meltshop baghouse. Use of ladle station roof that shall be exhausted to the meltshop baghouse. |
| Melt Shop<br>Equipment<br>(electric arc<br>furnaces<br>fugitives)                  | SC-0183 | NUCOR STEEL -<br>BERKELEY       | 5/4/2018    | 175       | tons steel/hr      | Particulate matter, filterable<br>(FPM)         | -         | -          | Good work practice standards and proper operation and maintenance of baghouses.                                                                        |
| Melt Shop                                                                          | SC-0188 | CMC STEEL SOUTH<br>CAROLINA     | 10/3/2017   | 1,000,000 | tons billet/yr     | Particulate matter, filterable < 10 μ (FPM10)   | 0.0018    | gr/dscf    | Baghouse                                                                                                                                               |
| Melt Shop                                                                          | SC-0188 | CMC STEEL SOUTH<br>CAROLINA     | 10/3/2017   | 1,000,000 | tons billet/yr     | Particulate matter, filterable < 2.5 μ (FPM2.5) | 0.0018    | gr/dscf    | Baghouse                                                                                                                                               |
| Electric Arc<br>Furnace                                                            | AL-0319 | Nucor Tuscaloosa, AL            | 03/09/2017  | -         | -                  | Particulate matter, filterable (FPM)            | 0.0018    | gr/dscf    | -                                                                                                                                                      |
| Electric Arc<br>Furnace                                                            | AL-0319 | Nucor Tuscaloosa, AL            | 03/09/2017  | -         | -                  | Particulate matter, total $< 10$ $\mu$ (TPM10)  | 0.0052    | gr/dscf    | -                                                                                                                                                      |
| Electric Arc<br>Furnace                                                            | AL-0319 | Nucor Tuscaloosa, AL            | 03/09/2017  | -         | -                  | Particulate matter, total < 2.5<br>μ (TPM2.5)   | 0.0049    | gr/dscf    | -                                                                                                                                                      |
| TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES                      | AL-0309 | NUCOR STEEL<br>DECATUR, LLC     | 03/02/2016  | -         | -                  | Particulate matter, filterable<br>(FPM)         | 0.0018    | gr/dscf    | BAGHOUSE                                                                                                                                               |
| TWO (2)<br>ELECTRIC<br>ARC<br>FURNACES<br>WITH TWO<br>(2)<br>MELTSHOP<br>BAGHOUSES | AL-0309 | NUCOR STEEL<br>DECATUR, LLC     | 03/02/2016  | -         | -                  | Particulate matter, filterable<br>(FPM)         | 43.22     | lb/hr      | BAGHOUSE                                                                                                                                               |
| TWO (2)<br>ELECTRIC<br>ARC<br>FURNACES<br>WITH TWO<br>(2)<br>MELTSHOP<br>BAGHOUSES | AL-0309 | NUCOR STEEL<br>DECATUR, LLC     | 03/02/2016  | -         | -                  | Particulate matter, total<br>(TPM)              | 0.0052    | gr/dscf    | BAGHOUSE                                                                                                                                               |

| Process                                                       | RBLC ID | Recent Permit Limitation Facility | Permit Date | Production | n Capacity<br>tpy) | Particulate Matter Type                         | Permitted | PM Limit | Control                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------|---------|-----------------------------------|-------------|------------|--------------------|-------------------------------------------------|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process                                                       | KBLC ID | raciity                           | (from RBLC) | Value      | Unit               | Particulate Matter Type                         | Value     | Unit     | Conditi                                                                                                                                                                                                                                                                                                                 |
| TWO (2) ELECTRIC ARC FURNACES WITH TWO (2) MELTSHOP BAGHOUSES | AL-0309 | NUCOR STEEL<br>DECATUR, LLC       | 03/02/2016  | -          | -                  | Particulate matter, total<br>(TPM)              | 124       | lb/hr    | BAGHOUSE                                                                                                                                                                                                                                                                                                                |
| Electric Arc<br>Furnace                                       | OK-0173 | CMC Durant, OK                    | 01/19/2016  | -          | -                  | Particulate matter, total < 10<br>μ (TPM10)     | 0.0024    | gr/dscf  | P2 - Pre-cleaned Scrap<br>Add-on - Baghouse                                                                                                                                                                                                                                                                             |
| Electric Arc<br>Furnace                                       | OK-0173 | CMC Durant, OK                    | 01/19/2016  | -          | -                  | Particulate matter, total < 2.5<br>µ (TPM2.5)   | 0.0024    | gr/dscf  | P2 - Pre-cleaned Scrap<br>Add-on - Baghouse                                                                                                                                                                                                                                                                             |
|                                                               |         |                                   |             |            | Facilities         | s With Permits Issued Before                    | e 2016    |          |                                                                                                                                                                                                                                                                                                                         |
| Fume<br>Treatment<br>Plant (EAF)                              | LA-0309 | BENTELER STEEL TUBE<br>FACILITY   | 6/4/2015    | 90         | tons steel/hr      | Particulate matter, total < 10<br>μ (TPM10)     | 0.0052    | gr/dscf  | baghouse                                                                                                                                                                                                                                                                                                                |
| Fume<br>Treatment<br>Plant (EAF)                              | LA-0309 | BENTELER STEEL TUBE<br>FACILITY   | 6/4/2015    | 90         | tons steel/hr      | Particulate matter, total < 2.5 μ (TPM2.5)      | 0.0052    | gr/dscf  | baghouse                                                                                                                                                                                                                                                                                                                |
| FG-<br>MELTSHOP<br>(Melt Shop)                                | MI-0417 | GERDAU MACSTEEL,<br>INC.          | 10/27/2014  | 130        | tons steel/hr      | Particulate matter, total < 2.5<br>μ (TPM2.5)   | 0.1       | lb/ton   | Direct evacuation control (DEC), hood, and baghouse.                                                                                                                                                                                                                                                                    |
| FG-<br>MELTSHOP<br>(Melt Shop)                                | MI-0417 | GERDAU MACSTEEL,<br>INC.          | 10/27/2014  | 130        | tons steel/hr      | Particulate matter, total < 2.5<br>μ (TPM2.5)   | 10.9      | lb/hr    | Direct evacuation control (DEC), hood, and baghouse.                                                                                                                                                                                                                                                                    |
| Electric Arc<br>Furnace                                       | AL-0275 | NUCOR STEEL<br>TUSCALOOSA, INC.   | 07/22/2014  | -          | -                  | Particulate matter, filterable (FPM)            | 0.0018    | gr/dscf  | Baghouse                                                                                                                                                                                                                                                                                                                |
| Electric Arc<br>Furnace                                       | AL-0275 | NUCOR STEEL<br>TUSCALOOSA, INC.   | 07/22/2014  | -          | -                  | Particulate matter, filterable < 10 μ (FPM10)   | 0.0052    | gr/dscf  | Baghouse                                                                                                                                                                                                                                                                                                                |
| Electric Arc<br>Furnace                                       | AL-0275 | NUCOR STEEL<br>TUSCALOOSA, INC.   | 07/22/2014  | -          | -                  | Particulate matter, filterable < 2.5 μ (FPM2.5) | 0.0049    | gr/dscf  | Baghouse                                                                                                                                                                                                                                                                                                                |
| ELECTRIC<br>ARC<br>FURNACE                                    | NE-0055 | NUCOR STEEL                       | 10/09/2013  | 206        | tons scrap/hr      | Particulate matter, total < 10<br>μ (TPM10)     | 0.0052    | gr/dscf  | The EAF and melthshop will be controlled by two baghouse. The existing positive pressure baghouse has a maximum design value of 965,000 acfm. The project will require Nucor to add a second negative pressure baghouse rated at 630,000 acfm. The source will also use Direct Evacuation Control to capture emissions. |
| ELECTRIC<br>ARC<br>FURNACE                                    | NE-0055 | NUCOR STEEL                       | 10/09/2013  | 206        | tons scrap/hr      | Particulate matter, total < 2.5<br>μ (TPM2.5)   | 0.0052    | gr/dscf  | The EAF and melthshop will be controlled by two baghouse. The existing positive pressure baghouse has a maximum design value of 965,000 acfm. The project will require Nucor to add a second negative pressure baghouse rated at 630,000 acfm. The source will also use Direct Evacuation Control to capture emissions. |

| Process                    | RBLC ID  | Facility            | Permit Date | Productio | n Capacity<br>tpy) | Particulate Matter Type                         | Permitte | d PM Limit | Control                                                                                                                                                                                                                                                                                                                 |
|----------------------------|----------|---------------------|-------------|-----------|--------------------|-------------------------------------------------|----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frocess                    | KDLC ID  | 1 acmity            | (from RBLC) | Value     | Unit               | ratticulate Matter Type                         | Value    | Unit       | Control                                                                                                                                                                                                                                                                                                                 |
| ELECTRIC<br>ARC<br>FURNACE | NE-0055  | NUCOR STEEL         | 10/09/2013  | 206       | tons scrap/hr      | Particulate matter, filterable<br>(FPM)         | 0.0008   | gr/dscf    | The EAF and melthshop will be controlled by two baghouse. The existing positive pressure baghouse has a maximum design value of 965,000 acfm. The project will require Nucor to add a second negative pressure baghouse rated at 630,000 acfm. The source will also use Direct Evacuation Control to capture emissions. |
| ELECTRIC<br>ARC<br>FURNACE | NE-0055  | NUCOR STEEL         | 10/09/2013  | 206       | tons scrap/hr      | Particulate matter, filterable < 10 μ (FPM10)   | 0.0008   | gr/dscf    | The EAF and melthshop will be controlled by two baghouse. The existing positive pressure baghouse has a maximum design value of 965,000 acfm. The project will require Nucor to add a second negative pressure baghouse rated at 630,000 acfm. The source will also use Direct Evacuation Control to capture emissions. |
| ELECTRIC<br>ARC<br>FURNACE | NE-0055  | NUCOR STEEL         | 10/09/2013  | 206       | tons scrap/hr      | Particulate matter, filterable < 2.5 μ (FPM2.5) | 0.0008   | dscf/min   | The EAF and melthshop will be controlled by two baghouse. The existing positive pressure baghouse has a maximum design value of 965,000 acfm. The project will require Nucor to add a second negative pressure baghouse rated at 630,000 acfm. The source will also use Direct Evacuation Control to capture emissions. |
| ELECTRIC<br>ARC<br>FURNACE | *TX-0651 | STEEL MILL          | 10/02/2013  | 316       | tons steel/hr      | Particulate matter, total<br>(TPM)              | 0.0032   | gr/dscf    | ENCLOSURE, CAPTURE, FABRIC FILTER                                                                                                                                                                                                                                                                                       |
| ELECTRIC<br>ARC<br>FURNACE | *TX-0651 | STEEL MILL          | 10/02/2013  | 316       | tons steel/hr      | Particulate matter, filterable < 10 μ (FPM10)   | 0.0032   | gr/dscf    | ENCLOSURE, CAPTURE, FABRIC FILTER                                                                                                                                                                                                                                                                                       |
| ELECTRIC<br>ARC<br>FURNACE | *TX-0651 | STEEL MILL          | 10/02/2013  | 316       | tons steel/hr      | Particulate matter, total < 10<br>μ (TPM10)     | 0.0052   | gr/dscf    | ENCLOSURE, CAPTURE, FABRIC FILTER                                                                                                                                                                                                                                                                                       |
| ELECTRIC<br>ARC<br>FURNACE | *TX-0651 | STEEL MILL          | 10/02/2013  | 316       | tons steel/hr      | Particulate matter, filterable < 2.5 μ (FPM2.5) | 0.0032   | gr/dscf    | ENCLOSURE, CAPTURE, FABRIC FILTER                                                                                                                                                                                                                                                                                       |
| ELECTRIC<br>ARC<br>FURNACE | *TX-0651 | STEEL MILL          | 10/02/2013  | 316       | tons steel/hr      | Particulate matter, total < 2.5<br>μ (TPM2.5)   | 0.0052   | gr/dscf    | ENCLOSURE, CAPTURE, FABRIC FILTER                                                                                                                                                                                                                                                                                       |
| LADLE<br>FURNACE           | *TX-0651 | STEEL MILL          | 10/02/2013  | 316       | tons steel/hr      | Particulate matter, total < 10<br>μ (TPM10)     | 0.0052   | gr/dscf    | ENCLOSURE, CAPTURE, FABRIC FILTER                                                                                                                                                                                                                                                                                       |
| LADLE<br>FURNACE           | *TX-0651 | STEEL MILL          | 10/02/2013  | 316       | tons steel/hr      | Particulate matter, filterable < 10 μ (FPM10)   | 0.0032   | gr/dscf    | ENCLOSURE, CAPTURE, FABRIC FILTER                                                                                                                                                                                                                                                                                       |
| LADLE<br>FURNACE           | *TX-0651 | STEEL MILL          | 10/02/2013  | 316       | tons steel/hr      | Particulate matter, total < 2.5<br>μ (TPM2.5)   | 0.0052   | gr/dscf    | ENCLOSURE, CAPTURE, FABRIC FILTER                                                                                                                                                                                                                                                                                       |
| LADLE<br>FURNACE           | *TX-0651 | STEEL MILL          | 10/02/2013  | 316       | tons steel/hr      | Particulate matter, filterable < 2.5 μ (FPM2.5) | 0.0032   | gr/dscf    | EMCLOSURE, CAPTURE, FABRIC FILTER                                                                                                                                                                                                                                                                                       |
| LADLE<br>FURNACE           | *TX-0651 | STEEL MILL          | 10/02/2013  | 316       | tons steel/hr      | Particulate matter, total (TPM)                 | 0.0052   | gr/dscf    | ENCLOSURE, CAPTURE, FABRIC FILTER                                                                                                                                                                                                                                                                                       |
| EAFS SN-01<br>AND SN-02    | AR-0140  | BIG RIVER STEEL LLC | 09/18/2013  | -         | -                  | Particulate matter, total < 2.5<br>μ (TPM2.5)   | 0.0024   | gr/dscf    | FABRIC FILTER                                                                                                                                                                                                                                                                                                           |

|                                | RBLC ID | Facility                 | Permit Date | Productio | n Capacity<br>tpy)   |                                                 | Permitted | PM Limit | Sautural .                                                                                                                 |
|--------------------------------|---------|--------------------------|-------------|-----------|----------------------|-------------------------------------------------|-----------|----------|----------------------------------------------------------------------------------------------------------------------------|
| Process                        | KBLC ID | Facility                 | (from RBLC) | Value     | Unit                 | Particulate Matter Type                         | Value     | Unit     | Control                                                                                                                    |
| EAFS SN-01<br>AND SN-02        | AR-0140 | BIG RIVER STEEL LLC      | 09/18/2013  | -         | -                    | Particulate matter, filterable (FPM)            | 0.0018    | gr/dscf  | BAGHOUSE                                                                                                                   |
| EAFS SN-01<br>AND SN-02        | AR-0140 | BIG RIVER STEEL LLC      | 09/18/2013  | -         | -                    | Particulate matter, total < 10<br>μ (TPM10)     | 0.0024    | gr/dscf  | BAGHOUSE FOR FILTERABLE                                                                                                    |
| MELTSHOP                       | IN-0196 | NUCOR STEEL              | 09/17/2013  | 502       | tons steel/hr        | Particulate matter, filterable (FPM)            | 0.0018    | gr/dscf  | BAGHOUSE                                                                                                                   |
| MELTSHOP                       | IN-0196 | NUCOR STEEL              | 09/17/2013  | 502       | tons steel/hr        | Particulate matter, filterable < 10 µ (FPM10)   | 0.0052    | gr/dscf  | MELTSHOP BAGHOUSES 1 AND 2 -<br>CONTROLLING 2 EAFS, 1 AOD, 1<br>DESULFURIZATION STATION, 2 CONTNUOUS<br>CASTERS AND 3 LMFS |
| MELTSHOP                       | IN-0196 | NUCOR STEEL              | 09/17/2013  | 502       | tons steel/hr        | Particulate matter, filterable < 2.5 μ (FPM2.5) | 0.0052    | gr/dscf  | MELTSHOP BAGHOUSE 1 AND 2 -<br>CONTROLLING 2 EAFS, 1 AOD, 1<br>DESULFURIZATION STATION, 2<br>CONTINUOUS CASTERS AND 3 LMFS |
| Melt Shop<br>(FG-<br>MELTSHOP) | MI-0404 | GERDAU MACSTEEL,<br>INC. | 01/04/2013  | 130       | tons liquid steel/hr | Particulate matter, total < 10<br>μ (TPM10)     | 0.1       | lb/ton   | Direct Evacuation Control (DEC), hood, and baghouse                                                                        |
| Melt Shop<br>(FG-<br>MELTSHOP) | MI-0404 | GERDAU MACSTEEL,<br>INC. | 01/04/2013  | 130       | tons liquid steel/hr | Particulate matter, total < 10<br>μ (TPM10)     | 13        | lb/hr    | Direct Evacuation Control (DEC), hood, and baghouse                                                                        |
| Electric Arc<br>Furnace        | OH-0350 | REPUBLIC STEEL           | 07/18/2012  | 150       | tons steel/hr        | Particulate matter, filterable (FPM)            | 0.0052    | gr/dscf  | Direct-Shell Evacuation Control system with<br>adjustable air gap and water-cooled elbow<br>and duct to Baghouse           |
| Electric Arc<br>Furnace        | OH-0350 | REPUBLIC STEEL           | 07/18/2012  | 150       | tons steel/hr        | Particulate matter, total < 10<br>μ (TPM10)     | 0.0034    | gr/dscf  | Direct-Shell Evacuation Control system with<br>adjustable air gap and water-cooled elbow<br>and duct to Baghouse           |
| Electric Arc<br>Furnace        | OH-0350 | REPUBLIC STEEL           | 07/18/2012  | 150       | tons steel/hr        | Particulate matter, total < 2.5<br>μ (TPM2.5)   | 0.0033    | gr/dscf  | Direct-Shell Evacuation Control system with<br>adjustable air gap and water-cooled elbow<br>and duct to Baghouse           |

<sup>&</sup>lt;sup>1</sup> The CMC Mesa, Nucor Sedalia and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

<sup>\*</sup> Indicates that the facilities are draft determination in the RBLC database.

| Process                                                                 | RBLC ID  | Facility                           | Permit Date |           | n Capacity<br>tpy)       | Permitte     | d VOC Limit | Control                                                                                                                                                                                    |
|-------------------------------------------------------------------------|----------|------------------------------------|-------------|-----------|--------------------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.00035                                                                 | NOLU 15  | . demey                            | (from RBLC) | Value     | Unit                     | Value        | Unit        | control                                                                                                                                                                                    |
|                                                                         |          |                                    |             | Facili    | ties With Permits Issued | After 2016 1 | •           |                                                                                                                                                                                            |
| EAF/LMF                                                                 | WV-0034  | Nucor Steel West<br>Virginia       | 5/5/2022    | 3,000,000 | tons steel/yr            | 15.92        | lb/hr       | EAF - Good Combustion Practices/Scrap<br>Management Plan LMF - Scrap Management<br>Plan                                                                                                    |
| EAFs and<br>LMFs                                                        | AR-0173  | Big River Steel LLC                | 1/31/2022   | 250       | tons steel/hr            | 0.093        | lb/ton      | Scrap Management System and Good<br>Operating Practices                                                                                                                                    |
| SN-01 EAF                                                               | AR-0172  | Nucor Steel Arkansas               | 9/1/2021    | 250       | tons steel/hr            | 0.093        | lb/ton      | Scrap Management System                                                                                                                                                                    |
| Melt Shop<br>#1 (EU 01<br>Baghouse<br>#1 & #2<br>Stack)                 | -        | Steel Mini Mill                    | 4/19/2021   | 2,000,000 | tons steel/yr            | 0.09         | lb/ton      | Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non- combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions. |
| Melt Shop<br>(EU 01)<br>& Melt Shop<br>Combustion<br>Sources<br>(EU 02) | -        | STEEL MILL                         | 7/23/2020   | 1,750,000 | tons steel/yr            | 0.09         | lb/ton      | All EPs are required to have either a Good<br>Work Practices (GWP) Plan or a Good<br>Combustion & Operating Practices (GCOP)<br>Plan.                                                      |
| ELECTRIC<br>ARC<br>FURNACE                                              | -        | Steel Mill                         | 1/20/2020   | -         | -                        | 0.22         | lb/ton      | work practices and material inspections,<br>minimize any chlorinated plastics and free<br>organic liquids, including draining any used<br>oil filters                                      |
| Electric Arc<br>Furnaces                                                | *TX-0882 | SDSW STEEL MILL                    | 01/17/2020  | -         | -                        | 0.093        | lb/ton      | CLEAN SCRAP                                                                                                                                                                                |
| Ladle<br>Metallurgical                                                  | *TX-0882 | SDSW STEEL MILL                    | 01/17/2020  | -         | -                        | 0.093        | lb/ton      | CLEAN SCRAP                                                                                                                                                                                |
| Electric Arc<br>Furnaces<br>(EAF)                                       | -        | Steel Mini Mill                    | 1/17/2020   | -         | -                        | 0.093        | lb/ton      | CLEAN SCRAP                                                                                                                                                                                |
| ELECTRIC<br>ARC<br>FURNACE                                              | *TX-0867 | STEEL<br>MANUFACTURING<br>FACILITY | 01/02/2020  | -         | -                        | 0.22         | lb/ton      | work practices and material inspections,<br>minimize any chlorinated plastics and free<br>organic liquids, including draining any used<br>oil filters                                      |
| MELT SHOP<br>LADLE<br>PREHEATER<br>S                                    | *TX-0867 | STEEL<br>MANUFACTURING<br>FACILITY | 01/02/2020  | -         | -                        | -            | -           | GOOD COMBUSTION PRACTICES                                                                                                                                                                  |
| Twin-Station<br>Ladle<br>Metallurgy<br>Facility (LMF<br>3/4) (P906)     | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC  | 09/27/2019  | 250       | tons steel/hr            | 87.5         | lb/hr       | The development, implementation, and maintenance of a scrap management plan.                                                                                                               |

| Process                                                                            | RBLC ID  | Facility                          | Permit Date |         | n Capacity<br>tpy) | Permitted | VOC Limit                             | Control                                                                                               |
|------------------------------------------------------------------------------------|----------|-----------------------------------|-------------|---------|--------------------|-----------|---------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                                                    |          |                                   | (from RBLC) | Value   | Unit               | Value     | Unit                                  |                                                                                                       |
| Twin-Station<br>Ladle<br>Metallurgy<br>Facility (LMF<br>3/4) (P906)                | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250     | tons steel/hr      | 712.5     | ton/yr per 12-month<br>rolling period | The development, implementation, and maintenance of a scrap management plan.                          |
| Electric Arc<br>Furnace #2<br>(P905)                                               | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250     | tons steel/hr      | 87.5      | lb/hr                                 | The development, implementation, and maintenance of a scrap management plan.                          |
| Electric Arc<br>Furnace #2<br>(P905)                                               | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250     | tons steel/hr      | 712.5     | ton/yr per 12-month<br>rolling period | The development, implementation, and maintenance of a scrap management plan.                          |
| Electric Arc<br>Furnaces                                                           | *AL-0327 | NUCOR STEEL<br>DECATUR, LLC       | 08/14/2019  | -       | -                  | 0.13      | lb/ton                                | Scrap management program                                                                              |
| Electric Arc<br>Furnaces                                                           | *AL-0327 | NUCOR STEEL<br>DECATUR, LLC       | 08/14/2019  | -       | -                  | 70.2      | lb/hr                                 | Scrap management program                                                                              |
| Meltshop<br>Operations                                                             | -        | Gerdau Ameristeel, NC             | 5/1/2019    | 90      | tons steel/hr      | 0.34      | lb/ton                                | -                                                                                                     |
| Meltshop<br>Baghouse &<br>Fugitives                                                | FL-0368  | Nucor Frostproof, FL              | 02/14/2019  | 450,000 | tons steel/yr      | 0.3       | lb/ton                                | Good combustion practice and process control along with a scrap management plan                       |
| Meltshop<br>Baghouse &<br>Fugitives                                                | FL-0368  | Nucor Frostproof, FL              | 02/14/2019  | 450,000 | tons steel/yr      | 18        | lb/hr per 3-hr average                | Good combustion practice and process control along with a scrap management plan                       |
| Electric Arc<br>Furnace and<br>Ladle<br>Metallurgy<br>Furnace                      | TX-0848  | STEEL MILL                        | 09/14/2018  | -       | -                  | 0.097     | lb/ton                                | scrap management                                                                                      |
| Electric Arc<br>Furnace                                                            | -        | Nucor Sedalia, MO                 | 9/12/2018   | 450,000 | tons steel/yr      | 0.3       | lb/ton                                | Good combustion practice and process control along with a scrap management plan                       |
| Electric Arc<br>Furnace and<br>Ladle<br>Metallurgy<br>Station                      | ı        | CMC Mesa, AZ                      | 6/14/2018   | 435,000 | tons steel/yr      | 0.3       | lb/ton                                | Employ good combustion practices. Implement a scrap management plan. Employ good combustion practices |
| Electric Arc<br>Furnace                                                            | AL-0319  | NUCOR STEEL<br>TUSCALOOSA, INC.   | 03/09/2017  | -       | -                  | 0.13      | lb/ton                                | -                                                                                                     |
| Electric Arc<br>Furnace                                                            | AL-0319  | NUCOR STEEL<br>TUSCALOOSA, INC.   | 03/09/2017  | -       | -                  | 39        | lb/hr                                 | -                                                                                                     |
| TWO (2)<br>ELECTRIC<br>ARC<br>FURNACES<br>WITH TWO<br>(2)<br>MELTSHOP<br>BAGHOUSES | AL-0309  | NUCOR STEEL<br>DECATUR, LLC       | 03/02/2016  | -       | -                  | 0.13      | lb/ton                                | SCRAP MANAGEMENT PROGRAM                                                                              |

| Process                                                                            | RBLC ID  | Facility                        | Permit Date | Production (US | n Capacity               | Permitted   | VOC Limit                             | Control                                                                                                                    |
|------------------------------------------------------------------------------------|----------|---------------------------------|-------------|----------------|--------------------------|-------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                                                                    |          | ,                               | (from RBLC) | Value          | Unit                     | Value       | Unit                                  |                                                                                                                            |
| TWO (2)<br>ELECTRIC<br>ARC<br>FURNACES<br>WITH TWO<br>(2)<br>MELTSHOP<br>BAGHOUSES | AL-0309  | NUCOR STEEL<br>DECATUR, LLC     | 03/02/2016  | -              | -                        | 57.2        | lb/hr                                 | SCRAP MANAGEMENT PROGRAM                                                                                                   |
| Electric Arc<br>Furnace                                                            | OK-0173  | CMC Durant, OK                  | 01/19/2016  | -              | -                        | 0.3         | lb/ton                                | Pre-cleaned scrap                                                                                                          |
|                                                                                    |          |                                 |             | Facilit        | ties With Permits Issued | Before 2016 |                                       |                                                                                                                            |
| Fume<br>Treatment<br>Plant (EAF)                                                   | LA-0309  | BENTELER STEEL TUBE<br>FACILITY | 6/4/2015    | 90             | tons steel/hr            | 0.37        | lb/ton                                | scrap management plan and good combustion techniques                                                                       |
| Electric Arc<br>Furnace                                                            | TX-0705  | STEEL MINIMILL<br>FACILITY      | 07/24/2014  | 1,300,000      | tons steel/yr            | 0.225       | lb/ton                                | Good Combustion and/or Process Control.                                                                                    |
| ELECTRIC<br>ARC<br>FURNACE                                                         | *TX-0651 | STEEL MILL                      | 10/02/2013  | 316            | tons steel/hr            | 0.43        | lb/ton                                | GOOD COMBUSTION PRACTICE AND PROCESS CONTROL                                                                               |
| LADLE<br>FURNACE                                                                   | *TX-0651 | STEEL MILL                      | 10/02/2013  | 316            | tons steel/hr            | 0.004       | lb/ton                                | GOOD COMBUSTION PRACTICE AND PROCESS CONTROL                                                                               |
| MELTSHOP                                                                           | IN-0196  | NUCOR STEEL                     | 09/17/2013  | 502            | tons steel/hr            | 0.09        | lb/ton                                | -                                                                                                                          |
| MELTSHOP                                                                           | IN-0196  | NUCOR STEEL                     | 09/17/2013  | 502            | tons steel/hr            | 45.18       | lb/hr                                 | -                                                                                                                          |
| Melt Shop<br>(FG-<br>MELTSHOP)                                                     | MI-0404  | GERDAU MACSTEEL,<br>INC.        | 01/04/2013  | 130            | tons liquid steel/hr     | 0.13        | lb/ton                                | Direct Evacuation Control (DEC) and VOC Reaction Chamber.                                                                  |
| Melt Shop<br>(FG-<br>MELTSHOP)                                                     | MI-0404  | GERDAU MACSTEEL,<br>INC.        | 01/04/2013  | 130            | tons liquid steel/hr     | 16.9        | lb/hr                                 | Direct Evacuation Control (DEC) and VOC<br>Reaction Chamber.                                                               |
| Electric Arc<br>Furnace                                                            | OH-0350  | REPUBLIC STEEL                  | 07/18/2012  | 150            | tons steel/hr            | 0.1         | lb/ton                                | Scrap management and Direct-Shell<br>Evacuation Control system with adjustable air<br>gap and water-cooled elbow and duct. |
| Electric Arc<br>Furnace                                                            | OH-0350  | REPUBLIC STEEL                  | 07/18/2012  | 150            | tons steel/hr            | 60          | ton/yr per 12-month<br>rolling period | Scrap management and Direct-Shell<br>Evacuation Control system with adjustable air<br>gap and water-cooled elbow and duct. |

<sup>&</sup>lt;sup>1</sup> The CMC Mesa, Nucor Sedalia and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility. \* Indicates that the facilities are draft determination in the RBLC database.

| Process                                                             | RBLC ID  | Facility                          | Permit Date |           | on Capacity<br>stpy)      | Permitted         | I GHG Limit | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------|----------|-----------------------------------|-------------|-----------|---------------------------|-------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |          |                                   | (from RBLC) | Value     | Unit                      | Value             | Unit        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                     |          |                                   |             | F         | acilities With Permits Is | sued After 2016 1 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EAF/LMF                                                             | WV-0034  | Nucor Steel West<br>Virginia      | 5/5/2022    | 3,000,000 | tons steel/yr             | 47,813            | lb/hr       | Oxyfuel Burners/Suite of Energy Efficiency Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EAFs and<br>LMFs                                                    | AR-0173  | BIG RIVER STEEL LLC               | 1/31/2022   | 250       | tons steel/hr             | 747,098           | tons/yr     | Good Operating Practices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SN-01 EAF                                                           | AR-0172  | Nucor Steel Arkansas              | 9/1/2021    | 250       | tons steel/hr             | 747,098           | tons/yr     | Improved process Control, variable speed<br>drives, transformer efficiency, foamy slag<br>practice, oxy fuel burners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Electric Arc<br>Furnaces<br>(EAF)                                   | *TX-0882 | SDSW STEEL MILL                   | 01/17/2020  | -         | -                         | -                 | -           | GOOD COMBUSTION PRACTICES, CLEAN FUEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Metallurgical<br>Stations                                           | *TX-0882 | SDSW STEEL MILL                   | 01/17/2020  | -         | -                         | -                 | -           | GOOD COMBUSTION PRACTICES, CLEAN FUEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Twin-Station<br>Ladle<br>Metallurgy<br>Facility (LMF<br>3/4) (P906) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250       | tons steel/hr             | 73,000            | lb/hr       | Implementation of the following low-emitting processes, system designs, management practices and methods for EAF and LMF operations resulting in an overall emission rat of 292 lbs CO2e/ton of liquid steel produced.  (a)furnace design â€" single bucket batch charging; (b)oxy-fuel burners â€" supplement of chemical energy thru scrap preheating and carbon/oxygen injection; (c)foamy slag practice â€" increased electrical efficiency and reduced radiant heat loss; (d)real-time off-gas analysis and closed-loop process control of oxygen flow and air ingres â€" regulates energy input and post-combustion temperature and composition; (e)ultra-high-power transformer â€" lower power-on times due to faster melting of scrap; (f)eccentric bottom tapping â€" lower treatment requirements in LMF due to reduce slag carryover from tapping; (g)heel practice â€" higher retention of liquid heel heats scrap faster resulting in quick arc stabilization. |

| Process                                                             | RBLC ID  | Facility                          | Permit Date<br>(from RBLC) | (US   | n Capacity<br>tpy) | Permitte        | ed GHG Limit                            | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------|----------|-----------------------------------|----------------------------|-------|--------------------|-----------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |          |                                   | (HOIH RBLC)                | Value | Unit               | Unit Value Unit |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Twin-Station<br>Ladle<br>Metallurgy<br>Facility (LMF<br>3/4) (P906) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019                 | 250   | tons steel/hr      | 594,220         | tons/yr per 12-month rolling<br>average | Implementation of the following low-emitting processes, system designs, management practices and methods for EAF and LMF operations resulting in an overall emission rate of 292 lbs CO2e/ton of liquid steel produced.  (a)furnace design â€" single bucket batch charging; (b)oxy-fuel burners â€" supplement of chemical energy thru scrap preheating and carbon/oxygen injection; (c)foamy slag practice â€" increased electrical efficiency and reduced radiant heat loss; (d)real-time off-gas analysis and closed-loop process control of oxygen flow and air ingress â€" regulates energy input and post-combustion temperature and composition; (e)ultra-high-power transformer â€" lower power-on times due to faster melting of scrap; (f)eccentric bottom tapping â€" lower treatment requirements in LMF due to reduced slag carryover from tapping; (g)heel practice â€" higher retention of liquid heel heats scrap faster resulting in quick arc stabilization. |

| Process                              | RBLC ID | Facility                          | Permit Date<br>(from RBLC) |       | n Capacity<br>tpy) | Permitted | GHG Limit | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------|---------|-----------------------------------|----------------------------|-------|--------------------|-----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | -       |                                   | (IIOIII RBLC)              | Value | Unit               | Value     | Unit      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Electric Arc<br>Furnace #2<br>(P905) |         | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019                 | 250   | tons steel/hr      | 73,000    | lb/hr     | Implementation of the following low-emitting processes, system designs, management practices and methods for EAF and LMF operations resulting in an overall emission rat of 292 lbs CO2e/ton of liquid steel produced.  (a)furnace design â€" single bucket batch charging; (b)oxy-fuel burners â€" supplement of chemical energy thru scrap preheating and carbon/oxygen injection; (c)foamy slag practice â€" increased electrical efficiency and reduced radiant heat loss; (d)real-time off-gas analysis and closed-loop process control of oxygen flow and air ingress â€" regulates energy input and post-combustion temperature and composition; (e)ultra-high-power transformer â€" lower power-on times due to faster melting of scrap; (f)eccentric bottom tapping â€" lower treatment requirements in LMF due to reduce slag carryover from tapping; (g)heel practice â€" higher retention of liquid heel heats scrap faster resulting in quick arc stabilization. |

| Process                                | RBLC ID  | Facility                          | Permit Date | nations of BACT for GHO<br>Production<br>(US) | ո Capacity    | Permitted        | GHG Limit                               | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------|----------|-----------------------------------|-------------|-----------------------------------------------|---------------|------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |          | ,                                 | (from RBLC) | Value                                         | Unit          | Value            | Unit                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Electric Arc<br>Furnace #2<br>(P905)   | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019  | 250                                           | tons steel/hr | 594,220          | tons/yr per 12-month rolling<br>average | Implementation of the following low-emitting processes, system designs, management practices and methods for EAF and LMF operations resulting in an overall emission rate of 292 lbs CO2e/ton of liquid steel produced.  (a)furnace design â€" single bucket batch charging;  (b)oxy-fuel burners â€" supplement of chemical energy thru scrap preheating and carbon/oxygen injection;  (c)foamy slag practice â€" increased electrical efficiency and reduced radiant heat loss;  (d)real-time off-gas analysis and closed-loop process control of oxygen flow and air ingress â€" regulates energy input and post-combustion temperature and composition;  (e)ultra-high-power transformer â€" lower power-on times due to faster melting of scrap;  (f)eccentric bottom tapping â€" lower treatment requirements in LMF due to reduced slag carryover from tapping;  (g)heel practice â€" higher retention of liquid heel heats scrap faster resulting in quick arc stabilization. |
| Electric Arc<br>Furnaces               | *AL-0327 | NUCOR STEEL<br>DECATUR, LLC       | 08/14/2019  | -                                             | -             | 504000 TONS/YEAR | tons/yr                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Meltshop<br>Operations                 | -        | Gerdau Ameristeel, NC             | 5/1/2019    | 90                                            | tons steel/hr | -                | -                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Meltshop<br>Baghouse<br>&<br>Fugitives | FL-0368  | Nucor Frostproof, FL              | 02/14/2019  | 450,000                                       | tons steel/yr | 438              | lb/ton                                  | Scrap preheating & an energy monitoring and management system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Meltshop<br>Baghouse<br>&<br>Fugitives | FL-0368  | Nucor Frostproof, FL              | 02/14/2019  | 450,000                                       | tons steel/yr | 26,280           | lb/hr per 12-month rolling<br>average   | Scrap preheating & an energy monitoring and management system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Process                                                       | RBLC ID | Facility                        | Permit Date | Production<br>(US                |                                      | Permitted        | GHG Limit                               | Control                                                                                               |
|---------------------------------------------------------------|---------|---------------------------------|-------------|----------------------------------|--------------------------------------|------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                               |         |                                 | (from RBLC) | Value                            | Unit                                 | Value            | Unit                                    |                                                                                                       |
| Melt Shop<br>(FGMELTSH<br>OP)                                 | MI-0438 | GERDAU MACSTEEL<br>MONROE       | 10/29/2018  | -                                | -                                    | 256,694          | tons/yr per 12-month rolling<br>average | Energy efficiency management plan                                                                     |
| Electric Arc<br>Furnace and<br>Ladle<br>Metallurgy<br>Furnace | TX-0848 | STEEL MILL                      | 09/14/2018  | -                                | -                                    | -                | -                                       | scrap management, good combustion                                                                     |
| Electric Arc<br>Furnace                                       | 1       | Nucor Sedalia, MO               | 9/12/2018   | 450,000                          | tons steel/yr                        | 438              | lb/ton                                  | Various Technologies                                                                                  |
| Electric Arc<br>Furnace and<br>Ladle<br>Metallurgy<br>Station | 1       | CMC Mesa, AZ                    | 6/14/2018   | 435,000                          | tons steel/yr                        | -                | -                                       | Employ good combustion practices. Implement a scrap management plan. Employ good combustion practices |
| Electric Arc<br>Furnace                                       | AL-0319 | NUCOR STEEL<br>TUSCALOOSA, INC. | 03/09/2017  | -                                | -                                    | 378,621          | tons/yr                                 | -                                                                                                     |
| Electric Arc<br>Furnace                                       | OK-0173 | CMC Durant, OK                  | 01/19/2016  | -                                | -                                    | 535              | lb/ton                                  | Pre-heating scrap with exhausts from furnace                                                          |
|                                                               |         |                                 |             | Fã                               | ncilities With Permits Iss           | sued Before 2016 |                                         |                                                                                                       |
| Fume<br>Treatment<br>Plant (EAF)                              | LA-0309 | BENTELER STEEL TUBE<br>FACILITY | 6/4/2015    | 90                               | tons steel/hr                        | -                | -                                       | designs and work practices                                                                            |
| FG-<br>MELTSHOP<br>(Melt Shop)                                | MI-0417 | GERDAU MACSTEEL,<br>INC.        | 10/27/2014  | 130                              | tons steel/hr                        | 320              | lb/ton                                  | -                                                                                                     |
| FG-<br>MELTSHOP<br>(Melt Shop)                                | MI-0417 | GERDAU MACSTEEL,<br>INC.        | 10/27/2014  | 130                              | tons steel/hr                        | 134,396          | tons/yr per 12-month rolling<br>average | -                                                                                                     |
| MELT SHOP<br>GHG                                              | AR-0140 | BIG RIVER STEEL LLC             | 9/18/2013   | -                                | -                                    | 0                | lb/ton                                  | ENERGY EFFICIENCY IMPROVEMENTS                                                                        |
| MELTSHOP                                                      | IN-0196 | NUCOR STEEL                     | 09/17/2013  | 502                              | tons steel/hr                        | 544,917          | tons/yr                                 | -                                                                                                     |
| Melt Shop<br>(FG-<br>MELTSHOP)                                | MI-0404 | GERDAU MACSTEEL,<br>INC.        | 01/04/2013  | 130                              | tons liquid steel/hr                 | 0                | lb/ton                                  | -                                                                                                     |
| Melt Shop<br>(FG-<br>MELTSHOP)                                | MI-0404 | GERDAU MACSTEEL,<br>INC.        | 01/04/2013  | 130                              | tons liquid steel/hr                 | 157,365          | tons/yr per 12-month rolling<br>average | -                                                                                                     |
|                                                               |         |                                 |             | ut thou are an ECC process/micro | nill and are cimilar to the proposed |                  |                                         |                                                                                                       |

The CMC Mesa, Nucor Sedalia and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

<sup>\*</sup> Indicates that the facilities are draft determination in the RBLC database.

|                                                                   |          | t Permit Limitations an         | Permit Date |                 | pacity (US tpy)  |                        | luoride Limit | Control                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------|----------|---------------------------------|-------------|-----------------|------------------|------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process                                                           | RBLC ID  | Facility                        | (from RBLC) | Value           | Unit             | Value                  | Unit          | Control                                                                                                                                                                                                                                          |
|                                                                   |          |                                 |             | Facilities With | Permits Issued A | fter 2016 <sup>1</sup> |               |                                                                                                                                                                                                                                                  |
| EAF/LMF                                                           | WV-0034  | Nucor Steel West<br>Virginia    | 5/5/2022    | 3,000,000       | tons steel/yr    | 0.57                   | lb/hr         | Direct-shell evacuation control (DEC) system designed and operated to achieve a minimum capture efficiency of 95% of all potential particulate matter emissions from the EAFs and LMFs and evacuate the exhaust to each associated EAF baghouse. |
| SN-01 EAF                                                         | AR-0172  | Steel Mill                      | 9/1/2021    | 250             | tons steel/hour  | -                      | -             | -                                                                                                                                                                                                                                                |
| Melt Shop #1<br>(EU 01)<br>Baghouse #1 &<br>#2 Stack              | -        | Steel Mini Mill                 | 4/19/2021   | 2,000,000       | tons steel/yr    | 0.0035                 | lb/ton        | Emissions are controlled by 2 baghouses (combined stack). Noncombustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.                                                                                           |
| Melt Shop (EU<br>01) & Melt Shop<br>Combustion<br>Sources (EU 02) | -        | Steel Mill                      | 7/23/2020   | 1,750,000       | tons steel/yr    | -                      | -             | -                                                                                                                                                                                                                                                |
| Electric Arc<br>Furnaces (EAF)                                    | *TX-0882 | SDSW Steel, TX                  | 01/17/2020  | -               | -                | 0.01                   | lb/ton        | BAGHOUSE                                                                                                                                                                                                                                         |
| Ladle<br>Metallurgical<br>Stations (LMS)                          | *TX-0882 | SDSW Steel, TX                  | 01/17/2020  | -               | -                | 0.01                   | GR/DSCF       | BAGHOUSE                                                                                                                                                                                                                                         |
| Electric Arc<br>Furnaces (EAF)                                    | -        | SDSW Steel, TX                  | 01/17/2020  | -               | -                | 0.01                   | lb/ton        | Baghouse                                                                                                                                                                                                                                         |
| Electric Arc<br>Furnaces (EAF)                                    | ı        | Steel Manufacturing<br>Facility | 1/2/2020    | -               | -                | -                      | -             | -                                                                                                                                                                                                                                                |
| Meltshop<br>Operations                                            | -        | Gerdau Ameristeel, NC           | 5/1/2019    | 90              | tons steel/hour  | N/A                    | N/A           | -                                                                                                                                                                                                                                                |
| Meltshop<br>Baghouse &<br>Fugitives                               | FL-0368  | Nucor Frostproof, FL            | 2/14/2019   | 450,000         | tons steel/yr    | 0.059                  | lb/ton        | Baghouse                                                                                                                                                                                                                                         |
| Meltshop<br>Baghouse &<br>Fugitives                               | FL-0368  | NUCOR STEEL FLORIDA<br>FACILITY | 2/14/2019   | 450,000         | tons steel/yr    | 3.54                   | lb/hr         | Baghouse                                                                                                                                                                                                                                         |
| Electric Arc<br>Furnaces (EAF)                                    | *NE-0061 | Nucor Norfolk, NE               | 12/30/2018  | 206             | tons scrap/hour  | 0.0059                 | lb/ton        | -                                                                                                                                                                                                                                                |
| Electric Arc<br>Furnaces (EAF)                                    | -        | Nucor Sedalia, FL               | 9/12/2018   | 450,000         | tons steel/yr    | 0.059                  | lb/ton        | Baghouse                                                                                                                                                                                                                                         |
| Electric Arc<br>Furnace and<br>Ladle Metallurgy<br>Station        | -        | CMC Mesa, AZ                    | 6/14/2018   | 435,000         | tons steel/yr    | 0.01                   | lb/ton        | -                                                                                                                                                                                                                                                |

| Process                                         | RBLC ID  | Facility                  | Permit Date | Production Ca | pacity (US tpy) | Permitted F | luoride Limit                                     | Control                                   |
|-------------------------------------------------|----------|---------------------------|-------------|---------------|-----------------|-------------|---------------------------------------------------|-------------------------------------------|
| Process                                         | KBLC 1D  | racility                  | (from RBLC) | Value         | Unit            | Value       | Unit                                              | Control                                   |
| Melt Shop<br>Equipment<br>(furnace<br>baghouse) | SC-0183  | NUCOR STEEL -<br>BERKELEY | 5/4/2018    | 175           | tons steel/hour | 0.09        | lb/hr 12-HOUR<br>BLOCK<br>AVERAGE/PARTICU<br>LATE | Direct shell evacuation furnace baghouse. |
| Melt Shop<br>Equipment<br>(furnace<br>baghouse) | SC-0183  | NUCOR STEEL -<br>BERKELEY | 5/4/2018    | 175           | tons steel/hour | 1.57        | lb/hr 12-HOUR<br>BLOCK<br>AVERAGE/GASEOU<br>S     | Direct shell evacuation furnace baghouse. |
| Electric Arc<br>Furnaces (EAF)                  | *NE-0062 | Nucor Norfolk, NE         | 07/07/2017  | 1,350,000     | tons steel/yr   | 0.059       | lb/ton                                            | BAGHOUSE                                  |
| Electric Arc<br>Furnaces (EAF)                  | OK-0173  | CMC STEEL OKLAHOMA        | 1/19/2016   | -             | -               | N/A         | N/A                                               | -                                         |

<sup>&</sup>lt;sup>1</sup> The CMC Mesa, CMC Oklahoma, Nucor Sedalia, and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility. \* Indicates that the facilities are draft determination in the RBLC database.

Table B-8. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for CO (Prior 10 Years)

| Process                                                               | RBLC ID | Facility                        | Permit Date (from RBLC) | <b>Production Capacity</b> | Permitted CO Limit | Control                                                    |
|-----------------------------------------------------------------------|---------|---------------------------------|-------------------------|----------------------------|--------------------|------------------------------------------------------------|
|                                                                       |         |                                 | Comparable F            | acilities 1                |                    |                                                            |
| Meltshop Natural Gas Combustion                                       | -       | NUCOR STEEL SEDALIA             | 9/12/2018               | 450,000 tpy                | 0.084 lb/MMBtu     | GCP of pipeline quality natural gas                        |
| Ladle Preheaters                                                      | -       | CMC MESA                        | 6/14/2018               | 435,000 tpy                | 0.084 lb/MMBtu     | -                                                          |
| Ladle Dryer                                                           | -       | CMC MESA                        | 6/14/2018               | 435,000 tpy                | 0.084 lb/MMBtu     | -                                                          |
| Tundish Preheater                                                     | -       | CMC MESA                        | 6/14/2018               | 435,000 tpy                | 0.084 lb/MMBtu     | -                                                          |
| Tundish Dryer                                                         | -       | CMC MESA                        | 6/14/2018               | 435,000 tpy                | 0.084 lb/MMBtu     | -                                                          |
| Tundish Mandril Dryer                                                 | -       | CMC MESA                        | 6/14/2018               | 435,000 tpy                | 0.084 lb/MMBtu     | -                                                          |
| Heaters (Gas-Fired)                                                   | OK-0173 | CMC STEEL OKLAHOMA              | 1/19/2016               | -                          | 0.084 lb/MMBtu     | Natural gas fuel                                           |
| Ladle and Tundish Preheaters, Dryers and Skull Cutting                | FL-0368 | NUCOR STEEL FLORIDA<br>FACILITY | 2/14/2019               | 45.75 MMBtu/hr             | 0.084 lb/MMBtu     | Good combustion practices                                  |
|                                                                       |         |                                 | Not Comparable          | Facilities <sup>2</sup>    |                    |                                                            |
| SMALL HEATERS AND DRYERS SN-<br>05 THROUGH 19                         | AR-0140 | BIG RIVER STEEL LLC             | 09/18/2013              | -                          | 0.0824 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE     |
| DRYERS, MGO COATING LINE                                              | AR-0140 | BIG RIVER STEEL LLC             | 09/18/2013              | 38 MMBtu/hr                | 0.0824 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE     |
| SMALL HEATERS AND DRYERS SN-<br>05 THROUGH SN-11, SN-16, AND<br>SN-17 | AR-0155 | BIG RIVER STEEL LLC             | 11/07/2018              | -                          | 0.0824 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE     |
| PREHEATER, GALVANIZING LINE<br>SN-28                                  | AR-0155 | BIG RIVER STEEL LLC             | 11/07/2018              | 78.2 MMBtu/hr              | 0.0824 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE     |
| SMALL HEATERS AND DRYERS SN-<br>16 through SN-19B                     | AR-0159 | BIG RIVER STEEL LLC             | 04/05/2019              | -                          | 0.0824 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE     |
| SMALL HEATERS AND DRYERS SN-<br>10 through SN-13                      | AR-0159 | BIG RIVER STEEL LLC             | 04/05/2019              | -                          | 0.0824 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE     |
| PREHEATERS, GALVANIZING LINE<br>SN-28 and SN-29                       | AR-0159 | BIG RIVER STEEL LLC             | 04/05/2019              | -                          | 0.0824 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE     |
| BOILER, ANNEALING PICKLE LINE                                         | AR-0159 | BIG RIVER STEEL LLC             | 04/05/2019              | ı                          | 0.0824 lb/MMBtu    | Combustion of Natural gas and Good<br>Combustion Practice  |
| COLD MILL SPACE HEATERS                                               | AR-0159 | BIG RIVER STEEL LLC             | 04/05/2019              | -                          | 0.0824 lb/MMBtu    | Combustion of Natural gas and Good Combustion Practice     |
| SN-220, 222, 225, 228, 229                                            | AR-0171 | NUCOR STEEL ARKANSAS            | 02/14/2019              | -                          | 0.084 lb/MMBtu     | Good Combustion Practices                                  |
| SN-228 and SN-229 Zinc Dryer<br>and Zinc Pot Preheat                  | AR-0171 | NUCOR STEEL ARKANSAS            | 02/14/2019              | 3 MMBtu/hr each            | 0.084 lb/MMBtu     | Good Combustion Practices                                  |
| SN-141 Vacuum Tank Degasser<br>No. 2                                  | AR-0171 | NUCOR STEEL ARKANSAS            | 02/14/2019              | -                          | 0.062 lb/ton steel | Flare                                                      |
| Charge Hopper Dedusting                                               | AR-0173 | BIG RIVER STEEL LLC             | 01/31/2022              | -                          | 0.08 lb/MMBtu      | Combustion of Natural Gas and Good<br>Combustion Practices |
| VT Degassers                                                          | AR-0173 | BIG RIVER STEEL LLC             | 01/31/2022              | -                          | 0.0824 lb/MMBtu    | Combustion of natural gas and good combustion practice     |
| Lime Injector Burners                                                 | AR-0173 | BIG RIVER STEEL LLC             | 01/31/2022              | -                          | 0.0824 lb/MMBtu    | Combustion of natural gas and good combustion practices    |
| Hydrogen Plant #2 Reformer<br>Furnace                                 | AR-0173 | BIG RIVER STEEL LLC             | 01/31/2022              | 75 MMBtu/hr                | 0.0824 lb/MMBtu    | Combustion of Natural gas and Good Combustion Practice     |

Table B-8. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for CO (Prior 10 Years)

| Process                                                                                                  | RBLC ID | Facility                     | Permit Date (from RBLC) | Production Capacity               | Permitted CO Limit | Control                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------|---------|------------------------------|-------------------------|-----------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reformer Natural Gas Fired                                                                               | AR-0173 | BIG RIVER STEEL LLC          | 01/31/2022              | 1591 MMBtu/hr                     | 543.2 TPY          | Scrubber, Low Combustion of Natural Gas,<br>and Good Combustion Practices NOX<br>Burners,                                                                                                                                                                                                                                       |
| Vertical and Horizontal Ladle<br>Preheaters                                                              | AR-0173 | BIG RIVER STEEL LLC          | 01/31/2022              | -                                 | 0.0824 lb/MMBtu    | Combustion of Natural gas and Good<br>Combustion Practices                                                                                                                                                                                                                                                                      |
| Tundish Preheaters/Dryout Stand                                                                          | AR-0173 | BIG RIVER STEEL LLC          | 01/31/2022              | -                                 | 0.0824 lb/MMBtu    | Combustion of Natural gas and Good<br>Combustion Practices                                                                                                                                                                                                                                                                      |
| Natural Gas Space Heaters                                                                                | AR-0173 | BIG RIVER STEEL LLC          | 01/31/2022              | 170 MMBtu/hr                      | 0.0824 lb/MMBtu    | Combustion of Natural gas and Good<br>Combustion Practice                                                                                                                                                                                                                                                                       |
| Coil Coating Line Dryers and<br>Ovens                                                                    | AR-0173 | BIG RIVER STEEL LLC          | 01/31/2022              | -                                 | 0.0824 lb/MMBtu    | Good combustion practices<br>Energy efficient burners<br>Combustion of natural gas                                                                                                                                                                                                                                              |
| Coil Coating Line RTO                                                                                    | AR-0173 | BIG RIVER STEEL LLC          | 01/31/2022              | 12.2 MMBtu/hr                     | 0.0824 lb/MMBtu    | Good combustion practices<br>Energy efficient burners<br>Combustion of natural gas                                                                                                                                                                                                                                              |
| Casting Process Heating Source                                                                           | AR-0173 | BIG RIVER STEEL LLC          | 01/31/2022              | 30 MMBtu/hr                       | 0.0824 lb/MMBtu    | Combustion of Natural gas and Good<br>Combustion Practices                                                                                                                                                                                                                                                                      |
| EP 05-03 - Heavy Plate Cutting<br>Beds #1-#4                                                             | KY-0110 | NUCOR STEEL<br>BRANDENBURG   | 07/23/2020              | 150000 tons steel/yr              | 84 lb/MMscf        | This EP is required to have a Good Work Practices (GWP) Plan.                                                                                                                                                                                                                                                                   |
| EP 15-01 - Natural Gas Direct-<br>Fired Space Heaters, Process<br>Water Heaters, & Air Makeup<br>Heaters | KY-0110 | NUCOR STEEL<br>BRANDENBURG   | 07/23/2020              | 40 MMBtu/hr, combined             | 84 lb/MMscf        | This EP is required to have a Good<br>Combustion and Operating Practices<br>(GCOP) Plan.                                                                                                                                                                                                                                        |
| Melt Shop (EU 01) & Delt Shop Combustion Sources (EU 02)                                                 | KY-0110 | NUCOR STEEL<br>BRANDENBURG   | 07/23/2020              | 1750000 tons steel<br>produced/yr | 1.98 lb/ton steel  | The facility is equipped with Continuous Emission Monitors (CEMS) to enable real-time monitoring of CO emissions, allowing adjustments to the process as needed to reduce emissions. Additionally, All EPs are required to have with a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan. |
| Galvanizing Line #2 Alkali Cleaning<br>Section Heater (EP 21-07B)                                        | KY-0115 | NUCOR STEEL GALLATIN,<br>LLC | 04/19/2021              | 23 MMBtu/hr                       | 84 lb/MMscf        | The permittee must develop a Good<br>Combustion and Operating Practices<br>(GCOP) Plan                                                                                                                                                                                                                                          |
| Galvanizing Line #2 Zinc Pot<br>Preheater (EP 21-09)                                                     | KY-0115 | NUCOR STEEL GALLATIN,<br>LLC | 04/19/2021              | 3 MMBtu/hr                        | 84 lb/MMscf        | The permittee must develop a Good<br>Combustion and Operating Practices<br>(GCOP) Plan                                                                                                                                                                                                                                          |
| Galvanizing Line #2 Chemical<br>Treatment & Dryer (EP 21-<br>11)                                         | KY-0115 | NUCOR STEEL GALLATIN,<br>LLC | 04/19/2021              | 876000 tons steel/yr              | 84 lb/MMscf        | The permittee must develop a Good<br>Combustion and Operating Practices<br>(GCOP) Plan                                                                                                                                                                                                                                          |
| Vacuum Degasser (incl. pilot<br>emissions) (EP 20-12)                                                    | KY-0115 | NUCOR STEEL GALLATIN,<br>LLC | 04/19/2021              | 700000 tons steel/yr              | 26.89 lb/hr        | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan and a Good Work Practices (GWP) Plan to minimize emissions. Also controlled by a flare for CO emissions.                                                                                                                                       |

Table B-8. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for CO (Prior 10 Years)

| Process                                              | RBLC ID | Facility                          | Permit Date (from RBLC) | <b>Production Capacity</b> | Permitted CO Limit | Control                                                  |
|------------------------------------------------------|---------|-----------------------------------|-------------------------|----------------------------|--------------------|----------------------------------------------------------|
| Tundish Dryer #2 (P030)                              | OH-0381 | NORTHSTAR BLUESCOPE<br>STEEL, LLC | 09/27/2019              | 1.2 MMBtu/hr               | 0.02 lb/hr         | Use of natural gas, good combustion practices and design |
| Ladle Preheaters and Dryers (P021-<br>023, P025-026) | OH-0381 | NORTHSTAR BLUESCOPE<br>STEEL, LLC | 09/27/2019              | 16 MMBtu/hr                | 0.32 lb/hr         | Use of natural gas, good combustion practices and design |
| Tundish Preheaters #3 and #4<br>(P028 and P029)      | OH-0381 | NORTHSTAR BLUESCOPE<br>STEEL, LLC | 09/27/2019              | 9.5 MMBtu/hr               | 0.19 lb/hr         | Use of natural gas, good combustion practices and design |
| Caster #2 (P907)                                     | OH-0381 | NORTHSTAR BLUESCOPE<br>STEEL, LLC | 09/27/2019              | 250 T/hr                   | 500 lb/hr          | DEC systems with air gap                                 |

<sup>&</sup>lt;sup>1</sup> The CMC Mesa and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility.

<sup>&</sup>lt;sup>2</sup> These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

Table B-9. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for NO<sub>x</sub> (Prior 10 Years)

| Process                                                              | RBLC ID | Facility                        | Permit Date (from<br>RBLC) | Production Capacity     | Permitted NO <sub>x</sub><br>Limit | Control                                                                                |
|----------------------------------------------------------------------|---------|---------------------------------|----------------------------|-------------------------|------------------------------------|----------------------------------------------------------------------------------------|
|                                                                      |         |                                 | Comparable F               | acilities 1             |                                    |                                                                                        |
| Meltshop Natural Gas Combustion                                      | -       | NUCOR STEEL SEDALIA             | 9/12/2018                  | 450,000 tpy             | 0.1 lb/MMBtu                       | GCP of pipeline quality natural gas                                                    |
| Ladle Preheaters                                                     | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr          | 0.098 lb/MMBtu                     | -                                                                                      |
| Ladle Dryer                                                          | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr          | 0.098 lb/MMBtu                     | -                                                                                      |
| Tundish Preheater                                                    | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr          | 0.098 lb/MMBtu                     | -                                                                                      |
| Tundish Dryer                                                        | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr          | 0.098 lb/MMBtu                     | -                                                                                      |
| Tundish Mandril Dryer                                                | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr          | 0.098 lb/MMBtu                     | -                                                                                      |
| Heaters (Gas-Fired)                                                  | OK-0173 | CMC STEEL OKLAHOMA              | 1/19/2016                  |                         | 0.1 lb/MMBtu                       | Natural gas fuel                                                                       |
| Ladle and Tundish Preheaters, Dryers and Skull Cutting               | FL-0368 | NUCOR STEEL FLORIDA<br>FACILITY | 2/14/2019                  | 45.75 MMBtu/hr          | 0.1 lb/MMBtu                       | Good combustion practices                                                              |
|                                                                      |         |                                 | Not Comparable             | Facilities <sup>2</sup> |                                    |                                                                                        |
| SMALL HEATERS AND DRYERS<br>SN-05 THROUGH 19                         | AR-0142 | BIG RIVER STEEL LLC             | 09/18/2013                 | -                       | 0.08 lb/MMBtu                      | LOW NOX BURNERS COMBUSTION OF CLEAN FUEL GOOD COMBUSTION PRACTICES                     |
| DRYERS, MGO COATING LINE                                             | AR-0151 | BIG RIVER STEEL LLC             | 09/18/2013                 | 38 MMBtu/hr             | 0.1 lb/MMBtu                       | LOW NOX BURNERS COMBUSTION OF CLEAN FUEL GOOD COMBUSTION PRACTICES                     |
| SMALL HEATERS AND DRYERS<br>SN-05 THROUGH SN-11, SN-16,<br>AND SN-17 | AR-0155 | BIG RIVER STEEL LLC             | 11/07/2018                 | -                       | 0.095 lb/MMBtu                     | LOW NOX BURNERS COMBUSTION OF CLEAN FUEL GOOD COMBUSTION PRACTICES                     |
| PREHEATER, GALVANIZING LINE<br>SN-28                                 | AR-0158 | BIG RIVER STEEL LLC             | 11/07/2018                 | 78.2 MMBtu/hr           | 0.035 lb/MMBtu                     | SCR, LOW NOX BURNERS, AND COMBUSTION OF<br>CLEAN FUEL AND GOOD COMBUSTION<br>PRACTICES |
| SMALL HEATERS AND DRYERS<br>SN-16 through SN-19B                     | AR-0161 | BIG RIVER STEEL LLC             | 04/05/2019                 | -                       | 0.097 lb/MMBtu                     | Low NOx burners, Combustion of clean fuel, and Good Combustion Practices               |
| SMALL HEATERS AND DRYERS<br>SN-10 through SN-13                      | AR-0162 | BIG RIVER STEEL LLC             | 04/05/2019                 | -                       | 0.095 lb/MMBtu                     | LOW NOX BURNERS, COMBUSTION OF CLEAN FUEL, AND GOOD COMBUSTION PRACTICES               |
| PREHEATERS, GALVANIZING<br>LINE SN-28 and SN-29                      | AR-0164 | BIG RIVER STEEL LLC             | 04/05/2019                 | -                       | 0.035 lb/MMBtu                     | SCR, LOW NOX BURNERS, AND COMBUSTION OF<br>CLEAN FUEL AND<br>GOOD COMBUSTION PRACTICES |
| COLD MILL SPACE HEATERS                                              | AR-0168 | BIG RIVER STEEL LLC             | 04/05/2019                 | -                       | 0.08 lb/MMBtu                      | Low NOx burners, Combustion of clean fuel, and Good Combustion Practices               |
| SN-220, 222, 225, 228, 229                                           | AR-0183 | NUCOR STEEL ARKANSAS            | 02/14/2019                 | -                       | 0.063 lb/MMBtu                     | Low Nox Burners                                                                        |
| SN-228 and SN-229 Zinc Dryer<br>and Zinc Pot Preheat                 | AR-0184 | NUCOR STEEL ARKANSAS            | 02/14/2019                 | 3 MMBtu/hr each         | 0.1 lb/MMBtu                       | Low Nox Burners                                                                        |
| Lime Injector Burners                                                | AR-0198 | BIG RIVER STEEL LLC             | 01/31/2022                 | -                       | 0.095 lb/MMBtu                     | Low NOX burners<br>Combustion of clean fuel<br>Good Combustion Practices               |
| Vertical and Horizontal Ladle<br>Preheaters                          | AR-0204 | BIG RIVER STEEL LLC             | 01/31/2022                 | -                       | 0.095 lb/MMBtu                     | Low NOx burners<br>Combustion of clean fuel<br>Good Combustion Practices               |
| Tundish Preheaters/Dryout Stand                                      | AR-0205 | BIG RIVER STEEL LLC             | 01/31/2022                 | -                       | 0.097 lb/MMBtu                     | Low NOx burners<br>Combustion of clean fuel<br>Good Combustion Practices               |

Table B-9. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for NO<sub>x</sub> (Prior 10 Years)

| Process                                                                                                  | RBLC ID | Facility                          | Permit Date (from RBLC) | Production Capacity               | Permitted NO <sub>x</sub><br>Limit | Control                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------|---------|-----------------------------------|-------------------------|-----------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Natural Gas Space Heaters                                                                                | AR-0209 | BIG RIVER STEEL LLC               | 01/31/2022              | 170 MMBtu/hr                      | 0.08 lb/MMBtu                      | Low NOx burners<br>Combustion of clean fuel<br>Good Combustion Practices                                                                                                                                                                                                                                                         |
| Coil Coating Line Dryers and<br>Ovens                                                                    | AR-0211 | BIG RIVER STEEL LLC               | 01/31/2022              | -                                 | 0.1 lb/MMBtu                       | Good combustion practices<br>Energy efficient burners<br>Combustion of natural gas                                                                                                                                                                                                                                               |
| Casting Process Heating Source                                                                           | AR-0213 | BIG RIVER STEEL LLC               | 01/31/2022              | 30 MMBtu/hr                       | 0.095 lb/MMBtu                     | Low NOx burners<br>Combustion of clean fuel<br>Good Combustion Practices                                                                                                                                                                                                                                                         |
| EP 15-01 - Natural Gas Direct-<br>Fired Space Heaters, Process<br>Water Heaters, & Air<br>Makeup Heaters | AR-0223 | NUCOR STEEL BRANDENBURG           | 07/23/2020              | 40 MMBtu/hr, combined             | 70 lb/MMscf                        | Low-Nox Burner (Designed to maintain 0.07 lb/MMBtu); and a Good Combustion and Operating Practices (GCOP) Plan.                                                                                                                                                                                                                  |
| Melt Shop (EU 01) & Damp; Melt Shop Combustion Sources (EU 02)                                           | AR-0226 | NUCOR STEEL BRANDENBURG           | 07/23/2020              | 1750000 tons steel<br>produced/yr | 0.42 lb/ton                        | The facility is equipped with Continuous Emission Monitors (CEMS) to enable real-time monitoring of NOx emissions, allowing adjustments to the process as needed to reduce emissions. Additionally, All EPs are required to have with a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan. |
| EP 01-06 - Caster Torch Cutoff                                                                           | AR-0228 | NUCOR STEEL BRANDENBURG           | 07/23/2020              | 0.64 MMBtu/hr                     | 100 lb/MMscf                       |                                                                                                                                                                                                                                                                                                                                  |
| Galvanizing Line #2 Zinc Pot<br>Preheater (EP 21-09)                                                     | AR-0260 | NUCOR STEEL GALLATIN, LLC         | 04/19/2021              | 3 MMBtu/hr                        | 70 lb/MMscf                        | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan. This unit is equipped with a low-NOx burner.                                                                                                                                                                                                   |
| Galvanizing Line #2 Chemical<br>Treatment & Dryer (EP 21-<br>11)                                         | AR-0261 | NUCOR STEEL GALLATIN, LLC         | 04/19/2021              | 876000 tons steel/yr              | 70 lb/MMscf                        | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan. Equipped with a low-NOx burner (0.07 lb/MMBtu).                                                                                                                                                                                                |
| Vacuum Degasser (incl. pilot<br>emissions) (EP 20-12)                                                    | AR-0262 | NUCOR STEEL GALLATIN, LLC         | 04/19/2021              | 700000 tons steel/yr              | 3.02 lb/hr                         | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan and a Good Work Practices (GWP) Plan to minimize emissions.                                                                                                                                                                                     |
| Tundish Dryer #2 (P030)                                                                                  | AR-0270 | NORTHSTAR BLUESCOPE STEEL,<br>LLC | 09/27/2019              | 1.2 MMBtu/hr                      | 0.12 lb/hr                         | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                                                         |
| Ladle Preheaters and Dryers<br>(P021-023, P025-026)                                                      | AR-0271 | NORTHSTAR BLUESCOPE STEEL,<br>LLC | 09/27/2019              | 16 MMBtu/hr                       | 1.6 lb/hr                          | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                                                         |
| Tundish Preheaters #3 and #4<br>(P028 and P029)                                                          | AR-0272 | NORTHSTAR BLUESCOPE STEEL,<br>LLC | 09/27/2019              | 9.5 MMBtu/hr                      | 0.95 lb/hr                         | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                                                         |
| Caster #2 (P907)                                                                                         | AR-0274 | NORTHSTAR BLUESCOPE STEEL,<br>LLC | 09/27/2019              | 250 T/hr                          | 105 lb/hr                          | DEC systems with air gap                                                                                                                                                                                                                                                                                                         |

<sup>&</sup>lt;sup>1</sup> The CMC Mesa and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility.

<sup>&</sup>lt;sup>2</sup> These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

Table B-10. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for SO<sub>2</sub> (Prior 10 Years)

| Process                                                   | RBLC ID  | Facility                        | Permit Date (from RBLC) | Production Capacity         | Permitted SO <sub>2</sub> Limit | Control                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------|----------|---------------------------------|-------------------------|-----------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                           |          |                                 | Comparable              | Facilities 1                |                                 |                                                                                                                                                                                                                                                                                                           |
| Meltshop Natural Gas Combustion                           | -        | NUCOR STEEL SEDALIA             | 9/12/2018               | 450,000 tpy                 | 0.0006 lb/MMBtu                 | GCP of pipeline quality natural gas                                                                                                                                                                                                                                                                       |
| Ladle Preheaters                                          | -        | CMC MESA                        | 6/14/2018               | 435000 tons/yr              | 0.0006 lb/MMBtu                 | -                                                                                                                                                                                                                                                                                                         |
| Ladle Dryer                                               | -        | CMC MESA                        | 6/14/2018               | 435000 tons/yr              | 0.0006 lb/MMBtu                 | -                                                                                                                                                                                                                                                                                                         |
| Tundish Preheater                                         | -        | CMC MESA                        | 6/14/2018               | 435000 tons/yr              | 0.0006 lb/MMBtu                 | -                                                                                                                                                                                                                                                                                                         |
| Tundish Dryer                                             | -        | CMC MESA                        | 6/14/2018               | 435000 tons/yr              | 0.0006 lb/MMBtu                 | -                                                                                                                                                                                                                                                                                                         |
| Tundish Mandril Dryer                                     | -        | CMC MESA                        | 6/14/2018               | 435000 tons/yr              | 0.0006 lb/MMBtu                 | -                                                                                                                                                                                                                                                                                                         |
| Ladle and Tundish Preheaters, Dryers<br>and Skull Cutting | FL-0368  | NUCOR STEEL FLORIDA<br>FACILITY | 2/14/2019               | 45.75 MMBtu/hr              | 0.0006 lb/MMBtu                 | Natural gas with a sulfur content less than 2.0 gr/100 scf                                                                                                                                                                                                                                                |
|                                                           |          |                                 | Not Comparat            | ole Facilities <sup>2</sup> |                                 |                                                                                                                                                                                                                                                                                                           |
| SMALL HEATERS AND DRYERS SN-05                            |          |                                 |                         |                             |                                 | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION                                                                                                                                                                                                                                                             |
| THROUGH 19                                                | AR-0140  | BIG RIVER STEEL LLC             | 09/18/2013              | -                           | 5.88 X10^-4 lb/MMBtu            | PRACTICE                                                                                                                                                                                                                                                                                                  |
|                                                           |          |                                 |                         |                             |                                 | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION                                                                                                                                                                                                                                                             |
| DRYERS, MGO COATING LINE                                  | AR-0140  | BIG RIVER STEEL LLC             | 09/18/2013              | 38 MMBtu/hr                 | 5.88 X10^-4 lb/MMBtu            | PRACTICE                                                                                                                                                                                                                                                                                                  |
| SMALL HEATERS AND DRYERS SN-16                            |          |                                 |                         |                             |                                 | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION                                                                                                                                                                                                                                                             |
| through SN-19B                                            | AR-0159  | BIG RIVER STEEL LLC             | 04/05/2019              | -                           | 0.0006 lb/MMBtu                 | PRACTICE                                                                                                                                                                                                                                                                                                  |
| SMALL HEATERS AND DRYERS SN-10                            |          |                                 |                         |                             |                                 | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION                                                                                                                                                                                                                                                             |
| through SN-13                                             | AR-0159  | BIG RIVER STEEL LLC             | 04/05/2019              | -                           | 5.88 X10^-4 lb/MMBtu            | PRACTICE                                                                                                                                                                                                                                                                                                  |
| PREHEATERS, GALVANIZING LINE SN-28                        |          |                                 |                         |                             |                                 | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION                                                                                                                                                                                                                                                             |
| and SN-29                                                 | AR-0159  | BIG RIVER STEEL LLC             | 04/05/2019              | -                           | 0.0006 lb/MMBtu                 | PRACTICE                                                                                                                                                                                                                                                                                                  |
| COLD MILL SPACE HEATERS                                   | AR-0159  | BIG RIVER STEEL LLC             | 04/05/2019              | -                           | 0.0006 lb/MMBtu                 | Combustion of Natural gas and Good Combustion Practice                                                                                                                                                                                                                                                    |
| MgO Coating Lines Drying Sections                         | AR-0168  | BIG RIVER STEEL LLC             | 03/17/2021              | 26.4 MMBtu/hr               | 0.0006 lb/MMBtu                 | Combustion of Natural gas and Good Combustion Practice                                                                                                                                                                                                                                                    |
| SN-220, 222, 225, 228, 229                                | AR-0171  | NUCOR STEEL ARKANSAS            | 02/14/2019              | -                           | 0.0006 lb/MMBtu                 | Good Combustion Practices                                                                                                                                                                                                                                                                                 |
| SN-228 and SN-229 Zinc Dryer and Zinc                     |          |                                 |                         |                             |                                 |                                                                                                                                                                                                                                                                                                           |
| Pot Preheat                                               | AR-0171  | NUCOR STEEL ARKANSAS            | 02/14/2019              | 3 MMBtu/hr each             | 0.0006 lb/MMBtu                 | Good Combustion Practices                                                                                                                                                                                                                                                                                 |
| Lime Injector Burners                                     | AR-0173  | BIG RIVER STEEL LLC             | 01/31/2022              | -                           | 0.0006 lb/MMBtu                 | Combustion of natural gas and good combustion practices                                                                                                                                                                                                                                                   |
|                                                           |          |                                 |                         |                             |                                 | Scrubber, Low Combustion of Natural Gas, and Good                                                                                                                                                                                                                                                         |
| Reformer Natural Gas Fired                                | AR-0173  | BIG RIVER STEEL LLC             | 01/31/2022              | 1591 MMBtu/hr               | 32.2 TPY                        | Combustion Practices NOX Burners,                                                                                                                                                                                                                                                                         |
| Tundish Preheaters/Dryout Stand                           | AR-0173  | BIG RIVER STEEL LLC             | 01/31/2022              | -                           | 0.0006 lb/MMBtu                 | Combustion of Natural gas and Good Combustion Practices                                                                                                                                                                                                                                                   |
| Natural Gas Space Heaters                                 | AR-0173  | BIG RIVER STEEL LLC             | 01/31/2022              | 170 MMBtu/hr                | 0.0006 lb/MMBtu                 | Combustion of Natural gas and Good Combustion Practice                                                                                                                                                                                                                                                    |
| Coil Coating Line Dryers and Ovens                        | AR-0173  | BIG RIVER STEEL LLC             | 01/31/2022              | _                           | 0.0006 lb/MMBtu                 | Good combustion practices; Energy efficient burners;<br>Combustion of natural gas                                                                                                                                                                                                                         |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                   |          |                                 | . , . , .               |                             |                                 | Good combustion practices; Energy efficient burners;                                                                                                                                                                                                                                                      |
| Coil Coating Line RTO                                     | AR-0173  | BIG RIVER STEEL LLC             | 01/31/2022              | 12.2 MMBtu/hr               | 0.0006 lb/MMBtu                 | Combustion of natural gas                                                                                                                                                                                                                                                                                 |
| Con Coating Line KTO                                      | AIX-0173 | DIG RIVER STEEL LEC             | 01/31/2022              | 12.2 Minblu/III             | 0.0000 10/1111000               | Combustion of flatural gas                                                                                                                                                                                                                                                                                |
| Casting Process Heating Source                            | AR-0173  | BIG RIVER STEEL LLC             | 01/31/2022              | 30 MMBtu/hr                 | 0.0006 lb/MMBtu                 | Combustion of Natural gas and Good Combustion Practices                                                                                                                                                                                                                                                   |
| EP 05-03 - Heavy Plate Cutting Beds #1-                   |          |                                 |                         |                             |                                 |                                                                                                                                                                                                                                                                                                           |
| #4                                                        | KY-0110  | NUCOR STEEL BRANDENBURG         | 07/23/2020              | 150000 tons steel/yr        | 0.6 lb/MMscf                    | This EP is required to have a Good Work Practices (GWP) Plan.                                                                                                                                                                                                                                             |
| #4 EP 15-01 - Natural Gas Direct-Fired Space              | K1-0110  | NUCUR STEEL BRANDENBURG         | 07/23/2020              | 150000 toris steel/yr       | บ.ช เม/เขเขรน                   | This EP is required to have a Good Work Practices (GWP) Plan.                                                                                                                                                                                                                                             |
| Heaters, Process Water Heaters, & Direct-Filed Space      |          |                                 |                         |                             |                                 | This EP is required to have a Good Combustion and Operating                                                                                                                                                                                                                                               |
| Air Makeup Heaters                                        | KY-0110  | NUCOR STEEL BRANDENBURG         | 07/23/2020              | 40 MMBtu/hr, combined       | 0.6 lb/MMscf                    | Practices (GCOP) Plan.                                                                                                                                                                                                                                                                                    |
| All Plakeup Fleaters                                      | K1-0110  | NOCON STEEL DIVANDENDONG        | 0//23/2020              | io minuta/iii, combined     | ייט ווין ויוויוטנו              | ` '                                                                                                                                                                                                                                                                                                       |
| Melt Shop (EU 01) & Delt Shop                             |          |                                 |                         | 1750000 tons steel          |                                 | The facility is equipped with Continuous Emission Monitors (CEMS) to enable real-time monitoring of SO2 emissions, allowing adjustments to the process as needed to reduce emissions. Additionally, All EPs are required to have with a Good Work Practices (GWP) Plan or a Good Combustion and Operating |
| Combustion Sources (EU 02)                                | KY-0110  | NUCOR STEEL BRANDENBURG         | 07/23/2020              | produced/yr                 | 0.35 lb/ton                     | Practices (GCOP) Plan.                                                                                                                                                                                                                                                                                    |
| Combustion Sources (EO 02)                                | V1-0110  | NUCUR STEEL BRAINDENBURG        | 0//23/2020              | produced/yr                 | יוטו/נוו ככ.ט                   | riactices (GCOP) Pidii.                                                                                                                                                                                                                                                                                   |

Table B-10. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for SO<sub>2</sub> (Prior 10 Years)

| Process                                                           | RBLC ID | Facility                          | Permit Date (from<br>RBLC) | Production Capacity            | Permitted SO <sub>2</sub> Limit | Control                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------|---------|-----------------------------------|----------------------------|--------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EP 01-03 - Vacuum Degasser (under vacuum)                         | KY-0110 | NUCOR STEEL BRANDENBURG           | 07/23/2020                 | 1750000 tons steel produced/yr | 0.005 lb/ton                    | During this process, sulfur is retained in the slag, resulting in<br>minimal SO2 emissions. This EP is required to have a Good<br>Work Practices (GWP) Plan.                                                                                                                                   |
| EP 01-06 - Caster Torch Cutoff                                    | KY-0110 | NUCOR STEEL BRANDENBURG           | 07/23/2020                 | 0.64 MMBtu/hr                  | 0.6 lb/MMscf                    | -                                                                                                                                                                                                                                                                                              |
| Melt Shop #1 (EU 01 Baghouse #1<br>& #2 Stack)                    | KY-0115 | NUCOR STEEL GALLATIN, LLC         | 04/19/2021                 | 2000000 tons steel/yr          | 0.35 lb/ton                     | Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and the permittee shall limit the sulfur content of the EAF feedstock utilizing scrap management and/or shall add appropriate fluxes to the charge such that the emission limitations for SO2 are met. |
| Melt Shop #2 (EU 20 Baghouse #3<br>Stack)                         | KY-0115 | NUCOR STEEL GALLATIN, LLC         | 04/19/2021                 | 2000000 tons steel/yr          | 0.35 lb/ton                     | Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and the permittee shall limit the sulfur content of the EAF feedstock utilizing scrap management and/or shall add appropriate fluxes to the charge such that the emission limitations for SO2 are met. |
| Galvanizing Line #2 Alkali Cleaning<br>Section Heater (EP 21-07B) | KY-0115 | NUCOR STEEL GALLATIN, LLC         | 04/19/2021                 | 23 MMBtu/hr                    | 0.6 lb/MMscf                    | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                                                                                                                               |
| Galvanizing Line #2 Preheat Furnace (EP 21-08A)                   | KY-0115 | NUCOR STEEL GALLATIN, LLC         | 04/19/2021                 | 94 MMBtu/hr                    | 0.6 lb/MMscf                    | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                                                                                                                               |
| Galvanizing Line #2 Zinc Pot Preheater<br>(EP 21-09)              | KY-0115 | NUCOR STEEL GALLATIN, LLC         | 04/19/2021                 | 3 MMBtu/hr                     | 0.6 lb/MMscf                    | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                                                                                                                               |
| Galvanizing Line #2 Chemical Treatment<br>& Dryer (EP 21-11)      | KY-0115 | NUCOR STEEL GALLATIN, LLC         | 04/19/2021                 | 876000 tons steel/yr           | 0.6 lb/MMscf                    | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                                                                                                                               |
| Vacuum Degasser (incl. pilot emissions)<br>(EP 20-12)             | KY-0115 | NUCOR STEEL GALLATIN, LLC         | 04/19/2021                 | 700000 tons steel/yr           | 1.86 lb/hrr                     | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan and a Good Work Practices (GWP) Plan to minimize emissions.                                                                                                                                                   |
| Tundish Dryer #2 (P030)                                           | OH-0381 | NORTHSTAR BLUESCOPE<br>STEEL, LLC | 09/27/2019                 | 1.2 MMBtu/hr                   | 0.001 lb/hr                     | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                       |
| Ladle Preheaters and Dryers (P021-023, P025-026)                  | OH-0381 | NORTHSTAR BLUESCOPE<br>STEEL, LLC | 09/27/2019                 | 16 MMBtu/hr                    | 0.01 lb/hr                      | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                       |
| Tundish Preheaters #3 and #4 (P028 and P029)                      | OH-0381 | NORTHSTAR BLUESCOPE<br>STEEL, LLC | 09/27/2019                 | 9.5 MMBtu/hr                   | 0.01 lb/hr                      | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                       |
| Caster #2 (P907)                                                  | OH-0381 | NORTHSTAR BLUESCOPE<br>STEEL, LLC | 09/27/2019                 | 250 ton/hr                     | 87.5 lb/hr                      | The development, implementation, and maintenance of: (a)a scrap management plan; and (b)a work practice plan addressing argon stirring during LMF desulfurization process.                                                                                                                     |

<sup>&</sup>lt;sup>1</sup> The CMC Mesa and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility.

<sup>2</sup> These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for

Table B-11. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for PM (Prior 10 Years)

| Process                                                           | RBLC ID | Facility                        | Permit Date<br>(from RBLC) | Production Capacity | Particulate Matter Type                        | Permitted PM Limit  | Control                                                |
|-------------------------------------------------------------------|---------|---------------------------------|----------------------------|---------------------|------------------------------------------------|---------------------|--------------------------------------------------------|
|                                                                   |         |                                 | (                          | Comparabi           | le Facilities¹                                 |                     |                                                        |
| Meltshop Natural Gas Combustion                                   | -       | NUCOR STEEL SEDALIA             | 9/12/2018                  | 450,000 tpy         | PM10                                           | 0.0076 lb/MMBtu     | GCP of pipeline quality natural gas                    |
| Meltshop Natural Gas Combustion                                   | -       | NUCOR STEEL SEDALIA             | 9/12/2018                  | 450,000 tpy         | PM2.5                                          | 0.0076 lb/MMBtu     | GCP of pipeline quality natural gas                    |
| Ladle Preheaters                                                  | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr      | PM10                                           | 0.0075 lb/MMBtu     | -                                                      |
| Ladle Preheaters                                                  | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr      | PM2.5                                          | 0.0075 lb/MMBtu     | -                                                      |
| Ladle Dryer                                                       | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr      | PM10                                           | 0.0075 lb/MMBtu     | -                                                      |
| Ladle Dryer                                                       | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr      | PM2.5                                          | 0.0075 lb/MMBtu     | -                                                      |
| Tundish Preheater                                                 | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr      | PM10                                           | 0.0075 lb/MMBtu     | -                                                      |
| Tundish Preheater                                                 | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr      | PM2.5                                          | 0.0075 lb/MMBtu     | -                                                      |
| Tundish Dryer                                                     | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr      | PM10                                           | 0.0075 lb/MMBtu     | -                                                      |
| Tundish Dryer                                                     | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr      | PM2.5                                          | 0.0075 lb/MMBtu     | -                                                      |
| Tundish Mandril Dryer                                             | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr      | PM10                                           | 0.0075 lb/MMBtu     | -                                                      |
| Tundish Mandril Dryer                                             | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr      | PM2.5                                          | 0.0075 lb/MMBtu     | -                                                      |
| Heaters (Gas-Fired)                                               | OK-0173 | CMC STEEL OKLAHOMA              | 1/19/2016                  | -                   | Particulate matter, total 10 (TPM10)           | 0.0076 lb/MMBtu     | Natural gas fuel                                       |
| Heaters (Gas-Fired)                                               | OK-0173 | CMC STEEL OKLAHOMA              | 1/19/2016                  | -                   | Particulate matter, total<br>2.5 (TPM2.5)      | 0.0076 lb/MMBtu     | Natural gas fuel                                       |
| Ladle and Tundish Preheaters, Dryers<br>and Skull Cutting         | FL-0368 | NUCOR STEEL FLORIDA<br>FACILITY | 2/14/2019                  | 45.75 MMBtu/hr      | Particulate matter, total 10 (TPM10)           | 0.0076 lb/MMBtu     | Use of natural gas                                     |
| Ladle and Tundish Preheaters, Dryers<br>and Skull Cutting         | FL-0368 | NUCOR STEEL FLORIDA<br>FACILITY | 2/14/2019                  | 45.75 MMBtu/hr      | Particulate matter, total<br>2.5 (TPM2.5)      | 0.0076 lb/MMBtu     | Use of natural gas                                     |
|                                                                   |         |                                 |                            | Not Compara         | able Facilities <sup>2</sup>                   |                     |                                                        |
| SMALL HEATERS AND DRYERS SN-05<br>THROUGH 19                      | AR-0140 | BIG RIVER STEEL LLC             | 09/18/2013                 | -                   | Particulate matter, total<br>2.5 (TPM2.5)      | 5.2 X10^-4 lb/MMBtu | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE |
| SMALL HEATERS AND DRYERS SN-05<br>THROUGH 19                      | AR-0140 | BIG RIVER STEEL LLC             | 09/18/2013                 | -                   | Particulate matter,<br>filterable (FPM)        | 5.2 X10^-4 lb/MMBtu | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE |
| SMALL HEATERS AND DRYERS SN-05<br>THROUGH 19                      | AR-0140 | BIG RIVER STEEL LLC             | 09/18/2013                 | -                   | Particulate matter, total 10<br>(TPM10)        | 5.2 X10^-4 lb/MMBtu | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE |
| DRYERS, MGO COATING LINE                                          | AR-0140 | BIG RIVER STEEL LLC             | 09/18/2013                 | 38 MMBtu/hr         | Particulate matter,<br>filterable (FPM)        | 5.2 X10^-4 lb/MMBtu | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE |
| DRYERS, MGO COATING LINE                                          | AR-0140 | BIG RIVER STEEL LLC             | 09/18/2013                 | 38 MMBtu/hr         | Particulate matter, total 10 (TPM10)           | 5.2 X10^-4 lb/MMBtu | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE |
| DRYERS, MGO COATING LINE                                          | AR-0140 | BIG RIVER STEEL LLC             | 09/18/2013                 | 38 MMBtu/hr         | Particulate matter, total 2.5 (TPM2.5)         | 5.2 X10^-4 lb/MMBtu | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE |
| SMALL HEATERS AND DRYERS SN-05<br>THROUGH SN-11, SN-16, AND SN-17 | AR-0155 | BIG RIVER STEEL LLC             | 11/07/2018                 | -                   | Particulate matter,<br>filterable (FPM)        | 0.0075 lb/MMBtu     | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE |
| SMALL HEATERS AND DRYERS SN-05<br>THROUGH SN-11, SN-16, AND SN-17 | AR-0155 | BIG RIVER STEEL LLC             | 11/07/2018                 | -                   | Particulate matter, total 10 (TPM10)           | 0.0075 lb/MMBtu     | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE |
| SMALL HEATERS AND DRYERS SN-05<br>THROUGH SN-11, SN-16, AND SN-17 | AR-0155 | BIG RIVER STEEL LLC             | 11/07/2018                 | -                   | Particulate matter,<br>filterable 2.5 (FPM2.5) | 0.0075 lb/MMBtu     | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE |
| PREHEATER, GALVANIZING LINE SN-28                                 | AR-0155 | BIG RIVER STEEL LLC             | 11/07/2018                 | 78.2 MMBtu/hr       | Particulate matter,<br>filterable (FPM)        | 0.0012 lb/MMBtu     | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE |
| PREHEATER, GALVANIZING LINE SN-28                                 | AR-0155 | BIG RIVER STEEL LLC             | 11/07/2018                 | 78.2 MMBtu/hr       | Particulate matter,<br>filterable 10 (FPM10)   | 0.0012 lb/MMBtu     | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE |
| PREHEATER, GALVANIZING LINE SN-28                                 | AR-0155 | BIG RIVER STEEL LLC             | 11/07/2018                 | 78.2 MMBtu/hr       | Particulate matter, total<br>2.5 (TPM2.5)      | 0.0012 lb/MMBtu     | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE |

Table B-11. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for PM (Prior 10 Years)

| Table B-11. Natural Gas Combustion Process           | RBLC ID | Facility             | Permit Date<br>(from RBLC) | Production Capacity | Particulate Matter Type                        | Permitted PM Limit | Control                                                                        |
|------------------------------------------------------|---------|----------------------|----------------------------|---------------------|------------------------------------------------|--------------------|--------------------------------------------------------------------------------|
| SMALL HEATERS AND DRYERS SN-16<br>through SN-19B     | AR-0159 | BIG RIVER STEEL LLC  | 04/05/2019                 | -                   | Particulate matter,<br>filterable (FPM)        | 0.0075 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                         |
| SMALL HEATERS AND DRYERS SN-16<br>through SN-19B     | AR-0159 | BIG RIVER STEEL LLC  | 04/05/2019                 | -                   | Particulate matter, total 10<br>(TPM10)        | 0.0075 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                         |
| SMALL HEATERS AND DRYERS SN-16<br>through SN-19B     | AR-0159 | BIG RIVER STEEL LLC  | 04/05/2019                 | -                   | Particulate matter, total<br>2.5 (TPM2.5)      | 0.0075 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                         |
| SMALL HEATERS AND DRYERS SN-10<br>through SN-13      | AR-0159 | BIG RIVER STEEL LLC  | 04/05/2019                 | -                   | Particulate matter,<br>filterable 2.5 (FPM2.5) | 0.0075 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                         |
| SMALL HEATERS AND DRYERS SN-10<br>through SN-13      | AR-0159 | BIG RIVER STEEL LLC  | 04/05/2019                 | -                   | Particulate matter,<br>filterable 10 (FPM10)   | 0.0075 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                         |
| SMALL HEATERS AND DRYERS SN-10<br>through SN-13      | AR-0159 | BIG RIVER STEEL LLC  | 04/05/2019                 | -                   | Particulate matter,<br>filterable (FPM)        | 0.0075 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                         |
| PREHEATERS, GALVANIZING LINE SN-<br>28 and SN-29     | AR-0159 | BIG RIVER STEEL LLC  | 04/05/2019                 | -                   | Particulate matter,<br>filterable (FPM)        | 0.0012 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                         |
| PREHEATERS, GALVANIZING LINE SN-<br>28 and SN-29     | AR-0159 | BIG RIVER STEEL LLC  | 04/05/2019                 | -                   | Particulate matter, total 10 (TPM10)           | 0.0012 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                         |
| PREHEATERS, GALVANIZING LINE SN-<br>28 and SN-29     | AR-0159 | BIG RIVER STEEL LLC  | 04/05/2019                 | -                   | Particulate matter, total 2.5 (TPM2.5)         | 0.0012 lb/MMBtu    | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                         |
| COLD MILL SPACE HEATERS                              | AR-0159 | BIG RIVER STEEL LLC  | 04/05/2019                 | -                   | Particulate matter,<br>filterable (FPM)        | 0.0075 lb/MMBtu    | Combustion of Natural gas and Good Combustion Practice                         |
| COLD MILL SPACE HEATERS                              | AR-0159 | BIG RIVER STEEL LLC  | 04/05/2019                 | -                   | Particulate matter, total 10 (TPM10)           | 0.0075 lb/MMBtu    | Combustion of Natural gas and Good Combustion Practice                         |
| COLD MILL SPACE HEATERS                              | AR-0159 | BIG RIVER STEEL LLC  | 04/05/2019                 | -                   | Particulate matter, total 2.5 (TPM2.5)         | 0.0075 lb/MMBtu    | Combustion of Natural gas and Good Combustion Practice                         |
| SN-131 and 145 Caster Spray Vents                    | AR-0171 | NUCOR STEEL ARKANSAS | 02/14/2019                 | -                   | Particulate matter,<br>filterable (FPM)        | 0.012 gr/dscf      | Good work practices                                                            |
| SN-131 and 145 Caster Spray Vents                    | AR-0171 | NUCOR STEEL ARKANSAS | 02/14/2019                 | -                   | Particulate matter, total 10 (TPM10)           | 0.004 gr/dscf      | Good work practices                                                            |
| SN-131 and 145 Caster Spray Vents                    | AR-0171 | NUCOR STEEL ARKANSAS | 02/14/2019                 | -                   | Particulate matter, total 2.5 (TPM2.5)         | 0.0025 gr/dscf     | Good work practices                                                            |
| SN-228 and SN-229 Zinc Dryer and Zinc<br>Pot Preheat | AR-0171 | NUCOR STEEL ARKANSAS | 02/14/2019                 | 3 MMBtu/hr each     | Particulate matter,<br>filterable (FPM)        | 0.0019 lb/MMBtu    | Good Combustion Practices                                                      |
| SN-228 and SN-229 Zinc Dryer and Zinc<br>Pot Preheat | AR-0171 | NUCOR STEEL ARKANSAS | 02/14/2019                 | 3 MMBtu/hr each     | Particulate matter, total 10 (TPM10)           | 0.0076 lb/MMBtu    | Good Combustion Practices                                                      |
| SN-228 and SN-229 Zinc Dryer and Zinc<br>Pot Preheat | AR-0171 | NUCOR STEEL ARKANSAS | 02/14/2019                 | 3 MMBtu/hr each     | Particulate matter, total 2.5 (TPM2.5)         | 0.0076 lb/MMBtu    | Good Combustion Practices                                                      |
| Vertical and Horizontal Ladle Preheaters             | AR-0173 | BIG RIVER STEEL LLC  | 01/31/2022                 | -                   | Particulate matter,<br>filterable (FPM)        | 0.0075 lb/MMBtu    | Combustion of Natural gas and Good Combustion Practices                        |
| Vertical and Horizontal Ladle Preheaters             | AR-0173 | BIG RIVER STEEL LLC  | 01/31/2022                 | -                   | Particulate matter, total 10 (TPM10)           | 0.0075 lb/MMBtu    | Combustion of Natural gas and Good Combustion Practices                        |
| Vertical and Horizontal Ladle Preheaters             | AR-0173 | BIG RIVER STEEL LLC  | 01/31/2022                 | -                   | Particulate matter, total 2.5 (TPM2.5)         | 0.0075 lb/MMBtu    | Combustion of Natural gas and Good Combustion Practices                        |
| Natural Gas Space Heaters                            | AR-0173 | BIG RIVER STEEL LLC  | 01/31/2022                 | 170 MMBtu/hr        | Particulate matter,<br>filterable (FPM)        | 0.0075 lb/MMBtu    | Combustion of Natural gas and Good Combustion Practice                         |
| Natural Gas Space Heaters                            | AR-0173 | BIG RIVER STEEL LLC  | 01/31/2022                 | 170 MMBtu/hr        | Particulate matter, total 10 (TPM10)           | 0.0075 lb/MMBtu    | Combustion of Natural gas and Good Combustion Practice                         |
| Natural Gas Space Heaters                            | AR-0173 | BIG RIVER STEEL LLC  | 01/31/2022                 | 170 MMBtu/hr        | Particulate matter, total 2.5 (TPM2.5)         | 0.0075 lb/MMBtu    | Combustion of Natural gas and Good Combustion Practice                         |
| Coil Coating Line Dryers and Ovens                   | AR-0173 | BIG RIVER STEEL LLC  | 01/31/2022                 | -                   | Particulate matter,<br>filterable (FPM)        | 0.0075 lb/MMBtu    | Good combustion practices; Energy efficient burners; Combustion of natural gas |
| Coil Coating Line Dryers and Ovens                   | AR-0173 | BIG RIVER STEEL LLC  | 01/31/2022                 | -                   | Particulate matter, total 10 (TPM10)           | 0.0075 lb/MMBtu    | Good combustion practices; Energy efficient burners; Combustion of natural gas |
| Coil Coating Line Dryers and Ovens                   | AR-0173 | BIG RIVER STEEL LLC  | 01/31/2022                 | -                   | Particulate matter, total 2.5 (TPM2.5)         | 0.0075 lb/MMBtu    | Good combustion practices; Energy efficient burners; Combustion of natural gas |

Table B-11. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for PM (Prior 10 Years)

| Table B-11. Natural Gas Combustion                                                                                  | n Emissioi | n Sources Recent Permit Lin | nitations and Dete         | rminations for PM (Prior          | 10 Years)                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|----------------------------|-----------------------------------|-------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process                                                                                                             | RBLC ID    | Facility                    | Permit Date<br>(from RBLC) | Production Capacity               | Particulate Matter Type                   | Permitted PM Limit    | Control                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Casters                                                                                                             | AR-0173    | BIG RIVER STEEL LLC         | 01/31/2022                 | -                                 | Particulate matter,<br>filterable (FPM)   | 0.062 LB/TON OF STEEL | Good operating practices                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Casters                                                                                                             | AR-0173    | BIG RIVER STEEL LLC         | 01/31/2022                 | -                                 | Particulate matter, total 10<br>(TPM10)   | 0.062 LB/TON OF STEEL | Good operating practices                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Casters                                                                                                             | AR-0173    | BIG RIVER STEEL LLC         | 01/31/2022                 | -                                 | Particulate matter, total<br>2.5 (TPM2.5) | 0.062 lb/MMBtu        | Good operating practices                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Casting Process Heating Source                                                                                      | AR-0173    | BIG RIVER STEEL LLC         | 01/31/2022                 | 30 MMBtu/hr                       | Particulate matter,<br>filterable (FPM)   | 0.0075 lb/MMBtu       | Combustion of Natural gas and Good Combustion Practices                                                                                                                                                                                                                                                                                                                                                                                             |
| Casting Process Heating Source                                                                                      | AR-0173    | BIG RIVER STEEL LLC         | 01/31/2022                 | 30 MMBtu/hr                       | Particulate matter, total 10<br>(TPM10)   | 0.0075 lb/MMBtu       | Combustion of Natural gas and Good Combustion Practices                                                                                                                                                                                                                                                                                                                                                                                             |
| Casting Process Heating Source                                                                                      | AR-0173    | BIG RIVER STEEL LLC         | 01/31/2022                 | 30 MMBtu/hr                       | Particulate matter, total<br>2.5 (TPM2.5) | 0.0075 lb/MMBtu       | Combustion of Natural gas and Good Combustion Practices                                                                                                                                                                                                                                                                                                                                                                                             |
| EP 05-03 - Heavy Plate Cutting Beds #1 #4                                                                           | KY-0110    | NUCOR STEEL<br>BRANDENBURG  | 07/23/2020                 | 150000 tons steel/yr              | Particulate matter,<br>filterable (FPM)   | 0.011 LB/IN CUT       | This EP is required to have a Good Work Practices (GWP) Plan and baghouses for each cutting bed or a single baghouse that controls emissions from all of the cutting beds, combined, designed to control 99.9% of particulate emissions.                                                                                                                                                                                                            |
| EP 05-03 - Heavy Plate Cutting Beds #1 #4                                                                           | KY-0110    | NUCOR STEEL<br>BRANDENBURG  | 07/23/2020                 | 150000 tons steel/yr              | Particulate matter, total 10 (TPM10)      | 0.011 LB/IN CUT       | This EP is required to have a Good Work Practices (GWP) Plan and baghouses for each cutting bed or a single baghouse that controls emissions from all of the cutting beds, combined, designed to control 99.9% of particulate emissions.                                                                                                                                                                                                            |
| EP 05-03 - Heavy Plate Cutting Beds #1 #4                                                                           | KY-0110    | NUCOR STEEL<br>BRANDENBURG  | 07/23/2020                 | 150000 tons steel/yr              | Particulate matter, total 2.5 (TPM2.5)    | 0.011 LB/IN CUT       | This EP is required to have a Good Work Practices (GWP) Plan and baghouses for each cutting bed or a single baghouse that controls emissions from all of the cutting beds, combined, designed to control 99.9% of particulate emissions.                                                                                                                                                                                                            |
| EP 15-01 - Natural Gas Direct-Fired<br>Space Heaters, Process Water Heaters,<br>& Direction & Process Water Heaters | KY-0110    | NUCOR STEEL<br>BRANDENBURG  | 07/23/2020                 | 40 MMBtu/hr, combined             | Particulate matter,<br>filterable (FPM)   | 1.9 lb/MMscf          | This EP is required to have a Good Combustion and Operating Practices (GCOP) Plan.                                                                                                                                                                                                                                                                                                                                                                  |
| EP 15-01 - Natural Gas Direct-Fired<br>Space Heaters, Process Water Heaters,<br>& Dir Makeup Heaters                | KY-0110    | NUCOR STEEL<br>BRANDENBURG  | 07/23/2020                 | 40 MMBtu/hr, combined             | Particulate matter, total 10 (TPM10)      | 7.6 lb/MMscf          | This EP is required to have a Good Combustion and Operating Practices (GCOP) Plan.                                                                                                                                                                                                                                                                                                                                                                  |
| EP 15-01 - Natural Gas Direct-Fired<br>Space Heaters, Process Water Heaters,<br>& Direction & Process Water Heaters | KY-0110    | NUCOR STEEL<br>BRANDENBURG  | 07/23/2020                 | 40 MMBtu/hr, combined             | Particulate matter, total 2.5 (TPM2.5)    | 7.6 lb/MMscf          | This EP is required to have a Good Combustion and Operating Practices (GCOP) Plan.                                                                                                                                                                                                                                                                                                                                                                  |
| Melt Shop (EU 01) & Delt Shop Combustion Sources (EU 02)                                                            | KY-0110    | NUCOR STEEL<br>BRANDENBURG  | 07/23/2020                 | 1750000 tons steel<br>produced/yr | Particulate matter,<br>filterable (FPM)   | 0.0018 gr/dscf        | Negative Pressure Pulse-Jet Baghouse (C0101). The Melt Shop is equipped with canopy hoods to capture and vent emissions that are not captured by the direct shell evacuation system (DEC or DSE). The melt shop has an overall capture efficiency of 99% of emissions generated within the melt shop. Additionally, all EPs have a Good Work Practices (GWP) Plan or a Good Combustion and Operation Practices (GCOP) Plan                          |
| Melt Shop (EU 01) & Delt Shop Combustion Sources (EU 02)                                                            | KY-0110    | NUCOR STEEL<br>BRANDENBURG  | 07/23/2020                 | 1750000 tons steel<br>produced/yr | Particulate matter, total 10<br>(TPM10)   | 0.0052 gr/dscf        | Negative Pressure Pulse-Jet Baghouse (C0101). The Melt Shop is equipped with canopy hoods to capture and vent emissions that are not captured by the direct shell evacuation system (DEC or DSE). The melt shop has an overall capture efficiency of 99% of emissions generated within the melt shop.  Additionally, all EPs have either a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan.                 |
| Melt Shop (EU 01) & Delt Shop Combustion Sources (EU 02)                                                            | KY-0110    | NUCOR STEEL<br>BRANDENBURG  | 07/23/2020                 | 1750000 tons steel<br>produced/yr | Particulate matter, total 2.5 (TPM2.5)    | 0.0034 gr/dscf        | Negative Pressure Pulse-Jet Baghouse (C0101). The Melt Shop is equipped with canopy hoods to capture and vent emissions that are not captured by the direct shell evacuation system (DEC or DSE). The melt shop has an overall capture efficiency of 99% of emissions generated within the melt shop.  Additionally, All EPs are required to have either a Good Work Practices (GWP) Plan or a Good Combustion and Operating Practices (GCOP) Plan. |

Table B-11, Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for PM (Prior 10 Years)

| le B-11. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for PM (Prior 10 Years) |         |                            |                            |                                   |                                           |                    |                                                                                                                                                                                                                                                     |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|---------|----------------------------|----------------------------|-----------------------------------|-------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Process                                                                                                               | RBLC ID | Facility                   | Permit Date<br>(from RBLC) | <b>Production Capacity</b>        | Particulate Matter Type                   | Permitted PM Limit | Control                                                                                                                                                                                                                                             |  |  |  |
| EP 01-05 - Caster Spray Vent                                                                                          | KY-0110 | NUCOR STEEL<br>BRANDENBURG | 07/23/2020                 | 1750000 tons steel produced/yr    | Particulate matter,<br>filterable (FPM)   | 9.38 lb/hrr        | This EP is required to have a Good Work Practices (GWP) Plan.                                                                                                                                                                                       |  |  |  |
| EP 01-05 - Caster Spray Vent                                                                                          | KY-0110 | NUCOR STEEL<br>BRANDENBURG | 07/23/2020                 | 1750000 tons steel<br>produced/yr | Particulate matter, total 10 (TPM10)      | 1.5 lb/hrr         | This EP is required to have a Good Work Practices (GWP) Plan.                                                                                                                                                                                       |  |  |  |
| EP 01-05 - Caster Spray Vent                                                                                          | KY-0110 | NUCOR STEEL<br>BRANDENBURG | 07/23/2020                 | 1750000 tons steel produced/yr    | Particulate matter, total<br>2.5 (TPM2.5) | 0.19 lb/hrr        | This EP is required to have a Good Work Practices (GWP) Plan.                                                                                                                                                                                       |  |  |  |
| EP 01-06 - Caster Torch Cutoff                                                                                        | KY-0110 | NUCOR STEEL<br>BRANDENBURG | 07/23/2020                 | 0.64 MMBtu/hr                     | Particulate matter, total (TPM)           | 173 lb/MMscf       | -                                                                                                                                                                                                                                                   |  |  |  |
| EP 01-06 - Caster Torch Cutoff                                                                                        | KY-0110 | NUCOR STEEL<br>BRANDENBURG | 07/23/2020                 | 0.64 MMBtu/hr                     | Particulate matter, total 10 (TPM10)      | 178 lb/MMscf       | -                                                                                                                                                                                                                                                   |  |  |  |
| EP 01-06 - Caster Torch Cutoff                                                                                        | KY-0110 | NUCOR STEEL<br>BRANDENBURG | 07/23/2020                 | 0.64 MMBtu/hr                     | Particulate matter, total<br>2.5 (TPM2.5) | 178 lb/MMscf       | -                                                                                                                                                                                                                                                   |  |  |  |
| DRI Handling System for Melt Shop #2<br>(EP 13-11)                                                                    | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 1322760 tons/yr                   | Particulate matter,<br>filterable (FPM)   | 0.001 gr/dscf      | Two powered bin vent filters                                                                                                                                                                                                                        |  |  |  |
| DRI Handling System for Melt Shop #2<br>(EP 13-11)                                                                    | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 1322760 tons/yr                   | Particulate matter, total 10 (TPM10)      | 0.001 gr/dscf      | Two powered bin vent filters                                                                                                                                                                                                                        |  |  |  |
| DRI Handling System for Melt Shop #2<br>(EP 13-11)                                                                    | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 1322760 tons/yr                   | Particulate matter, total 2.5 (TPM2.5)    | 0.001 gr/dscf      | Two powered bin vent filters                                                                                                                                                                                                                        |  |  |  |
| Melt Shop #1 (EU 01 Baghouse #1<br>& Stack)                                                                           | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 2000000 tons steel/yr             | Particulate matter,<br>filterable (FPM)   | 31.49 lb/hrr       | Emissions are controlled by 2 baghouses (combined stack). Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions. |  |  |  |
| Melt Shop #1 (EU 01 Baghouse #1<br>& Stack)                                                                           | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 2000000 tons steel/yr             | Particulate matter, total 10 (TPM10)      | 90.97 lb/hrr       | Emissions are controlled by 2 baghouses (combined stack). Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions. |  |  |  |
| Melt Shop #1 (EU 01 Baghouse #1<br>& Stack)                                                                           | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 2000000 tons steel/yr             | Particulate matter, total 2.5 (TPM2.5)    | 59.48 lb/hrr       | Emissions are controlled by 2 baghouses (combined stack). Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions. |  |  |  |
| Melt Shop #2 (EU 20 Baghouse #3<br>Stack)                                                                             | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 2000000 tons steel/yr             | Particulate matter,<br>filterable (FPM)   | 26.2 lb/hrr        | Emissions are controlled by a baghouse. Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.                   |  |  |  |
| Melt Shop #2 (EU 20 Baghouse #3<br>Stack)                                                                             | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 2000000 tons steel/yr             | Particulate matter, total 10 (TPM10)      | 75.67 lb/hrr       | Emissions are controlled by a baghouse. Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.                   |  |  |  |
| Melt Shop #2 (EU 20 Baghouse #3<br>Stack)                                                                             | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 2000000 tons steel/yr             | Particulate matter, total 2.5 (TPM2.5)    | 49.48 lb/hrr       | Emissions are controlled by a baghouse. Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions.                   |  |  |  |
| Galvanizing Line #2 Alkali Cleaning<br>Section Heater (EP 21-07B)                                                     | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 23 MMBtu/hr                       | Particulate matter,<br>filterable (FPM)   | 1.9 lb/MMscf       | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                                                                                    |  |  |  |
| Galvanizing Line #2 Alkali Cleaning<br>Section Heater (EP 21-07B)                                                     | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 23 MMBtu/hr                       | Particulate matter, total 10<br>(TPM10)   | 7.6 lb/MMscf       | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                                                                                    |  |  |  |
| Galvanizing Line #2 Alkali Cleaning<br>Section Heater (EP 21-07B)                                                     | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 23 MMBtu/hr                       | Particulate matter, total<br>2.5 (TPM2.5) | 7.6 lb/MMscf       | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                                                                                    |  |  |  |
| Galvanizing Line #2 Zinc Pot Preheater<br>(EP 21-09)                                                                  | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 3 MMBtu/hr                        | Particulate matter,<br>filterable (FPM)   | 1.9 lb/MMscf       | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                                                                                    |  |  |  |
| Galvanizing Line #2 Zinc Pot Preheater<br>(EP 21-09)                                                                  | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 3 MMBtu/hr                        | Particulate matter, total 10<br>(TPM10)   | 7.6 lb/MMscf       | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                                                                                    |  |  |  |
| Galvanizing Line #2 Zinc Pot Preheater (EP 21-09)                                                                     | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 3 MMBtu/hr                        | Particulate matter, total 2.5 (TPM2.5)    | 7.6 lb/MMscf       | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                                                                                    |  |  |  |
| Galvanizing Line #2 Chemical<br>Treatment & Dryer (EP 21-11)                                                          | KY-0115 | NUCOR STEEL GALLATIN, LLC  | 04/19/2021                 | 876000 tons steel/yr              | Particulate matter,<br>filterable (FPM)   | 1.9 lb/MMscf       | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                                                                                    |  |  |  |

Table B-11. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for PM (Prior 10 Years)

| Process                                                      | RBLC ID | Facility                  | Permit Date<br>(from RBLC) | <b>Production Capacity</b> | Particulate Matter Type                | Permitted PM Limit | Control                                                                          |
|--------------------------------------------------------------|---------|---------------------------|----------------------------|----------------------------|----------------------------------------|--------------------|----------------------------------------------------------------------------------|
| Galvanizing Line #2 Chemical<br>Treatment & Dryer (EP 21-11) | KY-0115 | NUCOR STEEL GALLATIN, LLC | 04/19/2021                 | 876000 tons steel/yr       | Particulate matter, total 10 (TPM10)   |                    | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan |
| Galvanizing Line #2 Chemical<br>Treatment & Dryer (EP 21-11) | KY-0115 | NUCOR STEEL GALLATIN, LLC | 04/19/2021                 | 876000 tons steel/yr       | Particulate matter, total 2.5 (TPM2.5) |                    | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan |

Table B-11. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for PM (Prior 10 Years)

| Table B-11. Natural Gas Combustion               | 1 Emissior | ion Sources Recent Permit Limitations and Determinations for PM (Prior 10 Years) |                            |                     |                                           |                    |                                                                                                                                                                                                                                                                                                                                                               |  |
|--------------------------------------------------|------------|----------------------------------------------------------------------------------|----------------------------|---------------------|-------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Process                                          | RBLC ID    | Facility                                                                         | Permit Date<br>(from RBLC) | Production Capacity | Particulate Matter Type                   | Permitted PM Limit | Control                                                                                                                                                                                                                                                                                                                                                       |  |
| Tundish Dryer #2 (P030)                          | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | 1.2 MMBtu/hr        | Particulate matter, total (TPM)           | 0.004 lb/hr        | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                                                                                      |  |
| Tundish Dryer #2 (P030)                          | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | 1.2 MMBtu/hr        | Particulate matter, total 10 (TPM10)      | 0.004 lb/hr        | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                                                                                      |  |
| Tundish Dryer #2 (P030)                          | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | 1.2 MMBtu/hr        | Particulate matter, total<br>2.5 (TPM2.5) | 0.004 lb/hr        | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                                                                                      |  |
| Baghouse Dust Handling Melt Shop 2<br>(P031)     | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | -                   | Particulate matter,<br>filterable (FPM)   | 0.03 lb/hr         | Bin vent                                                                                                                                                                                                                                                                                                                                                      |  |
| Baghouse Dust Handling Melt Shop 2<br>(P031)     | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | -                   | Particulate matter, total 10<br>(TPM10)   | 0.01 lb/hr         | Bin vent                                                                                                                                                                                                                                                                                                                                                      |  |
| Baghouse Dust Handling Melt Shop 2<br>(P031)     | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | -                   | Particulate matter, total<br>2.5 (TPM2.5) | 0.01 lb/hr         | Bin vent                                                                                                                                                                                                                                                                                                                                                      |  |
| Ladle Preheaters and Dryers (P021-023, P025-026) | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | 16 MMBtu/hr         | Particulate matter, total (TPM)           | 0.05 lb/hr         | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                                                                                      |  |
| Ladle Preheaters and Dryers (P021-023, P025-026) | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | 16 MMBtu/hr         | Particulate matter, total 10<br>(TPM10)   | 0.05 lb/hr         | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                                                                                      |  |
| Ladle Preheaters and Dryers (P021-023, P025-026) | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | 16 MMBtu/hr         | Particulate matter, total<br>2.5 (TPM2.5) | 0.05 lb/hr         | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                                                                                      |  |
| Tundish Preheaters #3 and #4 (P028 and P029)     | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | 9.5 MMBtu/hr        | Particulate matter, total<br>(TPM)        | 0.03 lb/hr         | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                                                                                      |  |
| Tundish Preheaters #3 and #4 (P028 and P029)     | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | 9.5 MMBtu/hr        | Particulate matter, total 10<br>(TPM10)   | 0.03 lb/hr         | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                                                                                      |  |
| Tundish Preheaters #3 and #4 (P028 and P029)     | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | 9.5 MMBtu/hr        | Particulate matter, total<br>2.5 (TPM2.5) | 0.03 lb/hr         | Use of natural gas, good combustion practices and design                                                                                                                                                                                                                                                                                                      |  |
| Caster #2 (P907)                                 | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | 250 ton/hr          | Particulate matter,<br>filterable (FPM)   | 19.93 lb/hr        | Operation of a baghouse control system a consisting of the following: (a) direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b) roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;  |  |
| Caster #2 (P907)                                 | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | 250 ton/hr          | Particulate matter, total 10<br>(TPM10)   | 26.57 lb/hr        | Operation of a baghouse control system a consisting of the following: (a) direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b) roof canopy hood system for collection of emissions frugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems; |  |
| Caster #2 (P907)                                 | OH-0381    | NORTHSTAR BLUESCOPE<br>STEEL, LLC                                                | 09/27/2019                 | 250 ton/hr          | Particulate matter, total<br>2.5 (TPM2.5) | 26.57 lb/hr        | Operation of a baghouse control system a consisting of the following: (a) direct evacuation control (DEC) system for collection of emissions from EAF and LMF; (b) roof canopy hood system for collection of emissions fugitive to the inside of Meltshop #2 from casting operations (P907-Caster #2) and emissions not captured by the DEC control systems;  |  |

<sup>&</sup>lt;sup>1</sup> The CMC Mesa and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility.

<sup>&</sup>lt;sup>2</sup> These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

Table B-12. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for VOC (Prior 10 Years)

| Process                                                                                              | RBLC ID | Facility                        | Permit Date (from<br>RBLC) | Production Capacity               | Permitted VOC Limit | Control                                                                                                                      |
|------------------------------------------------------------------------------------------------------|---------|---------------------------------|----------------------------|-----------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                      |         |                                 | Compara                    | ble Facilities 1                  |                     |                                                                                                                              |
| Meltshop Natural Gas Combustion                                                                      | -       | NUCOR STEEL SEDALIA             | 9/12/2018                  | 450,000 tpy                       | 0.055 lb/MMBtu      | GCP of pipeline quality natural gas                                                                                          |
| Ladle Preheaters                                                                                     | =       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr                    | 0.0053 lb/MMBtu     | -                                                                                                                            |
| Ladle Dryer                                                                                          | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr                    | 0.0053 lb/MMBtu     | -                                                                                                                            |
| Tundish Preheater                                                                                    | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr                    | 0.0053 lb/MMBtu     | -                                                                                                                            |
| Tundish Dryer                                                                                        | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr                    | 0.0053 lb/MMBtu     | -                                                                                                                            |
| Tundish Mandril Dryer                                                                                | -       | CMC MESA                        | 6/14/2018                  | 435000 tons/yr                    | 0.0053 lb/MMBtu     | -                                                                                                                            |
| Heaters (Gas-Fired)                                                                                  | OK-0173 | CMC STEEL OKLAHOMA              | 1/19/2016                  | -                                 | 0.0055 lb/MMBtu     | Natural gas fuel                                                                                                             |
| Ladle and Tundish Preheaters, Dryers and Skull<br>Cutting                                            | FL-0368 | NUCOR STEEL FLORIDA<br>FACILITY | 2/14/2019                  | 45.75 MMBtu/hr                    | 0.0055 lb/MMBtu     | Good combustion practices and using pipeline quality natural gas                                                             |
|                                                                                                      |         |                                 | Not Compa                  | rable Facilities 2                |                     |                                                                                                                              |
| SMALL HEATERS AND DRYERS SN-05 THROUGH<br>19                                                         | AR-0140 | BIG RIVER STEEL LLC             | 09/18/2013                 | -                                 | 0.0054 lb/MMBtu     | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                                                                       |
| DRYERS, MGO COATING LINE                                                                             | AR-0140 | BIG RIVER STEEL LLC             | 09/18/2013                 | 38 MMBtu/hr                       | 0.0054 lb/MMBtu     | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                                                                       |
| SMALL HEATERS AND DRYERS SN-05 THROUGH<br>SN-11, SN-16, AND SN-17                                    | AR-0155 | BIG RIVER STEEL LLC             | 11/07/2018                 | -                                 | 0.0054 lb/MMBtu     | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                                                                       |
| PREHEATER, GALVANIZING LINE SN-28                                                                    | AR-0155 | BIG RIVER STEEL LLC             | 11/07/2018                 | 78.2 MMBtu/hr                     | 0.0054 lb/MMBtu     | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                                                                       |
| SMALL HEATERS AND DRYERS SN-16 through SN-<br>19B                                                    | AR-0159 | BIG RIVER STEEL LLC             | 04/05/2019                 | -                                 | 0.0054 lb/MMBtu     | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                                                                       |
| SMALL HEATERS AND DRYERS SN-10 through SN-<br>13                                                     | AR-0159 | BIG RIVER STEEL LLC             | 04/05/2019                 | -                                 | 0.0054 lb/MMBtu     | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                                                                       |
| PREHEATERS, GALVANIZING LINE SN-28 and SN-<br>29                                                     | AR-0159 | BIG RIVER STEEL LLC             | 04/05/2019                 | -                                 | 0.0054 lb/MMBtu     | COMBUSTION OF NATURAL GAS AND GOOD COMBUSTION PRACTICE                                                                       |
| COLD MILL SPACE HEATERS                                                                              | AR-0159 | BIG RIVER STEEL LLC             | 04/05/2019                 | -                                 | 0.0054 lb/MMBtu     | Combustion of Natural gas and Good Combustion Practice                                                                       |
| SN-131 and 145 Caster Spray Vents                                                                    | AR-0171 | NUCOR STEEL<br>ARKANSAS         | 02/14/2019                 | -                                 | 4.4 lb/hr           | Good work practices                                                                                                          |
| SN-137 Hot Mill Monovent                                                                             | AR-0171 | NUCOR STEEL<br>ARKANSAS         | 02/14/2019                 | -                                 | 5.8 lb/hr           | Good work practices                                                                                                          |
| SN-138 Cold Mill No. 1 Monovent                                                                      | AR-0171 | NUCOR STEEL<br>ARKANSAS         | 02/14/2019                 | -                                 | 7.5 lb/hr           | Good work practices                                                                                                          |
| SN-228 and SN-229 Zinc Dryer and Zinc Pot<br>Preheat                                                 | AR-0171 | NUCOR STEEL<br>ARKANSAS         | 02/14/2019                 | 3 MMBtu/hr each                   | 0.0076 lb/MMBtu     | Good Combustion Practices                                                                                                    |
| Lime Injector Burners                                                                                | AR-0173 | BIG RIVER STEEL LLC             | 01/31/2022                 | -                                 | 0.0054 lb/MMBtu     | Combustion of natural gas and good combustion practices                                                                      |
| Vertical and Horizontal Ladle Preheaters                                                             | AR-0173 | BIG RIVER STEEL LLC             | 01/31/2022                 | -                                 | 0.0054 lb/MMBtu     | Combustion of Natural gas and Good Combustion Practices                                                                      |
| Natural Gas Space Heaters                                                                            | AR-0173 | BIG RIVER STEEL LLC             | 01/31/2022                 | 170 MMBtu/hr                      | 0.0054 lb/MMBtu     | Combustion of Natural gas and Good Combustion Practice                                                                       |
| Casting Process Heating Source                                                                       | AR-0173 | BIG RIVER STEEL LLC             | 01/31/2022                 | 30 MMBtu/hr                       | 0.0054 lb/MMBtu     | Combustion of Natural gas and Good Combustion Practices                                                                      |
| EP 05-03 - Heavy Plate Cutting Beds #1-#4                                                            | KY-0110 | NUCOR STEEL<br>BRANDENBURG      | 07/23/2020                 | 150000 tons steel/yr              | 5.5 lb/MMscf        | This EP is required to have a Good Work Practices (GWP) Plan.                                                                |
| EP 15-01 - Natural Gas Direct-Fired Space<br>Heaters, Process Water Heaters, & Air<br>Makeup Heaters | KY-0110 | NUCOR STEEL<br>BRANDENBURG      | 07/23/2020                 | 40 MMBtu/hr, combined             | 5.5 lb/MMscf        | This EP is required to have a Good Combustion and Operating Practices (GCOP) Plan.                                           |
| Melt Shop (EU 01) & Melt Shop Combustion Sources (EU 02)                                             | KY-0110 | NUCOR STEEL<br>BRANDENBURG      | 07/23/2020                 | 1750000 tons steel<br>produced/yr | 0.09 lb/ton         | All EPs are required to have either a Good Work Practices (GWP) Plan or a Good Combustion & Operating Practices (GCOP) Plan. |

Table B-12. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for VOC (Prior 10 Years)

| Process                                                           | RBLC ID | Facility                          | Permit Date (from RBLC) | <b>Production Capacity</b>     | Permitted VOC Limit | Control                                                                                                                                                                                   |
|-------------------------------------------------------------------|---------|-----------------------------------|-------------------------|--------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EP 01-05 - Caster Spray Vent                                      | KY-0110 | NUCOR STEEL<br>BRANDENBURG        | 07/23/2020              | 1750000 tons steel produced/yr | 0.4 lb/hr           | This EP is required to have a Good Work Practices (GWP) Plan.                                                                                                                             |
| EP 01-06 - Caster Torch Cutoff                                    | KY-0110 | NUCOR STEEL<br>BRANDENBURG        | 07/23/2020              | 0.64 MMBtu/hr                  | 5.5 lb/MMscf        | -                                                                                                                                                                                         |
| Melt Shop #1 (EU 01 Baghouse #1 & Damp; #2 Stack)                 | KY-0115 | NUCOR STEEL<br>GALLATIN, LLC      | 04/19/2021              | 2000000 tons steel/yr          | 0.09 lb/ton         | Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions. |
| Melt Shop #2 (EU 20 Baghouse #3 Stack)                            | KY-0115 | NUCOR STEEL<br>GALLATIN, LLC      | 04/19/2021              | 2000000 tons steel/yr          | 0.09 lb/ton         | Combustion processes must develop a Good Combustion and Operating Practices (GCOP) Plan and non-combustion processes must develop a Good Work Practices (GWP) Plan to minimize emissions. |
| Galvanizing Line #2 Alkali Cleaning Section<br>Heater (EP 21-07B) | KY-0115 | NUCOR STEEL<br>GALLATIN, LLC      | 04/19/2021              | 23 MMBtu/hr                    | 5.5 lb/MMscf        | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                          |
| Galvanizing Line #2 Zinc Pot Preheater (EP 21-09)                 | KY-0115 | NUCOR STEEL<br>GALLATIN, LLC      | 04/19/2021              | 3 MMBtu/hr                     | 5.5 lb/MMscf        | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                          |
| Galvanizing Line #2 Chemical Treatment & Dryer (EP 21-11)         | KY-0115 | NUCOR STEEL<br>GALLATIN, LLC      | 04/19/2021              | 876000 tons steel/yr           | 5.5 lb/MMscf        | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan                                                                                                          |
| A-Line Caster Spray Vent (EP 01-14)                               | KY-0115 | NUCOR STEEL<br>GALLATIN, LLC      | 04/19/2021              | 2000000 tons steel<br>cast/yr  | 0.4 lb/hr           | The permittee must develop a Good Work Practices (GWP) Plan to minimize emissions.                                                                                                        |
| B-Line Caster Spray Vent (EP 20-11)                               | KY-0115 | NUCOR STEEL<br>GALLATIN, LLC      | 04/19/2021              | 2000000 tons steel<br>cast/yr  | 0.8 lb/hr           | The permittee must develop a Good Work Practices (GWP) Plan to minimize emissions.                                                                                                        |
| Tundish Dryer #2 (P030)                                           | OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019              | 1.2 MMBtu/hr                   | 0.01 LB/H           | Use of natural gas, good combustion practices and design                                                                                                                                  |
| Ladle Preheaters and Dryers (P021-023, P025-<br>026)              | OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019              | 16 MMBtu/hr                    | 0.09 LB/H           | Use of natural gas, good combustion practices and design                                                                                                                                  |
| Tundish Preheaters #3 and #4 (P028 and P029)                      | OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019              | 9.5 MMBtu/hr                   | 0.05 LB/H           | Use of natural gas, good combustion practices and design                                                                                                                                  |
| Twin-Station Ladle Metallurgy Facility (LMF 3/4) (P906)           | OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019              | 250 T/H                        | 87.5 LB/H           | The development, implementation, and maintenance of a scrap management plan.                                                                                                              |
| Caster #2 (P907)                                                  | OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019              | 250 T/H                        | 87.5 LB/H           | The development, implementation, and maintenance of a scrap management plan.                                                                                                              |

<sup>&</sup>lt;sup>1</sup> The CMC Mesa and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility.

<sup>&</sup>lt;sup>2</sup> These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

Table B-13. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for GHGs (Prior 10 Years)

| Table B-13. Natural Gas Combustion Emission                                                                         | able B-13. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for GHGs (Prior 10 Years) |                                   |                            |                                |                                                |                                                                                                                                                                                                      |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------|--------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Process                                                                                                             | RBLC ID                                                                                                                   | Facility                          | Permit Date (from<br>RBLC) | <b>Production Capacity</b>     | Permitted CO2e Limit                           | Control                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                     |                                                                                                                           |                                   | Compara                    | ble Facilities 1               |                                                |                                                                                                                                                                                                      |  |  |  |  |  |
| Meltshop Natural Gas Combustion                                                                                     | -                                                                                                                         | NUCOR STEEL SEDALIA               | 9/12/2018                  | 450,000 tpy                    | 120 lb/MMBtu                                   | GCP of pipeline quality natural gas                                                                                                                                                                  |  |  |  |  |  |
| Heaters (Gas-Fired)                                                                                                 | OK-0173                                                                                                                   | CMC STEEL OKLAHOMA                | 1/19/2016                  | -                              | 120 lb/MMBtu                                   | Natural gas fuel                                                                                                                                                                                     |  |  |  |  |  |
| Ladle and Tundish Preheaters, Dryers and Skull Cutting                                                              | FL-0368                                                                                                                   | NUCOR STEEL FLORIDA<br>FACILITY   | 2/14/2019                  | 45.75 MMBtu/hr                 | 120 lb/MMBtu                                   | Good combustion practices and using pipeline quality natural gas                                                                                                                                     |  |  |  |  |  |
|                                                                                                                     |                                                                                                                           |                                   | Not Compa                  | rable Facilities <sup>2</sup>  |                                                |                                                                                                                                                                                                      |  |  |  |  |  |
| MELT SHOP GHG                                                                                                       | AR-0140                                                                                                                   | BIG RIVER STEEL LLC               | 9/18/2013                  | -                              | 0.155 LB/TON OF STEEL                          | ENERGY EFFICIENCY IMPROVEMENTS                                                                                                                                                                       |  |  |  |  |  |
| SMALL HEATERS AND DRYERS SN-10 through SN-<br>13                                                                    | AR-0159                                                                                                                   | BIG RIVER STEEL LLC               | 4/5/2019                   | -                              | 117 lb/MMBtu                                   | GOOD OPERATING PRACTICES                                                                                                                                                                             |  |  |  |  |  |
| SN-228 and SN-229 Zinc Dryer and Zinc Pot<br>Preheat                                                                | AR-0171                                                                                                                   | NUCOR STEEL ARKANSAS              | 2/14/2019                  | 3 MMBtu/hr each                | 121 lb/MMBtu 3-HR                              | Good Combustion Practices                                                                                                                                                                            |  |  |  |  |  |
| Lime Injector Burners                                                                                               | AR-0173                                                                                                                   | BIG RIVER STEEL LLC               | 1/31/2022                  | -                              | -                                              | Good operating practices                                                                                                                                                                             |  |  |  |  |  |
| Vertical and Horizontal Ladle Preheaters                                                                            | AR-0173                                                                                                                   | BIG RIVER STEEL LLC               | 1/31/2022                  | -                              | 117 lb/MMBtu                                   | Good operating practices                                                                                                                                                                             |  |  |  |  |  |
| Tundish Preheaters/Dryout Stand                                                                                     | AR-0173                                                                                                                   | BIG RIVER STEEL LLC               | 1/31/2022                  | -                              | 117 lb/MMBtu                                   | Good operating practices                                                                                                                                                                             |  |  |  |  |  |
| Natural Gas Space Heaters                                                                                           | AR-0173                                                                                                                   | BIG RIVER STEEL LLC               | 1/31/2022                  | 170 MMBtu/hr                   | 117 lb/MMBtu                                   | Good Operating Practices                                                                                                                                                                             |  |  |  |  |  |
| Casting Process Heating Source                                                                                      | AR-0173                                                                                                                   | BIG RIVER STEEL LLC               | 1/31/2022                  | 30 MMBtu/hr                    | 117 lb/MMBtu                                   | Good Operating Practices                                                                                                                                                                             |  |  |  |  |  |
| EP 15-01 - Natural Gas Direct-Fired Space<br>Heaters, Process Water Heaters, & Direct-Fired Space<br>Makeup Heaters | KY-0110                                                                                                                   | NUCOR STEEL<br>BRANDENBURG        | 7/23/2020                  | 40 MMBtu/hr, combined          | 20734 TON/YR 12-<br>MONTH ROLLING,<br>COMBINED | This EP is required to have a Good Combustion and Operating Practices (GCOP) Plan and meet design requirements.                                                                                      |  |  |  |  |  |
| Melt Shop (EU 01) & Melt Shop Combustion Sources (EU 02)                                                            | KY-0110                                                                                                                   | NUCOR STEEL<br>BRANDENBURG        | 7/23/2020                  | 1750000 tons steel produced/yr | 463444 TON/YR 12-<br>MONTH ROLLING             | All EPs must have wither a Good Work Practices (GWP) Plan or a Goff<br>Combustion and Operating Practices (GCOP) Plan. Additionally, There are<br>Design Requirements for GHGs the source must meet. |  |  |  |  |  |
| EP 01-06 - Caster Torch Cutoff                                                                                      | KY-0110                                                                                                                   | NUCOR STEEL<br>BRANDENBURG        | 7/23/2020                  | 0.64 MMBtu/hr                  | 332 TON/YR 12-MONTH<br>ROLLING                 | -                                                                                                                                                                                                    |  |  |  |  |  |
| Melt Shop #1 (EU 01 Baghouse #1 & Damp; #2 Stack)                                                                   | KY-0115                                                                                                                   | NUCOR STEEL GALLATIN,<br>LLC      | 4/19/2021                  | 2000000 tons steel/yr          | MONTH ROLLING                                  | Good Combustion and Operating Practices (GCOP) Plan and specific design and operational requirements                                                                                                 |  |  |  |  |  |
| Melt Shop #2 (EU 20 Baghouse #3 Stack)                                                                              | KY-0115                                                                                                                   | NUCOR STEEL GALLATIN,<br>LLC      | 4/19/2021                  | 2000000 tons steel/yr          | 535000 TONS/YR 12-<br>MONTH ROLLING            | Good Combustion and Operating Practices (GCOP) Plan and specific design and operational requirements                                                                                                 |  |  |  |  |  |
| Galvanizing Line #2 Zinc Pot Preheater (EP 21-09)                                                                   | KY-0115                                                                                                                   | NUCOR STEEL GALLATIN,<br>LLC      | 4/19/2021                  | 3 MMBtu/hr                     | 30 TONS/YR 12-MONTH<br>ROLLING                 | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan and implement various design and operational efficiency requirements.                                               |  |  |  |  |  |
| Galvanizing Line #2 Chemical Treatment & Dryer (EP 21-11)                                                           | KY-0115                                                                                                                   | NUCOR STEEL GALLATIN,<br>LLC      | 4/19/2021                  | 876000 tons steel/yr           | 1555 TONS/YR 12-<br>MONTH ROLLING              | The permittee must develop a Good Combustion and Operating Practices (GCOP) Plan and implement various design and operational efficiency requirements.                                               |  |  |  |  |  |
| Tundish Dryer #2 (P030)                                                                                             | OH-0381                                                                                                                   | NORTHSTAR BLUESCOPE<br>STEEL, LLC | 9/27/2019                  | 1.2 MMBtu/hr                   | 140.22 LB/H                                    | Use of natural gas and energy efficient design                                                                                                                                                       |  |  |  |  |  |
| Ladle Preheaters and Dryers (P021-023, P025-<br>026)                                                                | OH-0381                                                                                                                   | NORTHSTAR BLUESCOPE<br>STEEL, LLC | 9/27/2019                  | 16 MMBtu/hr                    | 1869.65 LB/H                                   | Use of natural gas and energy efficient design                                                                                                                                                       |  |  |  |  |  |
| Tundish Preheaters #3 and #4 (P028 and P029)                                                                        | OH-0381                                                                                                                   | NORTHSTAR BLUESCOPE<br>STEEL, LLC | 9/27/2019                  | 9.5 MMBtu/hr                   | 1110.1 LB/H                                    | Use of natural gas and energy efficient design                                                                                                                                                       |  |  |  |  |  |

Table B-13. Natural Gas Combustion Emission Sources Recent Permit Limitations and Determinations for GHGs (Prior 10 Years)

| Process          | RBLC ID | Facility                          | Permit Date (from<br>RBLC) | <b>Production Capacity</b> | Permitted CO2e Limit                                | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|---------|-----------------------------------|----------------------------|----------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Caster #2 (P907) | OH-0381 | NORTHSTAR BLUESCOPE<br>STEEL, LLC | 9/27/2019                  | 250 T/H                    | 73000 LB/H COMBINED<br>P905 AND P906. SEE<br>NOTES. | Implementation of the following low-emitting processes, system designs, management practices and methods for EAF and LMF operations resulting in an overall emission rate of 292 lbs CO2e/ton of liquid steel produced.  (a) furnace design - single bucket batch charging;  (b) oxy-fuel burners - supplement of chemical energy thru scrap preheating and carbon/oxygen injection;  (c)foamy slag practice - increased electrical efficiency and reduced radiant heat loss;  (d) real-time off-gas analysis and closed-loop process control of oxygen flow and air ingress - regulates energy input and post-combustion temperature and composition;  (e) ultra-high-power transformer - lower power-on times due to faster melting of scrap;  (f) eccentric bottom tapping - lower treatment requirements in LMF due to reduced slag carryover from tapping;  (g) heel practice - higher retention of liquid heel heats scrap faster resulting in quick arc stabilization. |

<sup>&</sup>lt;sup>1</sup> The CMC Mesa and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility.

<sup>2</sup> These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

Table B-14. Rolling Mill/Cooling Beds Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

| Process                                | RBLC ID | Facility                     | Permit Date<br>(from RBLC) | Production Capacity<br>(US tpy) | Particulate Matter Type   | Permitted PM Limit      | Control                                                                                                                                  |
|----------------------------------------|---------|------------------------------|----------------------------|---------------------------------|---------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |         |                              | (                          | (55 47)                         | Comparable Facilities     |                         |                                                                                                                                          |
| Rolling<br>Operations                  | FL-0368 | NUCOR STEEL FLORIDA FACILITY | 02/14/2019                 |                                 | PM Total                  | 0                       | Good industry practices                                                                                                                  |
| Rolling Mill<br>and Cutting<br>Torches | IL-0126 | NUCOR STEEL KANKAKEE, INC.   | 11/1/2018                  | 500,000                         | PM Filterable             | 6.65 tpy<br>0.027 lb/hr | Good industry practices for a rolling mill                                                                                               |
| Rolling Mill<br>and Cutting<br>Torches | IL-0126 | NUCOR STEEL KANKAKEE, INC.   | 11/1/2018                  | 500,000                         | PM <sub>10</sub> Total    | 6.65 tpy<br>0.027 lb/hr | Good industry practices for a rolling mill                                                                                               |
| Rolling Mill<br>and Cutting<br>Torches | IL-0126 | NUCOR STEEL KANKAKEE, INC.   | 11/1/2018                  | 500,000                         | PM <sub>2.5</sub> Total   | 2.46 tpy<br>0.010 lb/hr | Good industry practices for a rolling mill                                                                                               |
| Rolling Mill<br>(P009)                 | OH-0369 | NUCOR STEEL MARION, INC.     | 8/29/2017                  | 154.5 MMBtu/hr                  | PM Total                  | 3.59 tpy                |                                                                                                                                          |
| Rolling Mill<br>(P009)                 | OH-0369 | NUCOR STEEL MARION, INC.     | 8/29/2017                  | 154.5 MMBtu/hr                  | PM <sub>10</sub> Total    | 3.59 tpy                |                                                                                                                                          |
| Rolling Mill<br>(P009)                 | OH-0369 | NUCOR STEEL MARION, INC.     | 8/29/2017                  | 154.5 MMBtu/hr                  | PM <sub>2.5</sub> Total   | 3.59 tpy                |                                                                                                                                          |
|                                        |         |                              |                            |                                 | Not Comparable Facilities |                         |                                                                                                                                          |
| KY-0115                                | KY-0115 | NUCOR STEEL GALLATIN, LLC    | 4/19/2021                  | 3500000                         | FPM                       | 0.04 LB/HR              | The permittee must develop a Good Work Practices (GWP) Plan to minimize emissions. Equipped with a dust collector.                       |
| KY-0115                                | KY-0115 | NUCOR STEEL GALLATIN, LLC    | 4/19/2021                  | 3500000                         | TPM10                     | 0.04 LB/HR              | The permittee must develop a Good Work Practices (GWP) Plan to minimize emissions. Equipped with a dust collector.                       |
| KY-0115                                | KY-0115 | NUCOR STEEL GALLATIN, LLC    | 4/19/2021                  | 3500000                         | TPM2.5                    | 0.04 LB/HR              | The permittee must develop a Good Work Practices (GWP) Plan to minimize emissions. Equipped with a dust collector.                       |
| KY-0110                                | KY-0110 | NUCOR STEEL BRANDENBURG      | 7/23/2020                  | 1110000.00                      | FPM                       | 0.011 LB/HR             | This EP is required to have a Good Work<br>Practices (GWP) Plan and a baghouse<br>designed to control 99.9% of particulate<br>emissions. |
| KY-0110                                | KY-0110 | NUCOR STEEL BRANDENBURG      | 7/23/2020                  | 1110000.00                      | TPM10                     | 0.011 LB/HR             | This EP is required to have a Good Work<br>Practices (GWP) Plan and a baghouse<br>designed to control 99.9% of particulate<br>emissions. |
| KY-0110                                | KY-0110 | NUCOR STEEL BRANDENBURG      | 7/23/2020                  | 1110000.00                      | TPM2.5                    | 0.011 LB/HR             | This EP is required to have a Good Work<br>Practices (GWP) Plan and a baghouse<br>designed to control 99.9% of particulate<br>emissions. |

Table B-15. Rolling Mill/Cooling Beds Recent Permit Limitations and Determinations of BACT for VOC (Prior 10 years)

| Process               | RBLC ID                     | Facility                        | Permit Date<br>(from RBLC) | Production Capacity<br>(US tpy) | Permitted VOC Limit | Control                                                        |  |  |  |
|-----------------------|-----------------------------|---------------------------------|----------------------------|---------------------------------|---------------------|----------------------------------------------------------------|--|--|--|
| Comparable Facilities |                             |                                 |                            |                                 |                     |                                                                |  |  |  |
| Rolling Mill (P009)   | OH-0369                     | NUCOR STEEL MARION,<br>INC      | 8/29/2017                  | 154.4 MMBTU/H                   | 9.26 TPY            | -                                                              |  |  |  |
| Rolling Operations    | FL-0368                     | NUCOR STEEL FLORIDA<br>FACILITY | 2/14/2019                  | 0                               | 0                   | Limiting the oil and grease usage; Good<br>Operating Practices |  |  |  |
|                       | Not Comparable Facilities 1 |                                 |                            |                                 |                     |                                                                |  |  |  |
| Hot Rolling Mill      | AL-0307                     | Alloys Plant                    | 10/9/2015                  | 0                               | 106 PPMVD           | Fume Exhaust Control                                           |  |  |  |

<sup>&</sup>lt;sup>1</sup> These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

<sup>\*</sup> Indicates that the facilities are draft determination in the RBLC database.

Table B-16. Storage Silos Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

| Table b-10 . Storage Sil                                  | OS RECEIIL | Permit Limitations and                              | ons and Determinations of BACT for PM (Prior 10 years) |                                 |                                         |                    |                                                                                                                                                                                                                                                                                                                                                                    |  |
|-----------------------------------------------------------|------------|-----------------------------------------------------|--------------------------------------------------------|---------------------------------|-----------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Process                                                   | RBLC ID    | Facility                                            | Permit Date<br>(from RBLC)                             | Production Capacity<br>(US tpy) | Particulate Matter Type                 | Permitted PM Limit | Control                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                           |            |                                                     |                                                        | Con                             | nparable Facilities¹                    |                    |                                                                                                                                                                                                                                                                                                                                                                    |  |
| Two Carbon/Lime Silos                                     | -          | Gerdau Ameristeel, NC                               | 5/1/2019                                               | 90 tph                          | PM10 Filterable                         | -                  | Fabric Filters                                                                                                                                                                                                                                                                                                                                                     |  |
| Loading of flux from storage silo to EAF                  | -          | CMC Steel Arizona                                   | 6/14/2018                                              | 450000 tons of steel per year   | РМ                                      | -                  | Fugitive dust control plan<br>Partial enclosure in scrap bay building                                                                                                                                                                                                                                                                                              |  |
| Silos                                                     | FL-0368    | NUCOR STEEL FLORIDA<br>FACILITY                     | 02/14/2019                                             | 0                               | Particulate matter, filterable (FPM)    | 0.005 GR/DSCF      | Bin vent filters                                                                                                                                                                                                                                                                                                                                                   |  |
| Materials Storage Silos                                   | OK-0173    | CMC STEEL OKLAHOMA                                  | 01/19/2016                                             | 0                               | Particulate matter, total (TPM10)       | 0.01 GR/DSCF       | Baghouses.                                                                                                                                                                                                                                                                                                                                                         |  |
| Materials Storage Silos                                   | OK-0173    | CMC STEEL OKLAHOMA                                  | 01/19/2016                                             | 0                               | Particulate matter, total (TPM2.5)      | 0.01 GR/DSCF       | Baghouses.                                                                                                                                                                                                                                                                                                                                                         |  |
| Materials Storage Silos                                   | -          | Nucor Sedalia                                       | 9/12/2018                                              | 450000 tpy                      | PM/PM <sub>10</sub> /PM <sub>2.5</sub>  | 0.01 gr/dscf       | Baghouse                                                                                                                                                                                                                                                                                                                                                           |  |
| STORAGE SILOS                                             | TX-0882    | STEEL DYNAMICS<br>SOUTHWEST, LLC<br>SDSW STEEL MILL | 1/17/2020                                              | 0                               | FPM, TPM10, TPM2.5                      | 0.01 GR/DSCF       | BAGHOUSE                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                           |            |                                                     |                                                        | Not Co                          | omparable Facilities <sup>2</sup>       |                    |                                                                                                                                                                                                                                                                                                                                                                    |  |
| LMF Silo #2 &<br>Lime/Carbon Silo:<br>P032,P033,P034      | *OH-0381   | NORTHSTAR<br>BLUESCOPE STEEL, LLC                   | 09/27/2019                                             | 0                               | Particulate matter, filterable (FPM)    | 0.02 GR/DSCF       | Fabric filter                                                                                                                                                                                                                                                                                                                                                      |  |
| LMF Silo #2 & amp;<br>Lime/Carbon Silo:<br>P032,P033,P034 | *OH-0381   | NORTHSTAR<br>BLUESCOPE STEEL, LLC                   | 09/27/2019                                             | 0                               | Particulate matter, filterable (FPM10)  | 0.02 GR/DSCF       | Fabric filter                                                                                                                                                                                                                                                                                                                                                      |  |
| LMF Silo #2 & amp;<br>Lime/Carbon Silo:<br>P032,P033,P034 | *OH-0381   | NORTHSTAR<br>BLUESCOPE STEEL, LLC                   | 09/27/2019                                             | 0                               | Particulate matter, filterable (FPM2.5) | 0.02 GR/DSCF       | Fabric filter                                                                                                                                                                                                                                                                                                                                                      |  |
| Limestone Receiving #2 (F007)                             | *OH-0381   | NORTHSTAR<br>BLUESCOPE STEEL, LLC                   | 09/27/2019                                             | 262800 T/YR                     | Particulate matter, fugitive            | 1.16 T/YR          | Minimization of drop height                                                                                                                                                                                                                                                                                                                                        |  |
| Limestone Receiving #2 (F007)                             | *OH-0381   | NORTHSTAR<br>BLUESCOPE STEEL, LLC                   | 09/27/2019                                             | 262800 T/YR                     | Particulate matter, filterable (FPM10)  | 1.16 T/YR          | Minimization of drop height                                                                                                                                                                                                                                                                                                                                        |  |
| Limestone Receiving #2 (F007)                             | *OH-0381   | NORTHSTAR<br>BLUESCOPE STEEL, LLC                   | 09/27/2019                                             | 262800 T/YR                     | Particulate matter, filterable (FPM2.5) | 1.16 T/YR          | Minimization of drop height                                                                                                                                                                                                                                                                                                                                        |  |
| STORAGE SILOS                                             | *TX-0882   | SDSW STEEL MILL                                     | 01/17/2020                                             | 0                               | Particulate matter, total (TPM)         | 0.01 GR/DSCF       | BAGHOUSE                                                                                                                                                                                                                                                                                                                                                           |  |
| STORAGE SILOS                                             | *TX-0882   | SDSW STEEL MILL                                     | 01/17/2020                                             | 0                               | Particulate matter, total (TPM10)       | 0.01 GR/DSCF       | BAGHOUSE                                                                                                                                                                                                                                                                                                                                                           |  |
| STORAGE SILOS                                             | *TX-0882   | SDSW STEEL MILL                                     | 01/17/2020                                             | 0                               | Particulate matter, total (TPM2.5)      | 0.01 GR/DSCF       | BAGHOUSE                                                                                                                                                                                                                                                                                                                                                           |  |
| EP 07-02 - DRI Storage<br>Silo #1                         | KY-0110    | NUCOR STEEL<br>BRANDENBURG                          | 7/23/2020                                              | 1750000 TPY                     | FPM, TPM10, TPM2.5                      | 0.001 GR/DSCF      | For DRI Storage Silo #1 (EP 07-02): The permittee shall install, operate, and maintain a dust collector for the silo designed to control particulate grain loading to 0.001 grain/dscf and the flow rate to 1200 dscf/min and a passive bin vent for the silo designed to control particulate grain loading to 0.001 grain/dscf and the flow rate to 148 dscf/min. |  |

Table B-16 . Storage Silos Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

| Process                                                            | RBLC ID | Facility                                               | Permit Date<br>(from RBLC) | Production Capacity<br>(US tpy) | Particulate Matter Type              | Permitted PM Limit                                 | Control                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------|---------|--------------------------------------------------------|----------------------------|---------------------------------|--------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EP 07-03 - DRI Storage<br>Silo #2                                  | KY-0110 | NUCOR STEEL<br>BRANDENBURG                             | 7/23/2020                  | 1750000 TPY                     | FPM, TPM10, TPM2.5                   | 0.001 GR/DSCF                                      | For EP 07-03 - DRI Storage Silo #2: The permittee shall install, operate, and maintain a dust collector for the silo designed to control particulate grain loading to 0.001 grain/dscf and the flow rate to 1200 dscf/min and a passive bin vent for the silo designed to control particulate grain loading to 0.001 grain/dscf and the flow rate to 148 dscf/min.      |
| EP 07-04 - DRI Storage<br>Silo Loadout                             | KY-0110 | NUCOR STEEL<br>BRANDENBURG                             | 7/23/2020                  | 1750000 TPY                     | FPM, TPM10, TPM2.5                   | 0.001 GR/DSCF                                      | For EP 07-04 - DRI Storage Silo Loadout: The permittee shall install, operate, and maintain a dust collector for the silo designed to control particulate grain loading to 0.001 grain/dscf and the flow rate to 1200 dscf/min and a passive bin vent for the silo designed to control particulate grain loading to 0.001 grain/dscf and the flow rate to 148 dscf/min. |
| LIME / CARBON STORAGE<br>SILOS                                     | IN-0235 | STEEL DYNAMICS INC<br>FLAT ROLL DIVISION               | 11/05/2015                 | -                               | Particulate matter, filterable (FPM) | 0.01 GR/DSCF                                       | BIN VENT                                                                                                                                                                                                                                                                                                                                                                |
| Carbon/Lime Storage and charging                                   | LA-0309 | BENTELER STEEL TUBE<br>FACILITY                        | 06/04/2015                 | 0                               | Particulate matter, total (TPM10)    | 0.005 GR/DSCF                                      | filter / dust collector                                                                                                                                                                                                                                                                                                                                                 |
| Carbon/Lime Storage and charging                                   | LA-0309 | BENTELER STEEL TUBE<br>FACILITY                        | 06/04/2015                 | 0                               | Particulate matter, total (TPM2.5)   | 0.005 GR/DSCF                                      | Filter / Dust Collector                                                                                                                                                                                                                                                                                                                                                 |
| Material Handling                                                  | LA-0309 | BENTELER STEEL TUBE FACILITY                           | 06/04/2015                 | 0                               | Particulate matter, total (TPM10)    | 0.005 GR/DSCF                                      | baghouses                                                                                                                                                                                                                                                                                                                                                               |
| Material Handling                                                  | LA-0309 | BENTELER STEEL TUBE FACILITY                           | 06/04/2015                 | 0                               | Particulate matter, total (TPM2.5)   | 0.005 GR/DSCF                                      | baghouses                                                                                                                                                                                                                                                                                                                                                               |
| Flux and Carbon storage material handling                          | OH-0350 | REPUBLIC STEEL                                         | 07/18/2012                 | 0                               | Particulate matter, total (TPM10)    | 2.4 LB/H                                           | Enclosures and baghouse                                                                                                                                                                                                                                                                                                                                                 |
| Flux and Carbon storage material handling                          | OH-0350 | REPUBLIC STEEL                                         | 07/18/2012                 | 0                               | Particulate matter, total (TPM2.5)   | 0.37 LB/H                                          | Enclosures and Baghouse                                                                                                                                                                                                                                                                                                                                                 |
| Raw Material Handling<br>and Processing (carbon<br>dump fugitives) | SC-0183 | NUCOR STEEL -<br>BERKELEY                              | 05/04/2018                 | 0                               | Particulate matter, filterable (FPM) | 0                                                  | Good Work Practice Standards and Proper<br>Operation and Maintenance.                                                                                                                                                                                                                                                                                                   |
| Raw Material Handling<br>and Processing (lime<br>dump fugitives)   | SC-0183 | NUCOR STEEL -<br>BERKELEY                              | 05/04/2018                 | 0                               | Particulate matter, filterable (FPM) | 0                                                  | Good Work Practice Standards and Proper<br>Operation and Maintenance                                                                                                                                                                                                                                                                                                    |
| THREE STORAGE<br>BIN/SILOS ID#12A, 12B,<br>AND 12C                 | IN-0156 | STEEL DYNAMICS, INC<br>STRUCTURAL AND RAIL<br>DIVISION | 12/31/2012                 | 0                               | Particulate matter, filterable (FPM) | 0.01 GR/DSCF<br>3% Opacity for 6-minute<br>average | BIN VENT FILTER                                                                                                                                                                                                                                                                                                                                                         |

Table B-16 . Storage Silos Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

| Process                                            | RBLC ID | Facility                                               | Permit Date<br>(from RBLC) | Production Capacity<br>(US tpy) | Particulate Matter Type                | Permitted PM Limit                                 | Control         |
|----------------------------------------------------|---------|--------------------------------------------------------|----------------------------|---------------------------------|----------------------------------------|----------------------------------------------------|-----------------|
| THREE STORAGE<br>BIN/SILOS ID#12A, 12B,<br>AND 12C |         | STEEL DYNAMICS, INC<br>STRUCTURAL AND RAIL<br>DIVISION |                            | 0                               | Particulate matter, filterable (FPM10) | 0.01 GR/DSCF<br>3% Opacity for 6-minute<br>average | BIN VENT FILTER |

<sup>&</sup>lt;sup>1</sup> The CMC Mesa, Nucor Sedalia, and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

<sup>&</sup>lt;sup>2</sup> These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

<sup>\*</sup> Indicates that the facilities are draft determination in the RBLC database.

Table B-17. Storage Piles & Material Transfers Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

| Process | RBLC ID       | Facility                | Permit Date<br>(from RBLC) | Production Capacity<br>(US tpy)                           | Particulate Matter Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Permitted PM Limit | Control |
|---------|---------------|-------------------------|----------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|
|         | Building or   | Structure Housing Any   | Iron or Steel Fo           | 20% opacity from fugitive<br>emissions (6-minute average) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |         |
|         |               | New Large Iron and St   | eel Foundaries             | 20% opacity from fugitive<br>emissions (6 min average)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |         |
|         | Fugitive Du   | ıst from Dust-Generatiı | ng Operations, N           | 20% opacity from fugitive emissions                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |         |
| o       | pen Storage P | Piles and Material Hand | ing, Maricopa C            |                                                           | One of the following: spray material with water; maintain a 1.5% or more soil moisture content of the open storage piles; locate open storage pile(s) in a pit/in the bottom of a pit; arrange open storage pile(s) such that storage pile(s) of larger diameter products are on the perimeter and act as barriers to/for open storage pile(s) that could create fugitive dust emissions; construct and maintain wind barriers, storage silos, or a three-sided enclosure with walls, whose length is no less than equal to the length of the pile, whose distance from the pile is no more than twice the height of the pile, whose height is equal to the pile height, and whose porosity is no more than 50%; cover open storage piles with tarps, plastic, or other material to prevent wind from removing the coverings; maintain a visible crust. |                    |         |
| o       | pen Storage P | iles and Material Hand  | ing, Maricopa C            |                                                           | When installing new open storage pile(s): Install the open storage pile(s) 25 feet or more from the property line; and limit the height of the open storage pile(s) to less than 45 feet. An owner, operator, or person subject to this rule may be allowed to install the open storage pile(s) less than 25 feet from the property line, if the owner, operator, or person subject to this rule can demonstrate to the Control Officer that there is not adequate space to install the open storage pile(s).                                                                                                                                                                                                                                                                                                                                           |                    |         |

Table B-17. Storage Piles & Material Transfers Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

| Process                                                          | RBLC ID       | Facility                         | Permit Date<br>(from RBLC) | Production Capacity<br>(US tpy) | f BACT for PM (Prior 10 years)  Particulate Matter Type | Permitted PM Limit | Control                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------|---------------|----------------------------------|----------------------------|---------------------------------|---------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Op                                                               | oen Storage F | Piles and Material Handli        | ng, Maricopa C             | County Regulation III R         | ule 316 Section 307.1                                   |                    | For open storage pile(s) more than eight feet high and not covered, completely wet surface of the open storage pile(s).                                                                                                                                                                                                                                          |
|                                                                  |               |                                  |                            |                                 | Comparable Facilities 1                                 |                    |                                                                                                                                                                                                                                                                                                                                                                  |
| Raw and Waste<br>Material Storage and<br>Handling & Slag<br>Yard | FL-0368       | NUCOR STEEL FLORIDA<br>FACILITY  | 02/14/2019                 |                                 | PM Filterable                                           | 0                  | Use of equipment enclosures, water sprays, and minimizing wind erosion and drop points                                                                                                                                                                                                                                                                           |
| Storage Piles :<br>Refractory and Slag                           | OK-0173       | CMC STEEL OKLAHOMA               | 01/19/2016                 |                                 | PM Total                                                | 0                  | Minimizing drop height. In addition, use of windbreaks and watering of piles may be used, although watering may result in unacceptable solidification of slag or other materials discharged from high-temperature operations. Most of the outdoor piles materials are scrap steel which has very little brittle materials susceptible to becoming fugitive dust. |
| ES-3 Particulate<br>Emissions                                    |               | GERDAU AMERISTEEL,<br>NC         | 5/1/2019                   |                                 | PM                                                      | 0                  | None                                                                                                                                                                                                                                                                                                                                                             |
| Storage Piles                                                    |               | CMC STEEL MESA                   | 6/14/2018                  |                                 | TSP/PM <sub>10</sub>                                    | 0                  | Enclosures, wetting/watering and material moisture content                                                                                                                                                                                                                                                                                                       |
| Slag/Mill Scale<br>Control Device                                |               | NUCOR STEEL<br>MISSOURI FACILITY | 9/12/2018                  |                                 | PM/PM <sub>10</sub> /PM <sub>2.5</sub>                  | 0                  | Water spray or dust suppressant emission control system in slag yard when screens or crusher are operating. Minimize drop heights.                                                                                                                                                                                                                               |
|                                                                  |               |                                  |                            | N                               | ot Comparable Facilities <sup>2</sup>                   |                    |                                                                                                                                                                                                                                                                                                                                                                  |
| Slag Storage Piles                                               | AR-0173       | BIG RIVER STEEL LLC              | 1/31/2022                  | 0                               | FPM                                                     | 0.58 TPY           | Dust Control Plan                                                                                                                                                                                                                                                                                                                                                |
| Slag Storage Piles                                               | AR-0173       | BIG RIVER STEEL LLC              | 1/31/2022                  | 0                               | TPM10                                                   | 0.29 TPY           | Dust Control Plan                                                                                                                                                                                                                                                                                                                                                |
| Slag Storage Piles                                               | AR-0173       | BIG RIVER STEEL LLC              | 1/31/2022                  | 0                               | TPM2.5                                                  | 0.1 TPY            | Dust Control Plan                                                                                                                                                                                                                                                                                                                                                |

The CMC Mesa, Nucor Missouri and Gerdau Ameristeel facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

<sup>&</sup>lt;sup>2</sup> The RBLC listings are either not condiered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

\* Indicates that the facilities are draft determination in the RBLC database.

Table B-18. Cooling Tower Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years Permit Date uction Capacity Particulate Matte Process RBLC ID Facility Permitted PM Limit Control Туре Comparable Facilities Contact and Non-Contact Cooling  ${\rm PM,\,PM_{10},\,PM_{2.5}}$ CMC STEEL MESA 6/14/2018 0.0005 % DRIFT RATE Drift eliminators Particulate matter Two Cooling Towers FI -0368 NUCOR STEEL FLORIDA FACILITY 02/14/2019 19,650 gal/min 0.001 % DRIFT RATE rift eliminators total (TPM) Particulate matter Cooling Towers OK-0173 CMC STEEL OKLAHOMA 01/19/2016 n 0.001 % DRIFT Orift eliminators total (TPM10) 0.001% DRIFT Cooling Towers Nucor Sedalia 9/12/2018 450000 tpy PM/PM<sub>10</sub>/PM<sub>2.5</sub> Orift Eliminators/TDS limit for circulated water 2,500 ppm TDS limit Not Comparable Facilities 0.001 WEIGHT Particulate matter Cooling Towers TI -0126 NUCOR STEEL KANKAKEE, INC. 11/01/2018 4500 gallons/minute FRCENT 4000 TOTAL Drift eliminators total (TPM) DISOLVED SOLID use of drift eliminator(s) designed to achieve a i.maintenance of a total dissolved solids (TDS) content (for the 5 individual cooling towers) not to exceed the ppm in the circulating cooling water based on a rolling 12-Contact Cooling Towers - Melt Shop NORTHSTAR BLUESCOPE STEEL, Particulate matter month average as indicated in the table below: Cooling Tower - TDS (ppm) \*OH-0381 09/27/2019 2.7 MMGAL/H 1.17 T/YR 2 (P027) filterable (FPM) LLC Meltshop 2 Cooling Tower - 1000 Caster Mold Water Cooling Tower - 800 Tunnel Furnace Cooling Tower - 800 Caster Non-Contact 2 Cooling Tower - 800 Caster Contact 2 Cooling Tower - 1400 use of drift eliminator(s) designed to achieve a 0.001% drift rate: ii.maintenance of a total dissolved solids (TDS) content (for the 5 individual cooling towers) not to exceed the ppm in the circulating cooling water based on a rolling  $12^{\circ}$ NORTHSTAR BLUESCOPE STEEL, nonth average as indicated in the table below: Contact Cooling Towers - Melt Shop Particulate matter \*OH-0381 09/27/2019 2.7 MMGAL/H 0.93 T/YR 2 (P027) IIC filterable (FPM10) Cooling Tower - TDS (ppm) Meltshop 2 Cooling Tower - 1000 Caster Mold Water Cooling Tower - 800 Funnel Furnace Cooling Tower - 800
Caster Non-Contact 2 Cooling Tower - 800 Caster Contact 2 Cooling Tower - 1400 use of drift eliminator(s) designed to achieve a 0.003% drift rate; i.maintenance of a total dissolved solids (TDS) content for the 5 individual cooling towers) not to exceed the ppm in the circulating cooling water based on a rolling 12month average as indicated in the table below: Cooling Tower - TDS (ppm) NORTHSTAR BLUESCOPE STEEL, Particulate matter Contact Cooling Towers (P014) \*OH-0381 09/27/2019 6.41 MMGAL/H 8.7 T/YR filterable (FPM) Meltshop Cooling Tower (501) - 800 Caster Non-Contact Cooling Tower (6 Cell) - 800 Caster Contact Cooling Tower (503) - 1100 Mill Contact Cooling Tower (505) - 2000 Laminar Flow Cooling Tower (506) - 1400 use of drift eliminator(s) designed to achieve a 0.003% drift rate; i.maintenance of a total dissolved solids (TDS) content (for the 5 individual cooling towers) not to exceed the ppm in the circulating cooling water based on a rolling 12-month average as indicated in the table below: Cooling Tower - TDS (ppm) NORTHSTAR BLUESCOPE STEEL, Particulate matter Contact Cooling Towers (P014) \*OH-0381 09/27/2019 6.41 MMGAL/H 6.95 T/YR filterable (FPM10) LLC Meltshop Cooling Tower (501) - 800 Caster Non-Contact Cooling Tower (6 Cell) - 800 Caster Contact Cooling Tower (503) - 1100 Mill Contact Cooling Tower (505) - 2000 aminar Flow Cooling Tower (506) - 1400 use of drift eliminator(s) designed to achieve a 0.003% drift rate; i.maintenance of a total dissolved solids (TDS) content (for the 5 individual cooling towers) not to exceed the ppm in the circulating cooling water based on a rolling 12 month average as indicated in the table below: Cooling Tower - TDS (ppm) NORTHSTAR BLUESCOPE STEEL, Particulate matte Contact Cooling Towers (P014) \*OH-0381 09/27/2019 6.41 MMGAL/H 0.02 T/YR filterable (FPM2.5) Meltshop Cooling Tower (501) - 800 Caster Non-Contact Cooling Tower (6 Cell) - 800 Caster Contact Cooling Tower (503) - 1100 Mill Contact Cooling Tower (505) - 2000 Laminar Flow Cooling Tower (506) - 1400 COOLING TOWER: ROLLING STEEL DYNAMICS, INC. DRIFT ELIMINATOR; Particulate matter MILL/CASTER (NON-CONTACT) IN-0156 STRUCTURAL AND RAIL 12/21/2012 18000 GAL/MIN 0.003 % DRIFT RATE DO NOT USE CHROMIUM-BASED WATER TREATMENT filterable (FPM) ID#15E DIVISION CHEMICALS IN ANY OF THE COOLING TOWERS. COOLING TOWER: ROLLING MILL/CASTER (NON-CONTACT) STEEL DYNAMICS, INC. -STRUCTURAL AND RAIL DRIFT ELIMINATOR; DO NOT USE CHROMIUM-BASED WATER TREATMENT 18000 GAL/MIN IN-0156 12/21/2012 0.003 % DRIFT RATE filterable (FPM10) ID#15E DIVISION CHEMICALS IN ANY OF THE COOLING TOWERS. STEEL DYNAMICS, INC. DRIFT ELIMINATOR: COOLING TOWER: CASTER Particulate matter IN-0156 STRUCTURAL AND RAIL 3500 GAL/MIN 0.001 % DRIFT RATE DO NOT USE CHROMIUM-BASED WATER TREATMENT 12/21/2012 SPRAYS (CONTACT) ID#15F filterable (FPM) DIVISION CHEMICALS IN ANY OF THE COOLING TOWERS.

Table B-18. Cooling Tower Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years uction Capacity Permit Date Particulate Matt RBLC ID Facility Permitted PM Limit Process (US tpy) Type STEEL DYNAMICS, INC. RIFT ELIMINATOR: COOLING TOWER: CASTER Particulate matter STRUCTURAL AND RAIL 12/21/2012 IN-0156 3500 GAL/MIN 0.001 % DRIFT RATE DO NOT USE CHROMIUM-BASED WATER TREATMENT SPRAYS (CONTACT) ID#15F filterable (FPM10) DIVISION CHEMICALS IN ANY OF THE COOLING TOWERS. DRIFT ELIMINATOR: STEEL DYNAMICS INC COOLING TOWER: ROLLING MILL Particulate matter IN-0156 STRUCTURAL AND RAIL 12/21/2012 8000 GAL/MIN 0.001 % DRIFT RATE DO NOT USE CHROMIUM-BASED WATER TREATMENT (CONTACT) ID#15A filterable (FPM) DIVISION THEMICALS IN ANY OF THE COOLING TOWERS STEEL DYNAMICS, INC. DRIFT ELIMINATOR: COOLING TOWER: ROLLING MILL Particulate matte IN-0156 STRUCTURAL AND RAIL 12/21/2012 8000 GAL/MIN 0.001 % DRIFT RATE DO NOT USE CHROMIUM-BASED WATER TREATMENT (CONTACT) ID#15A filterable (FPM10) DIVISION CHEMICALS IN ANY OF THE COOLING TOWERS. STEEL DYNAMICS, INC. DRIFT ELIMINATOR; COOLING TOWER: LVD BOILER Particulate matter IN-0156 STRUCTURAL AND RAIL 12/21/2012 2500 GAI /MIN 0.005 % DRIFT RATE DO NOT USE CHROMIUM-BASED WATER TREATMENT (CONTACT) ID#15G filterable (FPM) DIVISION CHEMICALS IN ANY OF THE COOLING TOWERS. STEEL DYNAMICS, INC COOLING TOWER: LVD BOILER Particulate matte DO NOT USE CHROMIUM-BASED WATER TREATMENT IN-0156 STRUCTURAL AND RAIL 12/21/2012 2500 GAL/MIN 0.005 % DRIFT RATE (CONTACT) ID#15G filterable (FPM10) CHEMICALS IN ANY OF THE COOLING TOWERS. DIVISION STEEL DYNAMICS, INC. DRIFT ELIMINATOR; COOLING TOWER: ROLLING MILL 12/21/2012 DO NOT USE CHROMIUM-BASED WATER TREATMENT IN-0156 STRUCTURAL AND RAIL 4000 GAL/MIN 0.001 % DRIFT RATE (CONTACT) ID#15B filterable (FPM) DIVISION CHEMICALS IN ANY OF THE COOLING TOWERS STEEL DYNAMICS, INC. DRIFT ELIMINATOR COOLING TOWER: ROLLING MILL Particulate matte STRUCTURAL AND RAIL 4000 GAL/MIN OO NOT USE CHROMIUM-BASED WATER TREATMENT IN-0156 12/21/2012 0.001 % DRIFT RATE filterable (FPM10) (CONTACT) ID#15B DIVISION CHEMICALS IN ANY OF THE COOLING TOWERS. STEEL DYNAMICS, INC. DRIFT ELIMINATOR: COOLING TOWER: ROLLING MILL Particulate matter DO NOT USE CHROMIUM-BASED WATER TREATMENT IN-0156 STRUCTURAL AND RAIL 12/21/2012 81250 GAL/MIN 0.001 % DRIFT RATE ID#15C (NONCONTACT) filterable (FPM) DIVISION CHEMICALS IN ANY OF THE COOLING TOWERS. STEEL DYNAMICS, INC COOLING TOWER: ROLLING MILL Particulate matter IN-0156 STRUCTURAL AND RAIL 12/21/2012 81250 GAL/MIN 0.001 % DRIFT RATE DO NOT USE CHROMIUM-BASED WATER TREATMENT ID#15C (NONCONTACT) filterable (FPM10) DIVISION CHEMICALS IN ANY OF THE COOLING TOWERS. STEEL DYNAMICS, INC. RIFT ELIMINATOR COOLING TOWER: #1 CAST STRUCTURAL AND RAIL IN-0156 12/21/2012 5000 GAL/MIN 0.001 % DRAFT RATE DO NOT USE CHROMIUM-BASED WATER TREATMENT ID#15D (CONTACT) filterable (FPM) DIVISION CHEMICALS IN ANY OF THE COOLING TOWERS. STEEL DYNAMICS INC DRIFT ELIMINATOR: COOLING TOWER: #1 CAST Particulate matte IN-0156 STRUCTURAL AND RAIL 12/21/2012 5000 GAL/MIN 0.001 % DRAFT RATE DO NOT USE CHROMIUM-BASED WATER TREATMENT ID#15D (CONTACT) filterable (FPM10) DIVISION CHEMICALS IN ANY OF THE COOLING TOWERS. LA-0309 BENTELER STEEL TUBE FACILITY 06/04/2015 0 0.0005 % DRIFT RATE Cooling Towers drift eliminators total (TPM10) LA-0309 BENTELER STEEL TUBE FACILITY 06/04/2015 0 0.0005 % DRIFT RATE Cooling Towers drift eliminators total (TPM2.5) Caster Cooling Towe Particulate matte MI-0404 GERDAU MACSTEEL, INC. 01/04/2013 1630 GAL/MIN 0.0005 % DRIFT LOSS (EUCASTERCOOLTWR total (TPM10) EUCASTERCOOLTWR (Caster Particulate matte GERDAU MACSTEEL, INC. 1630 GAL/MIN MI-0417 10/27/2014 0.0005 % DRIFT LOSS total (TPM2.5) cooling tower) Particulate matte Cooling Towers SC-0183 NUCOR STEEL - BERKELEY 05/04/2018 0 0.66 LB/HR oper Equipment Design, Operation and Maintenance filterable (FPM) Particulate matter Cooling Towers SC-0183 NUCOR STEEL - BERKELEY 05/04/2018 n 0.33 LB/HR Proper Equipment Design, Operation and Maintenance filterable (FPM10) Particulate matte Cooling Towers SC-0183 NUCOR STEEL - BERKELEY 05/04/2018 0 0.0013 LB/HR Proper Equipment Design, Operation and Maintenance filterable (FPM2.5 Cooling Towers (non-contact Particulate matter SC-0183 NUCOR STEEL - BERKELEY 05/04/2018 0 0.12 LB/HR Proper Equipment Design, Operation and Maintenance cooling tower) filterable (FPM) Cooling Towers (non-contact SC-0183 NUCOR STEEL - BERKELEY 0 05/04/2018 0.05 LB/HR Proper Equipment Design, Operation and Maintenance cooling tower) filterable (FPM10) Cooling Towers (non-contact SC-0183 NUCOR STEEL - BERKELEY 05/04/2018 0 0.0003 LB/HR roper Equipment Design, Operation and Maintenance cooling tower) filterable (FPM2.5) Cooling Towers (contact cooling SC-0183 NUCOR STEEL - BERKELEY 05/04/2018 0 0.13 LB/HR roper Equipment Design, Operation and Maintenance filterable (FPM) tower) Cooling Towers (contact cooling Particulate matte SC-0183 NUCOR STEEL - BERKELEY 05/04/2018 0 0.06 LB/HR oper Equipment Design, Operation and Maintenance filterable (FPM10) tower) Cooling Towers (contact cooling Particulate matte SC-0183 NUCOR STEEL - BERKELEY 05/04/2018 0 0.0003 LB/HR Proper Equipment Design, Operation and Maintenance filterable (FPM2.5 Particulate matter Cooling Towers WV-0034 Nucor Steel West Virginia 5/5/2022 90000 apm 0.0005% Drift Loss Orift Eliminato FPM, TPM10, AR-0173 BIG RIVER STEEL LLC 1/31/2022 0.0005% Drift Loss Cooling Towers 0 TPM2.5 FPM, TPM10, AR-0172 SN-212 Cooling Tower NUCOR STEEL ARKANSAS 9/1/2021 0 0.0005% Drift Loss TPM2.5 EP 09-01 - Melt Shop ICW Cooling High Efficiency Mist Eliminator. The mist eliminator drift KY-0110 NUCOR STEEL BRANDENBURG 7/23/2020 52000 gal/min 0.36 LB/HR Tower TPM2.5 oss shall be maintained at 0.001% or less to total gpm. FPM, TPM10, EP 09-02 - Melt Shop DCW Cooling High Efficiency Mist Eliminator. The mist eliminator drift KY-0110 NUCOR STEEL BRANDENBURG 7/23/2020 5900 gal/min 0.04 LB/HR shall be maintained at 0.001% or less to total gpm FPM, TPM10, High Efficiency Mist Eliminator. The mist eliminator drift EP 09-03 - Rolling Mill ICW Cooling KY-0110 NUCOR STEEL BRANDENBURG 7/23/2020 8500 gal/min 0.06 LB/HR oss shall be maintained at 0.001% or less to total gpm. FPM, TPM10, EP 09-04 - Rolling Mill DCW Cooling High Efficiency Mist Eliminator. The mist eliminator drift NUCOR STEEL BRANDENBURG 0.17 LB/HR KY-0110 7/23/2020 22750 gal/min Tower TPM2.5 oss shall be maintained at 0.001% or less to total gpm. EP 09-05 - Rolling Mill Ouench/AC FPM, TPM10, High Efficiency Mist Eliminator. The mist eliminator drift KY-0110 NUCOR STEEL BRANDENBURG 7/23/2020 90000 gal/min 0.78 LB/HR TPM2.5 ss shall be maintained at 0.001% or less to total gpm. Cooling Towe EP 09-06 - Light Plate Quench DCV FPM, TPM10, ligh Efficiency Mist Eliminator. The mist eliminator drift KY-0110 7/23/2020 NUCOR STEEL BRANDENBURG 8000 gal/min 0.06 LB/HR TPM2.5 oss shall be maintained at 0.001% or less to total gpm. Cooling Towe ligh Efficiency Mist Eliminator. The mist eliminator drift EP 09-07 - Heavy Plate Quench FPM, TPM10, KY-0110 NUCOR STEEL BRANDENBURG 7/23/2020 0.02 LB/HR 3000 gal/min DCW Cooling Tower TPM2.5 oss shall be maintained at 0.001% or less to total gpm. FPM, TPM10, EP 09-08 - Air Separation Plant High Efficiency Mist Eliminator. The mist eliminator drift KY-0110 NUCOR STEEL BRANDENBURG 7/23/2020 14000 gal/min 0.1 LB/HR ss shall be maintained at 0.001% or less to total gpm.

Table B-18. Cooling Tower Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

| Table 6-16. Cooling Tower Recent Permit Limitations and Determinations of BACT for Pin (Prior 10 years) |         |                           |                            |                                 |                            |                    |                                    |
|---------------------------------------------------------------------------------------------------------|---------|---------------------------|----------------------------|---------------------------------|----------------------------|--------------------|------------------------------------|
| Process                                                                                                 | RBLC ID | Facility                  | Permit Date<br>(from RBLC) | Production Capacity<br>(US tpy) | Particulate Matter<br>Type | Permitted PM Limit | Control                            |
| Laminar Cooling Tower - Hot Mill<br>Cells (EP 03-09)                                                    | KY-0115 | NUCOR STEEL GALLATIN, LLC | 4/19/2021                  | 35000 gal/min                   | FPM, TPM10,<br>TPM2.5      | 0.27 LB/HR         | Mist Eliminator, 0.001% drift loss |
| Direct Cooling Tower-Caster<br>& Direct Cooling Mill Cells (EP 03-<br>10)                               | KY-0115 | NUCOR STEEL GALLATIN, LLC | 4/19/2021                  | 26300 gal/min                   | FPM, TPM10,<br>TPM2.5      | 0.17 LB/HR         | Mist Eliminator, 0.001% drift loss |
| Melt Shop #2 Cooling Tower<br>(indirect) (EP 03-11)                                                     | KY-0115 | NUCOR STEEL GALLATIN, LLC | 4/19/2021                  | 59500 gal/min                   | FPM, TPM10,<br>TPM2.5      | 0.39 LB/HR         | Mist Eliminator, 0.001% drift loss |
| Cold Mill Cooling Tower (EP 03 12)                                                                      | KY-0115 | NUCOR STEEL GALLATIN, LLC | 4/19/2021                  | 20000 gal/min                   | FPM, TPM10,<br>TPM2.5      | 0.14 LB/HR         | Mist Eliminator, 0.001% drift loss |
| Air Separation Plant Cooling Tower<br>(EP 03-13)                                                        | KY-0115 | NUCOR STEEL GALLATIN, LLC | 4/19/2021                  | 15000 gal/min                   | FPM, TPM10,<br>TPM2.5      | 0.08 LB/HR         | Mist Eliminator, 0.001% drift loss |
| DCW Auxiliary Cooling Tower (EP 03-14)                                                                  | KY-0115 | NUCOR STEEL GALLATIN, LLC | 4/19/2021                  | 9250 gal/min                    | FPM, TPM10,<br>TPM2.5      | 0.06 LB/HR         | Mist Eliminator, 0.001% drift loss |

The CMC Mess and Nucor Sedalia facilities were not in the RBLC but are an ECS process/micro mill and are similar to the proposed facility.

These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different then technology used at the proposed facility, they are not appropriate for comparison.

\* Indicates that the facilities are draft determination in the RBLC database.

Table B-19. Ball Crushing Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

| Process                                                                 | RBLC ID                                | Facility                          | Permit Date<br>(from RBLC) | Production Capacity<br>(US tpy) | Particulate Matter Type                | Permitted PM Limit           | Control                                                                                                                            |  |  |  |  |
|-------------------------------------------------------------------------|----------------------------------------|-----------------------------------|----------------------------|---------------------------------|----------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                         |                                        |                                   |                            |                                 | Comparable Facilities <sup>1</sup>     |                              |                                                                                                                                    |  |  |  |  |
| Raw and Waste<br>Material Storage and<br>Handling Slag Yard             | FL-0368                                | NUCOR STEEL FLORIDA<br>FACILITY   | 02/14/2019                 | 1                               | PM Filterable                          | 0                            | Use of equipment enclosures, water sprays, and minimizing wind erosion and drop points                                             |  |  |  |  |
| Slag/Mill Scale<br>Control Device                                       |                                        | NUCOR STEEL<br>MISSOURI FACILITY  | 9/12/2018                  | -                               | PM/PM <sub>10</sub> /PM <sub>2.5</sub> | 0                            | Water spray or dust suppressant emission control system in slag yard when screens or crusher are operating. Minimize drop heights. |  |  |  |  |
|                                                                         | Not Comparable Facilities <sup>2</sup> |                                   |                            |                                 |                                        |                              |                                                                                                                                    |  |  |  |  |
| North Alloy Storage<br>and Handling (F006)                              | *OH-0381                               | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019                 |                                 | Particulate matter, total (TPM)        | 0.68 lb/hr<br>0.0024 gr/dscf | Fabric filter                                                                                                                      |  |  |  |  |
| North Alloy Storage<br>and Handling (F006)                              | *OH-0381                               | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019                 |                                 | Particulate matter, total 10 (TPM10)   | 0.68 lb/hr<br>0.0024 gr/dscf | Fabric filter                                                                                                                      |  |  |  |  |
| North Alloy Storage<br>and Handling (F006)                              | *OH-0381                               | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019                 |                                 | Particulate matter, total 2.5 (TPM2.5) | 0.68 lb/hr<br>0.0024 gr/dscf | Fabric filter                                                                                                                      |  |  |  |  |
| Raw Material<br>Handling and<br>Processing (carbon<br>dump fugitives)   | SC-0183                                | NUCOR STEEL -<br>BERKELEY         | 05/04/2018                 |                                 | Particulate matter, filterable (FPM)   | 0                            | Good Work Practice Standards and Proper<br>Operation and Maintenance.                                                              |  |  |  |  |
| Raw Material<br>Handling and<br>Processing (lime<br>dump fugitives)     | SC-0183                                | NUCOR STEEL -<br>BERKELEY         | 05/04/2018                 |                                 | Particulate matter, filterable (FPM)   | 0                            | Good Work Practice Standards and Proper<br>Operation and Maintenance                                                               |  |  |  |  |
| Raw Material<br>Handling and<br>Processing (alloy<br>grizzly fugitives) | SC-0183                                | NUCOR STEEL -<br>BERKELEY         | 05/04/2018                 |                                 | Particulate matter, filterable (FPM)   | 0                            | Good Work Practice Standards and Proper<br>Operation and Maintenance.                                                              |  |  |  |  |
| Raw Material Handling and Processing (misc. debris handling)            | SC-0183                                | NUCOR STEEL -<br>BERKELEY         | 05/04/2018                 |                                 | Particulate matter, filterable (FPM)   | 0                            | Good Work Practice Standards and Proper<br>Operation and Maintenance.                                                              |  |  |  |  |
| Slag Handling and<br>Conveying                                          | AR-0173                                | BIG RIVER STEEL LLC               | 1/31/2022                  |                                 | FPM                                    | 1.11 TPY                     | Dust Control Plan                                                                                                                  |  |  |  |  |
| Slag Handling and<br>Conveying                                          | AR-0173                                | BIG RIVER STEEL LLC               | 1/31/2022                  |                                 | TPM10                                  | 0.37 TPY                     | Dust Control Plan                                                                                                                  |  |  |  |  |
| Slag Handling and<br>Conveying                                          | AR-0173                                | BIG RIVER STEEL LLC               | 1/31/2022                  |                                 | TPM2.5                                 | 0.1 TPY                      | Dust Control Plan                                                                                                                  |  |  |  |  |
| EP 12-01 - Slag<br>Processing<br>Equipment                              | KY-0110                                | NUCOR STEEL<br>BRANDENBURG        | 7/23/2020                  | 1750000 tons steel<br>cast/yr   | FPM                                    | 0.012 lb/ton                 | Slag Processing (EP 12-01) shall only be performed on wetted material.                                                             |  |  |  |  |
| EP 12-01 - Slag<br>Processing<br>Equipment                              | KY-0110                                | NUCOR STEEL<br>BRANDENBURG        | 7/23/2020                  | 1750000 tons steel<br>cast/yr   | TPM10                                  | 0.005 lb/ton                 | Slag Processing (EP 12-01) shall only be performed on wetted material.                                                             |  |  |  |  |

Table B-19. Ball Crushing Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

| Process                                     | RBLC ID | Facility                   | Permit Date<br>(from RBLC) | Production Capacity<br>(US tpy) | Particulate Matter Type | Permitted PM Limit | Control                                                                |
|---------------------------------------------|---------|----------------------------|----------------------------|---------------------------------|-------------------------|--------------------|------------------------------------------------------------------------|
| EP 12-01 - Slag<br>Processing<br>Equipment  | KY-0110 | NUCOR STEEL<br>BRANDENBURG | 7/23/2020                  | 1750000 tons steel<br>cast/yr   | TPM2.5                  | 0.003 lb/ton       | Slag Processing (EP 12-01) shall only be performed on wetted material. |
| Slag Handling,<br>Crushing and<br>Screening | TN-0183 | SINOVA SILICON LLC         |                            |                                 | FPM                     | 0.068 lb/hr        | Water misting for crushing ands screening operations                   |
| Slag Handling,<br>Crushing and<br>Screening | TN-0183 | SINOVA SILICON LLC         |                            |                                 | TPM10                   | 0.0256 lb/hr       | Water misting for crushing ands screening operations                   |
| Slag Handling,<br>Crushing and<br>Screening | TN-0183 | SINOVA SILICON LLC         |                            | -                               | TPM2.5                  | 0.003 lb/hr        | Water misting for crushing ands screening operations                   |

<sup>&</sup>lt;sup>1</sup> The Nucor Missouri facility was not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

<sup>&</sup>lt;sup>2</sup> These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.
\* Indicates that the facilities are draft determination in the RBLC database.

| Table B-20. Roads Recent Pern                                                                           | nit Limitati | ions and Determination          | ns of BACT for                  | PM (Prior 10 years)    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------|--------------|---------------------------------|---------------------------------|------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process                                                                                                 | RBLC ID      | Facility                        | Permit Date<br>(from RBLC)      | Distance Traveled      | Particulate Matter Type                | Permitted PM Limit                                                                                                                                                                                                                                                                                                                                                                                                  | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Buildin                                                                                                 | g or Struct  | ture Housing Any Iron (         | or Steel Found                  | ry Emissions Source, N | NESHAP EEEEE                           | 20% opacity from fugitive emissions (6-minute average)                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                         | New          | Large Iron and Steel Fo         | oundries Area                   | Sources, NESHAP ZZZZ   | zz                                     | 20% opacity from fugitive emissions (6 min average)                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fugitiv                                                                                                 | e Dust fron  | m Dust-Generating Ope           | erations, Mario                 | opa County Regulation  | 20% opacity from fugitive<br>emissions | Dust Control Plan for dust-generating operations that disturbs a surface area of 0.10 acre or greater.                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Unpaved Parking Lots, Stagin                                                                            | g Areas, aı  |                                 | rt equipment a<br>Section 307.2 |                        |                                        | One of the following: apply and maintain water; apply and maintain dust suppressant other than water; apply and maintain a layer of washed gravel that is at least six inches deep.                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Haul/Access Roads tha                                                                                   | it Are Not i | in Permanent Areas of           | a Facility, Mar                 | icopa County Regulati  |                                        | One of the following: speed control and watering; install and maintain a paved surface; apply and maintain a layer of washed gravel that is at least six inches deep; apply and maintain dust suppressant other than water; install and maintain a cohesive hard surface. If these options are infeasible then a minimum distance of 25 feet must be maintained between the property line and the haul/access road. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Roadways and Stree                                                                                      | ets, Emissio | ons from Existing and I         | New Nonpoint                    | Sources, Arizona Adm   | inistrative Code R18-2-605             | Prevent excessive amounts of<br>particulate matter from becoming<br>airborne                                                                                                                                                                                                                                                                                                                                        | Temporary paving, dust suppressants, wetting down, detouring or other reasonable means.                                                                                                                                                                                                                                                                                                                                                                                                |
| Roadways and Stree                                                                                      | ets, Emissio | ons from Existing and I         | New Nonpoint                    | Sources, Arizona Adm   | inistrative Code R18-2-605             | Prevent excessive amounts of<br>particulate matter from becoming<br>airborne                                                                                                                                                                                                                                                                                                                                        | Wetting, applying dust suppressants, or covering the load                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                         |              |                                 |                                 |                        | Comparable Facilities 1                |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Roads                                                                                                   | FL-0368      | NUCOR STEEL FLORIDA<br>FACILITY | 02/14/2019                      |                        | PM Fugitive                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                   | Fugitive Dust Control Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Paved Roads and Surfaces                                                                                |              | CMC MESA                        | 6/14/2018                       |                        | РМ                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                   | Road watering and/or vacuuming system for the paved haul roads to keep the road surfaces sufficiently moist to comply with the opacity limitations. The paved area shall be watered and vacuumed, in a manner designed to ensure capture of the vacuumed material, at least once every shift. These measures shall ensure 96% control efficiency for haul road PM emissions. More frequent vacuuming and/or watering may be required to ensure compliance with the opacity limitation. |
| Unpaved Staging Areas, Unpaved Parking Areas, and Unpaved Material Storage Areas  CMC MESA 6/14/2018 PM |              |                                 |                                 |                        |                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                   | Apply water so that the surface is visibly moist; pave; apply and maintain gravel, recycled asphalt, or other suitable material; apply or maintain a suitable dust suppressant other than water; or limit vehicle trips to no more than 20 per day per road and limit vehicle speeds to no more than 15 mph.                                                                                                                                                                           |
| Unpaved Haul/Access Roads                                                                               |              | CMC MESA                        | 6/14/2018                       |                        | РМ                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                   | Apply water so that the surface is visibly moist; pave; apply and maintain gravel, recycled asphalt, or other suitable material; apply or maintain a suitable dust suppressant other than water; or limit vehicle trips to no more than 20 per day per road and limit vehicle speeds to no more than 15 mph.                                                                                                                                                                           |

| Table B-20, Road | s Recent Permit Limitatio | ns and Determinations | of BACT for PM (Prior 10 years) |
|------------------|---------------------------|-----------------------|---------------------------------|

| Process                                  | RBLC ID  | Facility                          | Permit Date<br>(from RBLC) | Distance Traveled      | Particulate Matter Type                 | Permitted PM Limit | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|----------|-----------------------------------|----------------------------|------------------------|-----------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Roads                                    |          | CMC OK                            | 1/15/2016                  |                        | TSP/PM <sub>10</sub> /PM <sub>2.5</sub> | 0                  | Work practice standards of paving and sweeping of haul roads when needed, and setting of speed limits on plant roads to minimize fugitive dust emissions.                                                                                                                                                                                                                                                                                              |
| Haul Roads                               |          | NUCOR MISSOURI<br>FACILITY        | 9/12/2018                  | -                      | PM/PM <sub>10</sub> /PM <sub>2.5</sub>  | 0                  | Work practice standards of cleaning, watering and/or vacuum-sweeping paved and unpaved haul roads. Application of watering at a minimum rate of 0.1 gallons per square foot of unpaved haul road surface area per day. Speed limit of 25 mph on unpaved haul roads. Silt loading sampling for paved haul roads not to exceed 0.3 grams per square meter per individual sample. Paving with concrete or asphalt. Maintain a Fugitive Dust Control Plan. |
|                                          |          |                                   |                            |                        | Not Comparable Facilities <sup>2</sup>  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Plant Roadways & Parking Areas<br>(F005) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019                 | 686,399 miles per year | PM Fugitive                             | 16.74 tpy          | Paved: sweeping, vacuuming, washing with water, and posted speed limits to comply with the applicable requirements.  Unpaved: use of dust suppressant as necessary to comply with the applicable requirements.                                                                                                                                                                                                                                         |
| Plant Roadways & Parking Areas<br>(F005) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019                 | 686,399 miles per year | PM <sub>10</sub> Filterable             | 3.55 tpy           | Paved: sweeping, vacuuming, washing with water, and posted speed limits to comply with the applicable requirements.  Unpaved: use of dust suppressant as necessary to comply with the applicable requirements.                                                                                                                                                                                                                                         |
| Plant Roadways & Parking Areas<br>(F005) | *OH-0381 | NORTHSTAR<br>BLUESCOPE STEEL, LLC | 09/27/2019                 | 686,399 miles per year | PM <sub>2.5</sub> Filterable            | 0.75 tpy           | Paved: sweeping, vacuuming, washing with water, and posted speed limits to comply with the applicable requirements.  Unpaved: use of dust suppressant as necessary to comply with the applicable requirements.                                                                                                                                                                                                                                         |
| Paved Roadways                           | AR-0173  | BIG RIVER STEEL LLC               | 1/31/2022                  | 0                      | FPM                                     | 2.8 TPY            | Development and Implementation of Fugitive Dust Control Plan                                                                                                                                                                                                                                                                                                                                                                                           |
| Paved Roadways                           | AR-0173  | BIG RIVER STEEL LLC               | 1/31/2022                  | 0                      | TPM10                                   | 0.6 TPY            | Development and Implementation of Fugitive Dust Control Plan                                                                                                                                                                                                                                                                                                                                                                                           |
| Paved Roadways                           | AR-0173  | BIG RIVER STEEL LLC               | 1/31/2022                  | 0                      | TPM2.5                                  | 0.2 TPY            | Development and Implementation of Fugitive Dust Control Plan                                                                                                                                                                                                                                                                                                                                                                                           |
| Unpaved Roadways                         | AR-0173  | BIG RIVER STEEL LLC               | 1/31/2022                  | 0                      | FPM                                     | 0.81 TPY           | Development and Implementation of Fugitive Dust Control Plan                                                                                                                                                                                                                                                                                                                                                                                           |
| Unpaved Roadways                         | AR-0173  | BIG RIVER STEEL LLC               | 1/31/2022                  | 0                      | TPM10                                   | 0.38 TPY           | Development and Implementation of Fugitive Dust Control Plan                                                                                                                                                                                                                                                                                                                                                                                           |
| Unpaved Roadways                         | AR-0173  | BIG RIVER STEEL LLC               | 1/31/2022                  | 0                      | TPM2.5                                  | 0.06 TPY           | Development and Implementation of Fugitive Dust Control Plan                                                                                                                                                                                                                                                                                                                                                                                           |
| Roadways                                 | IL-0126  | NUCOR STEEL<br>KANKAKEE, INC.     | 11/01/2018                 |                        | PM Filterable                           | 2.39 tpy           | Roadways must be paved; Preventative measures, including posted 15 MPH speed limit and good work practices (e.g., water flushing, vacuuming and sweeping)                                                                                                                                                                                                                                                                                              |
| Roadways                                 | IL-0126  | NUCOR STEEL<br>KANKAKEE, INC.     | 11/01/2018                 |                        | PM <sub>10</sub> Total                  | 0.48 tpy           | Roadways must be paved; Preventative measures, including posted 15 MPH speed limit and good work practices (e.g., water flushing, vacuuming and sweeping)                                                                                                                                                                                                                                                                                              |
| Roadways                                 | IL-0126  | NUCOR STEEL<br>KANKAKEE, INC.     | 11/01/2018                 |                        | PM <sub>2.5</sub> Total                 | 0.12 tpy           | Roadways must be paved; Preventative measures, including posted 15 MPH speed limit and good work practices (e.g., water flushing, vacuuming and sweeping)                                                                                                                                                                                                                                                                                              |
| New and Modified Roadways                | IL-0132  | NUCOR STEEL<br>KANKAKEE, INC      | 1/25/2021                  | 0                      | ТРМ                                     | 0                  | Roadways shall be paved; speed limit posting of 15 miles/hour; best management practices to reduce fugitive emissions in accordance with written operating program that provides for cleaning or treatment of roadways                                                                                                                                                                                                                                 |
| New and Modified Roadways                | IL-0132  | NUCOR STEEL<br>KANKAKEE, INC      | 1/25/2021                  | 0                      | TPM10                                   | 0                  | Roadways shall be paved; speed limit posting of 15 miles/hour; best management practices to reduce fugitive emissions in accordance with written operating program that provides for cleaning or treatment of roadways                                                                                                                                                                                                                                 |
| New and Modified Roadways                | IL-0132  | NUCOR STEEL<br>KANKAKEE, INC      | 1/25/2021                  | 0                      | TPM2.5                                  | 0                  | Roadways shall be paved; speed limit posting of 15 miles/hour; best management practices to reduce fugitive emissions in accordance with written operating program that provides for cleaning or treatment of roadways                                                                                                                                                                                                                                 |

Table B-20. Roads Recent Permit Limitations and Determinations of BACT for PM (Prior 10 years)

| Process                     | RBLC ID | Facility                   | Permit Date<br>(from RBLC) | Distance Traveled     | Particulate Matter Type      | Permitted PM Limit | Control                                                                     |
|-----------------------------|---------|----------------------------|----------------------------|-----------------------|------------------------------|--------------------|-----------------------------------------------------------------------------|
| EP 14-01 - Paved Roadways   | KY-0110 | NUCOR STEEL<br>BRANDENBURG | 7/23/2020                  | 374840 miles per year | Particulate matter, fugitive | 0                  | surface improvements (pavement), sweeping (good work practice) and watering |
| EP 14-02 - Unpaved Roadways | KY-0110 | NUCOR STEEL<br>BRANDENBURG | 7/23/2020                  | 69905 miles per year  | Particulate matter, fugitive | 0                  | surface improvements (pavement), sweeping (good work practice) and watering |

<sup>&</sup>lt;sup>1</sup> The CMC Mesa, CMC OK and Nucor Missouri facilities were not in the RBLC but they are an ECS process/micro mill and are similar to the proposed facility.

<sup>2</sup> These RBLC listings are either not considered an ECS process, a micro mill, or both like the proposed CMC facility. Since the technologies at these facilities are different than technology used at the proposed facility, they are not appropriate for comparison.

\*\*Indicates that the facilities are darft determination in the RBLC database.

# **APPENDIX C. ROAD SEGMENTS DETAILS**

|         |                           |                        |          | One<br>Way/Two |                                      |                       |       | oad Length ( |        |      | ype (%)  | Distance (m) Distance (ft) Surface Model Objects Government ID |
|---------|---------------------------|------------------------|----------|----------------|--------------------------------------|-----------------------|-------|--------------|--------|------|----------|----------------------------------------------------------------|
| Vehicle |                           | Destination            | Truck ID | · ·            | Material                             | Vehicle Type          |       | Unpaved      | Total  |      | %Unpaved | Segment ID                                                     |
| 1       | Off-Site                  | ECS Building Scrap Bay | TRK1     | 2              | Scrap                                | Haul Truck            | 2,696 | 0            | 2,696  | 100% | 0%       | -                                                              |
| 2       | Off-Site                  | Scrap Yard             | TRK2     | 2              | Scrap                                | Haul Truck            | 2,632 | 1,219        | 3,852  | 68%  | 32%      | -                                                              |
| 3       | Around Scrap Yard         | Around Scrap Yard      | TRK3     | 2              | Scrap                                | Euclid/Roll-Off Truck | 2,194 | 0            | 2,194  | 100% | 0%       | -                                                              |
| 4       | Around Scrap Yard         | Around Scrap Yard      | TRK4     | 2              | Scrap                                | Haul Truck            | 2,194 | 0            | 2,194  | 100% | 0%       | -                                                              |
| 5       | Off-Site                  | Silos                  | TRK5     | 2              | Coal/Coke                            | Haul Truck            | 2,814 | 74           | 2,888  | 97%  | 3%       | -                                                              |
| 6       | Off-Site                  | Storage                | TRK6     | 2              | Raw Materials / Supplies             | Euclid/Roll-off Truck | 3,439 | 0            | 3,439  | 100% | 0%       | -                                                              |
| 7       | Storage                   | Meltshop               | TRK7     | 2              | Raw Materials / Supplies             | Forklift/Loader       | 338   | 0            | 338    | 100% | 0%       | -                                                              |
| 8       | Off-Site                  | Silos                  | TRK8     | 2              | Fluxing Agent                        | Haul Truck            | 2,814 | 74           | 2,888  | 97%  | 3%       | -                                                              |
| 9       | Off-Site                  | Alloy Pile             | TRK9     | 2              | Alloy Aggregate                      | Haul Truck            | 3,051 | 0            | 3,051  | 100% | 0%       | -                                                              |
| 10      | Meltshop                  | Off-Site               | TRK10    | 2              | Removed Refractory / Other Materials | Haul Truck            | 3,215 | 0            | 3,215  | 100% | 0%       | -                                                              |
| 11      | Finished Products Storage | Off-Site               | TRK11    | 2              | Finished Product                     | Haul Truck            | 7,598 | 0            | 7,598  | 100% | 0%       | -                                                              |
| 12      | Off-Site                  | Gas Storage Area       | TRK12    | 2              | Gas                                  | Gas Truck             | 3,439 | 0            | 3,439  | 100% | 0%       | -                                                              |
| 13      | Mill Scale Pile           | Off-Site               | TRK13    | 2              | Mill Scale                           | Haul Truck            | 4,480 | 0            | 4,480  | 100% | 0%       | -                                                              |
| 14      | Meltshop                  | Quench Building        | TRK14    | 2              | Slag                                 | Euclid/Roll-off Truck | 369   | 132          | 501    | 74%  | 26%      | -                                                              |
| 15      | Quench Building           | SPP Area               | TRK15    | 2              | Slag                                 | Euclid/Roll-off Truck | 0     | 454          | 454    | 0%   | 100%     | -                                                              |
| 16      | Within SPP Area           | Within SPP Area        | TRK16    | 2              | Slag                                 | Loader                | 0     | 549          | 549    | 0%   | 100%     | -                                                              |
| 17      | SPP Area                  | Off-Site               | TRK17    | 2              | Slag                                 | Haul Truck            | 2,758 | 263          | 3,021  | 91%  | 9%       | -                                                              |
| 18      | Trailer Parking Area      | Trailer Parking Area   | TRK18    | 2              | -                                    | Trailer               | 1,918 | 0            | 1,918  | 100% | 0%       | -                                                              |
| 19      | General Support           | General Support        | TRK19    | 2              | -                                    | Loader                | 8,839 | 2,163        | 11,002 | 80%  | 20%      | -                                                              |
| 1       | Off-Site                  | ECS Building Scrap Bay | TRK1     | 2              | Scrap                                | Haul Truck            |       |              | 100%   |      |          | 2,696                                                          |
| 2       | Off-Site                  | Scrap Yard             | TRK2     | 2              | Scrap                                | Haul Truck            |       |              | 100%   |      |          | 3,852                                                          |
| 3       | Around Scrap Yard         | Around Scrap Yard      | TRK3     | 2              | Scrap                                | Euclid/Roll-Off Truck |       |              | 100%   |      |          | 2,194                                                          |
| 4       | Around Scrap Yard         | Around Scrap Yard      | TRK4     | 2              | Scrap                                | Haul Truck            |       |              | 100%   |      |          | 2,194                                                          |
| 5       | Off-Site                  | Silos                  | TRK5     | 2              | Coal/Coke                            | Haul Truck            |       |              | 100%   |      |          | 2,888                                                          |
| 6       | Off-Site                  | Storage                | TRK6     | 2              | Raw Materials / Supplies             | Euclid/Roll-off Truck |       |              | 100%   |      |          | 3,439                                                          |
| 7       | Storage                   | Meltshop               | TRK7     | 2              | Raw Materials / Supplies             | Forklift/Loader       |       |              | 100%   |      |          | 338                                                            |
| 8       | Off-Site                  | Silos                  | TRK8     | 2              | Fluxing Agent                        | Haul Truck            |       |              | 100%   |      |          | 2,888                                                          |
| 9       | Off-Site                  | Alloy Pile             | TRK9     | 2              | Alloy Aggregate                      | Haul Truck            |       |              | 100%   |      |          | 3,051                                                          |
| 10      | Meltshop                  | Off-Site               | TRK10    | 2              | Removed Refractory / Other Materials | Haul Truck            |       |              | 100%   |      |          | 3,215                                                          |
| 11      | Finished Products Storage | Off-Site               | TRK11    | 2              | Finished Product                     | Haul Truck            |       |              | 100%   |      |          | 7,598                                                          |
| 12      | Off-Site                  | Gas Storage Area       | TRK12    | 2              | Gas                                  | Gas Truck             |       |              | 100%   |      |          | 3,439                                                          |
| 13      | Mill Scale Pile           | Off-Site               | TRK13    | 2              | Mill Scale                           | Haul Truck            |       |              | 100%   |      |          | 4,480                                                          |
| 14      | Meltshop                  | Quench Building        | TRK14    | 2              | Slag                                 | Euclid/Roll-off Truck |       |              | 100%   |      |          | 501                                                            |
| 15      | Quench Building           | SPP Area               | TRK15    | 2              | Slag                                 | Euclid/Roll-off Truck |       |              | 100%   |      |          | 454                                                            |
| 16      | Within SPP Area           | Within SPP Area        | TRK16    | 2              | Slag                                 | Loader                |       |              | 100%   |      |          | 549                                                            |
| 17      | SPP Area                  | Off-Site               | TRK17    | 2              | Slag                                 | Haul Truck            |       |              | 100%   |      |          | 3,021                                                          |
| 18      | Trailer Parking Area      | Trailer Parking Area   | TRK18    | 2              | -<br> -                              | Trailer               |       |              | 100%   |      |          | 1,918                                                          |
|         | General Support           | General Support        | TRK19    | 2              | -                                    | Loader                |       |              | 100%   |      |          | 11,002                                                         |

| Vehicle | Origin                    | Destination            | Truck ID | 584.75<br>1,918<br>Paved<br>34<br>PR1 | 36.04<br>118<br>Paved<br>6<br>PR2 | 124.43<br>408<br>Paved<br>7<br>PR3 | 57.15<br>188<br>Paved<br>9<br>PR4 | 19.27<br>63<br>Paved<br>3<br>PR5 | 55.41<br>182<br>Paved<br>9<br>PR6A | 49.29<br>162<br>Paved<br>8<br>PR6B | 50.66<br>166<br>Paved<br>6<br>PR7 | 122.31<br>401<br>Paved<br>13<br>PR8 | 209.42<br>687<br>Paved<br>23<br>PR9 | 55.39<br>182<br>Paved<br>6<br>PR10 | 17.38<br>57<br>Paved<br>3<br>PR11 | 71.68<br>235<br>Paved<br>8<br>PR12 |
|---------|---------------------------|------------------------|----------|---------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|----------------------------------|------------------------------------|------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|------------------------------------|-----------------------------------|------------------------------------|
| 1       | Off-Site                  | ECS Building Scrap Bay | TRK1     | X                                     | X                                 | X                                  | X                                 | X                                |                                    |                                    |                                   |                                     |                                     |                                    |                                   |                                    |
| 2       | Off-Site                  | Scrap Yard             | TRK2     | X                                     | X                                 | X                                  | X                                 |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
| 3       | Around Scrap Yard         | Around Scrap Yard      | TRK3     |                                       |                                   | X                                  | X                                 |                                  | X                                  | X                                  | X                                 | X                                   | X                                   |                                    |                                   | 1                                  |
| 4       | Around Scrap Yard         | Around Scrap Yard      | TRK4     |                                       |                                   | X                                  | X                                 |                                  | X                                  | X                                  | X                                 | X                                   | X                                   |                                    |                                   | 1                                  |
| 5       | Off-Site                  | Silos                  | TRK5     | X                                     | X                                 | X                                  | X                                 |                                  | X                                  |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
| 6       | Off-Site                  | Storage                | TRK6     | X                                     | X                                 | X                                  | X                                 |                                  | X                                  | X                                  |                                   |                                     |                                     | X                                  |                                   | X                                  |
| 7       | Storage                   | Meltshop               | TRK7     |                                       |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    | X                                 | X                                  |
| 8       | Off-Site                  | Silos                  | TRK8     | X                                     | X                                 | X                                  | X                                 |                                  | X                                  |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
|         | Off-Site                  | Alloy Pile             | TRK9     | X                                     | Х                                 | X                                  |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
| 10      | Meltshop                  | Off-Site               | TRK10    | X                                     | X                                 | X                                  | X                                 |                                  | X                                  | X                                  |                                   |                                     |                                     | X                                  | X                                 | 1                                  |
| 11      | Finished Products Storage | Off-Site               | TRK11    | X                                     |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
| 12      | Off-Site                  | Gas Storage Area       | TRK12    | X                                     | X                                 | X                                  | X                                 |                                  | X                                  | X                                  |                                   |                                     |                                     | X                                  |                                   | X                                  |
| 13      | Mill Scale Pile           | Off-Site               | TRK13    | X                                     |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
| 14      | Meltshop                  | Quench Building        | TRK14    |                                       |                                   |                                    | X                                 |                                  | X                                  |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
| 15      | Quench Building           | SPP Area               | TRK15    |                                       |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
| 16      | Within SPP Area           | Within SPP Area        | TRK16    |                                       |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
| 17      | SPP Area                  | Off-Site               | TRK17    | X                                     |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
| 18      | Trailer Parking Area      | Trailer Parking Area   | TRK18    | X                                     |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
|         | General Support           | General Support        | TRK19    |                                       | X                                 | X                                  | X                                 | X                                | X                                  | X                                  | X                                 | X                                   | X                                   | X                                  | X                                 | X                                  |
|         | Off-Site                  | ECS Building Scrap Bay | TRK1     | 1,918                                 | 118                               | 408                                | 188                               | 63                               |                                    |                                    |                                   |                                     |                                     |                                    |                                   |                                    |
|         | Off-Site                  | Scrap Yard             | TRK2     | 1,918                                 | 118                               | 408                                | 188                               |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
|         | Around Scrap Yard         | Around Scrap Yard      | TRK3     | ,                                     |                                   | 408                                | 188                               |                                  | 182                                | 162                                | 166                               | 401                                 | 687                                 |                                    |                                   | 1                                  |
| 4       | Around Scrap Yard         | Around Scrap Yard      | TRK4     |                                       |                                   | 408                                | 188                               |                                  | 182                                | 162                                | 166                               | 401                                 | 687                                 |                                    |                                   | 1                                  |
| 5       | Off-Site                  | Silos                  | TRK5     | 1,918                                 | 118                               | 408                                | 188                               |                                  | 182                                |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
|         | Off-Site                  | Storage                | TRK6     | 1,918                                 | 118                               | 408                                | 188                               |                                  | 182                                | 162                                |                                   |                                     |                                     | 182                                |                                   | 235                                |
| 7       | Storage                   | Meltshop               | TRK7     | ,                                     |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    | 57                                | 235                                |
| 8       | Off-Site                  | Silos                  | TRK8     | 1,918                                 | 118                               | 408                                | 188                               |                                  | 182                                |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
|         | Off-Site                  | Alloy Pile             | TRK9     | 1,918                                 | 118                               | 408                                |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
|         | Meltshop                  | Off-Site               | TRK10    | 1,918                                 | 118                               | 408                                | 188                               |                                  | 182                                | 162                                |                                   |                                     |                                     | 182                                | 57                                | 1                                  |
|         | Finished Products Storage | Off-Site               | TRK11    | 1,918                                 |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     | -                                  |                                   | 1                                  |
|         | Off-Site                  | Gas Storage Area       | TRK12    | 1,918                                 | 118                               | 408                                | 188                               |                                  | 182                                | 162                                |                                   |                                     |                                     | 182                                |                                   | 235                                |
|         | Mill Scale Pile           | Off-Site               | TRK13    | 1,918                                 |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     | -                                  |                                   | 1                                  |
| 14      | Meltshop                  | Quench Building        | TRK14    | , -                                   |                                   |                                    | 188                               |                                  | 182                                |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
|         | Quench Building           | SPP Area               | TRK15    |                                       |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
|         | Within SPP Area           | Within SPP Area        | TRK16    |                                       |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
| 17      | SPP Area                  | Off-Site               | TRK17    | 1,918                                 |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
| 18      | Trailer Parking Area      | Trailer Parking Area   | TRK18    | 1,918                                 |                                   |                                    |                                   |                                  |                                    |                                    |                                   |                                     |                                     |                                    |                                   | 1                                  |
|         | General Support           | General Support        | TRK19    | ,. ==                                 | 118                               | 408                                | 188                               | 63                               | 182                                | 162                                | 166                               | 401                                 | 687                                 | 182                                | 57                                | 235                                |

| Vehicle | Origin                    | Destination            | Truck ID | 14.08<br>46<br>Paved<br>2<br>PR13 | 129.6<br>425<br>Paved<br>14<br>PR14A | 119.3<br>391<br>Paved<br>13<br>PR14B | 95.21<br>312<br>Paved<br>10<br>PR15 | 111.58<br>366<br>Paved<br>11<br>PR16 | 26.01<br>85<br>Paved<br>4<br>PR17 | 107.11<br>351<br>Paved<br>12<br>PR18 | 26.67<br>88<br>Paved<br>4<br>PR19 | 70.56<br>231<br>Paved<br>12<br>PR20 | 72.44<br>238<br>Paved<br>12<br>PR21 | 28.53<br>94<br>Paved<br>5<br>PR22 | 13.13<br>43<br>Paved<br>2<br>PR23 | 53.54<br>176<br>Paved<br>9<br>PR24 |
|---------|---------------------------|------------------------|----------|-----------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|------------------------------------|
| 1       | Off-Site                  | ECS Building Scrap Bay | TRK1     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 2       | Off-Site                  | Scrap Yard             | TRK2     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 3       | Around Scrap Yard         | Around Scrap Yard      | TRK3     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 4       | Around Scrap Yard         | Around Scrap Yard      | TRK4     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 5       | Off-Site                  | Silos                  | TRK5     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 6       | Off-Site                  | Storage                | TRK6     | X                                 |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 7       | Storage                   | Meltshop               | TRK7     | X                                 |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 8       | Off-Site                  | Silos                  | TRK8     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 9       | Off-Site                  | Alloy Pile             | TRK9     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   | X                                   | X                                   | X                                 | X                                 |                                    |
| 10      | Meltshop                  | Off-Site               | TRK10    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 11      | Finished Products Storage | Off-Site               | TRK11    |                                   | X                                    | X                                    | X                                   | X                                    | X                                 | X                                    | X                                 |                                     |                                     |                                   |                                   | X                                  |
| 12      | Off-Site                  | Gas Storage Area       | TRK12    | X                                 |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 13      | Mill Scale Pile           | Off-Site               | TRK13    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   | X                                  |
| 14      | Meltshop                  | Quench Building        | TRK14    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 15      | Quench Building           | SPP Area               | TRK15    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 16      | Within SPP Area           | Within SPP Area        | TRK16    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 17      | SPP Area                  | Off-Site               | TRK17    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 18      | Trailer Parking Area      | Trailer Parking Area   | TRK18    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 19      | General Support           | General Support        | TRK19    | X                                 | X                                    | X                                    | X                                   | X                                    | X                                 | X                                    | X                                 | X                                   | X                                   | X                                 | X                                 | X                                  |
| 1       | Off-Site                  | ECS Building Scrap Bay | TRK1     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 2       | Off-Site                  | Scrap Yard             | TRK2     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 3       | Around Scrap Yard         | Around Scrap Yard      | TRK3     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 4       | Around Scrap Yard         | Around Scrap Yard      | TRK4     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 5       | Off-Site                  | Silos                  | TRK5     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 6       | Off-Site                  | Storage                | TRK6     | 46                                |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 7       | Storage                   | Meltshop               | TRK7     | 46                                |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 8       | Off-Site                  | Silos                  | TRK8     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 9       | Off-Site                  | Alloy Pile             | TRK9     |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   | 231                                 | 238                                 | 94                                | 43                                |                                    |
| 10      | Meltshop                  | Off-Site               | TRK10    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 11      | Finished Products Storage | Off-Site               | TRK11    |                                   | 425                                  | 391                                  | 312                                 | 366                                  | 85                                | 351                                  | 88                                |                                     |                                     |                                   |                                   | 176                                |
| 12      | Off-Site                  | Gas Storage Area       | TRK12    | 46                                |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 13      | Mill Scale Pile           | Off-Site               | TRK13    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   | 176                                |
| 14      | Meltshop                  | Quench Building        | TRK14    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 15      | Quench Building           | SPP Area               | TRK15    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 16      | Within SPP Area           | Within SPP Area        | TRK16    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 17      | SPP Area                  | Off-Site               | TRK17    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 18      | Trailer Parking Area      | Trailer Parking Area   | TRK18    |                                   |                                      |                                      |                                     |                                      |                                   |                                      |                                   |                                     |                                     |                                   |                                   |                                    |
| 19      | General Support           | General Support        | TRK19    | 46                                | 425                                  | 391                                  | 312                                 | 366                                  | 85                                | 351                                  | 88                                | 231                                 | 238                                 | 94                                | 43                                | 176                                |

| Vehicle | Origin                    | Destination            | Truck ID | 26.64<br>87<br>Paved<br>4<br>PR25 | 76.98<br>253<br>Paved<br>13<br>PR26 | 9.83<br>32<br>Paved<br>2<br>PR27 | 119.87<br>393<br>Paved<br>20<br>PR28 | 42.71<br>140<br>Paved<br>7<br>PR29A | 159.36<br>523<br>Paved<br>17<br>PR29B | 126.36<br>415<br>Paved<br>21<br>PR30 | 168.59<br>553<br>Paved<br>18<br>PR31 | 72.54<br>238<br>Paved<br>8<br>PR32 | 116.72<br>383<br>Paved<br>13<br>PR33 | 38.46<br>126<br>Paved<br>4<br>PR34 | 217.38<br>713<br>Paved<br>24<br>PR35 | 17.81<br>58<br>Unpaved<br>3<br>UPR1 |
|---------|---------------------------|------------------------|----------|-----------------------------------|-------------------------------------|----------------------------------|--------------------------------------|-------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|-------------------------------------|
| 1       | Off-Site                  | ECS Building Scrap Bay | TRK1     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 2       | Off-Site                  | Scrap Yard             | TRK2     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 3       | Around Scrap Yard         | Around Scrap Yard      | TRK3     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 4       | Around Scrap Yard         | Around Scrap Yard      | TRK4     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 5       | Off-Site                  | Silos                  | TRK5     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 6       | Off-Site                  | Storage                | TRK6     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 7       | Storage                   | Meltshop               | TRK7     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 8       | Off-Site                  | Silos                  | TRK8     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 9       | Off-Site                  | Alloy Pile             | TRK9     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 10      | Meltshop                  | Off-Site               | TRK10    |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 11      | Finished Products Storage | Off-Site               | TRK11    |                                   |                                     |                                  | X                                    | X                                   | X                                     | X                                    | X                                    | X                                  | X                                    | X                                  | X                                    |                                     |
| 12      | Off-Site                  | Gas Storage Area       | TRK12    |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 13      | Mill Scale Pile           | Off-Site               | TRK13    | X                                 | X                                   | X                                |                                      |                                     |                                       |                                      | X                                    | X                                  | X                                    | X                                  | X                                    |                                     |
| 14      | Meltshop                  | Quench Building        | TRK14    |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      | X                                   |
| 15      | Quench Building           | SPP Area               | TRK15    |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 16      | Within SPP Area           | Within SPP Area        | TRK16    |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 17      | SPP Area                  | Off-Site               | TRK17    |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      | X                                  | X                                    |                                     |
| 18      | Trailer Parking Area      | Trailer Parking Area   | TRK18    |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 19      | General Support           | General Support        | TRK19    | X                                 | X                                   | X                                | X                                    | X                                   | X                                     | X                                    | X                                    | X                                  | X                                    | X                                  |                                      | X                                   |
| 1       | Off-Site                  | ECS Building Scrap Bay | TRK1     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 2       | Off-Site                  | Scrap Yard             | TRK2     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 3       | Around Scrap Yard         | Around Scrap Yard      | TRK3     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 4       | Around Scrap Yard         | Around Scrap Yard      | TRK4     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 5       | Off-Site                  | Silos                  | TRK5     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 6       | Off-Site                  | Storage                | TRK6     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 7       | Storage                   | Meltshop               | TRK7     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 8       | Off-Site                  | Silos                  | TRK8     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 9       | Off-Site                  | Alloy Pile             | TRK9     |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
|         | Meltshop                  | Off-Site               | TRK10    |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 11      | Finished Products Storage | Off-Site               | TRK11    |                                   |                                     |                                  | 393                                  | 140                                 | 523                                   | 415                                  | 553                                  | 238                                | 383                                  | 126                                | 713                                  |                                     |
| 12      | Off-Site                  | Gas Storage Area       | TRK12    | _                                 |                                     |                                  |                                      |                                     |                                       |                                      |                                      | <u> </u>                           |                                      |                                    |                                      |                                     |
| 13      | Mill Scale Pile           | Off-Site               | TRK13    | 87                                | 253                                 | 32                               |                                      |                                     |                                       |                                      | 553                                  | 238                                | 383                                  | 126                                | 713                                  |                                     |
| 14      | Meltshop                  | Quench Building        | TRK14    |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      | 58                                  |
| 15      | Quench Building           | SPP Area               | TRK15    |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 16      | Within SPP Area           | Within SPP Area        | TRK16    |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      |                                    |                                      |                                     |
| 17      | SPP Area                  | Off-Site               | TRK17    |                                   |                                     |                                  |                                      |                                     |                                       |                                      |                                      |                                    |                                      | 126                                | 713                                  |                                     |
| 18      | Trailer Parking Area      | Trailer Parking Area   | TRK18    | 0=                                | 0.50                                | 22                               | 200                                  | 4.40                                | F00                                   | 44.5                                 | <b>FF</b> 0                          | 200                                | 202                                  | 407                                |                                      | [                                   |
| 19      | General Support           | General Support        | TRK19    | 87                                | 253                                 | 32                               | 393                                  | 140                                 | 523                                   | 415                                  | 553                                  | 238                                | 383                                  | 126                                |                                      | 58                                  |

| Vehicle | Origin                    | Destination            | Truck ID | 106.25<br>349<br>Unpaved<br>18<br>UPR2 | 32.09<br>105<br>Unpaved<br>5<br>UPR3 | 28.98<br>95<br>Unpaved<br>5<br>UPR4 | 44.87<br>147<br>Unpaved<br>7<br>UPR5 | 35.19<br>115<br>Unpaved<br>6<br>UPR6 | 22.46<br>74<br>Unpaved<br>4<br>UPR7 | 44.07<br>145<br>Unpaved<br>7<br>UPR8 | 18.92<br>62<br>Unpaved<br>3<br>UPR9 | 29.54<br>97<br>Unpaved<br>5<br>UPR10 | 136.01<br>446<br>Unpaved<br>23<br>UPR11 | 27.47<br>90<br>Unpaved<br>5<br>UPR12 | 115.6<br>379<br>Unpaved<br>19<br>UPR13 |
|---------|---------------------------|------------------------|----------|----------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------|
|         | Off-Site                  | ECS Building Scrap Bay | TRK1     | UI KZ                                  | UIKS                                 | UINT                                | UI KJ                                | OTKO                                 | UI K7                               | OI NO                                | OTK                                 | OTATO                                | OIKII                                   | OTRIZ                                | OTRIS                                  |
|         | Off-Site                  | Scrap Yard             | TRK1     |                                        |                                      |                                     |                                      |                                      |                                     | X                                    | X                                   | X                                    | X                                       | X                                    | X                                      |
|         | Around Scrap Yard         | Around Scrap Yard      | TRK2     |                                        |                                      |                                     |                                      |                                      |                                     | Λ                                    | , A                                 | Λ                                    | Λ                                       | Α                                    | Λ                                      |
|         | Around Scrap Yard         | Around Scrap Yard      | TRK4     |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
|         | Off-Site                  | Silos                  | TRK5     |                                        |                                      |                                     |                                      |                                      | X                                   |                                      |                                     |                                      |                                         |                                      |                                        |
|         | Off-Site                  | Storage                | TRK6     |                                        |                                      |                                     |                                      |                                      | A                                   |                                      |                                     |                                      |                                         |                                      |                                        |
|         | Storage                   | Meltshop               | TRK7     |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 8       | Off-Site                  | Silos                  | TRK8     |                                        |                                      |                                     |                                      |                                      | X                                   |                                      |                                     |                                      |                                         |                                      |                                        |
| 9       | Off-Site                  | Alloy Pile             | TRK9     |                                        |                                      |                                     |                                      |                                      | , A                                 |                                      |                                     |                                      |                                         |                                      |                                        |
| 10      | Meltshop                  | Off-Site               | TRK10    |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 11      | Finished Products Storage | Off-Site               | TRK11    |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 12      | Off-Site                  | Gas Storage Area       | TRK11    |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 13      | Mill Scale Pile           | Off-Site               | TRK13    |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 14      | Meltshop                  | Quench Building        | TRK14    |                                        |                                      |                                     |                                      |                                      | X                                   |                                      |                                     |                                      |                                         |                                      |                                        |
|         | Quench Building           | SPP Area               | TRK15    | X                                      | X                                    |                                     |                                      |                                      | 11                                  |                                      |                                     |                                      |                                         |                                      |                                        |
| 16      | Within SPP Area           | Within SPP Area        | TRK16    | X                                      | X                                    | X                                   |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 17      | SPP Area                  | Off-Site               | TRK17    |                                        |                                      |                                     | X                                    | X                                    |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 18      | Trailer Parking Area      | Trailer Parking Area   | TRK18    |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
|         | General Support           | General Support        | TRK19    | X                                      | X                                    | X                                   | X                                    | X                                    | Х                                   | X                                    | X                                   | Х                                    | X                                       | X                                    | X                                      |
|         | Off-Site                  | ECS Building Scrap Bay | TRK1     |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 2       | Off-Site                  | Scrap Yard             | TRK2     |                                        |                                      |                                     |                                      |                                      |                                     | 145                                  | 62                                  | 97                                   | 446                                     | 90                                   | 379                                    |
|         | Around Scrap Yard         | Around Scrap Yard      | TRK3     |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
|         | Around Scrap Yard         | Around Scrap Yard      | TRK4     |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
|         | Off-Site                  | Silos                  | TRK5     |                                        |                                      |                                     |                                      |                                      | 74                                  |                                      |                                     |                                      |                                         |                                      |                                        |
| 6       | Off-Site                  | Storage                | TRK6     |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 7       | Storage                   | Meltshop               | TRK7     |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 8       | Off-Site                  | Silos                  | TRK8     |                                        |                                      |                                     |                                      |                                      | 74                                  |                                      |                                     |                                      |                                         |                                      |                                        |
| 9       | Off-Site                  | Alloy Pile             | TRK9     |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 10      | Meltshop                  | Off-Site               | TRK10    |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 11      | Finished Products Storage | Off-Site               | TRK11    |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 12      | Off-Site                  | Gas Storage Area       | TRK12    |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 13      | Mill Scale Pile           | Off-Site               | TRK13    |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 14      | Meltshop                  | Quench Building        | TRK14    |                                        |                                      |                                     |                                      |                                      | 74                                  |                                      |                                     |                                      |                                         |                                      |                                        |
| 15      | Quench Building           | SPP Area               | TRK15    | 349                                    | 105                                  |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 16      | Within SPP Area           | Within SPP Area        | TRK16    | 349                                    | 105                                  | 95                                  |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 17      | SPP Area                  | Off-Site               | TRK17    |                                        |                                      |                                     | 147                                  | 115                                  |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 18      | Trailer Parking Area      | Trailer Parking Area   | TRK18    |                                        |                                      |                                     |                                      |                                      |                                     |                                      |                                     |                                      |                                         |                                      |                                        |
| 19      | General Support           | General Support        | TRK19    | 349                                    | 105                                  | 95                                  | 147                                  | 115                                  | 74                                  | 145                                  | 62                                  | 97                                   | 446                                     | 90                                   | 379                                    |