NSR (45CSR13) APPLICATION FORM

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 Www.dep.wv.gov/dag		APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)	
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN): PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISE CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY SIGNIFICANT MODIFICATION CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V RE		TIVE AMENDMENT IMINOR MODIFICATION MODIFICATION OVE IS CHECKED, INCLUDE TITLE V REVISION	
FOR TITLE V FACILITIES ONLY: Please refer to "Title V Revi (Appendix A, "Title V Permit Revision Flowchart") and ability	y to operate with the		
	n I. General		
 Name of applicant (as registered with the WV Secretary of Empire Green Generation, LLC 	State's Office):	 Federal Employer ID No. (FEIN): 87-3187526 	
3. Name of facility (if different from above):		4. The applicant is the:	
		OWNER OPERATOR BOTH	
5A. Applicant's mailing address: 1400 Main Street, Follansbee, WV 260375B. Facility's present physical address: 801 Koppers Rd, Follansbee, WV 26037			
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? XES NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 			
7. If applicant is a subsidiary corporation, please provide the name of parent corporation:			
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? XES NO If YES, please explain: Own and Operate If NO, you are not eligible for a permit for this source. 			
 9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary classification System (NAICS) code for the facility: 562920 			
11A. DAQ Plant ID No. (for existing facilities only): 11B. 009 – 00141			
All of the required forms and additional information can be found	under the Permitting	g Section of DAQ's website, or requested by phone.	

12A.

IZA.			
 For Modifications, Administrative Updates or Te present location of the facility from the nearest state 		please provide directions to the	
 For Construction or Relocation permits, please p road. Include a MAP as Attachment B. 	provide directions to the <i>proposed new</i> s	<i>ite location</i> from the nearest state	
Turn off of WV-2 onto Veterans Drive (0.6 miles). Turn ri	ght onto Koppers Road (0.2 miles). Faci	lity location will be on the right.	
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:	
	Follansbee	Brooke	
12.E. UTM Northing (KM): 40.338690	12F. UTM Easting (KM): -80.605429	12G. UTM Zone: 17T	
13. Briefly describe the proposed change(s) at the facilit			
The facility will be recycling plastics via pyrolysis instead	of medical waste as originally permitted		
14A. Provide the date of anticipated installation or change		14B. Date of anticipated Start-Up	
 If this is an After-The-Fact permit application, providence of the permit application of the permit applicati	de the date upon which the proposed	if a permit is granted: 1/2/2024	
14C. Provide a Schedule of the planned Installation of/ Change to and Start-Up of each of the units proposed in this permit application as Attachment C (if more than one unit is involved).			
15. Provide maximum projected Operating Schedule of activity/activities outlined in this application: Hours Per Day 24 Days Per Week 7 Weeks Per Year52			
16. Is demolition or physical renovation at an existing fa	cility involved? YES NO		
17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed			
changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.			
18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the			
proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application			
(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (<i>if known</i>). Provide this			
information as Attachment D .			
	achments and supporting de		
 Include a check payable to WVDEP – Division of Air 45CSR13). 	Quality with the appropriate applicatior	fee (per 45CSR22 and	
20. Include a Table of Contents as the first page of you	ir application package.		
21. Provide a Plot Plan , e.g. scaled map(s) and/or skett source(s) is or is to be located as Attachment E (Reference)		rty on which the stationary	
- Indicate the location of the nearest occupied structure	e (e.g. church, school, business, residen	ce).	
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	ving each proposed or modified emission	ns unit, emission point and control	
23. Provide a $\ensuremath{\text{Process}}$ Description as Attachment G.			
 Also describe and quantify to the extent possible and quantify the extent possib			
All of the required forms and additional information can be	found under the Permitting Section of DA	Q's website, or requested by phone.	

24. Provide Material Safety Data Sheets	s (MSDS) for all materials proce	ssed, used or produced as Attachment H.
- For chemical processes, provide a MS	DS for each compound emitted	to the air.
25. Fill out the Emission Units Table and	d provide it as Attachment I.	
26. Fill out the Emission Points Data Su	Immary Sheet (Table 1 and Ta	ble 2) and provide it as Attachment J.
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide i	t as Attachment K.
28. Check all applicable Emissions Unit	Data Sheets listed below:	
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage
Concrete Batch Plant	Incinerator	Facilities
Grey Iron and Steel Foundry	🛛 Indirect Heat Exchanger	Storage Tanks
General Emission Unit, specify		
Fill out and provide the Emissions Unit D	ata Sheet(s) as Attachment L	
29. Check all applicable Air Pollution Co	ontrol Device Sheets listed bel	SW:
Absorption Systems	Baghouse	⊠ Flare
Adsorption Systems	Condenser	Mechanical Collector
Afterburner	Electrostatic Precipita	ator 🛛 Wet Collecting System
Other Collectors, specify		
Fill out and provide the Air Pollution Con	trol Device Sheet(s) as Attach	nment M.
 Provide all Supporting Emissions Calculations as Attachment N, or attach the calculations directly to the forms listed in Items 28 through 31. 		
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.		
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.		
32. Public Notice. At the time that the a	pplication is submitted, place a	Class I Legal Advertisement in a newspaper of general
circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal		
Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.		
33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?		
🖾 YES 🗌 NO		
If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.		
Se	ction III. Certification	of Information
34. Authority/Delegation of Authority. Check applicable Authority Form be		ther than the responsible official signs the application.
Authority of Corporation or Other Busir	ness Entity	Authority of Partnership
Authority of Governmental Agency	\boxtimes	Authority of Limited Partnership
Submit completed and signed Authority Form as Attachment R.		
		Permitting Section of DAQ's website, or requested by phone.

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE		DATE: 11/30/2023 (Please use blue ink)	
35B. Printed name of signee: Bernard Brown		35C. Title: Chief Operating Officer	
35D. E-mail: <u>bbrown@empirede.com</u>	36E. Phone: 681-387-5093	36F. FAX:	
36A. Printed name of contact person (if different from above):		36B. Title:	
36C. E-mail:	36D. Phone:	36E. FAX:	

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDE	D WITH THIS PERMIT APPLICATION:
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee
	permit application with the signature(s) to the DAQ, Permitting Section, at the sophication. Please DO NOT fax permit applications.

FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:

Forward 1 copy of the application to the Title V Permitting Group and:

□ For Title V Administrative Amendments:

□ NSR permit writer should notify Title V permit writer of draft permit,

For Title V Minor Modifications:
 Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,

□ NSR permit writer should notify Title V permit writer of draft permit.

- □ For Title V Significant Modifications processed in parallel with NSR Permit revision:
 - □ NSR permit writer should notify a Title V permit writer of draft permit,
 - Dublic notice should reference both 45CSR13 and Title V permits,

EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY		PERMIT DETERMINATION FORM (PDF)			
7	601 57 th Street, SE Charleston, WV 25304 Phone: (304) 926-0475 www.dep.wv.gov/dag		FOR AGENCY USE O	NLY: PLANT I.D. #	
			PDF #	PERMIT WRITER:	
1.	NAME OF APPLICANT (AS REGISTERE	D WITH THE WV SECR	ETARY OF STATE'S OF	FFICE):	
	Empire Green Generation, LLC				
2.	NAME OF FACILITY (IF DIFFERENT FRO	OM ABOVE):		3. NORTH AMERICAN INDUSTRY	
				CLASSIFICATION SYSTEM (NAICS) CODE:	
	Follansbee Operations				
4A.	MAILING ADDRESS: 1400 Main Street, F	ollansbee, WV 26037	4B. PHYSICAL ADDR	ESS: 801 Koppers Rd, Follansbee WV 26037	
5A.	DIRECTIONS TO FACILITY (PLEASE PR	OVIDE MAP AS ATTA	´ Turn off o	f WV-2 onto Veterans Drive (0.6 miles). Turn Koppers Rd (0.2 miles). Facility on the right	
5B.	NEAREST ROAD:	5C. NEAREST CITY	OR TOWN:	5D. COUNTY:	
	WV-2	Follansbee, WV		Brooke	
5E.	UTM NORTHING (KM):	5F. UTM EASTING (H	<Μ):	5G. UTM ZONE:	
	40.338690	-80.605429		17T	
6A.	6A. INDIVIDUAL TO CONTACT IF MORE INFORMATION IS REQUIR		RED:	6B. TITLE:	
<u> </u>	Bernard Brown			Chief Technology Officer	
		6D. FAX:		6E. E-MAIL:	
	681-387-5903			bbrown@empirede.com	
7A.	7A. DAQ PLANT I.D. NO. (FOR AN EXISTING FACILITY ONLY): 009 - 00141		7B. PLEASE LIST ALL CURRENT 45CSR13, 45CSR14, 45CSR19 AND/OR TITLE V (45CSR30) PERMIT NUMBERS ASSOCIATED WITH THIS PROCESS (FOR AN EXISTING FACILITY ONLY): R-13-3555		
7C.	7C. IS THIS PDF BEING SUBMITTED AS THE RESULT OF AN ENFORCEMENT ACTION? IF YES, PLEASE LIST:				
8A.	A. TYPE OF EMISSION SOURCE (CHECK ONE):		8B. IF ADMINISTRATIVE UPDATE, DOES DAQ HAVE THE APPLICANT'S CONSENT TO UPDATE THE EXISTING PERMIT WITH THE INFORMATION CONTAINED HEREIN?		
	MODIFICATION OTHER (PLEASE EXPLAIN IN 11B)				
9.	9. IS <i>DEMOLITION</i> OR PHYSICAL <i>RENOVATION</i> AT AN EXISTING FACILITY INVOLVED? YES I NO			YES 🖄 NO	
10A	10A. DATE OF ANTICIPATED INSTALLATION OR CHANGE:		10B. DATE OF ANTICIPATED START-UP:		
	<u>1 / 15 /20 24 .</u>			2 / 15 /20 24 .	
11A	PLEASE PROVIDE A DETAILED PROCE POINT AS ATTACHMENT B .	SS FLOW DIAGRAM S	HOWING EACH PROP	DSED OR MODIFIED PROCESS EMISSION	
11B	. PLEASE PROVIDE A DETAILED PROCE	ESS DESCRIPTION AS	ATTACHMENT C.		
12.	12. PLEASE PROVIDE MATERIAL SAFETY DATA SHEETS (MSDS) FOR ALL MATERIALS PROCESSED, USED OR PRODUCED AS ATTACHMENT D . FOR CHEMICAL PROCESSE, PLEASE PROVIDE A MSDS FOR EACH COMPOUND EMITTED TO AIR.				

13A. REGULATED AIR POLLUTANT EMISSIONS:

⇒ FOR A NEW FACILITY, PLEASE PROVIDE PLANT WIDE EMISSIONS BASED ON THE POTENTIAL TO EMIT (PTE) FOR THE FOLLOWING AIR POLLUTANTS INCLUDING ALL PROCESSES.

⇒ FOR AN EXISTING FACILITY, PLEASE PROVIDE THE PROPOSED CHANGE IN EMISSIONS BASED ON THE PTE OF ALL PROCESS CHANGES FOR THE FOLLOWING AIR POLLUTANTS.

PTE FOR A GIVEN POLLUTANT IS TYPICALLY BEFORE AIR POLLUTION CONTROL DEVICES AND IS COLLECTED BASED ON THE MAXIMUM DESIGN CAPACITY OF PROCESS EQUIPMENT.

POLLUTANT	HOURLY PTE (LB/HR)	YEARLY PTE (TON/YR) (HOURLY PTE MULTIPLIED BY 8760 HR/YR) DIVIDED BY 2000 LB/TON	
РМ	5.7	25.0	
PM ₁₀	3.20	14.0	
VOCs	5.48	24.0	
со	22.60	99.0	
NO _x	5.48	24.0	
SO ₂	8.90	39.0	
Pb	NA	NA	
HAPS (AGGREGATE AMOUNT)	0.46	2.0	
TAPs (INDIVIDUALLY)*	0.46	2.0	
OTHER (INDIVIDUALLY)*	0.17	0.75	
* ATTACH ADDITIONAL PAGES AS N	IEEDED		

13B. PLEASE PROVIDE ALL SUPPORTING CALCULATIONS AS ATTACHMENT E.

CALCULATE AN HOURLY AND YEARLY PTE OF EACH PROCESS EMISSION POINT (SHOWN IN YOUR DETAILED PROCESS FLOW DIAGRAM) FOR ALL AIR POLLUTANTS LISTED ABOVE INCLUDING INDIVIDUAL HAP'S (LISTED IN SECTION 112[b] OF THE 1990 CAAA), TAP'S (LISTED IN 45CSR27), AND OTHER AIR POLLUTANTS (E.G. POLLUTANTS LISTED IN TABLE 45-13A OF 45CSR13, MINERAL ACIDS PER 45CSR7, ETC.).

14. CERTIFICATION OF DATA

L Bernard Brown

APPENDED HERETO, ARE TRUE, ACCURATE, AND COMPLETE TO THE BEST OF MY KNOWLEDGE BASED ON INFORMATION AND BELIEF AFTER REASONABLE INQUIRY, AND THAT I AM A RESPONSIBLE OFFICIAL** (PRESIDENT, VICE PRESIDENT, SECRETARY OR TREASURER, GENERAL PARTNER OR SOLE PROPRIETOR) OF THE APPLICANT.

SIGNATURE OF RESPONSIBLE OFFICIAL:

Bernard R. Brown

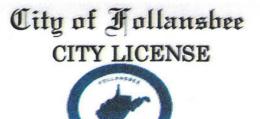
TITLE: Chief Technology Officer

30 Date: 11 /

** THE DEFINITION OF THE PHRASE 'RESPONSIBLE OFFICIAL' CAN BE FOUND AT 45CSR13, SECTION 2.23.

NOTE: PLEASE CHECK ENCLOSED ATTACHMENTS:

ATTACHMENT A	X ATTACHMENT B	X ATTACHMENT C	X ATTACHMENT D	X ATTACHMENT E
RECORDS ON ALL CHANGES ARE RE	EQUIRED TO BE KEPT AND M	AINTAINED ON-SITE FOR TW	10 (2) YEARS.	


THE PERMIT DETERMINATION FORM WITH THE INSTRUCTIONS CAN BE FOUND ON DAQ'S PERMITTING SECTION WEB SITE:

www.dep.wv.gov/dag

2023

ATTACHMENT A

Business Certificate

Follansbee, West Birginia

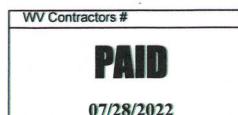
This is to certify that the undersigned, in pursuance of the authority vested in him by law has this day granted to:

Name of Establishment: EMPIRE GREEN GENERATION LLC

Address: 1400 MAIN ST

FOLLANSBEE WV 26037-1218

Name of Owner: FRANK ROSSO


Address: 401 EAST LAS OLAS BLVD SUITE 1400

FORT LAUDERDALE FL 33301-2218

a license to engage in, conduct or operate the business of, or devices for which license tax has been assessed and paid as shown in license schedule herein.

Date Issued: 28-Jul-2022

Expiration Date: 30-Jun-2023

City of Follansbee

9

Any automatic device licensed herein is that which is not a gambling device under city ordinance or the laws of the State of West Virginia

> LICENSE No:288

> > CirolicenselFB

John G McIntosh

DISPLAY IN A CONSPICUOUS PLACE

I, Mac Warner, Secretary of State of the State of West Virginia, hereby certify that

EMPIRE GREEN GENERATION, LLC

was duly authorized under the laws of this state to transact business in West Virginia as a foreign limited liability company on December 09, 2021.

The company is filed as an at-will company, for an indefinite period.

I further certify that the company has not been revoked or administratively dissolved by the State of West Virginia nor has the West Virginia Secretary of State issued a Certificate of Cancellation or Termination to the company.

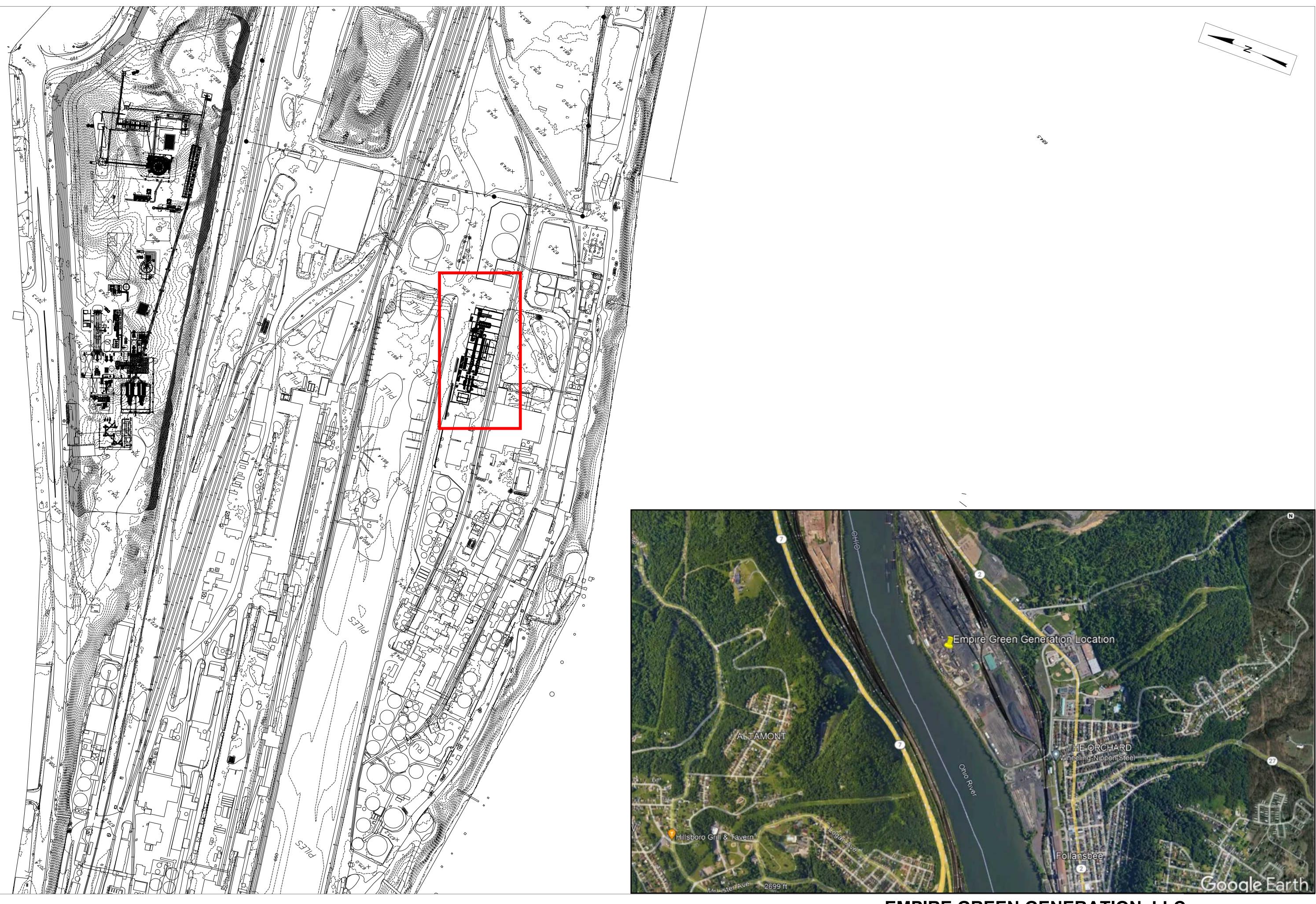
Accordingly, I hereby issue this Certificate of Authorization

CERTIFICATE OF AUTHORIZATION

Validation ID:8WV3R_YA3BM

Given under my hand and the Great Seal of the State of West Virginia on this day of

January 07, 2022


Mac Warner

Secretary of State

10 Notice: A certificate issued electronically from the West Virginia Secretary of State's Web site is fully and immediately valid and effective. However, as an option, the issuance and validity of a certificate obtained electronically may be established by visiting the Certificate Validation Page of the Secretary of State's Web site, https://apps.wv.gov/sos/businessentitysearch/validate.aspx entering the validation ID displayed on the certificate, and following the instructions displayed. Confirming the issuance of a certificate is merely optional and is not necessary to the valid and effective issuance of a certificate.

ATTACHMENT B

Maps

EMPIRE GREEN GENERATION, LLC FOLLANSBEE, WV SITE MAP AND LAYOUT

1

ATTACHMENT C

Installation and Startup Schedule

ATTACHMENT C: INSTALLATION AND START UP SCHEDULE

Unit	Start of Installation	Approximate Start of Operations
900 & 1000 (Thermal Oxidizer and Stack Exhaust)	October 2022	February 2024

ATTACHMENT D

Regulatory Discussion

1.1 West Virginia State Requirements

The Facility will be a minor source of emissions under the NSR Program as well as the Title V Operating Permit program under §45CSR30. However, the potential uncontrolled emissions for the Facility will exceed the permitting threshold of 6 pounds per hour (lb/hr) and/or 144 pounds per day (lb/day) in accordance with WVDEP §45CSR13-2.24. Accordingly, Empire Green Generation, LLC is submitting this application for a minor source permit to install and operate.

In addition to regulations, state regulations that pertain to this Facility are listed in Table 1-1. Titles shown in capital letters in the table are permits, notifications, and/or reports that will be needed for construction and operation of the Facility.

Federal authority is delegated to the State of West Virginia, and all permit applications will be submitted to West Virginia Department of Environmental Protection (WVDEP). The following list of air permits is applicable to the proposed facility:

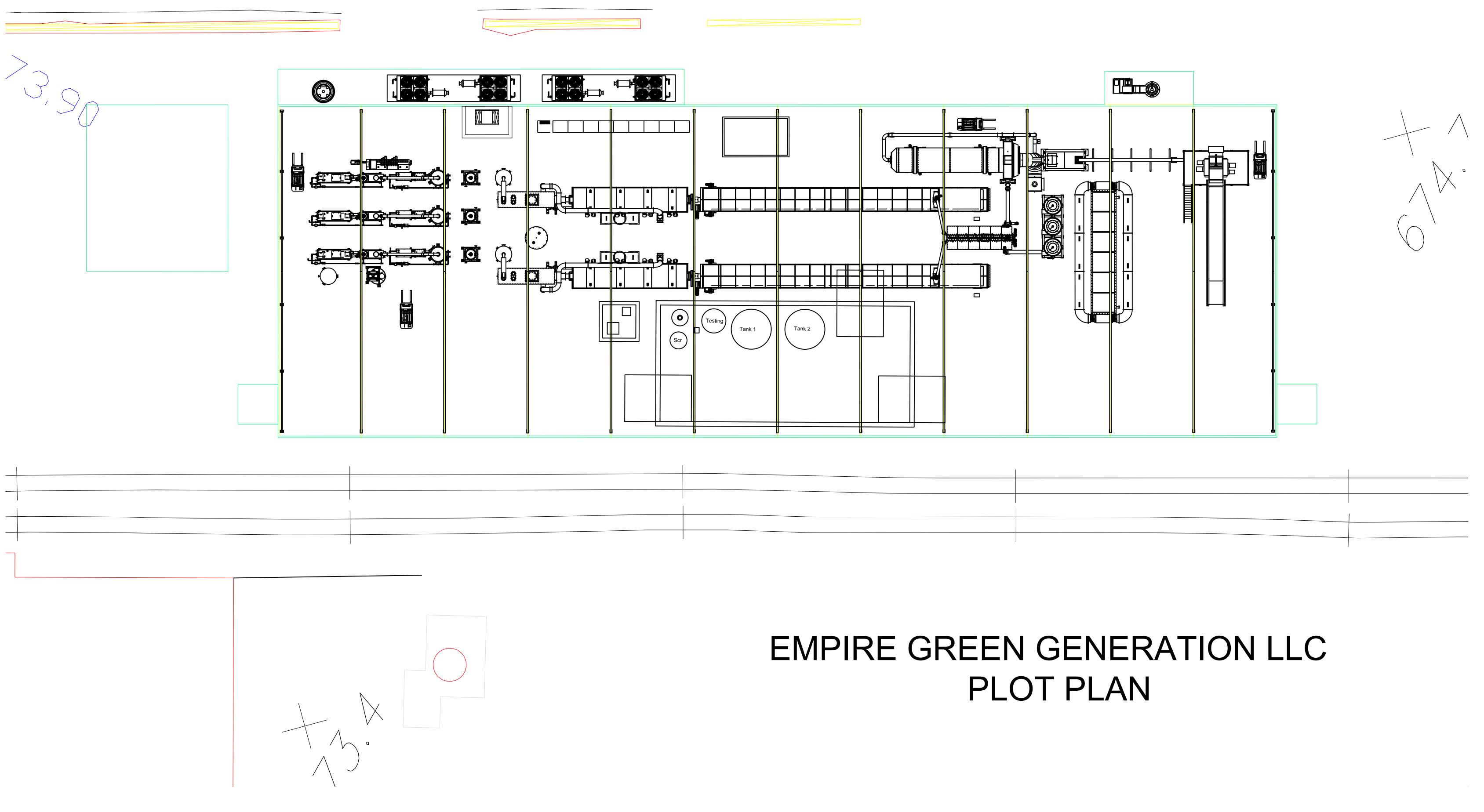
Rule	Description	
45CSR02	Control of visible and particulate emissions from stationary sources	
45CSR08	Ambient Air Quality Standards	
45CSR10	General emission limit provisions for sulfur dioxide	
45CSR11	Prevention Of Air Pollution Emergency Episodes	
45CSR13	Permits-to-Install New Sources and Permit-to-Install and Operate Program	
45CSR17	Restrictions of emissions of fugitive dust	
45CSR21	Control of emissions of VOCs from stationary sources	

Table 1-1 West Virginia DEP Applicable Regulations

1.1.1 Permit Applicability

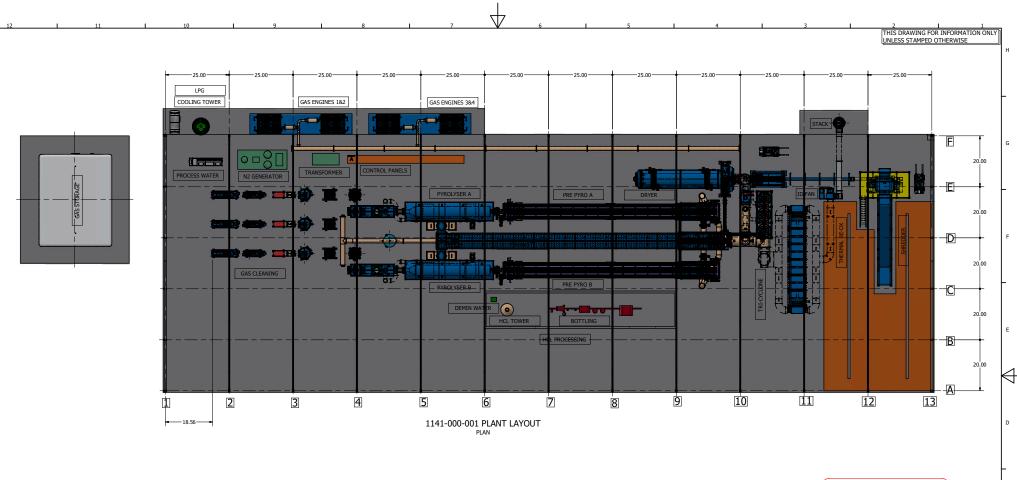
Air pollution control regulations have been established by the WVDEP for air emissions associated with stationary sources and fugitive emissions resulting from material transfer activities.

To determine permit applicability for the Facility's emission sources, the Potential-to-Emit (PTE) emissions have been presented in Attachment J and Permit Determination Form, the proposed Facility will be considered a minor source with potential uncontrolled PM emissions greater than 25 tons per year (tpy) and less than major source thresholds. Therefore, the Facility will need to obtain a permit to construct and operate. Applicable federal regulations present in Table 1-2 below.


Table 1-2	Federal	Applicable	Regulations
			galations

Rule	Description
40 CFR Part 63 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines
40 CFR 60 Subpart A	General Provisions
40 CFR 60.18	General control device and work practice requirements

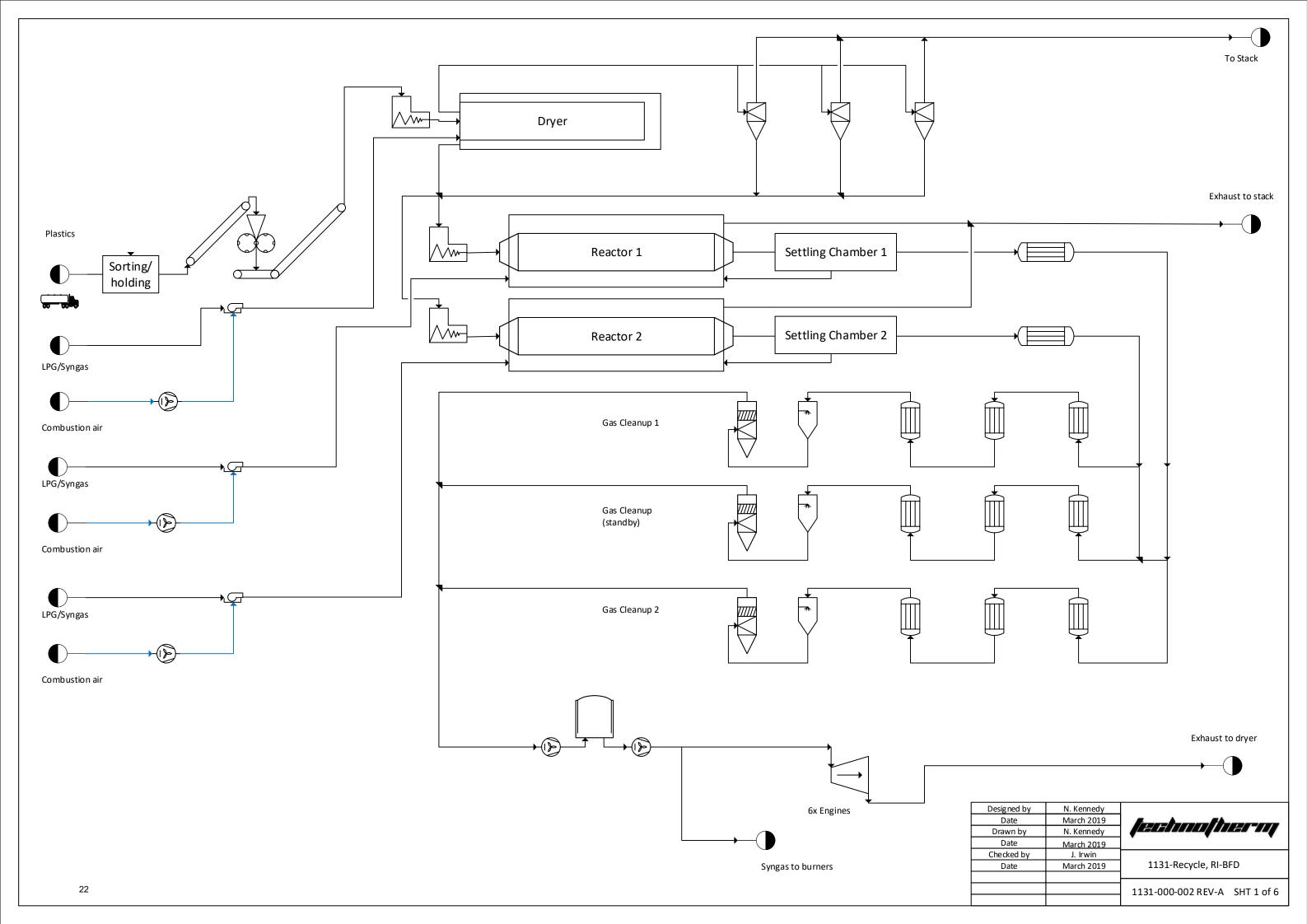
Tetra Tech, Inc.

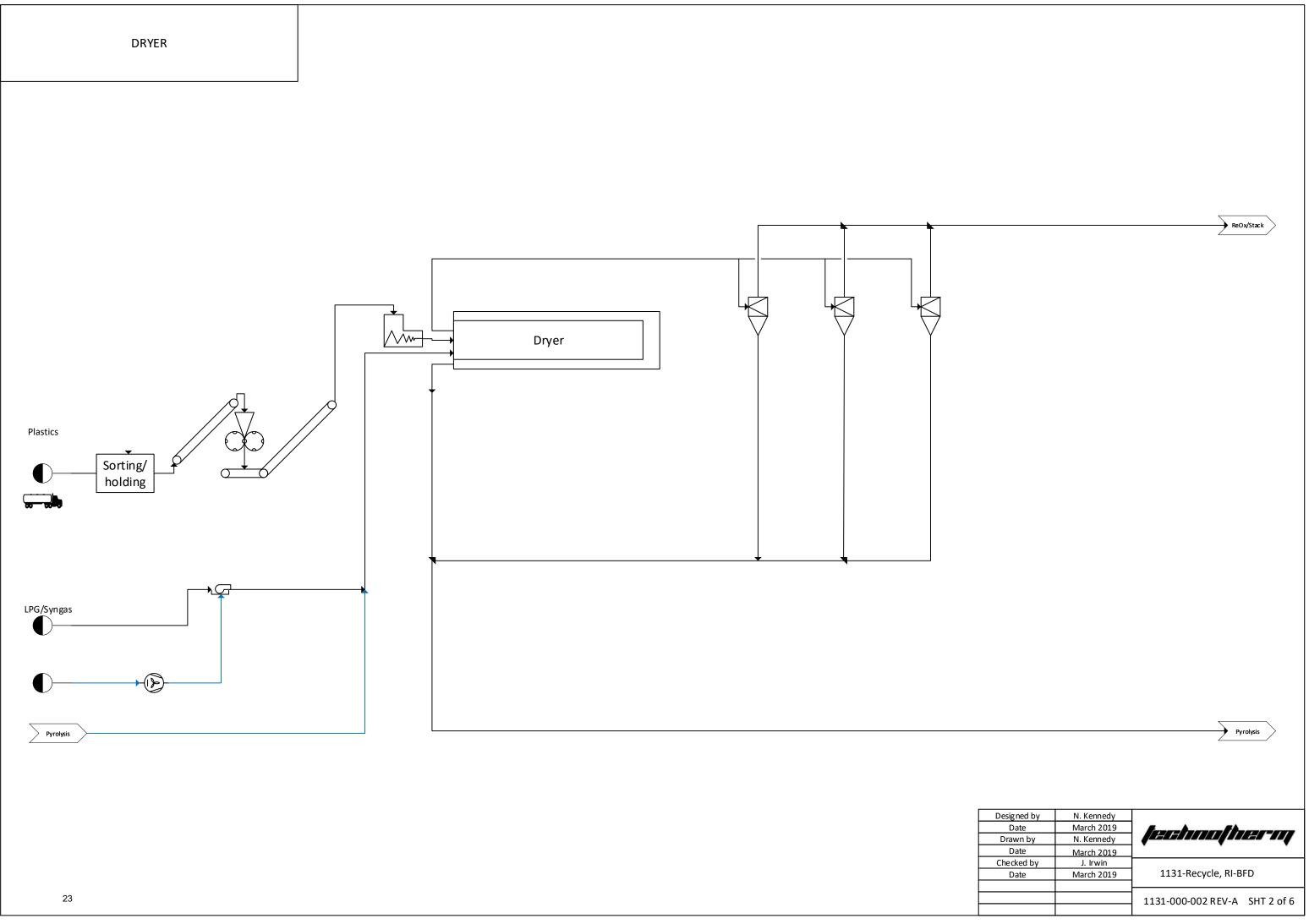

ATTACHMENT E

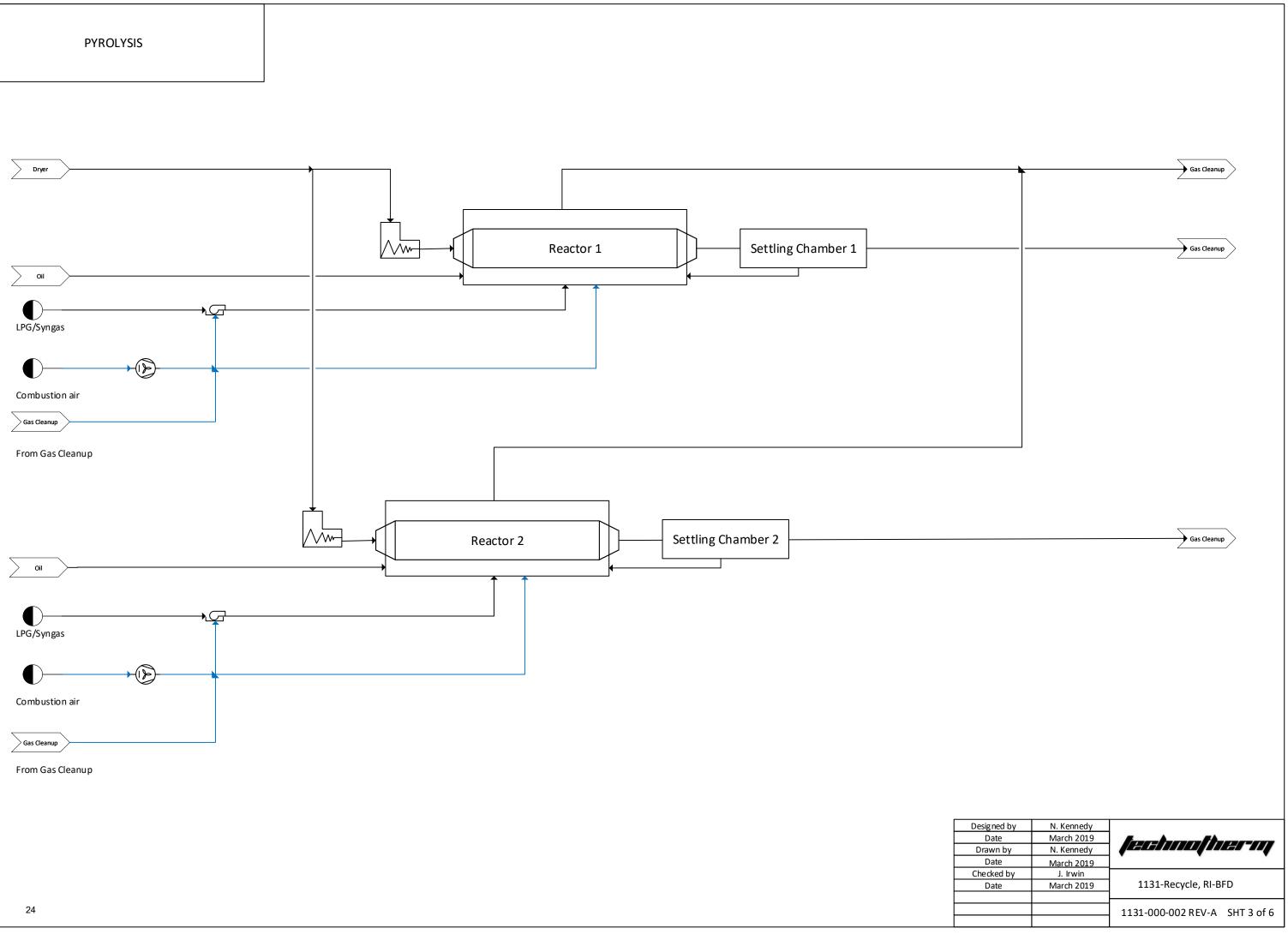
Plot Plan

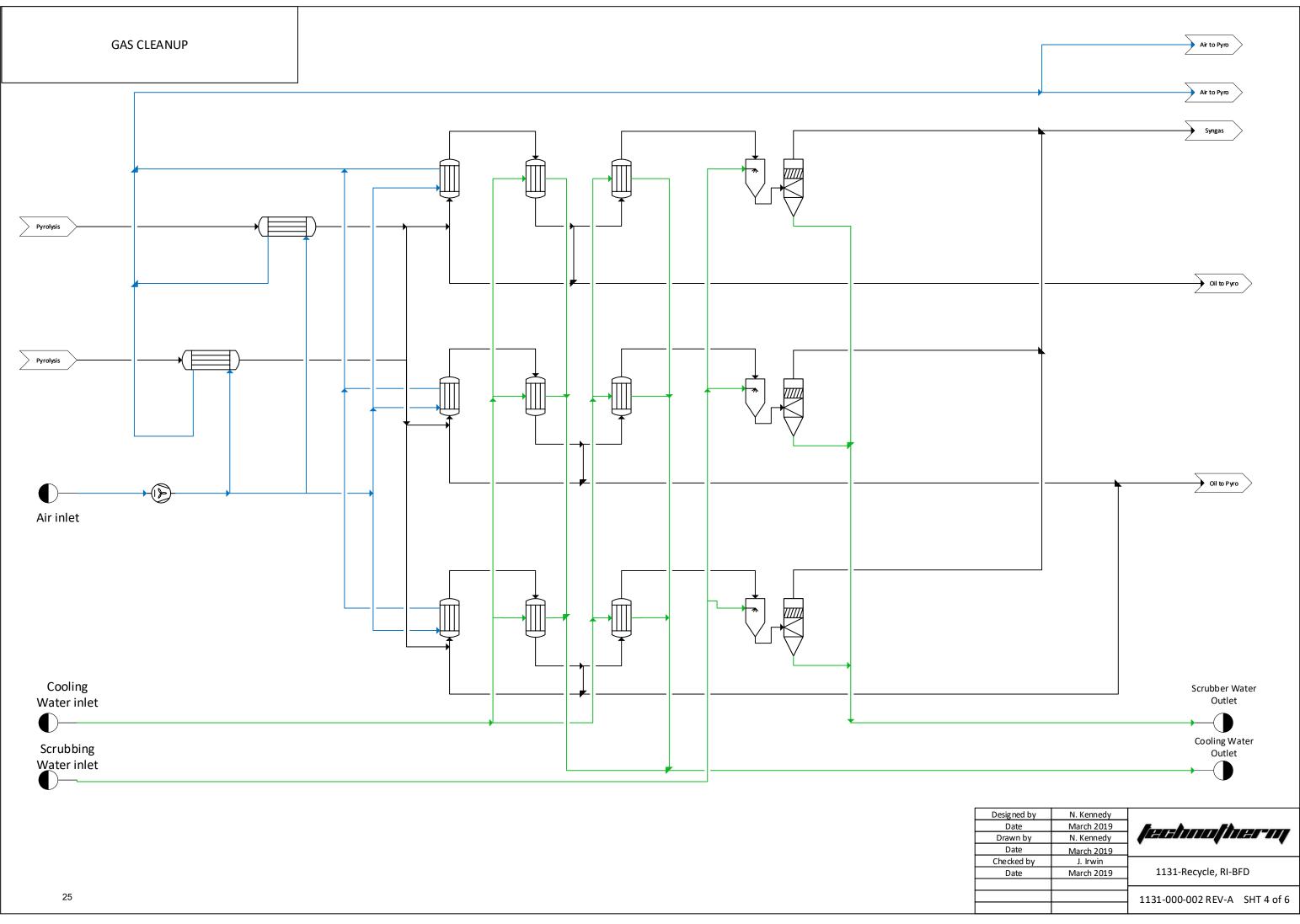
ATTACHMENT F

Process Flow Diagram

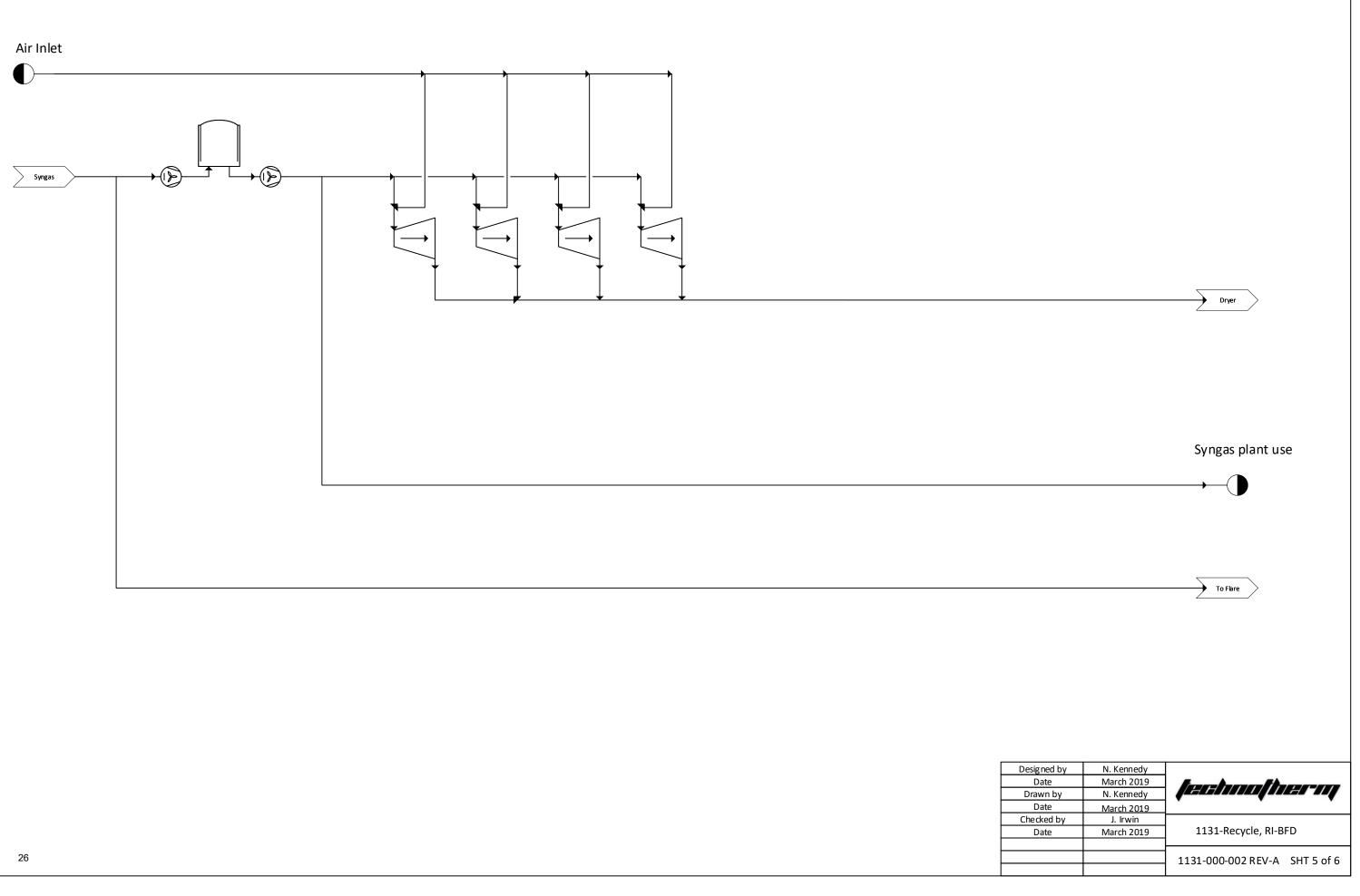

ISSUED FOR INFORMATION

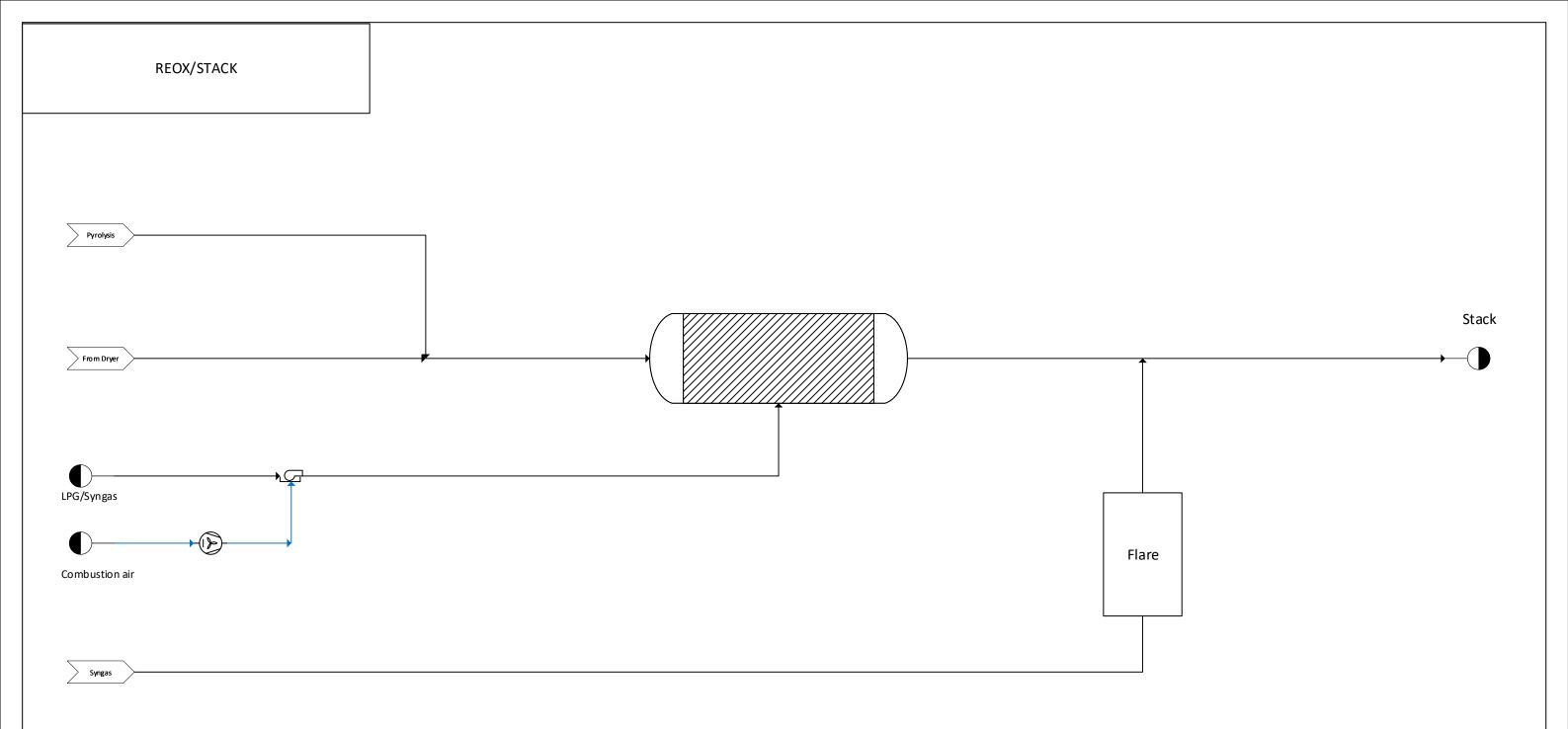

с


ANT LAYOUT.Idw


1141-008 2022.08.17

													100
						THE FIRELING STORMER IN THE DEARWINGS IN THE INITIAL CLUCK AND	DRAWN BY TB	DATE 2022.08.17	T			ā	
ł	-						PROCESS/OPERATIONS APPROVED	DATE	Technotherm				
	-				-		CHEMICAL ENGINEER	DATE	1141 - MEDICAL WASTE TO ENERGY				
t t								DATE					
- [DATE	PLANT LAYOUT				
1	с	2022.08.17	ISSUED FOR INFORMATION	тв	MK	NON-DIRCUMVENT AND NON-DISCLOSURE AGREEMENT. 4. THIS DRAWN GIPRINT AND ALL COPIES, WILL BE RETURNED ON	emal: info@technotherm.co.za		GENERAL ARRANGEMENT				
	8	2022.05.28	ISSUED FOR INFORMATION	та	MK	DEMAND AND PAPER PRINTS MUST BE DESTROYED.							
L	Α.	2022.05.28	ISSUED FOR INFORMATION	тв	MK	SUPERTHERM (Pt) LISSIN TECHNOTHERM SOUTH AFRICA COMPACTIONNOTHERM NEW MARKET COMMERCIAL PARK 39 HEIDELER PS AVENUE INIT 78			SIZE	SCALE		SHEET No.	REV A
RE	REV No.	DATE	DESCRIPTION	DRAINN	СНКД		www.technotherm.co.za						
[REVISIONS			NEW MARKET ALBERTON, 5440			AI	AS SHOWN	1141-000-MEC-PL-001	1 of 1	
	`		6			5 4		3			2	1	
4	7												





Designed by	N. Kennedy	[eshno[her-n]				
Date	March 2019					
Drawn by	N. Kennedy					
Date	March 2019					
Checked by	J. Irwin					
Date	March 2019	1131-Recycle, RI-BFD				
		1131-000-002 REV-A SHT 6 of 6				

ATTACHMENT G

Process Description

REQUESTED REVISIONS

The following revisions from the original permit submittal are the following:

- All feedstock is now plastics, no medical waste will be processed through this system.
- Calorific value of the feed stock
- Plastics will be staged at a separate facility and brough on site as needed.
- Hydrochloric Acid (HCL) truck loading and associated scrubber system details added.

1. PRE-PROCESSING HANDLING

Plastics will be received at an offsite location located in the state of Ohio. Plastics will be broken down to manageable sizes using hand tools. These pieces will then be baled or placed into super sacks and loaded onto trucks for delivery to the facility as needed. The trucks into the site will be controlled by Empire Green Generation and the anticipated truck traffic is to be 4-6 trucks a day entering into the site via Route 2 from the north.

2. GENERAL PROCESS DESCRIPTION

Overall process takes plastics, received by a transporting company, and thermally processes it in a pyrolysis system operating at 800°C - 900°C (1,472°F - 2,1652°F). Waste composition will consist of plastics with resin numbers one through seven. Organic matter and hydrocarbons from the plastics are thermally decomposed without oxygen forming a syngas that can directly be used as a fuel source for electrical generating engines. Oil and tar are produced where the oil is recycled through the pyrolysis system to make more syngas and the tar is used to heat a vitrification system in which solids from the process are vitrified and made inert. The electrical generator's exhausts from the engines are sent to a drying unit where the plastic is dried prior to be introduced into the pyrolysis system. All exhaust gasses are sent to a Thermal Oxidizer where they are conditioned for release to atmosphere via a stack at a temperature of 850°C (1,562°F).

3. DETAILED PROCESS DESCRIPTION

Referring to Figure 1 below, a detailed description of the process follows where Plastics (#100) is received, sent to Staging (#120) and then to the Macerator (#200). Macerator (#200) operating at negative pressure of -0.024 kilopascals (kPa) reduces the Plastics to less than or equal to 20 mm (0.78inch). Plastics (#100) moves from the Macerator (#200) to the Dryer (#220) and is dried from the exhaust of the four (4) Engines (#600). Once the Plastics (#100) is dried, it moves to the Feed Silo (#240) through load lock valves. When the Pyrolysis (#300) system is ready to accept feed, load locking valves are actuated such that the feed in put into the Pre-Pyrolysis (#300) system. Coordinated valve actuation is used to keep oxygen level from air below 2.0% in the Pre-Pyrolysis (#300) and Pyrolysis (#350) system. Chlorides are driven off in the Pre- Pyrolysis (#300) and processed into hydrochloric acid to be sold. As plastics (#100) is being processed in the Pyrolysis (#350) system, organic matter and hydrocarbons are thermally decomposed forming syngas and moves to the Gas Cleanup (#400). The Gas Cleanup (#400) removes particulate matter and performs the bulk of neutralizing acid forming gases. Next, the gas passes to the Scrubber (#420) where any acid gasses are further removed from the syngas. The syngas then proceeds to the Gasometer (#500) which helps regulate the pressure in the Engine (#600). Syngas is combusted in the Engine (#600) and the exhaust is sent to Dryer (#220). Exhaust from the dryer is diverted through the Cyclone (#620) and then to the Feed Silo (#240). The Vitrifier (#800) exhaust flows to the Pyrolysis (#300) system, then makes a single pass through the outer chamber of the Pyrolyser (#300) system where additional heat is provided. Next the gases flow through the Dryer (#220). Gases from the Drver (#220) outlet is sent to the Thermal Oxidizer (TO) (#900) through Cyclone (#620). Tar (#720) is mixed with Air (#820) and heats the Vitrifier (#800) sufficiently to make an inert solid product (#840) which is ready for disposal. Oil (#700) is continuously recycled through the Pyrolysis (#300) system. Off-gas from the Thermal Oxidizer (#900) are sent through the Stack (#1000), which includes and emergency fare, prior to being released into the atmosphere.

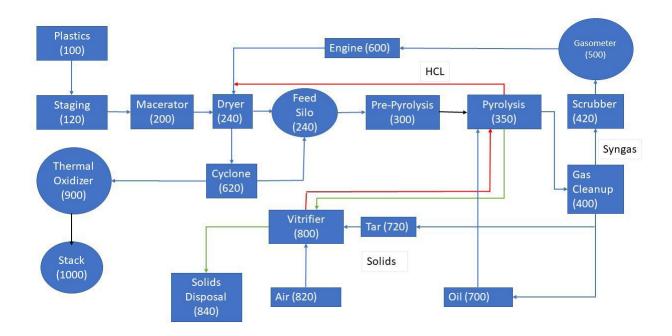


Figure 1. Block flow diagram for detailed process description.

SUB-SYSTEM OPERATION PRIME EQUIPMENT DETAIL

Prime Equipment & Systems

The following descriptions supplements the Process Flow Diagrams (PFDs) shown in Figure 1.

1. Delivery of Plastics

The material will be offloaded from five (5) tractor-trailers per day and tipped onto the receiving conveyor with the use of bin tipping stations as shown in Figure 2.

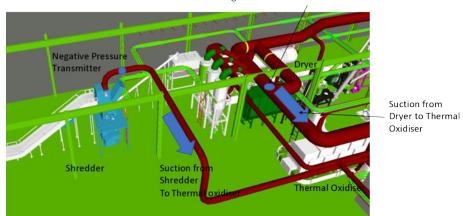
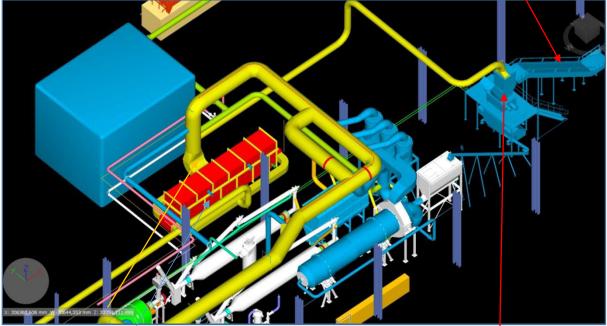


Figure 2: Illustration of typical bin tipping station

The waste operator will record the weight of each load prior to tipping. Additionally, a weighbridge operator records the weight of the trucks as they enter and exit the plant.


The material will automatically feed the Macerator required and dictated by the plant control philosophy.

An air extraction system is built into the Macerator with an extraction fan pulling from the topside of the Macerator at a rate of 1.2 m³/sec. Macerator will be under negative pressure of -0.024 kPa at all times during operations.

Negative Pressure Transmitter

Figure 3. Negative Pressure from Macerator to Thermal Oxidizer. Note all areas prior to thermal degradation are sealed and under negative pressure Further detail, qualifying waste in prepared sealed containers are delivered to the plant and placed on an input conveyor. After placing on the conveyor operator has no further involvement with the waste.

Material input conveyor

Regenerative Thermal Oxidiser

Macerator

Figure 4.

2. Materials input conveyor to Macerator under negative pressure to Thermal Oxidizer.

The shredder / macerator has a single opening that is sealed, allowing the waste to enter as presented through a single entry point under suction that is closed when waste is not presented for an extended period or during shut down mode,

The entire facility is closed to the operating environment and operates under a negative pressure (-0.024 kPa), ensuring no escape of odors or pathogens.

Transfer from the Macerator to the dryer and from the dryer to the thermal pre-pyroliser is also sealed to the environment operating under a negative pressure.

Progression to the high temperature pyrolysis unit (Fig. 3) is again sealed.

The main item that is creating a negative pressure is an Induced Draft Fan. This fan is connected to the regenerative thermal oxidizer, from the thermal oxidizer to the Macerator, dryer and all material interfaces.

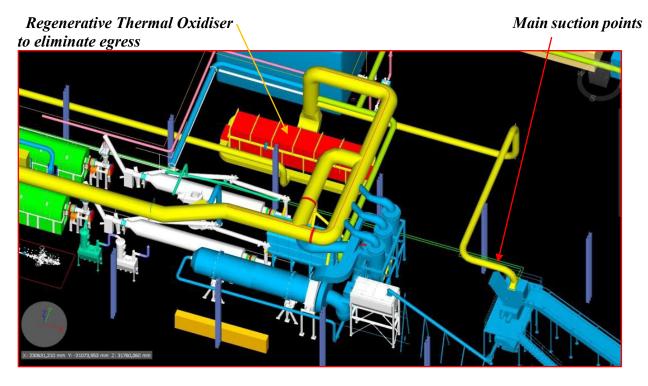


Figure 5. The Regenerative thermal oxidizer is maintained at 850°C.

2.1 Interlocks: The plant cannot be energized unless the ID fan is on and the Thermal oxidizer at temperature. There is no possibility of odors.

If the Thermal Oxidize goes below a predetermined temperature, the plant goes into shut down mode. In the event of a power failure the main control functions are connected via UPS. At this time a normally closed solenoid valve will have closed the only orifice on the plant which is where the waste is admitted.

In the unlikely event of an ID fan failure (never had one in 25 years) the plant will again default to shut down mode.

2.2 Macerator Negative Pressure:

Macerator material (feed stock) is conveyed to the thermal dryer feed hopper. Figure 6 shows a typical Macerator system.

Figure 6. Picture of a typical Macerator/Shredder system.

3. Thermal Dryer

The drying of the feed stock is carried out in a direct heated, parallel flow, rotary twin drum type dryer using a combination of engine exhaust and, if necessary during start-up or unusual operating conditions, syngas and, as a last resort, propane.

Feed stock is transported from the dryer feed hopper into the dryer by means of a screw conveyor. Upon entering the dryer inner retort, the moist feed stock comes into direct contact with the parallel stream of hot

flue gases.

Lifters and progression plates ensure intimate contact between the feed stock and flue gas therefore facilitating efficient drying, sterilization and movement of feed stock along the retort. Once both feed stock and flue gases reach the closed end of the dryer they are discharged from the inner concentric retort into the outer retort and return to the entry end of the dryer, discharging 10% moisture level feed stock into an expansion chamber. Coarse dry feed stock falls to the bottom of the chamber forming a heap on the belt conveyor located beneath.

The flue gas exhaust, contaminated with light particulate feed stock material, is also discharged from the expansion chamber and ducted to a bank of cyclones where separation occurs. Fine particulate falls to the bottom of each cyclone and is discharged via rotary valves into a common screw conveyor. The screw conveyor discharges the fine product onto the belt conveyor joining the dryer exit material and fine product. This conveyor transfers the combined dry feed stock streams onto a conveyor feeding an intermediate storage hopper that feeds both Pyrolyzers.

The cooled flue gas stream from the cyclones is directed to the Thermal

Oxidizer. 7 and 8 shows photos of a typical dryer in operation.

Figure 7. Photo of a typical dryer in operation from first floor level.

Figure 8. Photo of a typical dryer in operation from ground floor level.

4. Pyrolyser & Vitrification Furnace

Overview

The Pyrolyser train is fed dried feed stock from a thermal dryer as described in the previous section. The Pyrolysis train consists of two identical Pyrolyzers. Per unit, the source of indirect heat is primarily hot exhaust flue gas from a vitrification furnace located beneath the pyrolysis retort. These hot flue gasses exit the Pyrolysis Retorts and then progress to the medium grade heat applications (Thermal Dryer and during start up Syngas Cooler and Tar Condenser). Supplemental heating of the pyrolysis retort is being provided by firing a portion of the cleaned syngas. Natural gas / LPG is available for initial start-up or any start-up where insufficient syngas is available. After passing through the dryers the gas is progressed to the Thermal Oxidizer.

Detailed Description

Feed stock is transferred from the dryer to a live bottom screw hopper, which feed an inlet hopper complete with horizontal material feed screw. Material is fed from a gas-tight, storage hopper into the horizontal, conically shaped, rotary drum Pyrolyzer Retort by a rotary screw.

As the material passes through the pyrolysis retort, it undergoes thermal degradation releasing volatile organic syngas compounds that are discharged from the retort. The crude syngas off-takes are collected into a common manifold that transfers the syngas to the syngas cleaning system.

The heavier particles, mainly comprising of ash and fixed carbon, collect in a specially designed high temperature de-acceleration chamber where the particles are collected and returned to the vitrification furnace.

The Pyrolyzers must be designed and arranged such that no propensity for harmonic vibrations shall exist under any load condition and shall be complete with all ancillary equipment for safe, reliable and efficient operation, and be of proven design capable of the required continuous, intermittent and transient operation and be suitable for its intended location. The design and materials of construction shall take fully into account the location.

Ash and carbonaceous residue produced by the Pyrolyzers drops off the dust from the aforementioned de-acceleration chamber screw conveyors, together with the main residue collected from the base of the Pyrolyzer into a Vitrifier, a refractory lined furnace fired by recovered tars (described below in the syngas cleaning equipment). The heat liberated by burning the tars and oils is sufficient to heat the ash from the Pyrolysis units above their eutectic temperature with excess, preheated air to burn off the tars. The char is completely combusted into CO2 and H2O.

Figure 9, 10 and 11 show photos of Pyrolyzers in operation.

Figure 9. Photo A of typical high temperature pyrolysis unit.

Figure 10. Photo B of typical high temperature pyrolysis unit.

Figure 11. Photo of typical low temperature pyrolysis unit.

5. Syngas Cleanup

Particulate Matter (PM) Cleanup

Raw syngas is removed from the Pyrolysis Retorts, as described above, and passes through a de-acceleration chamber and then hot cyclones. The cyclones are arranged for parallel flow to ensure maximum PM removal efficiency during start-up and shutdown as the flow varies. PM drops to specially designed hot screw conveyors and from there is directed to the vitrification furnaces described above.

Syngas Coolers

The partially cleaned, still hot, flue gas flows next through stainless steel tubular syngas coolers. The cooler is in essence a Heat Exchanger which indirectly transfers heat from syngas to the combustion air heaters.

Tar Condensers

The syngas from the coolers described above flows to a stainless-steel shell & tube Heat Exchanger/cooler that is cooled by an air blower system. Tars are condensed out and drop into heated troughs, the heat source of which is engine exhaust. Hot condensed tar is pumped to the vitrification furnaces described above. The common installed spare set of coolers uses engine exhaust fluegas to heat the heat exchangers and thereby cause the tars to drop into the heated trough below.

Oil Condensers

The syngas from the tar condensers described above flows to a shell & tube Heat Exchangers/cooler that are cooled by water cooling system. Condensed oils, which also contain condensed water, are collected and is pumped to the vitrification furnace described previously. The common installed spare set of coolers uses engine exhaust flue gas to heat the heat exchangers and thereby cause the oils to drop into the heated trough below.

Venturi Scrubbers

From the oil condensers the syngas flows through a high pressure drop Venturi Scrubber to remove any remaining PM.

Figure 12 and 13 show photos of a typical gas cleanup system in operation.

Figure 12. Photo A of a typical gas cleanup system in operation

Figure 13. Photo B of a typical gas clean up system in operation

Gas Bladder (Syngas Storage Tank)

The syngas storage tank provides surge capacity of cleaned syngas to level out flow and composition variations. It shall be a bladder contained within a demarcated area. The bladder will operate with an internal pressure of 30 to 40 millibar gauge.

Figure 14 shows a typical gas bladder in operation.

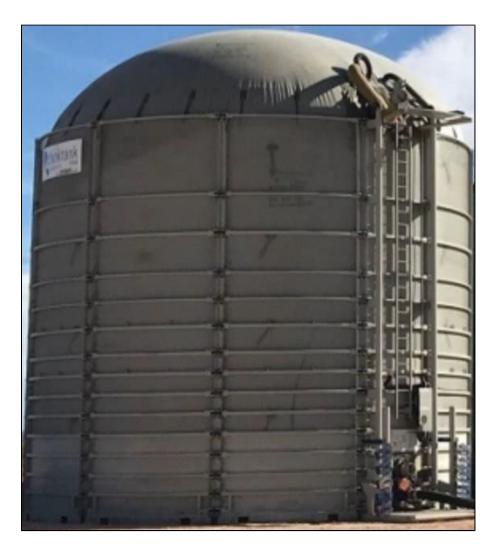


Figure 14. Picture of typical gas bladder

Stack

The hot gasses progress through the stack in to the atmosphere after passing through the Thermal Oxidizer (discussed in next section).

6. Thermal Oxidizer

After passing through a scrubber the flue gasses enter a Thermal Oxidizer comprising of a rectangular box shaped furnace. The internal dimensions are determined by the total volume that needs to be raised to 850 °C and maintained for 2 seconds.

Figure 15 shows a typical Thermal Oxidizer in operation. Please refer to the technical specification file for more details if required.

Figure 15: Photo of a typical Thermal Oxidizer in operation

7. Syngas Engines

Each syngas engine shall be a fully packaged unit complete with all associated components and auxiliaries. These engines are of robust design and have been proven on low and medium calorific value gas fuels.

The engine package will be complete to allow the engine to start, synchronize, operate continuously at base or part load and shut down.

The syngas engines shall be assembled in containers as indicated on the plant layout. The containerized engines shall conform to a sound pressure level of 80 dBA (2005 Noise Regulations 1st Action Level) as measured one meter from the enclosure at two meter above floor level.

Notwithstanding the syngas clean up equipment and systems described in the Syngas Clean up Section above, the syngas engine exhaust systems shall be designed and installed such that they meet emissions standards as of the Commencement Date.

The Engine cooling will be by means of external radiators, they shall be designed and constructed with sufficient margin and spare surface area for the maximum heat rejection duty under all operational conditions.

The radiators shall incorporate features to minimize corrosion and erosion on the air and watersides and suitable provisions for cleaning and core replacement.

The radiators and all of their component parts shall be of proven design and arranged so as to minimize maintenance work.

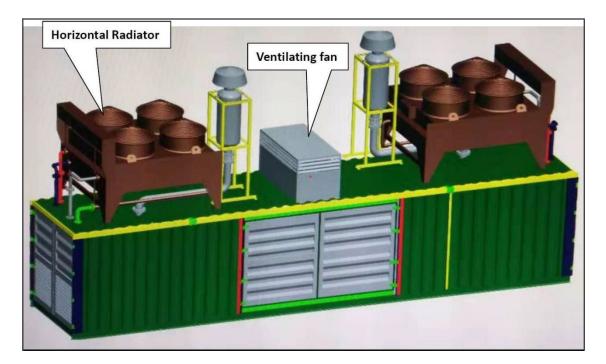


Figure 16 and Figure 17 illustrates the containerized engines in production.

Figure 16. Illustration A of containerized engines in production

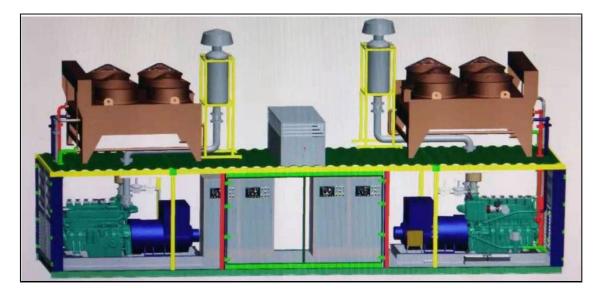


Figure 17. Illustration B of containerized engines in production

ATTACHMENT H

Material Data Safety Sheets (MSDSs) Safety Data Sheets (SDSs)

according to 29CFR1910/1200 and GHS Rev. 3

Page 1 of 8

Effective date : 01.08.2015

Hydrochloric Acid,ACS

SECTION 1 : Identification of the substance/mix	ure and of the supplier						
Product name :	roduct name : Hydrochloric Acid,ACS						
Manufacturer/Supplier Trade name:							
Manufacturer/Supplier Article number:	S25358						
Recommended uses of the product and uses res	trictions on use:						
Manufacturer Details:							
AquaPhoenix Scientific 9 Barnhart Drive, Hanover, PA 17331							
Supplier Details:							
Fisher Science Education							
15 Jet View Drive, Rochester, NY 14624							
Emergency telephone number:							
Fisher Science Education Emergency Telephone	No.: 800-535-5053						

SECTION 2 : Hazards identification

Classification of the substance or mixture:

Corrosive

Serious eye damage, category 1 Corrosive to metals, category 1 Skin corrosion, category 1B

🔪 Irritant

Specific target organ toxicity following single exposure, category 3

Corr. Metals 1 Corr. Skin 1B Eye Damage 1 STOT. SE 3

Signal word : Danger

Hazard statements:

May be corrosive to metals Causes severe skin burns and eye damage May cause respiratory irritation **Precautionary statements**: If medical advice is needed, have product container or label at hand Keep out of reach of children Read label before use Use only outdoors or in a well-ventilated area Wear protective gloves/protective clothing/eye protection/face protection Keep only in original container Do not get in eyes, on skin, or on clothing Wash skin thoroughly after handling IF SWALLOWED: Rinse mouth. Do NOT induce vomiting

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 01.08.2015

Hydrochloric Acid,ACS

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do.

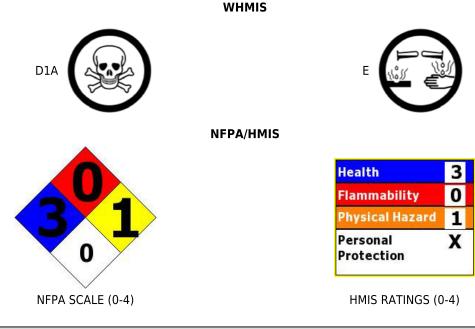
Continue rinsing

Immediately call a POISON CENTER or doctor/physician

Specific treatment (see supplemental first aid instructions on this label)

Wash contaminated clothing before reuse

Absorb spillage to prevent material damage


Store in a well ventilated place. Keep container tightly closed

Store locked up

Store in corrosive resistant stainless steel container with a resistant inner liner

Dispose of contents and container to an approved waste disposal plant

Other Non-GHS Classification:

SECTION 3 : Composition/information on ingredients

Ingredients:		
CAS 7647-01-0	Hydrochloric Acid, ACS	30-50 %
CAS 7732-18-5	Water	50-70 %
		Percentages are by weight

SECTION 4 : First aid measures

Description of first aid measures

After inhalation: Move exposed individual to fresh air. Loosen clothing as necessary and position individual in a comfortable position. Seek medical attention if irritation or coughing persists.

After skin contact: Wash affected area with soap and water. Immediately remove contaminated clothing and shoes.Rinse thoroughly with plenty of water for at least 15 minutes.Immediately seek medical attention.

After eye contact: Protect unexposed eye. Flush thoroughly with plenty of water for at least 15

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 01.08.2015

Hydrochloric Acid,ACS

minutes.Remove contact lenses while rinsing.Continue rinsing eyes during transport to hospital.

After swallowing: Rinse mouth thoroughly. Do not induce vomiting. Have exposed individual drink sips of water. Immediately seek medical attention.

Most important symptoms and effects, both acute and delayed:

Inhalation may cause irritation to nose and upper respiratory tract, ulceration, coughing, chest tightness and shortness of breath. Higher concentrations cause tachypnoea, pulmonary oedema and suffocation . Ingestion may cause corrosion of lips, mouth, oesophagus and stomach, dysphagia and vomiting.Pain, eye ulceration, conjunctival irritation, cataracts and glaucoma may occur following eye exposure.Erythema and skin irritation, as well as chemical burns to skin and mucous membranes may arise following skin exposure.;Potential sequelae following ingestion of hydrochloric acid include perforation, scarring of the oesophagus or stomach and stricture formation causing dysphagia or gastric outlet obstruction. In some cases, RADS may develop. Respiratory symptoms may take up to 36 hours to develop.Symptoms of burning sensation, cough, wheezing, laryngitis, shortness of breath, spasm, inflammation, edema of the larynx, spasm, inflammation and edema of the bronchi, pneumonitis, pulmonary edema. Material is extremely destructive to tissue of the mucous membranes and upper respiratory tract, eyes, and skin.

Indication of any immediate medical attention and special treatment needed:

Provide SDS to Physician.Physician should treat symptomatically.

SECTION 5 : Firefighting measures

Extinguishing media

Suitable extinguishing agents: Use water, dry chemical, chemical foam, carbon dioxide, or alcohol-resistant foam.

For safety reasons unsuitable extinguishing agents:

Special hazards arising from the substance or mixture:

Combustion products may include carbon oxides or other toxic vapors. If in contact with metals toxic fumes may be released.

Advice for firefighters:

Protective equipment: Wear protective eyeware, gloves, and clothing. Refer to Section 8. Wear respiratory protection.

Additional information (precautions): Thermal decomposition can produce poisoning chlorine. Hydrochloric acid reacts also with many organic materials with liberation of heat.Avoid inhaling gases, fumes, dust, mist, vapor, and aerosols. Avoid contact with skin, eyes, and clothing.

SECTION 6 : Accidental release measures

Personal precautions, protective equipment and emergency procedures:

Ensure adequate ventilation. Ensure that air-handling systems are operational.

Environmental precautions:

Should not be released into environment. Prevent from reaching drains, sewer, or waterway.

Methods and material for containment and cleaning up:

Always obey local regulations. If necessary use trained response staff or contractor. Evacuate personnel to safe areas. Containerize for disposal. Refer to Section 13. Keep in suitable closed containers for disposal. Soak up with inert absorbent material and dispose of as hazardous waste. Cover spill with soda ash or calcium carbonate. Mix and add water to form slurry.Wear protective eyeware, gloves, and clothing. Refer to Section 8.

Reference to other sections:

SECTION 7 : Handling and storage

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 01.08.2015

Page 4 of 8

Hydrochloric Acid, ACS

Precautions for safe handling:

Prevent formation of aerosols. Never use hot water and never add water to the acid.Do not allow contact between hydrochloric acid, metal, and organics.Follow good hygiene procedures when handling chemical materials. Refer to Section 8. Prevent contact with skin, eyes, and clothing. Follow proper disposal methods. Refer to Section 13. Do not eat, drink, smoke, or use personal products when handling chemical substances. Use only in well ventilated areas.Avoid splashes or spray in enclosed areas.

Conditions for safe storage, including any incompatibilities:

Store in a cool location. Keep away from food and beverages. Protect from freezing and physical damage. Store away from incompatible materials. Provide ventilation for containers. Keep container tightly sealed.Containers for hydrochloric acid must be made from corrosion resistant materials: glass, polyethylene, polypropylene, polyvinyl chloride, carbon steel lined with rubber or ebonite.

SECTION 8 : Exposure controls/personal protection

Control Parameters:	7647-01-0, Hydrochloric Acid, ACGIH: 2 ppm Ceiling 7647-01-0, Hydrochloric Acid, NIOSH: 5 ppm Ceiling; 7 mg/m3 Ceiling
Appropriate Engineering controls:	Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapor and mists below the applicable workplace exposure limits (Occupational Exposure Limits-OELs) indicated above. Emergency eye wash fountains and safety showers should be available in the immediate vicinity of handling.
Respiratory protection:	Not required under normal conditions of use. Where risk assessment shows air-purifying respirators are appropriate use a full-face particle respirator type N100 (US) or type P3 (EN 143) respirator cartridges as a backup to engineering controls. When necessary use NIOSH approved breathing equipment.
Protection of skin:	Select glove material impermeable and resistant to the substance. Select glove material based on rates of diffusion and degradation. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Use proper glove removal technique without touching outer surface. Avoid skin contact with used gloves. Wear protective clothing.
Eye protection:	Faceshield (8-inch minimum). Tightly fitting safety goggles.
General hygienic measures:	Perform routine housekeeping. Wash hands before breaks and immediately after handling the product. Avoid contact with skin, eyes, and clothing. Before rewearing wash contaminated clothing.

SECTION 9 : Physical and chemical properties

		Explosion limit lower: Explosion limit upper:	Non Explosive Non Explosive	
Odor:	Pungent odor	Vapor pressure:	5.7mmHg @ 0C	
Odor threshold:	0.3 – 14.9 mg/m3	Vapor density:	1.27 (Air=1)	
pH-value:	< 1	Relative density:	1.0 - 1.2	

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 01.08.2015

Page 5 of 8

Hydrochloric Acid,ACS

Melting/Freezing point:	ting/Freezing point: - 74 C Solubilities:		Miscible
Boiling point/Boiling range:	81.5 - 110 C	Partition coefficient (n- octanol/water):	Not Determined
Flash point (closed cup):	Not Applicable	Auto/Self-ignition temperature:	Not Determined
Evaporation rate:	>1.00	Decomposition temperature:	Not Determined
Flammability (solid,gaseous):	non combustible	Viscosity:	a. Kinematic:Not Determined b. Dynamic: Not Determined
Density: Not Determined	- 	-	

Hydrochloric Acid:MW is36.46

SECTION 10 : Stability and reactivity

Reactivity:Reacts violently with bases and is corrosive.

Chemical stability:No decomposition if used and stored according to specifications.

Possible hazardous reactions:Attacks many metals in the presence of water forming flammable explosive gas (hydrogen).Reacts violently with oxidants forming toxic gas (chlorine).

Conditions to avoid:Incompatible materials.

Incompatible materials:Bases, Amines, Alkali metals, Metals, permanganates (potassium permanganate), Fluorine, Metal acetylides, Hexalithium disilicide.

Hazardous decomposition products: Hydrogen chloride gas. Carbon oxides.

SECTION 11 : Toxicological information

Acute Toxicity:					
Inhalation	7647-01-0	LD50 Rat 3124 ppm/hour			
Oral:	7647-01-0	LD50 Rat 238 - 277 mg/kg			
Dermal:	7647-01-0	LD50 Rabbit >5010 mg/kg			
Chronic Toxicity	y : No additional information.				
Corrosion Irrita	tion:				
Dermal:	7647-01-0	Skin - rabbit Result: Causes burns.			
Ocular:	7647-01-0	Eyes - rabbit Result: Corrosive to eyes			
Sensitization:		No additional information.			
Single Target O	Prgan (STOT):	7647-01-0: The substance or mixture is classified as specific target organ toxicant, single exposure, category 3 with respiratory tract irritation.			
Numerical Meas	sures:	No additional information.			
Carcinogenicity	<i>!</i> ;	No additional information.			
Mutagenicity:		No additional information.			

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 01.08.2015

Page 6 of 8

Hydrochloric Acid,ACS

No additional information.

SECTION 12 : Ecological information

Ecotoxicity

7647-01-0: Toxicity to fish LC50 - Gambusia affinis (Mosquito fish) - 282 mg/l - 96 h (Hydrochloric acid)

Persistence and degradability:
Bioaccumulative potential:
Mobility in soil:
Other adverse effects:

SECTION 13 : Disposal considerations

Waste disposal recommendations:

Do not allow product to reach sewage system or open water.It is the responsibility of the waste generator to properly characterize all waste materials according to applicable regulatory entities (US 40CFR262.11). Contact a licensed professional waste disposal service to dispose of this material. Dispose of empty containers as unused product. Product or containers must not be disposed together with household garbage. Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations. Ensure complete and accurate classification.

SECTION 14 : Transport information

UN-Number

1789

UN proper shipping name

HYDROCHLORIC ACID

Transport hazard class(es)

Class: 8 Corrosive substances

Packing group:|| Environmental hazard: Transport in bulk: Special precautions for user:

SECTION 15 : Regulatory information

United States (USA)

SARA Section 311/312 (Specific toxic chemical listings):

Acute

SARA Section 313 (Specific toxic chemical listings):

7647-01-0 Hydrochloric Acid

RCRA (hazardous waste code):

None of the ingredients is listed

TSCA (Toxic Substances Control Act):

All ingredients are listed.

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 01.08.2015

Page 7 of 8

Hydrochloric Acid,ACS

CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act):

7647-01-0 Hydrochloric Acid 5000 lbs

Proposition 65 (California):

Chemicals known to cause cancer:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for females:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for males:

None of the ingredients is listed

Chemicals known to cause developmental toxicity:

None of the ingredients is listed

Canada

Canadian Domestic Substances List (DSL):

All ingredients are listed.

Canadian NPRI Ingredient Disclosure list (limit 0.1%):

None of the ingredients is listed

Canadian NPRI Ingredient Disclosure list (limit 1%):

7647-01-0 Hydrochloric Acid

SECTION 16 : Other information

This product has been classified in accordance with hazard criteria of the Controlled Products Regulations and the SDS contains all the information required by the Controlled Products Regulations.Note:. The responsibility to provide a safe workplace remains with the user.The user should consider the health hazards and safety information contained herein as a guide and should take those precautions required in an individual operation to instruct employees and develop work practice procedures for a safe work environment.The information contained herein is, to the best of our knowledge and belief, accurate.However, since the conditions of handling and use are beyond our control, we make no guarantee of results, and assume no liability for damages incurred by the use of this material.It is the responsibility of the user to comply with all applicable laws and regulations applicable to this material.

GHS Full Text Phrases:

Abbreviations and acronyms:

IMDG: International Maritime Code for Dangerous Goods PNEC: Predicted No-Effect Concentration (REACH) CFR: Code of Federal Regulations (USA) SARA: Superfund Amendments and Reauthorization Act (USA) RCRA: Resource Conservation and Recovery Act (USA) TSCA: Toxic Substances Control Act (USA) NPRI: National Pollutant Release Inventory (Canada) DOT: US Department of Transportation IATA: International Air Transport Association GHS: Globally Harmonized System of Classification and Labelling of Chemicals ACGIH: American Conference of Governmental Industrial Hygienists CAS: Chemical Abstracts Service (division of the American Chemical Society) NFPA: National Fire Protection Association (USA) Safety Data Sheet according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 01.08.2015

Page 8 of 8

Hydrochloric Acid,ACS

HMIS: Hazardous Materials Identification System (USA) WHMIS: Workplace Hazardous Materials Information System (Canada) DNEL: Derived No-Effect Level (REACH)

Effective date : 01.08.2015 Last updated : 03.20.2015

ATTACHMENT I

Emission Units Table

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
900	1000	Thermal Oxidizer (Re-Ox)	2024	3.7 MMBTU/hr	New	1C
1000	1000	Emergency Flare (Stack)	2024	12,247 btu/hr	New	2C
200	1000	Macerator/Shredder	2024	3,542.7ft3/hr	New	N/A
220	1000	Dryer	2024	7,700 lb/hr	New	1C/2C
300	300	Pyrolysers	2024	70 tpd	New	1C/2C
400	1000	Gas Cleanup System	2024		New	1C/2C
600	1000	Engines	2024	320 kW	New	1C/2C

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Page _____ of _____

ATTACHMENT J

Emission Points Data Summary Sheet

Attachment J EMISSION POINTS DATA SUMMARY SHEET

	Table 1: Emissions Data																												
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Ver Through <i>(Must</i> <i>Emission</i>	ion Unit nted This Point t match Units Table t Plan)	Contro (Mus Emiss Table	ollution ol Device t match ion Units e & Plot tlan)	Emissi (che	ime for on Unit mical ses only)	All Regulated Pollutants - Chemical Name/CAS ³ (<i>Speciate VOCs</i>	Maxii Pote Uncon Emiss	ntial trolled	Pot Cor	ximum tential htrolled ssions ⁵	Emission Form or Phase (At exit conditions,	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ³)
		ID No.	Source	ID No.	Device Type	Short Term²	Max (hr/yr)	`´& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Solid, Liquid or Gas/Vapor)																
1000	Thermal Oxidizer (RTO) /Flare Stack		RTO (900) Flare (1000) Shredder (200) Dryer (22) Pyrolysers (300) Gas Cleanup System (400) Engines (600)	1000	Stack (RTO /Flare)		8,760	NOx CO SO2 PM-10 PM-2.5 VOC Methane (CH4) HAP	5.70 22.60 8.90 3.20 2.05 5.48 0.46	24.0 99.0 39.0 14.0 9.0 24.0 2.0	5.70 22.60 8.90 3.20 2.05 5.48 0.46	24.0 99.0 39.0 14.0 9.0 24.0 2.0	gas	EE	796 ppmw 3,284 ppmw 1,294 ppmw 464 ppmw 299 ppmw 796 ppmw 6.6 ppmv														

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J **EMISSION POINTS DATA SUMMARY SHEET**

	Table 2: Release Parameter Data								
Emission	Inner		Exit Gas		Emission Point El	evation (ft)	UTM Coordinates (km)		
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ Velocity (acfm) <i>at operating conditions</i> (fps)		Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting	
1000	2.29	1,562	11,000	TBD	TBD	TBD	TBD	TBD	

¹Give at operating conditions. Include inerts. ²Release height of emissions above ground level.

ATTACHMENT K

Fugitive Emissions Data Summary Sheet

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	Yes No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	Yes No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	□ Yes
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	Yes No
	☐ If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Uncontrolled		Maximum Pe Controlled Em	Est. Method	
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Unpaved Haul Roads	PM/PM-10	1.38	0.0006	1.38	0.0006	ο

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

ATTACHMENT L

Emission Units Data Sheet

Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

	chemical processes please fill out poplementary forms that have been	this sheet and all supplementary forms (completed.	(see below) that apply. Please check all						
	Emergency Vent Summary Sheet Leak Sources Data Sheet Toxicology Data Sheet Reactor Data Sheet Distillation Column Data Sheet								
1.	Chemical process area name and	l equipment ID number (as shown in <i>E</i>	quipment List Form)						
2.	Standard Industrial Classification	Codes (SICs) for process(es)							
3.	List raw materials and 🗌 attach N	//SDSs							
4.	List Products and Maximum Prod	uction and 🗌 attach MSDSs	1						
De	scription and CAS Number	Maximum Hourly (lb/hr)	Maximum Annual (ton/year)						
5.	Complete the Emergency Vent St	ummary Sheet for all emergency relief	devices.						
6.	maintenance program to minimize planned inspection frequency, a requirement (e.g. 40CFR60, Subp		truments, calibration gases or methods, ent information. If subject to a rule						
7.	Clearly describe below or attach to spill or release.	o application Accident Procedures to be	e followed in the event of an accidental						

 8A. Complete the <i>Toxicology Data Sheet</i> or attach to application a toxicology report (an up-to-date material safety data sheets (MSDS) may be used) outlining the currently known acute and chronic health effects of each compound or chemical entity emitted to the air. If these compounds have already been listed in Item 3, then a duplicate MSDS sheet is not required. Include data such as the OSHA time weighted average (TWA) or mutagenicity, teratogenicity, irritation, and other known or suspected effects should be addressed. Indicate where these are unknown, and provide references. 8B. Describe any health effects testing or epidemiological studies on these compounds that are being or may be conducted by the company or required under TSCA, RCRA or other federal regulations. Discuss the persistence in the environment of any emission (e.g. pesticides, etc.). 								
 Waste Products - Waste products status Hazardous Waste Section of WVDEP, OAC 		CSR25, please contact the						
9A. Types and amounts of wastes to be dispos	ed:							
9B. Method of disposal and location of waste d	isposal facilities:							
Carrier:	Phone:							
9C. Check here if approved USEPA/State Haza	ardous Waste Landfill will be used 🗌							
10. Maximum and Projected Typical Operating	Schedule for process or project as a who	ble (circle appropriate units).						
circle units: (hrs/day) (hr/batch)	(days), (batches/day), (batches/week)	(days/yr), (weeks/year)						
10A. Maximum								
10B. Typical								
11. Complete a Reactor Data Sheet for each reach	eactor in this chemical process.							
12. Complete a Distillation Column Data Sheet	f for each distillation column in this chem	iical process.						
 13. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits. MONITORING RECORDKEEPING 								
REPORTING TESTING MONITORING. Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment operation or air pollution control device. RECORDKEEPING. Please describe the proposed recordkeeping that will accompany the monitoring.								
REPORTING. Please describe the proposed frequency of reporting of the recordkeeping.								
TESTING. Please describe any proposed emissions testing for this process equipment or air pollution control device.								
14. Describe all operating ranges and mainten	ance procedures required by Manufactur	rer to maintain warranty						

INFORMATION REQUIRED FOR CHEMICAL PROCESSES

The notes listed below for chemical processes are intended to help the applicant submit a complete application to the OAQ; these notes are not intended to be all inclusive. The requirements for a complete application for a permit issued under 45CSR13 are designed to provided enough information for a permit reviewer to begin a technical review. Additional information beyond that identified may be required to complete the technical review of any individual application.

Process Description

Please keep these points in mind when completing your process description as part of this permit application.

- 1. Provide a general process overview. This brief, but complete, process description should include chemical or registered trademark names of chemical products, intermediates, and/or raw materials to be produced or consumed, and the ultimate use(s) of the product(s). A list of the various chemical compounds is helpful.
- 2. Describe <u>each process step</u>. Include the process chemistry and stoichiometrically balanced reaction equation or material mass balance on all components.
- 3. Describe the methods and equipment used to receive, store, handle, and charge raw materials.
- 4. Describe the methods and equipment used to handle, store, or package final products and intermediates.
- 5. Provide process flow diagrams or equipment layout drawings which clearly show the process flow relationships among all pieces of process and control equipment. Identify all air emission discharge points. Discuss instrumentation and controls for the process.
- 6. Discuss the possibilities of process upsets, the duration and frequency of upsets, and consequences (including air emissions) of these upsets. Include a description of rupture discs, pressure relief valves, and secondary containment systems.
- 7. Discuss any fugitive emissions and the methods used to minimize them.
- 8. Include the following plans for the process if available:
 - a. preventative maintenance and malfunction abatement plan (recommended for all control equipment).
 - b. continuous emissions (in-stack) monitoring plan
 - c. ambient monitoring plan
 - d. emergency response plan

Regulatory Discussion

The following state and federal air pollution control regulations may be applicable to your chemical process. You should review these regulations carefully to determine if they apply to your process. Please summarize the results of your review in your permit application along with any other regulations you believe are applicable.

- Title 45 Legislative Rule Division of Environmental Protection, Office of Air Quality contains West Virginia's air pollution control regulations, including the following promulgated rules which may require emissions reductions or control technologies for your chemical process:
 - a. 45CSR27 Best Available Technology (BAT) for Toxic Air Pollutants (TAPs)
 - b. 45CSR21 VOC emissions controls for ozone maintenance in Kanawha, Cabell, Putnam, Wayne, and Wood counties.
 - c. 45CSR13 (Table 45-13A) plantwide emission thresholds for permitting for certain pollutants.
- Federal Guidelines for case-by-case MACT determinations under section 112(g) of the 1990 CAAA for individual and total HAPs greater than 10 and 25 tons per year, respectively.
- There are also subparts of the federal Standards of Performance for New Stationary Sources (NSPS), 40CFR60 60, and the National Emission Standards for Hazardous Air Pollutants (NESHAP) at 40CFR61 and 40CFR63, which apply to various chemical and nonchemical processes. These subparts are too numerous to list here, but these areas of the federal regulations should be consulted carefully to determine applicability to your process.

Emissions Summary and Calculations

Please keep these points in mind when submitting your emissions calculations as part of this permit application.

- 1. For each pollutant, provide the basis for the emissions estimate and for all emission reduction(s) or control efficiency(ies) claimed.
- 2. For all batch processes provide the following
 - a. Emissions of each pollutant in pound(s) per batch, from each process step
 - b. Annual emissions based on number of batches requested per year
 - c. The total time for each process step and the duration of the emissions during the process step
 - d. Total batch time, total emissions per batch (or per day), and annual emissions based on the number of batches requested per year.

EMERGENCY VENT SUMMARY SHEET

List below all emergency relief devices, rupture disks, safety relief valves, and similar openings that will vent only under abnormal conditions.

Emission Point ID ¹	Equipment to Relief Vent (type, ID if available) ²	Relief Vents (type) & Set Pressure (psig)	Name of Chemical(s) or Pollutants Controlled	Worst Case Emission per Release Event (Ibs)

All routine vents (non-emergency) should be listed on the *Emission Points Data Summary Sheet*.

¹ Indicate the emission point, if any, to which source equipment normally vents. Do <u>not</u> assign emission point ID numbers to each emergency relief vent or device.

² List all emergency relief devices next to the piece of equipment from which they control releases.

LEAK SOURCE DATA SHEET

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴
Pumps⁵	light liquid VOC ^{6,7}				
	heavy liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC				
	Light Liquid VOC				
	Heavy Liquid VOC				
	Non-VOC				
Safety Relief Valves ¹¹	Gas VOC				
	Non VOC				
Open-ended Lines ¹²	VOC				
	Non-VOC				
Sampling Connections ¹³	VOC				
	Non-VOC				
Compressors	VOC				
	Non-VOC				
Flanges	VOC				
	Non-VOC				
Other	VOC				
	Non-VOC				

¹⁻¹³ See notes on the following page.

Notes for Leak Source Data Sheet

- 1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- 2. By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR \Box 51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

TOXICOLOGY DATA SHEET¹

Descriptor Name/CAS Number	OSHA Limits ²		Acute ³ TC _{LO} - Animal	Chronic⁴	Irritation ^₅	References	
Number	TWA	CL	LC _{LO} - Animal LC₅₀ - Animal	Chronic	Intation	Kelerences	

¹ Indicate by "ND" where no data exists, in company's knowledge.

² Time Weighted Average, Ceiling Limit, or other, with units.
³ If inhalation data is not available, provide other data as available.

⁴ Relying on animal or human studies, indicate if any data suggests: C = carcinogenicity, M = mutagenicity, T = teratogenecity, O = oncogenicity.

⁵ Indicate if there are dermal or eye irritation effects and whether they are considered to be low, moderate, or severe.

REACTOR DATA SHEET

Provide the following information for <u>each</u> piece of equipment that is a potential or actual source of emissions as shown on the *Equipment List Form* and other parts of application.

1. Name and type Pyrolysers	of equipment	t (e.g. CSTR, plug flo	w, batch, etc.)					
2. Type of operation	on 🛛 E	Batch		8	🗆 S	Semi-batch)		
3. Projected Actual Equipment Operating Schedule (complete appropriate lines):									
24 hrs/day		7 days/week			52 w	eeks/year			
hrs/batch batches/day, weeks day,weeks/yr (Circle one) (Circle one)									
4. Feed Data	Flow In =	Varies on Batch	gal/hr, or gal/b	patch					
Material Name & CAS No.	Phase ^a	Specific Gravity	Vapor Pressure⁵	Cł Normal	narge Ra Max	te Units	Fill Time (min/batch, run) ^c		
Varies	S	TBD	N/A	Varies	70	tpd	Varies		

b. At feed conditions

c. Total time that equipment is filling per batch or run (start-up), for tank or vessel-type equipment.

5. Provide all **chemical reactions** that will be involved (if applicable), including the residence time and any side reactions that may occur as well as gases that may be generated during these reactions. Indicate if the reaction(s) are exothermic or endothermic.

6. Maximum Temperature					7A. Maximum Pressure7B. Max. Set Pressure for venting					
900	c	C			-0.1	8 m	mHg	-	-0.18	mmHg
2,165		'F			N/A		-		N/A	psig
8. Output Data	Flow	Out =				gal/hr or g	al/batch			
Material Name ar	nd CAS	Phase	Spec		Vapor			rly or Batch Output Rate		
No.		1 11000	Grav	ity F	Pressure	Normal		Maximum		Units
Varies per fe	ed	SGL	TBI)	TBD	TBI)	TI	BD	
9. Complete the	followin	na emiss	ion dat	a for e	quinment	connected	to a hea	der exha	aust svete	em, giving emissions
levels <u>before</u>									1031 3y310	
Check her	re if not	applicab	le							
Emission Point IE) (exhau	st point	of head	er syst	tem): 100	0			I	
Material Name ar	nd CAS	No.		Maxi	mum Pot	ential Emis	sion Rate	e (lb/hr)		Method **
TBD										
** MB - material b	alance:	EE - Eng	gineerin	g Estir	nate: TM	- Test Mea	suremen	it (submit	test data): O - other (Explain)

10.	. Provide the following information pertaining to each condenser that may be attached to this reactor. Attach additional pages as necessary if more than one condenser is used for this reactor. Complete the Condenser Air Pollution Control Device Sheet if necessary.			
	Check here if not applicable			
	10A. Cooling material			
10B. Minimum and Maximum flowrate of cooling material (gal/hr)				r)
10C. Inlet temperature of cooling material (°F)				, ,
10D. Outlet temperature of cooling material (°F)				
	psig)			
10E. Pressure drop of gas to be condensed from inlet to outlet (psig)10F. Inlet temperature of gas stream (°F)				
	10G.	Outlet temperature of gas stream	(°F)	
	10H.	Number of passes		
	10I.	Cooling surface area		
11.	Provid	e the following pertaining to auxilia	ry equipment that burns for	uel (heaters, dryers, etc.):
	Che	eck here if not applicable		
	11A. Type of fuel and maximum fuel burn rate, per hour:			
	Natural Gas for startup at 122cfm for 4hrs, syngas to continue process once start-up has been completed.			
	11B.	Provide maximum percent sulfur (S), ash content of fuel, an	d the energy content using appropriate units:
		%S	% Ash	BTU/lb, std. ft³/day, gal
				(circle one)
	11C.	Theoretical combustion air require PSIA:	ement in SCFD per unit of	fuel (circle appropriate unit) @ 70°F and 14.7
		SCFD/lb, SC	FD, gal (circle one)	
	11D.	Percent excess air:	%	
	11E.	Type, amount, and BTU rating of	burners and all other firin	g equipment that are planned to be used:
) [-),		3 1 1
1				
	11F.	Total maximum design heat input	t: ×	10 ⁶ BTU/hr.
1				

12. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.				
MONITORING	RECORDKEEPING			
	All Weekly and Monthly inspections along with any malfunctions.			
manufacturer specifications.				
manufacturer specifications.				
REPORTING	TESTING			
Any malfunctions.	Per request			
Any manuficuous.	Per request			
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION OR AIR POLLUTION CONTROL DEVICE.				
RECORDKEEPING. PLEASE DESCRIBE THE PROP	OSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.			
REPORTING. PLEASE DESCRIBE THE PROPOSED FI	REQUENCY OF REPORTING OF THE RECORDKEEPING.			
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT OR AIR POLLUTION CONTROL DEVICE.				
	and the second			
 Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty N/A 				

NOTE: An AIR POLLUTION CONTROL DEVICE SHEET must be completed for any air pollution device(s) (except emergency relief devices) used to control emissions from this reactor.

DISTILLATION	COLUMN	DATA	SHEET
--------------	--------	------	-------

Ide	Identification Number (as assigned on Equipment List Form):					
1.	1. Name and type of equipment					
#.	Projected actual equipment operating schedule (complete appropriate lines):					
	hrs/day	days/week	weeks/year			
	hrs/batch	batches/day, batches/week (circle one)	days/yr, weeks/yr (circle one)			
2.	Number of stages (plates), excluding	condenser				
3.	Number of feed plates and stage loca	ation				
4.	Specify details of any reheating, recy	cling, or stage conditioning along with the stage	e locations			
5.	Specify reflux ratio, R (where R is define $R = L/D$, where L = liquid down column	ned as the ratio of the reflux to the overhead prod n, D = distillation product)	duct, given symbolically as			
6.	Specify the fraction of feed which is va continuously as vapor).	porized, f (where f is the molal fraction of the fee	d that leaves the feed plate			
	Type of condenser used: total For each condenser provide process of compositions.	partial multiple perating details including all inlet and outlet tem	other operatures, pressures, and			
8.	 Feed Characteristics A. Molar composition B. Individual vapor pressure of each C. Total feed stage pressure D. Total feed stage temperature E. Total mass flow rate of each stream 					
9.		s s leaving the system as overhead products				
10.	Bottom ProductA. Molar composition of all componeB. Total mass flow rate of all steams	ents s leaving the system as bottom products				

11. General Information	
A. Distillation column diameter	
B. Distillation column height	
C. Type of plates	
D. Plate spacing	
E. Murphree plate efficiencyF. Any other information necessary of describe the	operation of this distillation column
12. Proposed Monitoring, Recordkeeping, Reporting,	· · · · · · · · · · · · · · · · · · ·
Please propose monitoring, recordkeeping, and repor operating parameters. Please propose testing in order	ting in order to demonstrate compliance with the proposed or to demonstrate compliance with the proposed emissions
limits. MONITORING	RECORDKEEPING
MONITORING	RECORDREEPING
REPORTING	TESTING
	SS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE TH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION OR
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RE	
REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCE	CY OF REPORTING OF THE RECORDKEEPING.
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS CONTROL DEVICE.	TESTING FOR THIS PROCESS EQUIPMENT OR AIR POLLUTION
13. Describe all operating ranges and maintenance proce	edures required by Manufacturer to maintain warranty

NOTE: An AIR POLLUTION CONTROL DEVICE SHEET must be completed for any air pollution device(s) (except emergency relief devices) used to control emissions from this distillation column.

Supertherm (Pty) Ltd t/a TECHNOTHERM

Email: info@technotherm.co.za | Tel: 010 045 3603 VAT: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

Woodhill Office Park - 53 Philip Engelbrecht Street, Superior thermal technologies Ground Floor, Block 6, Meyersdal, 1448

www.technotherm.co.za

<u>1131</u>

TECHNICAL (Area-010)

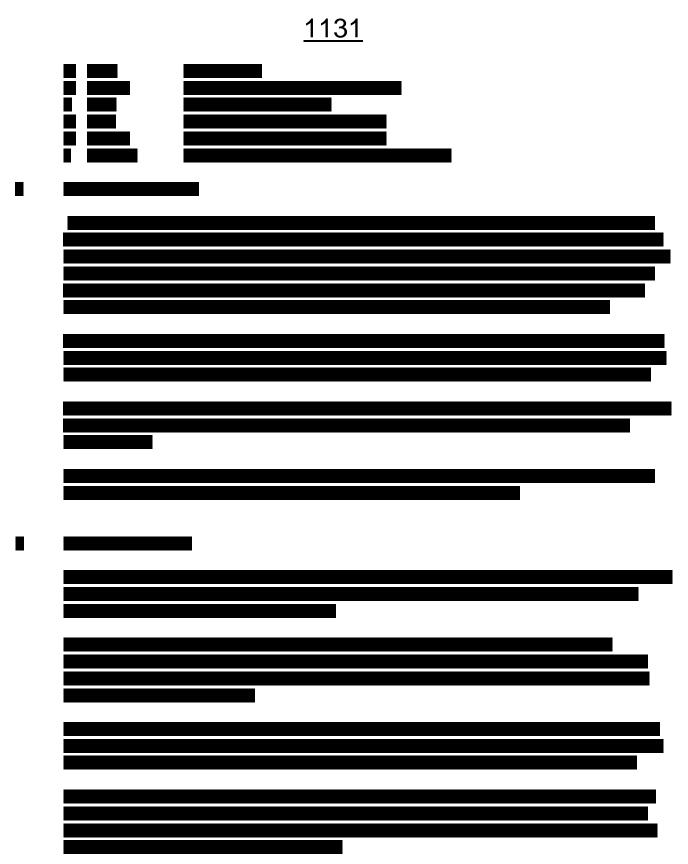
Phase Pyroliser for Power Plant

PYROLISER PLANT (Area 010)

Equipment – MEDRECYCLER – 010

CONFIDENTIAL COMPANY PROPRIETARY INFORMATION

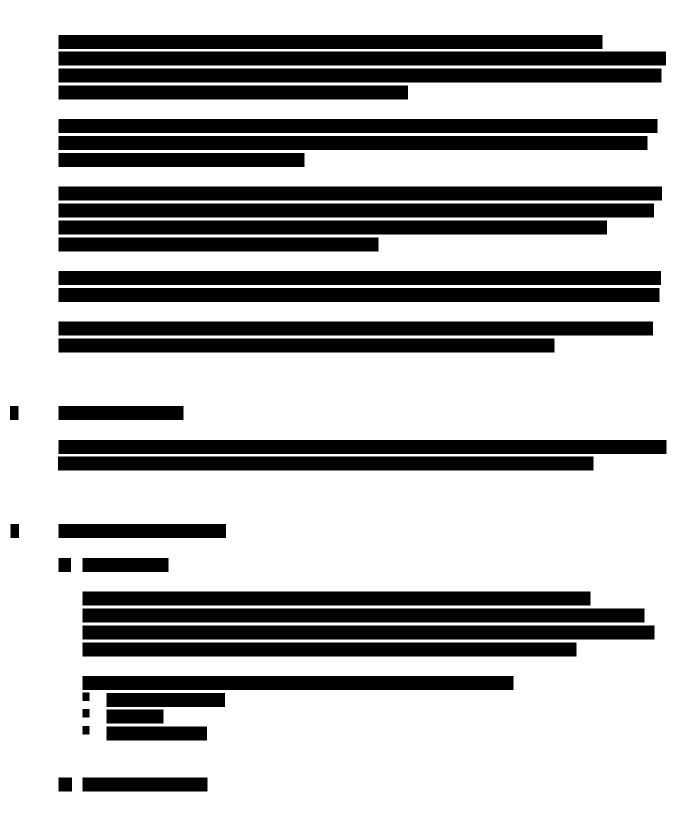
Pyrolyser Plant Equipment No. General-010-001


1	

CONFIDENTIAL

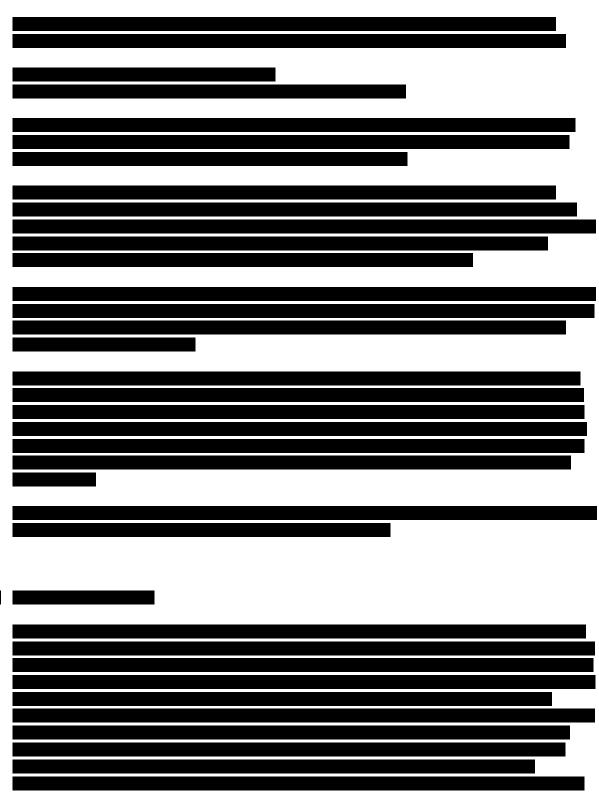
COMPANY PROPRIETARY INFORMATION

Pyrolyser Plant Equipment No. General-010-001



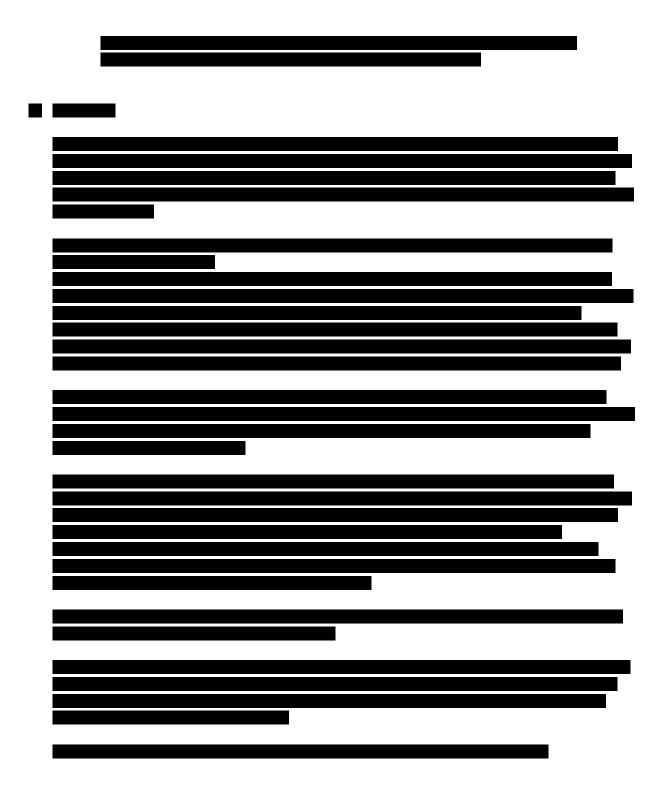
CONFIDENTIAL COMPANY PROPRIETARY INFORMATION

Pyrolyser Plant Equipment No. General-010-001



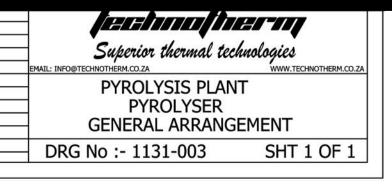
CONFIDENTIAL COMPANY PROPRIETARY INFORMATION

Pyrolyser Plant Equipment No. General-010-001


CONFIDENTIAL COMPANY PROPRIETARY INFORMATION SUPERIOR THERMAL TECHNOLOGIES

Pyrolyser Plant Equipment No. General-010-001

CONFIDENTIAL COMPANY PROPRIETARY INFORMATION


Pyrolyser Plant Equipment No. General-010-001

CONFIDENTIAL COMPANY PROPRIETARY INFORMATION SUPERIOR THERMAL TECHNOLOGIES

Pyrolyser Plant Equipment No. General-010-001

	0	1	2	3		6	7
ł	V	1. 1. 1.		<u> </u>	NOPEOTION		,
			1+				
	F						
	ę.						
	é						
	Y.						
						DATE DRAWN BY DATE CHECKED BY DATE APPROVED (ENG) DATE APPROVED (CLIEN DATE	-
						DRAWN BY	J.A. Mar 2019 M.K. Mar 2019 R.B. Mar 2019
							Mar 2019
							Mar 2010
						APPROVED (ENC)	D D D
						DATE	Mar 2010
						APPROVED (CLIEN	[]
						DATE	
	85						
l	00						

Attachment L Emission Unit Data Sheet (INCINERATOR)

Control Device ID No. (must match List Form): 900

	Equipment Information				
1.	Manufacturer: Technotherm	2. Model No. Regnerative Thermal Oxidizer			
3.	out) of (1) the primary combustion chamber, (2) the auxiliary burners, and (5) dampers with special emp	ncinerator showing the location and dimensions (inside and e secondary combustion chamber, (3) the flame port, (4) phasis on dimensions of the flame port and secondary the minimum distance the gas travels through the secondary			
4.	Rated capacity of the incinerator for the type of waste	e to be burned: Maximum: 110,000 lb/hr			
		Typical: ~72,970 lb/hr			
		Annual: ~297,716 tons/yr			
5.	By what means is waste charged?	Continuous Periodically			
6.	Type: 🗌 Multiple Chamber 🛛 Single Chamber	Other, specify:			
7.	Projected operating schedule: 24	hr/day 365 day/yr			
	Primary Comb	oustion Chamber			
8.	Volume: ft ³	9. Effective grate area: ft ²			
10.	Maximum temperature: 1562 °F	11. Burning rate: Ib/ft²/hr			
12.	Heat release in primary chamber:	13. Total heat release in incinerator:			
	BTU/hr/ft ³	BTU/hr/ft ³			
	Secondary Com	nbustion Chamber			
14.	Volume: N/A ft ³	15. Cross sectional area: ft ²			
16.	Volume of gas through secondary combustion	17. Gas velocity through secondary combustion			
	chamber: ACFM @ °F	chamber: ft/sec			
18.	Minimum gas temperature: °F	19. Minimum retention time of gas: sec			
20.	Minimum distance of gas travel through secondary	21. Location of air admission:			
	combustion chamber: ft				
	Flam	ne Port			
22.	Flame port area: ft ²	23. Velocity through flame port: ft/sec			
	Dam	npers			
24.	Type: Pneumatically operated, prallel blade louver	25. Number 4			
26.	Diameter: inches	27. Capacity: ACFM @ °F			

Combustion Air				
28. Type of draft: □ Natur □ Sliding damper ⊠ Force □ Barametric damper □ Induc Windshielding? □ Yes	ed ed	29. If draft is forced or induced, describe ID fans or blowers: Number 1 fan HP rating ~19 HP		
30. Theoretical air/refuse ratio:	lb air/lb refuse	Rated flow 1,236 ft ³ /min		
31. Percent of total air applied as:		Rated speed RPM		
	overfire air	Fan rated draft in. H ₂ O		
	underfire air	Volume @ °F		
	Auxiliar	ry Burners		
32. Proposed type and fuel: NG				
33. Primary Burner		34. Secondary Burner		
Capacity: 3.79	MMBTU/hr	Capacity: N/A MMBTU/hr		
Number: 2		Number:		
Manufacture: Technotherm		Manufacture:		
Model: TBD		Model:		
Estimated capacity:	BTU/hr	Estimated capacity: BTU/hr		
Fuel: NG		Fuel:		
How controlled? Air		How controlled?		
Is there a temperature indicator? How temperature recorded? thermoor	Yes No	Is there a temperature indicator?		
		evices and Controls		
35. Automatic loading device. X Y If yes, describe. Gas flow		36. Self closing doors. Yes No		
37. Sparks arrestor 🛛 🖂 Yes	🗌 No	38. Flame failure protection equipment		
39. Method of creating turbulence for gases. Describe. Air	or combustion	 40. Method of cleaning secondary or settling chamber. Describe. N/A 		
41. Other interlocking devices or controls Maintenance and fire protection				
		allation		
42. Indoor Installation: Yes	No	43. Outdoor Installation: Xes No		
If yes, describe method of supplying o	combustion air.			

Stack or Vent Data					
44. Inside diameter or dimensions: 2.36 ft	45. Gas exit temperature: 300 °F				
46. Height: 49.21 ft	47. Stack serves: This equipment only				
48. Gas flow rate: 15,239 ft/min	Other equipment also (submit type and rating of all other equipment exhausted through this stack				
49. Estimated percent of moisture: %	or vent)				
Wa	aste				
50. Source of waste: Hospital Restaura					
Crematory Warehouse Public In:					
51. Describe fully, in detail, the composition of waste feed The waste feed will vary and is a combination of all of the					
The waste feed will vary and is a combination of an of the	emissions from the process equipment and engines.				
52. Expected BTU/lb as fired: BTU/lb	53. Daily amount: Ib				
54. Does incinerator have a charge hopper ☐ Yes	55. What is the volume of the charge hopper? ft ³				
56. Does the charge hopper have automatic control? ☐ Yes ☐ No	57. Is the waste charged to the incinerator weighed? ☐ Yes				
58. Is the secondary chamber preheated prior to charging waste? ☐ Yes ☐ No	59. At what secondary temperature does waste charging begin? °F				
60. Is the ash waste quenched?	61. Is all the waste burned generated on site? ⊠ Yes □ No				
62. For hospital waste, is the ash inspected for recogniza	able combustible components? Yes No				
63. For hospital waste, are recognizable combustible cor	nponents of the ash reburned? Yes No				
64. Is any waste received from outside the local governm	nent boundary?				
65. Are hazardous or special waste burned?	66. Are potential infectious waste burned?				
🗌 Yes 🛛 No	🗌 Yes 🛛 No				
If yes, please describe:					
67. How will the waste material from process and control	equipment be disposed of?				
Through the stack. Gas.	equipment be disposed of:				
68. Method of charging waste solids:	69. Method of feeding liquids: Lab pack				
Manual Manual charge hopper	☐ Injection as a primary burner fuel				
Automatic charge hopper	Injection as a secondary burner fuel Other, specify:				
N/A	N/A				
70. Rated steam flow – heat recovery boiler:	71. Rated pressure – recovery boiler:				
lbs/hr	PSIG				

Emissions Stream

72.	Emission rates: Emission Rates Vary by Feed						
	Pollutant	Pounds per Hour Ib/hr	grain/AC	F @°F	PSIA	Tons per Year Tons/yr	Parts per Million ppm
-	со						
	Hydrocarbons						
	NO _x						
	Pb						
	PM ₁₀						
	SO ₂						
	VOCs						
	Other (specify)						
73.	. If an <i>Air Pollution Control Device</i> is not submitted, the emission rates should be the same as those reported home "Maximum Potential and Maximum Actual Emissions" on the <i>Emission Points Data Summary Sheet</i> .						
74.	Emissions rates should	d be substantiated by	y submittin	g stack tes	<i>t data</i> and	l/or calculations.	
			Fuel Usa	age Data			
75. Estimated annual fuel cost: \$						_	
76.	C C		mBTU/hr	77. Fuel type: 🛛 Natural Gas 🗌 Coal			
			mBTU/hr				
	Design:	mBTU/hr					
78.	8. Typical heating content of fuel:			79. Typical fuel sulfur content: wt. %			
80.	0. Typical fuel ash content: wt. %			81. Annual fuel usage:			
82.	2. Please complete an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit, if applicable.						
83.	3. Have you included the <i>air pollution rates</i> on the Emissions Points Data Summary Sheet?						

84. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device.

Monitoring will be accomplished using the TO control panel. The facility personnel will conduct monthly inspections for visible stack emissions and malodors. The TO stack emission observations will not be required to be performed by a person certified as a qualified observer under EPA Method 9 for Visual Determination of Opacity of Emission from Stationary Sources.

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device.

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. Record all upsets to the system. Visual inspection reports will be maintained on site in the control room.

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. Report to WVDEP all upsets sent to the flare.

85. Please describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

Annual shutdown of two weeks. Maintenance manual provided to the plant.

Supertherm (Pty) Ltd t/a TECHNOTHERM

Email: info@technotherm.co.za | Tel: 010 045 3603 VAT: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

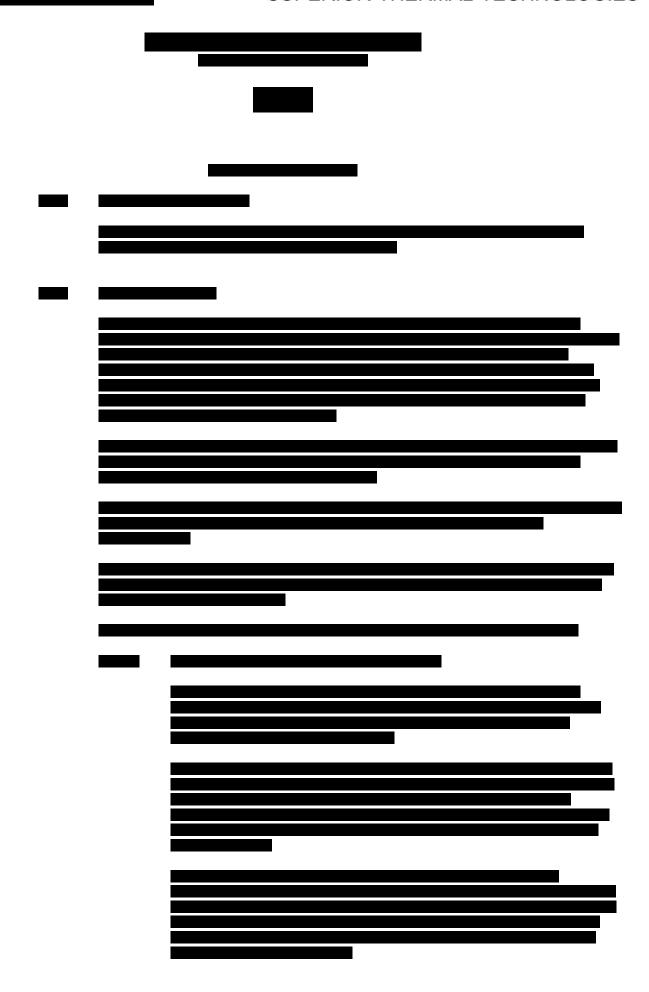
Woodhill Office Park - 53 Philip Engelbrecht Street, Superior thermal technologies Ground Floor, Block 6, Meyersdal, 1448

www.technotherm.co.za

<u>1131</u>

TECHNICAL (Area-950)

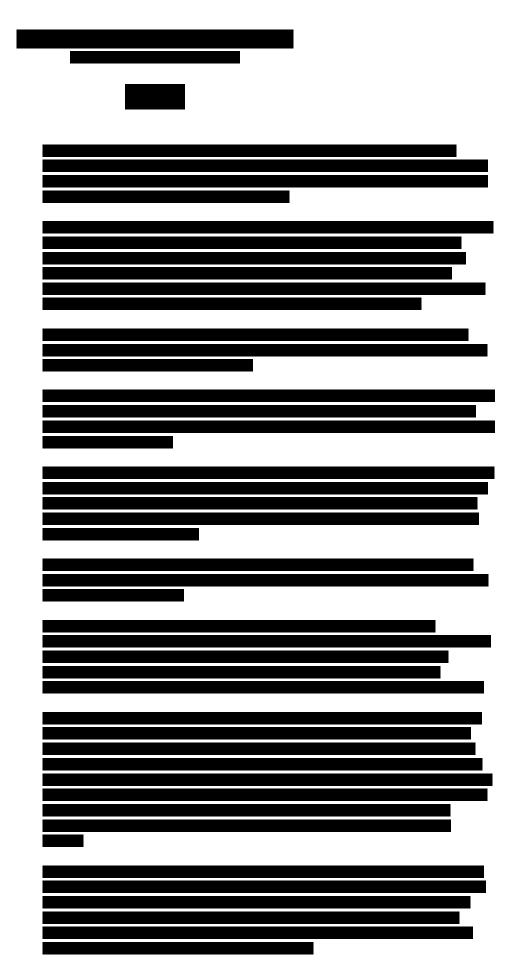
Regenerative Thermal Oxidiser for Power Plant


REGENERATIVE THERMAL OXIDISER (Re-Ox) (Area 950)

Equipment – MEDRECYCLER – 950

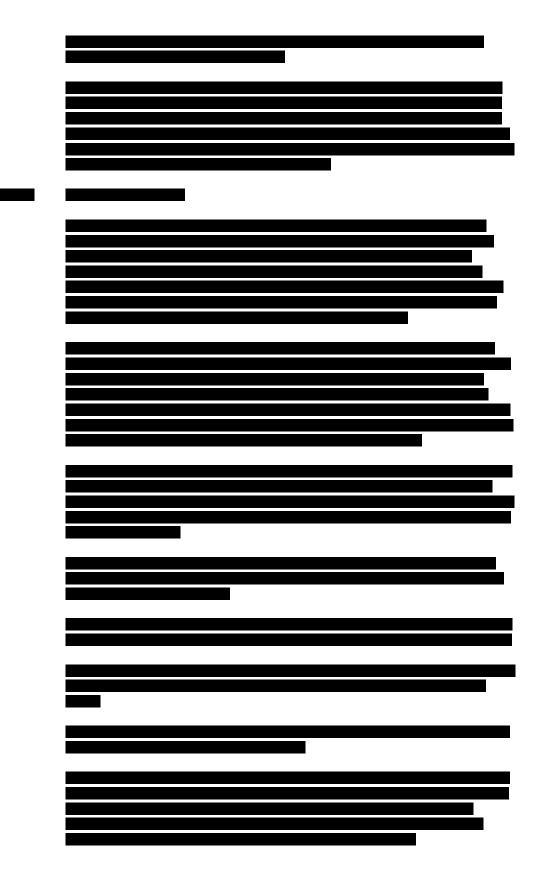
TECHNICAL F	ILE
--------------------	-----

CONFIDENTIAL COMPANY



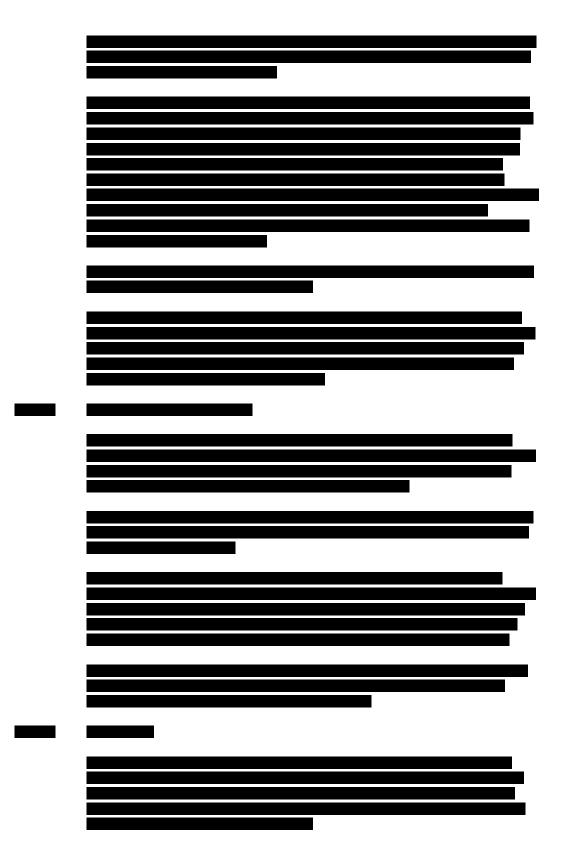
CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION



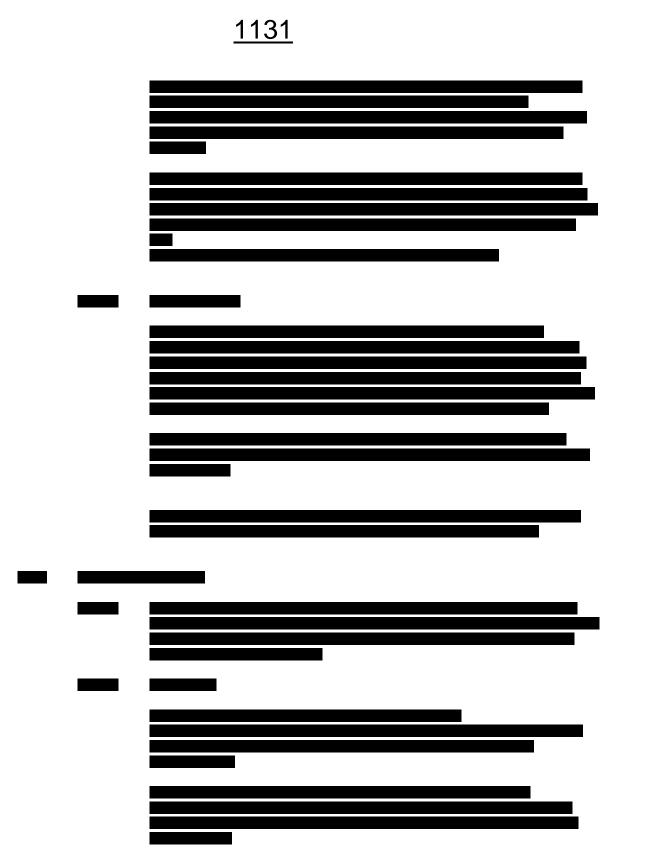
CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION



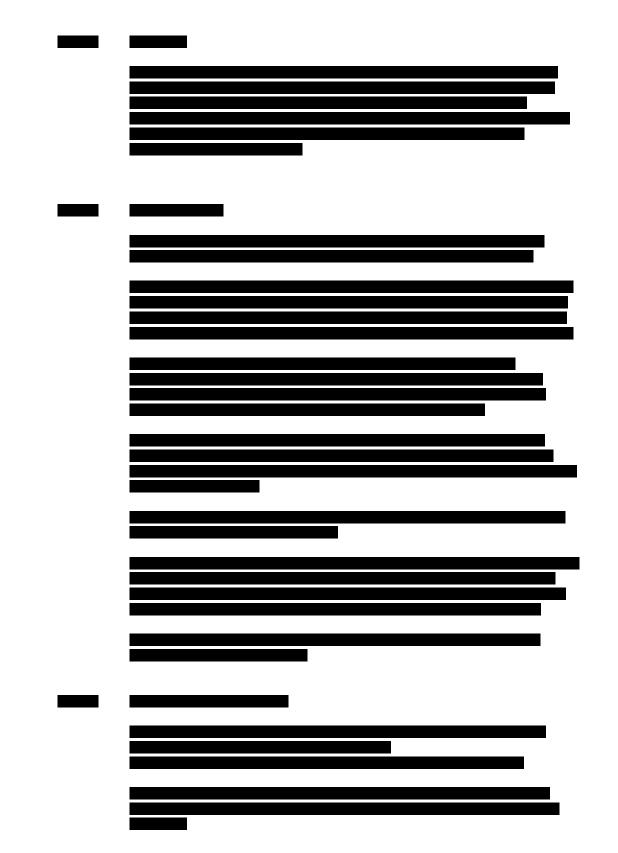
CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION



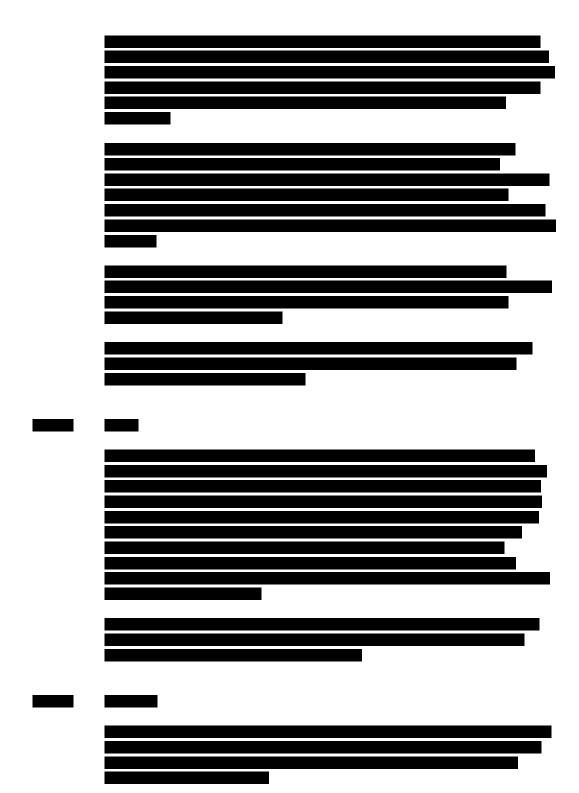
CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION



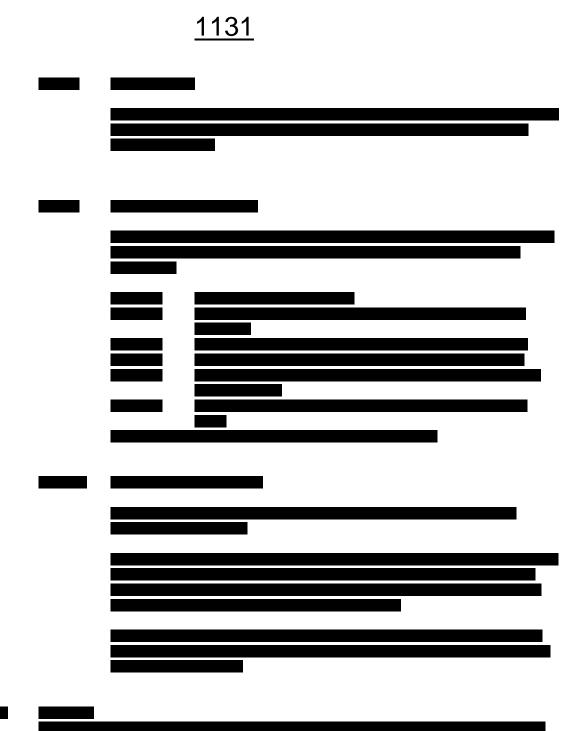
CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION



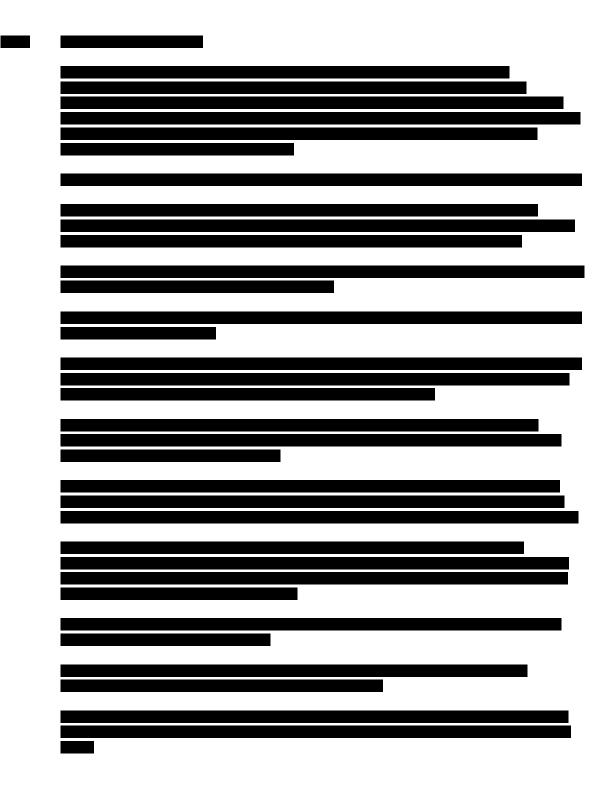
CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION



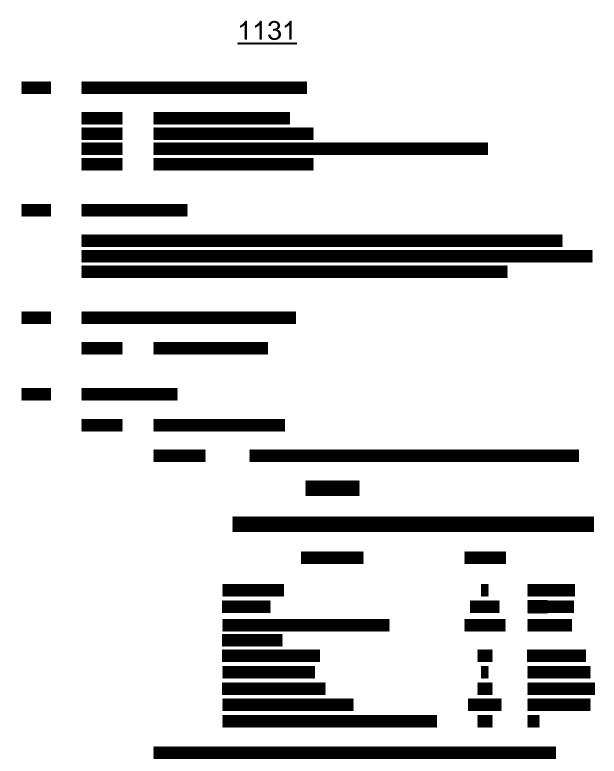
CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION



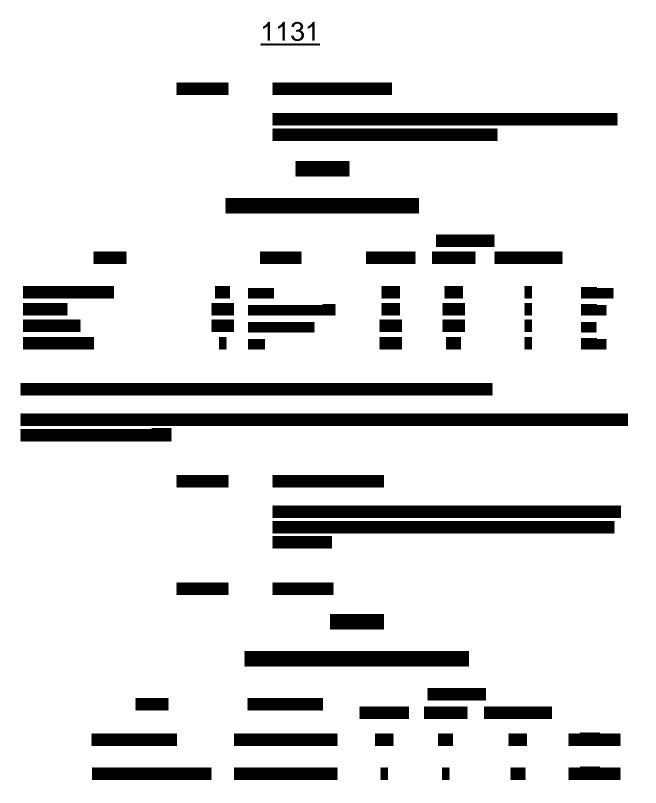
CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION



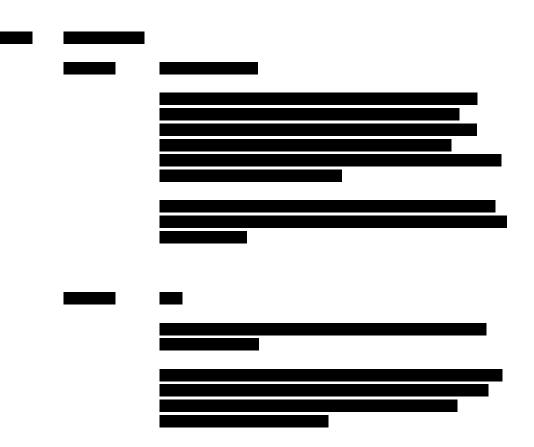
CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION



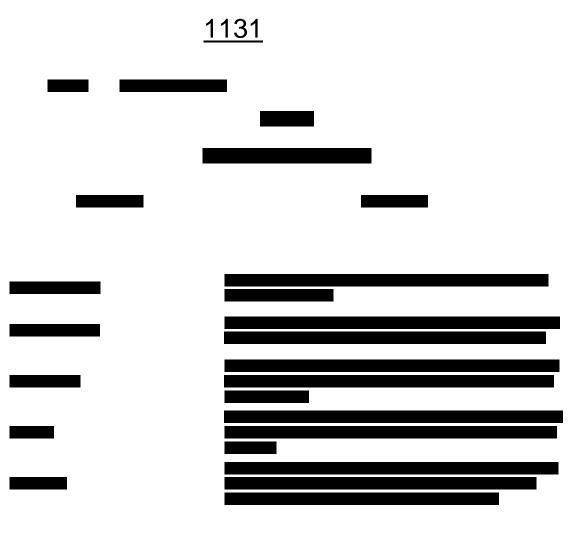
CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION



CONFIDENTIAL

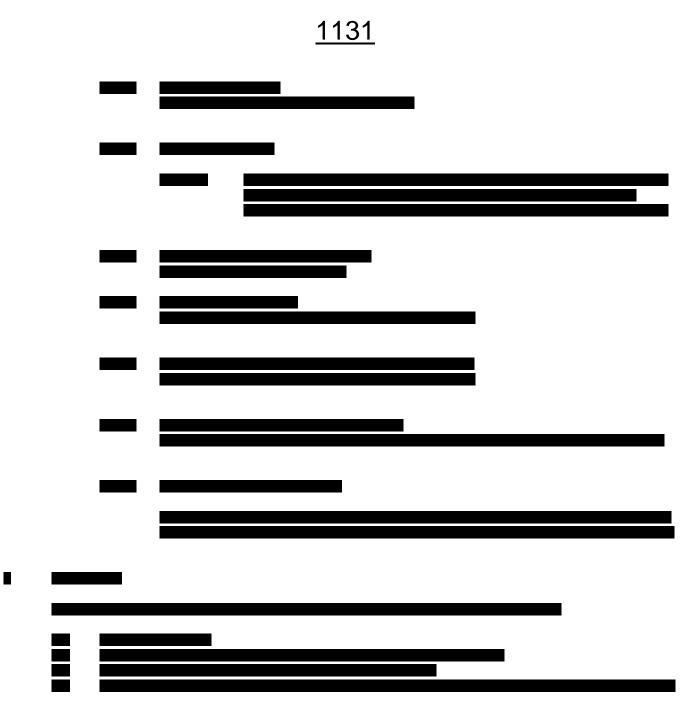
COMPANY PROPRIETARY INFORMATION



CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION

CONFIDENTIAL


COMPANY PROPRIETARY INFORMATION

SUPERIOR THERMAL TECHNOLOGIES

Regenerative Thermal Oxidiser

Equipment No. General-950

Page 15 of 15

Haul Road Fugitives

Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form): 400

Equipment Information

1. Manufacturer: Technotherm	2. Model No. Serial No.			
3. Number of units: Gas deacceleration chamber with Cyclones, Desuperheater Heat Exchanger, Tar Condensers, Oil Condensing Scrubbers, Wet Alkali dosed Gas Scrubbers, API CPI Settling tanks (per scrubber), Centrifuge	4. Use: Gas Clean-Up System			
5. Rated Boiler Horsepower: N/A hp	6. Boiler Serial No.:			
7. Date constructed:	8. Date of last modification and explain:			
9. Maximum design heat input per unit:	10. Peak heat input per unit:			
N/A ×10 ⁶ BTU/hr	×10 ⁶ BTU/hr			
11. Steam produced at maximum design output:	12. Projected Operating Schedule:			
N/A LB/hr	Hours/Day 24			
	Days/Week 7			
psig	Weeks/Year 52			
 13. Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify 	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify 			
15. Type of draft: Forced Induced	16. Percent of ash retained in furnace: %			
17. Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: %			
Stack or	Vent Data			
19. Inside diameter or dimensions: ft.	20. Gas exit temperature: 302 °F			
21. Height: ft.	22. Stack serves:			
23. Gas flow rate: ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this			
24. Estimated percent of moisture: %	stack or vent)			

	Fuel Requirements						
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:	
	Quantity (at Design Output)	gph@60°F	ft ³ /hr	ft ³ /hr	TPH		
	Annually	×10³ gal	×10 ⁶ ft ³ /hr	×10 ⁶ ft ³ /hr	tons		
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	gr/100 ft ³	Maximum: wt. %		
	Ash (%)				Maximum		
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	BTU/ft ³	BTU/ft ³	BTU/lb		
	Source			T			
	Supplier						
	Halogens (Yes/No)						
	List and Identify Metals						
26.	Gas burner mode			27. Gas burner mar	nufacture:		
	Manual Automatic hi-low Automatic full modulation Automatic on-off			28. Oil burner manufacture:			
29.	29. If fuel oil is used, how is it atomized? Oil Pressure Steam Pressure Compressed Air Rotary Cup						
30.). Fuel oil preheated: Yes No 31. If yes, indicate temperature: °F						
	32. Specify the calculated theoretical air requirements for combustion of the fuel or mixture of fuels described above actual cubic feet (ACF) per unit of fuel:						
	@ °F, PSIA, % moisture						
33.	33. Emission rate at rated capacity: Ib/hr						
34.	34. Percent excess air actually required for combustion of the fuel described: %						
	Coal Characteristics						
35.	35. Seams:						
36.	36. Proximate analysis (dry basis): % of Fixed Carbon:% of Moisture:% of Ash:			% of Sulfur: % of Volatile Matter:			

Emissions Stream

37.	What quantities of pollu	itants will be emitted from t	he boiler before co	ontrols?	
	Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
	СО				
	Hydrocarbons				
-	NOx				
-	Pb				
	PM10				
-	SO ₂				
-	VOCs				
-	Other (specify)				
-					
-					
38.	What quantities of pollu	itants will be emitted from t	he boiler after con	trols?	
	Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
	СО				
-	Hydrocarbons				
	NO _x				
	Pb				
	PM10				
-	SO ₂				
	VOCs				
_	Other (specify)				
-					
39.	How will waste material Stack 1000, Landfill	I from the process and con	trol equipment be	disposed of?	
40.	Have you completed ar	Air Pollution Control Devi	ce Sheet(s) for the	e control(s) used on thi	s Emission Unit. Y
41.	Have you included the	air pollution rates on the	Emissions Points	Data Summary Sheet?	

42. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device.

Weekly and monthly inspections according to manufacturer specifications. Instrumentation to assist in presenting issues.

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. Per request.

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. Any Malfunctions

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. All Weekly and Monthly inspections along with any malfunctions.

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. The gas clean-up system will be monitored via instrumentation for any errors or blockages requiring maintenance. Reminaing regular maintenance procedures to be provided by manufacturer.

Supertherm (Pty) Ltd t/a TECHNOTHERM

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAT: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

FUNCTIONAL SPECIFICATION

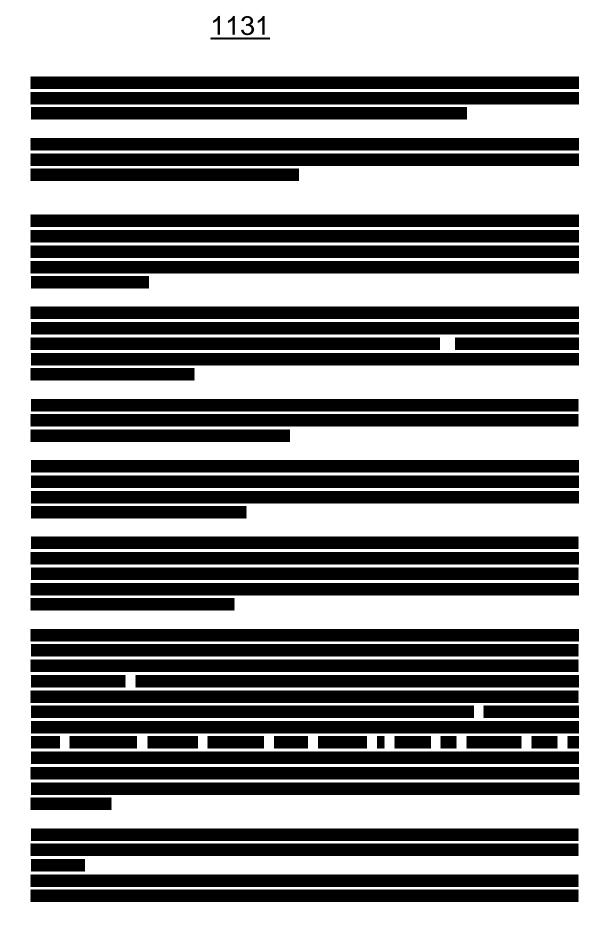
CONFIDENTIAL COMPANY PROPRIETARY INFORMATION

SUPERIOR THERMAL TECHNOLOGIÉS

Synthesis Gas Cleaning System

<u>1131</u>

Synthesis Gas Cleaning System


_	
_	

CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION

Synthesis Gas Cleaning System

CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION

Synthesis Gas Cleaning System

<u>1131</u>

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 220

1. Name or type and model of proposed affected source:
Dryer Technotherm
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
7,332.6 lb/hr
4. Name(s) and maximum amount of proposed material(s) produced per hour:
7,700 lb/hr dyrer maximum
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
5. Give chemical reactions, il applicable, that will be involved in the generation of all politiants.
N/A

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Co	6. Combustion Data (if applicable):						
(a)	(a) Type and amount in appropriate units of fuel(s) to be burned:						
76 cfm	n of natural gas	for 6 hrs during	start-up then will us	se syngas			
(b)	Chemical ar and ash:	alysis of prop	posed fuel(s), exe	cluding coal, in	cluding maxim	um percent sulfur	
	anu asn.						
Natura Synga	al gas s will vary in co	omposition					
Synga	s will vary ill co	mposition					
(C)	Theoretical	combustion a	air requirement (A	ACF/unit of fue	4):		
	296643	@	60	°F and	14.7	psia.	
(d)	Percent exc	ess air:					
(e)	Type and B	TU/hr of burn	ers and all other	firing equipme	ent planned to b	be used:	
1 burn	er						
(f)	If coal is pro		ource of fuel ide	ntify suppliar a	and soams and	give sizing of the	
(1)	coal as it wil	ll be fired:			and seams and	give sizing of the	
N/A							
(g)	(g) Proposed maximum design heat input: 4.30×10^6 BTU/hr.						
7. Pro	jected opera	ting schedule	э:				
Hours/	Dav	24 C	Days/Week	7	Weeks/Year	52	
riours/	Day	24 L	ays/ WEEK	/	VVEERS/IEdl	52	

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:						
@	N/A	°F and		psia			
a.	NO _X	N/A	lb/hr	N/A grains/ACF			
b.	SO ₂	N/A	lb/hr	N/A grains/ACF			
c.	со	N/A	lb/hr	N/A grains/ACF			
d.	PM ₁₀	N/A	lb/hr	N/A grains/ACF			
e.	Hydrocarbons	N/A	lb/hr	N/A grains/ACF			
f.	VOCs	N/A	lb/hr	N/A grains/ACF			
g.	Pb	N/A	lb/hr	N/A grains/ACF			
h.	Specify other(s)		Í				
			lb/hr	grains/ACF			
			lb/hr	grains/ACF			
			lb/hr	grains/ACF			
			lb/hr	grains/ACF			

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate				
REPORTING	TESTING				
Any malfunctions.	Upon request.				
	E PROCESS PARAMETERS AND RANGES THAT ARE				
	ISTRATE COMPLIANCE WITH THE OPERATION OF THIS				
PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE. RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE					
MONITORING.					
REPORTING. PLEASE DESCRIBE THE PRO	DPOSED FREQUENCY OF REPORTING OF THE				
RECORDKEEPING.					

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

Routine maintenance (lubrication) do not require shut down. Major maintenance issues to involve a shut-down.

Supertherm (Pty) Ltd t/a TECHNOTHERM

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAT: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

Woodhill Office Park - 53 Philip Engelbrecht Street, Superior thermal technologies

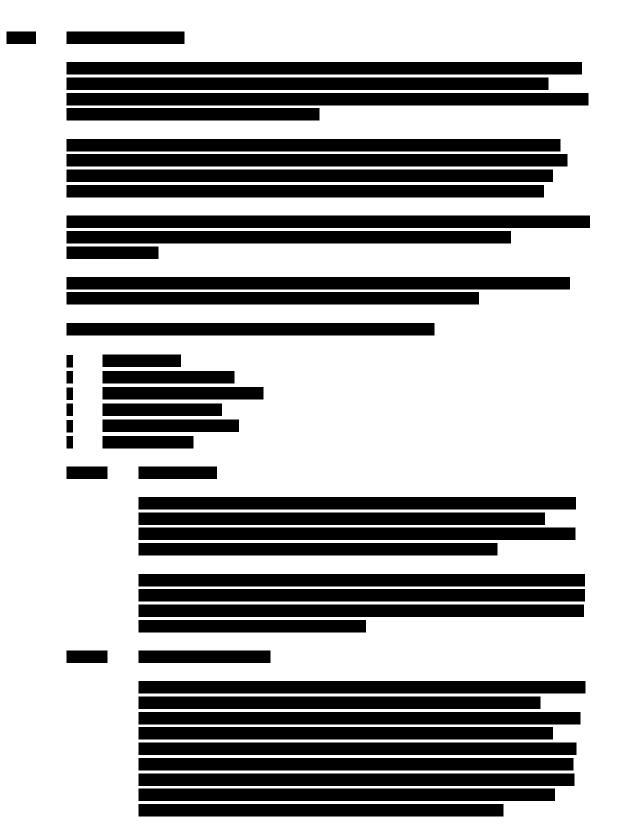
www.technotherm.co.za

<u>1131</u>

TECHNICAL FILE (Area-030)

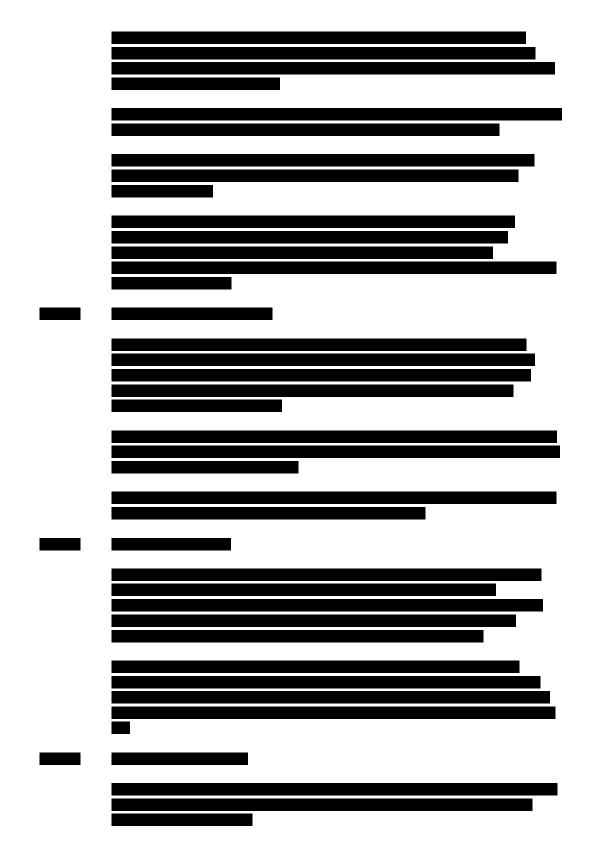
Dryer for Power Plant

DRYER PLANT


(Area 030)

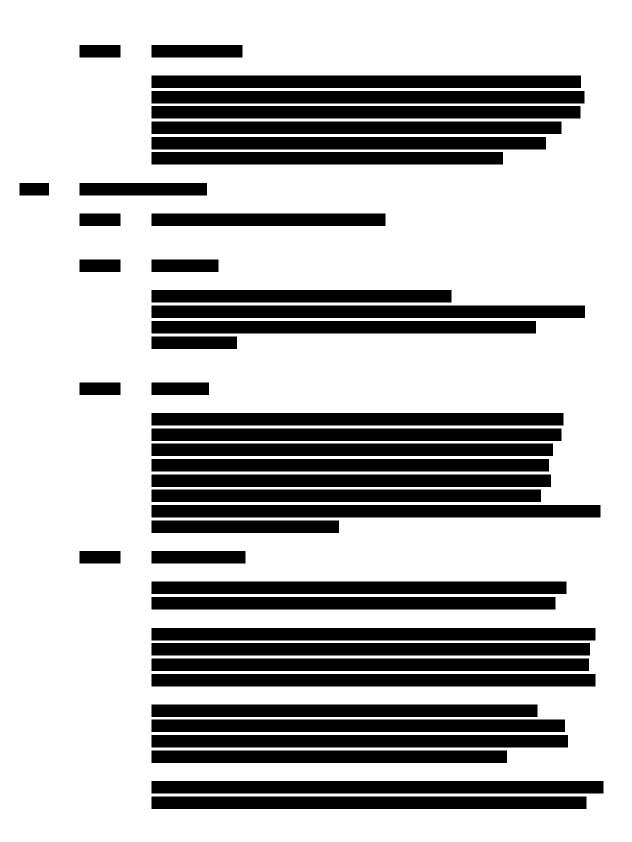
Equipment – MEDRECYCLER – 030

CONFIDENTIAL COMPANY PROPRIETARY INFORMATION

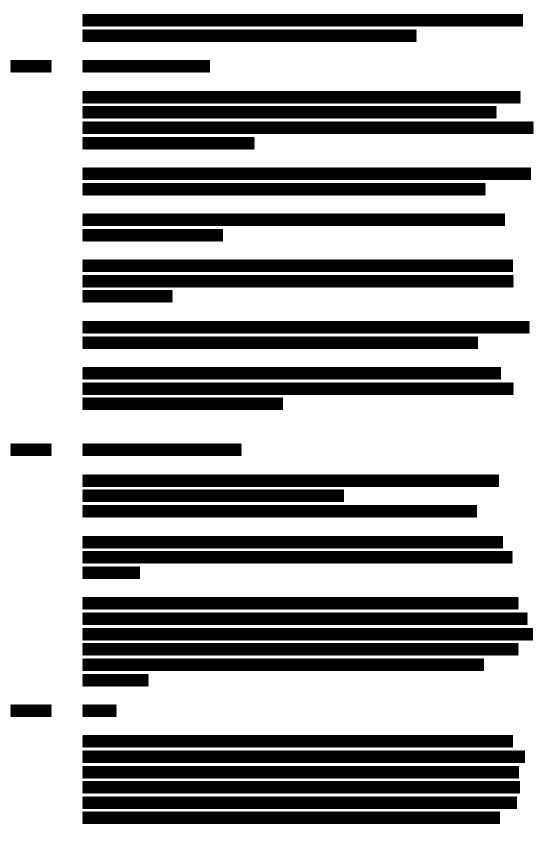


CONFIDENTIAL COMPANY PROPRIETARY INFORMATION SUPERIOR THERMAL TECHNOLOGIES

Dryer Equipment No. General-030

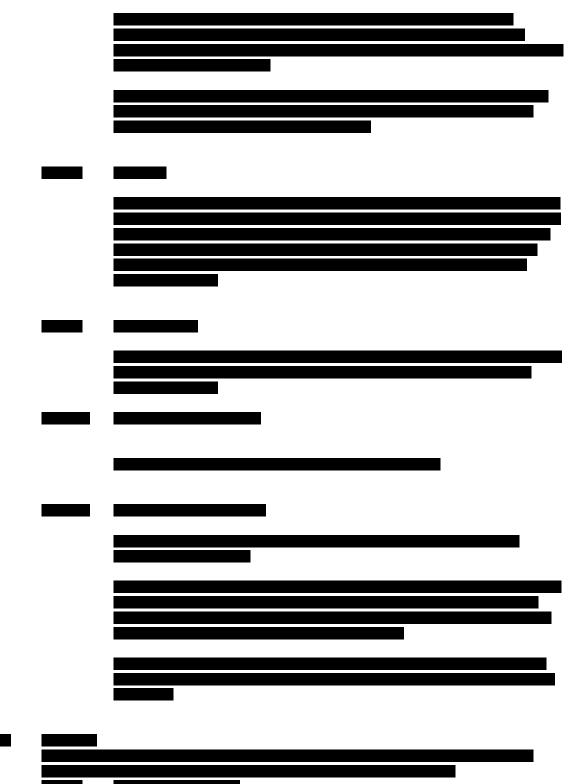

<u>1131</u>

CONFIDENTIAL COMPANY PROPRIETARY INFORMATION



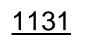
CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION



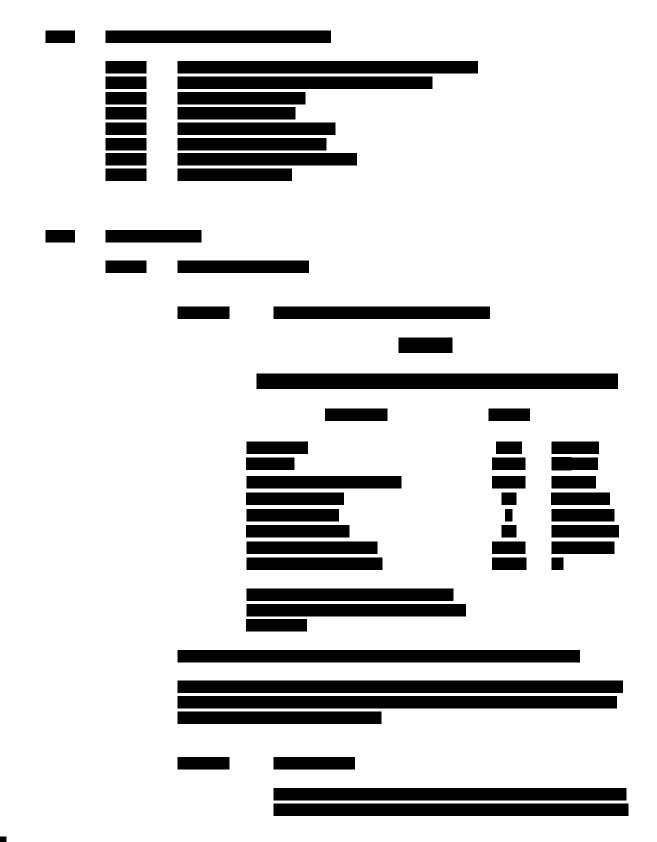
CONFIDENTIAL

COMPANY PROPRIETARY INFORMATION

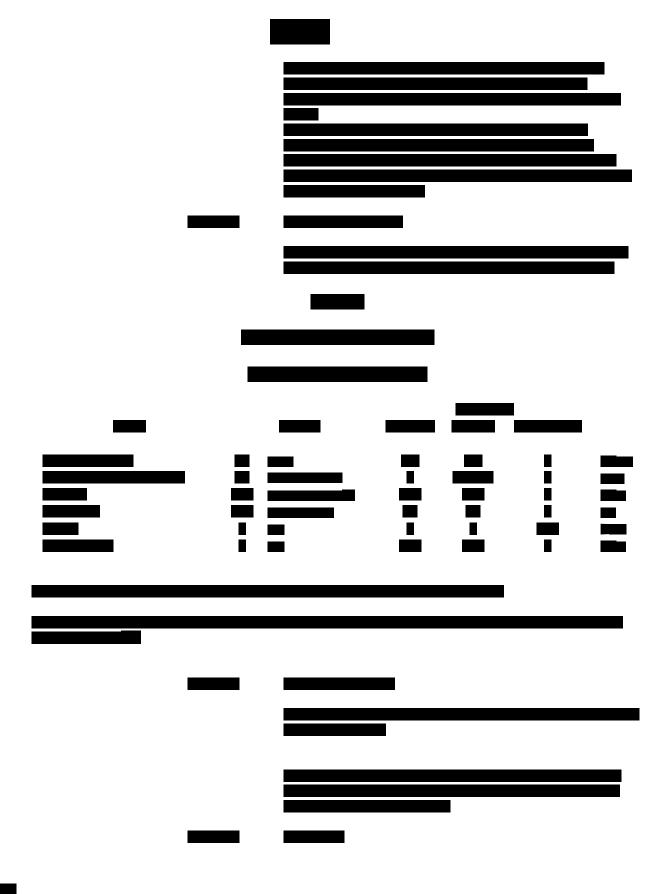




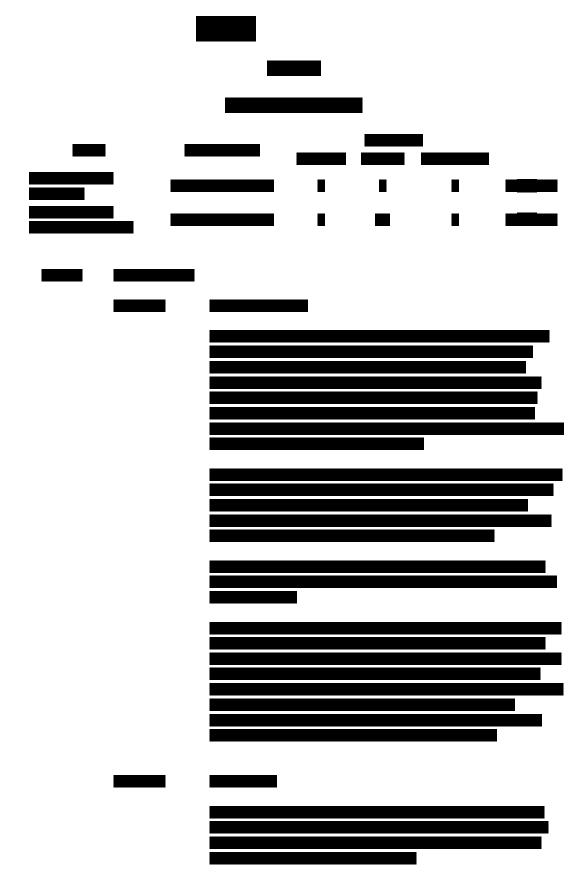
CONFIDENTIAL COMPANY PROPRIETARY INFORMATION



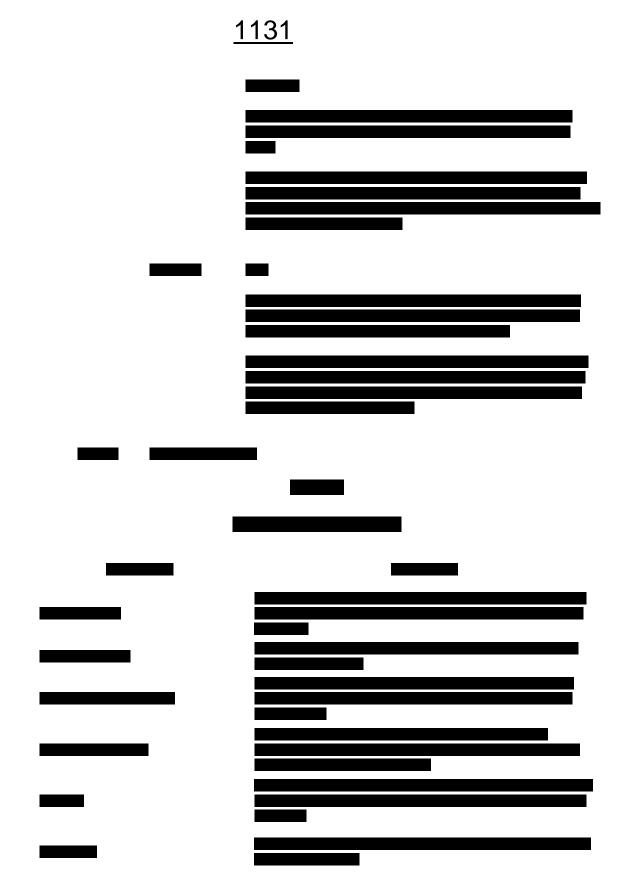
CONFIDENTIAL COMPANY PROPRIETARY INFORMATION



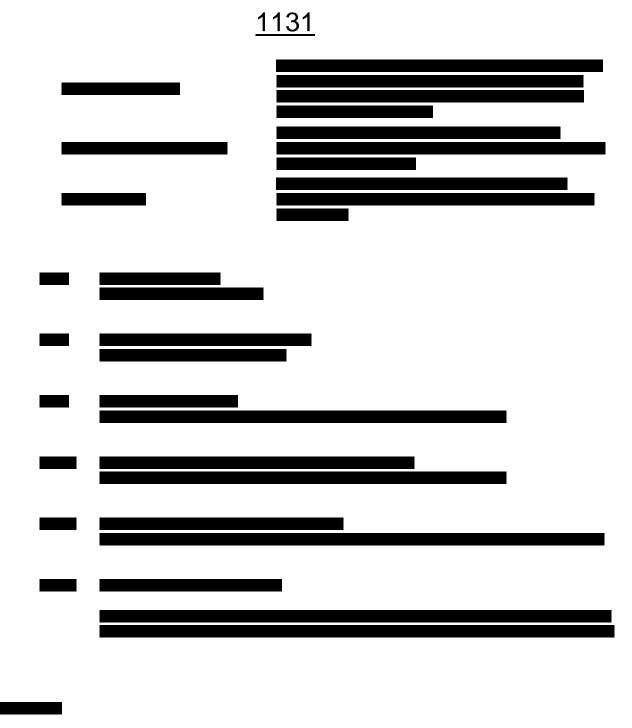
CONFIDENTIAL

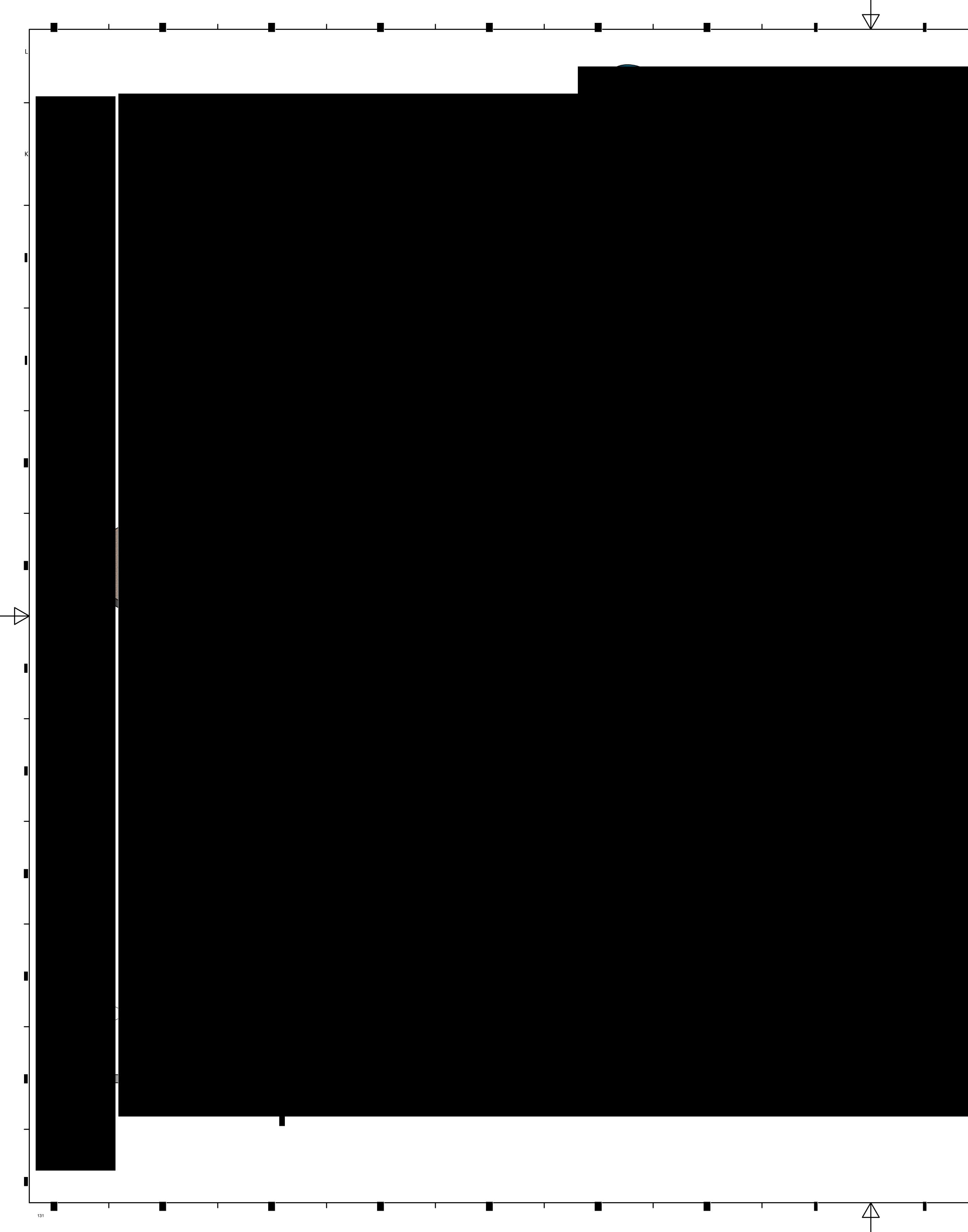

COMPANY PROPRIETARY INFORMATION

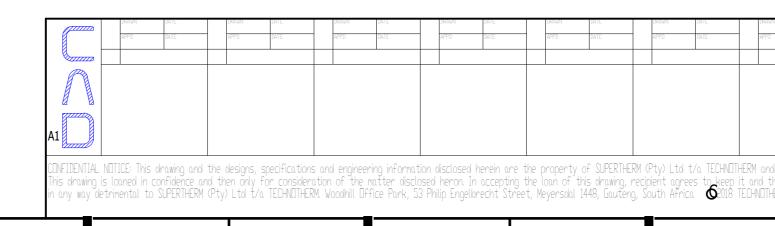
CONFIDENTIAL COMPANY PROPRIETARY INFORMATION



CONFIDENTIAL


COMPANY PROPRIETARY INFORMATION




CONFIDENTIAL COMPANY PROPRIETARY INFORMATION SUPERIOR THERMAL TECHNOLOGIES

Dryer Equipment No. General-030

- 1

				1		
			PARTS LIST-T11	.31-030-001-DRYER		
						REVISION
				-		
-	 					
\vdash						

IRAWN		DATE		URAWN	DATE	DRAWN BY	F.K.W	ITEM QTY DESCRIPTION DRAWIN	NG N MATERIAL MASS
APPD		DATE		APPD	DATE	DATE	03-2019	MATERIAL LIST	MASS KG
					_	CHECKED BY	M.K		
				•		DATE	03-2019		
						APPROVED (ENG)	R.B	Techno/her	
						DATE	03-2019	SUPERIOR THERMAL TECHNOLO	
						APPROVED (CLIENT)		SUPERIOR THERMAL TECHNOLO	JGIES
						DATE		EMAIL: INFO@TECHNOTHERM.CO.ZA WWW.TECHNO	THERM.CO.ZA
								TITLE ROTARY DRYER	
IRM and and th	RM and are not to be disseminated or reproduced without express written consent. and the matter disclosed heron in confidence and not to use nor permit there use					ed without express written o and not to use nor permit tl	consent. here use	GENERAL ARRANGMENT	
CHNOTHE	RM							DRG NO : T1127-030-001 SHEET 1 OF 1	
								l	

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 200

1. Name or type and model of proposed affected source:
Macerator/Shredder Medical Waste Shredder by Technotherm
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
2,542.7 ft3/hr
4. Name(s) and maximum amount of proposed material(s) produced per hour:
2,542.7 ft3/hr
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
N/A

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Combustion Data (if applicable):						
	(a)	Type and amount	in appropriate ι	units of fuel(s) to be bu	rned:	
N/.	A						
	(1.)	<u></u>		- 1 (-)			
		and ash:	s of proposed fu	ei(s), exclua	ng coai, in	cluding maxim	um percent sulfur
N/.	A						
	(c)	Theoretical comb	ustion air require	ement (ACF	unit of fue	I):	
		N/A	<u>@</u>		°F and		psia.
	(1)						
	(d)	Percent excess a	ir: N/A				
	(e)	Type and BTU/hr	of burners and	all other firin	g equipme	ent planned to l	be used:
N/.	A						
	(0)						
	(f)	If coal is proposed coal as it will be fi	d as a source of red:	fuel, identify	supplier a	ind seams and	give sizing of the
N/.	A						
	(g)	Proposed maxim	um design heat	input:	N/	/A	× 10 ⁶ BTU/hr.
7.	Pro	jected operating s	chedule:				
		· · · ·		ok	7	Weeks/Year	52
Ηοι	115/1	Day 24	Days/Wee	3N	7	vveeks/real	52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:						
@	N/A	°F and		psia			
a.	NO _X	N/A	lb/hr	N/A grains/ACF			
b.	SO ₂	N/A	lb/hr	N/A grains/ACF			
c.	со	N/A	lb/hr	N/A grains/ACF			
d.	PM ₁₀	N/A	lb/hr	N/A grains/ACF			
e.	Hydrocarbons	N/A	lb/hr	N/A grains/ACF			
f.	VOCs	N/A	lb/hr	N/A grains/ACF			
g.	Pb	N/A	lb/hr	N/A grains/ACF			
h.	Specify other(s)		Í				
			lb/hr	grains/ACF			
			lb/hr	grains/ACF			
			lb/hr	grains/ACF			
			lb/hr	grains/ACF			

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissional limits. 								
compliance with the proposed emissions limits. MONITORING								
Weekly and monthly inspections according to manufacturer specifications.	All Weekly and Monthly inspections along with any malfunctions.							
manufacturer specifications.	manuncuons.							
REPORTING	TESTING							
Any malfunctions.	No air emissions associated with equipment.							

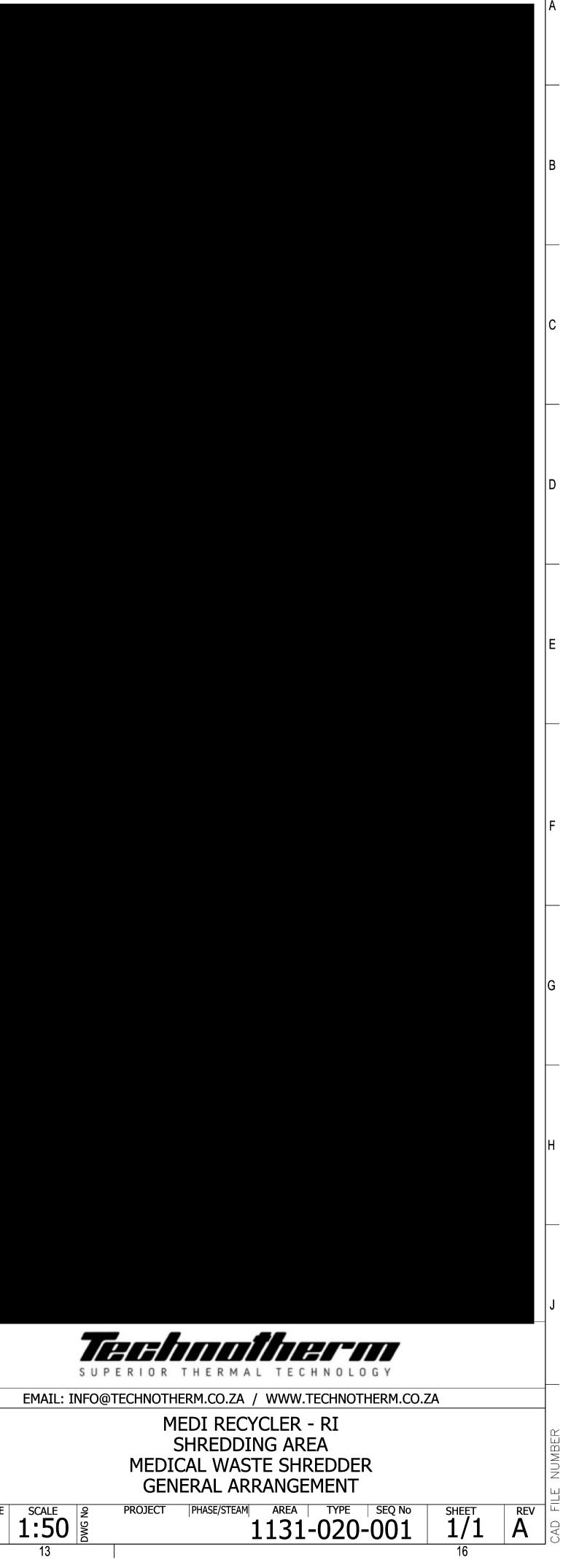
MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty


Operations to take place at -0.0035psia.

A						
В						
С						
	-					
D						
Е						
F						
F						
G						
Ŭ		4kW				
		4677				
Н						
	-					
J						
	A	21.11.2019	FIRST ISSUE	TGB		
	REV No.	DATE	DESCRIPTION	DRAWN	CHKD	
	136		REVISIONS			

4

PROTE TERMS & C	INTELLECTUAL PROPERTY OF: SUPERTHERM (Pty) Ltd , t/a TECHNOTHERM SOUTH AFRICA ECTED BY THE SOUTH AFRICAN COPYRIGHT ACT, 1978 CONDITIONS:		APPROVED	DATE		
OR EX WRITIN 2. ALL IN	DRAWING /PRINT MAY NOT BE DUPLICATED,CHANGED , XHIBITED, TO ANY THIRD PARTY WITHOUT PERMISSION IN ING, BY SUPERTHERM (Pty) Ltd , t/a TECHNOTHERM NFORMATION & PROCESS PERTAINED IN THIS VING/PRINT, IS OF A HIGHLY CONFIDENTIAL NATURE	CHEMICAL ENG	APPROVED	DATE	TITLE	
3. ANY P AGREE AGREE	PERSON IN POSSESSION OF THIS DRAWING / PRINT ES TO A NON-CIRCUMVENT AND NON-DISCLOSURE EMENT		APPROVED	DATE		
	ND, AND ANY PAPER PRINTS MUST BE DESTROYED SUPERTHERM (Pty) Ltd t/a TECHNOTHERM	CHIEF ENGINEER	APPROVED	DATE		
Woodhill	© 2018 TECHNOTHERM Il Office Park, 53 Philip Engelbrecht Street,	RICHARD BINGHAM THIS DWG PRINTED:			ORIG/SIZE	1
8 Meyersda	lal 1448,Gauteng, South Africa +27(0) 045 3603	11		12		

 1
 2
 3
 4
 5
 6
 7
 10
 11
 12
 14
 15
 16

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form):										
1. Loading Area Name:										
2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply):										
□ Drums □ Marine Vessels □ Rail Tank Cars □ Tank Trucks										
3. Loading Rack	or Transfer Point	Data:								
Number of pu	mps									
Number of liqu	uids loaded									
Maximum nun	nber of marine									
	trucks, tank cars,									
and/or drums	loading at one tim	е								
 Does ballastin □ Yes 	ng of marine vess □ No		bading area? bes not apply							
5. Describe clea transfer point:	aning location, con	npounds and proc	edure for cargo v	essels using this						
6. Are cargo ves	ssels pressure tes □ Yes	ted for leaks at th □ No		ation?						
7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):										
Maximum	Maximum Jan Mar. Apr June July - Sept. Oct Dec.									
hours/day										
days/week										

page __ of __ WVDEP-OAQ Revision 03-2007

8. Bulk Liqui	id Data <i>(add pages as r</i>	necessar	<i>y):</i>				
8. Bulk Liquid Data (add pages as necessary): Pump ID No.							
Liquid Name							
Max. daily three	oughput (1000 gal/day)						
Max. annual t	hroughput (1000 gal/yr)						
Loading Meth	od ¹						
Max. Fill Rate	(gal/min)						
Average Fill T	ïme (min/loading)						
Max. Bulk Lig	uid Temperature (°F)						
True Vapor Pi	,						
Cargo Vessel							
	ment or Method ⁴						
	trol efficiency (%)						
Maximum	Loading (lb/hr)						
Emission Rate	Annual (lb/yr)						
Estimation Me	ethod ⁵						
1 BF = Bottom	n Fill SP = Splash Fill	SUB	s = Subme	rged Fill			
	n bulk liquid temperature			5			
2	d Vessel, C = Cleaned, U		nod (dodi	cotod corv		othor (d	locariba)
4					,.		,
 ⁴ List as many as apply (complete and submit appropriate <i>Air Pollution Control Device</i> <i>Sheets</i>):CA = Carbon Adsorption LOA = Lean Oil AdsorptionCO = Condensation SC = Scrubber (Absorption)CRA = Compressor- Refrigeration-Absorption TO = Thermal Oxidation or Incineration CRC = Compression-Refrigeration-Condensation VB = Dedicated Vapor Balance (closed system) O = other (descibe) 							
⁵ EPA = EPA Emission Factor as stated in AP-42 MB = Material Balance							

page __ of __ WVDEP-OAQ Revision 03-2007

TM = Test Measurement based upon test data submittal O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING	RECORDKEEPING
REPORTING	TESTING

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

page __ of __ WVDEP-OAQ Revision 03-2007

ATTACHMENT M

Air Pollution Control Device Sheet

Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

				i	,	PM		,	PM-1	0
k =	Particle size multiplier		0.80			0.36				
s =	Silt content of road surface ma	aterial (%)								
p =	Number of days per year with	precipitati	on >0.01	in.						
Item Numbe	r Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Trips	mum s per ear	Control Device ID Number	Control Efficiency (%)
1										
2										
3										
4										
5										
6										
7										
8										

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ Ib/Vehicle Mile Traveled (VMT) Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)		
S =	Mean vehicle speed (mph)		
W =	Mean vehicle weight (tons)		
w =	Mean number of wheels per vehicle		
p =	Number of days per year with precipitation >0.01 in.		

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

	PM				PM-10			
Item No.	Uncontrolled		Cont	Controlled		trolled	Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1								
2								
3								
4								
5								
6								
7								
8								
TOTALS								

FUGITIVE EMISSIONS FROM PAVED HAULROADS

l =	Industrial augmentation factor	(dimensionle					
n =	Number of traffic lanes						
s =	Surface material silt content (9	%)					
L =	Surface dust loading (lb/mile)						
ltem Number	r Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1							

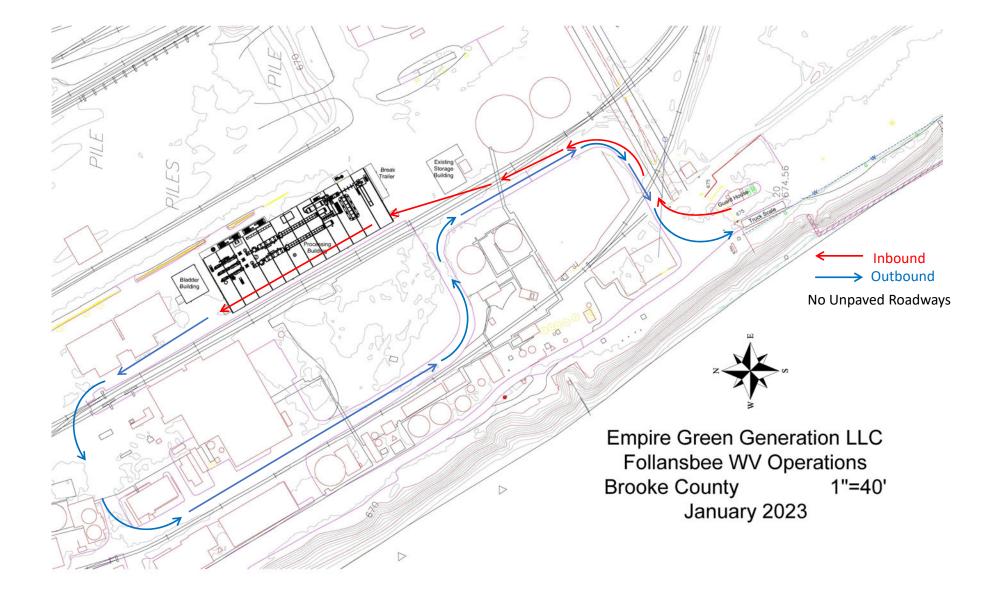
INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

$$E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$$

Ib/Vehicle Mile Traveled (VMT)

Where:


l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L =	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF PAVED HAULROAD EMISSIONS

		trolled	Controlled		
Item No.	lb/hr	TPY	lb/hr	TPY	
1					
2					
3					
4					
5					
6					
7					
8					
TOTALS					

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): 1000

Equipment Information			
1.	Manufacturer: Technotherm Model No. To Be Determined	 Method: Elevated flare Ground flare Other Describe Stack/Emergency Flare 	
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.	
4.	Method of system used:	Pressure-assisted Non-assisted	
5.	Maximum capacity of flare:	6. Dimensions of stack:	
	15,239 scf/min	Diameter 2.36 ft.	
	scf/hr	Height 49.21 ft.	
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: >98 % Minimum guaranteed: >98 %	 8. Fuel used in burners: Natural Gas Fuel Oil, Number Other, Specify: Syn Gas 	
9.	Number of burners: 1	11. Describe method of controlling flame:	
	Rating: 12,247 BTU/hr		
10.	Will preheat be used? Yes No		
12.	Flare height:49.21ft	14. Natural gas flow rate to flare pilot flame per pilot light: 0.20 scf/min	
13.	Flare tip inside diameter: 2.36 ft	12.0 scf/hr	
15.	Number of pilot lights: 1 Total 12,247 BTU/hr	16. Will automatic re-ignition be used? ⊠ Yes □ No	
17.	electrical control assembly to provide a sparl	thod: b ignite the gases and including ignitor rods and an k. The assembly will be employed to light the pilot. A hermocouple will monitor the system and provide the	
18.		☐ No I-Red hera with monitoring control room	
19.	19. Hours of unit operation per year: 24 hours per day; 7 days per week		

	Steam	njection
20. Will steam injection be used? Yes	🛛 No	21. Steam pressure PSIG Minimum Expected: Design Maximum:
22. Total Steam flow rate:	LB/hr	23. Temperature: °F
24. Velocity	ft/sec	25. Number of jet streams
26. Diameter of steam jets:	in	27. Design basis for steam injected: LB steam/LB hvdrocarbon
28. How will steam flow be controlled if steam	injection is	

Characteristics of the Waste Gas Stream to be Burned 29. Quantity Quantity Name Source of Material Grains of H₂S/100 ft³ (LB/hr, ft³/hr, etc) TBD Hydrocarbons TBD **Cyanide Compounds** TBD Ammonia CO TBD Hydrogen TBD NOx / SOx TBD 66,000 max 30. Estimate total combustible to flare: LB/hr or ACF/hr (Maximum mass flow rate of waste gas) scfm 31. Estimated total flow rate to flare including materials to be burned, carrier gases, auxiliary fuel, etc.: 5.100 LB/hr or ACF/hr 32. Give composition of carrier gases: **TBD** Syngas 34. Identify and describe all auxiliary fuels to be burned. 33. Temperature of emission stream: Not Applicable BTU/scf 1,562 °F max Heating value of emission stream: BTU/scf TBD BTU/ft³ BTU/scf Mean molecular weight of emission stream: BTU/scf MW = TBD lb/lb-mole BTU/scf 11,000 mscf/min 932 °F 36. Flare gas flow rate: 35. Temperature of flare gas: TBD BTU/ft³ TBD scf/min 37. Flare gas heat content: 38. Flare gas exit velocity: N/A scf/min 39. Maximum rate during emergency for one major piece of equipment or process unit: N/A BTU/min 40. Maximum rate during emergency for one major piece of equipment or process unit: 41. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): Not Applicable 42. Describe the collection material disposal system: Not Applicable 43. Have you included *Flare Control Device* in the Emissions Points Data Summary Sheet? Yes

	, and Testing rting in order to demonstrate compliance with the proposed er to demonstrate compliance with the proposed emissions
MONITORING:	RECORDKEEPING:
Monitoring will be accomplished using the control panel. The facility personnel will conduct monthly inspections for visible stack emissions and malodors. The stack emission observations will not be required to be performed by a person certified as a qualified observer under EPA Method 9 for Visual Determination of Opacity of Emission from Stationary Sources.	reports will be maintained on site in the control room.
REPORTING:	TESTING:
Report to WVDEP all upsets sent to the flare.	TBD
	rocess parameters and ranges that are proposed to be te compliance with the operation of this process equipment
RECORDKEEPING: Please describe the proposed re	ecordkeeping that will accompany the monitoring. missions testing for this process equipment on air pollution
TESTING: Please describe any proposed e control device.	missions testing for this process equipment on air pollution
45. Manufacturer's Guaranteed Capture Efficiency for ea	
46. Manufacturer's Guaranteed Control Efficiency for ea >98%	ch air pollutant.
47. Describe all operating ranges and maintenance proc See attached document	edures required by Manufacturer to maintain warranty.

Ionisationszündbrenner Ionization pilot burner Brûleur pilote à ionisation ZAI

- // atmosphärischer Zündbrenner
- // Leistung 3 kW (ca. 2500 kcal/h)
- // direkt gezündet und ionisch überwacht

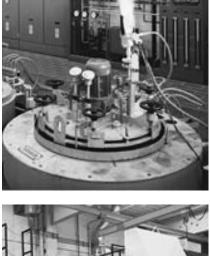
Anwendung

Zum sicheren Zünden und zur ionischen Absicherung von atmosphärischen Gasbrennern in Verbindung mit unseren Gasfeuerungsautomaten IFS . . und PFS . .

Ionization pilot burner ZAI

- // atmospheric pilot burner
- // capacity: 3 kW (approx. 2500 kcal/h)
- // direct ignition and ionisation control

Application

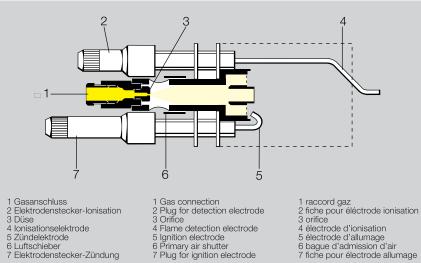

For the safe ignition and flame protection of atmospheric burners in conjunction with our automatic burner controls IFS . . and PFS . .

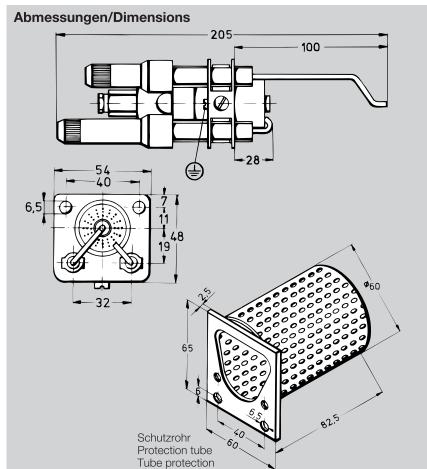
Brûleur pilote à ionisation ZAI

- // brûleur atmosphérique
- // puissance: 3 kW (environ 2500 kcal/h)
- / allumage direct et contrôle d'ionisation

Application

Pour l'allumage et la détection par ionisation des brûleurs à gaz ou à air soufflé, utilisé avec nos boîtiers de sécurité, IFS . . et PFS..





Gasart Type of gas	Düse Orifice	Druckbereich* Pressure range*	Volumenstrom Throughput
Type de gaz	Orifice	Pression amont*	Débit
	Ø mm	mbar	p mbar l/h
Erdgas Natural gas Gaz naturel	1,3	12-30	20 340
Flüssiggas (Propan) LPG (propane) Gaz liquéfié (propane)	0,7	30-50	50 90

* für abweichende Drücke Düsen-Ø auf Anfrage
 * for pressures other than the above Ø of orifice on request
 * pour les pressions différentes, Ø d'orifice sur demande

- 5 Zündelektrode
- 6 Luftschieber 7 Elektrodenstecker-Zündung

Technische Daten

Zündbrenner ZAI für Erdgas und Propan. Andere Gasart auf Anfrage Auslieferung: Erdgaseinstellung (Fig. 2) Max. Umgebungstemperatur: 500 °C Gasanschluss: Cu-Rohr 8 x 1 Schutzart: IP 20

Ausführung

Fig. 2

5 électrode d'allumage 6 bague d'admission d'air 7 fiche pour électrode allumage

Zünderkopf aus Stahl, verzinkt Halteblech aus Stahl, verzinkt Zünd- und Ionisationselektroden aus Kanthal A-1 Zündelektrodenstecker - braun, funkentstört Ionisationselektrodenstecker - schwarz

Technical Data

Pilot burner ZAI for natural gas and propane. Other gases on request Standard version: natural gas (Fig. 2) Max. ambient temperature: 500 °C Gas connection: Cu-tube 8 x 1 Protective grade: IP 20

Construction

Ignition head - steel, galvanized Fixing plate - steel. galvanized Ignition and ionisation electrodes - Kanthal A-1 Plug connector for ignition electrode brown (suppressed) Plug connector for flame rectification electrode - black

Caractéristiques Techniques

Brûleur pilote ZAI pour gaz naturel et propane. Autres types de gaz sur demande Exécution livrée: ajustée, pour gaz naturel (Fig. 2)

Température ambiente max.: 500 °C Raccord pour gaz: tube en cuivre 8 x 1 Type de protection: IP 20

Construction

Tête d'allumeur en acier, galvanisé Plaque de support en acier, galvanisé Electrodes d'allumage et d'ionisation en Kanthal A-1 Fiche pour électrodes d'allumages - brun,

antiparasitage

Fiche pour électrodes d'ionisation - noir

Kromschröder produziert umweltfreundlich. Fordern Sie unseren Umweltbericht an.

03250065 4.05 F.T 2.000

Chez Kromschröder, la production respecte l'environnement. Demandez notre rapport environnemental.

G. Kromschröder AG Postfach 2809 D-49018 Osnabrück Tel. ++49 (0)5 41/12 14-0 · Fax -3 70 info@kromschroeder.com www.kromschroeder.de

Lochblech, Material 1.4841 Schutzrohr Best.-Nr. 7 543 7010

2 Befestigungsschrauben M 6 x 8 Best.-Nr. 03 522 138

Zündbrenner mit Schutzrohr (Fig. 1)

Zubehör

Schutzrohr:

Weitere Zündbrenner und Brenner

Typ ZMI 1,5 bis 3,4 kW (Fig. 3) (1,2 bis 2,9 Mcal/h) Typ ZKIH 7 kW (Fig. 4) (6 Mcal/h) Typ ZIO, BIO, 20 bis 5000 kW (Fig. 5) (17 bis 4300 Mcal/h) Typ BIC 15 bis 450 kW (Fig. 6) (13 bis 386 Mcal/h)

Fig. 3

Fig. 5

Fig. 4

Accessories

Pilot burner with draught protection tube (Fig. 1) Protection tube made of perforated plate, material 1.4841 Order No. 7 543 7010 2 fastening screws M 6 x 8 Order No. 03 522 138

Other pilot burners and burners

Type ZMI 1.5 to 3.4 kW (Fig. 3) (1.2 to 2.9 Mcal/h) Type ZKIH 7 kW (Fig. 4) (6 Mcal/h) Type ZIO, BIO, 20 to 5000 kW (Fig. 5) (17 to 4300 Mcal/h) Type BIC 15 to 450 kW (Fig. 6) (13 to 386 Mcal/h)

Accessoires

Brûleur avec tube protection (Fig. 1) Tube protection: en tôle perforée, material 1.4841 réf No. 7 543 7010 2 vis de fixation M 6 x 8 réf. No. 03 522 138

D'autres brûleurs d'allumage et brûleurs

Type ZMI 1,5 à 3,4 kW (Fig. 3) (1,2 à 2,9 Mcal/h) Type ZKIH 7 kW (Fig. 4) (6 Mcal/h) Type ZIO, BIO, 20 à 5000 kW (Fig. 5) (17 à 4300 Mcal/h) Type BIC 15 à 450 kW (Fig. 6) (13 à 386 Mcal/h)

Technische Änderungen, die dem Fortschritt dienen, vorbehalten.

We reserve the right to make technical changes designed to improve our products without prior notice.

Toutes les gractéristiques techniques sont sujettes à modification sans avis préalable.

2019/07/19

Specification sheet

Equipment type:

Stack

Equipment name:

Stack

Project:

1131-MedRecycler

Design velocity (m/s)	20
Design exhaust flow (m^3/hr)	25890
Material of construction	mild steel, painted
Inner diameter (mm)	720
Total height above ground (mm)	15000
Height from ground to air inlat (mm)	2000
Height from ground to air inlet (mm)	2000
Distance insulated from air inlet (mm)	2000
Outer diameter insulated zone (mm)	1020
Rain hood	none

914,296.721 cf/hr 15,238.29 cf/min

Disclaimer: values are subject to change.

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAI: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

1141 – General Operations and Maintenance

Company: Address: Empire Diversified Energy 600 Veterans Drive Follansbee WV USA

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAI: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

Contents

Introduction	4
Project Overview	4
Supplier	4
Plant and Equipment	4
Operating Philosophy	5
Shredder Section	5
Drying Section	5
HCl Recovery System	6
Pyrolyser	6
Syngas Clean-up	6
Particulate Matter Clean-up	6
Syngas Coolers	7
Tar Condensers	7
Oil Scrubbers	7
Dosing Scrubbers	7
Gas Bladder (Syngas Storage Tank)	7
Thermal Oxidiser	7
Stack and Flare	7
Gas Engines	8
Maintenance	8
Scheduled Maintenance	8
General	8
Maintenance Tasks	9

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAI: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAT: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

Introduction

Project Overview

The Project as a commercial Plant using advanced conversion technology in the nature of a waste acceptance facility using plastics with moisture content of 35% from which a clean syngas is produced and subsequently combusted in reciprocating engine generator sets to produce electricity for export.

The Project comprise**s** of a macerator, rotary thermal dryer, 2 sets of pyrolysers, 3 sets of syngas clean-up equipment, a hydrochloric acid recovery system, gas bladder (syngas accumulator), reciprocating engine generators, thermal oxidiser, a stack and flare. The Facility is a 3 tph swallowing capacity plastics to renewable energy power plant producing baseload electricity for export to the grid. The Project is operated on a continuous basis and is designed with sufficient plant redundancy to negate any single point total plant failures.

Waste heat is recovered from the exhaust of the engines and the Pyrolyser to dry the plastics once shredded. Site available natural gas provides start-up and standby thermal energy. The plant design and configuration is comprised of equipment that results in low life cycle costs, high operational efficiency and operational flexibility consistent with the results of the design reviews, RAM and HAZOP studies conducted during the project execution.

Supplier

Company Name Physical Address

Telephone Facsimile Webiste TECHNOTHERM 86 Rand Vaal Road Rand Vaal, Gauteng South Africa. +27 (0)10 045 3603 +27 (0)86 586 5921 www.technotherm.co.za

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAT: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

Plant and Equipment

This instruction manual relates to a WASTE TO ENERGY PLANT Scheme. The design is for 900°C maximum process temperature.

- It essentially comprises of a
 - Shredder
 - Dryer
 - Pyrolysers
 - Hydrochloric acid recovery system
 - Gas clean-up system
 - Gas temporary storage
 - Engines
 - Regenerative thermal oxidiser
 - Stack and flare

Operating Philosophy

Overall process takes plastics, received by a transporting company, and thermally processes it in a pyrolysis system operating at 800°C - 900°C (1,472°F - 2,1652°F). Organic matter from the plastics is evaporated forming a syngas that can directly be used as a fuel source for electrical generating engines. Oil and tar are produced where the oil is recycled through the pyrolysis system to make more syngas, and the tar is used to heat a vitrification system where solids from the process are vitrified and made inert. Exhaust from the engines are sent to a drying unit, where the plastics is dried prior to being introduced into the pyrolysis system. All gasses are sent to a Thermal Oxidizer operating at 850°C (1,562°F), after which they are conditioned for release to atmosphere via a stack.

Shredder Section

Plastics received at the facility will be in sealed containers about 2 feet square and they are not opened. Each box has an inventory, so Empire Green Generation knows what is in the box prior to being fed into the Pyrolysis System. Plastics in boxes are not stored on site but are processed as they arrive after cataloging the wastes.

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAT: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

Sealed containers will be fed into the Macerator. In the Macerator, operating under negative pressure, the plastics in sealed containers will be reduced to 25 mm or less.

Drying Section

The drying of the feedstock is carried out in a direct heated, parallel flow, rotary twin drum type dryer using a combination of engine exhaust and, if necessary during start-up or unusual operating conditions, syngas and, as a last resort, natural gas.

Feedstock is transported from the dryer feed hopper into the dryer by means of a screw conveyor. Upon entering the dryer inner retort, the moist feedstock comes into direct contact with the parallel stream of hot flue gases.

Lifters and progression plates ensure intimate contact between the feedstock and flue gas therefore facilitating efficient drying and movement of feedstock along the retort.

Once both feedstock and flue gases reach the closed end of the dryer they are discharged from the inner concentric retort into the outer retort and return to the entry end of the dryer, discharging 10% moisture level feedstock into an expansion chamber. Coarse dry feedstock falls to the bottom of the chamber forming a heap on the conveyor located beneath.

The flue gas exhaust, contaminated with light particulate feedstock material, is also discharged from the expansion chamber and ducted to a bank of cyclones where separation occurs. Fine particulate falls to the bottom of each cyclone and is discharged via rotary valves into a common screw conveyor. The screw conveyor discharges the fine product onto the conveyor joining the dryer exit material and fine product. This conveyor transfers the combined dry feedstock streams onto a conveyor feeding an intermediate storage hopper that feeds both pyrolysers.

HCI Recovery System

This system is fed with dried feedstock from a thermal dryer via a live bottom screw hopper. Material is fed from a gas-tight, storage hopper into the horizontal pre-pyrolyser retort by a rotary screw. The feedstock passes through a pre-pyrolyser chamber where it is

Revision Record XXX

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAT: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

heated in an inert environment to allow gradual release of Chlorine. The gas is removed and condensed to form hydrochloric acid where after it is bottled.

Pyrolyser

The pyrolyser train is fed dried and partially reconstructed feedstock from the HCl recovery system as described in the previous section. The pyrolysis train consists of two identical pyrolysers. Per unit, the source of indirect heat is primarily hot exhaust flue gas from a furnace located beneath the pyrolysis retort. These hot flue gasses exit the pyrolysis retorts and then progress to the medium grade heat applications (Thermal dryer and during start up syngas cooler and tar condenser). Supplemental heating of the pyrolysis retort is being provided by firing a portion of the cleaned syngas. Natural gas is available for initial start-up or any start-up where insufficient syngas is available. After passing through the dryers the flue gas is progressed to the thermal oxidiser.

As the material passes through the pyrolysis retort, it undergoes thermal degradation releasing volatile organic syngas compounds that is discharged from the retort. The crude syngas off-takes are collected into a common manifold that transfers the syngas to the syngas cleaning system.

The heavier particles, mainly comprising of ash and fixed carbon, collect in a specially designed high temperature de-acceleration chamber where the particles are collected and returned to the furnace for energy recovery.

Ash and carbonaceous residue produced by the pyrolysers drops off the dust from the aforementioned de-acceleration chamber screw conveyers, together with the main residue collected from the base of the pyrolyser into a refractory lined furnace fired by recovered tars (described below in the syngas cleaning equipment). The heat liberated by burning the tars and oils is sufficient to heat the ash from the pyrolysis units above their eutectic temperature with excess, preheated air to burn off the tars. The char is completely combusted into CO_2 and H_2O .

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAI: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

Syngas Clean-up

Particulate Matter Clean-up

Raw syngas is removed from the pyrolysis retorts, as described above, and passes through a de-acceleration chamber and then hot cyclones. The cyclones are arranged for parallel flow to ensure maximum PM removal efficiency during start-up and shutdown as the flow varies. PM drops to specially designed hot screw conveyors and from there is directed to the vitrification furnaces described above.

Syngas Coolers

The partially cleaned, still hot, flue gas flows next through stainless steel tubular syngas coolers. The cooler is in essence a heat exchanger which indirectly transfers heat from syngas to the combustion air heaters.

Tar Condensers

The syngas from the coolers described above flows to a stainless-steel shell & tube heat exchanger/cooler that is cooled by an air blower system. Tars are condensed out and drop into heated troughs, the heat source of which is engine exhaust. Hot condensed tar is pumped to the vitrification furnaces described above. The common installed spare set of coolers uses engine exhaust flue gas to heat the heat exchangers and thereby cause the tars to drop into the heated trough below.

Oil Scrubbers

The syngas from the tar condensers described above flows to a scrubber with interconnected oil and water separator.

Dosing Scrubbers

From the oil scrubber the syngas flows through a high pressure drop venturi scrubber which is kept at a set pH to neutralise the gas before progressing to temporary storage.

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAT: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

Gas Bladder (Syngas Storage Tank)

The syngas storage tank provides surge capacity of cleaned syngas to level out flow and composition variations. The bladder is contained within a demarcated area. The bladder will operate with an internal pressure of 30 to 40 millibar gauge.

Thermal Oxidiser

All flue gasses enter a thermal oxidiser comprising of a rectangular box shaped furnace. The internal dimensions are determined by the total volume that needs to be raised to 850°C and maintained for 2 seconds.

Stack and Flare

The stack and flare comprises of the following:

- 1. Induced Draft Fan
- 2. Flare Stack (combined with plant stack) and
- 3. Plant Stack (5 m above nearest building x 720 mm dia.)

The treated hot gasses progress through the stack and disperses into the atmosphere after passing through the thermal oxidiser.

Gas Engines

Each syngas engine is a fully packaged unit complete with all associated components and auxiliaries. These engines are of robust design and have been proven on low and medium calorific value gas fuels.

The engine package allows the engine to start, synchronise, operate continuously at base or part load and shut down.

The syngas engines are situated in containers as indicated on the plant layout and engine cooling will occur by means of external radiators.

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAT: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

Maintenance

Scheduled Maintenance

It is assumed that the plant will be subject to the same general routine maintenance discipline, in respect of cleanliness, neatness corrosion control etc. as the other plant and equipment in the factory.

General

- Work to be done must be cleared with the operator or his designee before commencement.
- Ensure the area is clean and free of contamination.
- Inspect labels and warning signs location, clear visibility and damage. Repair / replace if necessary.
- Inspect the equipment for any signs of build up or deposits.
- Check that all fasteners and mounting hardware is in place.
- Always stand to the side when observing interior or opening the Pyrolyser to avoid sudden exposure to heat.
- Frequent visual inspection of the equipment should be done. Any leaks, in piping, tanks, equipment casings, covers and all associated equipment or loose connections must be reported.
- If any fault occurs, analyse and permanently remove the cause. Do not remain on temporary repair.
- Immediately report any signs of abnormal equipment operation or unusual instrument readings.

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAT: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

- After maintenance, ensure that all bolts, fittings, guards and other fasteners are correctly tightened.
- Metal parts must be painted to avoid corrosion. Where painting is not possible suitable oil or grease must be utilized

Maintenance Tasks

The maintenance schedule specifies the frequency of the inspections and checks that are expected under normal operating conditions. In the event that the prevailing conditions are abnormal, appropriate adjustments could be expected.

Weekly Maintenance

- Check seal integrity on front and rear pre-Pyrolyser and Pyrolyser bellows
- Check seal integrity on knife gate valves
- Check limit switches and/or proxy switches ensuring holding bolts are tight
- Check striker arms on limit switches are secure
- Check thermocouples are secure
- Check for uneven movement / misalignment of mechanisms
- Check temperature controller and over temperature controller for proper operation
- Check retort rollers are tight and no excessive wear is taking place
- Grease wheels with high temperature graphite grease
- Listen for undue mechanical noise from the installation, investigate and repair if necessary
- Check all seals and gaskets for possible leaks on the hydraulic system.
- Check that all bearings are properly greased and operating correctly.

Monthly Maintenance

- Repeat weekly scheduled maintenance
- Check all bolts are tight, tighten if necessary

Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAT: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

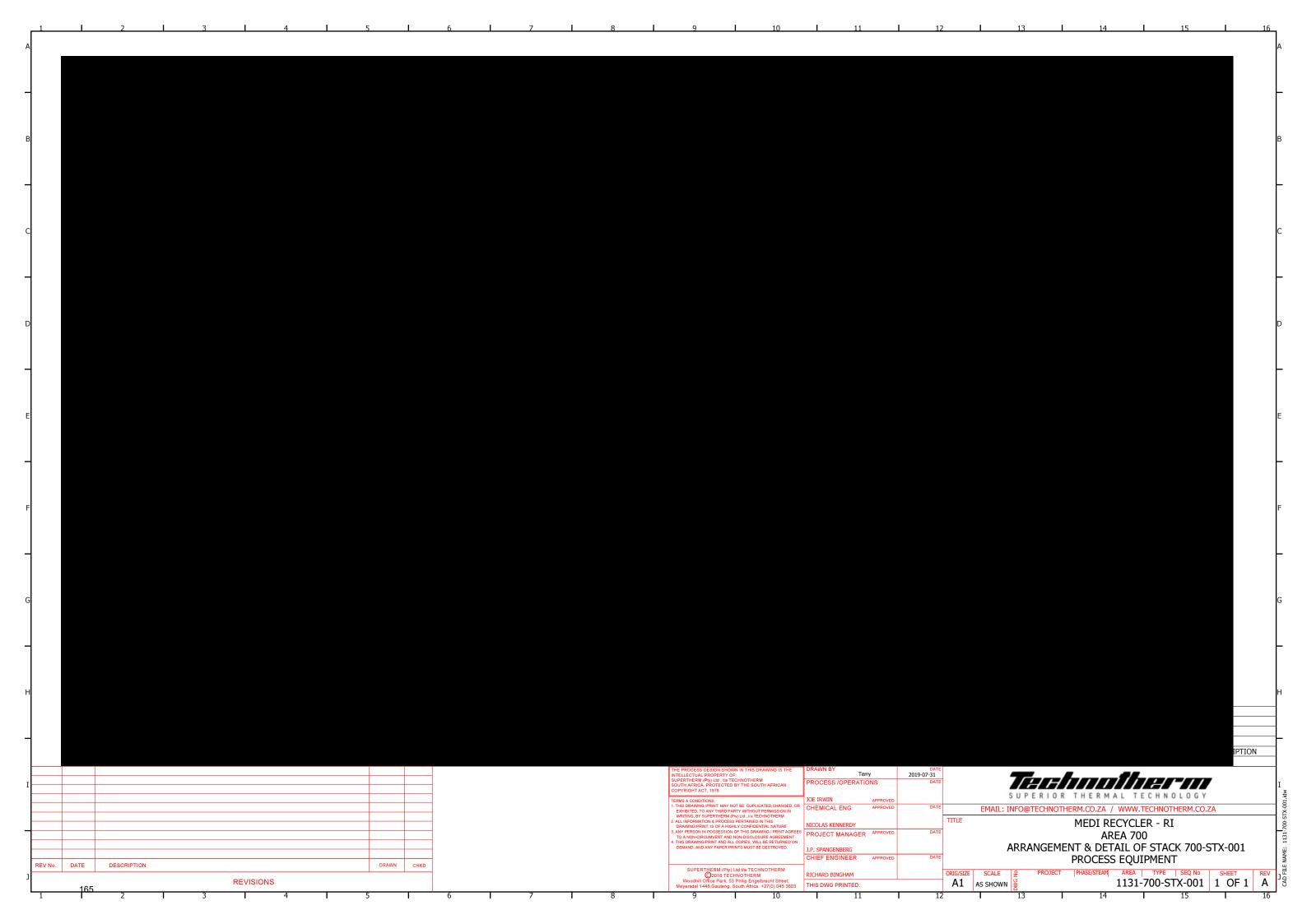
- Ensure all guards, louvers, brackets are in place and secure.
- Visually inspect modules and insulation blankets are properly in position and secure, repair / replace if necessary.
- Check ducts for foreign materials causing obstruction.
- Check structural steelwork for signs of corrosion and paint damage. Metal parts must be painted to avoid corrosion.
- Check blower impeller by hand to ensure free rotation. Check that there is not fouling between rotating and stationary components.
- Check that all blower fasteners are secure and that all components are in good order at the cooling section.
- Ensure that the blower guard is in place and secure.
- Keep electric motors' air inlets and outlets free and clean. The air blown out by the motor shall not enter again. The distance between the air inlet and the wall must be approximately ¼ of the inlet opening diameter.
- Check retort mechanism main track roller for alignment
- Check all pre-Pyrolyser and Pyrolyser in feed system for any possible obstructions
 and charge clearances
- Check knife gate valves and proxy switch positions
- Check all pre-Pyrolyser and Pyrolyser front and rear door seal
- Check all booster fan clearance and rotation direction

Three Monthly Maintenance

- Repeat Monthly Maintenance
- Clean booster fan and clean all interconnecting pipes

Six Monthly Maintenance

- Repeat Three Monthly Maintenance
- Booster Fan Maintenance:


Woodhill Office Park - 53 Philip Engelbrecht Street, Ground Floor, Block 6, Meyersdal, 1448 Email: info@technotherm.co.za | Tel: 010 045 3603 VAI: 4680256643 | Reg No: 2010/009041/07 All hours number: 0027 78 311 6236

www.technotherm.co.za www.technothermsa.com

- Refer to the suppliers' manual for details.
- After initial cleaning it should be re-checked after 250 operating hours and should be checked every 3000 to 4000 operating hours depending on the operating conditions or at least every 6 months.

Annual Maintenance

- Lubricate all bearings including rollers and bearings. For high temperature applications mix high temperature grease with 20% graphite powder.
- Refer to the bearing supplier's manual for details.

ATTACHMENT M - INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. Generator(s) and microturbine generator(s) shall also use this form.

Emission Unit I	$D#^1$	1	, GE-3, GE-4				
Engine Manufac	turer/Model	TGS1	59D32				
Manufacturers F	Rated bhp/rpm	429, 15	00/1800				
Source Status ²		N	IS				
Date Installed/ Modified/Remo	ved/Relocated ³	20	022				
Engine Manufac /Reconstruction							
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	 ⋈ 40CFR60 S □ JJJJ Certifi □ 40CFR60 S □ IIII Certific □ 40CFR63 S □ NESHAP Z JJJJ Window □ NESHAP Z Sources 	ed? ubpart IIII ed? ubpart ZZZZ	□ NESHAP JJJJ Window	ied? Subpart IIII ed? Subpart ZZZZ ZZZZ/ NSPS	□ NESHAP	ied? Subpart IIII ed? Subpart ZZZZ
Engine Type ⁶		4S	LB				
APCD Type ⁷		А	/F				
Fuel Type ⁸		syn	igas				
H ₂ S (gr/100 scf))	Varies w	vith Feed				
Operating bhp/r	pm	1500/1	800rpm				
BSFC (BTU/bhg	p-hr)	8.70)E-9				
Hourly Fuel Th	roughput	3,136 ft ³ / gal	hr l/hr		³ /hr ll/hr		/hr l/hr
Annual Fuel The (Must use 8,760) emergency gene	hrs/yr unless	25.6 MMf gal	t ³ /yr l/yr	MMft ³ /yr gal/yr		MMft ³ /yr gal/yr	
Fuel Usage or H Operation Meter		Yes 🖂	No 🗆	Yes 🗆	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹ (EACH ENGINE)	Annual PTE (tons/year) ¹¹ (EACH ENGINE)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year) ¹¹	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
MD/AP	NO _x	0.68	2.55				
MD/AP	СО	1.37	5.09				
MD/AP	VOC	0.48	1.78				
MD/AP	SO ₂	0.002	0.01				
MD/AP	PM10	0.03	0.10				
MD/AP	Formaldehyde	0.20	0.89				
MD/AP	Total HAPs	0.28	1.21				
MD/AP	GHG (CO ₂ e)	441.30	1,642				

PLEASE NOTE: ALL EMISSION VARY BY FEED AND ARE ROUTED TO THE RTO PRIOR TO BEING EMITTED TO THE ATMOSPHERE. PLEASE SEE GENERATOR EMISSIONS CALCULATIONS.

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source
REM	Removal of Source		

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.

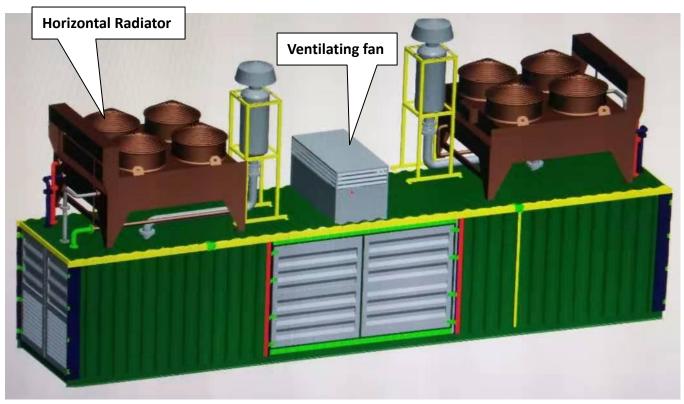
5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintained to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

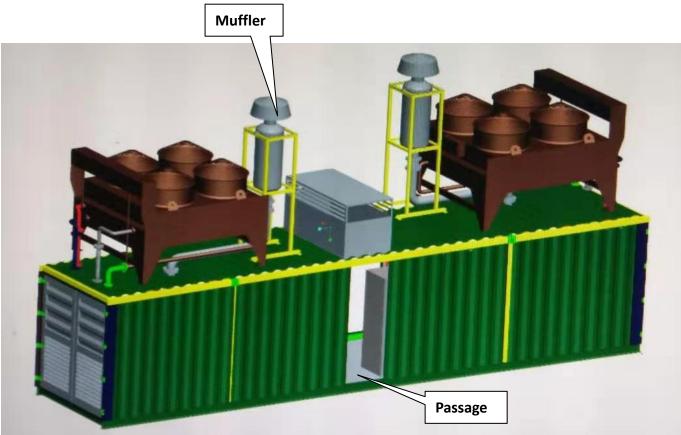
Provide a manufacturer's data sheet for all engines being registered.

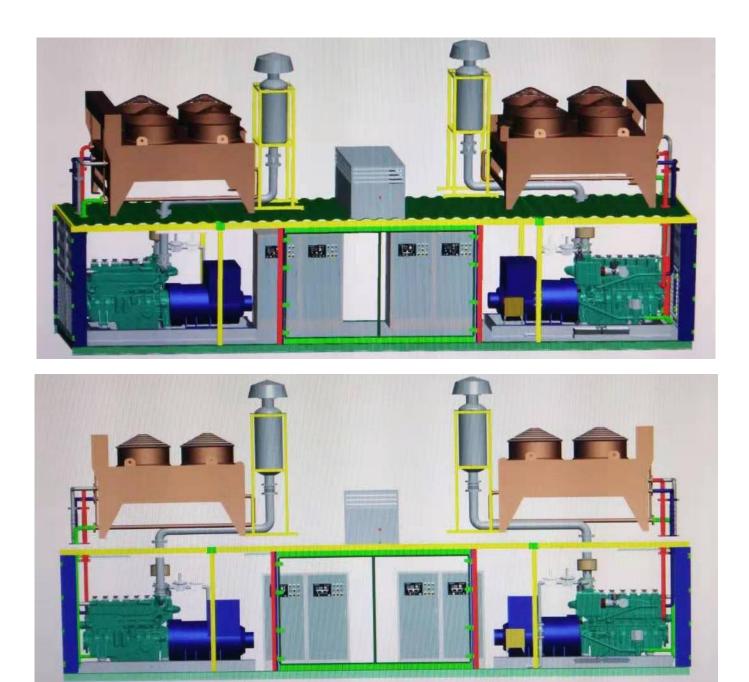
Enter the Engine Type designation(s) using the following codes: 6 2SLB Two Stroke Lean Burn 4SRB Four Stroke Rich Burn 4SLB Four Stroke Lean Burn Enter the Air Pollution Control Device (APCD) type designation(s) using the following codes: 7 A/F Air/Fuel Ratio IR Ignition Retard HEIS High Energy Ignition System SIPC Screw-in Precombustion Chambers PSC Prestratified Charge LEC Low Emission Combustion Rich Burn & Non-Selective Catalytic Reduction NSCR OxCat Oxidation Catalyst SCR Lean Burn & Selective Catalytic Reduction Enter the Fuel Type using the following codes: 8 PO Pipeline Quality Natural Gas RG Raw Natural Gas /Production Gas D Diesel 9 Enter the Potential Emissions Data Reference designation using the following codes. Attach all reference data used. MD Manufacturer's Data AP AP-42 GRI-HAPCalcTM GR OT Other (please list)

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.


Engine Air P	Pollution Control Device
(Emission Unit ID#	, use extra pages as necessary) N/A
	vice Manufacturer's Data Sheet included? Yes No No N/A
□ NSCR □	□ SCR □ Oxidation Catalyst
Provide details of process control used for proper mix	xing/control of reducing agent with gas stream:
Manufacturer:	Model #:
Design Operating Temperature: °F	Design gas volume: scfm
Service life of catalyst:	Provide manufacturer data? 🗆 Yes 🛛 No
Volume of gas handled: acfm at °F	Operating temperature range for NSCR/Ox Cat: From °F to °F
Reducing agent used, if any:	Ammonia slip (ppm):
Pressure drop against catalyst bed (delta P): in	nches of H ₂ O
Is temperature and pressure drop of catalyst required	tects unit when operation is not meeting design conditions: to be monitored per 40CFR63 Subpart ZZZZ?
☐ Yes □ No	
How often is catalyst recommended or required to be	replaced (hours of operation)?
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why (please l	list any maintenance required and the applicable sections in


□ No perform NSPS/GACT,


Notice(1): Engine overhaul period is related to use conditions, quality of lubricating oil,
maintenance quality, load, install quality, fuel quality

TGS	series	natural	gas	genset

0			
	set Model	300TGS	
	cture	Integrated	
Exc	iting Mode of Alternator	Brushless/AVR	
Rate	ed Power(kW)	300	
Rate	ed Current (A)	540	
Rate	ed Voltage (V)	400/460	
Rate	ed Frequency (Hz)	50/60	
Rate	ed Power Factor	0.8LAG	
No l	Load Voltage Range	95%-105%	
Stabl	e voltage regulation rate	<u>≤</u> ±1%	
Instar	ntaneous voltage regulation rate	≤-15%—+20%	
Volt	age recover time	<u>≤</u> 3s	
Volta	age fluctuation rate	$\leq \pm 0.5\%$	
Instant	aneous frequency regulation rate	≤±10%	
Freq	uency stabilization time	≤5s	
Line-vo	ltage waveform Sinusoidal distortion rate	≤2.5%	
	Туре	TGS159D32	
	Model	V-type, water cooled, 4 strokes, electric control ignition, turbocharged and intercooled lean burn	
	Cylinder Number	8	
	Bore × Stroke (mm)	132×145	
-	Total Displacement(L)	15.9	
Engine	Compression Ratio	11.5	
ne	Rated Power (kW)	320	
	Rated Speed (r/min)	1500/1800	
	Speed Regulation Mode	Electrical	
	Starting Mode	Electrical	
	Fuel	Natural gas or biogas	
	Max Gas Consumption(m ³ /h)	88.8	
Nois	se dB(A)	<91	
Over	haul cycle (h)	2,5000 ⁽¹⁾	
Overa	all dimension (L×W×H)(mm)	L×W×H)(mm) 3250X1550X1950	
Net	Weight (kg)	2850	
	0 (0)		

Container size: (L*W*H) 11.5m*2.2m*2.45m

3 containers in total .

Attachment M Air Pollution Control Device Sheet (WET COLLECTING SYSTEM-SCRUBBER)

Control Device ID No. (must match Emission Units Table):

		Equipment	Information		-	
1.	Manufacturer: Poly Processing		2. Method:	= =	Venturi	
	Model No. 5' X 5" Scrubber				Cyclone Orifice	
				Other, specify	01	
3.	Provide diagram(s) of unit describing of					
_	capacity, horsepower of movers. If app			·	2	
4.	Provide a scale diagram of the scrubbe spray configurations, baffle plates, and			 Please include packing 	j type and size,	
5.	What type of liquid entrainment elimina thickness, mesh, and material of constru		em will be used?	Submit a schematic dia	agram showing	
	Describe the scrubber's construction ma Polyethelene (XLPE tank with PVC internal level. Vent gas from the HCl tank passes the gas is vented from the top.	lls and exterior hrough the gas	diffuser where HC			
7.	What will be the power requirements of	the collector?				
<u> </u>	Fan NO HP		Inlet scrub	bing liquid pump: NA	HP	
8.	What type of fan(s) will be used?					
	Type of fan blade: None		olades: None	Diameter of blade:	None in.	
<u> </u>	Also supply a fan curve for each fan to b					
9.	Estimated gas pressure drop at maximu		1	inches H ₂ O		
	Scrubbing Liquor Characteristics					
		Ibbing Liquo				
10.	Scrubbing Liquor		11. Scrubbing lie	quor losses (evaporation,	etc.):	
10.		Weight %	11. Scrubbing lie 0.5 gal/1000	quor losses (evaporation,) ACF gas		
10.	Scrubbing Liquor		11. Scrubbing lie 0.5 gal/1000	quor losses (evaporation,	etc.): PSIA	
10.	Scrubbing Liquor Composition	Weight %	11. Scrubbing lie 0.5 gal/100012. Liquor press	quor losses (evaporation, 0 ACF gas sure to scrubber: 0.25	PSIA	
10.	Scrubbing Liquor Composition 1 Water	Weight % 99	11. Scrubbing lie 0.5 gal/100012. Liquor press	quor losses (evaporation,) ACF gas		
10.	Scrubbing Liquor Composition 1 Water 2 NaOH	Weight % 99	11. Scrubbing lie 0.5 gal/100012. Liquor press	quor losses (evaporation, 0 ACF gas sure to scrubber: 0.25	PSIA	
	Scrubbing Liquor Composition 1 Water 2 NaOH 3 4 Source of liquor (explain):	Weight % 99	 Scrubbing lie 0.5 gal/1000 Liquor press Pressure dro 	quor losses (evaporation, 0 ACF gas sure to scrubber: 0.25	PSIA	
	Scrubbing Liquor Composition 1 Water 2 NaOH 3 4	Weight % 99	 Scrubbing lie 0.5 gal/1000 Liquor press Pressure dro Liquor flow r 	quor losses (evaporation, 0 ACF gas sure to scrubber: 0.25 op through scrubber: 6	PSIA	
	Scrubbing Liquor Composition 1 Water 2 NaOH 3 4 Source of liquor (explain):	Weight % 99	 11. Scrubbing lie 0.5 gal/1000 12. Liquor press 13. Pressure dro 15. Liquor flow r Des 	quor losses (evaporation, 0 ACF gas sure to scrubber: 0.25 op through scrubber: 6 rates to scrubber:	PSIA in. H ₂ O	
14.	Scrubbing Liquor Composition 1 Water 2 NaOH 3 4 Source of liquor (explain): Batch liquid added to tank	Weight % 99 1	 11. Scrubbing lie 0.5 gal/1000 12. Liquor press 13. Pressure dro 15. Liquor flow r Des Ave 	quor losses (evaporation, 0 ACF gas sure to scrubber: 0.25 op through scrubber: 6 rates to scrubber: sign maximum: 1,000	PSIA in. H ₂ O gal/min	
14.	Scrubbing Liquor Composition 1 Water 2 NaOH 3 4 Source of liquor (explain): Batch liquid added to tank Describe system to be used to supply lide	Weight % 99 1	 11. Scrubbing lie 0.5 gal/1000 12. Liquor press 13. Pressure dro 15. Liquor flow r Des Ave 	quor losses (evaporation, 0 ACF gas sure to scrubber: 0.25 op through scrubber: 6 rates to scrubber: sign maximum: 1,000	PSIA in. H ₂ O gal/min	
14.	Scrubbing Liquor Composition 1 Water 2 NaOH 3 4 Source of liquor (explain): Batch liquid added to tank	Weight % 99 1	 11. Scrubbing lie 0.5 gal/1000 12. Liquor press 13. Pressure dro 15. Liquor flow r Des Ave 	quor losses (evaporation, 0 ACF gas sure to scrubber: 0.25 op through scrubber: 6 rates to scrubber: sign maximum: 1,000	PSIA in. H ₂ O gal/min	
14.	Scrubbing Liquor Composition 1 Water 2 NaOH 3 4 Source of liquor (explain): Batch liquid added to tank Describe system to be used to supply lide	Weight % 99 1	 11. Scrubbing lie 0.5 gal/1000 12. Liquor press 13. Pressure dro 15. Liquor flow r Des Ave 	quor losses (evaporation, 0 ACF gas sure to scrubber: 0.25 op through scrubber: 6 rates to scrubber: sign maximum: 1,000	PSIA in. H ₂ O gal/min	
14.	Scrubbing Liquor Composition 1 Water 2 NaOH 3 4 Source of liquor (explain): Batch liquid added to tank Describe system to be used to supply liquid additional drain and re-fill process	Weight % 99 1	 11. Scrubbing lie 0.5 gal/1000 12. Liquor press 13. Pressure dro 15. Liquor flow r Des Ave 	quor losses (evaporation, 0 ACF gas sure to scrubber: 0.25 op through scrubber: 6 rates to scrubber: sign maximum: 1,000	PSIA in. H ₂ O gal/min	
14.	Scrubbing Liquor Composition 1 Water 2 NaOH 3 4 Source of liquor (explain): Batch liquid added to tank Describe system to be used to supply lide	Weight % 99 1	 11. Scrubbing lie 0.5 gal/1000 12. Liquor press 13. Pressure dro 15. Liquor flow r Des Ave 	quor losses (evaporation, 0 ACF gas sure to scrubber: 0.25 op through scrubber: 6 rates to scrubber: sign maximum: 1,000 rage expected: 500	PSIA in. H ₂ O gal/min gal/min	

18. If the liquor is to be recirculated, describe any treatment performed: 19. Data for Venturi Scrubber: 20. Data for Packed Towers: Throat Dimensions: NA Type of Packing: NA (Specify Units) Superficial Gas Velocity through Bed: Throat Velocity: Na ft/sec **Gas Stream Characteristics** 21. Gas flow into the collector: 22. Gas stream temperature: °F Inlet: ambient 1000 ACF @ 20 °F and 14.2 PSIA Outlet: ambinet °F 23. Gas flow rate: 24. Particulate Grain Loading in grains/scf: Design Maximum: 135 ACFM Inlet: NA ACFM Average Expected: 67 Outlet: NA 25. Emission rate of each pollutant (specify) into and out of collector: Guaranteed OUT IN Minimum Pollutant Collection lb/hr lb/hr grains/acf grains/acf Efficiency 99 A HCl 0.03lb/hr 0.0003lb/hr В С D Е 26. Type of pollutant(s) controlled: □ SO_x Odor Particulate (type): Other: HCl 27. By what method were the uncontrolled emissions calculated? Material Balance Stack Test Pilot Test Other: 28. Dimensions of stack: 4'-9" ft. 5'-1" ft Height Diameter 29. Supply an equilibrium curve and/or solubility data (at various temperatures) for the proposed system. 30. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 100 percent of design rating of collector.

31. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0 – 2	NA, vapor to liquid solvent converstion.	
2 – 4		
4 – 6		
6 – 8		
8 – 10		
10 – 12		
12 – 16		
16 – 20		
20 – 30		
30 – 40		
40 – 50		
50 – 60		
60 – 70		
70 – 80		
80 - 90		
90 – 100		
>100		
reheating, gas humidification):	device inlet and outlet gas conditioni	ng processes (e.g., gas cooling, gas
federal regulations.	salt brine that will be disposed of in acc	
34. Have you included <i>Wet Collect</i> Sheet? Yes	ing (Scrubber) Control Device in th	ne Emissions Points Data Summary

Particulate Distribution

Please propose m	g parameters. Please propose	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the				
MONITORING:		RECORDKEEPING:				
REPORTING:		TESTING:				
MONITORING: RECORDKEEPING: REPORTING:	monitored in order to demonstrate compliance with the operation of this process equipment or air control device. Please describe the proposed recordkeeping that will accompany the monitoring. Please describe any proposed emissions testing for this process equipment on air					
TESTING:	 pollution control device. G: Please describe any proposed emissions testing for this process equipment on air pollution control device. 					
	aranteed Capture Efficiency for eac					
37. Manufacturer's Gua 0.99%	aranteed Control Efficiency for eac	h air pollutant.				
38. Describe all operati	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.				

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form):						
1. Loading Area	Name:					
2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply):						
	□ Marine Vessel	s □ Ra	il Tank Cars	Tank Trucks		
3. Loading Rack	or Transfer Point	Data:				
Number of pu	mps					
Number of liqu	uids loaded					
Maximum nun	nber of marine					
	trucks, tank cars,					
and/or drums	loading at one tim	е				
 4. Does ballasting of marine vessels occur at this loading area? □ Yes □ No □ Does not apply 						
5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point:						
 6. Are cargo vessels pressure tested for leaks at this or any other location? □ Yes □ No If YES, describe: 						
7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):						
Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.		
hours/day						
days/week						

page __ of __ WVDEP-OAQ Revision 03-2007

8. Bulk Liqui	id Data <i>(add pages as r</i>	necessar	y):				
Pump ID No.							
Liquid Name							
Max. daily thre	oughput (1000 gal/day)						
Max. annual t	hroughput (1000 gal/yr)						
Loading Meth	od ¹						
Max. Fill Rate	(gal/min)						
Average Fill T	ime (min/loading)						
Max. Bulk Liq	uid Temperature (°F)						
True Vapor Pi	ressure ²						
Cargo Vessel	Condition ³						
Control Equip	ment or Method ⁴						
Minimum cont							
Maximum	Loading (lb/hr)						
Emission Rate	Annual (lb/yr)						
Estimation Me	ethod ⁵						
¹ BF = Bottom	n Fill SP = Splash Fill	SUB	= Subme	rged Fill			
² At maximum	bulk liquid temperature						
2	d Vessel, C = Cleaned, U	= Unclea	ned (dedi	cated serv	ice) 0 =	other (d	lescribe)
⁴ List as many Sheets):CA = Condensation Refrigeration-A	v as apply (complete and s Carbon Adsorption bsorption TO = Thern ssion-Refrigeration-Condens	submit ap SC = S nal Oxidati	propriate LC crubber (Al	Air Pollutio DA = Lean C bsorption)C eration	on Contro Dil Adsorp RA = Cor	ol Device otionCO = mpressor)
⁵ EPA = EPA MB = Mater	Emission Factor as state ial Balance	d in AP-4	2				

page __ of __ WVDEP-OAQ Revision 03-2007

TM = Test Measurement based upon test data submittal O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING	RECORDKEEPING
REPORTING	TESTING

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

page __ of __ WVDEP-OAQ Revision 03-2007

101 Fairview Avenue Pittsburgh, PA 15238 Email: <u>Sales@v-syst.com</u> Web: <u>www.v-syst.com</u> TELEPHONE: 412-826-9200 Fax: 412-826-8168

Quote #2023-560-H-R

July 26, 2023

Mr. Farley R. Wood, P.E. Vice President of Engineering Empire Diversified Energy 1400 Main Street Follansbee, WV 26037

Subject: Chemical System - Scrubber -- Quote #2023-560-H-R

Dear Mr. Wood,

Please find attached our proposal for the above referenced equipment/project. We appreciate the opportunity to provide a quote for this opportunity.

You will also find our most recent line card attached for your reference. I hope you will think of us during your next project. If you would have any questions or require additional information, please give us a call at (412) 826-9200.

Sincerely,

Russell C. Huffmyer President & CEO V-Systems, Inc. 101 Fairview Avenue Pittsburgh, PA 15238

Enclosure arsr

101 Fairview Avenue Pittsburgh, PA 15238 EMAIL: <u>SALES@V-SYST.COM</u> WEB: <u>WWW.V-SYST.COM</u> TELEPHONE: 412-826-9200 Fax: 412-826-8168

Quotation:

Name:	Empire Diversified Energy	Email/Fax:			
		Phone:			
Street:	1400 Main Street	Date:	July 21, 2023 / Revised July 26, 2023		
te/Zip:	Follansbee, WV 26037	Quote Number:	2023-560	-H-R	
or the op	portunity to provide you with the following	g quote:			
	Item Description			Net Price Each	Total Net Price
ubber T	ank_				
Wall T	hickness, Material: Crosslinked Polyethyl			\$16,500.00	\$16,500.00
•	Steel/Pe (1) Vent - 6" U-Vent PVC (1) Outlet / Overflow - 1" Scrubber Outlet Viton /c-276 (1) Scrubber - 6" Scrubber Assembly P ¹ (1) Fill - 1" Bulkhead Fitting Assembly S Viton Warranty - 5 Years, Full Replacement,	et/Overflow PVC/lith VC/litharge Viton Socket x thread PVC Non-Prorated	narge C/litharge		
Include	es Product Engineering / Permitting Supp	ort for Permit Applic	cation		
<u>k</u>					
	· · ·	•		\$39,675.00	\$39,675.00
•	Steel/pe (1) Fill - 2" Bulkhead Fitting Assembly S (2) Dome Fitting - 2" Bulkhead Fitting A PVC/EPDM (3) Sidewall Fitting - 2" Bolted Flange F 276/EPDM (1) Vent - 6" U-vent with Bolted Flange	Socket x thread PVC ssembly Socket x th itting Socket PVC/c PVC/c-276/EPDM	C/EPDM hread		
	Street: ate/Zip: or the op ubber Ta PolySo Wall T Natura • • • • • • • • • • • • • • • • • • •	Street: 1400 Main Street Itter/Zip: Follansbee, WV 26037 or the opportunity to provide you with the followin Item Description ubber Tank PolyScrub Scrubber Tank, 700 Open Top, Rate Wall Thickness, Material: Crosslinked Polyethyl Natural (yellowish white) • (1) Lid/Manway - 61" Cover Assembly O Steel/Pe • (1) Vent - 6" U-Vent PVC • (1) Outlet / Overflow - 1" Scrubber Outle Viton /c-276 • (1) Scrubber - 6" Scrubber Assembly P' • (1) Scrubber - 6" Scrubber Assembly P' • (1) Scrubber - 6" Scrubber Assembly S Viton • Warranty - 5 Years, Full Replacement, Includes Product Engineering / Permitting Supp k 10,305-Gallon Vertical Tank, Rated: 1.90 Speci Material: Crosslinked Polyethylene (XLPE) +, C white) • (1) Lid/Manway - 24" Manway Cover 24 Steel/pe • (1) Fill - 2" Bulkhead Fitting Assembly S • (2) Dome Fitting - 2" Bulkhead Fitting A PVC/EPDM • (3) Sidewall Fitting - 2" Bolted Flange F 276/EPDM • (1) Vent - 6" U-vent with Bolted Flange <th>Phone: Street: 1400 Main Street Date: Inte/Zip: Follansbee, WV 26037 Quote Number: or the opportunity to provide you with the following quote: Item Description ubber Tank PolyScrub Scrubber Tank, 700 Open Top, Rated: 1.90 Specific Gravity Wall Thickness, Material: Crosslinked Polyethylene (XLPE)+, Colo Natural (yellowish white) (1) Lid/Manway - 61" Cover Assembly Open Top /Stainless Steel/Pe • (1) Lid/Manway - 61" Cover Assembly Open Top /Stainless Steel/Pe (1) Outlet / Overflow - 1" Scrubber Outlet/Overflow PVC/lith Viton /c-276 • (1) Outlet / Overflow - 1" Scrubber Outlet/Overflow PVC/lith Viton /c-276 • (1) Scrubber - 6" Scrubber Assembly PVC/litharge Viton • (1) Scrubber - 6" Scrubber Assembly Socket x thread PVC Viton • Warranty - 5 Years, Full Replacement, Non-Prorated Includes Product Engineering / Permitting Support for Permit Applie k 10,305-Gallon Vertical Tank, Rated: 1.90 Specific Gravity Wall Thic Material: Crosslinked Polyethylene (XLPE)+, Color: Natural (yellow white) • (1) Lid/Manway - 24" Manway Cover 24" Fume Tight /Stair Steel/pe • (1) Lid/Manway - 24" Manway Cover 24" Fume Tight /Stair Steel/pe • (1) Eil - 2" Bulkhead Fitting Assembly Socket x thread PVC • (2) Dome Fitting - 2" Bulkhead Fitting A</th> <th>Phone: 304-914- 304-914- 304-914- Date: Street: 1400 Main Street Date: July 21, 2 http://lip: Follansbee, WV 26037 Quote Number: 2023-560 or the opportunity to provide you with the following quote: Item Description 2023-560 ubber Tank Item Description Item Description 2023-560 ubber Tank PolyScrub Scrubber Tank, 700 Open Top, Rated: 1.90 Specific Gravity Wall Thickness, Material: Crosslinked Polyethylene (XLPE)+, Color: Natural (yellowish white) (1) Lid/Manway - 61" Cover Assembly Open Top /Stainless Steel/Pe (1) Vent - 6" U-Vent PVC (1) Vent - 6" U-Vent PVC (1) Outlet / Overflow - 1" Scrubber Outlet/Overflow PVC/litharge Viton /c-276 (1) Scrubber - 6" Scrubber Assembly PVC/litharge Viton (1) Scrubber - 6" Scrubber Assembly Socket x thread PVC/litharge Viton (1) Scrubber - 5 Years, Full Replacement, Non-Prorated Includes Product Engineering / Permitting Support for Permit Application k 10,305-Gallon Vertical Tank, Rated: 1.90 Specific Gravity Wall Thickness, Material: Crosslinked Polyethylene (XLPE)+, Color: Natural (yellowish white) • (1) Lid/Manway - 24" Manway Cover 24" Fume Tight /Stainless Steel/pe (1) Lid/Manway - 24" Manway Cover 24" Fume Tight /Stainless Steel/pe • (1) Fill - 2" Bulkhead Fitting Assembly Socket x thread PVC/EPDM (2) Dome Fitting - 2</th> <th>Phone: 304-914-2624 Street: 1400 Main Street Date: July 21, 2023 / Revised Puly 21, 202, 202, 202, 202, 202, 202, 202,</th>	Phone: Street: 1400 Main Street Date: Inte/Zip: Follansbee, WV 26037 Quote Number: or the opportunity to provide you with the following quote: Item Description ubber Tank PolyScrub Scrubber Tank, 700 Open Top, Rated: 1.90 Specific Gravity Wall Thickness, Material: Crosslinked Polyethylene (XLPE)+, Colo Natural (yellowish white) (1) Lid/Manway - 61" Cover Assembly Open Top /Stainless Steel/Pe • (1) Lid/Manway - 61" Cover Assembly Open Top /Stainless Steel/Pe (1) Outlet / Overflow - 1" Scrubber Outlet/Overflow PVC/lith Viton /c-276 • (1) Outlet / Overflow - 1" Scrubber Outlet/Overflow PVC/lith Viton /c-276 • (1) Scrubber - 6" Scrubber Assembly PVC/litharge Viton • (1) Scrubber - 6" Scrubber Assembly Socket x thread PVC Viton • Warranty - 5 Years, Full Replacement, Non-Prorated Includes Product Engineering / Permitting Support for Permit Applie k 10,305-Gallon Vertical Tank, Rated: 1.90 Specific Gravity Wall Thic Material: Crosslinked Polyethylene (XLPE)+, Color: Natural (yellow white) • (1) Lid/Manway - 24" Manway Cover 24" Fume Tight /Stair Steel/pe • (1) Lid/Manway - 24" Manway Cover 24" Fume Tight /Stair Steel/pe • (1) Eil - 2" Bulkhead Fitting Assembly Socket x thread PVC • (2) Dome Fitting - 2" Bulkhead Fitting A	Phone: 304-914- 304-914- 304-914- Date: Street: 1400 Main Street Date: July 21, 2 http://lip: Follansbee, WV 26037 Quote Number: 2023-560 or the opportunity to provide you with the following quote: Item Description 2023-560 ubber Tank Item Description Item Description 2023-560 ubber Tank PolyScrub Scrubber Tank, 700 Open Top, Rated: 1.90 Specific Gravity Wall Thickness, Material: Crosslinked Polyethylene (XLPE)+, Color: Natural (yellowish white) (1) Lid/Manway - 61" Cover Assembly Open Top /Stainless Steel/Pe (1) Vent - 6" U-Vent PVC (1) Vent - 6" U-Vent PVC (1) Outlet / Overflow - 1" Scrubber Outlet/Overflow PVC/litharge Viton /c-276 (1) Scrubber - 6" Scrubber Assembly PVC/litharge Viton (1) Scrubber - 6" Scrubber Assembly Socket x thread PVC/litharge Viton (1) Scrubber - 5 Years, Full Replacement, Non-Prorated Includes Product Engineering / Permitting Support for Permit Application k 10,305-Gallon Vertical Tank, Rated: 1.90 Specific Gravity Wall Thickness, Material: Crosslinked Polyethylene (XLPE)+, Color: Natural (yellowish white) • (1) Lid/Manway - 24" Manway Cover 24" Fume Tight /Stainless Steel/pe (1) Lid/Manway - 24" Manway Cover 24" Fume Tight /Stainless Steel/pe • (1) Fill - 2" Bulkhead Fitting Assembly Socket x thread PVC/EPDM (2) Dome Fitting - 2	Phone: 304-914-2624 Street: 1400 Main Street Date: July 21, 2023 / Revised Puly 21, 202, 202, 202, 202, 202, 202, 202,

	COMMERCIAL INDUSTRIAL MUNICIPAL		
101 Fairview Avenue Pittsburgh, PA 1523		Telephone: 41 Fax: 41	2-826-9200 2-826-8168
<u>Tag: Pump</u>			
End: Natura (Impeller) w Ceramic (S	el # TE-10K-MD 3PH 10 HP - Inlet: 3"MPT, Outlet: 2"MPT, Wet al Kynar (Front Housing, Rear Housing), Glass Filled Kynar vith 6.625" Impeller Trim, Viton (Gasket), Carbon (Bushing), haft, Thrust Washers), and driven by a 10 HP, 3500 RPM, 60, TEFC Motor	\$7,920.00	\$15,840.00
<u>Note</u> :			
	me is currently 1 Week, A.R.O. It of March in IL (must ship by LTL due to size and weight)		
<u>Tag: VFD(s)</u>			
2 Xylem, Vari	iable Frequency Drives, 10 HP, 460-3-60, NEMA 3R, BACnet	\$7,780.00	\$15,560.00
<u>Note</u> :			
• Lea	ad Time is currently at 7 Weeks, A.R.O.		
Tag: Chem Feed Skic	<u>1</u>		
driven pum fittings Wye pulsation da Back press	DOR_050_PVCEPDM_PD PP/PE Prominent Skid for solenoid ps, (20"W x 18"D x 40"H) 1/2" PVC/EPDM socket weld pipe and e strainer 500ml PVC calibration column 164ml CPVC/EPDM ampeners Pressure relief valves Pressure gauge with isolator ure valve Plumbing and components rated at 150 PSI of pump pressure.	\$21,505.00 d	\$21,505.00
ĠP	GMXA0708PVT2Q000UDC1300EN Prominent Gamma/X 2 H/102PSI, PVDF/PTFE, bleed valve w/spring, 4-20mA output Prominent CP1 ONE PUMP 120VAC SCADA PANEL		
	Total Quoted Amoun		\$109,080.00

QUOTED BY: RUSS HUFFMYER

If you need further information concerning the products that have been included in the quote, please feel free to contact me at 412-826-9200 and/or rhuffmyer@v-syst.com.

We appreciate the opportunity to provide you with this quote and look forward to working with you on this important project.

Thank you,

Russell C. Huffmyer President & CEO

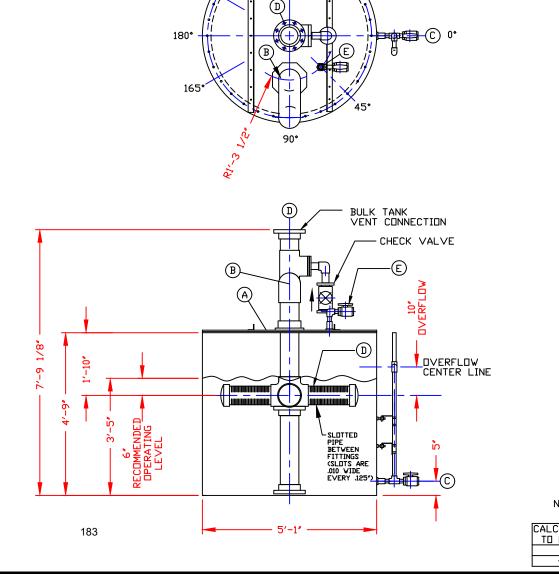
arsr

101 Fairview Avenue Pittsburgh, PA 15238 EMAIL: <u>SALES@V-SYST.COM</u> WEB: <u>WWW.V-SYST.COM</u> TELEPHONE: 412-826-9200 Fax: 412-826-8168

THIS QUOTATION OR SELLER'S ACCEPTANCE OF THIS ORDER IS EXPRESSLY LIMITED TO, AND EXPRESSLY MADE CONDITIONAL ON, BUYER'S ACCEPTANCE OF THE V-SYSTEMS-TEC, INC. STANDARD TERMS AND CONDITIONS OF SALE. A COPY OF THESE TERMS AND CONDITIONS IS AVAILABLE AT <u>https://v-syst.com/terms-and-conditions-of-sale-and-service</u>. SELLER OBJECTS TO ANY DIFFERENT OR ADDITIONAL TERMS.

General Comments

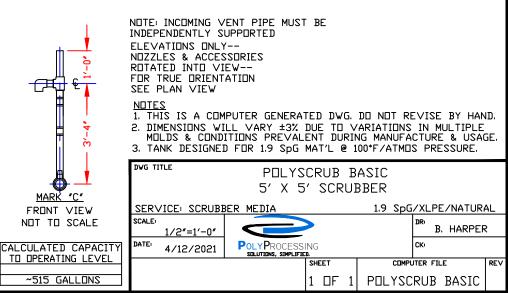
Warranty applies per Sales & Service Terms and Conditions if the following are met:

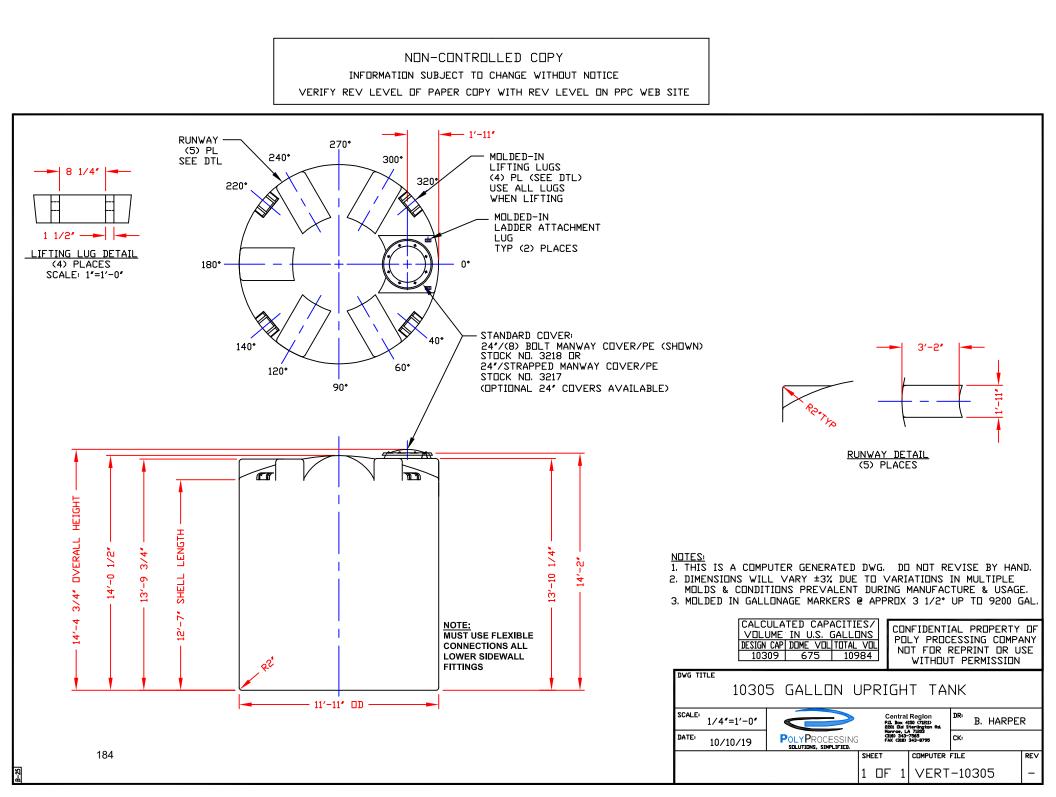

- Equipment installed per industry standards and manufacturer instruction manual.
- Operation of equipment in accordance with manufacturer instruction manual.
- Maintenance and lubrication per manufacturer instruction manual. Note, maintenance log showing dates required.
- Equipment must be stored per manufacturer instruction manual and protected from the weather.

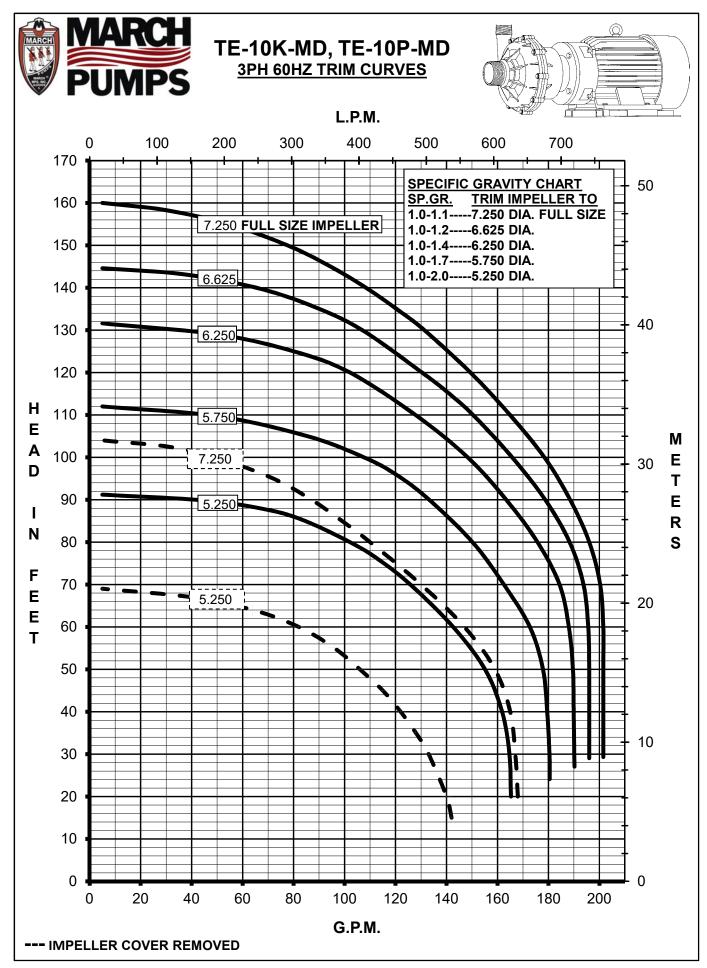
If warranty items occur, V-Systems needs to be contacted in writing before any repairs are made, whereas a mutual course of action will be performed. Equipment cannot be disassembled without V-Systems being present.

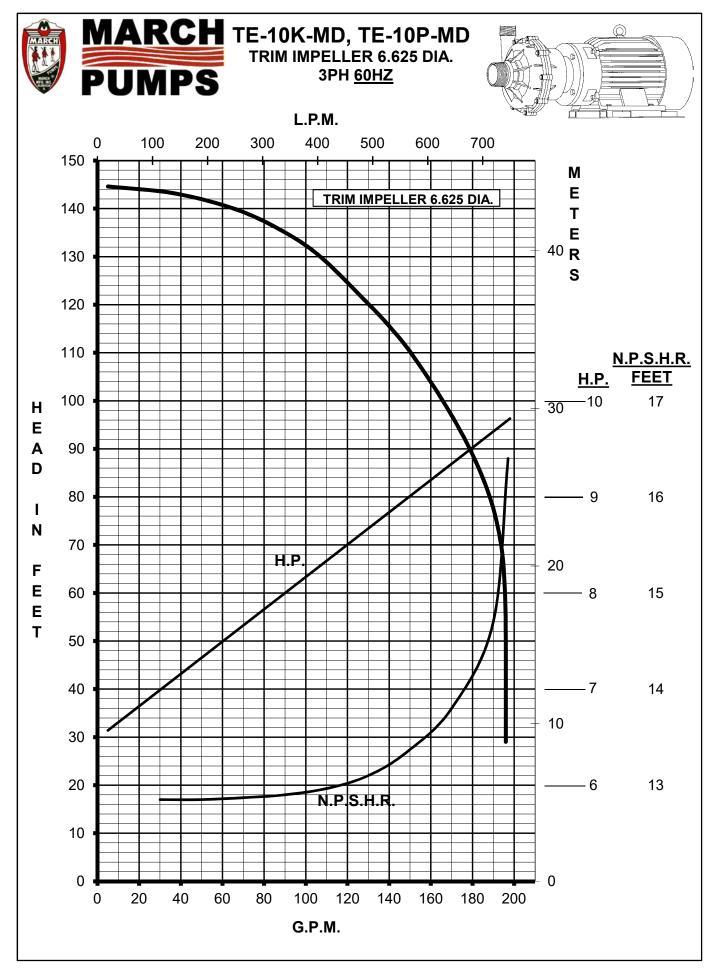
Acknowledged and Accepted by Buyer:

Name:	*Tax Exempt?	Yes No
Signature:	PO #:	
Date:	Ship To:	


*IF APPLICABLE, please send a copy of your company's tax-exempt form. Otherwise, our accounting department will assume that this order is taxable.




270°


210*

(A)

SALES • SERVICE • RENTAL

Condensing, Neo-Condensing, & Non-

Natural Gas, Propane, #2 Fuel Oil, True Duel

Size Range from 55,000 to 12,000,000 BTU(s)

Firetube & Watertube Designs

COMMERCIAL

Steam Boilers

- Efficiencies up to 86%
- Low Pressure & High Pressure Applications
- Firetube Design
- Natural Gas, Propane, #2 Fuel Oil, True Duel Fuel (NG & #2 Oil)
- Size Range: 4 to 2500 HP

Hydronic Boilers

- Models from 55,000 to 6.0 Million Btu/Hr
- Up to 96.2% Thermal Efficiency
- Up to 25:1 Turndown Ratio
- Featuring CON·X·US[®] Remote Connectivity and SMART TOUCH[™] Operating Control

Efficiencies up to 99.1%

Condensing Boilers

Fuel (MG & #2 Oil)

Hydronic Boilers

٠

/STF.

INDUSTRIAL

Additional Offerings:

MUNICIPAL

- Thermal Fluid Heaters
- Ancillary Equipment
- Custom Engineered Systems

Thermal Fluid Heaters

- Models from 125,000 to 4,000,000 Btu/Hr
- Up to 99% Thermal Efficiency
- Up to 10:1 Turndown Ratio
- Direct Vent Flexibility up to 150 Ft.
- SMART TOUCH[™] Operating Control and CON·X·US[®] Remote Connect

Additional Offerings:

- High Efficiency Condensing Type
- Non– Condensing Boilers
- Pool Heaters
- Buffer Tanks, Storage Tanks
- Ancillary Equipment
- Custom Engineered Systems

Additional Offerings:

Hydronic Specialties

Heat Exchangers

Expansion Tanks

Glycol Feeders

ARMSTRONG

Pumps: (Commercial)

- Base Mounted
- Circulating
- Vertical Split Case
- Dual Arm
- Vertical In-Line Centrifugal

Fire Pumps: (Commercial)

- Electric & Diesel Driven
- Systems
- Horizontal Split Case
- Vertical In-Line
- Vertical Turbine
- Skid & House System Packages
- Design Envelope Fire Pump Unit

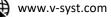
Performance Range:

- Up to 28,000 US GPM flow
- Up to 500 Ft. head

Temperature:

• 300 Degrees Fahrenheit <u>Power Range/Sizes:</u>

• 1/12 HP to 1250 HP


- 3/4" to 20"
- Fire Pump Systems of 50 GPM up to 3,000 GPM

Parts and Service:

When you need Start-up, Repair, or Aftermarket Parts, it's essential to rely on factory trained service professionals who not only understand the capabilities of your equipment but the complex nature of your business. V-Systems provides comprehensive and professional service & laser alignment for pumps, boilers, equipment, and systems.

Contact:

G

Products: Boiler Feed Units, Condensate Pump Systems, DA Systems, Vacuum Systems, and Flash Tanks Performance: 1/3 HP to 50 HP

Products: Submersible Non-Clog Pumps, Effluent Pumps, Grinder Pumps, Motor and Electric-Driven Self Priming Pumps, Fountain Pumps, Portable Trash Pumps, and Pump Parts

Performance: 1/4 HP to 200 HP

Products: Air & Dirt Separators, Air Vents, Dirt/Sediment Removal Devices, and Hydraulic Separators

Size: 1/2" to 36"

Products: Fans & Ventilators, Economizers & Heat Exchangers, Draft Control, Chimney & Grease Duct, Dampers & Accessories Size: 1" to 30"

Products: Industrial-strength chimneys for heating boilers, domestic water boilers, and low to high temperature hydronic heating applications

Size: 1" to 30"

Products: Heat Transfer (Heat Exchanger), Filters and Filter Housings, and Non-Hydronic Custom Tanks

<u>Products</u>: Metal Hoses, Expansion Joints, Seismic Connectors, Expansion Loops, and Pipe Guides <u>Size</u>: 1/2" to 24"

<u>Products</u>: Thermostatic Mixing Valves <u>Size</u>: 1/2" to 4"

<u>Products</u>: Cooling Towers, Packaged Cooling Systems, Air Strippers, Degasifiers, Odor Control Screens

Performance: 10 to 2000 ton Cooling capacity

- 4 x 2 & 4 x 4
- Carryall 100, 300, 500, 700, 1500, & 1700 Series
- Packages & Accessories

- Electric, Diesel, and Gas
- New, Used, Leasing
- Service & Parts

- V-Systems is your local Club Car Carryall Cargo Utility Vehicle Dealer! Vehicles for every job, give us a call to
- /ehicles for every job, give us a call to find out more.

PUMPS (Commercial)

Armstrong Fluid Technology	LMI
Ashland Pump	MTH Pumps
Barmesa Pumps	Pioneer Pumps
Carter Pump	Pumps 2000
CRANE Pumps	SHIPCO Pumps
EBARA Pumps	Syncroflo
Xylem / G & L Pumps	Stancor / Flow Solutions
Hydroflo Pumps (Taco Group)	Tigerflow

BOILERS & WATER HEATERS

Fulton Lochinvar RECO USA

ELECTRICAL

Anchor Scientific Baldor Motors (ABB) CSI Controls Danfoss Nidec Motor Corporation Ohio Electric Control, Inc. Deltatherm SEE Water Controls Square D by Schneider TECO © Westinghouse WEG © Motors

TANKS, BASINS, & SEPARATORS

AK Industries American Wheatley Containment Solutions Elbi of America Highland Tank John Wood Company Niles Steel Tank Spirotherm TOPP Industries Wessels Company

Milwaukee Valve

Ohio Valve Company

Sure Flow Company

Titan Flow Control

Weiss Instruments

VALVES

Apollo Valves Flo-Tite Flomatic Valves Holby Valve Co. Macon Controls

GAUGES

Trerice

HYDRONICS

Gerand Engineering Pro Hydronic Specialties Tunstall

FIRE PROTECTION

Armstrong

PIPING

Energy Task Force (Underground Piping Solutions)

WATER / WASTEWATER TREATMENT

AquaPhoenix Scientific / GTP	l
Aqua Turbo Systems	l
Active Water Solutions	I
Concord Screen	I
Custom Conveyor Corp.	I

EasyWater EcoVerde Equip Water Modular Water Systems Neptune

Tornatech

OTHER

American Made Systems, Inc.: UHMW Sheets & Liners for Dump Trucks and Trailers

- Diversified Plastics, Inc.: Sprockets, Shear Pin Sprockets, Replacement Teeth, Carry & Return Wear Shoes, Wear Strips, Flight Filler Blocks, Take – Up Arms, Chain for Collector
- Ohio Medical Products: Medical Gas Systems, Portable Suction, Flowmeters, Oxygen Analyzers, Alarms, Suction Regulators

Warren Design & Build: Machining, Fabrication, and Robotics

Contact:

Pittsburgh, PA 15238

www.v-syst.com

412-826-9200

CHECK OUT OUR NEW WEBSITE

PLEASE CALL OUR OFFICE FOR ALTERNATE MANUFACTURERS AND OTHER OPTIONS

2401 Parkman Road NW Warren, OH 44485

(330) 394-4747, Ext. 1502

About Us	Facilities & Equipment	Bottom Line
 Warren Design & Build is a multi- disciplined machine shop and engineering design services company. We specialize in emergency repairs of part and machines, as well as building custom machines. Our team is comprised of 10 machinists, 4 welders, 4 mechanical and electrical design engineers with in 	Located in Warren Ohio, WDB's 38,000 square foot corporate facility houses a variety of engineering, machining, assembly, and fabricating capabilities. Our large assembly area can handle everything from a single station to a full assembly line with all utilities available utilizing ceiling drops from electrical bus bar and pneumatic lines covering most of the	With WDB's unique position of having all Design, Machining, Paint, Mechanical and Electrical Assembly under one roof, our engineering team has the ability to assist in all aspects of the program build cycle to ensure design integrity; and when necessary, capture all changes and updates as required by manufacturing, and/or requested by the customer, in a very
and electrical design engineers with in- house PLC and computer systems programming capability.	floor space. Located in the Northeast Ohio Manufacturing Corridor we also have the availability to outsource many special processes that can be brought onboard on short notice to assist in peak design periods or on special projects.	economical time frame. With some of Northeast Ohio's most talented, experienced, and highly trained engineering and manufacturing staff we can help guide you with suggestions and input that will help maximize your project's efficiency, while often lowering costs.

Est. 1978

201 Chambers Street McKees Rocks, PA 15136

(412) 771-5160

About Us	Facilities & Equipment	Bottom Line
AJ Drgon, a subsidiary of Custom Machine and Design is a multi- disciplined machine shop and engineering design services company. We specialize in emergency machining services and repairs of parts and machines, as well as building custom machines. Our team is comprised of 4 machinists, 1 welder and 1 mechanical design	Located in McKees Rocks PA, AJ Drgon's 8,000 square foot facility houses a variety of engineering, machining, assembly, and fabricating capabilities. Located near downtown Pittsburgh, we also have the availability to outsource many special processes that can be brought onboard on short notice to assist in peak design periods or on	With AJ Drgon's unique position of having all Design, Machining, Paint, Mechanical and Electrical Assembly under one roof, our engineering team has the ability to assist in all aspects of the program build cycle to ensure design integrity; and when necessary, capture all changes and updates as required by manufacturing, and/or requested by the customer, in a very economical time frame.
engineer. Additionally, we partner with our sister company, Warren Design & Build for many other services.	special projects.	With some of Pittsburgh's most talented, experienced, and highly trained engineering and machining staff we can help guide you with suggestions and input that will help maximize your project's efficiency, while often lowering costs.

- <u>Emergency Repair</u>: We fix all electro-mechanical devices. We have field tech service and inhouse staff that will repair all forms of equipment.
- <u>Water Jet:</u> We have a water jet for cutting all types of material in almost any shape.
- <u>Design Engineering</u>: Senior mechanical designers. Each is ready to provide support from concept to build, installation and runoff of the solution to your manufacturing or operational bottleneck.
- <u>Electrical Engineering</u>: Electrical engineers ready to design electrical solutions, write control programming, and perform data analytics.
- <u>Robotic Cell Design and Assembly:</u> Project design & management of all needs and programming related to robot cells.
- <u>Machining</u>: We offer a wide variety of precision machining capabilities, including CNC turning and milling, general machining, grinding, and boring mill work. Our machining capabilities may be used for both short-run and sustained production work.
- <u>Fabrication:</u> We can meet all your prototyping and production needs with complete sheet metal and welding services that include quick delivery on small quantity prototypes, close tolerance fabrications and high-volume production runs.
- <u>Assembly:</u> We can meet your entire contract manufacturing needs with our diverse assembly capabilities and wide range of electrical, mechanical, and electro-mechanical assembly services, ranging from special, one-of-a-kind automation machinery to ongoing, low to medium volume production assembly. Our assembly capability includes turn-key production of build-to-print assembly work, including full management of key suppliers. WDB is capable of handling full production volumes.
- <u>Painting</u>: Using high-solids and water-based materials, our state-of-the-art paint shop can produce finishes from Class 1A to Mil-Spec, including textured finishes color matched to your specifications. Powder coated finishes also available.

MECHANICAL AUTOMATION DESIGN

A team of experienced and talented engineers will design a solution to your biggest problem or any bottleneck in your factory.

MACHINE BUILDING

We have a complete machine shop and assemblers to build or rebuild equipment for your factory.

CONTROLS PROGRAMMING

We can support your engineering with control programming support.

ON-SITE AUTOMATION DESIGN

We will come to your site to build solutions or support your existing staff.

COMPLETE MACHINE SHOP

Our machine shop has experienced machinists that use CNC vertical machining centers and lathes to make complex parts in very quick turnaround times.

AUTOMATION

We create automation for your manufacturing bottlenecks.

ATTACHMENT N

Supporting Emission Calculations

1. OVERALL EMISSIONS CALCULATIONS ALL DEVICES

Plastic waste has significant variation in form and quantity. It seems the best way to describe it as a heterogeneous mixture of solids and semi-solids. Literature review showed a References to the papers are given at the end of this section. They state a heterogeneous plastic waste composition based on the is repeated in Table 2. Municipal Solid Waste (MSW) data by Stepien, et.al., ^{[2] is} given for comparison purposes.

<u> </u>	-
Plastic Waste Composition	Bayer Waste Range
	(wt, %)
С	50.5
H2	3
O2	21.1
N2	1.9
S	0.46
-Cl	1.2
Oxide	
Metal	
H2O	21.54
HHV (Btu/lb)	

Table 2. Range of Heterogeneous Properties of Plastics¹⁰.

Composition of the plastic waste and the pyrolysis output are shown in Table 3. Pyrolysis emissions are also shown for plastic waste by Durcharme¹³ and MSW by Technotherm¹⁴.

Table 3. Plastic Composition and Pyrolysis Output

Component Plastics	Plastics Composition (Wt, %)	Pyrolysis Component	Pyrolysis Syngas, (Wt, %)	Pyrolysis ^ı Syngas, (Wt, %)	Pyrolysis [⊮] Syngas, (Wt, %)
02	22.78	02	1.54	2.64 ^[1]	4.21
С	20.50	CO2	19.25	18.2	34.77
H2	20.50	CO	30.80	27.9	30.81
N2	2.85	CH4	2.16	1.8	21.49
CaO	1.59	H2	11.55	37.8	3.47
K2O	1.52	C14H30 (oil)	3.85		
S	2.85	C20H42 (tar)	3.85		
Na2O	4.58	N2	2.19		3.47
CI	8.54	CaO	1.23		
MgO	2.39	K2O	1.93		
Fe2O3	1.48	Na2O	4.38		
H2O	2.03	HCI	6.58	0.03	
C2H4	8.39	H2O	4.38		
		MgO	1.84		
		Fe2O3	2.28		
		SO2	2.19		
Total	100		100		

***Rounding errors may apply.

Pyrolysis syngas and solids can vary about 30% or greater based on the input feed. An attempt was made to produce a syngas composition where some of the elements and compounds were near the middle and greater than the middle of the feed composition shown in Table 2. Metal-oxides are shown as individual compounds instead of just the term "glass".

Once a syngas was established within the variations described, the next step was to combust those available compounds through the Engine, Vitrifier and Thermal Oxidizer. Stoichiometric combustion equations are shown below:

2CO	+	02	\rightarrow	2CO2		
2C14H30	+	4302	\rightarrow	28CO2	+	30H2O
2C20H42	+	6102	\rightarrow	40CO2	+	42H2O
CH4	+	02	\rightarrow	CO2	+	H2O
2H2	+	02	\rightarrow		+	2H2O

Emissions for all devices are shown in Figure 2 (see Attachment 2, end of this TAB) and are shown as an expanded Block Flow Diagram in the following narrative.

The daily throughput for the pyrolysis process system shall be 70 U.S. tons per day and will operate twenty-four (24) hours a day, seven (7) days a week, for 310 days per year. This equates to 85% availability for processing equipment. All calculations are based on 70 tons/day which equate to only four (4) tractor-trailer loads. All major chambers have the design life of twenty (20) years before replacement.

Throughput calculations are as follows:

Calculation 1: Throughput

- Hourly Throughput: (2,646.703 kg/hour) / (2.204 lb/kg) = 5,833.33 lb/hr
- Annual Throughput
 - 5,833.33 lb/hr x 24 hr/day x 310 days/year x 1 ton/2000 lb = 21,699.99 tons/year \rightarrow 21,700 Tons/year
- Annual Throughput: 21,700 Tons/year

(lbs/hr x 24 hr/day x 310 day/yr) / 2000 lbs/ton = tons/year (annual output)

Table 5: Hourly, Daily and Annual Emission Outputs (from model results Figure 2)

Offgas/Solids Component	kg/hour	lbs/hr	lbs/day	US tons/yr
CO2	2,546.81	5,613.18	134,716.31	20,881.03
H2O	5,725.07	12,618.06	302,833.41	46,939.18
N2	22,861.83	50,387.47	1,209,299.24	187,441.38
Ar	293.33	646.51	15,516.18	2,405.01
CAO	3.25 x10 ⁻⁷	7.16 X 10 ^{.7}	1.72 x 10⁵	2.66 x 10⁻⁵
K2O	5.11 x 10³	1.13 x 10 ⁻⁷	2.70 x 10⁻6	4.19 x 10 ⁻⁷
NA2O	1.16 x 10 ⁻⁷	2.56 x 10 ⁻⁷	6.14 x 10⁴	9.51 x 10⁻
HCI	1.74 x 10⁻	3.84 x 10⁻⁵	9.21 x 10⁵	1.43 x 10⁵
H2O	0.0116	0.0256	0.0614	0.0951
MgO	4.87 x 10- ^₅	1.07 x 10 ⁻⁷	2.58 x 10⁻⁵	3.99 x 10 ⁻⁷
FE2O3	6.03 x 10⁻ଃ	1.33 x 10 ⁻⁷	3.19 x 10⁻⁵	4.95 x 10 ⁻⁷
SO2	5.80 x 10⁻	1.28 x 10⁵	3.07 x 10⁴	4.76 x 10⁵
NO	3.00 x 10⁻⁵	6.61 x 10⁵	2.69 x 10 ⁻	4.12 x 10 ^{-₄}
NO2	4.00 x 10⁻⁵	8.82 x 10⁻⁵	3.66 x 10⁻₃	5.68 x 10⁴
TOTAL	31,427.06	69,265.24	1,662,365.77	257,666.69
SOLIDS OUTPUT				
CAO	32.46	71.54	1,717.06	266.14
K2O	51.06	112.53	2,700.67	418.60
NA2O	116.04	255.75	6,137.88	951.37
MgO	48.74	107.41	2,577.91	399.58
FE2O3	60.35	133.00	3,192.02	494.76
NACL	280.22	617.60	14,822.52	2,297.49
NA2SO3	129.54	285.51	6,852.15	1,062.08
TOTAL	718.39	1,583.34	38,000.21	5,890.03

Calculations Used:

kg/hr x 2.204 lbs/kg = lb/hr

CALCULATION WORKSHEET

CLIEN1Empire Green Generation, LLC	DATE	9/6/2023

SUBJECT Empire Green Generation Plastics Pyrolysis Facility - Syngas Emissions from Pyrolysers

Pyroliser Syngas Emissions

Component	mol %	Molecular weight (kg/kmol)	60°F, 14.7psig Density (lb/scf)	wt%	normalized wt%	lb/hr	tpy	kJ/kg of componen t	kJ/kg
Oxygen	0.18	32	0.08441	0.18	0.37	7.77	28.90	0	0
Carbon dioxide	20.00	44.01	0.11666	27.48	56.49	1186.19	4412.6	0	0
Carbon monoxi	10.60	28.01	0.073866	9.27	19.05	400.14	1488.5	10122	1928.69
Methane	18.40	16.04	0.042358	9.22	18.95	397.99	1480.5	55530	10523.9
Hydrogen	12.00	2	0.0053104	0.75	1.54	32.37	120.43	141790	2185.87
Nitrogen	2.00	28.013	0.07386	1.75	3.60	75.54	281.01	0	0
Overall	63.18	150.073	0.0652	48.65	100.00	2092	7783.1		14638.4

Syngas Speciation Results/Inputs						
Gross Calorific Value	31,626	kJ/kg				
	13,567.54	Btu/lb				
Gas Yield	36	% mass				
Feed Input to Facility	70	tpd plastics				
Gas Produced	25.2	tpd gas produced				

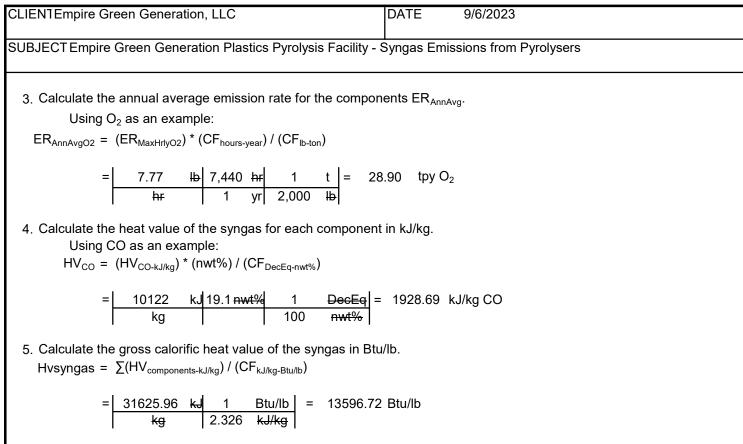
Source: Provided by Technotherm. See Overall Emission Calculations Note: All Gases will be routed to the engine and/or RTO prior to release into the atmosphere. Density Source: http://webbook.nist.gov/chemistry/fluid/

6. Conversion Factors:

35.31 ft3/m3 0.4536 kg/lb 1.00E+06 scf/MMscf 1.00E+06 Btu/MMBtu 60 min/hr 7440 hrs/yr (based on 310 days per yr as given by Technotherm) 2.326 kJ/kg per Btu/lb 2000 lb/ton

Calculations

Calculate the estimated amount of syngas produced from the pyrolysers in tpd. F


Calculate the maximum hourly emission rate for the components ER_{MaxHrlv}.

Using O₂ as an example.

$$ER_{MaxHrlyO2} = (nwt\%_{O2}) / (CF_{DecEq-nwt\%}) * (FR_{Gas-tpd}) * (CF_{lb-ton}) / (CF_{hr-day})$$

=	0.37	nwt%	1	DecEq	25	ton	2000	lb	1 day	=	7.77	lb/hr O ₂
			100	nwt%	day		1	ton	24 hrs			
Calculations (co	ontinued	l)										

CALCULATION WORKSHEET

Empire Green Generation, LLC Plastic Recycling Pyrolysis Facility Generator Emissions Calculations

Inputs/Assu	mptions
Number of Engines	4
Control Device	(none)
Gross Calorific Value	13,174.00 Btu/lb
verage Amount of Gas Produced	36 mass % gas
Amount of Plastics Processed	70 tpd plastics
Amount of Gas Produced per day	25.0 tpd of gas
Amount of Gas to Each Engine	520 lb/hr of gas
Fuel Consumption	6,849 Btu*1000/hr
Density	0.0844 lb/scf
Engine Rating	320 kW
Horse Power	429 HP
Annual Operating Hours	7,440 hours
Fuel Heat Value	1,112 Btu/scf
NOx Factor	1.09 g/HP-hr
CO Factor	2.18 g/HP-hr
VOC Factor	0.76 g/HP-hr
PM10 Factor	1.09E-02 lb/MMBtu
SO2 Factor	6.41E-04 lb/MMBtu
CO2 Factor	52.07 kg/MMBtu
N2O Factor	0.00320 kg/MMBtu
CH4 Factor	0.0006 kg/MMBtu

	Per Engine		Total	
Pollutant	lb/hr	tpy	lb/hr	tpy
NOx	1.03	3.84	4.12	15.34
СО	2.06	7.67	8.25	30.68
VOC	0.72	2.68	2.89	10.74
PM	0.07	0.28	0.30	1.11
SO2	0.004	0.02	0.02	0.07
CO2	786.23	2,925	3,145	11,699
N2O	0.05	0.18	0.19	0.72
CH4	0.01	0.04	0.04	0.14
CO2e	790.28	2,940	3,161	11,759

Notes

1) All engine emissions will be subjected to the Regenerative Thermal Oxidiser (RTO) prior to emitting to atmo

2) Engines will run on syngas only.

- 3) NO_x, CO and VOC factors are from 40 CFR 60 Subpart JJJJ, Table 1 and adjusted for syngas using a ratio Heating Values. (per 40 CFR 60.4233(e))
- 4) PM and SO_2 factors are from AP-42, Table 3.2-2, 5th Edition, July, 2000 and adjusted for syngas.
- 5) Emission Factor for CO2 is from 40 CFR 98, Table C-1 Default CO2 Emissions Factors
- 6) Emission Factor for N₂O and CH₄ are from 40 CFR 98, Table C-2, Default CH4 and N2O Emission Factors.
- 7) NOx Emissions, lb/hr = Emission Factor, lb/MMBtu, x Fuel Consumption, Btu*1000/hr, / 1000 (MMBtu/Btu*1
- 8) CO₂ Emissions, lb/hr = Emission Factor, kg/MMBtu, x 2.2046 lb/kg, x Fuel Consumption, Btu*1000/hr, /

1000 (MMBtu/Btu*1000)

9) NOx Emissions, tons/yr = NOx Emissions, lb/hr, x 7,440 hrs/yr (310 days/yr), / 2,000 lb/ton

10) Fuel Consumption based on estimates provided by Technotherm. See Overall Emissions Calculations. 11) PM = PM, PM10, and PM2.5

12) CO2e calculated using the following: $(ER_{CO2} * 1) + (ER_{N2O} * 25) + (ER_{CH4} * 298)$

Empire Green Generation, LLC Plastic Recyling Pyrolysis Facility Generator Emissions Calculations

Number of Engines:	4
Engine Type:	4SLB
15639	13,174
56.68	6,849
Amount of Plastics Proces>rsepower (hp):	tpd plastics
Annual Aggregate Heat Input (MMBtu/yr):	90,230
Hourly Aggregate Heat Input (MMBtu/hr):	6.85

		Emission		Per Engine		Total		
Pollutant	CAS	Factor Ib/MMBtu	lb/hr	lb/yr	tons/yr	lb/hr	lb/yr	tons/yr
1,1,2,2-Tetrachloroethane	79-34-5	4.00E-05	2.74E-04	3.61E+00	1.80E-03	1.10E-03	1.44E+01	7.22E-03
1,1,2-Trichloroethane	79-00-5	3.18E-05	2.18E-04	2.87E+00	1.43E-03	8.71E-04	1.15E+01	5.74E-03
1,3-Butadiene	106-99-0	2.67E-04	1.83E-03	2.41E+01	1.20E-02	7.31E-03	9.64E+01	4.82E-02
1,3-Dichloropropene	542-75-6	2.64E-05	1.81E-04	2.38E+00	1.19E-03	7.23E-04	9.53E+00	4.76E-03
2,2,4-Trimethylpentane	540-84-1	2.50E-04	1.71E-03	2.26E+01	1.13E-02	6.85E-03	9.02E+01	4.51E-02
2-Methylnaphthalene	91-57-6	3.32E-05	2.27E-04	3.00E+00	1.50E-03	9.10E-04	1.20E+01	5.99E-03
Acenaphthene	83-32-9	1.25E-06	8.56E-06	1.13E-01	5.64E-05	3.42E-05	4.51E-01	2.26E-04
Acenaphthylene	203-96-8	5.53E-06	3.79E-05	4.99E-01	2.49E-04	1.52E-04	2.00E+00	9.98E-04
Acetaldehyde	75-07-0	8.36E-03	5.73E-02	7.54E+02	3.77E-01	2.29E-01	3.02E+03	1.51E+00
Acrolein	107-02-8	5.14E-03	3.52E-02	4.64E+02	2.32E-01	1.41E-01	1.86E+03	9.28E-01
Benzene	71-43-2	4.40E-04	3.01E-03	3.97E+01	1.99E-02	1.21E-02	1.59E+02	7.94E-02
Benzo(b)fluoranthene	205-99-2	1.66E-07	1.14E-06	1.50E-02	7.49E-06	4.55E-06	5.99E-02	3.00E-05
Benzo(e)pyrene	192-97-2	4.15E-07	2.84E-06	3.74E-02	1.87E-05	1.14E-05	1.50E-01	7.49E-05
Benzo(g,h,i)perylene	191-24-2	4.14E-07	2.84E-06	3.74E-02	1.87E-05	1.13E-05	1.49E-01	7.47E-05
Biphenyl	92-52-4	2.12E-04	1.45E-03	1.91E+01	9.56E-03	5.81E-03	7.65E+01	3.83E-02
Carbon Tetrachloride	56-23-5	3.67E-05	2.51E-04	3.31E+00	1.66E-03	1.01E-03	1.32E+01	6.62E-03
Chlorobenzene	108-90-7	3.04E-05	2.08E-04	2.74E+00	1.37E-03	8.33E-04	1.10E+01	5.49E-03
Chloroform	67-66-3	2.85E-05	1.95E-04	2.57E+00	1.29E-03	7.81E-04	1.03E+01	5.14E-03
Chrysene	218-01-9	6.93E-07	4.75E-06	6.25E-02	3.13E-05	1.90E-05	2.50E-01	1.25E-04
Ethylbenzene	100-41-4	3.97E-05	2.72E-04	3.58E+00	1.79E-03	1.09E-03	1.43E+01	7.16E-03
Ethylene Dibromide	106-93-4	4.43E-05	3.03E-04	4.00E+00	2.00E-03	1.21E-03	1.60E+01	7.99E-03
Fluoranthene	206-44-0	1.11E-06	7.60E-06	1.00E-01	5.01E-05	3.04E-05	4.01E-01	2.00E-04
Fluorene	86-73-7	5.67E-06	3.88E-05	5.12E-01	2.56E-04	1.55E-04	2.05E+00	1.02E-03
Formaldehyde	50-00-0	5.28E-02	3.62E-01	4.76E+03	2.38E+00	1.45E+00	1.91E+04	9.53E+00
Methanol	67-56-1	2.50E-03	1.71E-02	2.26E+02	1.13E-01	6.85E-02	9.02E+02	4.51E-01
Methylene Chloride	75-09-2	2.00E-05	1.37E-04	1.80E+00	9.02E-04	5.48E-04	7.22E+00	3.61E-03
n-Hexane	110-54-3	1.11E-03	7.60E-03	1.00E+02	5.01E-02	3.04E-02	4.01E+02	2.00E-01
Naphthalene	91-20-3	7.44E-05	5.10E-04	6.71E+00	3.36E-03	2.04E-03	2.69E+01	1.34E-02
Phenanthrene	85-01-8	1.04E-05	7.12E-05	9.38E-01	4.69E-04	2.85E-04	3.75E+00	1.88E-03
Phenol	108-95-2	2.40E-05	1.64E-04	2.17E+00	1.08E-03	6.58E-04	8.66E+00	4.33E-03
Pyrene	129-00-0	1.36E-06	9.31E-06	1.23E-01	6.14E-05	3.73E-05	4.91E-01	2.45E-04
Styrene	100-42-5	2.36E-05	1.62E-04	2.13E+00	1.06E-03	6.47E-04	8.52E+00	4.26E-03
Toluene	108-88-3	4.08E-04	2.79E-03	3.68E+01	1.84E-02	1.12E-02	1.47E+02	7.36E-02
Vinyl Chloride	75-01-4	1.49E-05	1.02E-04	1.34E+00	6.72E-04	4.08E-04	5.38E+00	2.69E-03
Xylenes	1330-20-7	1.84E-04	1.26E-03	1.66E+01	8.30E-03	5.04E-03	6.64E+01	3.32E-02
		Total HAPS	0.49	6,511.54	3.26	1.98	26,046.16	13.02

HAP Emissions based on AP-42, 5th ed. (July 2000) emission factors for 4SLB engine. Please Note: All engine emissions will be subjected to the Regenerative Thermal Oxidiser (RTO) prior to emitting to atmosphere.

Hourly and Annual Aggregate Heat Input (MMBtu/hr, MMBtu/yr)

_	13174 hr	6849 Btu*1000	MMBtu	= 90230 MMBtu/yr
	yr	hr	1000 Btu*1000	- 90230 WiWibtu/yi
	6849 Btu*1000	MMBtu	0.0514	104-4
1	hr	1000 Btu*1000	= 6.85 MN	/IBtu/nr

Sample Calculations for Formaldehyde

_	0.0528 lb MMBtu	6.85 MMBtu hr	= 0.36 lb/hr	
_	0.0528 lb MMBtu	90230 MMBtu yr	= 4764 lb/yr	
_	0.00111 lb MMBtu	90230 MMBtu yr	ton 2000 lbs	- = 4764.15 tpy

CALCULATION WORKSHEET

CALCULATION WORKSHEET			JOB NUMBER 212C	-PB-02161.100	f 1.		
	llansbee V				-		
		ds Particula	ite matter e	emissions			
BASED ON Client provided information			DRAWING NUMBER	Roadway Layout.pdf			
Y		CHEC	KED BY			DATE	
'JPlachy		AMC	Bradovich				4/7/202
<u>Objective:</u>	Calcula	ite the Parti	culate Mat	ter emissions	s associated with vehic	le traffic.	
Inputs and	Assumptio	ons:					
1. WVDEP	Input data	а					
	-	6 Truck	Ford	F250			
	PM	PM-10	PM	PM-10			
k =	0.80	0.36	0.80	0.36			
s =	4.8	4.8	4.8	4.8			
S =	5	5	5	5			
w =	11.4	11.4	3.5	3.5			
w =	10	10	10	10			
p =	140	140	140	140			
VMT/trip =	0.07	0.07	0.29	0.29			
trips/hr =	10.0	10.0	4	4			
	-1 - 4						
2. Vehicle		10		4			
no. Wheels =	ľ			7			
3. AP-42 F			•				
E =	k * 5.9 * (s/	12) * (S/30)	* (W/3)^0.7	* (w/4)^0.5 * ((365 - p)/365)) = lb/VMT		
4. WVDEP	emissions	s lb/hr					
E(lb/hr) =	(lb/VMT)*(\	/MT/trip)*(tri	ps/hr)				
		/MT/trip)*(tri		00 lb)			
Calculation	<u>s:</u>						
1. Calculat	e PM emis	ssion for Cl	ass 6 vehio	cle			
E =	k * 5.9 * (s/	12) * (S/30)	* (W/3)^0.7	* (w/4)^0.5 * ((365 - p)/365)) = lb/VMT		
	Class	6 Truck	Ford	F250			
	Class						
	PM	PM-10	PM	PM-10			
k =		PM-10 0.36	PM 0.80	PM-10 0.36			
k = s =	PM						
	PM 0.80	0.36	0.80	0.36			
s =	PM 0.80 4.80	0.36 4.8	0.80 4.80	0.36 4.8			
s = S =	PM 0.80 4.80 5	0.36 4.8 5	0.80 4.80 5	0.36 4.8 5			
s = S = W = w =	PM 0.80 4.80 5 11.4	0.36 4.8 5 11.4	0.80 4.80 5 3.5	0.36 4.8 5 3.5			
s = S = W = w = p =	PM 0.80 4.80 5 11.4 10	0.36 4.8 5 11.4 10	0.80 4.80 5 3.5 10	0.36 4.8 5 3.5 10			
s = S = W = w =	PM 0.80 4.80 5 11.4 10 140	0.36 4.8 5 11.4 10 140	0.80 4.80 5 3.5 10 140	0.36 4.8 5 3.5 10 140			

ATTACHMENT O

Monitoring/Recordkeeping/Reporting/Testing Plans

ATTACHMENT O - MONITORING, RECORDING, REPORTING, AND TESTING PLANS

Plan Type	Emission Unit	Pollutant	Requirements	Frequency	Method of Measurement	Regulatory Reference
Recordkeeping	Regenerative Thermal Oxidizer (100)	PM/PM _{2.5} /PM ₁₀ VOC and criteria pollutants	Control of visible particulate emissions Temperature monitoring	Daily Continuous	Visual	40 CFR 63, Subpart FFFFF 40 CFR 60.18
Recordkeeping	Pyrolysers (300)	Syngas	Operate and maintain the source in a manner consistent with safety and good air pollution control practices to minimize emissions. Monitor for temperature.	Continuous during operations Weekly and monthly maintenance	Operate the control equipment in accordance with manufacturer's recommendations	N/A
Monitoring/ Recordkeeping	Scrubbers (420)	PM/PM _{2.5} /PM ₁₀ Solids	Pressure Drop monitoring	Hourly average Annual	The pressure drop across the system, PM production rate Catalyst Management Plan will monitor Catalyst Activity by pulling sample blocks and sending them to the laboratory for activity testing.	N/A

ATTACHMENT P

Public Notice

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Empire Green Generation, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Modification of Permit R13-3555 for a Plastics Recycling Plant located on 801 Koppers Road, near Follansbee, in Brooke County, West Virginia. The latitude and longitude coordinates are: 40.338690 N, -80.605429 W

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be less than 24.0 tons per year (tpy) of VOCs, 14.0 tpy of PM, 99.0 tpy of CO, 24.0 tpy of NO_X, 2.0 tpy of HAPs and 39.0 tpy of SO_X.

Startup of operation is planned to begin on or about the 15th day of July 2023. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV, 25304, for at least 30 calendar days from the date of publication of this notice. Written comments will also be received via email at DEPAirQualityPermitting@WV.gov.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 41281, during normal business hours.

Dated this the (Day) day of (Month), (2023).

By: Empire Green Generation, LLC Bernard Brown Chief Technology Officer 1400 Main Street Follansbee, WV 26037

ATTACHMENT Q

Business Confidential Claims

November 16, 2023

Mr. Edwards Andrews, P.E. West Viginia Department of Environmental Protection Division of air Quality 601 57th Street, SE Charleston, WV 25304

RE: Empire Green Generation Confidential Business Information

Dear Mr. Andrews,

Please find enclosed Empire Green Generation's submittal of Confidential Business Information for the modification application for permit number R13-3555. This claim of confidentiality is due to trade secrets and intellectual property. A redacted version of this submittal has been sent to you via email.

Sincerely,

Bernard R. Brown

Bernard Brown Chief Operating Officer

Encl.

1,400 Main Street, Follansbee, WV 26037

304-914-4624

Precautionary Notice — Claims of Confidentiality

The person submitting this information may assert that some or all of the information submitted is entitled to confidential treatment as provided by West Virginia Legislative Rule 45CSR31, entitled "Confidential Information." Information covered by such a claim will be disclosed by the Division of Air Quality (DAQ) only to the extent, and by means of the procedures, set forth in 45CSR31. Please contact the West Virginia Secretary of State's Office at 304/558-6000 or <u>http://apps.sos.wv.gov/adlaw/csr/</u> to obtain a copy of 45CSR31 in order to ensure that all required procedures are followed.

Information concerning the "types and amounts of air pollutants discharged," as that term is defined in WVCSR §45-31-2.4, shall not be claimed as confidential.

Any claim of confidentiality shall be made in accordance with the requirements of 45CSR31 and must accompany the information at the time it is submitted to the DAQ. If no claim of confidentiality is made at the time of submission or is not made in accordance with the requirements of 45CSR31, the DAQ may make the information available to the public without further notice.

Included below are procedures, and an example form, to be followed in submitting information claimed as confidential. This information is intended to assist a person with claiming confidential information and is not meant to relieve a person of his/her obligation to review the provisions of 45CSR31 and to comply with such rule. The procedures are as follows:

- 1. Indicate clearly the items of information claimed confidential by marking each page with the term "Claimed Confidential," with the date of such claim of confidentiality. With the exception of documents of a size greater than 8¹/₂" x 14", information claimed confidential must be submitted on colored paper.
- 2. Include a cover document (See below) which justifies the claim of confidentiality in accordance with the specific criteria under WVCSR §45-31-4.1. A sample cover document is attached for your information and use. The cover document will be available for public disclosure and must include the following information:
 - (a) The identity of the person making the submission of information claimed confidential;
 - (b) The reason for the submission of information;
 - (c) The name, an address in the State of West Virginia and telephone number of the designee who shall be contacted in accordance with 45CSR31;
 - (d) Identification of each segment of information within each page that is submitted as confidential and the justification for each segment claimed confidential, including the criteria under WVCSR §45-31-4.1;

- (e) The period of time for which confidential treatment is desired (e.g., until a certain date, until the occurrence of a specified event or permanently); and,
- (f) Signature of a responsible official or an authorized representative of such person.
- 3. At the same time as the information claimed confidential is submitted to the DAQ on colored paper, a complete set of the information, including the cover document previously required under paragraph 2, must be submitted with the information claimed to be confidential blacked or whited out and the words "Redacted Copy Claim of Confidentiality" marked clearly on each such page, so that the information is suitable for public disclosure. In the case of drawings and blueprints, mark each page with the words "Redacted Copy Claim of Confidentiality," include the title or legend of the drawing, and black or white out the information claimed confidential. The redacted page may be 8½" x 11" in size.
- 4. In the case of a permit application or supplemental information to an application which contains confidential information, DAQ requires the "Redacted Copy Claim of Confidentiality" pages and the cover document which justifies the claim of confidentiality to be submitted by e-mail as a PDF file to: <u>DEPAirQualityPermitting@wv.gov</u>

See instructions at: <u>https://dep.wv.gov/daq/permitting/Pages/nsr-forms.aspx</u> OR <u>https://dep.wv.gov/daq/permitting/Pages/TitleVGuidanceandForms.aspx</u>

5. "Claimed Confidential" pages **may not be e-mailed** and shall be submitted, as hardcopy, on colored paper and mailed to:

WVDEP – DAQ – Permitting Attn: NSR *or* Title V Permitting Secretary * 601 57th Street, SE Charleston, WV 25304

* For a 45CSR13 application, send to NSR Permitting Secretary. For a 45CSR30 application, send to Title V Permitting Secretary. If this is a combined NSR/Title V Permit Application, send one copy to the NSR Permitting Secretary and one copy to the Title V Permitting Secretary.

Sample Cover Document Confidential Information

This sample form contains each of the required elements for the cover document required under 45CSR31. The person submitting this form may wish to attach an additional page(s) to provide adequate justification under the "Rationale" section of the form.

Company Name	Empire Green Genera	a Rosponsible Of	ficial	Bernard Brown
Company Address	1400 Main Street	Confidential	Name	
	Follansbee, WV	Information Designee in	Title	
		State of WV	Address	
Person/Title		_		
Submitting Confidential			Phone	
Information			Fax	

Reason for Submittal of Confidential Information:

Identification of Confidential Information	Rationale for Confidential Claim	Confidential Treatment Time Period
	Provide justification that the criteria set forth in § 45CSR31-4.1.a - e have been met.	

Responsible Official Signature:	Bernard R. Brown
Responsible Official Title:	Chief Operating Officer
Date Signed:	11/30/2023

<u>NOTE</u>: Must be signed and dated in **BLUE INK**.

ATTACHMENT R

Authority Form

AUTHORITY OF LIMITED LIABILITY COMPANY (LLC)

TO: The West Virginia Department of Environmental Protection, Division of Air Quality

DATE: April 8 , 2022

ATTN: Director

87-3187526 LLC's Federal Employer I.D. Number

The undersigned hereby files with the West Virginia Department of Environmental Protection, Division of Air Quality, a permit application and hereby certifies that the said name is a trade name which we are using in the conduct of an unincorporated business.

Further, we have agreed or certified as follows:

- (1) The undersigned is a member and in that capacity may represent the interests of the LLC and may obligate and legally bind all current or future members and the LLC.
- The LLC is authorized to do business in the State of West Virginia. (2)
- The name and business address of each member: (3)

Member:	Frank Rosso
Address:	401 East Las Olas Blvd., Suite 1400, Fort Lauderdale, FL 33301
	Telephone No.: 954-332-2423
Member:	
Address:	
	Telephone No.:
Member:	
Address:	
	Telephone No.:
	members of the undersigned or our relations as such be altered in any become incorporated, the undersigned will notify you promptly.
	Address:
	401 East Las Olas Blvd., Suite 1400
MEMBER OF LLC (Signature)	Fort Lauderdale, FL 33301
	Telephone No.: <u>954-332-2423</u>
Frank J Rosso	
MEMBER OF LLC (Typed)	

ATTACHMENT S

Title V Permit Revision Information (Not Applicable)