Division of Air Quality Permit Application Submittal

Please find attached a permit application for:

[Company Name; Facility Location]

- DAQ Facility ID (for existing facilities only):
- Current 45CSR13 and 45CSR30 (Title V) permits associated with this process (for existing facilities only):
- Type of NSR Application (check all that apply):
 - Construction
 - Modification
 - Class I Administrative Update
 - Class II Administrative Update
 - Relocation
 - Temporary
 - Permit Determination

- Type of 45CSR30 (TITLE V) Application:
 - Title V Initial
 - O Title V Renewal
 - Administrative Amendment**
 - Minor Modification**
 - Significant Modification**
 - Off Permit Change
- **If the box above is checked, include the Title V revision information as ATTACHMENT S to the combined NSR/Title V application.

- Payment Type:
 - Credit Card (Instructions to pay by credit card will be sent in the Application Status email.)
 - Check (Make checks payable to: WVDEP Division of Air Quality)
 Mail checks to:

WVDEP – DAQ – Permitting

Attn: NSR Permitting Secretary

601 57th Street, SE Charleston, WV 25304 Please wait until DAQ emails you the Facility ID Number and Permit Application Number. Please add these identifiers to your check or cover letter with your check.

- If the permit writer has any questions, please contact (all that apply):
 - Responsible Official/Authorized Representative
 - Name:
 - Email:
 - Phone Number:
 - Company Contact
 - Name:
 - Email:
 - Phone Number:
 - Consultant
 - Name:
 - Email:
 - Phone Number:

REGULATION 13 APPLICATION FOR MODIFICATION FOR NEW EQUIPMENT AND PRODUCT OPTIMA BELLE PLANT

REDACTED APPLICATION

Prepared for:

Optima Belle, LLC

901 W. DuPont Avenue Belle, West Virginia 25015

Prepared by:

Potesta & Associates, Inc.

7012 MacCorkle Avenue, SE Charleston, West Virginia 25304

Phone: (304) 342-1400 Fax: (304) 343-9031

Email: potesta@potesta.com

Project No. 0101-14-0162-022

March 2023

TABLE OF CONTENTS

General Applicant Information	SECTION I - III
Business Certificate	ATTACHMENT A
Area Map	ATTACHMENT B
Installation and Start Up Schedule	ATTACHMENT C
Regulatory Discussion	ATTACHMENT D
Plot Plan	ATTACHMENT E
Detailed Process Flow Diagram	ATTACHMENT F
Process Description	ATTACHMENT G
Material Safety Data Sheets (MSDS)	ATTACHMENT H
Emission Units Table	ATTACHMENT I
Emission Points Data Summary Sheet	ATTACHMENT J
Emissions Unit Data Sheets	ATTACHMENT L
Air Pollution Control Device Sheet	ATTACHMENT M
Supporting Emissions Calculations	ATTACHMENT N
Monitoring/Recordkeeping/Reporting/Testing Plans	ATTACHMENT O
Public Notice	ATTACHMENT P
Business Confidential Claims	ATTACHMENT Q
Young Industries Self-Contained Filter/Bag Dump Station Specifications	APPENDIX 1
Attachments Not Applicable to this Application: Attachments K, R, and S.	

SECTION I - III GENERAL APPLICANT INFORMATION

WEST VIRGINIA DEPARTMENT OF **ENVIRONMENTAL PROTECTION**

DIVISION OF AIR QUALITY

601 57th Street, SE

APPLICATION FOR NSR PERMIT **AND**

Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag		T		RMIT REVISIO TIONAL))N	
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN):			VN): PLEASE CHECK	TYPE OF 45C	SR30 (TITLE V) RE	VISION (IF ANY):
⊠ CONSTRUCTION □	MODIFICATION	RELOCATION	☐ ADMINISTRA	TIVE AMENDM	ENT MINOR	MODIFICATION
☐ CLASS I ADMINISTRA	ATIVE UPDATE	☐ TEMPORARY				
☐ CLASS II ADMINISTRATIVE UPDATE ☐ AFTER-THE-FACT IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION						
			evision Guidance" in o lity to operate with the			
		Section	on I. General			
Name of applicant Optima Belle, LLC	-	the WV Secretary o	of State's Office):	2. Federal E	Employer ID No. <i>(Fl</i> 465403006	EIN):
3. Name of facility (if	different from abo	ove):		4. The applic	ant is the:	
Optima Belle Plan	it				□OPERATOR	⊠ вотн
901 W. DuPont Avenu	5A. Applicant's mailing address: 5B. Facility's present physical address: 901 W. DuPont Avenue 901 W. DuPont Avenue Belle, West Virginia 25015 Belle, West Virginia 25015					
change amendme ➡ If NO , provide a co	copy of the Certificates or other Busing open of the Certificates.	cate of Incorporation Celess Registration Celes	on/Organization/Lim tificate as Attachme thority of L.L.C./Reg	ited Partnersh nt A.	ip (one page) inclu	,
7. If applicant is a subs	sidiary corporation	, please provide the	name of parent corp	oration: NA		
8. Does the applicant	own, lease, have a	an option to buy or o	therwise have control	of the propose	ed site? 🛛 YES	□NO
If YES, please ex	plain: The si	te is owned and ope	rated by the applicant	t.		
➪ If NO , you are not	t eligible for a perr	nit for this source.				
9. Type of plant or fa administratively crusher, etc.): Che	updated or tempo	orarily permitted (e	icted, modified, relo g., coal preparation p		10. North America Classification (NAICS) code 325199	
11A. DAQ Plant ID No	o. (for existing facil 039-00663	.,	 List all current 45C associated with thi 3-2093H 		SR30 (Title V) perr existing facilities on	
All of the required form	s and additional in	formation can be fou	nd under the Permittin	a Section of DA	Q's website. or reau	ested by phone.

12A.						
For Modifications, Administrative Updates or Te	mporary permits at an existing facility,	please provide directions to the				
present location of the facility from the nearest state						
For Construction or Relocation permits, please proad. Include a MAP as Attachment B.	provide directions to the <i>proposed new</i> s	ite location from the nearest state				
LCA, D.H. S. d. D. COE at D.H. S.	i la la Di Di da la	1 500 5 1.1 . 1				
I-64 to Belle exit, then Rt. 60 East to Belle exit, ture entrance is on the left.	n right onto DuPont Avenue, travel app	proximately 500 feet and the plant				
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:				
Same	Belle	Kanawha				
12.E. UTM Northing (KM): 4,232.60	12F. UTM Easting (KM): 451.90	12G. UTM Zone: 17				
13. Briefly describe the proposed change(s) at the facilit	y:					
Optima Belle, LLC proposes add new equipment an						
14A. Provide the date of anticipated installation or changed: If this is an After-The-Fact permit application, provided in the provided in	•	14B. Date of anticipated Start-Up				
change did happen: NA	de the date upon which the proposed	if a permit is granted: August 2023				
14C. Provide a Schedule of the planned Installation of/	Change to and Start-Up of each of the					
application as Attachment C (if more than one uni	-					
15. Provide maximum projected Operating Schedule o	f activity/activities outlined in this applica	ation:				
Hours Per Day 24 Days Per Week 7	Weeks Per Year 52					
16. Is demolition or physical renovation at an existing facility involved? ☐ YES ☐ NO						
17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed						
changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III.						
18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the						
proposed process (if known). A list of possible applica-	able requirements is also included in Atta	achment S of this application				
(Title V Permit Revision Information). Discuss applica	bility and proposed demonstration(s) of	compliance (if known). Provide this				
information as Attachment D.						
Section II. Additional attachments and supporting documents.						
19. Include a check payable to WVDEP – Division of Air	7, 0					
45CSR13).						
20. Include a Table of Contents as the first page of you	ır application package.					
21. Provide a Plot Plan , e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance).						
Indicate the location of the nearest occupied structure (e.g. church, school, business, residence).						
 Provide a Detailed Process Flow Diagram(s) show device as Attachment F. 	ving each proposed or modified emission	ns unit, emission point and control				
23. Provide a Process Description as Attachment G.						
Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).						
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.						
24. Provide Material Safety Data Sheets (MSDS) for a	Il materials processed, used or produced	d as Attachment H.				
For chemical processes, provide a MSDS for each compound emitted to the air.						

25.	Fill out the Emission Units Table and	d provide it as Attachment I.	
26.	Fill out the Emission Points Data Su	ımmary Sheet (Table 1 and Tab	le 2) and provide it as Attachment J.
27.	Fill out the Fugitive Emissions Data	Summary Sheet and provide it a	as Attachment K.
28.	Check all applicable Emissions Unit	Data Sheets listed below:	
	Bulk Liquid Transfer Operations	☐ Haul Road Emissions	☐ Quarry
	Chemical Processes	☐ Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage
	Concrete Batch Plant	☐ Incinerator	Facilities
	Grey Iron and Steel Foundry	☐ Indirect Heat Exchanger	☐ Storage Tanks
	General Emission Unit, specify: Buildi	ing 216 Small Lots Manufacturin	g and Building 114.
		Fill out and provide the Emission	ns Unit Data Sheet(s) as Attachment L.
29.	Check all applicable Air Pollution Co	ontrol Device Sheets listed below	v:
	Absorption Systems	☐ Baghouse	Flare
	Adsorption Systems	☐ Condenser	☐ Mechanical Collector
\boxtimes	Afterburner	☐ Electrostatic Precipitate	or Wet Collecting System
	Other Collectors, specify:		
Fill	out and provide the Air Pollution Con	trol Device Sheet(s) as Attachn	nent M.
30.	Provide all Supporting Emissions C Items 28 through 31.	alculations as Attachment N, or	r attach the calculations directly to the forms listed in
31.		compliance with the proposed em	proposed monitoring, recordkeeping, reporting and nissions limits and operating parameters in this permit
>		y not be able to accept all measur	er or not the applicant chooses to propose such res proposed by the applicant. If none of these plans le them in the permit.
32.	Public Notice. At the time that the a	application is submitted, place a C	class I Legal Advertisement in a newspaper of general
	circulation in the area where the source	ce is or will be located (See 45CS	SR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>
	Advertisement for details). Please s	submit the Affidavit of Publication	n as Attachment P immediately upon receipt.
33	. Business Confidentiality Claims. D	Does this application include confi	dential information (per 45CSR31)?
	⊠ YES	□ NO	
>		ng the criteria under 45CSR§31-4	nitted as confidential and provide justification for each 1.1, and in accordance with the DAQ's " <i>Precautionary instructions</i> as Attachment Q.
	Se	ection III. Certification o	f Information
34.	Authority/Delegation of Authority. Check applicable Authority Form be		ner than the responsible official signs the application.
	Authority of Corporation or Other Busin	ness Entity	Authority of Partnership
	Authority of Governmental Agency		Authority of Limited Partnership
Sub	bmit completed and signed Authority F	Form as Attachment R.	
	· · · · · · · · · · · · · · · · · · ·		ermitting Section of DAQ's website, or requested by phone.
			-

35A. Certification of Information. To certify 2.28) or Authorized Representative shall chec	this permit ap	plication, a Responsible Officate box and sign below.	cial (per 45CSR§13-2.22 and 45CSR§30-
Certification of Truth, Accuracy, and Comp	oleteness		
I, the undersigned Responsible Official / application and any supporting documents ap reasonable inquiry I further agree to assume r stationary source described herein in accorda Environmental Protection, Division of Air Qual and regulations of the West Virginia Division of business or agency changes its Responsible on tified in writing within 30 days of the official	pended hereto esponsibility fo nce with this a ity permit issue of Air Quality ar Official or Autho	is true, accurate, and comp or the construction, modification oplication and any amendme and in accordance with this ap and W.Va. Code 8 22-5-1 et si	lete based on information and belief after on and/or relocation and operation of the nts thereto, as well as the Department of plication, along with all applicable rules eq. (State Air Pollution Control Act). If the
Compliance Certification Except for requirements identified in the Title of that, based on information and belief formed a compliance with all applicable requirements. SIGNATURE	√ Application for fitter reasonable use blue ink)	e inquiry, all air contaminant	chieved, I, the undersigned hereby certify sources identified in this application are in DATE: 2/17/2 3 (Please use blue ink)
35B. Printed name of signee: Doug Cochran			35C. Title: Vice President of Business Development
35D. E-mail: dcochran@optimachem.com	36E. Phone:	(912) 720-5190	36F. FAX: Use email
36A. Printed name of contact person (if differe	nt from above)	: Michelle Given	36B. Title: EHS Manager
36C. E-mail: mgiven@optimachem.com	36D. Phone:	(304) 949-7162	36E. FAX: Use email
PLEASE CHECK ALL APPLICABLE ATTACHMEN	TS INCLUDED \	WITH THIS PERMIT APPLICAT	ION:
Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Sche Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram Attachment G: Process Description Attachment H: Material Safety Data Sheets (Note that the process of the proces	dule n(s) ISDS)		missions Data Summary Sheet Sunit Data Sheet(s) Son Control Device Sheet(s) Son Emissions Calculations Son Calculations Son Calculations Son Calculations Confidential Claims Forms
Please mail an original and three (3) copies of the address listed on the first	e complete pen	mit application with the signat oplication. Please DO NOT fax	ure(s) to the DAQ, Permitting Section, at the
		· · · · · · · · · · · · · · · · · · ·	rapproduorio.
FOR AGENCY USE ONLY — IF THIS IS A TITLE V Forward 1 copy of the application to the Title For Title V Administrative Amendments: NSR permit writer should notify Title V For Title V Minor Modifications: Title V permit writer should send appr NSR permit writer should notify Title V For Title V Significant Modifications processes NSR permit writer should notify a Title Public notice should reference both 4: EPA has 45 day review period of a drawn of the control of	V Permitting G / permit writer of opriate notifical / permit writer of d in parallel witer V permit writer 5CSR13 and Tite ft permit.	of draft permit, tion to EPA and affected state of draft permit. th NSR Permit revision: r of draft permit, le V permits,	
All of the required forms and additional information	ion can be foun	d under the Permitting Section	n of DAQ's website, or requested by phone.

ATTACHMENT A BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO:
OPTIMA BELLE LLC
901 W DUPONT AVE
BELLE, WV 25015-1555

BUSINESS REGISTRATION ACCOUNT NUMBER:

2298-1773

This certificate is issued on:

05/8/2015

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued

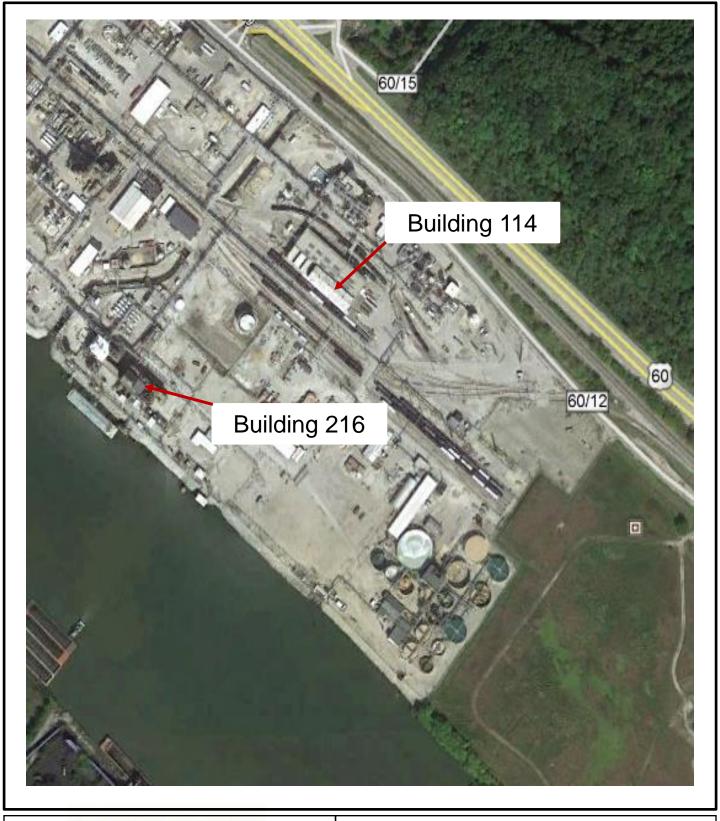
This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L1970489664

ATTACHMENT B AREA MAP


DATE: June 2016

PROJECT NO. 0101-14-0162-022

MAPPING FOR VISUAL REPRESENTATION ONLY

SITE LOCATION MAP 1 of 2 OPTIMA BELLE, LLC BELLE, KANAWHA COUNTY, WV

NOT TO SCALE

DATE: June 2016

PROJECT NO. 0101-14-0162-022

MAPPING FOR VISUAL REPRESENTATION ONLY

SITE LOCATION MAP 2 of 2 OPTIMA BELLE, LLC BELLE, KANAWHA COUNTY, WV

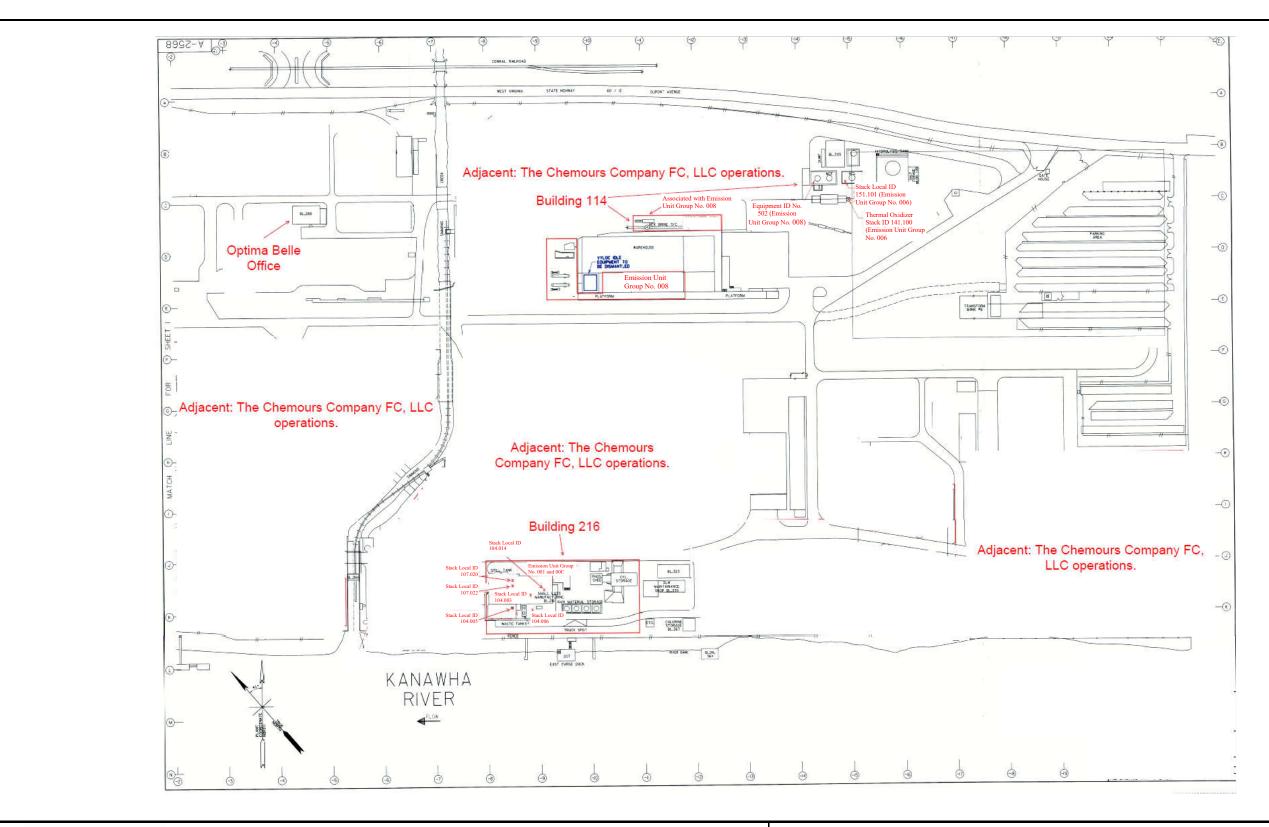
NOT TO SCALE

ATTACHMENT C INSTALLATION AND START UP SCHEDULE

ATTACHMENT C

SCHEDULE OF INSTALLATION

This application includes upgrading the facility to replace equipment that became inoperable in the 2020 incident. This includes the addition of equipment to the permit which will be utilized to process the same materials that we currently process, add HMAPS production, and continue to operate in the same manner under the flexible permit for emissions. Additionally, we will be removing equipment from the permit that is no longer operable. Installation of the equipment is anticipated to start in May 2023.

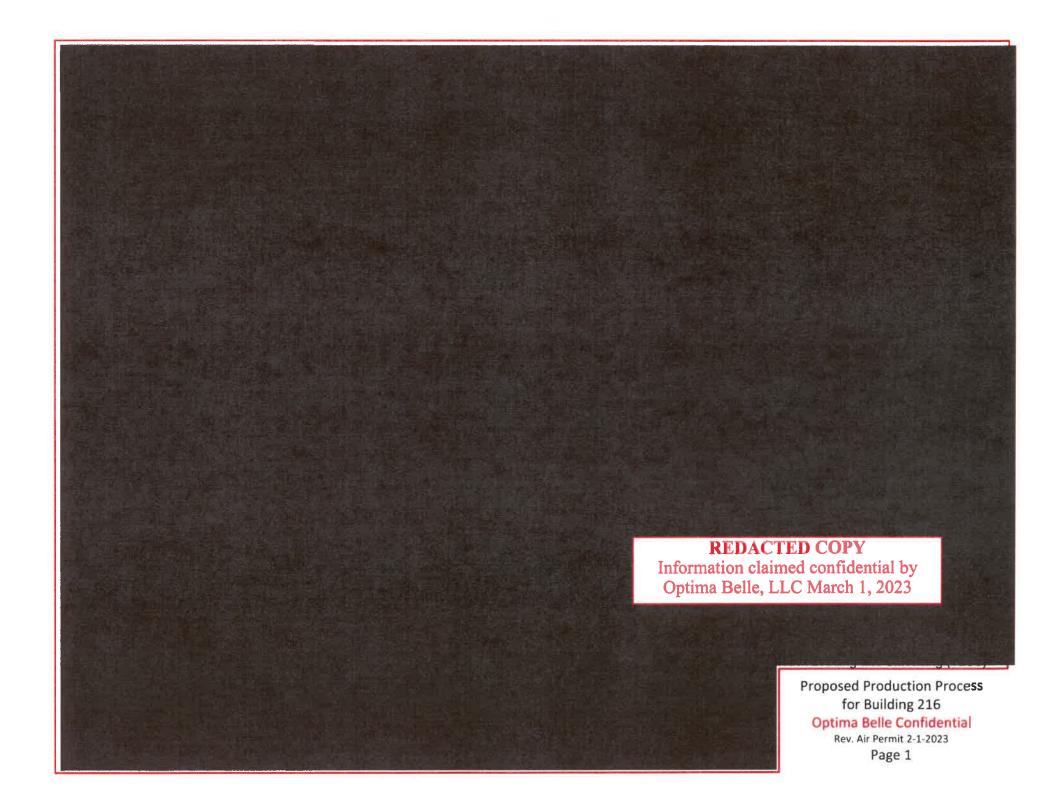

ATTACHMENT D REGULATORY DISCUSSION

ATTACHMENT D

REGULATORY DISCUSSION

The request in this application does not modify the regulatory basis for the permit.

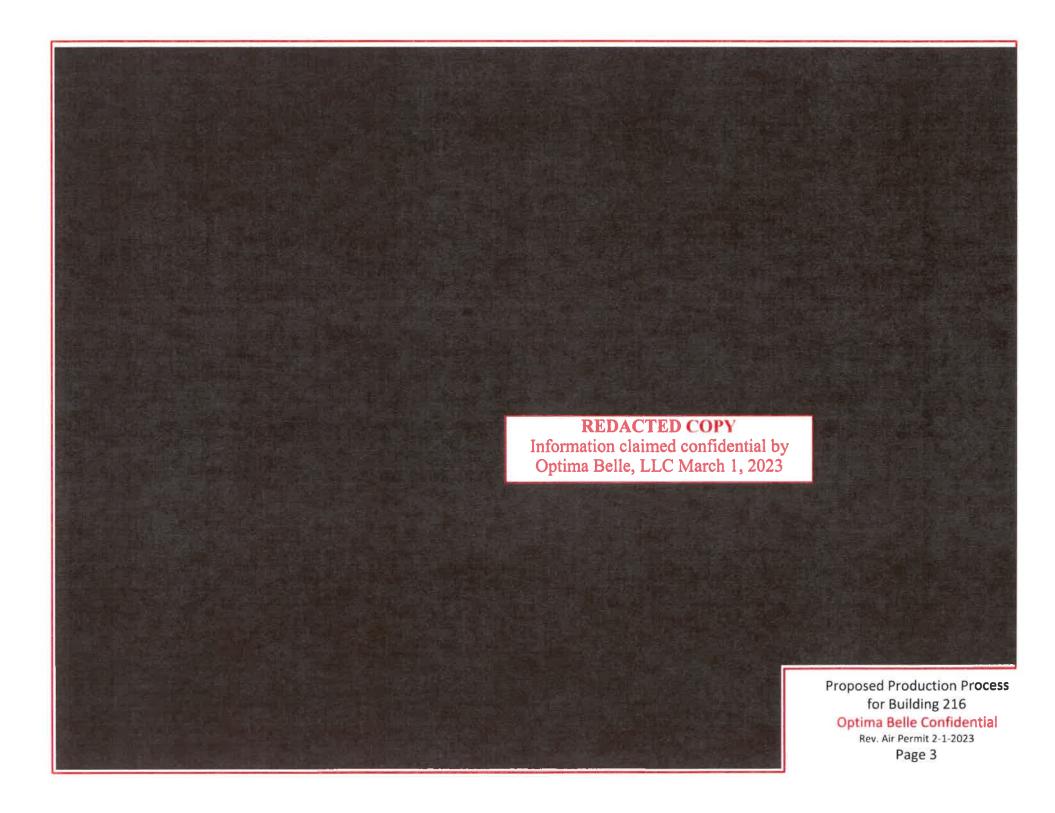
ATTACHMENT E PLOT PLAN



7012 MacCorkle Avenue, S.E Charleston, West Virginia 25304 Phone: (304) 342-1400 Fax: (304) 343-9031

Optima Belle, LLC Kanawha County, West Virginia Project No. 0101-14-0162

ATTACHMENT F DETAILED PROCESS FLOW DIAGRAM


REDACTED COPY Information claimed confidential by Optima Belle, LLC March 1, 2023

Proposed Production Process for Building 114 Optima Belle Confidential Rev. Air Permit 2-1-2023

Page 2

ATTACHMENT G PROCESS DESCRIPTION

ATTACHMENT G

PROCESS DESCRIPTION

Optima Belle, LLC is, by this application, requesting the ability to add to the site proposed equipment and a new proposed chemical process. Additionally, the application identifies equipment that needs to be removed from the permit as it is no longer operable and has been removed from the site. With the new equipment, Optima will return to full operational status and will be able to process the list of materials from which the potential to emit of the site is based. There is also a requested increase in the potential to emit for the new chemical process which adds new hazardous air pollutants to the permit.

Equipment to be Removed from the Permit

Equipment that was damaged in the incident with the double cone dryer in 2020 needs to be removed from the permit. This equipment is identified in Attachment I in blue. The equipment is not usable and has already been removed from the Building 216 processing area. The equipment to be removed includes one tank Xylene/Toluene Storage Tank (101), Reactor #1 (205), Reactor #8 (209), CWT Tank (227). Centrifuge Feed Tank (228), Reactor #7 (232), Double Cone Dryer (230), Reactor # 9 (233), Super Sack Unloading to Double Cone Dryer (234A, Super Sack Filling from Double Cone Dryer (235A), Caustic Storage Tank (SLM0074), Filter Dryer (236), Reactor #10 Condenser (237C) and Dust Collector 117. This equipment was damaged has been removed and will not be returned to service. We request that this equipment be removed from the permit.

New Equipment

The new equipment will be used in the same operating manner as the existing permitted equipment. Therefore, Optima can have one material in process or multiple materials in process at one time. Some of the higher volume materials such as Glypure will be in production more consistently since Optima is installing equipment which will be dedicated to mostly Glypure production. The additional list of materials that can be processed are included in Attachment L and N along with the amounts of each material that could be made in a year. These quantities have not changed, but the process units (reactors) used to make the material may change with the new equipment.

New equipment is shown in Attachment I in green. The proposed new equipment includes the relocation of Reactor #5 and its associated condenser which were placed into storage at the site when equipment had to be removed after the 2020 incident. New equipment includes Reactor #5 Stripper (219S), Alumina Column (AC1-through 3), Mole Sieve Columns (MSC1 and 2), Bag Dump Station (BDS), nine reactors (R-11, R-12, R-13, R-14, R-15, R-16, R-17, R-18, and R-19), Reactor #13 Condenser (R-13C), Rail Loading at Building 114 for HMAPS (RL114), Charge Vessels (V80 and V90), Filter Dryer (FD2), Vacuum Pump (VP), Centrifuge #2, West Cake Bin (WCB), Centrate Tank (CT), Dryer (DR), Wet Cake Conveyor (WCC), four filters (FL1-4), Truck Loading and Unloading (TLU3) and Dust Collector (DCFD).

This equipment will be utilized in the same fashion as the equipment that was removed. The equipment will allow the site to be more flexible in production and will allow certain operations more of an ability to operate as needed. Specifically, as identified on Page 3 of the Attachment F the Glypure operations will operate using Reactor #11 (R-11) and Reactor #12 (R-12) (from Page 1 of the Attachment F) and then feed to Centrifuge #2 (C2), to the Wet Cake Bin (WCB), Wet Cake Conveyor (WCC), then to Dryer (DR) and then the final product is finished. Material from the Centrifuge is sent to the Centrate Tank (CT) and then to truck. Material is also recycled to Reactor #14 (R-14). This process does not have VOCs.

As with the existing system the controls remain the same. If a reactor or other process equipment is venting materials that need to be controlled, then they will vent to the main control devices as necessary to control the emissions. The main control devices are the Main Scrubber, the Incinerator, and the Incinerator Scrubber. If a process is venting something that does not require the Main Scrubber to be operational, then the Main Scrubber can be taken off line.

The emissions estimates for production of the materials that were contained in the existing permit submissions are still appropriate for the production of the same batch sizes and yearly quantities and are, therefore, sufficient for the process emissions if the existing or new equipment is used to make or process the materials.

New Material Production

HMAPS is a product that is a low molecular weight polystyrene. The polymer is used as a backbone for a fire retardant compound. HMAPS is being proposed to be produced and the equipment specific to that production is shown on the process flow diagram. Emissions from the processing of the material will include VOC, styrene, and ethylbenzene. The emissions estimate for the process is shown in Attachment N. As with the existing potential to emit, the emissions for HMAPS production is based on Emissions Masters modeling of the process. Since these are new emissions and new hazardous air pollutants, the emissions are added to the existing potential to emit for the site. An SDS for HMAPS is included in Attachment H. This is a batch process. More than one batch can be in process at a time. See the materials that are used to make HMAPS in Attachment L, Page L1.

As with the other equipment at the site, if HMAPS is not in production, the equipment identified for HMAPS production will be used in the production of other materials. The equipment being identified for HMAPS production is six reactors (R-5, R-11, R-12, R-14, R-15, and R-19), Reactor 5 Stripper (219S), and Reactor 5 Condenser (219C), Mol Sieve Columns (MSC1 and 2), Alumina Columns (AC1-3) and filters (Filters 1 through 7 (FL1 through FL7).

VOC Control Devices

The main process control devices will continue to be the existing Main Scrubber (003), the Incinerator (009), and the Incinerator Scrubber (010). These are existing control devices at the site and will be used to control the emissions consistent with the existing requirements.

ATTACHMENT H MATERIAL AND SAFETY DATA SHEETS (MSDS)

HMAPS

Preparation Date: No data available

Revision Date: 18-Mar-2019

Revision Number 1.01

1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING

Product Identifier

Product Name

HMAPS

Other means of identification

Recommended use of the chemical and restrictions on use

General function

Intermediate.

Uses advised against

No information available

Details of the supplier of the safety data sheet

Company

Albemarle Corporation 451 Florida Street Baton Rouge, LA 70801

For Non-Emergency

800-535-3030

'Competent Body for SDS'

HSE@Albemarle.com

Emergency telephone number

Emergency Telephone Numbers

In case of emergency, call Albemarle emergency response at +1 225 344 7147

2. HAZARDS IDENTIFICATION

Classification

Acute toxicity - Inhalation (Dusts/Mists)	Category 4
Skin Corrosion/irritation	Category 2
Carcinogenicity	Category 2
Specific target organ toxicity (single exposure)	Category 3 - (H336)
Specific target organ toxicity (repeated exposure)	Category 2
Aspiration toxicity	Category 1
Acute aquatic toxicity	Category 1
Chronic aquatic toxicity	Category 1
Flammable liquids	Category 2

Label elements

Emergency Overview

Danger

Hazard Statements

Harmful if inhaled

Causes skin irritation

Suspected of causing cancer

May cause drowsiness or dizziness

May cause damage to organs through prolonged or repeated exposure

Very toxic to aquatic life with long lasting effects

May be fatal if swallowed and enters airways

Highly flammable liquid and vapor

POL00843 - HMAPS Revision Date: 18-Mar-2019

Physical state Liquid

Color Clear, to Cloudy

Odor Organic

Prevention

Obtain special instructions before use

Do not handle until all safety precautions have been read and understood

Use personal protective equipment as required

Use only outdoors or in a well-ventilated area

Wash face, hands and any exposed skin thoroughly after handling

Do not breathe dust/fume/gas/mist/vapors/spray

Avoid release to the environment

Keep away from heat/sparks/open flames/hot surfaces. - No smoking

Keep container tightly closed

Ground/bond container and receiving equipment

Use explosion-proof electrical/ventilating/lighting/equipment

Use only non-sparking tools

Take precautionary measures against static discharge

Keep cool

Response

IF exposed or concerned: Get medical advice/attention

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If skin irritation occurs: Get medical advice/attention

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower

Wash contaminated clothing before reuse

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician Do not induce vomiting

In case of fire: Use CO2, dry chemical, or foam for extinction

Collect spillage

Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

Not applicable

Other Information

No data available

POL00843 - HMAPS

Revision Date: 18-Mar-2019

3. COMPOSITION/INFORMATION ON INGREDIENTS

Pure substance/mixture

Mixture

Component	CAS-No	Weight %	
Polystyrene	9003-53-6	40-60	
Ethylbenzene	100-41-4	0-45	
Cyclohexane	110-82-7	0-45	

Note: The exact concentrations of the above listed chemicals are being withheld as a trade secret.

4. FIRST AID MEASURES

First aid measures

General Advice

IF exposed or concerned: Get medical advice/attention.

Eye contact

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if

present and easy to do. Continue rinsing.

Skin contact

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin

with water/shower. Wash contaminated clothing before re-use.

Inhalation

IF INHALED: Remove to fresh air and keep at rest in a position comfortable for breathing.

Ingestion

IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. Do not induce

vomiting.

Most important symptoms and effects, both acute and delayed

Symptoms

Harmful if inhaled. Causes skin irritation. Suspected of causing cancer. May cause drowsiness or dizziness. May cause damage to organs through prolonged or repeated

exposure.

Indication of any immediate medical attention and special treatment needed

Notes to Physician

Treat symptomatically.

5. FIRE-FIGHTING MEASURES

Extinguishing media

Suitable Extinguishing Media

Carbon dioxide, dry chemicals, foam, water spray (fog).

Unsuitable Extinguishing Media No information available.

Specific Hazards Arising from the Chemical

Combustion/explosion hazards Highly flammable liquid and vapour.

Explosion Data

Sensitivity to mechanical impact None.

Sensitivity to static discharge The vapors of this product can be ignited by static electrical energy.

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Personal Precautions Keep away from heat/sparks/open flar

Keep away from heat/sparks/open flames/hot surfaces. - No smoking Ground/bond

container and receiving equipment Use explosion-proof

electrical/ventilating/lighting/equipment Take precautionary measures against static

Page 3/9

discharges Avoid contact with the skin and the eyes. Use personal protective equipment. Use only outdoors or in a well-ventilated area

Environmental Precautions

Environmental precautions

Do not allow material to enter soil or surface water

Methods and material for containment and cleaning up

Methods for Containment

Prevent further leakage or spillage if safe to do so.

Methods for Cleaning up

Absorb spillage to prevent material damage Clean contaminated surface thoroughly Take precautionary measures against static discharges

7. HANDLING AND STORAGE

Precautions for safe handling

Handling

Avoid contact with skin, eyes and clothing Use only outdoors or in a well-ventilated area Wash face, hands and any exposed skin thoroughly after handling Do not breathe vapours or spray mist. Do not eat, drink or smoke when using this product Remove all sources of ignition. Ground/bond container and receiving equipment Use explosion-proof electrical/ventilating/lighting/equipment Use only non-sparking tools Take precautionary measures against static discharges

Conditions for safe storage, including any incompatibilities

Storage

Protect from sunlight and store in well-ventilated place. Keep container tightly closed. Store

locked up.

Incompatible Materials

Strong oxidizing agents.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

Exposure Guidelines

Component	CAS-No	ACGIH TLV (TWA)	OSHA PEL (TWA)	NIOSH IDLH
Polystyrene	9003-53-6	841	•	3/
Ethylbenzene	100-41-4	TWA: 20 ppm	TWA: 100 ppm TWA: 435 mg/m ³	IDLH: 800 ppm
			(vacated) TWA: 100 ppm	TWA: 100 ppm TWA: 435 mg/m³
	1		(vacated) TWA: 435 mg/m ³	STEL: 125 ppm
II.			(vacated) STEL: 125 ppm	STEL: 545 mg/m ³
			(vacated) STEL: 545 mg/m ³	
Cyclohexane	110-82-7	TWA: 100 ppm	TWA: 300 ppm	IDLH: 1300 ppm
			TWA: 1050 mg/m ³	TWA: 300 ppm
			(vacated) TWA: 300 ppm	TWA: 1050 mg/m ³
			(vacated) TWA: 1050 mg/m ³	

Component	CAS-No	Alberta	British Columbia	Ontario	Quebec
Polystyrene	9003-53-6		791	5 = 1	(2)
Ethylbenzene	100-41-4	TWA: 100 ppm TWA: 434 mg/m³ STEL: 125 ppm STEL: 543 mg/m³	TWA: 20 ppm	TWA: 20 ppm	TWA: 100 ppm TWA: 434 mg/m ³ STEL: 125 ppm STEL: 543 mg/m ³
Cyclohexane	110-82-7	TWA: 100 ppm TWA: 344 mg/m ³	TWA: 100 ppm	TWA: 100 ppm	TWA: 300 ppm TWA: 1030 mg/m ³

Appropriate engineering controls

Engineering Controls

Showers.

Eyewash stations. Ventilation systems.

Individual protection measures, such as personal protective equipment

Eye/face Protection

Chemical goggles or safety glasses.

POL00843 - HMAPS Revision Date: 18-Mar-2019

Skin Protection

Wear protective gloves/clothing.

Hand protection

Gloves resistant to chemical permeation.

Respiratory protection

Whenever workplace conditions warrant, wear properly fitted, approved respirator with

high-efficiency (dust/fume/mist) filter cartridges.

General Hygiene Considerations Handle in accordance with good industrial hygiene and safety practice.

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Physical state

Liquid

Color

Clear, to Cloudy

Odor

Organic

Odor Threshold

No data available

Molecular Weight

No data available

рΗ

Essentially neutral

Melting point/freezing point

liquid at room temperature

Boiling Point/Range Flash Point

60 °C / 140 - °F

Evaporation Rate

-20 °C (Cyclohexane) No data available.

Flammability (solid, gas)

No data available

Flammability Limit in Air

Upper flammability limit:

No data available No data available

Lower flammability limit:

No data available

Vapor Pressure Vapor Density

No data available

Density

98 kg/m³ (Bulk Density)

Solubility(ies)

Water Solubility

Insoluble

Solubility in other solvents

No data available

Partition coefficient
Autoignition temperature

No data available No data available

Decomposition temperature

No data available <6000 cSt

Viscosity, kinematic Dynamic viscosity

No data available

Explosive Properties
Oxidizing Properties

No data available No data available

10. STABILITY AND REACTIVITY

Reactivity Hazard

No data available.

Stability

Stable under normal conditions.

Hazardous Reactions

No hazardous reaction expected under normal handling.

Conditions to Avoid

Keep away from heat and sources of ignition.

Materials to avoid

Oxidizing agents.

Hazardous decomposition products None known based on information supplied.

11. TOXICOLOGICAL INFORMATION

Information on likely routes of exposure

POL00843 - HMAPS

Revision Date: 18-Mar-2019

Inhalation

Harmful if inhaled. May cause drowsiness or dizziness.

Eye contact

May cause slight irritation.

Skin contact

Causes skin irritation.

Ingestion

Aspiration hazard if swallowed - can enter lungs and cause damage.

Potential Health Effects

Acute Effects

Skin Corrosion/irritation

Causes skin irritation.

Serious eye damage/eye irritation

Slightly irritating but not sufficient for classification.

Respiratory irritation

No information available

Sensitization:

No information available.

STOT - single exposure

May cause drowsiness or dizziness.

Chronic Effects

Mutagenic Effects

No information available.

Carcinogenicity

This product contains one or more substances which are classified by IARC as carcinogenic to humans (Group I), potentially carcinogenic to humans (Group 2A) or

possibly carcinogenic to humans (Group 2B).

Component	CAS-No	ACGIH Carcinogens	IARC	NTP	OSHA Carcinogens
Polystyrene	9003-53-6	(*)	Group 3	+	-
Ethylbenzene	100-41-4	A3	Group 2B	#.	X
Cyclohexane	110-82-7	9)	-		-

Reproductive Effects

No information available.

STOT - repeated exposure

No information available.

Chronic Effects

No information available

Aspiration hazard

May be fatal if swallowed and enters airways.

Numerical measures of toxicity

The following values are calculated based on chapter 3.1 of the GHS document .

ATEmix (oral)

2059 mg/kg

ATEmix (dermal)

2153 mg/kg

ATEmix (inhalation-dust/mist)

1.5 mg/L

ATEmix (inhalation-vapor)

32.9 mg/L

Component Information

Component	Rat Oral LD50:	Rabbit Dermal LD50:
Ethylbenzene	3500 mg/kg	15500 mg/kg
100-41-4		
Cyclohexane	> 5000 mg/kg	> 2000 mg/kg
110-82-7		
Component	Rat Dermal LD50 :	Rat Inhalation LC50:
Ethylbenzene		17.2 mg/L (4 h)
100-41-4 (0-45)		
Cyclohexane		>32.88 mg/L (4 h)
110-82-7 (0-45)		

12. ECOLOGICAL INFORMATION

Ecotoxicity

Very toxic to aquatic life with long lasting effects

Component	Freshwater Algae EC50/72h :	Freshwater Fish LC50/96h	Water Flea EC50/48h :
Ethylbenzene (CAS #: 100-41-4)	4.6mg/L Selenastrum capricornutum	94.44 mg/L	1.8 - 2.9 mg/l
Cyclohexane (CAS #: 110-82-7)	500 mg/l	4.53 mg/l	0.9 mg/l

Persistence/Degradability

No information available.

Bioaccumulation/ Accumulation

No information available.

Mobility in Environmental Media

No information available.

Component	Partition coefficient		
Ethylbenzene 100-41-4	3.118		
Cyclohexane 110-82-7	3.44		

Other adverse effects

No information available

13. DISPOSAL CONSIDERATIONS

Waste treatment methods

Waste Disposal Method

Disposal should be in accordance with applicable regional, national and local laws and

regulations.

Contaminated Packaging

Do not reuse container.

14. TRANSPORT INFORMATION

DOT

Proper Shipping Name

Flammable liquid, n.o.s. (Cyclohexane, Ethyl Benzene)

Hazard Class

3

UN No.

1993

Packing Group

1993

Description

UN 1993, Flammable Liquid N.O.S (Cyclohexane, Ethyl Benzene), 3, II, RQ Marine

pollutant

TDG

This material is considered as Dangerous Goods per regulations of Transport Canada. The use of the above US DOT information from US 49 CDR regulations is allowed for shipments

that originate in the United States.

IMDG/IMO

IMO Class
Packing Group

3 II

UN-No

1993

IMO Labelling and Marking

3 + Marine pollutant mark

Proper Shipping Name EmS

Flammable liquid, n.o.s. (Cyclohexane)

Marpol - Annex II

No information available

Marpol - Annex III

Not determined Not determined

Transport Description

UN 1993, Flammable Liquid N.O.S (Cyclohexane), 3, II, Marine Pollutant

IATA/ICAO

IATA/ICAO Class

3

Packing Group UN-No

П

IATA/ICAO Labelling/Marking

1993 Flammable liquid + Marine pollutant

Passenger Aircraft

Maximum net quantity per package: 5 L

Cargo aircraft only

Maximum net quantity per package: 60 L

Proper shipping name

Flammable liquid, n.o.s. (Cyclohexane)

Transport Description UN 1993, Flammable Liquid N.O.S (Cyclohexane), 3, II, Marine Pollutant

15. REGULATORY INFORMATION											
International Inventories	TSCA	DSL	NDSL	AICS	EINECS	ENCS	KECL	PICCS	IECSC	NZIoC	TCSI
HMAPS	Х	X	(E)	Х		X	X	Х	Х	Х	X

⁽X) Complies (-) Does not Comply

SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372.

Component	Weight %	SARA 313 - De minimis
Ethylbenzene (CAS #: 100-41-4)	0-45	0.1
Cyclohexane (CAS #: 110-82-7)	0-45	1.0

SARA 311/312 Hazardous Categorization

Reportable and Threshold Planning Quantities

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material

Component	CERCLA RQ, Ibs	SARA 302 RQ, lbs	SARA 302 TPQ, lbs
Ethylbenzene (CAS #: 100-41-4)	1000 lb		
Cyclohexane (CAS #: 110-82-7)	1000 lb) <u>=</u> ((•

State Right-to-Know

No components subject to "Right-To-Know" legislation in the following States; California, Massachusetts, New Jersey, and

Pennsylvania.

Component	California Prop. 65	New Jersey	Massachusetts	Pennsylvania
Ethylbenzene (CAS #: 100-41-4)	Carcinogen	Х	X	X
Cyclohexane (CAS #: 110-82-7)		Х	X	X

16. OTHER INFORMATION

NFPA Health 2 Flamn		Flammability	3	Instability 0	Physical Hazards -		
HMIS	Health 2*		Flammability	3	Physical Hazards 0		

Prepared By

Health & Environment DepartmentAlbernarle Corporation

FOR ADDITIONAL NONEMERGENCY PRODUCT INFORMATION, CONTACT:

HEALTH AND ENVIRONMENT DEPARTMENT

ALBEMARLE CORPORATION

451 FLORIDA ST.

BATON ROUGE, LA. 70801

(800) 535-3030

Revision Date:

18-Mar-2019

Disclaimer:

The information contained herein is accurate to the best of our knowledge. The Company makes no warranty of any kind, express or implied, concerning the safe use of this material in your process or in combination with other substances.

End of Safety Data Sheet

Page 9 / 9

ATTACHMENT I EMISSION UNITS TABLE

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

BUILDING 216 Blue = Remove Green = New/Change

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴ (See Note)
012	104.014	-20 Brine Tank	1999	<20,000 gal	Existing	Incinerator Incinerator Scrubber
013	104.006	-30 Brine Tank	1977	<20,000 gal	Existing	None
101	104.014	Xylene/Toluene Storage Tank	1980	<20,000 gal	Remove	Incinerator, Incinerator Scrubber
103	104.014	BI Tank	2002	7,400 gal	Existing	Main Scrubber (See Note on Page I5) Incinerator
104	104.014	Methanol Tank	2005	<20,000 gal	Existing	Incinerator Incinerator Scrubber
108	104.014	Flammable Waste Tank	1961	1,900 gal	Existing	Main Scrubber Incinerator Incinerator Scrubber
108L	104.014	Transfer Rack	1968	NA	Existing	Incinerator Incinerator Scrubber
109	104.014	Extraction Tank/Reactor #4	2019	2,000 gal	Existing	Incinerator Incinerator Scrubber
109L/ WWL	104.014	Transfer Rack	1968	NA	Existing	Incinerator Incinerator Scrubber
112	104.014	J Tank	1951	8,000 gal	Existing	Incinerator Incinerator Scrubber
114A	104.003	Reactor #3 Change Hopper	2005	360 cfh	Existing	Dust Collector 114
115A	104.003B	Reactor #6 Charge Hopper	NA	NA	Existing	Dust Collector 115

Note: The main scrubber is an acid gas scrubber. It will only be used if a process is generating acid gases. If the process does not generate acid gases, the main scrubber will not be in operation. The incinerator scrubber shall only be used when the incinerator is generating acid gases from the combustion of halogenated or sulfur containing compounds.

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, or other appropriate designation.

³ New, modification, removal

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation.

Attachment I Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

BUILDING 216 Blue = Remove Green = New/Change

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴ (See Note)
116A	107.020	Solids Charge Station	NA	NA	Existing	Dust Collector 116
901	104.014	Bulk Liquid Transfer	1981	NA	Existing	Incinerator Incinerator Scrubber
002	104.014	Paddle Dryer	1977	500 pph	Existing	Dryer Condenser Incinerator
235A	107.03	Super Sack Loading from Paddle Dryer	1977	NA	Existing	Dust Collector 023
004	104.014	Dryer Condenser	1977	113 cu ft	Existing	Incinerator
201	104.014	Centrifuge	Centrifuge 1961 500 pph Existing			Incinerator Incinerator Scrubber
201A	104.014	Wet Cake Bin NA		NA	Existing	Incinerator Incinerator Scrubber
202	104.014	M/L Disengaging Tank 1988 9		925 gal	Existing	Incinerator Incinerator Scrubber
203	104.014	Reactor #3	NA	2,000 gal	Existing	Incinerator Incinerator Scrubber
203C	104.014	Reactor #3 Condenser	1977	NA	Existing	Incinerator Incinerator Scrubber
205	104.014	Reactor #1	1988	750 gal	Existing	Main Scrubber Incinerator Incinerator Scrubber
206	104.014	Reactor #2	1977	2,000 gal	Existing	Incinerator Incinerator Scrubber
206PC	104.014	Reactor #2 Primary Condenser	1980	NA	Existing	Incinerator Incinerator Scrubber
206SC	104.014	Reactor #2 Secondary Condenser	1983	NA	Existing	Incinerator Incinerator Scrubber
208	104.014	Reactor #6	1977	4,000 gal	Existing	Main Scrubber (During Reaction Step Only) Incinerator Incinerator Scrubber

Note: The main scrubber is an acid gas scrubber. It will only be used if a process is generating acid gases. If the process does not generate acid gases, the main scrubber will not be in operation. The incinerator scrubber shall only be used when the incinerator is generating acid gases from the combustion of halogenated or sulfur containing compounds.

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, or other appropriate designation.

³ New, modification, removal

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation.

Attachment I Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

BUILDING 216 Blue = Remove Green = New/Change

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified			Control Device ⁴ (See Note)	
208C	104.014	Reactor #6 Condenser	NA	NA	Existing	Main Scrubber Incinerator Incinerator Scrubber	
209	104.014	Reactor #8	1977	4,000 gal	Remove	Main Scrubber Incinerator Incinerator Scrubber	
210	107.022	Product Packout	2005	825 scfh	Existing	Dust Collector	
219	104.014	Reactor #5	1984	2,000 gal	Relocated See Page I6	Main Scrubber Incinerator Incinerator Scrubber	
219C	104.014	Reactor #5 Condenser	1987	NA	Relocated See Page I6	Main Scrubber Incinerator Incinerator Scrubber	
226	104.014	Caustic Tank	1988	8,000 gal	ISO Tank Storing Caustic	Incinerator Incinerator Scrubber	
227	104.014	CWT Tank	2005	8,000 gal	Remove	Incinerator Incinerator Scrubber	
228	104.014	Centrifuge Feed Tank	2016	500 gal	Existing	Incinerator Scrubber	
229	104.014	Tanker Truck	2016	NA	Existing	Incinerator Scrubber	
232	104.014	Reactor #7	2016	2,000 gal	Remove	Incinerator Scrubber	
232C	104.014	Reactor #7 Condenser	2016	NA	Existing	Incinerator Scrubber	

Note: The main scrubber is an acid gas scrubber. It will only be used if a process is generating acid gases. If the process does not generate acid gases, the main scrubber will not be in operation. The incinerator scrubber shall only be used when the incinerator is generating acid gases from the combustion of halogenated or sulfur containing compounds.

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Attachment I Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

BUILDING 216 Blue = Remove Green = New/Change

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴ (See Note)
230	104.014	Double Cone Dryer	2016	165 CF	Remove	Incinerator Incinerator Scrubber
233	104.014	Reactor #9	2016	NA	Remove	Incinerator
234A	107.03	Super Sack Unloading to Double Cone Dryer	2016	NA	Remove	Dust Collector 116
235A	107.03	Super Sack Filling from Double Cone Dryer	2016	NA	Remove	Dust Collector 117
Fugitive	Fugitive	One (1) Filter	2016	NA	Existing	None
Fugitive	Fugitive	Two (2) Polish Filter (Change Outs)	NA	NA	Existing	None
SLM0056	NA	Caustic Weigh Tank (Insignificant/de Minimis Source)	2017	800 gal	Existing	NA
SLM0071	NA	Caustic Weigh Tank (Insignificant/de Minimis Source)	2017	800 gal	Existing	NA
SLM0070	104.014	Dean-Stark Tank	2017	200 gal	Existing	Incinerator Incinerator Scrubber
SLM0074	NA	Caustic Storage Tank	1980	NA	Remove	NA
234B	107.03	Super Sack Loading to Filter Dryer	2018	NA	Existing	Dust Collector 116 or 117
235C	107.03	Super Sack Filling from Filter Dryer	2018	NA	Existing	Dust Collector 116 or 117

Note: The main scrubber is an acid gas scrubber. It will only be used if a process is generating acid gases. If the process does not generate acid gases, the main scrubber will not be in operation. The incinerator scrubber shall only be used when the incinerator is generating acid gases from the combustion of halogenated or sulfur containing compounds.

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Attachment I **Emission Units Table**

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

BUILDING 216 Blue = Remove Green = New/Change

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴ (See Note)
236	104.014	Filter Dryer	2018	NA	Remove	Main Scrubber, Incinerator, Incinerator Scrubber
237	104.014	Reactor #10	2018	NA	Existing	Main Scrubber, Incinerator, Incinerator Scrubber
237C	104.014	Reactor #10 Condenser	2018	NA	Remove	Main Scrubber, Incinerator, Incinerator Scrubber
108L-A	108LA	Drum/Tote Filling Locations Scale	1961	NA	Existing	NA
108L-B	108L-B	Drum/Tote Filling Reactors (Various) 1 st Floor	1961	NA	Existing	NA
108L-C	108L-C	Drum/Tote Filling Reactor 10	2018	NA	Existing	NA
108L-D	108L-D	Drum/Tote Filling Flammable Waste Tank	1961	NA	Existing	NA
New Equip	ment					
219	104-014	Reactor #5	1984/2023	2,000 gal	Relocated	Main Scrubber, Incinerator, Incinerator Scrubber
219S	104-014	Reactor #5 Stripper	2023	NA	New	Main Scrubber, Incinerator, Incinerator Scrubber
219C	104-014	Reactor #5 Condenser	1989/2023	NA	Relocated	Main Scrubber, Incinerator, Incinerator Scrubber
AC1-3	AC1-3	Alumina Columns	2023	NA	New	NA
MSC1-2	MSC1-2	Mole Sieve Columns	2023	NA	New	NA
BDS	BDS	Bag Dump Station	2023	NA	New	DC

Note: The main scrubber is an acid gas scrubber. It will only be used if a process is generating acid gases. If the process does not generate acid gases, the main scrubber will not be in operation. The incinerator scrubber shall only be used when the incinerator is generating acid gases from the combustion of halogenated or sulfur containing compounds.

K* This is a normal emission point for the emission units listed above. The "K*" has been added to indicate that this emission point is the Krovar® Technical process, the sources vent directly to the atmosphere.

Pumps and Heat Exchangers shown on drawings but not listed herein as sources.

¹During Glypure production, the emission source vents directly to atmosphere.

¹ For Emission Units (or Sources) use the following numbering system:1S, 2S, 3S,... or other appropriate designation 2 For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. 3 New, modification, removal.

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Blue = Remove Green = New/Change

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴ (See Note)
R-11	104-014	Reactor #11	2023	4,000 gal	New	Main Scrubber, Incinerator, Incinerator Scrubber
R-12	104-014	Reactor #12	2023	4,000 gal	New	Main Scrubber, Incinerator, Incinerator Scrubber
R-13	104-014	Reactor #13	2023	3,000 gal	New	Main Scrubber, Incinerator, Incinerator Scrubber
R-13C	104-014	Reactor #13 Condenser	2023	NA	New	Main Scrubber, Incinerator, Incinerator Scrubber
R-14	104-014	Reactor #14	2023	2,000 gal	New	Main Scrubber, Incinerator, Incinerator Scrubber
R-15	104-014	Reactor #15	2023	4,000 gal	New	Main Scrubber, Incinerator, Incinerator Scrubber
R-16	104-014	Reactor #16	2023	4,000 gal	New	Main Scrubber, Incinerator, Incinerator Scrubber
R-17	104-014	Reactor #17	2023	4,000 gal	New	Main Scrubber, Incinerator, Incinerator Scrubber
R-18	104-014	Reactor #18	2023	4,000 gal	New	Main Scrubber, Incinerator, Incinerator Scrubber
R-19	104-014	Reactor #19	2023	4,000 gal	New	Main Scrubber, Incinerator, Incinerator Scrubber
RL114	104-014	Rail Loading at Building 114	Existing/2023	NA	Existing	Vapor Returned to R-14 Main Scrubber, Incinerator, Incinerator Scrubber
V80	104-014	Charge Vessel V80	2023	750 gal	New	Main Scrubber, Incinerator, Incinerator Scrubber

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S, or other appropriate designation. 2 For Emission Points use the following numbering system: 1E, 2E, 3E, or other appropriate designation.

³ New, modification, removal

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation.

Attachment I **Emission Units Table**

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Blue = Remove Green = New/Change

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴ (See Note)
V90	104-014	Charge Vessel V90	2023	750 gal	New	Main Scrubber, Incinerator, Incinerator Scrubber
FD2	FD2	Filter Dryer 2	2023	5.0 sq meter	New	Dust Collector Vapor to R-13
VP	104-014	Vacuum Pump	2023	NA	New	Main Scrubber, Incinerator, Incinerator Scrubber
C2	C2	Centrifuge #2	2023	NA	New	NA
WCB	WCB	Wet Cake Bin	2023	NA	New	NA
CT	СТ	Centrate Tank	2023	6,000 gal	New	NA
DR	DR	Dryer	2023	150 cu ft	New	Vapor to R-14
WCC	WCC	Wet Cake Conveyor	2023	NA	New	NA
FL1	FL1	Filter 1	2023	NA	New	NA
FL2	FL2	Filter 2	2023	NA	New	NA
FL3	FL3	Filter 3	2023	NA	New	NA
FL4	FL4	Filter 4	2023	NA	New	NA
FL5	FL5	Filter 5	2023	NA	New	NA
FL6	FL6	Filter 6	2023	NA	New	NA
FL7	FL7	Filter 7	2023	NA	New	NA
TLU3	TLU3	Truck Loading and Unloading	2023	NA	New	NA

Note: The main scrubber is an acid gas scrubber. It will only be used if a process is generating acid gases. If the process does not generate acid gases, the main scrubber will not be in operation. The incinerator scrubber shall only be used when the incinerator is generating acid gases from the combustion of halogenated or sulfur containing compounds.

K* This is a normal emission point for the emission units listed above. The "K*" has been added to indicate that this emission point is the Krovar® Technical process, the sources vent directly to the atmosphere.

¹During Glypure production, the emission source vents directly to atmosphere.

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,or other appropriate designation. 2 For Emission Points use the following numbering system: 1E, 2E, 3E, or other appropriate designation.

³ New, modification, removal

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation.

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Blue = Remove Green = New/Change

				10117 0 1111		
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴ (See Note)
Control D	evices					
023	107.022	Dust Collector	2005 (replacement)	250 cfm	Existing	NA
117	107.03	Dust Collector 2016 1,200 cfm Existing		NA		
116	107.020	Dust Collector	Dust Collector 1988 2,800 cfm		Existing	NA
115	104.003B	Dust Collector	Dust Collector 1978 1,300 cfm Existing		NA	
009	104.014	Incinerator	1977	10 MMBtu/hr	Existing	NA
010	104.014	Incinerator Scrubber (See Note)	1977	80 gpm	Existing	NA
003	104.014	Main Scrubber (See Note)	2007	60 gpm	Existing	NA
004	104.014 ¹ 104.014K*	Dryer Condenser	1977	113 cu ft	Existing	NA
114	104.003	Dust Collector	2001	400 cfm	Existing	NA
DCFD	DCFD	Dust Collector	2023	NA	New	NA
		-				

Note: The main scrubber is an acid gas scrubber. It will only be used if a process is generating acid gases. If the process does not generate acid gases, the main scrubber will not be in operation. The incinerator scrubber shall only be used when the incinerator is generating acid gases from the combustion of halogenated or sulfur containing compounds.

 K^* This is a normal emission point for the emission units listed above. The " K^* " has been added to indicate that this emission point is the Krovar® Technical process, the sources vent directly to the atmosphere.

- 1 For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S, or other appropriate designation.
- 2 For Emission Points use the following numbering system: 1E, 2E, 3E, or other appropriate designation.
- 3 New, modification, removal
- 4 For Control Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation.

¹During Glypure production, the emission source vents directly to atmosphere.

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

BUILDING 114 Blue = Remove Green = New/Change

		DUILDING 114	Diuc = Kemove	Jicch - New/Chan	<u>s</u> c		
Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴ (See Note)	
HK004	141.004	Tank Wagon Storage	H: 1975 K: Suppliers	H: 4,300 gal K: 5,900 gal	Existing	HKCD05	
HK006	141.012	Tank Car or Truck Storage	Suppliers	20,000 gal 5,000 gal	Existing	HKCD06	
HK007	141.007	Tank Car	2005	NA	Existing	None	
HK008	141.008	Tank Car	2005	NA	Existing	None	
HK009	141.009	Storage Tank	1947	18,000 gal	Existing	None	
HK010	141.010	Column	1970	550 gal	Existing	None	
HK013	141.013	Tank	1978	2,000 gal	Existing	None	
HK014	141.014	Tank	1970	3,950 gal	Existing	None	
HK015	141.015	Non-VOC Storage Tank	1987	51,000 gal	Existing	None	
HK016	141.016	Tank	1975	410 gal	Existing	None	
HK101	141.001	Reactor	2003 (replacement)	4,000 gal	Existing	HKCD03	
HK102	141.100	Condenser	1974	91 sq. ft.	Existing	HKCD01 HKCD02	
HK103	141.100	Reactor	1974	2,000 gal	Existing	HKCD01 HKCD02	

Note: Scrubbers shall be used when the process is generating acid gases.

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S, or other appropriate designation. 2 For Emission Points use the following numbering system: 1E, 2E, 3E, or other appropriate designation.

³ New, modification, removal

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation.

Attachment I Emission Units Table

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

BUILDING 114 Blue = Remove Green = New/Change

Emission Unit ID ¹	Emission Point ID ²			Type ³ and Date of	Control Device ⁴ (See Note)	
HK104	151.101	Non-VOC Storage Tank	2004 (replacement)	35,000 gal	Existing	HKCD04
HK105	NA	Column Cooler	1974	70 sq. ft.	Existing	NONE
HK106	141.002	Product Loading	1982	150 GPM	Existing	NONE
HK107	NA	Building Blower	2010	3,162 cfm	Existing	NONE
HK108	141.011	Non-VOC Storage Tank	1987	17,500 gal	Existing	HKCD10
Control De	evices					
HKCD01	141.100	Thermal Oxidizer	1998	7.5 MMBt/hr	Existing	NA
HKCD02	141.100	Thermal Oxidizer Scrubber	1998	150 gal/min	Existing	NA
HKCD03	141.001	Scrubber	2008	205 gal	Existing	NA
HKCD04	151.101	Tank Scrubber	2004	300 cfm	Existing	NA
HKCD05	141.004	Scrubber	1974	10 GPM	Existing	NA
HKCD06	141.012	Scrubber	2002	25 GPM	Existing	NA
HKCD07	141.100	Tank	1975	160,000 gal	Existing	NA
HKCD08	141.100	Column	1975	15,000 lb/hr	Existing	NA
HKCD09	141.011	Scrubber	1970	5 GPM	Existing	NA
HKCD10	141.012	Carbon Absorber 2005 NA Existing		Existing	NA	

Note: Scrubbers shall be used when the process is generating acid gases.

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,or other appropriate designation.

² For Emission Points use the following numbering system: 1E, 2E, 3E, or other appropriate designation.

³ New, modification, removal

⁴ For Control Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation.

ATTACHMENT J EMISSION POINTS DATA SUMMARY SHEET

Attachment J Emission Points Data Summary Sheet

BUILDING 216

						7	Table	1: Emissions Data							
Emission Point ID No. (Must match Emission Units	Emission Point	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		(I Emissi	ollution Control Device Must match on Units Table & Plot Plan)	Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants Chemical Name/CAS ³	Maximum Uncon Emiss	trolled		ı Potential Emissions ⁵	Emission Form or Phase (At exit	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
Table-& Plot Plan)	Type ¹	ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	conditions, Solid, Liquid or Gas/Vapor)		
Building 216 Small Lots Manufacturing , Process Emissions (See Attachment I)	Upward Vertical	See At	See Attachment I See Attachment I		NA	NA	PM PM10 PM2.5 SO2 VOC Acetonitrile Benzene Butyl Carbitol Catechol Chromium Compounds Ethylbenzene Hexane Hydrogen Chloride Methanol Methylene Chloride Methyl Tert-Butyl Ether p-Xylene Styrene Titamium Tetrachloride Toluene HAPS (MAX)	4.00 1.91 0.28 261.53 321.75 1.35 0.14 0.01 0.16 0.89 0.26 15.46 524.63 12.40 1.88 46.06 0.04 0.001 0.79 87.96 619.44	5.88 3.06 1.11 354.28 109.71 0.35 0.04 0.01 0.03 0.05 0.05 0.50 403.14 10.90 0.23 8.03 0.02 0.001 0.12 23.55 429.85	4.00 1.91 0.28 0.03 22.89 0.05 0.01 0.16 0.89 0.0052 0.96 0.06 4.77 1.87 0.86 0.04 0.00003 0.01 1.77 7.76	5.88 3.06 1.11 0.09 13.38 0.02 0.01 0.01 0.03 0.05 0.00096 0.27 0.05 2.92 0.23 0.19 0.01 0.00002 0.01 0.34 3.35	Gas and Solids	EE/AP -42	NA	
104.014	Upward Vertical	Incinerator Combustion Emissions		NA	NA	PM PM10 PM2.5 PM Condensable PM Filterable SO2 NO _x CO VOC TOC HAPS	0.08 0.08 0.08 0.06 0.02 0.01 0.99 0.83 0.06 0.11	0.35 0.35 0.35 0.26 0.09 0.04 4.34 3.64 0.26 0.48	0.08 0.08 0.08 0.06 0.02 0.01 0.99 0.83 0.06 0.11	0.35 0.35 0.35 0.26 0.09 0.04 4.34 3.64 0.26 0.48					

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (i.e., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical Abstracts Service (CAS) number. LIST Acids, CO, CS2, VOCs, H2S, Inorganics, Lead, Organics, O3, NO, NO2, SO2, SO3, all applicable Greenhouse Gases (including CO2 and methane), etc. DO NOT LIST H2, H2O, N2, O2, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate the method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m3) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO2, use units of ppmv (See 45CSR10).

			Table 2: F	Release Para	ameter Data				
			Exit Gas		Emission Point El	evation (ft)	UTM Coordinates (km)		
Emission Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Temp. (°F)	Volumetric Flow ¹ (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting	
Various									

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

ATTACHMENT L EMISSION UNIT DATA SHEETS

REDACTED COPY Information claimed confidential by Optima Belle, LLC March 1, 2023.

Attachment L **EMISSIONS UNIT DATA SHEET GENERAL**

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): Various (See Attachment I)

identification Number (as assigned on Equipment List Form). Various (see Attachment 1)
Name or type and model of proposed affected source:
Building 216 Small Lots Manufacturing (SLM) – HMAPS Manufacturing – the equipment to manufacture this material is shown on Page 1 of the process flow diagrams in Attachment F. The equipment includes six reactors (R-5, R-11, R-12, R-14, R-15, and R-19), Reactor 5 Stripper (219S), and Reactor 5 Condenser (219C), Mol Sieve Columns (MSC1 and 2), Alumina Columns (AC1-3) and 7 filters (FL1 through 7). This equipment will also be used to process other materials/chemicals that the site manufactures. The emissions are controlled with the existing Incinerator (009) and Incinerator Scrubber (010).
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
HMAPS: Total Batches per year: Single Batch Time: (approximated) Batch Loading:
4. Name(s) and maximum amount of proposed material(s) produced per hour:
HMAPS of
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

The identification number which appears here must correspond to the air pollution control device identification number appearing on the List Form.

6.	Combustion Data (if applicable):					
	(a) Type a	nd amount in ap	propriate units of	fuel(s) to be bu	ırned:	
N	/A					
	(b) Chemic and asl		roposed fuel(s), e	xcluding coal, ir	ncluding maxim	um percent sulfur
	(c) Theore	tical combustion	n air requirement	(ACF/unit of fue	el):	
		@		°F and		psia.
	(d) Percen	t excess air:				
			rners and all othe			
		s proposed as a it will be fired:	source of fuel, id	lentify supplier a	and seams and	give sizing of the
	(g) Propos	ed maximum de	esign heat input:			× 10 ⁶ BTU/hr.
7.	Projected of	perating sched	ule:		 	
Но	urs/Day	24	Days/Week	7	Weeks/Year	52

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 			
@		°F and	l 	psia
a.	NO _X	NA	lb/hr	NA grains/ACF
b.	SO ₂	NA	lb/hr	NA grains/ACF
c.	СО	NA	lb/hr	NA grains/ACF
d.	PM ₁₀	NA	lb/hr	NA grains/ACF
e.	Hydrocarbons	NA	lb/hr	grains/ACF
f.	VOCs	38.64	lb/hr	NA grains/ACF
g.	Pb	NA	lb/hr	grains/ACF
h.	Specify other(s)			
	Ethylbenzene	0.26	lb/hr	NA grains/ACF
	Styrene	0.001	lb/hr	grains/ACF
			lb/hr	grains/ACF
			lb/hr	grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING	RECORDKEEPING
None	Amount of product manufactured.
REPORTING	TESTING
None	None
	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROFMONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to
None.	

REDACTED COPY Information claimed confidential by Optima Belle, LLC January 10, 2018.

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): Various (See Attachment I)

, , , , , , , , , , , , , , , , , , , ,
Name or type and model of proposed affected source:
Building 216 Small Lots Manufacturing (SLM) — Glypure Manufacturing — Glypure is an existing material that is produced at the facility. The Glypure specific equipment that is being added to manufacture this material is shown on Page 1 and 3 of the process flow diagrams in Attachment F. The equipment includes two reactors (R-11 and R-12), Centrifuge #2, West Cake Bin #2, Wet Cake Conveyor, Dryer, Centrate Tank and loading to truck. Glypure comes from the dryer. This equipment will also be used to process other materials/chemicals that the site manufactures. Glypure production does not involve regulated emissions from the process.
On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Glypure: Total Batches per year: Single Batch Time: (approximated)
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Glypure
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
NA
144

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Co	Combustion Data (if applicable):				
	(a) Type and amount in appropriate units of fuel(s) to be burned:					
N	/A					
	(b)	Chemical analysis of prand ash:	oposed fuel(s), exclu	ıding coal, in	cluding maxim	um percent sulfur
	(c)	Theoretical combustion	air requirement (AC	F/unit of fue	l):	
		@		°F and		psia.
	(d) Percent excess air:					
		Type and BTU/hr of bu				
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, ident	ify supplier a	nd seams and	give sizing of the
	(g)	Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.
7.	Pro	jected operating schedu	ıle:			
Но	urs/	Day 24	Days/Week	7	Weeks/Year	52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@		°F and			psia
a.	NO _X	NA	lb/hr	NA grain	s/ACF
b.	SO ₂	NA	lb/hr	NA grain	s/ACF
c.	СО	NA	lb/hr	NA grain	s/ACF
d.	PM ₁₀	NA	lb/hr	NA grain	s/ACF
e.	Hydrocarbons	NA	lb/hr	grain	s/ACF
f.	VOCs	NA	lb/hr	NA grain	s/ACF
g.	Pb	NA	lb/hr	grain	s/ACF
h.	Specify other(s)		İ		
	HAPs	NA	lb/hr	NA grain	s/ACF
			lb/hr	grain	s/ACF
			lb/hr	grain	s/ACF
			lb/hr	grain	s/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

with the proposed operating parameters. F compliance with the proposed emissions lim	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate pits.
MONITORING	RECORDKEEPING
None	Amount of product processed/dried.
REPORTING	TESTING
None	None
MONITORING. PLEASE LIST AND DESCRIBE THE PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROP MONITORING.	OSED RECORDREEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	POSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISPOLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to
None	
None.	

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): Various (See Attachment I)

1. Name or type and model of proposed affected source: Building 216 Small Lots Manufacturing (SLM) — Small Lots Rebuild Equipment — In addition to the equipment shown on Page 1 and 3 of the process flow diagrams in Attachment F which are identified above for HMAPS and Glypure production/manufacturing there are several other pieces of equipment that are being added to the permit that will be utilized in production of current and future products. This equipment includes Charging Vessels V80 and V90, four reactors (R-13, R-16, R-17, and R-18), Supersack Solids Dumping Station (BDS), Filter Dryer (FD2), and Reactor #13 Condenser (R-13C). There are also pumps and associated with this equipment. The Main Scrubber (003), Incinerator (009), and Incinerator Scrubber (010) shown on this diagram are the existing controls that exist at the site. The emissions are controlled with the existing control devices as needed.
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
See page L13 through L15 for different material requirements.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
See page L13 through L15 for different material production.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
The facility undertakes various chemical operations.

The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

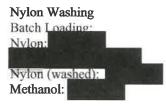
6.	Co	ombustion Data (if applicable):				
	(a)	Type and amount in appropriate units of fuel(s) to be burned:				
N.	/A					
	(b)	Chemical analysis of prand ash:	oposed fuel(s), e	xcluding coal, in	cluding maxim	um percent sulfur
	(c)	Theoretical combustion	air requirement	(ACE/unit of fue	IV-	
	(6)	@	an requirement	°F and	1).	psia.
	(d)	Percent excess air:				·
		e) Type and BTU/hr of burners and all other firing equipment planned to be used:				
	(f)	If coal is proposed as a coal as it will be fired:	source of fuel, id	entify supplier a	ind seams and	give sizing of the
	(g)	Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.
7.	Pro	jected operating schedu	ıle:			
Но	urs/	Day 24	Days/Week	7	Weeks/Year	52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:			
@		°F and	t	psia
a.	NO _X	0.99	lb/hr	NA grains/ACF
b.	SO ₂	261.54	lb/hr	NA grains/ACF
c.	СО	0.83	lb/hr	NA grains/ACF
d.	PM ₁₀	1.99	lb/hr	NA grains/ACF
e.	Hydrocarbons		lb/hr	grains/ACF
f.	VOCs	302.49	lb/hr	NA grains/ACF
g.	Pb		lb/hr	grains/ACF
h.	Specify other(s)		I	
	HAPs See Attachment N, Page N1, for a list of individual HAPs.	619.33	lb/hr	NA grains/ACF
			lb/hr	grains/ACF
			lb/hr	grains/ACF
			lb/hr	grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

9 Proposed Monitoring Pocardkooning Pond	orting, and Testing	
 Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate complian 		
	Please propose testing in order to demonstrate	
compliance with the proposed emissions lim		
MONITORING	RECORDKEEPING	
None	Amount of product processed/dried.	
REPORTING	TESTING	
None	None	
MONITOPING DI EASE LIST AND DESCRIBE TH	I E PROCESS PARAMETERS AND RANGES THAT ARE	
	E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS	
PROCESS EQUIPMENT OPERATION/AIR POLLUTION		
	POSED RECORDKEEPING THAT WILL ACCOMPANY THE	
MONITORING.	OSED RECORDREEFING THAT WILL ACCOMPANT THE	
	DPOSED FREQUENCY OF REPORTING OF THE	
RECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE	
POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR	
	anno procedures required by Manufacturer to	
maintain warranty	nance procedures required by Manufacturer to	
maintain warranty		
None.		


Multi-Reactor Processes

Negolyte
· 《美术》,"我们是我们是我们的人,这些一个世界,我们也不是一个人的人。" "我们是我们是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就会
Negolyte (liquid):
Undried LAME
L-Alanine Methyl Ester (LAME): Hydrogen Chloride:
SO2:
Dried LAME
·····································
L-Alanine Methyl Ester (LAME):
Hydrogen Chloride: SO2: SO2: SO2: SO2: SO2: SO2: SO2: SO2
Sclareol
Batch Loading: Sclareol (Crude) Approximately Sclareol (Product) Approximately
Sodium Tetraphenylborate (STPB)
Batch Loading:
STPB:
· · · · · · · · · · · · · · · · · · ·

D-Mannose
D-Mannose (dried):
Single Reactor Process
Trimethoxyboroxine (TMBX) Batch Loading: TMBX:
Sodium Butyl Carbitol
Sodium Butyl Carbitol (per batch): Water:
НМА
HMA:
Double Cone Dryer Processes
Catofin: Total Batches per year: 182
T2960
SR-1000.
SK-1000.
Catofin: Catofin 331 T2960: T-2960 Catalyst SR-1000: SR-1000
CN-3624: Batch Loading: wetcake and dried weight

REDACTED COPY Information claimed confidential by Optima Belle, LLC January 10, 2018.

Filter Dryer Process

Existing materials which Chemours/DuPont had permitted will also remain in the permit. This includes D5803, Sulfonamide Drying (A5546, V9367 and E9260), U9069, Fluoridone, Krovar Technical, Glycolic Acid. Optima has not batched these materials but may in the future.

HMAPS

Materials utilized in production of

ATTACHMENT M AIR POLLUTION CONTROL DEVICE SHEET

Attachment M Air Pollution Control Device Sheet

(AFTERBURNER SYSTEM)

Control Device ID No. (must match Emission Units Table): B216 Incinerator (009)

Equipment Information

1.	Manufacturer: North American Manufacturing Co. Model No. 6514-8						
3.	. Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air vocapacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.						
4.	Combustion chamber dimensions: Length: 16 ft		Stack Dimensions: Height: 35 ft				
	Diameter: 4 ft Cross-sectional area: 12.57 ft ²		Diameter: 1.5 ft				
6.	Combustion (destruction) efficiency: Estimated: 99.9 %		combustion chamber:	in			
	Minimum guaranteed: NA %			ec ec			
8.	Throat diameter: ft	9.	Combustion Chamber Volume: ft	3			
10.	Fuel used in burners: ☑ Natural Gas ☐ Fuel Oil, Number: ☐ Other, specify:		Burners per afterburner: 1 Number of burners: 1 BTU/hr for burner: 10,000,000 BTU/h	hr			
12.	Fuel heating value of natural gas: Estimated: 1,020 Btu/Scf BTU/lb		Flow rate of natural gas: Estimated 163.4 Max 25 min/operational ft³/mir	n			
14.	Is a catalyst material used?: ☐ Yes ☐ No If yes, catalyst material used:		Expected frequency of catalyst replacement: NA yr(s) Date catalyst was last replaced: Month/Year: NA				
17.	Space Velocity of the catalyst material used:	18. Catalyst area: NA ft ²					
	NA 1/hour	19. Volume of catalyst bed: NA ft ³					
20.	Minimum loading: Maximum loading: NA	21. Temperature catalyst bed inlet: NA °F Temperature catalyst bed outlet:NA °F					
22.	Explain degradation or performance indicator criteria	detei	rmining catalyst replacement: NA				
23.	Heat exchanger used? ☐ Yes ☐ No		Heat exchanger surface area? NA ft				
	Describe heat exchanger:	•	Average thermal efficiency: NA %				
	Temperature of gases: After preheat: NA		F Before preheat: Variable °F	=			
	Dilution air flow rate: NA ft³/minut	te					
28.	Describe method of gas mixing used: NA						

M1 of M7 Revision 03/15/2007

Waste Gas (Emission Stream) to be Burned

29.	Name		Quantity of H ₂ S/100 ft ²	Quantity-Dens (LB/hr, ft ³ /hr, et		Source of Material			
	Variable, depending on the products being manufactured.								
30.	Estimate total combust	tibles to afte	rburner Variabl	le lb/hr or AC	CF/hr				
31.	 Estimated total flow rate to afterburner or catalyst including materials to be burned, carrier gases, auxiliary fuel, etc.: NA lb/hr, ACF/hr, or scfm Total flow rate = Flue gas flow rate 								
32.	Afterburner operating p		_	During maximum operation of feeding unit(s)		ring typical tion of feeding unit(s)	During minimum operation of feeding unit(s)		
	Combustion chamber t	emperature	in °F	2000°F		1850°F	1800°F		
	Emission stream gas to	emperature	in _	50 – 100°F	5	0 – 100°F	50 – 100°F		
	Combined gas stream	entering cat	alyst bed in	Variable		Variable	Variable		
	Flue stream leaving the	e catalyst be	ed _	Variable	,	Variable	Variable		
	Emission stream flow r	ate (scfm)	<u>-</u>	NA		NA	NA		
	Efficiency (VOC Reduc	ction)	_	99.9 %		99.9 %	99.9 %		
	Efficiency (Other; spec	ify contamin	nant)	NA %		NA %	NA %		
33.	Inlet Emission stream p	parameters:			ı	_			
		=		kimum	'11 '	Тур			
	Pressure (mmHg):	_	•	ng on process which epending on the produ-		•			
	Heat Content (BTU/scf	·):	1	,020		<1	00		
	Oxygen Content (%): 8 <1						1		
	Moisture Content (%):			2		<	1		
	Are halogenated organ Are particulates present Are metals present?	e halogenated organics present?							
34.	4. For thermal afterburners, is the combustion chamber temperature continuously monitored and recorded? ☐ Yes ☐ No								
35.	35. For catalytic afterburners, is the temperature rise across the catalyst bed continuously monitored and recorded? No NA								
36.	36. Is the VOC concentration of exhaust monitored and recorded? Yes No								
37.	37. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification): Flue gases from the incinerator are passed through the incinerator scrubber if process produces acid gases.								
38.	88. Describe the collection material disposal system: Scrubber fluids are sent to the Waste Treatment Plant for final treatment.								
39.	9. Have you included <i>Afterburner Control Device</i> in the Emissions Points Data Summary Sheet? Yes								

M2 of M7 Revision 03/15/2007

	g, and Testing reporting in order to demonstrate compliance with the e testing in order to demonstrate compliance with the RECORDKEEPING: Incinerator Temperature					
• •	•					
REPORTING:	TESTING:					
None	None					
monitored in order to demons equipment or air control device. RECORDKEEPING: Please describe the proposed re Please describe any proposed pollution control device.	ocess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring. I emissions testing for this process equipment on air emissions testing for this process equipment on air					
41. Manufacturer's Guaranteed Capture Efficiency for ea						
42. Manufacturer's Guaranteed Control Efficiency for eac 99.9						
43. Describe all operating ranges and maintenance proce NA	edures required by Manufacturer to maintain warranty.					

M3 of M7 Revision 03/15/2007

Attachment M Air Pollution Control Device Sheet

(BAGHOUSE)

Control Device ID No. (must match Emission Units Table): DCFD

Equipment Information and Filter Characteristics

1.	Manufacturer: Young Industries Self-Contained	2. Total number of compartments: 1					
	Filter/Bag Drop Station		ber of compar	tment online	for normal		
	Model No. FBD42-8	· ·	ation: 1				
4.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state						
5.	Baghouse Configuration:	Clos	ed Pressure		tion		
	(check one)	anced Fab	ric				
	☐ Other, Specify						
6.	Filter Fabric Bag Material:	7. Bag	Dimension:				
	Nomex nylon✓ Polyester✓ Polypropylene		Diameter	NA	in.		
	Acrylics Ceramics		Length	3.5	ft.		
	☐ Fiber Glass ☐ Cotton Weight oz./sq.yd	8. Tota	l cloth area:	36	ft ²		
	☐ Cotton Weight oz./sq.yd ☐ Teflon Thickness in	9. Num	ber of bags:	8			
	Others, specify	10. Opei	ating air to cloth ra	atio: 33.3	ft/min		
11.	Baghouse Operation:	d)	☐ Automat	ic	tent		
12.	Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet	☐ Reve	rse Air Jet :				
13.	Cleaning initiated by: Timer Expected pressure drop range in. of water		equency if timer ac				
14.	Operation Hours: Max. per day: 24 Max. per yr: 8,760		ection efficiency: ranteed minimum:	Rating: 100 100	% %		
_	Gas Stream C	haracteri	stics				
16.	Gas flow rate into the collector: 1200 ACFM	l at	Ambient °F and	Ambient	PSIA		
	ACFM: Design: PSIA Maximum:	Ambient	PSIA Average	e Expected: An	nbient		
17. Water Vapor Content of Effluent Stream: NA lb. Water/lb. Dry Air							
18.	Gas Stream Temperature: Ambient °F	19. Fan	Requirements:	1.5	hp		
	,		OR	1,200	ft³/min		
20.	Stabilized static pressure loss across baghouse. Pre	ssure Dro	pp: High	NA	in. H₂O		
			Low	NA	in. H ₂ O		
21.	Particulate Loading: Inlet: Variable	grain/scf	Outlet:	Variable	grain/scf		

M4 of M7 Revision 03/15/2007

22. Type of Pollutant(s) to be collected (if particulate give specific type): Particulate – variable depending on material being produced.							
23. Is there any SO ₃ in the emission s				O ₃ cont		ppmv	
24. Emission rate of pollutant (specify) into and out of collector at maximum design operating conditions: IN OUT							
Pollutant		lb/hr	1		lb/hr	grains/acf	
Particulate Matter		Variable*	NA		Variable*	NA	
*This is a bag dump station with control.	System is fee	d intermittently.					
25. Complete the table:	Particle S	Size Distribution at Inlet			Fraction Efficiency of Collector		
Particulate Size Range (microns)	Weigl	to Collector eight % for Size Range			Weight % for Size Range		
0 – 2							
2 – 4							
4 – 6							
6 – 8							
8 – 10							
10 – 12							
12 – 16		NA			Est. 95%		
16 – 20							
20 – 30							
30 – 40							
40 – 50							
50 – 60							
60 – 70							
70 – 80							
80 – 90							
90 – 100							
>100							

M5 of M7 Revision 03/15/2007

	How is filter monitored for indications of deterioration (e.g., broken bags)? Continuous Opacity Pressure Drop Alarms-Audible to Process Operator Visual opacity readings, Frequency: Other, specify: Inspection of Bag Dump Station.
27.	Describe any recording device and frequency of log entries:
	None Proposed
28.	Describe any filter seeding being performed:
	None
29.	Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):
	None
	Twite
30	Describe the collection material disposal system:
50.	Describe the collection material disposal system.
	Material is recycled if able. Otherwise, it is disposed as waste.
31.	Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet? Yes

M6 of M7 Revision 03/15/2007

Please propose m	g parameters. Please propose	ng, and Testing reporting in order to demonstrate compliance with the se testing in order to demonstrate compliance with the second compliance with the seco							
MONITORING:		RECORDKEEPING:							
None Proposed.		None Proposed.							
REPORTING:		TESTING:							
None Proposed.		None Proposed.							
MONITORING:	monitored in order to demons	ocess parameters and ranges that are proposed to be strate compliance with the operation of this process							
RECORDKEEPING: REPORTING:		ecordkeeping that will accompany the monitoring. d emissions testing for this process equipment on air							
TESTING:	•	emissions testing for this process equipment on air							
33. Manufacturer's Gua	aranteed Capture Efficiency for ea	ch air pollutant.							
100%									
34. Manufacturer's Gua	aranteed Control Efficiency for eac	h air pollutant.							
95%									
35. Describe all operati	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.							
Dust collector controls a the manufacturer.	bag dump station. The selected dust	collector will be operated and maintained in accordance with							

M7 of M7 Revision 03/15/2007

ATTACHMENT N SUPPORTING EMISSIONS CALCULATIONS

By: PEW

Date: 03/01/2023

Checked By: ABK

Date: 03/07/2023

REDACTED COPY

Information claimed confidential by Optima Belle, LLC March 1, 2023.

Total Emissions

Number of Batches in Process Process Cycle Time (hrs) Number of Batches Per Year (2)

Process Emissions

	Uncontro	lled (1)	Controlled			
Pollutant	lb/hr (Max Rate)	ton/yr	lb/hr (Max Rate)	ton/yr		
	26.25	15.32	0.52	0.31		
	0.001	0.001	0.00002	0.00002		
Ethylbenzene	0.26	0.05	0.0052	0.00096		
工法医验证法	12.13	5.02	0.2427	0.10		
Styrene	0.001	0.001	0.00003	0.00002		
VOC	38.64	20.39	0.77	0.41		
Total HAPs	0.26	0.05	0.00521	0.00099		

^{1.} Uncontrolled emissions based on 98% control from incinerator.

Volatile Organic Compound

Volatile Organic Compound and Hazardous Air Pollutant

^{2.} Based on 8760 hours per year.

REDACTED COPY

Information claimed confidential by Optima Belle, LLC March 1, 2023.

Product: HMAPS (Albemarle @ Belle Process Name: HMAPS

Production Quantity: Process Cycle Time:

Date: 2/1/2023

File: N:\Emission Master Files\Belle\HMAPS\HMAPS Belle R_2.emm

Comments:

		Emissions	Émissions	Emissions
Compound	Activities Emitting	Uncontrolled (lb)	Controlled (lb)	Percent Removal
	16	244.3313573	244.3313573	0
进步。	62	55.06776941	0.839509359	98.4754978
	30	0.001499385	2.99877E-05	98
Ethylbenzene	20	0.261166934	0.00263628	98.9905765
	20	0	0	
	36	17.68179297	0.353635859	98
	19	0	0	
	4	0	0	
	34	14.86315897	0.274917127	98.15034524
	2	0	0	
	27	285.9303085	285.9303085	0
	13	0	0	
Styrene	3	0.003420479	6.84096E-05	98
	11	0	0	
	14	1.471522765	1.982070919	-34.69522641

	Process Cycle	Compound Emission	Compound Emission	Max Rate (lb/hr)
Compound	Average (lb/hr)	Hours	Average (lb/hr)	Within 1 hour
	9.07586484	5.324722222	45.88621662	182.8246635
	0.031184182	24.91611111	0.033693435	0.262455705
发化热 生产公司公司	1.11391E-06	14.74305556	2.03402E-06	1.23498E-05
Ethylbenzene	9.79265E-05	9.184722222	0.000287029	0.002592612
	0	9.184722222	0	0
	0.01313606	15.23416667	0.023213338	0.088585246
	0	12.008888889	0	0
	0	2.586944444	0	0
	0.010211995	18.6925	0.014707349	0.121339461
	0	0.505	0	0
	10.62108794	8.685555556	32.9202095	141.2213184
	0	7.504444444	0	0
Styrene	2.54112E-06	5.004722222	1.3669E-05	1.36819E-05
	0	6.505	0	0
DESCRIPTION OF THE SECOND	0.073625457	7.504166667	0.264129384	1.371769165

- (1) Process Cycle Average = Compound emission quantity / Total process cycle time in hours.
- (2) Compound Emission Average = Compound emission quantity / Compound emission time in hours.

Volatile Organic Compound
Volatile Organic Compound and Hazardous Air Pollutant

		Emissions	Emissions	Emissions
Classification	Activities Emitting	Uncontrolled (lb)	Controlled (lb)	Percent Removal
All Emissions	79	619.6119967	533.7145338	13.8631052
Acid	0	0	0	
Acid Gases	0	0	0	
Asbestos	0	PEDACT	ED COPY	
Base	0			41.1.1.
Biological	0		on claimed confide	
CATEGORY I	0	Optima B	elle, LLC March 1	, 2023.
ASBESTOS	0			
BIOLOGICAL	0	0	0	
Cr(+6)	0	0	0	
DIOXIN	0	0	0	
HAP-PARTICULATE	0	0	0	
METAL	0	0	0	
OTHER PARTICULATE	0	0	0	
RADIONUCLIDE	0	0	0	
CATEGORY II	0	0	0	
HAP-VOC	0	0	0	
OTHER VOC	0	0	0	
CATEGORY III	0	0	0	
ACID	0	0	0	
HAP-ACID	0	0	0	
CATEGORY IV	0	0	0	
CATEGORY V (CO)	0	0	0	
CATEGORY VI (NOx)	0	0	0	
CATEGORY VII (SO2)	0	0	0	
CATEGORY VIII	0	0	0	
CO	0	0	0	
CR+6	0	0	0	
Dioxin	0	0	0	
ETG	0	0	0	
EVOS	0	0	0	
Gas	0	0	0	
HAP	23	0.264587414	0.00270469	98.97777073
Ethylbenzene	20	0.261166934	0.00270409	98.9905765
Styrene	3	0.003420479	6.84096E-05	98
Hydrogen	0	0.003420479	0.04030E-03	90
LOC	0	0	0	
Metal	0	0	0	
NOx	0	0	0	
Particulate	0	0	0	
Pb	0	0	0	
PM10	0	0	0	
Radionuclide	0	0	0	
SO2	0	0	0	
TSP				
TVOS	0	0	0	
VCM	0	0	0	
VOC	0	70 10551570	0	00 4005 400
VOC	62	70.19551579	1.117131176	98.40854339
	62	55.06776941 0.261166934	0.839509359 0.00263628	98.4754978 98.9905765

		Emissions	Emissions	Emissions
Classification	Activities Emitting	Uncontrolled (lb)	Controlled (lb)	Percent Removal
	34	14.86315897	0.274917127	98.15034524
	3	0.003420479	6.84096E-05	98
Unclassified	79	549.4164809	532.5974026	3.061262072
	16	244.3313573	244.3313573	0
	30	0.001499385	2.99877E-05	98
	20	0	0	
	36	17.68179297	0.353635859	98
	19	0	0	
	4	0	0	
	2	0	0	
	27	285.9303085	285.9303085	0
	13	0	0	
	11	0	0	
1967年,1985年,1985年,1985年	14	1.471522765	1.982070919	-34.69522641

		Process Cycle	Emission	Emission	Max Rate (lb/hr)
Classificatio	n	Average (lb/hr)	Hours	Average (lb/hr)	Within 1 hour
All Emissions		19.82521206	30.91	17.26672707	183.0806978
Acid		0	0	0	0
Acid Gases	77.4	0	0	0	0
M3DC3IO3	EDACTE	1 171	0	0	0
Dase	nformation	1 171	0	0	0
	onfidential		0	0	0
OMILOUNT	ptima Bell		0	0	0
ASBESTOS M	Iarch 1, 20	23.	0	0	0
BIOLOGICAL		0	0	0	0
Cr(+6)		0	0	0	0
DIOXIN		0	0	0	0
HAP-PARTICULA	ATE	0	0	0	0
METAL		0	0	0	0
OTHER PARTICU	JLATE	0	0	0	0
RADIONUCLIDE		0	0	0	0
CATEGORY II		0	0	0	0
HAP-VOC		0	0	0	0
OTHER VOC		0	0	0	0
CATEGORY III		0	0	0	0
ACID		0	0	0	0
HAP-ACID		0	0	0	0
CATEGORY IV		0	0	0	0
CATEGORY V (CC		0	0	0	0
CATEGORY VI (NO	Ox)	0	0	0	0
CATEGORY VII (S	O2)	0	0	0	0
CATEGORY VIII		0	0	0	0
CO		0	0	0	0
CR+6		0	0	0	0
Dioxin		0	0	0	0
ETG		0	0	0	0
EVOS		0	0	0	0
Gas		0	0	0	0

		Emissions	Emissions	Emissions
Classification	Activities Emitting	Uncontrolled (lb)	Controlled (lb)	Percent Removal
HAP	0.000100468	14.18944444	0.000190613	0.002592612
Hydrogen	0	0	0	0
LOC	0	0	0	0
Metal	0	0	0	0
NOx	0	0	0	0
Particulate	0	0	0	0
Pb	0	0	0	0
PM10	0	0	0	0
Radionuclide	0	0	0	0
SO2	0	0	0	0
TSP	0	0	0	0
TVOS	0	0	0	0
VCM	0	0	0	0
VOC	0.041496645	24.91611111	0.044835696	0.291780486
Unclassified	19.78371541	30.91	17.23058566	182.8431717

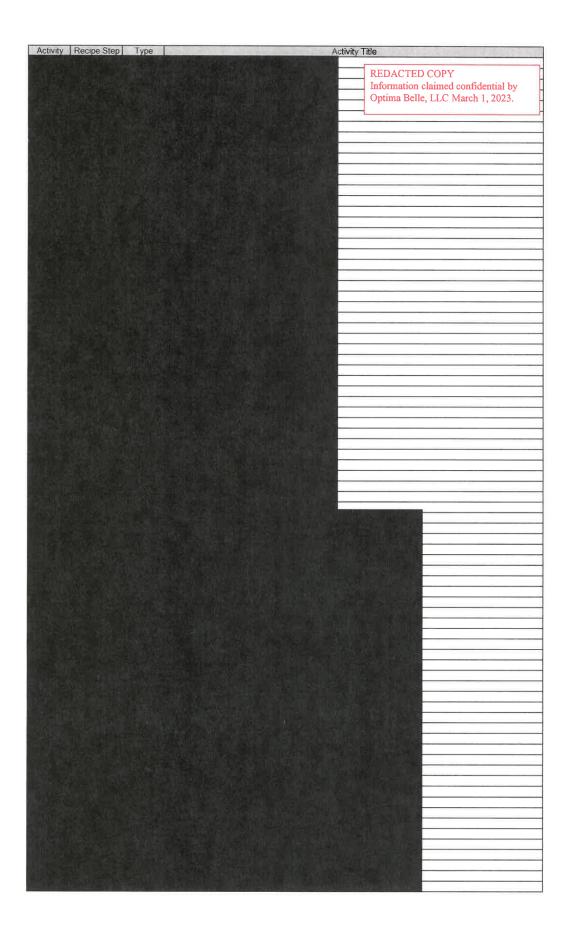
⁽¹⁾ Process Cycle Average = Classification emission quantity / Total process cycle time in hours.

⁽²⁾ Emission Average = Classification emission quantity / Classification emission time in hours.

Vessel	Vant ID	Davida a # 4	Device #1		Device # 2		Device # 3	
CWT Belle	Vent ID	Device # 1	Temp (°C)	Device # 2	Temp (°C)	Device # 3	Temp (°C)	
CVV i belle		- In 1/2 - I	1					
		Belle Vapor						
		Return						
Railcar	Loop	Loop						
		Condenser			N. Francisco			
		RX-5 Hast						
RX-14 Belle	Incinerator	С		Incinerator Belle				
		Condenser						
		RX-5 Hast				Scrubber		
RX-15 Belle	Incinerator	С		Incinerator Belle		Incinerator Belle	30	
		Condenser						
		RX-5 Hast						
RX-5 Belle	Incinerator	С		Incinerator Belle				
		Condenser						
		RX-5 Hast						
Tank Wagon	Incinerator	C		Incinerator Belle	Nacial III			

REDACTED COPY Information claimed confidential by Optima Belle, LLC March 1, 2023.

Uncontrolled Emissions Process: HMAPS


Emissions reported in Pounds.

Activity Recipe	14 PM 5. 14	William !	al actions	Mar Son		ng (alb	West 1	126		21,74		Sall No	A TOTAL	/ 185m	431/
Step	- 0	D)			MARK CO.							STATE OF			1.5.61
2 3	60.9416	3.6384													
4 5	60.9416	3.6384								REDACTED Information cl		ifidential by			
6	60.9416	3.6384								Optima Belle,			H		
7 8	2013	1.4132				1.3609		-			1				
10		1.4134				1.361									
11 12	V 7/10	0 1.4135				1.3612									
13	1.1083	0.0581 0.2549				0.2455									
15	世 一	0.1489				0.1434									
16		0	0			0									
18 19		0.6882	8.73E-05			0.664									
20 21		1.9771	3.00E-04			1.9079									
22 23		1.9774	0 3.00E-04			1.9082									
24 25	50.50	0 0.8645	0 1.00E-04			1.2443									
26 27		0.0195	2.34E-06			0.028				0					
28	774	0.0335	3.92E-06			0.05	0		0.0513	0					
29 30		0.0389	4.27E-06 0		-	0.058	0		0.0576 0						
31 32		1.0384	1.00E-04 0		-	1.0152	0	-	1.1153						
33 34	232	1.0391	1.00E-04			1.0155	0	-	1.0825						
35 36		0.4094	5.88E-05			1.6798 0	0		0.8156						
37 38	18.9964	2.5347	4.00E-04			3.0236	0		6.067						0.0345
39 40	2.8995 2.9928	2.0047	4.002-04			3.0230			0.007					0	0.0053
41	2.9920	0	0			0	0		0					0	0.0054
42 43	27.0359	0.3949	5.75E-05			0.524	0		0.6502				0.0034	0	0.0491
44 45	1174	0	0			0	0	-	0				0		
46 47	6.2464	0.0768 0.2379	8.47E-06 2.15E-05	8.80E-05 2.00E-04	0	0.0912	0		0.1087 0.4732					0	0.0039
47	1.2671	0.056				0									
49 49	0.9603	0.0358	3.14E-06	3.27E-05	0		0		0.0678					0	6.00E-04
50 51	0	0	0	0	0		0		0		0			0	C
52 53		0.0568	,	5.16E-05	0		0	0	0.1098		1.0654			0	0.001
54		0		0	0			0	0		0			0	
55 55	118 20	0		0	0			0	0		4.5653 0			0	1.3718
56 57	STORY -	0.8672		8.00E-04	0				1.165		7.0226 10.4061				
57 58	K 272	0		0	0				0		0				
59 60	- 1	0		0	0				0		0				
61 62	1630	0.1532		1.00E-04	0				0.0606		1.8235				
63 64		0.1533		1.00E-04	0			_	0.0605		1.8239				
65 66	2.11	0.1533		1.00E-04	0				0.0603		1.8244				
67											69.4228				
68 69											69.4228				
70 71											69.4228				
72 72	Strate	1.1143		9.00E-04	0				0.6832		13.2724 0				
73 73	: \$4) E	25.5302		0.2587	0				2.2346		35.8584 0				

Controlled Emissions Process: HMAPS

Emissions reported in Pounds.

Activity R	ecipe Step	10 5	- St. 10	Stazeni	or Opensy is	1 2 5	1000	With the	Ser S	Un also	No. of Contract	1 8 0	157	N. S. Carlo		100
1 2		60.9416	0.0728												-	
3		0	0.0728							-	-	UZDA O	TED COD			
4		60.9416	0.0728										TED COP	Y ed confidentia	d har	
5	-51m	60.9416	0.0728											March 1, 20		
7		100	0				0					*				
8			0.0283				0.0272									
10	10.00		0.0283				0.0272					_				
11			0				0									
12	48 I S. C.	1.1083	0.0283 0.0012				0.0272									
14	1132	111000	0.0051				0.0049					_				
15 16	and the		0.003				0.0029									
17			0	0		_	0			_						
18			0	0			0									
19			0.0138	1.75E-06 0			0.0133									
21			0.0395	5.37E-06			0.0382									
22	3743	1 10	0 0005	0			0									
24	100		0.0395	5.38E-06 0			0.0382									
25 26	14000		0.0173	2.24E-06			0.0249									
27		0	4.00E-04 0	4.68E-08 0			6.00E-04				0					
28	THE REAL PROPERTY.		7.00E-04	7.84E-08			0.001	0		0.001	-					
29 30		100	8.00E-04 0	8.54E-08 0			0.0012	0		0.0012						
31	T to its		0,0208	2.23E-06			0.0203	0		0.0223						
32 33			0	0			0	0		0						
34			0.0208	2.23E-06 0			0.0203	0		0.0217		_				
35			0.0082	1.18E-06			0.0336	0		0.0163						
36 37		18,9964	0	0			0	0		0			0			0.1911
38		41	0.0507	7.60E-06			0.0605	0		0.1213			U			0.1911
39 40		2.8995 2.9928											0		0	0.0292
41	100%	2.5920	0	0			0	0		0			0		0	0.0301
42 43	- fire		0.0079	1.15E-06			0.0105	0		0.013				6.84E-05		
43	74,54	27.0359	0	0			0	0		0	-		. 0	0	0	0.272
45	1,150		0	0			0	0		0				0		
46 47		6.2464	0.0015 4.76E-05	1.69E-07 4.30E-07	1.76E-06 4.48E-06	0	0.0018	0		0.0022						0.0629
47				4.30E-07	4.402-00	U	0			0.0095			0		0	0.0629
48	16911	1.2671	0.0011	6.28E-08	0.545.07	0										
49	fail);	0.9603	7.17E-06	0.28E-08	6.54E-07	U		0		0.0014		_	0		0	0.0097
50 51	1,180	0	0	0	0	0		. 0		0			0		0	0
52			1.14E-05	0	1.03E-06	0		0	0	0.0022	_	1.0654	0		0	0.0153
53		00	0		0	0			0	0		0	0		0	0
54 55	1000		0		0	0		_	0		_	4.5653	0		0	1.3718
55	7 (4)		0		0	0			- ŭ	0		0	0			1.3718
56 57	114.6		0.0173		1.62E-05	0			_	0.0233		7.0226 10.4061				
57	140.0		0.0170		1.02L-03				_	0.0233		0.4061	0		-	0
58 59			0		0	0				0		0				
60	- 557.6		0		0	0				0	_	0				
61	1500		0.0031		2.61E-06	0				0.0012		1.8235				
62 63			0.0031		2.61E-06	0				0.0012		1.8239				
64		AU.	0		0	0				0		0				
65 66	100500		0.0031		2.61E-06	0				0.0012		1.8244				
67	17.27										- 1	0 59.4228				
68	1,08											0				
69 70	Z30 K	-										59.4228 0				
71	8724	7										9.4228				
72 72	The	11/	0.0223		1.73E-05	0				0.0137		13.2724				
73	LA III		0.2553		0.0026	0				0.0223	- 3	35.8584				
73	PI VI											0				

By: PEW Date: 03/05/2023 Checked By: ABK Date: 03/07/2023

PTE Building 216 PTE Building 114

Emission Type	Unco	ntrolled	Cont	rolled	Uncor	itrolled	Cont	rolled
Emission type	lb/hr	ton/vr	lb/hr	ton/vr	lb/hr	ton/yr	lb/hr	ton/yr
PM	4.08	6.23	4.08	6.23	0.06	0.26	0.06	0.26
PM10	1.99	3.41	1.99	3.41	0.06	0.26	0.06	0.26
PM2.5	0.36	1.46	0.36	1.46	0.06	0.26	0.06	0.26
SO2	261.54	354.32	0.04	0.13	0.16	0.54	0.01	0.05
NOx	0.99	4,34	0.99	4.34	1000.74	743.29	20.74	18.04
CO	0.83	3.64	0.83	3.64	0.62	2.72	0.62	2.72
VOC	321.81	109.97	22.95	13.64	1741.55	743.43	21.01	8.24
Acetonitrile	1.35	0.35	0.05	0.02	DEFE. SE		DR US EL	
Benzene	0.14	0.04	0.01	0.01				
Butyl Carbitol	0.01	0.01	0.01	0.01	TO THE REAL PROPERTY.	- 13 - 15 - 15 - 15 - 15 - 15 - 15 - 15	THE RESERVE	
Catechol	0.16	0.03	0.16	0.03				
Chlorobenzene	0.00	0.00	0.00	0.00				
Chromium Compounds	0.89	0.05	0.89	0.05				
Ethylbenzene	0.26	0.05	0.0052	0.00096				
Hexane	15.46	0.50	0.96	0,27		Lie of Land		
Hydrogen Chloride	524.63	403.14	0.06	0.05	112.50	25.02	2.25	0.50
Methanol	12.40	10.90	4.77	2.92	440,00	358.08	4,43	5.07
Methylene Chloride	1.88	0,23	1.87	0.23	(ASSESSED			
Methyl Tert-Butyl Ether	46.06	8.03	0.86	0.19	E-ZI VE C	NIE TARLOS S		
p-Xylene	0.04	0.02	0.04	0.01	CALL ACT	The state of the state of		ndhar I
Styrene	0.001	0.001	0.00003	0.00002				
Titanium Tetrachloride	0.79	0.12	0.01	0.01	SATALON .	TO BE STATE		
Toluene	87.96	23.55	1.77	0.34				
Methyl Chloride		Section of the second			230.00	25,32	4.60	0.51
Ammonia (NH3)		E L'ENTITY DE S			100.00	120.75	2.00	2,41
Ethanol	UNIQUE NEW TIERS	22 10 11 11			173.00	53.18	3,46	1.06
Tributylamine					20.00	4.19	0.40	0.08
Ethyl Chloride			1 1 1 1 1 1 1 1		398.50	56.63	7.97	1.13
Methyl Chloroformate	STOR LINE				13.00	2.25	0.26	0.04
Triethyl Phosphite	SUPERIOR S		100		3.50	3.00	0.07	0.06
HAPS	619.46	429.93	7,78	3.43	1181.02	465.11	19.27	7.27

Total PTE

	Uncor	Uncontrolled		Controlled	
Emission Type	lb/hr	ton/yr	lb/hr	ton/yr	
PM	4.14	6.49	4.14	6.49	
PM10	2.05	3.67	2.05	3.67	
PM2.5	0.42	1.72	0.42	1.72	
SO2	261.70	354.87	0.05	0.19	
NOx	1001.73	747.63	21.73	22.38	
CO	1.45	6.35	1.45	6.35	
VOC	2063.36	853.40	43.96	21.88	
Acetonitrile	1.35	0.35	0.05	0.02	
Benzene	0.14	0.04	0.01	0.01	
Butyl Carbitol	0.01	0.01	0.01	0.01	
Catechol	0.16	0.03	0.16	0.03	
Chlorobenzene	0.00	0.00	0.00	0.00	
Chromium Compounds	0.89	0.05	0.89	0.05	
Ethylbenzene	0.26	0.05	0.0052	0.00096	
Hexane	15.46	0.50	0.96	0.27	
Hydrogen Chloride	637.13	428.16	2.31	0.55	
Methanol	452.40	368.98	9.20	7.99	
Methylene Chloride	1.88	0.23	1.87	0.23	
Methyl Tert-Butyl Ether	46.06	8.03	0.86	0.19	
p-Xylene	0.04	0.02	0.04	0.01	
Styrene	0.001	0.001	0.00003	0.00002	
Titanium Tetrachloride	0.79	0.12	0.01	0.01	
Toluene	87.96	23.55	1.77	0.34	
Methyl Chloride	230.00	25.32	4.60	0.51	
Ammonia (NH3)	100.00	120.75	2.00	2.41	
Ethanol	173.00	53.18	3.46	1.06	
Tributylamine	20.00	4.19	0.40	0.08	
Ethyl chloride	398.50	56.63	7.97	1.13	
Methyl Chloroformate	13.00	2.25	0.26	0.04	
Triethyl Phosphite	3.50	3.00	0.07	0.06	
HAPS	1800.48	895.04	27.05	10.70	

Change of Emissions for Building 216

Building 216 Process Emissions

Pollutant	Uncontr	rolled	Controlled	
	lb/hr (Max Rate)	ton/yr	lb/hr (Max Rate)	ton/yr
PM	0.00	0.00	0.00	0.00
PM10	0.00	0.00	0.00	0.00
PM2.5	0.00	0.00	0.00	0.00
SO2	0.00	0.00	0.00	0.00
VOC	38.64	20.39	0.77	0.41
Acetonitrile	0.00	0.00	0.00	0.00
Benzene	0.00	0.00	0.00	0.00
Butyl Carbitol	0.00	0.00	0.00	0.00
Catechol	0.00	0.00	0.00	0.00
Chlorobenzene	0.00	0.00	0.00	0.00
Chromium Compounds	0.00	0.00	0.00	0.00
Ethylbenzene	0.26	0.05	0.0052	0.00096
Hexane	0.00	0.00	0.00	0.00
Hydrogen Chloride	0.00	0.00	0.00	0.00
Methanol	0.00	0.00	0.00	0.00
Methylene Chloride	0.00	0.00	0.00	0.00
Methyl Tert-Butyl Ether	0.00	0.00	0.00	0.00
p-Xylene	0.00	0.00	0.00	0.00
Styrene	0.001	0.001	0.00003	0.00002
Titanium Tetrachloride	0.00	0.00	0.00	0.00
Toluene	0.00	0.00	0.00	0.00
HAPS	0.26	0.05	0.005	0.00099

Incinerator Combustion Emissions

PM	0.00	0.00	0.00	0.00
PM10	0.00	0.00	0.00	0.00
PM2.5	0.00	0.00	0.00	0.00
PM Condensable	0.00	0.00	0.00	0.00
PM Filterable	0.00	0.00	0.00	0.00
SO2	0.00	0.00	0.00	0.00
NOx	0.00	0.00	0.00	0.00
CO	0.00	0.00	0.00	0.00
VOC	0.00	0.00	0.00	0.00
TOC	0.00	0.00	0.00	0.00
HAPS	0.00	0.00	0.00	0.00

Potential to Emit for Building 216

	Unconti	rolled	Controlled	
Pollutant*	lb/hr (Max Rate)	ton/yr	lb/hr (Max Rate)	ton/yr
PM	0.00	0.00	0.00	0.00
PM10	0.00	0.00	0.00	0.00
PM2.5	0.00	0.00	0.00	0.00
SO2	0.00	0.00	0.00	0.00
NOx	0.00	0.00	0.00	0.00
СО	0.00	0.00	0.00	0.00
VOC	38.64	20.39	0.77	0.41
Acetonitrile	0.00	0.00	0.00	0.00
Benzene	0.00	0.00	0.00	0.00
Butyl Carbitol	0.00	0.00	0.00	0.00
Catechol	0.00	0.00	0.00	0.00
Chlorobenzene	0.00	0.00	0.00	0.00
Chromium Compounds	0.00	0.00	0.00	0.00
Ethylbenzene	0.26	0.05	0.0052	0.00096
Нехапе	0.00	0.00	0.00	0.00
Hydrogen Chloride	0.00	0.00	0.00	0.00
Methanol	0.00	0.00	0.00	0.00
Methylene Chloride	0.00	0.00	0.00	0.00
Methyl Tert-Butyl Ether	0.00	0.00	0.00	0.00
p-Xylene	0.00	0.00	0.00	0.00
Styrene	0.001	0.001	0.00003	0.00002
Titanium Tetrachloride	0.00	0.00	0.00	0.00
Toluene	0.00	0.00	0.00	0.00
HAPS	0.26	0.05	0.005	0.00099

^{*}Individual HAPS are only process HAPS. Individual combustion HAPS are not included in the total. HAPS includes all HAPS from Process and Incinerator Combustion.

Existing Permitted Emissions for Building 216

Building 216 Process Emissions

Pollutant	Uncont	rolled	Controlled	
	lb/hr (Max Rate)	ton/yr	lb/hr (Max Rate)	ton/yr
PM	4.00	5.88	4.00	5.88
PM10	1.91	3.06	1.91	3.06
PM2.5	0.28	1.11	0.28	1.11
SO2	261.53	354.28	0.03	0.09
VOC	283.11	89.32	22.12	12.97
Acetonitrile	1.35	0.35	0.05	0.02
Benzene	0.14	0.04	0.01	0.01
Butyl Carbitol	0.01	0.01	0.01	0.01
Catechol	0.16	0.03	0.16	0.03
Chlorobenzene	0.00	0.00	0.00	0.00
Chromium Compounds	0.89	0.05	0.89	0.05
Ethylbenzene	0	0	0	0
Hexane	15.46	0.50	0.96	0.27
Hydrogen Chloride	524.63	403.14	0.06	0.05
Methanol	12.40	10.90	4.77	2.92
Methylene Chloride	1.88	0.23	1.87	0.23
Methyl Tert-Butyl Ether	46.06	8.03	0.86	0.19
p-Xylene	0.04	0.02	0.04	0.01
Styrene	0	0	0	0
Titanium Tetrachloride	0.79	0.12	0.01	0.01
Toluene	87.96	23.55	1,77	0.34
HAPS	619.18	429.80	7.75	3.35

Incinerator Combustion Emissions

PM	0.08	0.35	0.08	0.35
PM10	0.08	0.35	0.08	0.35
PM2.5	0.08	0.35	0.08	0.35
PM Condensable	0.06	0.26	0.06	0.26
PM Filterable	0.02	0.09	0.02	0.09
SO2	0.01	0.04	0.01	0.04
NOx	0.99	4.34	0.99	4.34
CO	0.83	3.64	0.83	3.64
VOC	0.06	0.26	0.06	0.26
TOC	0.11	0.48	0.11	0.48
HAPS	0.02	0.08	0.02	0.08

Potential to Emit for Building 216

Pollutant*	Uncont	rolled	Controlled	
	lb/hr (Max Rate)	ton/yr	lb/hr (Max Rate)	ton/yr
PM	4.08	6.23	4.08	6.23
PM10	1.99	3.41	1.99	3.41
PM2.5	0.36	1.46	0.36	1.46
SO2	261.54	354.32	0.04	0.13
ŅOx	0.99	4.34	0.99	4.34
СО	0.83	3.64	0.83	3.64
VOC	283.17	89.58	22.18	13.23
Acetonitrile	1.35	0.35	0.05	0.02
Benzene	0.14	0.04	0.01	0.01
Butyl Carbitol	0.01	0.01	0.01	0.01
Catechol	0.16	0.03	0.16	0.03
Chlorobenzene	0.00	0.00	0.00	0.00
Chromium Compounds	0.89	0.05	0.89	0.05
Ethylbenzene	0	0	0	0
Hexane	15.46	0.50	0.96	0.27
Hydrogen Chloride	524.63	403.14	0.06	0.05
Methanol	12.40	10.90	4.77	2.92
Methylene Chloride	1.88	0.23	1.87	0.23
Methyl Tert-Butyl Ether	46.06	8.03	0.86	0.19
p-Xylene	0.04	0.02	0.04	0.01
Styrene	0	0	0	0
Titanium Tetrachloride	0.79	0.12	0.01	0.01
Toluene	87.96	23.55	1.77	0.34
HAPS	619.20	429.88	7.77	3.43

^{*}Individual HAPS are only process HAPS. Individual combustion HAPS are not included in the total. HAPS includes all HAPS from Process and Incinerator Combustion.

Summary of Emissions and PTE

Building 216 Process Emissions with HMAPS

Pollutant	Uncont	rolled	Controlled	
	lb/hr (Max Rate)	ton/yr	lb/hr (Max Rate)	ton/yr
PM	4.00	5.88	4.00	5.88
PM10	1.91	3.06	1.91	3.06
PM2.5	0.28	1.11	0.28	1.11
SO2	261.53	354.28	0.03	0.09
VOC	321.75	109.71	22.89	13.38
Acetonitrile	1.35	0.35	0.05	0.02
Benzene	0.14	0.04	0.01	0.01
Butyl Carbitol	0.01	0.01	0.01	0.01
Catechol	0.16	0.03	0.16	0.03
Chlorobenzene	0.00	0.00	0.00	0.00
Chromium Compounds	0.89	0.05	0.89	0.05
Ethylbenzene	0.26	0.05	0.0052	0.00096
Hexane	15.46	0.50	0.96	0.27
Hydrogen Chloride	524.63	403.14	0.06	0.05
Methanol	12.40	10.90	4.77	2.92
Methylene Chloride	1.88	0.23	1.87	0.23
Methyl Tert-Butyl Ether	46.06	8.03	0.86	0.19
p-Xylene	0.04	0.02	0.04	0.01
Styrene	0.001	0.001	0.00003	0.00002
Titanium Tetrachloride	0.79	0.12	0.01	0.01
Toluene	87.96	23.55	1.77	0.34
HAPS	619.44	429.85	7.76	3,35

Incinerator Combustion Emissions

PM	0.08	0.35	0.08	0,35
PM10	0.08	0.35	0.08	0.35
PM2.5	0.08	0.35	0.08	0.35
PM Condensable	0.06	0.26	0.06	0.26
PM Filterable	0.02	0.09	0.02	0.09
SO2	0.01	0.04	0.01	0.04
NOx	0.99	4.34	0.99	4.34
CO	0.83	3.64	0.83	3.64
VOC	0.06	0.26	0.06	0.26
TOC	0.11	0.48	0.11	0.48
HAPS	0.02	0.08	0.02	0.08

Potential to Emit for Building 216

	Uncont	rolled	Controlled	
Pollutant*	lb/hr (Max Rate)	ton/yr	lb/hr (Max Rate)	ton/yr
PM	4.08	6.23	4.08	6.23
PM10	1.99	3.41	1.99	3.41
PM2.5	0.36	1.46	0.36	1.46
SO2	261.54	354.32	0.04	0.13
NOx	0.99	4.34	0.99	4.34
СО	0.83	3.64	0.83	3.64
VOC	321.81	109.97	22.95	13.64
Acetonitrile	1.35	0.35	0.05	0.02
Benzene	0.14	0.04	0.01	0.01
Butyl Carbitol	0.01	0.01	0.01	0.01
Catechol	0.16	0.03	0.16	0.03
Chlorobenzene	0.00	0.00	0.00	0.00
Chromium Compounds	0.89	0.05	0.89	0.05
Ethylbenzene	0.26	0.05	0.0052	0.00096
Hexane	15.46	0.50	0.96	0.27
Hydrogen Chloride	524.63	403.14	0.06	0.05
Methanol	12.40	10.90	4.77	2.92
Methylene Chloride	1.88	0.23	1.87	0.23
Methyl Tert-Butyl Ether	46.06	8.03	0.86	0.19
p-Xylene	0.04	0.02	0.04	0.01
Styrene	0.001	0.001	0.00003	0.00002
Titanium Tetrachloride	0.79	0.12	0.01	0.01
Toluene	87.96	23.55	1.77	0.34
HAPS	619.46	429.93	7.78	3.43

^{*}Individual HAPS are only process HAPS. Individual combustion HAPS are not included in the total. HAPS includes all HAPS from Process and Incinerator Combustion.

By: PEW Checked By: ABK Date: 03/05/2023 Date: 03/07/2023

REDACTED COPY

Information claimed confidential by Optima Belle, LLC March 1, 2023.

Total Emissions

Number of Batches in Process Process Cycle Time (hrs) Number of Batches Per Year (2)

Process Emissions

Process Emissions				
	Uncont	rolled (1)	Controlled	
Pollutant	lb/hr	ton/yr	lb/hr	ton/yr (2)
	(Max Rate)		(Max Rate)	
	26.25	15.32	0.52	0.31
	0.001	0.001	0.00002	0.00002
Ethylbenzene	0.26	0.05	0.0052	0.00096
	12.13	5.02	0.2427	0.10
Styrene	0.001	0.001	0.00003	0.00002
VOC	38.64	20.39	0.77	0.41
Total HAPs	0.261	0.049	0.00521	0.00099

^{1.} Uncontrolled emissions based on 98% control from incinerator.

Volatile Organic Compound

Volatile Organic Compound and Hazardous Air Pollutant

^{2.} Based on 8,760 hours per year.

Building 216 Combined Process Totals before HMAPS

	Uncon	trolled	Controlled		
Pollutant	lb/hr (Max Rate)	ton/yr	lb/hr (Max Rate)	ton/yr	
PM	3.6310	5.3390	3.6310	5.3390	
PM10	1.7279	2.7751	1.7279	2.7751	
PM2.5	0.2526	1.0072	0.2526	1.0072	
SO2	237.7500	322.0655	0.0240	0.0761	
VOC	257.3690	81.1997	20.1015	11.7834	
Acetonitrile	1.2260	0.3131	0.0396	0.0135	
Benzene	0.1204	0.0363	0.0085	0.0048	
Butyl Carbitol	0.0023	0.0005	0.0023	0.0003	
Catechol	0.1400	0.0190	0.1400	0.0190	
Chlorobenzene	0.0000	0.0000	0.0000	0.0000	
Chromium Compounds	0.8080	0.0367	0.8080	0.0367	
Hexane	14.0532	0.4477	0.8675	0.2384	
Hydrogen Chloride	476.9334	366.4857	0.0479	0.0367	
Methanol	11.2707	9.9003	4.3348	2.6493	
Methylene Chloride	1.88	0.23	1.87	0.23	
Methyl Tert-Butyl Ether	41.8694	7.2962	0.7794	0.1693	
p-Xylene	0.0354	0.0169	0.0354	0.0028	
Titanium Tetrachloride	0.7148	0.1078	0.0000	0.0000	
Toluene	79.9572	21.4071	1.6034	0.3080	
HAPS	562.8839	390.7196	7.0423	3.0389	

Building 216 Process Permit Limit (Above Emissions Plus 10%) before HMAPS

	Uncont	rolled	Controlled		
Pollutant	lb/hr (Max Rate)	ton/yr	lb/hr (Max Rate)	ton/yr	
PM	4.00	5.88	4.00	5.88	
PM10	1.91	3.06	1.91	3.06	
PM2.5	0.28	1.11	0.28	1,11	
SO2	261.53	354.28	0.03	0.09	
VOC	283.11	89.32	22.12	12.97	
Acetonitrile	1.35	0.35	0.05	0.02	
Benzene	0.14	0.04	0.01	0.01	
Butyl Carbitol	0.01	0.01	0.01	0.01	
Catechol	0.16	0.03	0.16	0.03	
Chlorobenzene	0.00	0.00	0.00	0.00	
Chromium Compounds	0.89	0.05	0.89	0.05	
Hexane	15.46	0.50	0.96	0.27	
Hydrogen Chloride	524.63	403.14	0.06	0.05	
Methanol	12.40	10.90	4.77	2.92	
Methylene Chloride*	1.88	0.23	1.87	0.23	
Methyl Tert-Butyl Ether	46.06	8.03	0.86	0.19	
p-Xylene	0.04	0.02	0.04	0.01	
Titanium Tetrachloride	0.79	0.12	0.01	0.01	
Toluene	87.96	23.55	1.77	0.34	
HAPS (MAX)	619.18	429.80	7.75	3.35	

^{* 10} percent not applied to Methylene Chloride

By: PEW Date: 03/05/2023

Checked By: ABK Date: 03/07/2023

Negolyte

MULTI-REACTOR PROCESS

Previously Permitted Batches/Year = 27

REDACTED COPY Information claimed confidential by Optima Belle, LLC January 10, 2018.

Process Emissions

	Uncon	ntrolled	Controlled		
Pollutant	lb/hr	ton/yr	lb/hr	ton/yr	
	(Max Rate)	(27 batches)	(Max Rate)	(27 batches)	
PM	0.12	0.03	0.12	0.03	
PM10	0.05	0.03	0.05	0.03	
PM2.5	0.03	0.03	0.03	0.03	
VOC	4.98	0.29	0.32	0.005	
Catechol	0.07	0.001	0.07	0.001	
Toluene	4.98	0.29	0.321	0.005	
Hydrogen Chloride	238.47	19.32	0.024	0.002	
Titanium Tetrachloride	0.36	0.006	2.0E-05	5.7E-07	
Total HAPs	243.80	19.61	0.34	0.01	

Converted to 8,760 hrs/year, 33% Faster Time, and Number of Concurrent Batches

Hours Per Year =

8.760 hrs/yr

Batch Time = Faster Operating Time =

33 %

New Batch Time =

Concurrent Batches =

3

	Uncont	rolled	Cor	ntrolled
Pollutant	lb/hr (Max Rate)	ton/yr	lb/hr (Max Rate)	ton/yr
PM	0.24	0.57	0.24	0.57
PM10	0.10	0.57	0.10	0.57
PM2.5	0.06	0.57	0.06	0.57
VOC	9.96	5.53	0.64	0.09
Catechol	0.14	0.02	0.14	0.02
Toluene	9.96	5.53	0.64	0.09
Hydrogen Chloride	476.93	366.49	0.05	0.04
Titanium Tetrachloride	0.71	0.11	0.00	0.00
HAPS	487.75	372.13	0.83	0.12

By: PEW
Checked By: ABK
Date: 03/05/2023
REDACTED COPY
Information claimed confidential by
Undried LAME
Optima Belle, LLC January 10, 2018.
MULTI-REACTOR PROCESS

Previously Permitted Batches/Year =

20

Total Emissions

	Unconti	rolled	Contro	lled
Pollutant	pph (Max Rate)(1)	tpy (20 batches)	pph (Max Rate)(1)	tpy (20 batches)
PM	0.32	0.01	0.32	0.01
PM10	0.15	0.01	0.15	0.01
PM2.5	0.02	0.01	0.02	0.01
SO2	118.88	19.02	0.012	0.002
VOC - Process	23.43	0.82	0.43	0.02
VOC - Filter Changeout (Fugitive)	1.21	0.01	1.21	0.01
Total VOC	24.63	0.83	1.63	0.04
HAPS (Process)				
Acetonitrile	0.61	0.02	0.02	0.0008
Hydrogen Chloride	67.75	10.84	0.01	0.001
Methanol	1.88	0.37	0.02	0.007
Methyl Tert-Butyl Ether	20.93	0.43	0.39	0.01
Total Process HAPS	91.18	11.66	0.44	0.02
HAPS (Filter Changeout)				
Methanol	1.21	0.01	1.21	0.01
Total HAPS (Filter Changeout and Process)	92.38	11.67	1.64	0.03

Converted to 8,760 hrs/year, 33% Faster Time, and Number of Concurrent Batches

Hours Per Year =
Batch Time =

Faster Operating Time = New Batch Time =

Concurrent Batches =

22.0/

33.%

	Uncontr	Uncontrolled		Controlled	
Pollutant	pph (Max Rate)(1)	ton/yr	pph (Max Rate)(1)	ton/yr	
PM	0.64	0.17	0.64	0.17	
PM10	0.30	0.17	0.30	0.17	
PM2.5	0.05	0.17	0.05	0.17	
SO2	237.75	322.07	0.02	0.03	
VOC - Process	46.85	13.91	0.86	0.39	
VOC - Filter Changeout (Fugitive)	2,41	0.20	2.41	0.20	
VOC	49.26	14.12	3.27	0.59	
HAPS (Process)					
Acetonitrile	1.23	0.31	0.04	0.01	
Hydrogen Chloride	135.50	183.55	0.01	0.02	
Methanol	3.76	6.30	0.04	0.12	
Methyl Tert-Butyl Ether	41.87	7.30	0.78	0.17	
HAPS	182.35	197.47	0.87	0.32	
HAPS (Filter Changeout)					
Methanol	2.41	0.20	2.41	0.20	
HAPS	2.41	0.20	2.41	0.20	

 By: PEW
 Checked By: ABK

 Date: 03/05/2023
 REDACTED COPY
 Date: 03/07/2023

Dried LAME Information claimed confidential by Optima Belle, LLC January 10, 2018.

MULTI-REACTOR PROCESS

Previously Permitted Batches/Year = 40

Total Emissions

	Uncor	ntrolled	Controlled	
Pollutant	pph (Max Rate)	tpy (40 batches)	pph (Max Rate)	tpy (40 batches)
PM	0.75	0.02	0.75	0.02
PM10	0.36	0.02	0.36	0.02
PM2.5	0.05	0.02	0.05	0.02
SO2	118.88	38.04	0.01	0.01
VOC	24.45	1.53	0.51	0.04
HAPS (Process)				
Acetonitrile	0.46	0.02	0.01	0.001
Hydrogen Chloride	67.75	21.68	0.01	0.003
Methanol	3.05	0.95	0.12	0.024
Methyl Tert-Butyl Ether	20.93	0.57	0.38	0.012
Total Process HAPS	92.20	23.21	0.51	0.040

Converted to 8,760 hrs/year, 33% Faster Time, and Number of Concurrent Batches

Hours Per Year = 8,760 hrs/vt
Batch Time = 33 %

Faster Operating Time = 33 %

New Batch Time =
Concurrent Batches =

	Uncont	rolled	Controlled	
Pollutant	pph (Max Rate)	ton/yr	pph (Max Rate)	ton/yr
PM	1.5	0.15	1.5	0.15
PM10	0.72	0.15	0.72	0.15
PM2.5	0.1	0.15	0.1	0.15
SO2	237.75	289.60	0.02	0.08
VOC	48.91	11.65	1.01	0.30
HAPS (Process)				
Acetonitrile	0.93	0,14	0.03	0.01
Hydrogen Chloride	135.5	165.05	0.01	0.02
Methanol	6.11	7.20	0.23	0.18
Methyl Tert-Butyl Ether	41.87	4.31	0.75	0.09
HAPS	184.41	176.70	1.03	0.30

By: PEW Date: 03/05/2023

Checked By: ABK Date: 03/07/2023

Sclareol

REDACTED COPY Information claimed confidential by

Optima Belle, LLC January 10, 2018.

MULTI-REACTOR PROCESS

Previously Permitted Batches/Year =

VOC Control Efficiency % =

180 99.9

Total Emissions Uncontrolled Controlled pph (Max Rate) tpy (180 batches) tpy рру рру 32,085.8277 16.0429 0.0843 32.0858 0.0160 0.2269 40.8389 0.0204 40.8389 0.0204

Emissions pph (Max Pollutant Rate)(2) VOC - Process (1) 84.2586 VOC - Filter Changeout 0.22688 Total VOC 84.4855 32,126.6665 16.0633 0.3111 72.9247 0.0365 PM 0.04463 8.03398 0.00402 0.04463 8.03398 0.00402 PM10 0.02111 3.79985 0.00190 0.02111 3.79985 0.00190 PM2.5 0.00320 0.57541 0.00029 0.00320 0.57541 0.00029

Converted to 8,760 hrs/year, 33% Faster Time, and Number of Concurrent Batches

Hours Per Year = Batch Time =

Faster Operating Time = New Batch Time =

Concurrent Batches =		3					
Emissions		Uncontrolled			Controlled		
Pollutant	pph (Max Rate)(2)	ppy	tpy	pph (Max Rate)	рру	ton/yr	
VOC - Process (1)	168.5172	32085.8277	54.8540	0.1685	32.0858	0.0549	
VOC - Filter Changeout	0.4538	40.8389	0.0204	0.4538	40.8389	0.0698	
VOC	168.9710	32,126.6665	54.8744	0.6223	72.9247	0.1247	
PM	0.0893	8.03398	0.00402	0.0893	8.03398	0.0137	
PM10	0.0422	3.79985	0.00190	0.0422	3.79985	0.0065	
PM2.5	0.0064	0.57541	0.00029	0.0064	0.57541	0.0010	

By: PEW
Date: 03/05/2023

REDACTED COPY
Information claimed confidential by
Optima Belle, LLC January 10, 2018.

MULTI-REACTOR PROCESS

Previously Permitted Batches/Year =

Calculated Emissions

Calculated Ellissions						
Total Emissions						
Emissions	Unco	Cont	Controlled			
Pollutant	pph (Max Rate)	tpy (30 batches)	pph (Max Rate)	tpy (30 batches)		
PM	0.13	0.03	0.13	0.03		
PM10	0.07	0.03	0.07	0.03		
PM2.5	0.03	0.03	0.03	0.03		
VOC	25.47	0.72	1.17	0.15		

HAPS

0.060	0.006	0.0043	0.001
0	0	0	0
7.03	0.074	0.43	0.039
0.064	0.007	0.009	0.002
1.77	0.083	0.362	0.037
0.031	0.0105	0.031	0.0105
8.9484	0.1798	0.8398	0.0891
	0 7.03 0.064 1.77 0.031	0 0 7.03 0.074 0.064 0.007 1.77 0.083 0.031 0.0105	0 0 0 7.03 0.074 0.43 0.064 0.007 0.009 1.77 0.083 0.362 0.031 0.0105 0.031

Converted to 8,760 hrs/year, 33% Faster Time, and Number of Concurrent Batches Hours Per Year = 8,760 hrs/yr

Hours Per Year = 8,/6
Batch Time = 8,/6
Faster Operating Time = 3

New Batch Time =
Concurrent Batches =

Emissions	Uncon	Uncontrolled Controlled		
Pollutant	pph (Max Rate)	ton/yr	pph (Max Rate)	ton/yr
PM	0.26	0.18	0.26	0.18
PM10	0.14	0.18	0.14	0.18
PM2.5	0.06	0.18	0.06	0.18
VOC	50.93	4.35	2.34	0.90

HAPS

IIAIS				
Benzene	0.12	0.04	0.01	0.00
Chlorobenzene	0.00	0.00	0.00	0.00
Hexane	14.05	0.45	0.87	0.24
Methanol	0.13	0.04	0.02	0.01
Toluene	3.53	0.50	0.72	0.22
Toluene*	0.06	0.06	0.06	0.06
HAPS	17.90	1.09	1.6796	0.54

^{*}Uncontrolled storage tanks when process is not in operation.

By: PEW Checked By: ABK
Date: 03/05/2023 REDACTED COPY Date: 03/07/2023

D-Mannose Optima Belle, LLC January 10, 2018. MULTI-REACTOR PROCESS

Previously Permitted Batches/Year = 31

Process Emissions

	Uncon	Uncontrolled		rolled
Pollutant	lb/hr	ton/yr	lb/hr	ton/yr
	(Max Rate)(1)	(31 batches)	(Max Rate)(1)	(31 batches)
PM	0.24	0.03	0.24	0.03
PM10	0.11	0.02	0.11	0.02
PM2.5	0.02	0.01	0.02	0.01
Ethanol	2.57	0.20	0.01	0.01
Methanol	0.28	0.02	0.01	0.01
VOC	2.85	0.22	0.02	0.02
Total HAPs	0.28	0.02	0.01	0.01

Converted to 8,760 hrs/year, 33% Faster Time, and Number of Concurrent Batches Hours Per Year = 8,760 hrs/yr

Batch Time = Faster Operating Time = New Batch Time =

33 %

Concurrent Batches =

	Uncontr	Uncontrolled Control		olled
Pollutant	lb/hr (Max Rate)(1)	ton/yr	lb/hr (Max Rate)(1)	ton/yr
PM	0.48	0.57	0.48	0.57
PM10	0.22	0.38	0.22	0.38
PM2.5	0.04	0.19	0.04	0.19
Ethanol	5.14	3.78	0.02	0.19
Methanol	0.56	0.38	0.02	0.19
VOC	5.70	4.16	0.04	0.38
Total HAPs	0.56	0.38	0.02	0.19

By: PEW Checked By: ABK
Date: 03/05/2023 REDACTED COPY Date: 03/07/2023

D-Mannose Information claimed confidential by Optima Belle, LLC January 10, 2018.

MULTI-REACTOR PROCESS

Fugitive Emissions (Filter Changeouts)

	Uncon	Uncontrolled		Controlled	
Pollutant	lb/hr (Max Rate)(1)	ton/yr (31 batches)	lb/hr (Max Rate)(1)	ton/yr (31 batches)	
Ethanol	2.30	0.14	2.30	0.14	
Methanol	0.08	0.01	0.08	0.01	
VOC	2.38	0.15	2.38	0.15	
Total HAPs	0.08	0.01	0.08	0.01	

Converted to 8,760 hrs/year, 33% Faster Time, and Number of Concurrent Batches

Hours Per Year = Batch Time =

Faster Operating Time =
New Batch Time =
Concurrent Batches =

and the	7/4
33	%
2	_

	Uncontr	Uncontrolled		lled
Pollutant	lb/hr (Max Rate)(1)	ton/yr	lb/hr (Max Rate)(1)	ton/yr
Ethanol	4.60	2.65	4.60	2.65
Methanol	0.16	0.19	0.16	0.19
VOC	4.76	2.84	4.76	2.84
Total HAPs	0.16	0.19	0.16	0.19

Total PTE

	Uncontr	Uncontrolled		Controlled	
Pollutant	lb/hr (Max Rate)(1)	ton/yr	lb/hr (Max Rate)(1)	ton/yr	
PM	0.48	0.57	0.48	0.57	
PM10	0.22	0.38	0.22	0.38	
PM2.5	0.04	0.19	0.04	0.19	
Ethanol	9.74	6.43	4.62	2.84	
Methanol	0.72	0.57	0.18	0.38	
VOC	10.46	7.00	4.80	3.22	
HAPS	0.72	0.57	0.18	0.38	

By: PEW Checked By: ABK Date: 03/05/2023 Date: 03/07/2023 REDACTED COPOY

Information claimed confidential by Optima Belle, LLC January 10, 2018. **TMBX**

SINGLE REACTOR PROCESS

Previously Permitted Batches/Year = 100

Total Emissions

	Unco	Uncontrolled		Controlled	
Pollutant	pph (Max Rate)	tpy (100 batches)	pph (Max Rate)	tpy (100 batches)	
PM	0.80	0.05	0.80	0.05	
PM10	0.38	0.02	0.38	0.02	
PM2.5	0.06	0.01	0.06	0.01	
VOC	6.98	0.74	5.37	0.57	

Converted to 8,760 hrs/year, 33% Faster Time, and Number of Concurrent Batches 8,760 hrs/yr

Hours Per Year =

Batch Time =

Faster Operating Time =

New Batch Time =

Concurrent Batches =

ï				ř	
	33	%		i.	
		T.	ij		

	Uncont	Uncontrolled		Controlled	
Pollutant	pph (Max Rate)	ton/yr	pph (Max Rate)	ton/yr	
PM	1.61	0.69	1.61	0.69	
PM10	0.76	0.28	0.76	0.28	
PM2.5	0.12	0.14	0.12	0.14	
VOC	13.97	10.20	10.75	7.86	

By: PEW

Date: 03/05/2023

Sodium Butyl Carbitol

Previously Permitted Batches/Year =

Checked By: ABK Date: 03/07/2023

REDACTED COPY

Information claimed confidential by Optima Belle, LLC January 10, 2018.

SINGLE REACTOR PROCESS

Process Emissions

	Uncont	rolled	Contro	olled
Poliutant	lb/hr (Max Rate)	ton/yr	lb/hr (Max Rate)	ton/yr
Emission Point 104.014	***			
Butyl Carbitol (VOC/HAP)	0.001	0.0002	0.001	0.0001
Heptane (VOC)	0.69	0.15	0.63	0.06
Total VOC	0.69	0.15	0.63	0.06
Emission Point 104.003A / 104.003	В			
PM	0.05	0.002	0.05	0.002
PM10	0.02	0.001	0.02	0.001
PM2.5	0.003	0.0002	0.003	0.0002

Converted to 8,760 hrs/year, 33% Faster Time, and Number of Concurrent Batches
Hours Per Year = 8,760 hrs/yr 8,760 hrs/yr

100

Batch Time =

Faster Operating Time =

New Batch Time = Concurrent Batches =

	Uncont	Uncontrolled		Controlled	
Pollutant	lb/hr	****	lb/hr	44-4-6	
	(Max Rate)	ton/yr	(Max Rate)	ton/yr	
Emission Point 104.014					
Butyl Carbitol	0.0023	0.0005	0.0023	0.0003	
Heptane (VOC)	1.3820	0.3725	1.2543	0.1592	
VOC	1.3844	0.3730	1.2567	0.1595	
HAPS	0.0023	0.0000	0.0023	0.0000	
Emission Point 104.003A / 10	4.003B				
PM	0.0921	0.0057	0.0921	0.0057	
PM10	0.0436	0.0027	0.0436	0.0027	
PM2.5	0.0066	0.0004	0,0066	0.0004	

By: PEW

Date: 03/05/2023

Checked By: ABK Date: 03/07/2023

HMA

REDACTED COPY Information claimed confidential by Optima Belle, LLC January 10, 2018.

SINGLE REACTOR PROCESS

Prevously Permitted Batches Per Year = 487

Total Emissions

	Unco	Uncontrolled		Controlled	
Pollutant	pph (Max Rate)	tpy (487 batches)	pph (Max Rate)	tpy (487 batches)	
VOC	0.36	0.83	0.36	0.71	
HAPS					
Methanol	0.36	0.83	0.36	0.70	
HAPS	0.36	0.83	0.36	0.70	

Converted to 8,760 hrs/year, 33% Faster Time, and Number of Concurrent Batches 8,760 hrs/yr

Hours Per Year =

Batch Time =

Faster Operating Time =

New Batch Time =

Concurrent Batches

	33 %	0
ı		
п		

	Uncontrolled		Controlled	
Pollutant	pph (Max Rate)	tpy	pph (Max Rate)	tpy
VOC	0.72	2.469	0.72	2.112
HAPS				
Methanol	0.71	2.469	0.71	2.083
HAPS	0.71	2.469	0.71	2.083

By: PEW Checked By: ABK Date: 03/05/2023 Date: 03/07/2023 REDACTED COPY Information claimed confidential by Optima Belle, LLC January 10, 2018. Catofin **DOUBLE CONE DRYER PROCESS** Previously Permitted Batches/Year = 182 Catofin Uncontrolled Controlled Pollutant tpy 0.0238 pph pph tpy PM 0.2616 0.2616 0.0238 PM10 0.1237 0.0113 0.1237 0.0113 PM2.5 0.0187 0.0017 0.0187 0.0017 Chromium Compounds 0.4040 0.0368 0.4040 0.0368 HAPS 0.5464 0.0497 0.5464 0.0497 Converted to 8,760 hrs/year, 33% Faster Time, and Number of Concurrent Batches Hours Per Year Batch Time = Faster Operating Time = 33 % New Batch Time = Concurrent Batches Controlled Uncontrolled

Checked By: ABK

Date: 03/07/2023

By: PEW

SR-1000

Date: 03/05/2023 REDACTED COPY

Information claimed confidential by Optima Belle, LLC January 10, 2018.

DOUBLE CONE DRYER PROCESS

Previously Permitted Batches/Year = 60

Total Emissions

Pollutant	Uncon	Uncontrolled		
	pph (Max Rate)(1)	tpy (60 batches)	pph (Max Rate)(1)	tpy (60 batches)
PM	0.24	0.01	0.24	0.01
PM10	0.11	0.003	0.11	0.003
PM2.5	0.02	0.0005	0.02	0.0005
VOC	35.02	3.06	0.46	0.02

**		n
н	Α	r

p-Xylene	0.02	0.003	0.02	0.001
Toluene	35.00	3.06	0.44	0.02

Converted to 8,760 hrs/year, 33% Faster Time, and Number of Concurrent Batches Hours Per Year = 8,760 hrs/yr

Batch Time =

Faster Operating Time =

33 %

New Batch Time =

Concurrent Batches

	Uncontr	Uncontrolled		olled	
Pollutant	pph (Max Rate)(1)	tpy	pph (Max Rate)(1)	tpy	
PM	0.47	0.037	0.47	0.037	
PM10	0.22	0.017	0.22	0.017	
PM2.5	0.03	0.003	0.03	0.003	
VOC	70.04	15.890	0.92	0.087	

HAPs

p-Xylene	0.04	0.017	0.04	0.003
Toluene	70.00	15.873	0.88	0.084
HAPS	70.04	15.89	0.92	0.09

By: PEW Checked By: ABK
Date: 03/05/2023 REDACTED COPY Date: 03/07/2023
Information claimed confidential by

T2960 Information claimed confidential by Optima Belle, LLC January 10, 2018.

DOUBLE CONE DRYER PROCESS

Previously Permitted Batches/Year = 100

Total Emissions

Pollutant	Uncon	Uncontrolled		Controlled	
	pph (Max Rate)(1)	tpy (100 batches)	pph (Max Rate)(1)	tpy (100 batches)	
PM	0.16	0.01	0.16	0.01	
PM10	0.08	0.004	0.08	0.004	
PM2.5	0.01	0.001	0.01	0.001	
VOC	4.06	0.31	0.17	0.02	

Converted to 8,760 hrs/year, 33% Faster Time, and Number of Concurrent Batches

 Hours Per Year =
 8,760 hrs/yr

 Batch Time =
 33 %

 Faster Operating Time =
 33 %

 New Batch Time =
 Concurrent Batches =

	Uncontr	Uncontrolled		lled
Pollutant	pph (Max Rate)(1)	tpy	pph (Max Rate)(1)	tрy
PM	0.32	0.06	0.32	0.06
PM10	0.15	0.03	0.15	0.03
PM2.5	0.02	0.00	0.02	0.00
VOC	8.12	2.28	0.34	0.13

 By: PEW
 Checked By: ABK

 Date: 03/05/2023
 Date: 03/07/2023

CN-3624

DOUBLE CONE DRYER PROCESS

Total Emissions

Number of Batches in Process Number of Batches Per Year

150

Process Emissions

	Uncontrolled		Controlled	
Pollutant	lb/hr (Max Rate)	ton/yr	lb/hr (Max Rate)	ton/yr
PM	0.36	4.08	0.36	4.08
PM10	0.17	1.93	0.17	1.93
PM2.5	0.03	0.30	0.03	0.30
Hydrogen Chloride	0	0	0.0002	0.00003
Isopropyl Alcohol	1.67	0.41	1.50	0.29
Methylene Chloride	1.88	0.23	1.87	0.23
VOC	3.54	0.64	3.38	0.52
HAPS	1.88	0.23	1.88	0.23

Nylon Washing

REDACTED COPY Information claimed confidential by Optima Belle, LLC January 10, 2018.

FILTER DRYER PROCESS

Previously Permitted Batches/Year = 200

Total Emissions

	Unce	Uncontrolled		ntrolled
Pollutant	pph(Max Rate)	tpy (200 batches)	pph(Max Rate)	tpy (200 batches)
VOC	2.20	0.22	0.59	0.18
HAPS				
Methanol	2.20	0.22	0.59	0.18
Total Process HAPS	2.20	0.22	0.59	0.18

Hours Per Year =	8,760 hrs/yr			
Batch Time =				
Faster Operating Time = 67.%				
New Batch Time =	ALC: (100)			
Concurrent Batches =	1			
	Uncontrolled		Controlled	
	pph	tpy	pph	tpy
Pollutant	(Max Rate)		(Max Rate)	
VOC	4.39	0.23	1.18	0.19
HAPS				
Methanol	4.39	0.23	1.18	0.19

By: PEW Checked By: ABK Date: 03/07/2023 Date: 03/05/2023

SLM Incinerator Criteria

MMBTU/HR Burner Rating = 10 Heat Rating of Natural Gas = 1,020 BTU/CF

Fuel Use = 9,803.92 SCFH

0.009804 MMSCF/HR

Operating Hours per Year = 8,760 HR/YR

Fuel Use per Year = 85.882 MMSCF/YR

Parissian Tone		Uncontrolled		Controlled	
Emission Type	Emissions lb/MMSCF ⁽²⁾	lb/hr	tpy	lb/hr	tpy
PM	7.6	0.08	0.35	0.08	0.35
PM10 ⁽¹⁾	7.6	0.08	0.35	0.08	0.35
PM2.5 ⁽¹⁾	7.6	0.08	0.35	0.08	0.35
PM Condensable	5.7	0.06	0.26	0.06	0.26
PM Filterable	1.9	0.02	0.09	0.02	0.09
SO2	0.6	0.01	0.04	0.01	0.04
NOx	100	0.99	4.34	0.99	4,34
CO	84	0.83	3.64	0.83	3.64
VOC	5.5	0.06	0.26	0.06	0.26
TOC	11	0.11	0.48	0.11	0.48
HAPS	See following page.	0.02	0.08	0.02	0.08

Rounding =

^{1.} It is assumed that PM and PM2.5 are equal to PM10.

^{2.} Emission factors from AP-42, Section 1.4., Table 1.4-1 and 1.4-2.

 By: PEW
 Checked By: ABK

 Date: 03/05/2023
 Date: 03/07/2023

SLM Incinerator HAPS

Burner Rating = 10.00 MMBTU/HR
Operating Hours = 8,760 HR/YR

Conversion from $1b/10^6$ scf to 1b/MMBtu (divide by)⁽¹⁾ = 1,020 BTU/CF

CAS No.	Hazardous Air Pollutants	Е	F ¹	Uncontrolled		Controlled	
CAS NO.	Tiazardous Ali I Oridiadis	lb/106 scf	lb/MMBtu	lb/hr	tpy	lb/hr	tpy
91-57-6	2-Methylnaphthalene	2.40E-05	2.35E-08	2.35E-07	1.03E-06	2.35E-07	1.03E-06
56-49-5	3-Methylchloranthrene	1.80E-06	1.76E-09	1.76E-08	7.73E-08	1.76E-08	7.73E-08
57-97-6	7,12-Dimethylbenz(a)anthracene	1.60E-05	1.57E-08	1.57E-07	6.87E-07	1.57E-07	6.87E-07
83-32-9	Acenaphthene	1.80E-06	1.76E-09	1.76E-08	7.73E-08	1.76E-08	7.73E-08
203-96-8	Acenaphthylene	1.80E-06	1.76E-09	1.76E-08	7.73E-08	1.76E-08	7.73E-08
120-12-7	Anthracene	2.40E-06	2.35E-09	2.35E-08	1.03E-07	2.35E-08	1.03E-07
56-55-3	Benz(a)anthracene	1.80E-06	1.76E-09	1.76E-08	7.73E-08	1.76E-08	7.73E-08
71-43-2	Benzene	2.10E-03	2.06E-06	2.06E-05	9.02E-05	2.06E-05	9.02E-05
50-32-8	Benzo(a)pyrene	1.20E-06	1.18E-09	1.18E-08	5.15E-08	1.18E-08	5.15E-08
205-99-2	Benzo(b)fluoranthene	1.80E-06	1.76E-09	1.76E-08	7.73E-08	1.76E-08	7.73E-08
191-24-2	Benzo(g,h,i)perylene	1.20E-06	1.18E-09	1.18E-08	5.15E-08	1.18E-08	5.15E-08
205-82-3	Benzo(k)fluoranthene	1.80E-06	1.76E-09	1.76E-08	7.73E-08	1.76E-08	7.73E-08
218-01-9	Chrysene	1.80E-06	1.76E-09	1.76E-08	7.73E-08	1.76E-08	7.73E-08
53-70-3	Dibenzo(a,h)anthracene	1.20E-06	1.18E-09	1.18E-08	5.15E-08	1.18E-08	5.15E-08
25321-22-6	Dichlorobenzene	1.20E-03	1.18E-06	1.18E-05	5.15E-05	1.18E-05	5.15E-05
206-44-0	Fluoranthene	3.00E-06	2.94E-09	2.94E-08	1.29E-07	2.94E-08	1.29E-07
86-73-7	Fluorene	2.80E-06	2.75E-09	2.75E-08	1.20E-07	2.75E-08	1.20E-07
50-00-0	Formaldehyde	7.20E-02	7.06E-05	7.06E-04	3.09E-03	7.06E-04	3.09E-03
110-54-3	Hexane	1.80E+00	1.76E-03	1.76E-02	7.73E-02	1.76E-02	7.73É-02
193-39-5	Indeno(1,2,3-cd)pyrene	1.80E-06	1.76E-09	1.76E-08	7.73E-08	1.76E-08	7.73E-08
91-20-3	Naphthalene	6.10E-04	5.98E-07	5.98E-06	2.62E-05	5.98E-06	2.62E-05
85-01-8	Phenanathrene	1.70E-05	1.67E-08	1.67E-07	7.30E-07	1.67E-07	7.30E-07
129-00-0	Pyrene	5.00E-06	4.90E-09	4.90E-08	2.15E-07	4.90E-08	2.15E-07
108-88-3	Toluene	3.40E-03	3.33E-06	3.33E-05	1.46E-04	3.33E-05	1.46E-04
7440-38-2	Arsenic	2.00E-04	1.96E-07	1.96E-06	8.59E-06	1.96E-06	8.59E-06
7440-41-7	Beryllium	1.20E-05	1.18E-08	1.18E-07	5.15E-07	1.18E-07	5.15E-07
7440-43-9	Cadmium	1.10E-03	1.08E-06	1.08E-05	4.72E-05	1.08E-05	4.72E-05
7440-47-3	Chromium	1.40E-03	1.37E-06	1.37E-05	6.01E-05	1.37E-05	6.01E-05
7440-48-4	Cobalt	8.40E-05	8.24E-08	8.24E-07	3.61E-06	8.24E-07	3.61E-06
7439-96-5	Manganese	3.80E-04	3.73E-07	3.73E-06	1.63E-05	3.73E-06	1.63E-05
7439-97-6	Mercury	2.60E-04	2.55E-07	2.55E-06	1.12E-05	2.55E-06	1.12E-05
7440-02-0	Nickel	2.10E-03	2.06E-06	2.06E-05	9.02E-05	2.06E-05	9.02E-05
7782-49-2	Selenium	2.40E-05	2.35E-08	2.35È-07	1.03E-06	2.35E-07	1.03E-06
		VOC	HAPs Subtotal	0.0184	0.081	0.0184	0.081
		Metal	HAPs Subtotal	0.000055	0.000239	0.000055	0.000239
			Total HAPs	0.0185	0.081	0.0185	0.081

References:

⁽¹⁾ AP42 Table 1.4-3 and Table 1.4-4

By: PEW Checked By: ABK Date: 03/05/2023 Date: 03/07/2023

Kretine Process

Emission From Vent Scrubber (HKCD03)

Emission Reduction Efficiency 99.9 %

Pollutant	Uncontrolled	Controlled	Uncontrolled	Controlled
1 Ostatulit	lb/hr	lb/hr	tpy	tpy
VOC	500	0.5	250	0.25
Methanol	230	0.23	110	0.11

Hexazinone Process

Existing Batches Per Year Proposed Batches Per Year 234 Emission Reduction Efficiency 98

%

	Existing				Ne	w
Pollutant	Uncontrolled	Controlled	Controlled	EF	Uncontrolled	Controlled
Tonatunt	lb/hr	lb/hr	tpy	ton/batch	tpy	tpy
Hydrogen Chloride	112.50	2.25	1.67	2.14E-03	25.02	0.50
Nitrous Oxides as NO2	1000.00	20	49.4	6.33E-02	740.05	14.80
Sulfur Dioxide	0.15	0.003	0.012	1.54E-05	0.50	0.01
Methyl Chloride	230.00	4.6	1.69	2.16E-03	25.32	0.51
Ammonia (NH3)	100.00	2	8.06	1.03E-02	120.75	2.41
Methanol	210.00	4.2	16.56	2.12E-02	248.08	4.96
Ethanol	173.00	3.46	3.55	4.55E-03	53.18	1.06
Tributylamine	20.00	0.4	0.28	3.59E-04	4.19	0.08
Ethyl Chloride	398.50	7.97	3.78	4.84E-03	56.63	1.13
Methyl Chloroformate	13.00	0.26	0.15	1.92E-04	2.25	0.04
Triethyl Phosphite	3.50	0.07	0.2	2.56E-04	3.00	0.06
HAPS	951.00	19.02	23.7		355.05	7.10

Thermal Oxidizer Combustion Emissions

Pollutant	Uncon	trolled	Conti	rolled
1 Onutant	lb/hr	tpy	lb/hr	tpy
PM	0.06	0.26	0.06	0.26
PM10	0.06	0.26	0.06	0.26
PM2.5	0.06	0.26	0.06	0.26
PM Condensable	0.04	0.18	0.04	0.18
PM Filterable	0.02	0.09	0.02	0.09
SO2	0.01	0.04	0.01	0.04
NOx	0.74	3.24	0.74	3.24
CO	0.62	2.72	0.62	2.72
VOC	0.05	0.22	0.05	0.22
TOC	0.09	0.39	0.09	0.39
HAPS	0.02	0.06	0.02	0.06

Potential to Emit at B114

Pollutant	Uncontrolled		Cont	rolled
1 Ollutani	lb/hr	tpy	lb/hr	tpy
PM	0.06	0.26	0.06	0.26
PM10	0.06	0.26	0.06	0.26
PM2.5	0.06	0.26	0.06	0.26
VOC	1741.55	743.43	21.01	8.24
SO2	0.16	0.54	0.01	0.05
NOx ¹	1000.74	743.29	20.74	18.04
CO	0.62	2.72	0.62	2.72
Hydrogen Chloride	112.50	25.02	2.25	0.50
Methyl Chloride	230.00	25.32	4.60	0.51
Ammonia (NH3)	100.00	120.75	2.00	2.41
Methanol	440.00	358.08	4,43	5.07
Ethanol	173.00	53.18	3.46	1.06
Tributylamine	20.00	4.19	0.40	0.08
Ethyl Chloride	398.50	56.63	7.97	1.13
Methyl Chloroformate	13.00	2.25	0.26	0.04
Triethyl Phosphite	3.50	3.00	0.07	0.06
HAPS	1181.02	465,11	19.27	7.27

Notes

^{1.} NOx includes process Nitrous Oxides as NO2

 By: PEW
 Checked By: ABK

 Date: 03/05/2023
 Date: 03/07/2023

B114 Thermal Oxidizer Criteria

Burner Rating = 7.5 MMBTU/HR

Heat Rating of Natural Gas = 1,020 BTU/CF

Fuel Use = 7,352.94 SCFH

 $\begin{array}{ccc} & 0.007353 & MMSCF/HR \\ Operating Hours per Year = & 8,760 & HR/YR \end{array}$

rating Hours per Year = 8,760 HR/YR
Fuel Use per Year = 64.412 MMSCF/YR

Emission Type		Uncor	ntrolled	Controlled	
Emission Type	Emissions lb/MMSCF ⁽²⁾	lb/hr	tpy	lb/hr	tpy
PM	7.6	0.06	0.26	0.06	0.26
PM10 ⁽¹⁾	7.6	0.06	0.26	0.06	0.26
PM2.5 ⁽¹⁾	7.6	0.06	0.26	0.06	0.26
PM Condensable	5.7	0.04	0.18	0.04	0.18
PM Filterable	1.9	0.02	0.09	0.02	0.09
SO2	0.6	0.01	0.04	0.01	0.04
NOx	100	0.74	3.24	0.74	3.24
CO	84	0.62	2.72	0.62	2.72
VOC	5.5	0.05	0.22	0.05	0.22
TOC	11	0.09	0.39	0.09	0.39
HAPS	See following page.	0.02	0.06	0.02	0.06

^{1.} It is assumed that PM and PM2.5 are equal to PM10.

^{2.} Emission factors from AP-42, Section 1.4., Table 1.4-1 and 1.4-2.

 By: PEW
 Checked By: ABK

 Date: 03/05/2023
 Date: 03/07/2023

B114 Thermal Oxidizer HAPS

Burner Rating = 7.50 MMBTU/HR
Operating Hours = 8,760 HR/YR

Conversion from lb/10^6 scf to lb/MMBtu (divide by)⁽¹⁾ = 1,020 BTU/CF

CAS No.	Hazardous Air Pollutants	E	F ¹	Uncontrolled		Controlled	
OILD INC.	The auto of the Lorentz of the last of the	1b/10 ⁶ scf	lb/MMBtu	lb/hr	tpy	lb/hr	tpy
91-57-6	2-Methylnaphthalene	2.40E-05	2.35E-08	1.76E-07	7.73E-07	1.76E-07	7.73E-07
56-49-5	3-Methylchloranthrene	1.80E-06	1.76E-09	1.32E-08	5.80E-08	1.32E-08	5.80E-08
57-97-6	7,12-Dimethylbenz(a)anthracene	1.60E-05	1.57E-08	1.18E-07	5.15E-07	1.18E-07	5.15E-07
83-32-9	Acenaphthene	1.80E-06	1.76E-09	1.32E-08	5.80E-08	1.32E-08	5.80E-08
203-96-8	Acenaphthylene	1.80E-06	1.76E-09	1.32E-08	5.80E-08	1.32E-08	5.80E-08
120-12-7	Anthracene	2.40E-06	2.35E-09	1.76E-08	7.73E-08	1.76E-08	7.73E-08
56-55-3	Benz(a)anthracene	1.80E-06	1.76E-09	1.32E-08	5.80E-08	1.32E-08	5.80E-08
71-43-2	Benzene	2.10E-03	2.06E-06	1.54E-05	6.76E-05	1.54E-05	6.76E-05
50-32-8	Benzo(a)pyrene	1.20E-06	1.18E-09	8.82E-09	3.86E-08	8.82E-09	3.86E-08
205-99-2	Benzo(b)fluoranthene	1.80E-06	1.76E-09	1.32E-08	5.80E-08	1.32E-08	5.80E-08
191-24-2	Benzo(g,h,i)perylene	1.20E-06	1.18E-09	8.82E-09	3.86E-08	8.82E-09	3.86E-08
205-82-3	Benzo(k)fluoranthene	1.80E-06	1.76E-09	1.32E-08	5.80E-08	1.32E-08	5.80E-08
218-01-9	Chrysene	1.80E-06	1.76E-09	1.32E-08	5.80E-08	1.32E-08	5.80E-08
53-70-3	Dibenzo(a,h)anthracene	1.20E-06	1.18E-09	8.82E-09	3.86E-08	8.82E-09	3.86E-08
25321-22-6	Dichlorobenzene	1.20E-03	1.18E-06	8.82E-06	3.86E-05	8.82E-06	3.86E-05
206-44-0	Fluoranthene	3.00E-06	2.94E-09	2.21E-08	9.66E-08	2.21E-08	9.66E-08
86-73-7	Fluorene	2.80E-06	2.75E-09	2.06E-08	9.02E-08	2.06E-08	9.02E-08
50-00-0	Formaldehyde	7.20E-02	7.06E-05	5.29E-04	2.32E-03	5.29E-04	2.32E-03
110-54-3	Hexane	1.80E+00	1.76E-03	1.32E-02	5.80E-02	1.32E-02	5.80E-02
193-39-5	Indeno(1,2,3-cd)pyrene	1.80E-06	1.76E-09	1.32E-08	5.80E-08	1.32E-08	5.80E-08
91-20-3	Naphthalene	6.10E-04	5.98E-07	4.49E-06	1.96E-05	4.49E-06	1.96E-05
85-01-8	Phenanathrene	1.70E-05	1.67E-08	1.25E-07	5.48E-07	1.25E-07	5.48E-07
129-00-0	Pyrene	5.00E-06	4.90E-09	3.68E-08	1.61E-07	3.68E-08	1.61E-07
108-88-3	Toluene	3.40E-03	3.33E-06	2.50E-05	1.10E-04	2.50E-05	1.10E-04
7440-38-2	Arsenic	2.00E-04	1.96E-07	1.47E-06	6.44E-06	1.47E-06	6.44E-06
7440-41-7	Beryllium	1.20E-05	1.18E-08	8.82E-08	3.86E-07	8.82E-08	3.86E-07
7440-43-9	Cadmium	1.10E-03	1.08E-06	8.09E-06	3.54E-05	8.09E-06	3.54E-05
7440-47-3	Chromium	1.40E-03	1.37E-06	1.03E-05	4.51E-05	1.03E-05	4.51E-05
7440-48-4	Cobalt	8.40E-05	8.24E-08	6.18E-07	2.71E-06	6.18E-07	2.71E-06
7439-96-5	Manganese	3.80E-04	3.73E-07	2.79E-06	1.22E-05	2.79E-06	1.22E-05
7439-97-6	Mercury	2.60E-04	2.55E-07	1.91E-06	8.37E-06	1.91E-06	8.37E-06
7440-02-0	Nickel	2.10E-03	2.06E-06	1.54E-05	6.76E-05	1.54E-05	6.76E-05
7782-49-2	Selenium	2.40E-05	2.35E-08	1.76E-07	7.73E-07	1.76E-07	7.73E-07
		VOC	HAPs Subtotal	0.0138	0.061	0.0138	0.061
		Metal	HAPs Subtotal	0.000041	0.000179	0.000041	0.000179
			Total HAPs	0.0139	0.061	0.0139	0.061

References:

⁽¹⁾ AP42 Table 1.4-3 and Table 1.4-4

ATTACHMENT O

MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS

ATTACHMENT O

MONITORING/RECORDKEEPING/ REPORTING/TESTING PLANS

Optima Belle, LLC plans to follow the monitoring, recordkeeping, reporting, and testing required by the issued permit.

ATTACHMENT P PUBLIC NOTICE

AIR QUALITY PERMIT NOTICE

Notice of Application

Notice is given that Optima Belle, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Modification to Regulation 13 Permit R13-2093H to revise the permit for new equipment, remove equipment, and a new product at the facility on W. DuPont Avenue near Belle, Kanawha County, West Virginia. The latitude and longitude coordinates are: 38.239659 and -81.551886.

The applicant estimates change in the potential to discharge the following Regulated Air Pollutants from the facility will be: VOC of 0.41 tons per year (tpy), Ethylbenzene of 0.00096 tpy, Styrene of 0.00002 tpy for total hazardous air pollutants of 0.00099 tpy.

Startup of operation is planned to begin on or about August 15, 2023. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice. Written comments will also be received via email at DEPAirQualityPermitting@WV.gov.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, Extension 41281, during normal business hours.

Dated this the (PLEASE INSERT DAY) day of March 2023.

By: Optima Chemical Group, LLC
Doug Cochran
Vice President of Business Development
200 Willacoochee Highway
Douglas, Georgia 31535

ATTACHMENT Q BUSINESS CONFIDENTIAL CLAIMS

- (e) The period of time for which confidential treatment is desired (e.g., until a certain date, until the occurrence of a specified event or permanently); and,
- (f) Signature of a responsible official or an authorized representative of such person.
- 3. At the same time as the information claimed confidential is submitted to the DAQ on colored paper, a complete set of the information, including the cover document previously required under paragraph 2, must be submitted on white paper with the information claimed to be confidential blacked or whited out and the words Redacted Copy Claim of Confidentiality marked clearly on each such page, so that the information is suitable for public disclosure. In the case of drawings and blueprints, mark each page with the words Redacted Copy Claim of Confidentiality, include the title or legend of the drawing, and black or white out the information claimed confidential. The redacted page may be 8½" x 11" in size.
- 4. In the case of a permit application or supplemental information to an application, DAQ requires an applicant to submit three (3) copies of the application. Of those three (3) copies, one (1) must be a complete set of the application containing the information claimed confidential on colored paper and two (2) must be redacted copies. The DAQ reserves the right, however, to request additional copies of the information containing the confidential material.

Attachment

Confidential ii

35A. Certification of Information. To certify 2.28) or Authorized Representative shall chec	this permit ap	plication, a Responsible Officate box and sign below.	cial (per 45CSR§13-2.22 and 45CSR§30-			
Certification of Truth, Accuracy, and Completeness						
I, the undersigned Responsible Official / application and any supporting documents ap reasonable inquiry I further agree to assume r stationary source described herein in accorda Environmental Protection, Division of Air Qual and regulations of the West Virginia Division of business or agency changes its Responsible on tified in writing within 30 days of the official	pended hereto esponsibility fo nce with this a ity permit issue of Air Quality ar Official or Autho	is true, accurate, and comp or the construction, modification oplication and any amendme and in accordance with this ap and W.Va. Code 8 22-5-1 et si	lete based on information and belief after on and/or relocation and operation of the nts thereto, as well as the Department of plication, along with all applicable rules eq. (State Air Pollution Control Act). If the			
Compliance Certification Except for requirements identified in the Title of that, based on information and belief formed a compliance with all applicable requirements. SIGNATURE	√ Application for fitter reasonable use blue ink)	e inquiry, all air contaminant	chieved, I, the undersigned hereby certify sources identified in this application are in DATE: 2/17/2 3 (Please use blue ink)			
35B. Printed name of signee: Doug Cochran			35C. Title: Vice President of Business Development			
35D. E-mail: dcochran@optimachem.com	36E. Phone:	(912) 720-5190	36F. FAX: Use email			
36A. Printed name of contact person (if differe	nt from above)	: Michelle Given	36B. Title: EHS Manager			
36C. E-mail: mgiven@optimachem.com	36D. Phone:	(304) 949-7162	36E. FAX: Use email			
PLEASE CHECK ALL APPLICABLE ATTACHMEN	TS INCLUDED \	WITH THIS PERMIT APPLICAT	ION:			
Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment D: Attachment M: Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment C: Attachment C: Attachment C: Attachment C: Attachment C: Attachment C: Attachment C: Attachment C: Attachment C: Attachment C: Attachment C: Attachment C: Attachment C: Attachment C: Attachment C: Attachment C: Attachment C: Attachment M: Attachment C: Attachment M: Attachment C: Attachment M: Attachment C: Attachment M: Attachment M: Attachment M: Attachment M: Attachment M: Attachment C: Attachment M: Attachment M: Attachment C: Attachment C: Attachment M: Attachment C: Attachme			missions Data Summary Sheet Unit Data Sheet(s) ion Control Device Sheet(s) g Emissions Calculations g(Recordkeeping/Reporting/Testing Plans tice Confidential Claims			
Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.						
		· · · · · · · · · · · · · · · · · · ·	rapproduorio.			
FOR AGENCY USE ONLY — IF THIS IS A TITLE V Forward 1 copy of the application to the Title For Title V Administrative Amendments: NSR permit writer should notify Title V For Title V Minor Modifications: Title V permit writer should send appr NSR permit writer should notify Title V For Title V Significant Modifications processes NSR permit writer should notify a Title Public notice should reference both 4: EPA has 45 day review period of a drawn of the control of	V Permitting G / permit writer of opriate notifical / permit writer of d in parallel witer V permit writer 5CSR13 and Tite ft permit.	of draft permit, tion to EPA and affected state of draft permit. th NSR Permit revision: r of draft permit, le V permits,				
All of the required forms and additional information	ion can be foun	d under the Permitting Section	n of DAQ's website, or requested by phone.			

Attachment Q Business Confidential Claim

Company Name	Optima Belle, LLC	Responsible Official		
Company Address	900 W. DuPont Avenue	Confidential Information	Name	Doug Cochran
	Belle, WV 25015	Designee in State of WV	Title	Vice President of Business Development
			Address	200 Willacoochee Highway
Person/Title	Doug Cochran			Douglas, GA 31535
Submitting Confidential	M' D '1		Phone	(912) 720-5190
Information	Vice President of Business Development		Fax	(912) 384-6330

Reason for Submittal Of Confidential Information: R13 Class II Administrative Update

Identification of Confidential Information	Rationale for Confidential Claim 45CSR31-4.1a-e	Confidential Treatment Time Period
-Equipment design and capacity information -Process descriptions -Process flow diagrams	a. Information initially claimed confidential by E.I. Dupont De Nemours and Company, Inc. and The Chemours Company FC, LLC. Information continues to be confidential under Optima Belle, LLC. The claim has not expired by its term, or been waived or withdrawn. The confidential information should continue to be maintained as such for an indefinite time period.	Permanent
	See attached for b-e	

Responsible Official Signature:	Doug Coolina
Responsible Official Title:	Vice President of Business Development
Date Signed:	3/17/23

NOTE: Must be signed and dated in BLUE INK.

Rationale for Confidentiality Claim (Cont.)

- b. Information claimed confidential is not available to the general public. Within the company, Optima Belle, LLC (Optima) distributes technical information on a need-to-know basis and has used its business confidentiality policy to prevent inadvertent dissemination of information. This policy includes:
 - * Marking of business confidential documents,
 - * Limited distribution of documents,
 - * Shredding of confidential documents before disposal.

Employees are aware of the competitive nature of their business and are trained in guarding confidential information.

- c. Information revealing the process technology in this submittal is not reasonably obtainable by persons other than Optima employees who need to know. To maintain the confidentiality of such information, Optima employees involved with confidential information sign a confidentiality agreement.
- d. There is no statute that has been reviewed that requires disclosure of information claimed to be confidential.
- e. Optima claims business confidentiality protection for the information submitted since disclosure would allow competent engineers within a competitor's company to determine the manner or process by which Optima produces this product and would provide competitors information without paying for technology or conducting research and development necessary to obtain the technology.

Confidential

APPENDIX 1

YOUNG INDUSTRIES SELF-CONTAINED FILTER/BAG DUMP STATION SPECIFICATIONS

16 PAINTER STREET, MUNCY, PA 17756

WWW.YOUNGINDS.COM

QUOTATION NO. 111-22-0578-2

Optima Belle From: Curtiss F. Wykoff

901 West Dupont Ave Project Engineer

Belle, WV 25105 Phone: (570) 546-1843 Cell: (570) 916-1726

Name: John Sawyer

EMAIL: jsawyer@optimachem.com DATE: February 28, 2023

The Young Industries, Inc. (hereinafter referred to as "Seller") is pleased to submit this quotation for the Machinery, equipment and/or services described below and on additional pages if required, subject to the Terms and Conditions of Sales as posted https://www.younginds.com/TC/QTC.pdf.

CUSTOMER'S INQUIRY: Proposal for a FBD42-8 Filter/Bag Dump Station.

ITEM NO. 1:

ONE (1) - Young Industries Self-Contained Filter/Bag Dump Station. Assembly includes a continuous-cleaning, pulse jet "Uni-Cage" Filter and integral fan as specified below.

OPERATING CONDITIONS:

MATERIAL - Unknown POUNDS/HOUR - Unknown

SPECIFICATIONS:

MODEL - FBD42-8 STYLE - Hopper type FILTER CLOTH AREA - 36 sq. ft.

FILTER MEDIA - 14 oz. polyester felt

NUMBER OF BAGS - Eight (8) BAG LENGTH - 42"

FAN (HP)/VOLUME - 1 1/2 / 1200 CFM FACE VELOCITY - 135 ft./minute FAN NOISE LEVEL - Less than 80 DBA

DIMENSIONS - Per drawing 4-6177-21.00

CONSTRUCTION:

HOUSING - 316 S/S where product contacts

PLENUM ACCESS DOOR - 316 S/S BAG GRATE (REMOVABLE) - 316 S/S FILTER CAGES - S/S (Style D)

BY: Curtiss 7. Wykoff

HOPPER OUTLET - 8" Square flange.

TYPE SUPPORTS - Four (4) support legs, 316 S/S

CHARGE OPENING DOOR - Included, 316 S/S

MAGNEHELIC GAUGE - Included

ENGRG. SPEC. 185.200

WELDING - Class 1
GRINDING, EXTERIOR - Class 2
GRINDING, INTERIOR - Class 2
CLEAN-UP, EXTERIOR - Class 2
CLEAN-UP, INTERIOR - Class 2

ELECTRICAL/AIR: (Style 3)

PUSHBUTTON STATION,

ENCLOSURE AND VOLTAGE - NEMA 7/9, 1/60/120 VAC

MOUNTING AND WIRING TO

SOLENOID - By Young Industries

SOLENOID ENCLOSURE AND

VOLTAGE - NEMA 7/9, 1/60/120 VAC

FILTER TIMER

(IN PUSHBUTTON STATION) - 1/60/120 VAC

MOTOR ENCLOSURE - Explosion proof, Class 1, Group D, Class 2, Groups F & G

MOTOR VOLTAGE - 3/60/230-460 VAC COMPRESSED AIR REQUIREMENTS - 2 SCFM & 80 PSIG MOTOR STARTERS - By Customer

DRAWINGS: Component drawings can be submitted for your approval in 20 - 30 working days after our receipt of a formal purchase order. Upon return of customer approved drawings, corrections will be made, if required and final drawings returned to you in 20 days for your records. Any changes occurring during the approval process will be analyzed to determine if the equipment price will need to be adjusted. The customer will be notified of any price changes.

<u>SHIP SCHEDULE</u>: 20 - 24 weeks after settlement of all engineering details. This schedule is based on items of equipment manufactured by The Young Industries, Inc. On outside purchased items, delivery will be based on current schedule of our suppliers at time of order placement.

FREIGHT: Unless purchased with the additional Freight line items, the equipment listed in this proposal does not include shipping costs. Young Industries can ship freight collect, F.O.B. Muncy PA or F.O.B. Shipping Point (freight costs not included) but will need the buyers preferred carrier and account number to do so. The equipment can also ship Pre-paid and add, using Young Industries preferred carrier with the shipping costs invoiced in addition to the equipment costs, and to be paid by the buyer. Freight terms must be clearly defined in any purchase order resulting from this proposal.

TERMS OF PAYMENT: For any order resulting from this quotation, the customer will be invoiced 40 percent of order value, with receipt of purchase order, payable NET 30 days from invoice date. The balance of order to be invoiced as shipped or complete awaiting customer inspection or authorization to ship, net 30 days, with 30 percent prepayment applied against each invoice. "Established credit", or any other credit extension, shall be approved in

writing by an authorized officer of seller in Muncy, Pennsylvania. <u>Interest at the rate of eighteen percent (18%) per annum shall be applied to all invoices not paid in full within thirty (30) days of the date of the invoice.</u>

This quotation will be held open for thirty (30) days unless extended in writing by The Young Industries, Inc., Muncy, Pennsylvania.

If favored with an order drawing approval and release for fabrication must be completed in a timely manner to avoid possible price adjustment. If projects are put on hold Young Industries reserve the right to review pricing once the project is released from hold status. If price adjustment is required new pricing will be submitted for review and approval prior to release for fabrication.

Prices quoted include only those items listed and are based on the quantities specified. Additions, deletions, or price changes due to quantity revisions will be made by quotation.

The system and/or equipment described in this quotation is guaranteed to perform as specified for the service condition described. Factors not included in this specification which may in any way affect the operation of the system or equipment are to be considered the responsibility of the customer.

Unless Young Industries, Inc has received a sample of the products being handled in the above equipment and/or systems; the design is based on past experience with similar materials. The physical characteristics of the materials handled can affect the operation of the equipment and design rate of the system. However, to guarantee the equipment and system performance it is mandatory for Young Industries to test the materials handled. Young Industries wants a sample of up to 50 pounds in size for bench testing and visual product verification. Shipment of additional material may be required to permit further testing in our laboratory. An MSDS is required for all materials prior to receipt of the materials. Bench testing and visual product verification tests are performed at no charge. All test materials shipping cost are the responsibility of the customer. Young Industries, Inc cannot dispose test materials. All test materials will be returned to the customer.

The Young Industries, Inc. cannot assume any responsibility for the abrasive or corrosive nature of material processed or handled in this equipment; nor does presentation of this proposal carry with it any representation of service life against such abrasion or corrosion.

When equipment is quoted to handle combustible powders, Young Industries has utilized NFPA guidelines (NFPA 68-Guide of Venting of Deflagrations, NFPA 69-Standard on Explosive Prevention Systems, NFPA 77-Recommended Practice on Static Electric, NFPA 652- Standard on the Fundamentals of Combustible Dust, and NFPA 654-Standard for the prevention of fire and dust explosions for combustible dusts) in the design of the equipment offered in this quotation. Ultimately the safety of the system and equipment design for the intended process is the responsibility of the owner/operator and their designated Authority Having Jurisdiction (AHJ). Young Industries will work with the owner/operator to address issues around the handling of combustible dusts as it relates to the equipment offered in this quotation.

Unless otherwise stated, all Young Industries, Inc. equipment requiring shop paint will be primed and painted with one (1) coat of <u>blue or gray epoxy paint</u>, applied in accordance with our standard preparation and painting methods. Items not of our manufacture will be painted in accordance with the vendor's standard procedures.

<u>ENGINEERING DOCUMENTATION:</u> All drawings will only be sent by email in a PDF file format. All correspondence, specifications, manuals, etc. will only be sent by email in a .pdf file format. Other file formats and/or hard copies of the engineering documentations can be provided at an additional cost to the Buyer.

<u>SOFTWARE PROGRAMS</u>: All software programs and electrical controls supplied with equipment or systems include preliminary testing only. All other testing is at the Buyer's expense. Final software changes may be

required in the field after final installation and connection of all the field devices. The final modifications will be at the Buyer's expense.

<u>FACTORY ACCEPTANCE SUPPORT:</u> Upon completion of installation, if the Buyer so desires, The Young Industries, Inc. will provide Factory Acceptance Support to check over the installation, start-up the equipment, place it in commercial operation and instruct the purchaser's operators in its proper care and maintenance. This service is to be billed at an additional rate of **\$1,600.00 USD** per day plus travel and living expenses per day.

OTHER FACTORY ACCEPTANCE SUPPORT: If Buyer so desires, The Young Industries, Inc. can provide other Factory Acceptance Support at the additional rate of \$1,600.00 USD per day plus travel and living expenses per day.

A normal workday will be 8 hours, except for a day with travel involved. A day combining work and travel will extend through 12 hours. Customer requests for Saturday or Sunday will be considered as overtime. Factory Acceptance Support shall be invoiced on a monthly basis. Each invoice shall be due and payable in United States funds, net Thirty (30) days from date of invoice. Interest at the rate of eighteen percent (18%) per annum shall be applied to all invoices not paid in full within thirty (30) days of the date of the invoice.

<u>NOISE GENERATING UNITS:</u> The Young Industries, Inc. cannot guarantee that all equipment quoted herein, will meet the noise level requirements of the Williams-Steiger Occupational Safety & Health Act of 1970 (OSHA). The Young Industries, Inc. cannot be held responsible if the equipment quoted exceeds the limits established by OSHA. If it is determined, by the customer, that an employee's exposure to the generated noise level is in violation of OSHA regulations, The Young Industries, Inc. can submit a quotation for adequate acoustical enclosure of accepted design that will comply with the regulations of the customer's particular installation.

WARNING: ELECTRICAL GROUNDING AND BONDING IS REQUIRED. UNGROUNDED MACHINERY PRESENTS A POTENTIAL HAZARD OF FATAL ELECTRICAL SHOCK FROM ELECTRICAL POWER SOURCES. STATIC ELECTRICITY MAY ALSO ACCUMULATE ON UNGROUNDED/UNBONDED EQUIPMENT. STATIC ELECTRICITY DISCHARGE FROM UNGROUNDED EQUIPMENT OR BETWEEN UNBONDED PIECES OF EQUIPMENT MAY CAUSE EXPLOSION OR FIRE IF FLAMMABLE VAPOR OR DUST IS PRESENT. THIS WARNING ALSO APPLIES TO MOVABLE CONTAINERS SUCH AS DRUMS, TOTES, BOXES, AND BAGS.

ELECTRICAL EQUIPMENT MUST BE INSTALLED WITH ALL FIRE AND ELECTRICAL CODES AND MUST BE INSTALLED BY A CERTIFIED PROFESSIONAL ELECTRICIAN.

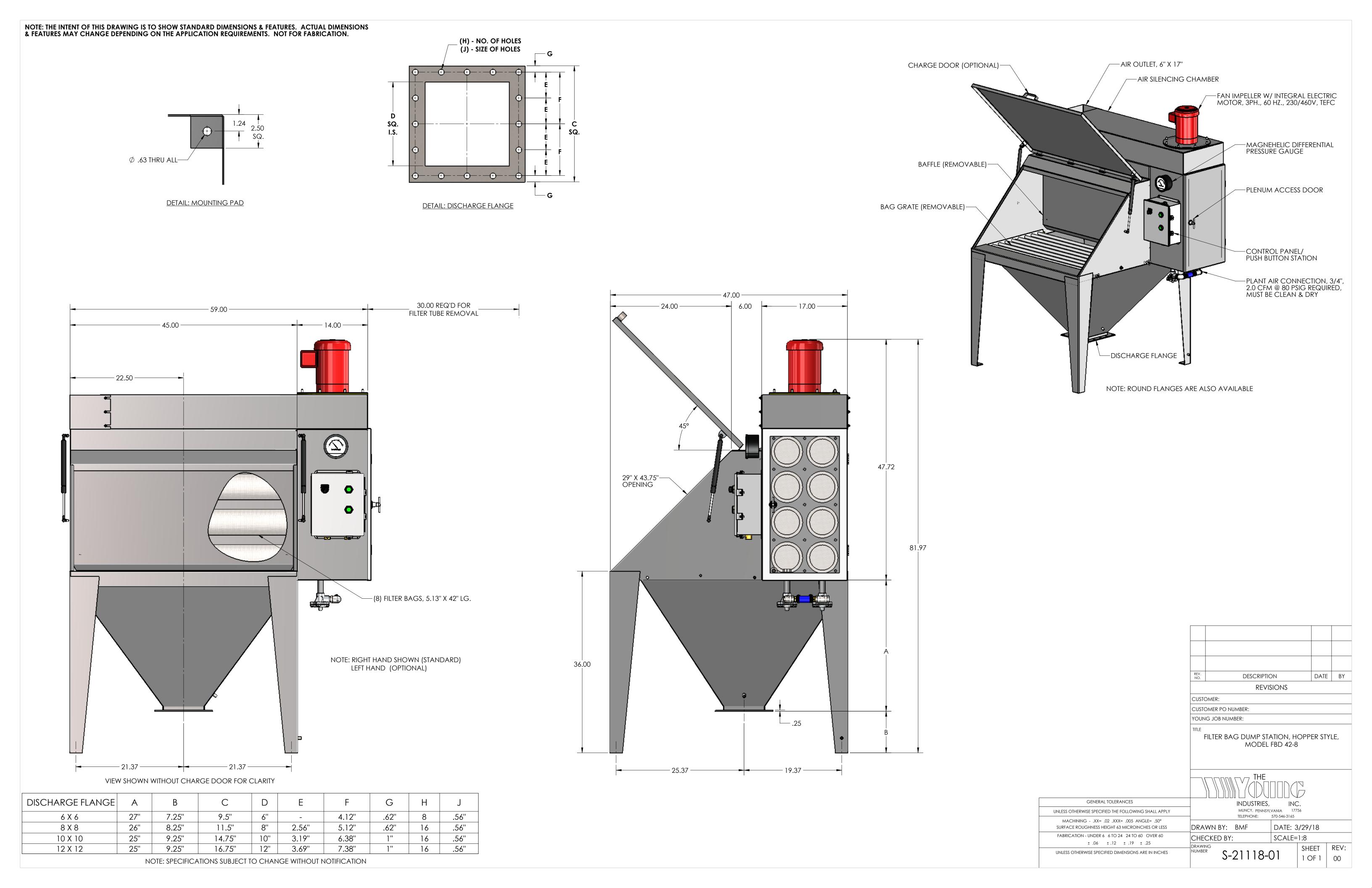
<u>MATERIAL OF CONSTRUCTION:</u> The Young Industries, Inc. reserves the right to upgrade material of construction as follows unless "DO NOT SUBSTITUTE MATERIAL OF CONSTRUCTION" is noted on quote or purchase order:

304 S/S may be upgraded to 304L S/S, 316 S/S or 316L S/S. 304L S/S may be upgraded to 316L S/S. 316 S/S may be upgraded to 316L S/S. Carbon steel may be upgraded to any of the above.

We trust that this offering is sufficient in detail for your review. Thank you for your interest in Young Industries equipment. If you have any questions, need additional information, or if Young Industries can be of further service, please feel free to contact our local representative, Bob Chmielewski of AIR.BTU-BECO, Inc., or me directly any time.

Very truly yours,

THE YOUNG INDUSTRIES, INC.


Curtiss F. Wykoff
Project Engineer
Project Engineering/
Bulk Materials Systems Div.
E-Mail: cfwykoff@younginds.com

cc: Jim Shook
AIR.BTU, Inc.
597 High Street
PO Box 1050
Worthington, OH 43085-1050
Phone: 614/889-1161

Mobile: 614-264-6462
E-Mail: jshook@airbtu.com
Website: http://www.airbtu.com

Bob Chmielewski AIR.BTU-BECO, Inc. 38500 Chardon Road Willoughby, OH 44094 Mobile: 330-274-6143 Office: 440-808-6666

E-Mail: <u>bobc@blakeslee-equipment.com</u>
Website: wwww.blakeslee-equipment.com

