Division of Air Quality Permit Application Submittal

Please find attached a permit application for :

[Company Name; Facility Location]

- DAQ Facility ID (for existing facilities only):
- Current 45CSR13 and 45CSR30 (Title V) permits associated with this process (for existing facilities only):
- Type of NSR Application (check all that apply):
 - \circ Construction
 - \circ Modification
 - Class I Administrative Update
 - Class II Administrative Update
 - \circ Relocation
 - Temporary
 - Permit Determination

- Type of 45CSR30 (TITLE V) Application:
 - Title V Initial
 - o Title V Renewal
 - Administrative Amendment**
 - Minor Modification**
 - Significant Modification**
 - Off Permit Change

**If the box above is checked, include the Title V revision information as ATTACHMENT S to the combined NSR/Title V application.

- Payment Type:
 - Credit Card (Instructions to pay by credit card will be sent in the Application Status email.)
 - Check (Make checks payable to: WVDEP Division of Air Quality) Mail checks to: WVDEP – DAQ – Permitting Attn: NSR Permitting Secretary 601 57th Street, SE Charleston, WV 25304

Please wait until DAQ emails you the Facility ID Number and Permit Application Number. Please add these identifiers to your check or cover letter with your check.

- If the permit writer has any questions, please contact (all that apply):
 - Responsible Official/Authorized Representative
 - Name:
 - Email:
 - Phone Number:
 - **Company Contact**
 - Name:
 - Email:
 - Phone Number:
 - Consultant

 \bigcirc

- Name:
- Email:
- Phone Number:

45CSR13 Modification Permit Application

Roxul USA Inc. RAN Facility

May 2023

The business of sustainability

CONTENTS

1.						
	1.1 1.2	•	nd n Overview			
2.	PROCE	CESS UPDATES OVERVIEW				
3.	SUMM	IMARY OF EMISSION CHANGES				
4.	FEDER	FEDERAL REGULATORY REQUIREMENTS				
	4.1	Non-Appli	icable NSPS Standards	. 5		
		4.1.1	40 CFR 60 Subpart Dc – Small Industrial Steam Generating Units			
		4.1.2 4.1.3	40 CFR 60 Subpart Kb – Volatile Organic Liquid Storage Tanks 40 CFR 60 Subpart Y – Standards Of Performance For Coal Preparation And Processing Plants			
		4.1.4	40 CFR 60 Subpart LL – Standards Of Performance For Metallic Mineral Processing Plants			
		4.1.5	40 CFR 60 Subpart VVV - Standards Of Performance For Polymeric Coating Of Supporting Substrates Facilities			
		4.1.6	40 CFR 60 Subpart CCCC – Standards Of Performance For Commercial And Industrial Solid Waste Incineration Units	. 5		
	4.2	Applicable	e NSPS Standards	. 6		
		4.2.1 4.2.2	40 CFR 60 Subpart OOO – Nonmetallic Mineral Processing Plants 40 CFR 60 Subpart IIII - Stationary CI ICE			
	4.3	NATIONA	L EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP)	. 8		
		4.3.1	40 CFR 63 Subpart DDD – Mineral Wool Production			
		4.3.2 4.3.3	40 CFR 63 Subpart JJJJ – Paper and Other Web Coating 40 CFR 63 Subpart ZZZZ – Stationary RICE			
		4.3.4	40 CFR 63 Subpart DDDDD - Industrial, Commercial, and Institutional Boilers And Process Heaters			
5.	STATE		ATORY REQUIREMENTS	9		
•	5.1	45 CSR 0	2 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in			
	5.2	Indirect heat Exchangers				
	5.3	45 CSR 05 – To Prevent and Control Air Pollution from the Operation of Coal Preparation Plants,				
			dling Operations, and Coal Refuse Disposal Areas			
	5.4		6 – Control of Air Pollution from the Combustion of Refuse			
	F F	5.4.1	45 CSR 6-4.1 - Determination for Maximum Allowable Particulate Emissions			
	5.5		 To Prevent and Control Particulate Air Pollution from Manufacturing Processes and d Operations 	10		
		5.5.1 5.5.2	Mineral Wool Line Rockfon Line			
		5.5.2 5.5.3 5.5.4	Materials Handling Sources	11		
	5.6	45 CSR 1	0 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides			
	5.7		1 – Prevention of Air Pollution Emergency Episodes	11		
	5.8	Sources (Permits, (3 – Permits For Construction, Modification, Relocation And Operation Of Stationary Of Air Pollutants, Notification Requirements, Administrative Updates, Temporary General Permits, Permission To Commence Construction, And Procedures For n	11		
	5.9	45 CSR 1	4 – Permits for Construction and Major Modification of Major Stationary Sources of Ai for the Prevention of Significant Deterioration	r		
	5.10		6 – Standards of Performance for New Stationary Sources (NSPS)			

5.11	45 CSR 17 – To Prevent and Control Particulate Matter Air Pollution from Materials Handling,	
	Preparation, Storage, and other Sources of Fugitive Particulate Matter	. 13
5.12	45 CSR 21 – To Prevent and Control Air Pollution from the Emissions of Volatile Organic	
	Compounds	. 13
5.13	45 CSR 29 – Rules Requiring the Submission of Emission Statements for Volatile Organic	
	Compound (VOC) Emissions and Oxides of Nitrogen (NOx) Emissions	. 13
5.14	45 CSR 30 – Requirements for Operating Permits	. 13
5.15	45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)	. 13

WVDAQ PERMIT APPLICATION FORMS

1. INTRODUCTION

1.1 Background

ROXUL USA Inc. dba Rockwool, (ROCKWOOL) submits this application for a permit modification to the West Virginia Department of Environmental Protection (WVDEP), Division of Air Quality (WVDAQ) to reflect modifications to Permit No. R14-0037. The modifications outlined in this application results in a net decrease in emissions of all regulated pollutants.

1.2 Application Overview

This permit application narrative is provided to add clarification and further detail to the permit application forms being provided to the WVDAQ for this project.

This section (Section 1) contains introductory information. Section 2 presents an overview of the proposed updates to processes and equipment. Processes with no changes have been omitted from Section 2. A summary of emissions changes is provided as Section 3. Section 4 provides a review of updates to federal regulatory requirements. A review of updates to state regulatory requirements is provided as Section 5. The WVDAQ permit application forms are provided as Appendix A.

2. PROCESS UPDATES OVERVIEW

The modifications included in this permit application reflect an aggregation of changes in equipment sizing, location, and source details. The types of permitting updates can be categorized into the following sets of changes:

- Removal of coal transfer, storage, and preparation equipment from the permit. The RAN facility will not fire coal and these sources have not been installed.
- Reallocation of eight (8) pounds per hour of carbon monoxide (CO) emissions from the Melting Furnace (IMF01) to the WESP (HE01).
- Removal, addition, and modification of raw material handling sources, including haul roads.
- Removal and modification to the capacity of various storage tanks.
- Removal of cooling towers.
- Modifications to the sizing of the combustion sources.
- Updates to release point parameters, including stack height and stack location coordinates.
- Removal of PMARK Product Marking from the permit. Inkjet (VOC) marking was not installed at RAN.
- Removal of Rockfon. The Rockfon production line currently has no plans to be constructed.
- Reduction of the annual hours of operation of the mineral wool production facility to 8,400 to reflect required annual turnarounds. The process mandates that the mineral wool production line is shut down for 2 weeks each year to conduct routine maintenance on the facility. The 8,400 hours of operation represents the maximum hours of operation of the mineral wool production line. The material handling, tanks, and paved roads will remain at 8,760 hours per year.
- Reduction of the annual hours of operation and application rate on Fleece Application Vents 1 & 2 (4,200 hours per year). This value is reflective of the maximum expected operations due to product demand.

A description of the changes to the manufacturing process and associated emission points is provided in Attachment G – Process Description.

3. SUMMARY OF EMISSION CHANGES

The updates proposed in this application will result in a net decrease in emissions. The original potential to emit, the changes due to the updates outlined in Section 2, and the resulting potential to emit are shown in the table below:

Pollutant	Permitted Facility Emission Rate (tons/year)	Changes due to Updates (tons/year)	New Facility Emission Rate (tons/year)
СО	71.40	-11.23	60.17
NOx	238.96	-71.90	167.06
Total PM	250.87	-175.37	75.50
Filterable PM	129.23	-54.10	75.13
PM ₁₀	153.19	-80.13	73.06
PM _{2.5}	133.41	-66.80	66.61
SO ₂	147.45	-6.11	141.34
VOC	471.41	-275.23	196.18
CO ₂ e	152,934.82	-30,931.87	122,002.95
Formaldehyde	68.63	-51.99	16.64
Methanol	106.61	-3.73	102.88
H ₂ SO ₄	16.37	-8.52	7.85
Lead	2.47E-04	-5.80E-05	1.89E-04
Total HAP	392.59	-128.98	263.61
HF	1.62	-0.07	1.55
HCI	1.29	-0.05	1.24
COS	1.64	-0.07	1.57
Arsenic	3.93E-04	-1.60E-05	3.77E-04
Mercury	2.55E-03	-1.00E-04	2.45E-03
Phenol	100.22	-24.90	75.32
Mineral Fiber	112.28	-47.99	64.29
Hexane	0.26	-0.15	0.11
Benzene	0.05	-4.95E-02	5.17E-04

4. FEDERAL REGULATORY REQUIREMENTS

New Source Performance Standards (NSPS) are established for specific industrial categories in 40 CFR Part 60. West Virginia regulations in WV 45 CSR 16 incorporate the federal NSPS by reference. A review of the NSPS categories has been performed for applicability and is presented below.

4.1 Non-Applicable NSPS Standards

The NSPS subparts discussed in this section are not applicable but are addressed for documentation purposes.

4.1.1 40 CFR 60 Subpart Dc – Small Industrial Steam Generating Units

There are no changes to applicability of NSPS Subpart Dc due to the updates discussed in this application. Additionally, the Coal Mill Burner (IMF05) was not installed and is proposed to be removed from the permit.

4.1.2 40 CFR 60 Subpart Kb – Volatile Organic Liquid Storage Tanks

There are no changes to applicability of NSPS Subpart Kb due to the updates discussed in this application. Two of the thermal oil tanks have updated sizing, but both tanks will still have a capacity of less than 19,813 gallons (75 m³) and are therefore not subject to NSPS Subpart Kb.

4.1.3 40 CFR 60 Subpart Y – Standards Of Performance For Coal Preparation And Processing Plants

The facility will no longer prepare of process any coal and therefore is not subject to NSPS Subpart Y.

4.1.4 40 CFR 60 Subpart LL – Standards Of Performance For Metallic Mineral Processing Plants

There are no changes to applicability of NSPS Subpart LL based on updates discussed in this application.

4.1.5 40 CFR 60 Subpart VVV - Standards Of Performance For Polymeric Coating Of Supporting Substrates Facilities

There are no changes to applicability of NSPS Subpart VVV due to the updates discussed in this application.

4.1.6 40 CFR 60 Subpart CCCC – Standards Of Performance For Commercial And Industrial Solid Waste Incineration Units

There are no changes to applicability of NSPS Subpart CCCC due to the updates discussed in this application. The facility remains not subject to this subpart. Additionally, PET Coke and Coal sources were not installed and are proposed to be removed from the permit.

4.2 Applicable NSPS Standards

4.2.1 40 CFR 60 Subpart OOO – Nonmetallic Mineral Processing Plants

NSPS Subpart OOO applies to the following affected facilities in fixed or portable nonmetallic mineral processing plants that commenced construction after August 31, 1983: each crusher, grinding mill, screening operation, bucket elevator, belt conveyor, bagging operation, storage bin, enclosed truck or railcar loading station. A "nonmetallic mineral processing plant" is defined as any combination of equipment that is used to crush or grind any nonmetallic mineral. The definition of nonmetallic mineral specifically mentions limestone, dolomite, and other minerals which may be contained in stone raw materials that will be sieved, crushed (if necessary), and conveyed in the charging building operations.

Per §60.672(d), truck dumping of nonmetallic minerals into any screening operation, feed hopper, or crusher is exempt from PM standards of NSPS Subpart OOO, which would exclude the Raw Material Loading Hopper (B215). Vacuum systems are not identified as affected facilities in NSPS Subpart OOO; therefore, the Charging Building Vacuum Cleaning Filter (IMF21) is not subject to NSPS Subpart OOO. The remaining affected sources subject to PM emissions limits include the belt conveyor connected to the charging building (IMF11); indoor conveyor transfer points IMF12 and IMF16; outdoor transfer point IMF15; indoor sieve, crusher, storage bins, and belt conveyors located inside the charging building (represented by IMF17); Raw Material Reject Outdoor Collection Bin (RM_REJ); and indoor Sieve Reject Collection Bin (S_REJ). The Filter Fines Day Silo (IMF07) and Filter Fines Receiving Silo (IMF10) are conservatively considered as part of the nonmetallic mineral processing plant because the silos will store stone or mineral raw materials that have been through the charging building operations.

After the final belt conveyor transfer from charging building operations to the furnace building, raw materials are dosed to a continuous weigh bin connected to the Melting Furnace. This bin is part of the mineral wool production operations and is not considered part of the nonmetallic mineral processing plant.

A summary of the applicable emission limits to affected sources subject to NSPS Subpart OOO is shown in Table 4-1 on the following page.

Seuree ID	Source	Control Device (if	NSPS Subpart OOO Limit		
Source ID	Description	present)	Limit	Citation	
RM_REJ	Raw Material Reject Collection Bin	4-sided rubber drop guards	7% opacity	§60.672(b) & Table	
S_REJ	Sieve Reject Collection Bin	Telescopic Chute & Full Enclosure	7% opacity	3 [fugitive emission limits]	
IMF14	Raw Material Reject Stockpile	3-sided enclosure	7% opacity		
IMF07	One (1) Storage Silo (Filter Fines Day)	Bin Vent Filter Enclosed Indoors	7% opacity	§60.672(a) & Table 2; §60.672(f) [opacity in lieu of	
IMF10	Filter Fines Receiving Silo	Bin Vent Filter	7% opacity	concentration limit for dry control devices on individua enclosed storage bins]	
IMF11	Conveyor Transition Point (B215 to B220)	Fabric Filter Enclosed Indoors	7% opacity	§60.672(b) & Table 3 [fugitive emission limits]	
IMF17	Indoor sieve, crusher, storage bins, and belt conveyors located inside the charging building B220	Full Enclosure	7% opacity	§60.672(e)(1)	
IMF12	Conveyor Transfer Point	Full Enclosure	7% opacity	[fugitive emissions from building openings]	
IMF16	Conveyor Transfer Point	Full Enclosure	7% opacity		
IMF15	Transfer Points: Magnet Separator to Iron Container & Vacuum Cleaning	4-Sided Drop Guard	7% opacity		

ROCKWOOL will be required to submit applicable notifications and initial testing results for affected sources subject to NSPS Subpart OOO. Monitoring of baghouses required by §60.674(c) consists of quarterly 30-minute visible emissions inspections using EPA Method 22 or the alternative specified in §60.674(d) for operation of a bag leak detection system. Recordkeeping and reporting requirements will be applicable and will be conducted as required.

NSPS Subpart OOO does not apply to the following operations at the proposed facility as described below.

• The Recycling Plant is not part of a nonmetallic mineral processing plant because only formed mineral wool fibers are handled in this area (i.e., no stone or mineral raw materials).

- The capacity of the Melting Furnace Portable Crusher (170) will be equal to or less than the exemption threshold of 136 megagrams per hour (150 short tons per hour) per §60.670(c)(2). The portable crushing operation is separate from the charging building operations that are subject to NSPS Subpart OOO.
- Fresh and spent sorbent used in the desulfurization system at ROCKWOOL will be stored in silos and pneumatically conveyed either to or from the control system (e.g., no crushing, grinding, or other processing occurs). Sorbent handling is separate from the charging building operations that are subject to NSPS Subpart OOO. Therefore, the Sorbent Storage Silo (IMF08) and Spent Sorbent Silo (IMF09) are not part of a nonmetallic mineral processing plant and are not subject to NSPS Subpart OOO.

4.2.2 40 CFR 60 Subpart IIII - Stationary CI ICE

The Emergency Fire Pump Engine (EFP1) remains subject to this subpart. The installed unit has a maximum capacity of 316 hp (236 kW), as opposed to the original permitted value of 197 hp (147 kW). There are no changes to applicability of NSPS Subpart IIII based on the updates discussed in this application. The installed unit is an EPA certified unit. A copy of the emission guarantee with Reference to the EPA Certificate of Conformity is included in the WVDAQ Permit application forms.

4.3 NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP)

NESHAP standards are established for specific pollutants and source categories in 40 CFR Part 61 and Part 63 in accordance with the Clean Air Act Amendments of 1990, which required development standards for sources of HAP. West Virginia regulations in WV 45 CSR 34 incorporate the federal NESHAP by reference. Potential HAP emissions from the ROCKWOOL facility are above the major source thresholds of 10 tpy (9.07 MT/year) of an individual HAP or 25 tpy (22.7 MT/year) of total HAP emissions. Thus, ROCKWOOL is a major source of HAP and is subject to any applicable MACT standards.

There are no existing or proposed NESHAP standards under 40 CFR Part 61 that are applicable to the ROCKWOOL facility.

A review of the NESHAP regulations under 40 CFR Part 63 has been performed for applicability to the ROCKWOOL facility and is presented below.

4.3.1 40 CFR 63 Subpart DDD – Mineral Wool Production

There are no changes to applicability of NESHAP Subpart DDD based on the updates discussed in this application. The Melting Furnace (IMF01) will continue to be subject to and show compliance with the emission limits in 40 CFR 63 Subpart DDD. ROCKWOOL will operate and maintain the Melting Furnace (IMF01) in compliance with 40 CFR 63 Subpart DDD.

4.3.2 40 CFR 63 Subpart JJJJ – Paper and Other Web Coating

There are no changes to applicability of NESHAP Subpart JJJJ based on the updates discussed in this application. Only the application of fleece binder material on the mineral wool line is subject to this regulation. ROCKWOOL will continue to comply with this regulation by using 'as-applied' compliant coatings pursuant to the procedures in §63.3370(a)(2). This limits the as-applied binder to a VOC content of 0.016 lb-VOC/lb-binder. VOCs are allowed for use as a surrogate for organic HAP (OHAP) emissions per §63.3370(c)(1) and (2).

4.3.3 40 CFR 63 Subpart ZZZZ – Stationary RICE

Federal NESHAP regulations for stationary Reciprocating Internal Combustion Engines (RICE) are found at 40 CFR Part 63, Subpart ZZZZ ("RICE MACT"). For the Emergency Fire Pump Engine, as a

new emergency stationary RICE with a site rating less 500 brake hp and located at a major source of HAP, the requirements of NESHAP Subpart ZZZZ are satisfied by meeting the requirements of NSPS Subpart IIII (per §63.6590(c)(7)). No further requirements apply for such engines under this part. As discussed in Section 5.2.2, the Emergency Fire Pump Engine complies with NSPS Subpart IIII.

4.3.4 40 CFR 63 Subpart DDDDD - Industrial, Commercial, and Institutional Boilers And Process Heaters

The Natural Gas-Fired Boilers (CM03 and CM04) have an updated heat input capacity of 4.99 MMBtu/hr (1,462 kW). Since these boilers have a heat input capacity less than 5 MMBtu/hr, ROCKWOOL will now be required to perform tune-ups on these boilers every 5 years, rather than biennially, in accordance with §63.7540 and Table 3 of Boiler MACT.

5. STATE REGULATORY REQUIREMENTS

This section outlines the West Virginia state air quality regulations that could be reasonably expected to apply to ROCKWOOL and makes an applicability determination for each regulation based on activities conducted at the site and the emissions of regulated air pollutants. This review is presented to supplement and/or add clarification to the information provided in the WVDEP Rule 14 permit application forms.

The West Virginia State Regulations address federal regulations, including Prevention of Significant Deterioration permitting, Title V permitting, New Source Performance Standards, and National Emission Standards for Hazardous Air Pollutants. The regulatory requirements in reference to the facility are described in detail in the below section.

5.1 45 CSR 02 – To Prevent and Control Particulate Air Pollution From Combustion of Fuel in Indirect heat Exchangers

The Natural Gas-Fired Boilers (CM03 and CM04) have an updated heat input capacity of 4.99 MMBtu/hr (1,462 kW). There are no changes to applicability of 45 CSR 02 based on this update, and these units still qualify for the exemption noted in 45 CSR 2 Section 11, as they have a heat input rating less than 10 MMBtu/hr (2,930 kW). The Rockfon Building Heater (RFN10) will not be installed and has been removed from this application.

5.2 45 CSR 04 – To Prevent and Control the Discharge of Air Pollutants into the Air Which Causes or Contributes to an Objectionable Odor

There are no changes to applicability of 45 CSR 04 based upon the updates discussed in this application.

5.3 45 CSR 05 – To Prevent and Control Air Pollution from the Operation of Coal Preparation Plants, Coal Handling Operations, and Coal Refuse Disposal Areas

There are no changes to applicability of 45 CSR 05 based upon the updates discussed in this application. The facility is subject to the requirements of 45 CSR 7 and therefore, is not subject to this rule.

5.4 45 CSR 06 – Control of Air Pollution from the Combustion of Refuse

There are no changes to applicability of 45 CSR 06 based on the updates discussed in this application. 45 CSR 06 remains applicable to the Curing Oven Afterburner (CO-AB).

5.4.1 45 CSR 6-4.1 - Determination for Maximum Allowable Particulate Emissions

The Curing Oven Afterburner (CO-AB) has been installed with a maximum heat input capacity of 9.86 MMBtu/hr but was originally permitted at 6.83 MMBtu/hr. No updates to flow rate to the Afterburner have been made. The estimated Total PM emission rate of 3.31 lb/hr (1.50 kg/hr) remains below the maximum allowable PM emission rate mandated by 45 CSR 06, and thus there are no changes to applicability based on the updates discussed in this application.

45CSR6 Emission Standards for Incinerators – Section 4.1

Pursuant to §45-6-4.1, PM emissions from incinerators are limited to the value determined by the following formula:

Emissions (lb/hr) = F x Incinerator Capacity (tons/hr)

Where, the factor, F, is indicated in the table below:

Incinerator Capacity	Factor F
A. Less than 15,000 lbs/hr	5.43
B. 15,000 lbs/hr or greater	2.72

The maximum capacity of the afterburner is 24.4 tons/hour. Using this value and an F factor of 2.72, the resultant PM emission limit is 66.37 lbs/hr. The estimated worst-case PM emitted from the afterburner is 3.31 lbs/hr. This is below the allowable of 45 CSR 06.

45CSR6 Opacity Limits - Sections 4.3 and 4.4

Pursuant to §45-6-4.3, and subject to the exemptions of 4.4, the curing oven afterburner will have a 20% opacity limit during operation. Proper design and operation of the curing oven afterburner will prevent any substantive opacity from the afterburner.

5.5 45 CSR 7 – To Prevent and Control Particulate Air Pollution from Manufacturing Processes and Associated Operations

45 CSR 7 regulates the emissions of filterable particulate matter from source operations within manufacturing processes. Manufacturing processes are defined as any industrial or manufacturing actions or processes that emit smoke, particulate matter, or gaseous matter.

ROCKWOOL operates multiple manufacturer processes that will emit filterable PM into the open air, including a mineral wool manufacturing process, and material handling point source activities. These separate manufacturing processes operate with separate source operations, which are defined as the last operation in a manufacturing process preceding the emissions of air contaminants.

The facility shall not emit filterable PM into the open air from any process source operation which is greater than 20% opacity. ROCKWOOL will also have to limit fugitive emissions by equipping manufacturing processes with a system to minimize fugitive PM emissions. ROCKWOOL utilizes a combination of good housekeeping practices, partial/full enclosures, baghouses, and various filters throughout the facility to minimize PM emissions. All haul roads are paved to minimize fugitive PM emissions.

5.5.1 Mineral Wool Line

There are no changes to applicability or compliance based upon the updates discussed in this application.

There will be a reduction of the annual hours of operation of the mineral wool production facility to 8,400 to reflect required annual turnarounds. The process mandates that the mineral wool production line is shut down for 2 weeks each year to conduct routine maintenance on the facility. The 8,400 hours of operation represents the maximum hours of operation of the mineral wool production line.

5.5.2 Rockfon Line

The Rockfon Line was not installed and is being removed as part of this application and will no longer be subject to 45 CSR 7.

5.5.3 Materials Handling Sources

The expected filterable PM emission rate for the materials handling process source operation is 1.49 lb/hr (0.67 kg/hr) and will demonstrate compliance with the Rule 7 requirements. The updates to material handling sources discussed within this permit application will have no impact on compliance with the Rule 7 requirements. There is no impact to the maximum allowable total stack filterable PM emission rate.

5.5.4 Coal Milling

Coal Milling was not installed and is being removed as part of this application and will no longer be subject to 45 CSR 7.

5.6 45 CSR 10 – To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

45 CSR 10 contains requirements that limit SO₂ emissions from fuel burning units, limits in-stack SO₂ concentrations of manufacturing processes, and limits hydrogen sulfide concentrations in process gas streams.

The Natural Gas-Fired Boilers (CM03 and CM04) have an updated heat input capacity of 4.99 MMBtu/hr (1,462 kW). There are no changes to applicability of 45 CSR 10 based on this update, and these units still qualify for the exemption noted in 45 CSR 2 Section 11, as they have a heat input rating less than 10 MMBtu/hr (2,930 kW).

The RAN Facility does not combust any process gas stream that potentially contain hydrogen sulfide gas.

The Melting Furnace stack (IMF01), after control by the sorbent injection system is subject to the limitation on in-stack SO₂ concentrations. Pursuant to §45-10-4.1, the Melting Furnace stack (IMF01) shall not exceed an in-stack SO₂ concentration of 2,000 parts per million by volume. The calculated in-stack SO₂ concentration based on 33.63 lb/hr of SO₂, 21,413.73 acfm, 301.73 °F is 227.48 ppm_v. This in-stack SO₂ concentration is less than the 45 CSR 10 allowable.

5.7 45 CSR 11 – Prevention of Air Pollution Emergency Episodes

There are no changes to applicability of 45 CSR 11 based on the updates discussed in this application.

5.8 45 CSR 13 – Permits For Construction, Modification, Relocation And Operation Of Stationary Sources Of Air Pollutants, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, Permission To Commence Construction, And Procedures For Evaluation

45 CSR 13 outlines the requirements for the submission of deliverables as they apply to the construction or modification of stationary sources of air pollution. ROCKWOOL's initial permitting action was subject to the requirements of this rule based upon the construction of a stationary source

of air pollutants exceeding West Virginia's minor source permitting applicability thresholds (6 lb/hr AND 10 tpy of any regulated air pollutant).

When evaluating the updates contained within the permit application, the most appropriate permitting mechanism for an update to ROCKWOOL's existing air permit has been identified as a Class I Administrative Update. ROCKWOOL understands that WVDAQ will use its discretionary authority to process the permitting update as a Modification and submits this modification application based upon WVDAQ's direction.

The original permit application was submitted to the WVDAQ on November 21, 2017. At that time, the proposed facility was defined as a 'major stationary source' under 45 CSR 14 as shown in Table 3-1. Consistent with WVDAQ policy, permitting actions that are reviewed under 45 CSR 14 are also reviewed concurrently under 45 CSR 13. Permit R14-0037 was issued on April 30, 2018.

With the proposed changes outlined in this application, the RAN Facility will experience a net decrease in emissions of all pollutants. Additionally, this decrease will result in the facility no longer being defined as a 'major stationary source'. This means the facility no longer has the potential to emit two hundred fifty (250) tons per year or more of any regulated NSR pollutant.

This modification application satisfies the WVDAQ's permitting requirements and will establish the facility as a minor source for all regulated NSR pollutants. This application will be subject to public review procedures outlined in §45-13-8. ROCKWOOL will place the required Class I legal advertisement in a newspaper of general circulation in the area and pay the appropriate permit application fees required under 45 CSR 22.

5.9 45 CSR 14 – Permits for Construction and Major Modification of Major Stationary Sources of Air Pollution for the Prevention of Significant Deterioration

Federal construction permitting programs regulate new and modified sources of attainment pollutants under Prevention of Significant Deterioration. The requirements of this rule apply to the construction of any new major stationary source. In the pre-construction application (November 21, 2017), the RAN Facility was classified as a major stationary source because the facility potential to emit (PTE) exceeded two hundred fifty (250) tons per year of VOC. Further, emissions of NO_x, SO₂, PM, PM₁₀, PM_{2.5}, H₂SO₄ Mist, and CO2e were also subject to PSD review due to potential emissions greater than the PSD significant emission rate (SER) for each pollutant.

This permitting action was evaluated against the regulatory definitions of major modification and minor modification. Due to the large decrease in emissions, the facility is no longer defined as a 'major stationary source'. Therefore, the RAN facility is no longer subject to 45 CSR 14. Because the RAN Facility is not subject to 45CSR 14, air quality modeling or Best Available Control Technology (BACT) analysis is not required as part of this application.

These large emission decreases are realized because the RAN Facility was conservatively permitted to account for a wider range of potential operating conditions. Some of these potential operating conditions were never realized and this permitting action removes their potential use. Additionally, there was a reduction of the annual hours of operation of the mineral wool production facility to 8,400 to reflect required annual turnarounds to account for an annual shutdown for maintenance activities, and a reduction of the annual hours of operation and application rate on Fleece Application Vents 1 & 2 (4,200 hours per year) to reflect maximum expected operations due to product demand.

5.10 45 CSR 16 – Standards of Performance for New Stationary Sources (NSPS)

45 CSR 16 applies to registrants that are subject to 40 CFR 60 Standards of Performance for New Source Stationary Sources (NSPS).

ROCKWOOL is subject to the following NSPS subparts because of processes and equipment used at the facility:

- NSPS Subpart OOO Standards of Performance for Nonmetallic Mineral Processing Plants; and
- NSPS Subpart IIII Standards of Performance for Stationary Compression Ignition Internal Combustion Engines.

No additional NSPS are applicable for this facility. Additional descriptions of these regulations are provided in the Federal Regulations section of this regulatory discussion.

5.11 45 CSR 17 – To Prevent and Control Particulate Matter Air Pollution from Materials Handling, Preparation, Storage, and other Sources of Fugitive Particulate Matter

The facility is not subject to this rule because sources that are subject to the fugitive PM emission requirements of WV 45 CSR 7 are exempt from the provisions of WV 45 CSR 17.

5.12 45 CSR 21 – To Prevent and Control Air Pollution from the Emissions of Volatile Organic Compounds

There are no changes to applicability of 45 CSR 21 based on updates discussed in this application.

5.13 45 CSR 29 – Rules Requiring the Submission of Emission Statements for Volatile Organic Compound (VOC) Emissions and Oxides of Nitrogen (NOx) Emissions

There are no changes to applicability of 45 CSR 29 based on updates discussed in this application.

5.14 45 CSR 30 – Requirements for Operating Permits

There are no changes to applicability of 45 CSR 30 based on updates discussed in this application.

5.15 45 CSR 34 – National Emission Standards for Hazardous Air Pollutants (NESHAP)

45 CSR 34 applies to registrants that are subject to NESHAP requirements. The RAN facility is subject to the following NESHAP subparts because of processes and equipment used at the facility:

- NESHAP Subpart DDD Mineral Wool Production;
- NESHAP Subpart JJJJ Paper or Other Web Coating;
- NESHAP Subpart ZZZ Stationary Reciprocating Internal Combustion Engines (RICE); and
- NESHAP Subpart DDDDD Industrial, Commercial, and Institutional Boilers and Process Heaters.

These NESHAP requirements are described in more detail in the Federal Regulations section of this regulatory discussion.

APPENDIX A - WVDAQ PERMIT APPLICATION FORM

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wy.gov/dag	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF KNOWN): CONSTRUCTION MODIFICATION RELOCATION CLASS I ADMINISTRATIVE UPDATE TEMPORARY CLASS II ADMINISTRATIVE UPDATE AFTER-THE-FACT	PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION
	on Guidance" in order to determine your Title V Revision options o operate with the changes requested in this Permit Application.
Section	I. General
 Name of applicant (as registered with the WV Secretary of St Roxul USA Inc. 	tate's Office): 2. Federal Employer ID No. (FEIN): 99-0378111
3. Name of facility <i>(if different from above):</i> RAN Facility	4. The applicant is the:
5A. Applicant's mailing address: 665 Northport Avenue Ranson, WV 25430	5B. Facility's present physical address: 665 Northport Avenue Ranson, WV 25430
change amendments or other Business Registration Certification	Organization/Limited Partnership (one page) including any name ate as Attachment A. rity of L.L.C./Registration (one page) including any name change
7. If applicant is a subsidiary corporation, please provide the nar	ne of parent corporation: Rockwool Group
 8. Does the applicant own, lease, have an option to buy or other If YES, please explain: Applicant owns the site. If NO, you are not eligible for a permit for this source. 	wise have control of the <i>proposed site</i> ? XYES NO
 Type of plant or facility (stationary source) to be constructed administratively updated or temporarily permitted (e.g., or crusher, etc.): Mineral Wool Insulation Manufacturing Facility 	
037-00108 a	ist all current 45CSR13 and 45CSR30 (Title V) permit numbers ssociated with this process (for existing facilities only): R14-0037
All of the required forms and additional information can be found u	nder the Permitting Section of DAQ's website, or requested by phone.

12A.				
➡ For Modifications, Administrative Updates or Tempresent location of the facility from the nearest state		please provide directions to the		
Sor Construction or Relocation permits, please p	rovide directions to the proposed new s	ite location from the nearest state		
road. Include a MAP as Attachment B.				
From WV-9 E, take the County Route 1 exit towa Road and travel 0.4 miles. Turn left onto WV 115	-	-		
The facility is located on the left at 665 North po		o nonipoli Avenue.		
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:		
665 Northport Avenue Ranson, WV 25430	Ranson	Jefferson		
12.E. UTM Northing (KM): 4362.62	12F. UTM Easting (KM): 252.06	12G. UTM Zone: 18		
13. Briefly describe the proposed change(s) at the facility	y:			
Updating various sources to account for facility configuration detailed description of each change is provided in the permission of the pe	nit application introduction narrative	et decrease in emissions. A		
 14A. Provide the date of anticipated installation or change If this is an After-The-Fact permit application, provi 		14B. Date of anticipated Start-Up		
If this is an After-The-Fact permit application, provi change did happen:	de the date upon which the proposed	if a permit is granted:		
14C. Provide a Schedule of the planned Installation of/	Change to and Start-Up of each of the	units proposed in this permit		
application as Attachment C (if more than one unit	•			
15. Provide maximum projected Operating Schedule of Hours Per Day 24 Days Per Week		ation:		
16. Is demolition or physical renovation at an existing fac	cility involved? 🗌 YES 🛛 🗙 NO			
17. Risk Management Plans. If this facility is subject to	112(r) of the 1990 CAAA, or will becom	e subject due to proposed		
changes (for applicability help see www.epa.gov/cepp	o), submit your Risk Management Pla	n (RMP) to U.S. EPA Region III.		
18. Regulatory Discussion. List all Federal and State a	ir pollution control regulations that you l	believe are applicable to the		
proposed process (if known). A list of possible applica	ble requirements is also included in Atta	achment S of this application		
(Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (<i>if known</i>). Provide this				
information as Attachment D.				
Section II. Additional atta	achments and supporting de	ocuments.		
19. Include a check payable to WVDEP – Division of Air	Quality with the appropriate application	fee (per 45CSR22 and		
45CSR13).				
20. Include a Table of Contents as the first page of you	r application package.			
 Provide a Plot Plan, e.g. scaled map(s) and/or sketo source(s) is or is to be located as Attachment E (Re 		rty on which the stationary		
S Indicate the location of the nearest occupied structure				
22. Provide a Detailed Process Flow Diagram(s) show device as Attachment F.	ving each proposed or modified emission	ns unit, emission point and control		
23. Provide a Process Description as Attachment G .				
Also describe and quantify to the extent possible				
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.					
 ⇒ For chemical processes, provide a MSDS for each compound emitted to the air. 					
25. Fill out the Emission Units Table and provide it as Attachment I.					
26. Fill out the Emission Points Data S	ummary Sheet (Table 1 and Ta	ble 2) and provide it as Attachment J.			
27. Fill out the Fugitive Emissions Data	a Summary Sheet and provide it	as Attachment K.			
28. Check all applicable Emissions Unit	t Data Sheets listed below:				
Bulk Liquid Transfer Operations	🔀 Haul Road Emissions	Quarry			
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage			
Concrete Batch Plant	Incinerator	Facilities			
Grey Iron and Steel Foundry	S Indirect Heat Exchanger	Storage Tanks			
General Emission Unit, specify					
Mineral Wool Line - Melting Furnad	-				
Fill out and provide the Emissions Unit I					
29. Check all applicable Air Pollution C	1.55				
Absorption Systems	Baghouse				
Adsorption Systems		Mechanical Collector			
Afterburner	Electrostatic Precipita	tor Wet Collecting System			
Other Collectors, specify					
Fill out and provide the Air Pollution Co					
30. Provide all Supporting Emissions (Items 28 through 31.	Calculations as Attachment N,	or attach the calculations directly to the forms listed in			
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.					
Please be aware that all permits must be practically enforceable whether or not the applicant chooses to propose such measures. Additionally, the DAQ may not be able to accept all measures proposed by the applicant. If none of these plans are proposed by the applicant, DAQ will develop such plans and include them in the permit.					
32. Public Notice. At the time that the application is submitted, place a Class I Legal Advertisement in a newspaper of general					
circulation in the area where the sour	circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and <i>Example Legal</i>				
Advertisement for details). Please submit the Affidavit of Publication as Attachment P immediately upon receipt.					
33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?					
🗌 YES 🛛 🔯 NO					
If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's "Precautionary Notice – Claims of Confidentiality" guidance found in the General Instructions as Attachment Q.					
Section III. Certification of Information					
34. Authority/Delegation of Authority. Only required when someone other than the responsible official signs the application. Check applicable Authority Form below:					
Authority of Corporation or Other Business Entity					
Authority of Governmental Agency					
Submit completed and signed Authority Form as Attachment R.					
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.					

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned X Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE (Please 35B. Printed name of signee: Mark Grave	DATE: <u>05/19/2023</u> (Please use blue lnk) 35C. Title: Director of Operations	
35D. E-mail: Mark.Graves@rockwool.com	36E. Phone;	36F. FAX:
36A. Printed name of contact person (if diffe Stacey Phillips	36B. Title: Environmental Manager	
36C. E-mail: Stacey.Phillips@rockwool.com	36D. Phone: 681-247-0824	36E. FAX:

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION:			
PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION: Attachment A: Business Certificate Attachment K: Fugitive Emissions Data Summary Sheet Attachment B: Map(s) Attachment L: Emissions Unit Data Sheet(s) Attachment C: Installation and Start Up Schedule Attachment M: Air Pollution Control Device Sheet(s) Attachment D: Regulatory Discussion Attachment N: Supporting Emissions Calculations Attachment E: Plot Plan Attachment O: Monitoring/Recordkeeping/Reporting/Test Attachment F: Detailed Process Flow Diagram(s) Attachment P: Public Notice Attachment H: Material Safety Data Sheets (MSDS) Attachment R: Authority Forms Attachment J: Emission Units Table Attachment S: Title V Permit Revision Information Attachment J: Emission Points Data Summary Sheet Application Fee	ing Plans		
Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAO. Permitting Section, at the			

Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting S	ection, i	at the
address listed on the first page of this application. Please DO NOT fax permit applications.	,	

FOR AGENCY USE ONLY - IF THIS IS A TITLE V SOURCE:
Forward 1 copy of the application to the Title V Permitting Group and:
For Title V Administrative Amendments:
NSR permit writer should notify Title V permit writer of draft permit,
For Title V Minor Modifications:
Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
NSR permit writer should notify Title V permit writer of draft permit.
For Title V Significant Modifications processed in parallel with NSR Permit revision:
NSR permit writer should notify a Title V permit writer of draft permit,
Public notice should reference both 45CSR13 and Title V permits,
EPA has 45 day review period of a draft permit.
All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

Appendix A - WVDAQ Forms

TABLE OF CONTENTS

Attachments:

- A Business Certificate
- C Installation and Start Up Schedule
- D Regulatory Discussion
- F Process Flow Diagram
- G Process Description
- I Emission Units Table
- J Emission Points Data Summary Sheet
- K Fugitive Emissions Data Summary Sheet
- L Emission Unit Data Sheets
- M Air Pollution Control Device Sheet
- N Supporting Emission Calculations
- O Monitoring, Recordkeeping, Reporting, and Testing Plans
- P Public Notice
- Q Business Confidential Claims
- S Title V Revision

Attachment A

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: ROXUL USA INC. DBA ROCKWOOL 71 EDMOND RD 6 KEARNEYSVILLE, WV 25430-2781

BUSINESS REGISTRATION ACCOUNT NUMBER:

2348-4027

This certificate is issued on:

10/25/2017

This certificate is issued by the West Virginia State Tax Commissioner in accordance with Chapter 11, Article 12, of the West Virginia Code

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued

This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.

Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

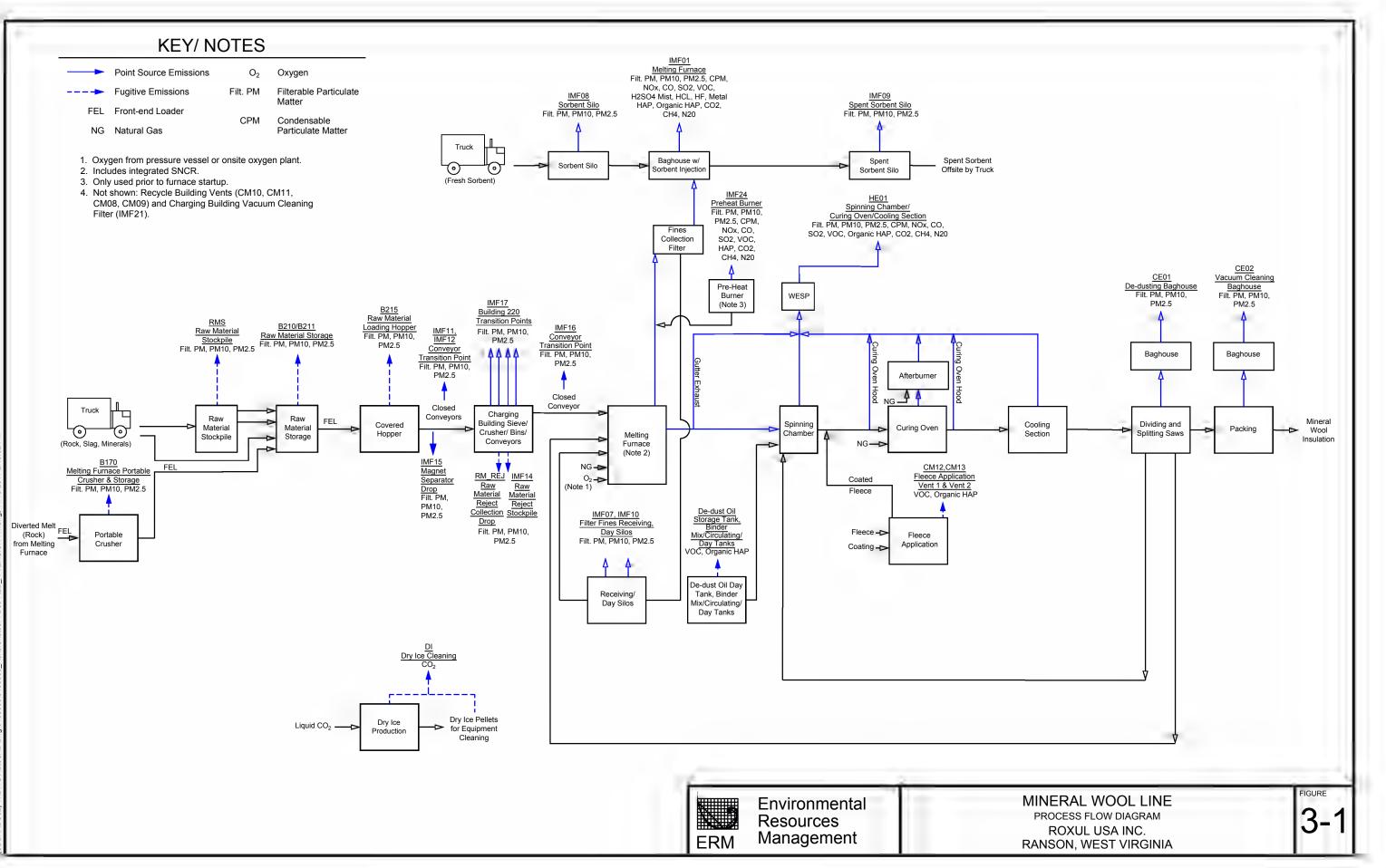
TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.4 L0875932352

Attachment C

Attachment C

Installation and Start Up Schedule


The changes outlined in this application reflect as-built construction of the facility. The facility began operation on May 22, 2021.

Attachment D

Attachment D

Regulatory Discussion

Please see the regulatory discussion in Section 4 and Section 5 of the Introduction of this permit application for the federal and state regulatory discussions, respectively. Attachment F

Attachment G

PROCESS DESCRIPTION

The mineral wool line will produce mineral wool insulation for residential, commercial, and industrial uses. Various types of insulating products can be produced with different densities, binder content, or dimensions to meet the requirements of various market sectors.

Mineral wool or "stone wool" is a natural product made partly from volcanic rocks. Rock may be supplemented with recycled mineral wool and slag from the steel industry. The following types of mineral raw materials are typically used in stone wool production:

Eruptive stones such as basalt/diabase, amphibolite, and anorthosite

- Slags such as blast furnace slag or converter slag
- Dolomite and/or limestone
- Mineral additives, such as olivine sand and high alumina content materials such as bauxite, kaoline clay, and aludross (by-product of the smelting process in the creation of aluminum from bauxite)

The mineral wool fibers are made from melted stone raw materials at very high temperatures (>2,700°F /1480°C), binder, and de-dusting oil. The various raw materials used in the melting furnace are mixed in the correct ratio to achieve the required chemistry of the fibers. The mineral wool manufacturing process consists of material handling/charging, melting, spinning, curing, cooling, cutting, and packing. Raw materials will be delivered to the site via truck, and products will leave the site via truck.

Raw Material Handling

The following changes have been made to the raw material handling from the previous permit application:

Conveyor Transition Point IMF11 is now located indoors. This source has been updated to include an indoor settling factor in addition to the fabric filter already permitted.

Seven material handling fugitive emission points are proposed to be modified in the permit, which are listed below:

- RMS, which includes a raw material stockpile with a base area of 500 m²;
- IMF17, which now includes 22 transfer points inside B220, Mixer and Crusher emissions inside B220 (previously included IMF18, which is proposed to be removed from the permit), and 2 transfer points with fabric filters inside B220;
- IMF11, which includes one transfer point inside B215;
- IMF12, which includes one transfer point inside B215;
- IMF16, which includes one transfer point inside B300;
- IMF15, which includes one transfer point outside B220; and
- IMF14, which includes a storage stockpile with a base area of 10 m².

Melting raw materials will be delivered in bulk by truck and unloaded and transferred with a front-end loader into the raw material stockpile (RMS) with three-sided enclosure. Additionally, diverted melt (rock) from the melting furnace will be delivered to a portable crusher (B170). The material from B170 and RMS will be transferred with a front end-loader to the raw material loading hopper (B215). The loading hopper feeds material onto a series of enclosed conveyors to the charging building (B220), where all subsequent melting raw material handling activities occur. A fraction of oversized material is directed to an indoor sieve and crusher, if required. Materials are then distributed to individual raw material bins. From here, they are dosed onto a belt conveyor to create a batch of charge material. The batch is conveyed into a bucket or similar vertical conveyor and then loaded into a mixer to create a homogeneous charge. The mixer is kept closed and equipped with an add-on filter that vents indoors during mixing.

The material handling sources IMF17, IMF12, IMF16, and IMF15, capture emission sources as material moves from B215 to B220, moves through B220, and exits B220 to B300 (furnace building). IMF12 includes the transfer point from the loading hopper (located inside B215) to a conveyor. From B215, material transfers to a second conveyor, and this transfer point corresponds to IMF11. The material moves outside from B215 to B220, where there is a transfer point from a magnet separator into an iron container with a 4-sided drop guard corresponding to IMF15. Material is delivered to B220 by a conveyor transfer point which is included in IMF17. IMF17 includes 22 conveyor transfer points which are indoors but otherwise uncontrolled, as well as the two conveyor transition points, which are equipped with fabric filters. Additional transfer points inside B220 included with IMF17 are one transfer point from the magnet separator to the iron container with a telescopic chute and two transfer points, one which transfers material from the magnet separator to the feeder and the second from the feeder to the crusher. Once material leaves B220, it is transferred to B300. The conveyor transfer point located inside B300 corresponds to IMF16.

The two mechanical vents on the charging building were not installed. As described above, emissions from the Mixer and Crusher are included with the other new B220 Material Handling emissions (IMF17). IMF18 is proposed to be removed from the permit.

If raw materials entering the charging building are found to be outside of specifications it is possible to collect these materials in two locations, either after the sieve or after the raw material bins. The material is directed into collection bins by conveyor, which is equipped with curtains for enclosure (RM_REJ). S-REJ is proposed to be removed from the permit.

Emissions from material handling consist of filterable PM/PM₁₀/PM_{2.5}.

Emission points from material handling include:

- Charging Building Material Handling Building Vents (IMF17)
- Five (5) Conveyor Transition Points,
 - Conveyor Transition Point (B215 to B220) (IMF11)
 - Conveyor Transition Point (B210/B211 to B220) (IMF12)
 - Conveyor Transition Point (B220 No. 1) (IMF14)
 - Conveyor Transition Point (B220 No. 2) (IMF15)
 - Conveyor Transition Point (B220 to B300) (IMF16)

Fugitive emissions from material handling consist of:

- Raw Material Storage (B210/211),
- Raw Material Outdoor Stockpile (RMS)
- Raw Material Loading Hopper (B215)
- Raw Material Reject Collection Bin (RM_REJ)
- Paved Haul Roads

Melting

During start-up a natural gas-fired preheater burner is used to warm the Melting Furnace baghouses to prevent condensation. Hot exhaust from the burner will indirectly heat the Melting Furnace baghouses before exhausting through the preheat burner stack (IMF24). The indirect heat transfer will be done by a thermal oil system including an expansion tank which is used both for preheating transfer of energy and to extract surplus heat for heat recovery. The natural gas preheat burner is rated at 5.12 MMBtu/hr (1,490 kW) heat input. The pre-heat burner will operate for approximately 2 hours (120 minutes) prior to the Melting Furnace startup. Shortly after, stone raw materials are added and heated in the first and second preheat chambers to approximately 1,022 °F (550 °C) and 1,562 °F (850 °C), respectively. From here, the preheated raw materials are introduced to the melter.

During melting furnace operation, temperatures in the melter reach approximately 3,000 °F (1,650 °C) and the resultant melt flows out of the furnace to the spinner. Gutter channels are used to direct melt from the furnace onto the spinners. An exhaust is located above the gutters to remove heat from the area to lower the temperature in the working environment, which will be directed to the Wet Electrostatic Precipitator (WESP) (HE01).

Once the system is operating at a steady state, waste wool and filter fines from the process are recycled into the melter along with stone raw materials.

Tapping is an emptying of the furnace, where melt flows directly out of the furnace and into a collection area. The tapped melt can be crushed in the portable crusher and reused in the melting process. Tapping occurs when the line shuts down, or as a result of an upset.

The melt process in the Melting Furnace is an oxidizing process, which operates with an excess of oxygen. The melting process is open to ambient building air with unrestricted air flow (i.e., there is no cover on the furnace). A "quench hood" is situated above the melter that is connected to an exhaust riser. The flue gas from the melter travels up through the riser and then through each preheating chamber, where the hot exhaust preheats stone raw materials prior to venting to add-on control devices.

In the furnace the amount of air is determined to ensure optimal operation, which includes that the air carries particles (fine material) between the pre-heater cyclones, and this requires a certain flow/air speed. The air flow is also required to cool the air before the dust filters as the filters cannot withstand the hot air from the melting process. Because the air flow is independent of the capacity, the emissions of CO and NO_x are also independent of the furnace capacity (i.e., melt rate).

Aqueous ammonia will be injected for the de- NO_x reaction to reduce NO_x emissions.

The opening at the top of the melter allows for ambient air to be pulled into the riser, which facilitates an adequate temperature for a de- NO_x reaction to occur (typically 1,400-2,000 °F or 760-1,093 °C). Therefore, it can be said that the Melting Furnace has "integrated" Selective Non-Catalytic Reduction (SNCR) technology. Binder contained in the recycled wool can also contribute in the de- NO_x reaction, but is not relied upon for the control of NO_x .

Hot flue gas is used to preheat incoming combustion air to the melter via heat exchangers situated at the outlet of the furnace. Flue gas is then directed to a baghouse to collect raw material fines. A second baghouse in series is used for control of emissions of filterable PM/PM₁₀/PM_{2.5}, and is equipped with sorbent injection to control sulfur dioxide (SO₂), sulfuric acid (H₂SO₄) mist, hydrogen chloride (HCl), and hydrogen fluoride (HF) emissions. Carryover of raw materials fines that are collected in the first baghouse will be pneumatically conveyed to a receiving silo and day silo (IMF07, IMF10) prior to reuse in the melter. The silos vent to a bin vent filter exhausting to the atmosphere.

Emissions from the Melting Furnace stack (IMF01) consist of filterable PM/PM₁₀/ PM_{2.5}, CPM, NO_x, CO, SO₂, VOC, H₂SO₄ mist, HCl, HF, metal HAP, CO₂, CH₄, N2O, and small amounts of organic HAP such as carbonyl sulfide (COS) and formaldehyde (HCHO).

As stated, de-sulfurization is applied for the control of sulfur oxides and acid gases. Sorbent material (e.g., hydrated lime as calcium hydroxide or similar) is delivered to the site by truck and loaded into an outdoor storage silo equipped with a bin vent filter. Sorbent is transported in a closed system and injected into the flue gas prior to the second baghouse as a filter media.

Spent sorbent is stored in a silo (IMF09) equipped with a bin vent filter until it is emptied into a vacuum truck for off-site disposal.

The Sorbent Silo emits filterable $PM/PM_{10}/PM_{2.5}$ (IMF08) during unloading of new sorbent. The spent sorbent silo emits $PM/PM_{10}/PM_{2.5}$ (IMF09) (with sulfur and acid gases bound in the material) during the loading of spent sorbent.

Rockwool's protocol mandates a shutdown for 2 weeks of each year to conduct routine maintenance on the facility. As a result, the hours of operation for the mineral wool production line are proposed to be modified from 8,760 to 8,400 hours per year to represent the maximum potential operating hours for the facility. This modification applies to the following emission points in the melting process:

- Pre-heat Burner (IMF24); and
- Melting Furnace (IMF01).

The emission points for material handling operations, tanks, and paved roads remains unchanged at 8,760 hours per year.

It is proposed to remove 8 pounds/hour (35.04 tons/year) of Carbon Monoxide from the Melting Furnace (IMF01) potential to emit and add it to the WESP (HE01) potential to emit. The new Melting Furnace (IMF01) CO emission rate will be 3.21 pounds/ hour (13.48 tons/year). The Secondary Energy Materials Storage Silo (IMF07B) was not installed. The source IMF07 now only contains the Filter Fines Day Silo (IMF07A) which has also been updated to include an indoor settling factor.

Spinning, Curing, and Cooling

The melt flows out of the lower part of the furnace and is led to the spinning machine via the gutter channels. The spinners are equipped with quick-rotating wheels onto which the melt is applied.

The fibers are drawn from the wheels of the spinning machine by centrifugation combined with a powerful air stream that is blown into the spinning chamber. At the same time binder and cooling water is added to the flow of fibers. Also, the material is sprayed with de-dusting oil to give water-repellent properties and reduce dust emission in the factory and the finished products. Binder and water are dosed as small droplets through nozzles on the spinning machine.

Fibers not recovered in the spinning process are directed to the Recycle Plant for re-use in the furnace.

The binder-coated fibers are collected on a perforated surface (filter net). The fibers settle on the surface as primary wool web, and air is sucked through the perforation by means of under pressure in the chamber in a vertical direction.

Emissions from the Spinning Chamber consist primarily of filterable PM/PM₁₀/PM_{2.5}, CPM, VOC, and organic HAP (formaldehyde, methanol, phenol).

Exhaust from the Spinning Chamber will be conditioned (e.g. with quenching or water spraying) prior to the WESP (HE01).

The wool web is conveyed to the pendulum (B400) which arranges multiple layers of wool onto the wool lane. For some products the edges will be cut along the wool lane by means of a mechanical saw before the curing oven. The removed edges, which is uncured wool (wet wool) is sent to the Recycle Plant via conveyors.

The density of the secondary wool lane is measured by means of isotope or x-ray device.

The wool lane is conveyed into the Curing Oven, where the remaining water in the product is evaporated and the binder is cured by means of hot air supplied from two natural gas-fired circulation burners (via direct heating). The circulation burners have a maximum heat input capacity of 5.81 MMBtu/hr (1,700 kW) each.

A natural-gas fired afterburner controls CO, VOC, and organic HAP emissions, where after the gases are directed to the WESP (HE01). The Curing Oven afterburner is rated at 9.86 MMBtu/hr (2,000 kW) heat input capacity. Emissions from the Curing Oven consist of filterable PM/PM₁₀/ PM_{2.5}, CPM, NO_x, CO, SO₂, VOC, organic HAP (formaldehyde, methanol, phenol), CO₂, CH₄, and N₂O.

The curing oven is equipped with hoods at the inlet and outlet end to control the working environment in the event that hot air escapes the curing oven due to system pressure changes. The inlet and outlet hoods vent to the WESP (HE01).

After leaving the Curing Oven, the wool web is conveyed through a Cooling Section where ambient air (from the production hall) is sucked through the cured wool web to cool it prior to cutting.

Emissions from the Cooling Section consist of filterable PM/PM₁₀/ PM_{2.5}, CPM, VOC, organic HAP (formaldehyde, methanol, phenol) and small amounts of NO_x and CO.

In summary, the following sources will be directed to the WESP as a combined emission point HE01:

- Gutter Exhaust;
- Spinning Chamber;
- Curing Oven Hoods;
- Curing Oven (following afterburner control); and
- Cooling Section.

The following emission points in the spinning, curing, and cooling process are proposed to be modified from 8,760 to 8,400 hours per year to represent the maximum potential operating hours for the facility:

- Curing Oven (CO), Curing Oven Afterburner (CO-AB), and Cooling Section (CS) (HE01);
- Dry Ice Cleaning (DI);
- De-dusting Baghouse (CE01); and
- Vacuum Cleaning Baghouse (CE02).

The spinning, curing, and cooling section are contributors of Carbon Monoxide to the WESP (HE01). As described in the Melting section above, it is proposed to remove 8 pounds/hour (35.04 tons per year) of Carbon Monoxide from the Melting Furnace (IMF01) potential to emit and add it to the WESP (HE01) potential to emit, based upon stack testing results from a similar facility.

The combined spinning, cooling, and curing will now have a CO emission rate of 9.82 pounds/hour (37.41 tons/year).

Fleece Application Vent 1 (CM12) and Fleece Application Vent 2 (CM13) will be modified so that the annual hours of operation and application rate is reduced to 4,200 hours per year. This is

reflective of the maximum expected operation for the fleece application, considering product demand.

Product Marking (P_MARK) has not been installed and is proposed to be removed from the permit.

Fleece Application

Fleece application stations will be added to the line prior to the Curing Oven for use in specialty products. This permit requests a reduction of the annual hours of operation and application rate on Fleece Application Vents 1 & 2 (4,200 hours per year). This value is reflective of the maximum expected operations due to product demand.

Rolls of fleece (fiberglass or similar facing) will be situated at two unrolling stations, above and below the mineral wool conveyor. Each upper and lower fleece will be unrolled as a continuous sheet and directed via rollers through an open dip "bath" of binder. Each dip bath will coat one side of the upper and lower fleece with binder. The coated fleece will be directed towards the top and underside of the uncured mineral wool via rollers and placed onto the surface of the uncured wool just prior to entry into the Curing Oven. The uncured mineral wool with fleece applied to the top and underside will enter the Curing Oven, where binder in the wool and on the fleece will be cured.

Binder will be fed to the dip baths via enclosed piping from the Binder Day Tank or from IBC containers (approximately 264 gal or 1 m3). The binder coating may be the same binder that is applied in the Spinning Chamber, or it can be a special binder.

Emissions from Fleece Application will consist of fugitive VOC and organic HAP emissions resulting from surface evaporation of binder in the dip tank and binder-coated fleece just prior to the Curing Oven. The majority of emissions from the binder applied to the fleece will be controlled by the Curing Oven afterburner as the fleece is cured onto the wet mineral wool in the Curing Oven. The binder's content of organic HAPs will be below requirements for additional control per the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Paper or Other Web Coating (NESHAP Subpart JJJJ).

Cutting Section

After the cooling zone, the cured wool web is labeled with product features and cut to size by a water jet and/or mechanical cutting. Edges may be trimmed prior to labeling and transported to the Recycle plant via the line granulator. Labels are branded onto the product using laser marking.

Dust from the mechanical saws is removed pneumatically and directed to a baghouse filter (CE01). The collected dust/filter material is transported via closed conveyors to the Recycle Plant.

Water/fiber generated by water jet cutting is collected in the process water system and reused in the process.

Emissions from the De-dusting Baghouse (CE01) stack consist of filterable PM/ PM₁₀/ PM_{2.5}.

Stacking, Packing and Unit Load

After cutting the products are stacked, packaged in polyethylene film, palletized (as needed), and transported to one of the storage areas for finished goods.

A paper surface may be applied to products either before final cutting or after they are cut to size. The paper applied is a pre-coated polyethylene (PE) paper which is warmed in electrically heated drums so that the paper adheres to the wool product.

Dispatch of finished goods in to trucks takes place from the unit load area.

Dust from the packaging area is collected by vacuum and directed to the Vacuum Cleaning Baghouse (CE02).

Emissions from the Vacuum Cleaning Baghouse consist of filterable PM/PM₁₀/PM_{2.5}.

Recycling Plant

The Recycle Plant is used to recovered materials (e.g., waste wool and de-dusting fines such as fibers and dust) from the mineral wool manufacturing line that would otherwise be sent to a landfill for disposal. The Recycling Plant can also receive mineral wool products returned from Rockwool customers, such as but not limited to products damaged in shipping, wool waste products from construction sites or directly from customers with the purpose to recover the material for new products.

The Recycle Plant process includes material handling by front end loaders (FEL) and conveyors, milling, and batching.

The Recycle Plant can operations are split in two ways of recycling:

- Direct recycling to the spinning chamber & wool collection process after sizing and milling, and
- Re-melting in the furnace after milling.

Direct recycling of wool waste consists of cured wool waste generated on the production line or damaged products from the warehouse. The cured wool waste is chopped up in pieces by knives in the line granulator, which is placed in the cold end building (B500) or in the edge-trim system with a cutting screw, which is placed in the curing oven building (B400).

The wool pieces are conveyed by covered belt conveyors to a closed recycling silo (B405). From the silo the wool pieces are sent via the dosing system and milled to the required size, and pneumatically conveyed in closed system back to the spinning and wool collection process.

The recycling silo and part of the closed conveyor in this system is placed outside the building.

In case of surplus of wool waste the direct recycling system will unload on the floor inside the building B240 and the wool is collected for re-melting in the furnace.

A FEL will be used to transfer wool waste from indoor collection areas inside the recycling building (B240) and into a loading hopper. Mineral wool products returned from Rockwool customers will be received in big bags (or similar) and fed to the loading hopper via FEL. The loading hopper feeds wool into the mill via a screw conveyor or similar. Wool waste may also be recycled directly to the mill by means of belt and screw conveyor system. Waste wool is ground in the mill and exits via multiple conveyors to storage silos for milled wool waste. The hopper loading is connected to the de-dusting filter system (CE01). The silo area has one exhaust (CM08), and the area with the mill has one exhaust (CM09).

All of the re-melting recycling plant transfer and milling operations are conducted indoors. The building is kept closed with a fast roller gate controlled by the movement of the FEL. The building is equipped with roof ventilation equipped with particulate filters to control the working environment for industrial hygiene purposes (ammonia odor and mobile FEL exhaust gases).

The recycling plant will consists of the following emission points:

- De-dusting vents to De-dusting Baghouse (CE01); and
- Four (4) Recycle Building Vents (CM08, CM09, CM10, CM11).

Binder

Binders will be mixed onsite. The binder raw materials (resin and other binder components) are delivered to the site via tank truck and unloaded into storage tanks or delivered in drums/totes.

The binder storage consists of a series of tanks in a tank farm which is covered with a sheet roof but has no facades. A secondary containment is included in the structure.

The materials may be stored in temperature-controlled tanks equipped with heating and cooling as required. From the storage tanks the components are either mixed as a batch in a mixing tank or mixed in-line. Binder mixed in the Binder Mix Tank is pumped to the Circulating Tank and from here to the Binder Day Tank in the Furnace Building.

A separate storage is made for the de-dusting oil due to fire requirements. Dedusting oil is delivered in bulk by truck or in drums or intermediate bulk container (IBC) and unloaded into the storage tanks. From the storage tank the oil is pumped into a day tank in the furnace building (B300) and from there dosed into the spinning & wool collection process.

Rockwool will use varying binder formulations as technology advances to produce formaldehyde-free resins. This application is designed to address the use of varying resin materials.

The binder consists of aqueous ammonia, silane (coupling agent), silicone oil/resin, ammonium sulfate, water, and sugar syrup that are added to the resin. Additional components of the binder that are present in alternative resins are methanol, organic acid, and inorganic acid.

Tanks storing aqueous ammonia, ammonium sulfate, water, and sugar syrup do not emit regulated pollutants, but are included in this application for completeness.

Emissions from unloading, storage, and mixing of binder consist of VOC and organic HAP (formaldehyde, phenol, methanol).

Dry Ice Cleaning

For mineral wool products where product quality requirements necessitate additional cleaning of the perforated filter net dry ice will be applied for cleaning. The filter net may also be cleaned using with water. Dry ice pellets will be used for cleaning via blasting onto the perforated filter net. A pressurized storage tank will feed liquid CO_2 to a pelletizer unit which will form dry ice pellets (solid CO_2). The system continuously produces dry ice pellets which are fed to a blasting gun that directs the pellets to the perforated filter net.

Emissions from the production of dry ice pellets and the cleaning activities consist of fugitive CO_2 .

OTHER OPERATIONS

Building Heat with Natural Gas Boilers

Building heat is supplied with natural gas boilers. Two natural gas-fired boilers were installed to provide a source of building heat when the furnace is not in operation (CM03, CM04). These two boilers were installed at a lower maximum rated heat input capacity of 4.99 MMBtu/hr (originally permitted at 5.1 MMBtu/hr).

The Rockfon building's natural gas-fired boiler for building heating (RFN10) is proposed to be removed from the permit.

Emergency Fire Pump Engines

The diesel engine fire pump was installed with a rating of 316 horsepower (hp) (236 kW). The emission factors for this source have been updated to reflect the manufacturer rating data, where available.

The engine is certified to NSPS Subpart IIII engine standards and will operate only during emergencies or other limited scenarios as allowed by federal rules (i.e., maintenance checks, readiness testing, etc.).

Process Water System

The process water system consists of a series of tanks and a filter for recirculation of process water. The collected water is filtered on a band filter and stored in buffer tanks.

The filtered process water is used for dilution of binder and for flushing of processes (e.g. to transport fibers back in the system). Process water is also used for operation of the WESP. Process water is collected storm water from outside areas to compensate for water loss due to evaporation. Additional water is supplied from the public water supply.

Storage Tanks

The following storage tanks are being added to the permit:

- One (1) Vertical Additive Buffer Tank, TK-ADB1 (396 gallons);
- One (1) Vertical Additive Buffer Tank, TK-ADB2 (132 gallons); and
- One (1) Vertical Glycol Storage Tank, TK-GLY (396 gallons).

The following storage tanks have updated sizing:

- One (1) Thermal Oil Horizontal Tank, TK-TO3 (5,283 gallons, previously 2,642 gallons);
- One (1) Thermal Oil Horizontal Expansion Tank, TK-TO4 (1,928 gallons, previously 1,321 gallons);
- Six (6) Resin Vertical Storage Tanks, TK-RS1 TK-RS6 (13,209 gallons each, previously 15,850 gallons);
- One (1) Coupling Agent Vertical Storage Tank, TK-CA (396 gallons, previously 264 gallons); and
- One (1) Additive Vertical Storage Tank, TK-AD (396 gallons, previously 53 gallons).

The following storage tanks have been updated with current AP-42 calculation methodology:

- One (1) Diesel Fuel Horizontal Storage Tank, TK-DF (1,242 gallons);
- Three (3) Binder Storage Containers, TK-BS1-TK-BS3, (ea. 264 gallons); and
- One (1) De-dust Oil Vertical Day Tank, TK-DOD (264 gallons).

The following storage tanks were not installed and are proposed to be removed from the permit:

- One (1) Used Oil Horizontal Storage Tank, TK-UO (581 gallons);
- One (1) Resin Vertical Storage Tank, TK-RS7 (15,850 gallons);
- One (1) Vertical Binder Mix Tank, TK-BM (2,642 gallons);
- One (1) De-dust Oil Vertical Storage Tank, TK-DO (15,850 gallons);
- One (1) Vertical Binder Circulating Tank, TK-BC (4,227 gallons);
- One (1) Binder Vertical Day Tank, TK-BD (793 gallons).

- One (1) Thermal Oil Horizontal Expansion Tank, TK-TO1 (212 gallons);
- One (1) Thermal Oil Horizontal Drain Tank, TK-TO2 (159 gallons);
- One (1) Paint Dilution Storage Tank, TK-PD (793 gallons); and
- One (1) Paint Dilution Day Tank, TK-PDD (397 gallons).
- •

If the storage tank is not included in one of these lists, it will remain as originally permitted.

Rockfon Line

The Rockfon Production Line has no plans to be constructed and is proposed to be removed from the permit. This removal applies to the following emission points:

- IR Zone (RFNE1);
- Hot and Press Cure (RFNE2);
- High Oven A (RFNE3);
- High Oven B (RFNE9);
- Drying Oven 1 (RFNE4);
- Drying Oven 2 & 3 (RFNE6);
- Spray Paint Cabin (RFNE5);
- Cooling Zone (RFNE7); and
- De-dusting Baghouse (RFNE8).

Energy Material Handling

The emission points from this section were not installed and are proposed to be removed from the permit. These emission points are:

- Three (3) Coal Storage Silos (IMF03A, IMF03B, IMF03C); and
- One (1) Coal Feed Tank (IMF25).

Cooling Towers

The two cooling towers were not installed, and are proposed to be removed from the permit:

- Melting Furnace Cooling Tower (IMF02); and
- Gutter Cooling Tower (HE02).

Coal Milling

The emission points from this section were not installed and are proposed to be removed from the permit. These emission points are:

- Coal Conveyor Transition Point (B231 to B235) (IMF13);
- Coal Mill Burner & Baghouse (IMF05);
- Coal Milling De-dusting Baghouse (IMF06);

- Coal Conveyor Transition Point (B231 to B235) (IMF04);
- Fugitive emissions from Coal Unloading (B230);
- Fugitive emissions from Coal Loading Hopper (B231); and
- Fugitive emissions from Coal Milling Building (B235).

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
		L1 Mi	nwool Line		1	
B210/211	B210/211	Raw Material Storage	2021	716 ton/day	No Change [*]	3-sided with cover
RMS	RMS	Raw Material Outdoor Stockpile	2021	0.12 acres 500 m ²	Modification	3-sided enclosur
B215	B215	Raw Material Loading Hopper	NA	562 ton/day	No Change	3-sided w/cove
IMF11	IMF11	Conveyor Transition Point (B215 to B220)	2021	1,137 scfm (1,800 Nm ³ /h)	Modification	IMF11-FF Enclosed Indoor
IMF17	IMF17	B220 Material Handling	2021	716 ton/day	Modification	Enclosed Indoor
IMF12	IMF12	Conveyor Transfer Point (B215)	2021	716 ton/day	Modification	Enclosed Indoo
IMF16	IMF16	Conveyor Transfer Point (B300)	2021	716 ton/day	Modification	Enclosed Indoo
IMF15	IMF15	Outside B220 Transfer Point	2021	716 ton/day	Modification	4-sided drop guard
RM_REJ	RM_REJ	Raw Material Reject Collection Drop	NA	6 ton/day	No Change	4-sided rubber drop guards
IMF21	IMF21	Charging Building Vacuum Cleaning Filter	NA	316 scfm (500 Nm3/h)	No Change	None
IMF24	IMF24	Pre-heat Burner	2021	5.12 MMBtu/hr	Modification	None
IMF01	IMF01	Melting Furnace	2021	21,414 scfm	Modification	IMF01-BH De-NOx De-SOx
IMF07	IMF07	Filter Fines Day Silo	2021	790 scfm (1,250 Nm ³ /h)	Modification	IMF07A-FF Enclosed Indoo
IMF07B	IMF07	Secondary Energy Materials Silo	NA	790 scfm (1,250 Nm3/h)	Removal	IMF07B-FF
IMF10	IMF10	Filter Fines Receiving Silo	NA	758 scfm (1,200 Nm3/h)	No Change	None
IMF08	IMF08	Sorbent Silo	NA	758 scfm (1,200 Nm3/h)	No Change	None
IMF09	IMF09	Spent Sorbent Silo	NA	758 scfm (1,200 Nm3/h)	No Change	None
DI	DI	Dry Ice Cleaning	2021	630,000 kg/year	Modification	None
CM12	CM12	Fleece Application Vent 1	2021	388,500 kg/year	Modification	None
CM13	CM13	Fleece Application Vent 2	2021		Modification	None
СО	HE01	Curing Oven	2021	18,950 scfm Confidential	Modification	HE01 CO-AB
CO-AB	HE01	Curing Oven Afterburner	2021	9.86 MMBtu/hr	Modification	HE01
CO-HD	HE01	Curing Oven Hoods	NA	25,267 scfm (40,000 Nm ³ /hr)	Modification	HE01
GUT-EX	HE01	Gutter Exhaust	NA	15,792 scfm (25,000 Nm ³ /hr)	Modification	HE01

Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
SPN	HE01	Spinning Chamber	NA	258,986 scfm (410,000 Nm ³ /hr)	Modification	HE01
CS	HE01	Cooling Section	2021	50,534 scfm	Modification	HE01
CE01	CE01	De-dusting Baghouse	2021	44,217 scfm (70,000 Nm3/h)	Modification	Baghouse
CE02	CE02	Vacuum Cleaning Baghouse	2021	12,633 scfm (20,000 Nm3/h)	Modification	Baghouse
P_MARK	P_MARK	Product Marking	2021	NA	Removal	NA
CM10	CM10	Recycle Plant Building Vent 1	NA	18,950 scfm (30,000 Nm3/h)	No Change	None
CM11	CM11	Recycle Plant Building Vent 2	NA	18,950 scfm (30,000 Nm3/h)	No Change	None
CM08	CM08	Recycle Plant Building Vent 3	NA	1,579 scfm (2,500 Nm3/h)	No Change	None
CM09	СМ09	Recycle Plant Building Vent 4	NA	1,579 scfm (2,500 Nm3/h)	No Change	None
IMF14	IMF14	Raw Material Reject Stockpile	2021	0.002 acres 10 m ²	Modification	3-sided enclosur
B170	B170	Melting Fumace Portable Crusher & Storage	NA	1,800 ton/day	No Change	3-sided enclosur
S_REJ	S_REJ	Sieve Reject Collection Bin	2021	NA	Removal	4-sided rubber drop guard
IMF25	IMF25	Coal Feed Tank	2021	758 scfm (1,200 Nm3/h)	Removal	IMF25-FF
HE02	HE02	Gutter Cooling Tower	2021	308 gpm (70 m3/hr)	Removal	None
IMF18	IMF18	Charging Material Handling Vent 2	2021	NA	Removal	IMF17/18 – FF
IMF02	IMF02	Furnace Cooling Tower	NA	1,321 gpm (300 m3/h)	Removal	None
		Rockfon I	Production			
RFNE1	RFNE1	IR Zone	NA	1,895 scfm (3,000 Nm3/h)	Removal	None
RFNE2	RFNE2	Hot Press and Cure	NA	1,895 scfm (3,000 Nm3/h)	Removal	None
RFNE3	RFNE3	High Oven A	NA	5,053 scfm (8,000 Nm3/h)	Removal	None
RFNE9	RFNE9	High Oven B	NA	5,053 scfm (8,000 Nm3/h)	Removal	None
RFNE4	RFNE4	Drying Oven 1	NA	3,158 scfm (5,000 Nm3/h) Removal		Particulate Filter
RFNE6	RFNE6	Drying Oven 2 & 3	NA	7,580 scfm (12,000 Nm3/h)	Removal	Particulate Filter

Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
RFNE5	RFNE5	Spray Paint Cabin	NA	6,317 scfm (10,000 Nm3/h)	Removal	Particulate Filter
RFNE7	RFNE7	Cooling Zone	NA	15,792 scfm (25,000 Nm3/h)	Removal	None
RFNE8	RFNE8	De-dusting Baghouse	NA	74,419 scfm (117,813 Nm3/h)	Removal	Baghouse
RFN10	RFN10	RFN Building Heat	NA	NA	Removal	NA
		Coa	l Milling			
IMF05	IMF05	Coal Milling Bumer & Baghouse	2018	2,873 scfm (4,547 Nm3/h)	Removal	IMF05-BH
IMF06	IMF06	Coal Milling De-Dusting Baghouse	2018	6,317 scfm (10,000 Nm3/h)	Removal	IMF06-BH
IMF04	IMF04	Coal Conveyor Transition Point (B231 to B235)	2018	1,137 scfm (1,800 Nm3/h)	Removal	IMF04-FF
IMF13	IMF13	Coal Conveyor Transition Point (B231 to B235)	2018	1,137 scfm (1,800 Nm3/h)	Removal	IMF13-FF
B235	B235	Coal Milling Building	2018	NA	Removal	Enclosed Indoors
B230	B230 Coal Unloading		2018	NA	Removal	3-sided enclosure with cover
B231	B231	Coal Unloading Hopper	2018	NA	Removal	3-sided enclosure with cover
IMF03A	IMF03A	Coal Storage Silo A	NA	758 scfm (1,200 Nm3/h)	Removal	IMF03A-FF
IMF03B	IMF03B	Coal Storage Silo B	NA	758 scfm (1,200 Nm3/h)	Removal	IMF03B-FF
IMF03C	IMF03C	Coal Storage Silo C	NA	758 scfm (1,200 Nm3/h)	Removal	IMF03C-FF
		Other Facilit	y-₩ide So			
CM03	CM03	Natural Gas Boiler 1	2021	4.99 MMBtu/h (1.462 MW)	Modification	None
CM04	СМ04	Natural Gas Boiler 2	2021	4.99 MMBtu/h (1.462 MW)	Modification	None
EFP1	EFP1	Emergency Fire Pump	2021	316 hp (236 kw)	Modification	None
Rd_RM	RD_RM	Raw Material Paved Haul Roads	NA	NA	No Change	None
Rd_FP	Rd_FP	Finished Product Paved Haul Road	NA	NA	No Change	None
		Facility	Storage Ta			
TK-DF	TK-DF	Diesel Fuel Tank	2021	1,242 gal 4.7 m ³	Modification	None

Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
TK-UO	TK-UO	Used Oil Tank	2018	581 gal 2.2 m3	Removal	None
TK-DO	TK-DO	De-dust Oil Storage Tank	2021	15,850 gal 35.7 m3	Removal	None
TK-TO1	TK-TO1	Thermal Oil Expansion Tank – Rockfon	2021	212 gal 0.8 m ³	Removal	None
TK-TO2	TK-TO2	Thermal Oil Drain Tank – Rockfon	2021	159 gal 0.6 m ³	Removal	None
ТК-ТОЗ	ТК-ТОЗ	Thermal Oil Tank – IMF	2021	5,283 gal 20 m ³	Modification	None
TK-TO4	TK-TO4	Thermal Oil Expansion Tank – IMF	2021	1,928 gal 7.3 m ³	Modification	None
TK-RS1	TK-RS1	Resin Storage Tank	2021	13,209 gal 50 m ³	Modification	None
TK-RS2	TK-RS2	Resin Storage Tank	2021	13,209 gal 50 m ³	Modification	None
TK-RS3	TK-RS3	Resin Storage Tank	2021	13,209 gal 50 m ³	Modification	None
TK-RS4	TK-RS4	Resin Storage Tank	2021	13,209 gal 50 m ³	Modification	None
TK-RS5	TK-RS5	Resin Storage Tank	2021	13,209 gal 50 m ³	Modification	None
TK-RS6	TK-RS6	Resin Storage Tank	2021	13,209 gal 50 m ³	Modification	None
TK-RS7	TK-RS7	Resin Storage Tank	2018	15,850 gal 60 m3	Removal	None
TK-BM	ТК-ВМ	Binder Mix Tank	2021	2,642 gal 10 m3	Removal	None
TK-BC	TK-BC	Binder Circulation Tank	2021	4,227 gal 16 m3	Removal	None
TK-BD	TK-BD	Binder Day Tank	2021	793 gal 3 m3	Removal	None
TK-CA	TK-CA	Coupling Agent Storage Tank	2021	396 gal 1.5 m ³	Modification	None
TK-AD	TK-AD	Additive Storage Tank	2021	396 gal 1.5 m ³	Modification	None
TK-BS1	TK-BS1	Binder Storage Container	2021	264 gal 1 m ³	Modification	None
TK-BS2	TK-BS2	Binder Storage Container	2021	264 gal 1 m ³	Modification	None
TK-BS3	TK-BS3	Binder Storage Container	2021	264 gal 1 m ³	Modification	None
TK-DOD	TK-DOD	De-dust Oil Day Tank	2021	264 gal 1 m ³	Modification	None

Emission Units Table (includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
TK-ADB1	TK-ADB1	Additive Buffer Tank	2021	396 gal 1.5 m ³	New	None
TK-ADB2	TK-ADB2	Additive Buffer Tank	2021	132 gal 0.5 m ³	New	None
TK-GLY	TK-GLY	Glycol Tank	2021	396 gal 1.5 m ³	New	None
TK-PD	TK-PD	Paint Dilution Tank	NA	793 gal 3 m ³	Removal	None
TK-PDD	TK-PDD	Paint Dilution Day Tank	NA	397 gal 1.5 m ³	Removal	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation. ³ New, modification, removal

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

At the time of this permit application submittal, B211 has not been constructed. However, there are plans to construct B211 in the future.

Attachment J EMISSION POINTS DATA SUMMARY SHEET

								: Emission																			
Emission Point ID No.	Emission Point	Emissic Vented T This I	Fhrough	Control	llution Device	Vent Ti Emissio	on Unit	All Regulated Pollutants - Chemical	Uncont	rolled	Maximum Controlled	Potential Emissions ⁵	Emission Form or Phase	Est. Method	Emission Concen												
(Must match Emission	Type ¹	(Must) Emission U	match	Units Tal	ch Emission ble & Plot	(chemical) oni		Name/CAS	Emiss	ions ⁴			(At exit conditions, Solid, Liquid or	Used ⁶	tration ⁷ (ppmv o												
Units Table & Plot Plan)		& Plot		Pla	-	Short		(Speciate VOCs & HAPS)					Gas/Vapor)		mg/m3)												
,		ID No.	Source	ID No.	Device Type	Term ²	Max (hr/yr)		lb/hr	ton/yr	lb/hr	ton/yr															
							Min	eral Wool I	line																		
IMF11	Enclosed Indoors	IMF11	Volume	IMF11-FF	Fabric Filter	С	8400	PM ₁₀			<0.01	<0.01	Solid	EE													
	muoors				Filter			PM _{2.5}			0.36	1.52															
								NOx SO ₂			0.00	0.01															
								CO			0.42	1.76	-			-											
								VOCs			0.03	0.12															
	Upward							PM ₁₀			0.04	0.16	Gas/Vapor,														
IMF24	Vertical Stack	IMF24	Volume			С	8400	PM _{2.5}			0.04	0.16	Solid	EE													
								CO ₂ e			599.87	2519.44															
								Lead			< 0.01	< 0.01															
								Hexane			0.01	0.04															
								Total HAPs			0.01	0.04															
								NOx			37.37	156.95															
								SO ₂			33.63	141.25															
								CO			3.21	13.48	9))	2	9	9	9			9				
								VOCs			0.31	1.29															
								PM ₁₀			2.32	9.73															
								PM _{2.5}			2.32	9.73 77076.96															
								CO ₂ e			18551.00	7.85															
								H ₂ SO ₄ Lead			<0.01	<0.01															
IMF01	Upward Vertical	IMF01	Point	IMF01-	BH SCR	С	8400	HF			0.37	1.55	Gas/Vapor	EE													
	Stack			BH	SIS	_		HCl			0.30	1.24		22													
								COS			0.37	1.57															
								Formaldehyd			< 0.01	0.02															
								e Arsenic			< 0.01	<0.01															
								Mercury			<0.01	<0.01															
								Phenol			<0.01	<0.01	-	-	-	-											
								Mineral Fiber			2.32	9.73															
											2.42	14.42															
	Unword							Total HAPs			3.43	14.42															
IMF07	Upward Vertical	IMF07	Point	IMF07 -FF	FF	С	8400	PM ₁₀			<0.01 <0.01	0.01	Solid	EE													
	Stack							PM _{2.5} NOx			1.57	6.60															
								SO ₂			0.01	0.05															
								CO			9.82	41.24															
								VOC			44.65	187.55															
								PM ₁₀			12.00	50.39															
	Upward							PM _{2.5}			12.00	50.39															
HE01	Vertical	HE01	Point			С	8400	CO ₂ e			8492.77	35669.62	Gas/Vapor, Solid	EE													
	Stack							Total HAPs			56.65	237.95															
								Formaldehyd			3.27	13.74	1														
								e Phenol		+	17.05	71.61															
								Mineral Fiber			12.00	50.39															
											24.34	102.21															
	Upward							Methanol			0.77	3.24															
CE01	Vertical	CE01	Point	Baghouse	Filter Bag	С	8400	PM ₁₀ PM _{2.5}		├ -	0.77	0.94	Solid	EE													
	Stack Upward							PM _{2.5} PM ₁₀			0.22	0.94															
CE02	Vertical	CE02	Point	Baghouse	Filter Bag	С	8400	PM ₁₀ PM _{2.5}			0.22	0.93	Solid	EE	1												

					Oth	er RAN	Facility-Wide S	ources					
							NOx		0.18	0.77			
							SO ₂		< 0.01	0.01			
							СО		0.41	1.79			
							VOC		0.03	0.12			
CM03	Upward Vertical	CM03	Point		с	8760	PM ₁₀		0.04	0.16	Gas/Vapor,	EE	
CM05	Stack	CIVIUS	Point		C	8700	PM _{2.5}		0.04	0.16	Solid	EE	
							CO ₂ e		584.32	2559.32			
							Lead		< 0.01	< 0.01			
							Hexane		0.01	0.04			
							Total HAPs		0.01	0.04			
							NOx		0.18	0.77			
							SO ₂		< 0.01	0.01			
						8760	СО		0.41	1.79			
							VOC		0.03	0.12			
CM04	Upward Vertical	CM04	Point	Point	С		PM ₁₀		0.04	0.16	Gas/Vapor, Solid	EE	
CM04	Stack	CIVI04	ronn				PM _{2.5}		0.04	0.16		EE	
							CO ₂ e		584.32	2559.32			
							Lead		< 0.01	< 0.01			
							Hexane		0.01	0.04			
							Total HAPs		0.01	0.04			
							NOx		1.80	0.45			
							SO ₂		< 0.01	< 0.01			
							СО		0.40	0.10			
							VOC		0.04	0.01			
							PM ₁₀		0.08	0.02			
							PM _{2.5}		0.08	0.02			
	Upward						CO ₂ e		362.00	90.50			
EFP1	Vertical Stack	EFP1	Point		EM	500	Formaldehyd e		< 0.01	< 0.01	Gas/Vapor	EE	
	Stuck						Benzene		< 0.01	< 0.01			
							Acetaldehyde		< 0.01	<0.01			
							Toluene		< 0.01	< 0.01			
							Xylene		<0.01	<0.01			
							PAH		<0.01	<0.01			
							Total HAPs		<0.01	<0.01			
							Total HAPS		~0.01	\0.01			

RAN Facility Storage Tanks

					 							•		
TK-DF	Vent	TK-DF	Point		С	8760	VOC	< 0.01	< 0.01	<0.01	< 0.01	Gas/Vapor	Emission Master	
TK-TO3	Vent	TK- TO3	Point		С	8760	VOC	<0.01	<0.01	<0.01	<0.01	Gas/Vapor	Emission Master	
TK-TO4	Vent	TK- TO4	Point		С	8760	VOC	< 0.01	<0.01	<0.01	<0.01	Gas/Vapor	Emission Master	
							Formaldehyd e	< 0.01	0.02	<0.01	0.02		.	
TK-RS1	Vent	TK- RS1	Point		С	8760	Methanol	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	Emission Master	
							VOC	< 0.01	0.02	< 0.01	0.02			
							Total HAPs	< 0.01	0.02	< 0.01	0.02			
							Formaldehyd e	< 0.01	0.02	<0.01	0.02		Emission	
TK-RS2	Vent	TK- RS2	Point		С	8760	Methanol	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	Emission Master	
							VOC	< 0.01	0.02	< 0.01	0.02			
							Total HAPs	< 0.01	0.02	< 0.01	0.02			
							Formaldehyd e	< 0.01	0.02	< 0.01	0.02		E distante	
TK-RS3	Vent	TK- RS3	Point		С	8760	Methanol	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	Emission Master	
							VOC	< 0.01	0.02	< 0.01	0.02			
							Total HAPs	< 0.01	0.02	< 0.01	0.02			
							Formaldehyd e	< 0.01	0.02	< 0.01	0.02			
TK-RS4	Vent	TK- RS4	Point		С	8760	Methanol	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	Emission Master	
							VOC	< 0.01	0.02	< 0.01	0.02		linabier	
							Total HAPs	< 0.01	0.02	< 0.01	0.02			
							Formaldehyd e	< 0.01	0.02	< 0.01	0.02			
TK-RS5	Vent	TK- RS5	Point		С	8760	Methanol	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	Emission Master	
							VOC	< 0.01	0.02	< 0.01	0.02			
		-+					Total HAPs	< 0.01	0.02	< 0.01	0.02			
							Formaldehyd e	< 0.01	0.02	< 0.01	0.02			
TK-RS6	Vent	TK- RS6	Point		С	8760	Methanol	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	Emission Master	
							VOC	< 0.01	0.02	< 0.01	0.02	1	Waster	
							Total HAPs	< 0.01	0.02	< 0.01	0.02	1		
TK-CA	Vent	TK-CA	Point		С	8760	VOC	< 0.01	<0.01	<0.01	<0.01	Gas/Vapor	Emission Master	
TK-AD	Vent	TK-AD	Point		С	8760	VOC	<0.01	<0.01	<0.01	<0.01	Gas/Vapor	Emission Master	
							Formaldehyd e	< 0.01	<0.01	<0.01	<0.01			
TK-BS1	Vent	TK- BS1	Point		С	8760	Methanol	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	Emission	
							VOC	< 0.01	< 0.01	< 0.01	< 0.01	1	Master	
							Total HAPs	< 0.01	< 0.01	< 0.01	< 0.01	1		
							Formaldehyd e	<0.01	<0.01	< 0.01	<0.01			
TK-BS2	Vent	TK- BS2	Point		С	8760		< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	Emission	
							VOC	<0.01	< 0.01	<0.01	<0.01	1	Master	
							Total HAPs	< 0.01	< 0.01	< 0.01	< 0.01	1		
							Formaldehyd e	<0.01	<0.01	<0.01	<0.01			
TK-BS3	Vent	TK- BS3	Point		С	8760	Methanol	< 0.01	< 0.01	< 0.01	< 0.01	Gas/Vapor	Emission	
							VOC	<0.01	< 0.01	<0.01	< 0.01		Master	
							Total HAPs	<0.01	< 0.01	<0.01	< 0.01			
TK-DOD	Vent	TK- DOD	Point		С	8760	VOC	< 0.01	<0.01	<0.01	<0.01	Gas/Vapor	Emission Master	
				L. L.	 	 	ote that uncantur		L.	L	L	L		

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit memissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all verted emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
 ⁶ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
 ⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).
 ⁷ Provide for all pollutant emissions. Typically, the units of malligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (see 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

			Table 2:	Release Param	eter Data			
			Exit Gas		Emission Point	Elevation (ft)	UTM Coordin	ates (km)
Emission Point ID No. (Must match Emission Units Table)	Inner Diameter (ft.)	Temp. (°F)	Volumetric Flow 1 (acfm) at operating conditions	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
			N	/lineral Wool Lin	e			
IMF11	NA	Ambient Temp	NA	NA	581.30	7.19	4362.72065	252.11120
IMF21	0.49	104.00	871.87	29.53	581.30	9.84	4362.6777	252.07332
IMF24	1.15	482.27	3,749.77	54.43	581.30	126.25	4362.61797	252.08677
IMF01	3.28	271.67	13,636.43	69.27	581.30	212.70	4362.64453	252.09348
IMF07	1.00	140.27	280.77	4.66	581.30	100.26	4362.62904	252.10067
IMF10	1.08	145.67	3322.41	51.15	581.30	72.93	4362.60804	252.10817
IMF08	1.08	68.00	594.30	9.15	581.30	72.93	4362.60314	252.10795
IMF09	1.08	145.67	3322.41	51.15	581.30	72.93	4362.59772	252.10768
HE01	12.93	93.02	39,985.01	51.53	581.30	212.66	4362.54558	252.12050
CE01	3.81	104	15,831.58	69.33	581.30	116.14	4362.53451	252.07615
CE02	2.30	104	7,486.47	54.33	581.30	98.42	4362.51457	252.06187
CM10	2.67	70.27	7,161.88	44.76	581.30	51.51	4362.57256	252.09509
CM11	2.67	70.27	7,161.88	44.76	581.30	64.30	4362.57383	252.06922
CM08	1.17	70.27	1,723.22	24.62	581.30	51.51	4362.55726	252.0951
CM09	1.17	70.27	1,723.22	24.62	581.30	51.51	4362.58552	252.09820
			Other R	AN Facility-Wide	Sources			
CM03	1.00	232.07	2,508.25	41.80	581.30	75.62	4362.63842	252.06266
CM04	1.00	232.07	2,508.25	41.80	581.30	75.62	4362.63877	252.05549
EFP1	0.50	847.67	3,859.03	128.97	581.30	13.98	4362.5904	252.18352

¹ Give at operating conditions. Include inerts.
 ² Release height of emissions above ground level.

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	🛛 Yes 🔲 No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	X Yes INO
	If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATASHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	Yes No
	☐ If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	Yes X No
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	Yes No
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	XYes INO
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹	Maximum Uncontrolled		Maximum P Controlled En		Est. Method
	Chemical MameroAc	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions	PM ₁₀	0.83	2.15	0.25	0.54	0-
Paved Haul Roads	PM _{2.5}	0.25	0.53	0.05	0.13	AP42
Unpaved Haul Roads	_	—	_		_	
	PM	0.11	0.41	0.02	0.20	
Storage Pile Emissions – Raw Material Outdoor Stockpile (RMS)	PM ₁₀	0.05	0.19	<0.01	0.10	EE
	PM _{2.5}	<0.01	0.03	<0.01	0.015	
	PM	<0.01	<0.01	<0.01	<0.01	
Storage Pile Emissions – Raw Material Outdoor Reject Stockpile (IMF14)	PM ₁₀	<0.01	<0.01	<0.01	<0.01	EE
	PM _{2.5}	<0.01	<0.01	<0.01	<0.01	
	PM	0.13	0.45	0.08	0.28	
Storage Pile Emissions – Raw Material Storage (B210/211)	PM ₁₀	0.06	0.21	0.03	0.13	EE
	PM _{2.5}	<0.01	0.03	<0.01	0.02	
	PM	1.12	0.96	0.16	0.37	
Storage Pile Emissions – Melting Furnace Portable Crusher & Storage (B170)	PM ₁₀	0.51	0.45	0.07	0.17	EE
	PM _{2.5}	0.14	0.09	0.011	0.03	
Loading/Unloading Operations	_	—	_		_	-
Wastewater Treatment Evaporation & Operations	_	-	_	-	_	_
Equipment Leaks	_	Does not apply	_	Does not apply	_	-
General Clean-up VOC Emissions	-	-	_		_	-
	РМ	0.05	0.22	0.013	0.06	
Other – Raw Material Loading Hopper (B215)	PM ₁₀	0.02	0.11	<0.01	0.03	EE
	PM _{2.5}	<0.01	0.02	<0.01	<0.01	

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹		l Potential Emissions ²	Maximum F Controlled Er		Est. Method Used ⁴
	РМ	<0.01	<0.01	<0.01	<0.01	
Other – Raw Material Reject Collection Drop (RM_REJ)	PM10	<0.01	<0.01	<0.01	<0.01	EE
(1.1	PM _{2.5}	<0.01	<0.01	<0.01	<0.01	
	РМ	1.68	7.39	0.32	1.39	
Other – B220 Material Handling (IMF17)	PM10	0.62	2.71	0.12	0.51	EE
	PM _{2.5}	0.62	2.71	0.12	0.51	
	РМ	0.07	0.31	0.014	0.06	
Other – Conveyor Transfer Point (B215) (IMF12)	PM10	0.03	0.11	<0.01	0.02	EE
	PM _{2.5}	0.03	0.11	<0.01	0.02	
	РМ	0.07	0.31	0.014	0.06	
Other – Conveyor Transfer Point (B300) (IMF16)	PM10	0.03	0.11	<0.01	0.02	EE
	PM _{2.5}	0.03	0.11	<0.01	0.02	
	РМ	0.07	0.31	0.014	0.08	
Other – Outside B220 Transfer Point (B300) (IMF15)	PM10	0.03	0.11	<0.01		EE
(····· ·-)	PM _{2.5}	0.03	0.11	<0.01	0.03	

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): IMF01

1 Name or type and model of proposed affected equires:
1. Name or type and model of proposed affected source:
Melting Furnace
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to
be made to this source, clearly indicate the change(s). Provide a narrative description of
all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Mineral Inputs (55,116 lb/hr)
Name(s) and maximum amount of proposed material(s) produced per hour:
Melted Mineral – 49,600 lb/hr
5. Give chemical reactions, if applicable, that will be involved in the generation of air
pollutants:
The chemical reactions from the Melting Furnace are caused by the combustion of
the raw material inputs. These combustion reactions are generally considered well
known and for this reason are not included.
* The identification number which appears here must correspond to the air pollution control
device identification number appearing on the List Form.

6. Combust	ion Data	(if appli	cable):			
(a) Type	and amo	ount in a	ppropriate units	of fuel(s) to be b	urned:	
(b) Chen	nical ana	alvsis of	proposed fuel(s), excluding co	al. including ma	aximum percent
sulfu	and ash	1:	propossa rasi(o), onoideg oo	a,	
NA						
(c) Theo	retical co	mbustio	n air requireme	nt (ACF/unit of fu	el):	
21,414 scfr			•			noia
(33,900 Nm	³ /hr)	@	3,000	°F and	14.7	psia.
(d) Perce	ent exces	ss air:				
(е) Туре	and BTL	J/hr of b	urners and all ot	her firing equipm	ent planned to b	e used:
(f) If coal is proposed as a source of fuel, identify supplier and seams and give sizing of						
(f) If coal is proposed as a source of fuel, identify supplier and seams and give sizing of the coal as it will be fired:						
N/A	N/A					
(g) Proposed maximum design heat input: 128.48 × 10 ⁶ BTU/hr.						
7. Projected operating schedule: 8400 hr/yr						
Hours/Day	2	4	Days/Week	7	Weeks/Year	50

8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
@	271.67	°F and		14.7	psia
a.	NOx	37.37	lb/hr		grains/ACF
b.	SO ₂	33.63	lb/hr		grains/ACF
c.	СО	3.21	lb/hr		grains/ACF
d.	PM/PM10/PM2.5	2.32	lb/hr		grains/ACF
e.	Hydrocarbons	_	lb/hr		grains/ACF
f.	VOCs	0.31	lb/hr		grains/ACF
g.	Pb	<0.01	lb/hr		grains/ACF
h.	Specify other(s)				
	Total HAPs	3.43	lb/hr		grains/ACF
	H2SO4	1.87	lb/hr		grains/ACF
	CO ₂ e	18,351.66	lb/hr		grains/ACF
			lb/hr		grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

	ing, and reporting in order to demonstrate parameters. Please propose testing in order to			
Not impacted by updates.	Not impacted by updates.			
REPORTING	TESTING			
Not impacted by updates.	Not impacted by updates.			
PROPOSED TO BE MONITORED IN ORDER TO DEM	HE PROCESS PARAMETERS AND RANGES THAT ARE IONSTRATE COMPLIANCE WITH THE OPERATION OF			
THIS PROCESS EQUIPMENT OPERATION/AIR POLLU RECORDKEEPING. PLEASE DESCRIBE THE PI	JTION CONTROL DEVICE. ROPOSED RECORDKEEPING THAT WILL ACCOMPANY			
THE MONITORING. REPORTING. PLEASE DESCRIBE THE PRO	OPOSED FREQUENCY OF REPORTING OF THE			
RECORDKEEPING.				
EQUIPMENT/AIR POLLUTION CONTROL DEVICE.	SED EMISSIONS TESTING FOR THIS PROCESS			
10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty				
NA				

Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Emission Unit ID No. must match List Form): CO

Control Device ID No. (must match List Form): CO-AB, HE01

Equipment Information

1.	Manufacture r: Bromkamp	2. Model No. +CO=A1, +CO=A11/12/13 Serial No.
3.	Number of units:	4. Use: Direct-fired unit - Provide heat for the curing process.
5.	Rated Boiler Horsepower. NA hp	6. Boiler Serial No.: NA
7.	Date constructed: 2021	8. Date of last modification and explain: NA
9.	Maximum design heat input per unit:	10. Peak heat input per unit:
	9.86 ×10 ⁶ BTU/hr	128.48 ×10 ⁶ BTU/hr
11.	Steam produced at maximum design output:	12. Projected Operating Schedule:
	NA LB/hr	Hours/Day 24
		Days/Week 7
	psig	Weeks/Year 50
13.	Type of firing equipment to be used:	14. Proposed type of burners and orientation:
		Vertical
	Spreader stoker	Front Wall
	Natural Gas Burner	Tangential
	Others, specify	Others, specify
15.	Type of draft: Forced Induced	16. Percent of ash retained in furnace: %
17.	Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: %
	Stack or	Vent Data
1 9 .	Inside diameter or dimensions: 3.28 ft.	20. Gas exit temperature: 271 °F
21.	Height: 212.70 ft.	22. Stack serves:
23.	Gas flow rate: 13,636 ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this
24.	Estimated percent of moisture: %	stack or vent) HE01, CO-AB, CO, SPN, and CS

25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	9,610 ft ³ /hr	ft ³ /hr	ТРН	
	Annually	×10 ³ gal	0.0096 ×10 ⁶ ft ³ /hr	×10 ⁶ ft ³ /hr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	gr/100 ft ³	Maximum: wt. %	
	Ash (%)				Maximum	
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1026 BTU/ft ³	BTU/ft ³	BTU/lb	
	Source					
	Supplier					
	Halogens (Yes/No)					
	List and Identify Metals					
26.	Gas burner mode		omatic hi-low	27. Gas burner mar	nufacture: TBD	
	Automatic full modulation 🗍 Automatic on-off			28. Oil burner manu		
29.	If fuel oil is used,	how is it atomized?		sed Air 🗍 Rotary Cu		
30.	30. Fuel oil preheated: Yes No			31. If yes, indicate	temperature:	°F
	32. Specify the calculated theoretical air requirements for combustion of the fuel or mixture of fuels described above actual cubic feet (ACF) per unit of fuel: @ °F, PSIA, % moisture					
33.	33. Emission rate at rated capacity: Ib/hr					
34.	34. Percent excess air actually required for combustion of the fuel described: %					
			Coal Chara	acteristics		
	Seams: NA					
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		% of Sulfur: % of Volatile Matte	

Fuel Requirements

Emissions Stream

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
со	I		l	
Hydrocarbons	_			
NOx	_			
Pb	_		Cas Dalaw	
PM10		NO CONTROLS	- See Below	
SO ₂	_			
VOCs				
Other (specify)				
38. What quantities of poll Aggregate limit with HE0 [,]	utants will be emitted from	the boiler after cor	ntrols?	
Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
со				
Hydrocarbons				
NOx				
Pb				
PM _{Fil}				
PM 10				
PM _{2.5}				
SO2				
VOCs				
Other (specify)				
39. How will waste material from the process and control equipment be disposed of? Wastes are not expected from a natural gas-fired unit.				
40. Have you completed an Air Pollution Control Device Sheet(s) for the control(s) used on this Emission Unit.				
	air pollution rates on the			

42. Proposed Monitoring, Recordkeeping, Reporting, and Testing
Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the
proposed operating parameters. Please propose testing in order to demonstrate compliance with the
proposed emissions limits.
MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the
ranges and how they were established for monitoring to demonstrate compliance with the operation of this
process equipment operation or air pollution control device.
process equipment operation of an politition control device.
Not impacted by updates.
TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution
control device.
Nuclear and the second data
Not impacted by updates.
RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.
RECORDALETING. Flease describe the proposed record cepting that will accompany the monitoling.
Not impacted by updates.
Not impacted by apartes.
REPORTING: Please describe the proposed frequency of reporting of the recordkeeping.
Not impacted by updates.
43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.
NA

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): CS

1. Name or type and model of proposed affected source:
Cooling Section
Cooling Section
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Mineral Wool – 55,116 lb/hr
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Mineral Wool – 55,116 lb/hr
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
NA

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	. Combustion Data (if applicable): NA				
	(a) Type and amount in appropriate units of fuel(s) to be burned:				
	(b) Chemical analysis of pr and ash:	oposed fuel(s), ex	cluding coal,	including maxim	ium percent sulfur
	(c) Theoretical combustion	n air requirement (A	CF/unit of fu	ıel):	
	@		°F and		psia.
	(d) Percent excess air:				
			f ining		
	(e) Type and BTU/hr of bu	rners and all other	nring equipri	tent planned to t	be used:
⊢	(f) If coal is proposed as a	source of fuel ide	ntify supplier	and seams and	give sizing of the
	coal as it will be fired:		and y ouppilo		give sizing of the
Γ	(g) Proposed maximum design heat input: × 10 ⁶ BTU/hr.				
7.	7. Projected operating schedule: 8400 hr/yr				
Ho	ours/Day 24	Days/Week	7	Weeks/Year	50

8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used: Aggregate limit with HE01			
@	2 104	°F and	14.7 psia
a.	NOx	lb/hr	grains/ACF
b.	SO ₂	lb/hr	grains/ACF
c.	СО	lb/hr	grains/ACF
d.	PM/PM10/PM2.5	lb/hr	grains/ACF
e.	Hydrocarbons	lb/hr	grains/ACF
f.	VOCs (Non-HAP)	lb/hr	grains/ACF
g.	Pb	lb/hr	grains/ACF
h.	Specify other(s)		
		lb/hr	grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.				
MONITORING	RECORDKEEPING			
Not impacted by updates.	Not impacted by updates.			
REPORTING	TESTING			
Not impacted by updates.	Not impacted by updates.			
	THE PROCESS PARAMETERS AND RANGES THAT ARE DNSTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.			
RECORDKEEPING. PLEASE DESCRIBE THE PROMONITORING.	OPOSED RECORDKEEPING THAT WILL ACCOMPANY THE			
REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORD KEEPING.				
TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.				
10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty				
NA				

Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Emission Unit ID No. must match List Form): CM03

Control Device ID No. (must match List Form):

Equipment Information

1. Manufacturer: Carnus		2. Model No. DFNH-5004-NSI							
		Serial No.							
3. Number of units: 1		4. Use							
		Provide building heat.							
5. Rated Boiler Horsepower. hp		6. Boiler Serial No.:							
7. Date constructed: 2021		8. Date of last modification and explain: NA							
9. Maximum design heat input per unit:		10. Peak heat input per unit:							
4.99	×10 ⁶ BTU/hr	4.99	×10 ⁶ BTU/hr						
11. Steam produced at maximum design output:		12. Projected Operating Schedule:							
TBD	LB/hr	Hours/Day	24						
	LD/III	Days/Week	7						
	psig	Weeks/Year	52						
13. Type of firing equipment to be use	d:	14. Proposed type of burners a	and orientation:						
		☐ Vertical							
Spreader stoker		Front Wall							
☐ Oil burners ⊠ Natural Gas Burner		Opposed Tangential							
Others, specify		Others, specify							
15. Type of draft: Forced	Induced	16. Percent of ash retained in f	fumace: %						
17. Will flyash be reinjected?	3 🗵 No	18. Percent of carbon in flyash	.: %						
Stack or Vent Data									
19. Inside diameter or dimensions:	1.00 ft.	20. Gas exit temperature:	232.07 °F						
21. Height:	75.62 ft.	22. Stack serves:							
		This equipment only							
23. Gas flow rate: 2508.25	ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this							
24. Estimated percent of moisture:	%	stack or vent)							

Fuel Requirements											
25.	Туре	Fuel Oil No.	Natural Gas	G	as (other, specify)	Coal, Type:	Other:				
	Quantity (at Desig n Output)	gph@60°F	4864 ft ³ /hr		ft ³ /hr	TPH					
	Annually	×10 ³ gal	42.60 ×10 ⁶ ft ³ /yr		10 ⁶ ft ³ /hr	tons					
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	9	gr/100 ft ³	Maximum: wt. %					
	Ash (%)					Maximum					
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1026 BTU/ft ³		BTU/ft ³	BTU/Ib					
	Source										
	Supplier										
	Halogens (Yes/No)										
	List and Identify Metals										
26.	Gas burner mode ☐ Manual		omatic hi-low	27. Gas burner manufacture: TBD							
	Automatic full r	Automatic full modulation Automatic on-off 28. Oil purner manufacture: NA									
29. If fuel oil is used, how is it atomized? Oil Pressure Steam Pressure Compressed Air Rotary Cup Other, specify											
	Fuel oil preheated	uel oil preheated: Yes No 31. If yes, indicate temperature:									
32.	32. Specify the calculated theoretical air requirements for combustion of the fuel or mixture of fuels described above actual cubic feet (ACF) per unit of fuel:										
	@ °F, PSIA, % moisture										
<u> </u>	33. Emission rate at rated capacity: Ib/hr										
34. Percent excess air actually required for combustion of the fuel described: % Coal Characteristics											
35.	35. Seams: NA										
36.	6. Proximate analysis (dry basis): % of Fixed Carbon: % of Sulfur: % of Moisture: % of Volatile Matter: % of Ash: %										

Emissions Stream

37. What quantities of pollu	tants will be emitted fron	n the boiler before c	ontrols?	
Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
со				
Hydrocarbons				
NOx				
Pb				
PM10			Ose Delaus	
SO2		NO CONTROIS	- See Below	
VOCs				
Other (specify)				
38. What quantities of pollu	tants will be emitted from	n the boiler after con	trols?	
Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
со	0.41			
Hydrocarbons				
NOx	0.18			
Pb	<0.01			
PM/PM10/PM2.5	0.04			
SO ₂	<0.01			
VOCs	0.03			
Other (specify)				
Total HAPs	0.01			
CO2e	584.32			
39. How will waste material	from the process and co	ntrol equipment be o	lisposed of?	
Wastes are not expected	ed from a natural gas-fi	red boiler.		
40. Have you completed an	Air Pollution Control Dev	ice Sheet(s) for the	control(s) used on th	is Emission Unit.
41. Have you included the a	air pollution rates on the	Emissions Points D	ata Summary Sheet	? Yes

42. Proposed Monitoring, Recordkeeping, Reporting, and Testing
Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the
proposed operating parameters. Please propose testing in order to demonstrate compliance with the
proposed emissions limits.
MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the
ranges and how they were established for monitoring to demonstrate compliance with the operation of this
process equipment operation or air pollution control device.
Not impacted by updates.
TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution
control device.
Not impacted by updates.
RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.
RECORDATE INC. I loude december in proposed record coping that the decempany the memory
Not imported by undefer
Not impacted by updates.
REPORTING: Please describe the proposed frequency of reporting of the recordkeeping.
Not impacted by updates.
Not impacted by updates.
43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Emission Unit ID No. must match List Form): CM04

Control Device ID No. (must match List Form):

Equipment Information

1.	Manufacturer: CAMUS			lodel No. Serial No.	DFNH-5004	-NSI		
3.	Number of units: 1			Jse i de build i	ng heat.			
5.	Rated Boiler Horsepower.	hp	6. B	loiler Seria	I No.:			
7.	Date constructed: 2021			ate of las IA	t modification	and explai	in:	
9.	Maximum design heat input per unit		10. F	'eak heat i	nput per unit:			
	4.99	×10 ⁶ BTU/hr		4.99			×10 ⁶ BTU/hr	•
11.	Steam produced at maximum desig	n output:	12. P	rojected C	Derating Sche	dule:		
	TBD	LB/hr			Hours/Day	24		
		20/11			Days/Week	7		
		psig			Weeks/Year	52		
13.	Type of firing equipment to be used Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify	1:	14. P	Vert Vert From Opp Tang	ype of burners iical nt Wall bosed gential ers, specify	and orien	tation:	
15.	Type of draft: 🗌 Forced 🛛	Induced	16. P	ercent of	ash retained ir	n furnace:		%
17.	Will flyash be reinjected?	🛛 No	18. F	Percent of	carbon in flyas	sh:		%
		Stack or	Vent C	Data				
19.	Inside diameter or dimensions:	1.00 ft.	20. G	as exit ter	nperature:	232.07	,	۴
21.	Height: 75.62 ft.			Stack serve	es: uipment only			
23.	Gas flow rate: 2,508.25	ft³/min		Othere all oth	equipment also er equipment			
24.	Estimated percent of moisture:	%		stack o	or vent)			

			•			
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	4864 ft ³ /hr	ft ³ /hr	ТРН	
	Annually	×10 ³ gal	42.60 ×10 ⁶ ft ³ /yr	×10 ⁶ ft ³ /hr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	gr/100 ft ³	gr/100 ft ³	Maximum: wt. %	
	Ash (%)				Maximum	
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1026 BTU/ft ³	BTU/ft ³	BTU/lb	
	Source					
	Supplier					
	Halogens (Yes/No)					
	List and Identify Metals					
26.	Gas burner mode Manual		omatic hi-low	27. Gas burner mar	nufacture: TBD	
	Automatic full r		omatic on-off	28. Oil burner manu	facture: NA	
29.	lf fuel oil is used,	how is it atomized?	 Oil Pressu Compress Other, specific 	sed Air 🗍 Rotary Cu		
30.	Fuel oil preheated:	: 🗌 Yes 🛛 [] No	31. If yes, indicate	temperature:	°F
32.	above actual cubic	ated theoretical ai c feet (ACF) per un °F,		or combustion of th % m	e fuel or mixture c oisture	of fuels described
33.	@ Emission rate at ra		lb/hr	, 70 III	UISTUIE	
			or combustion o	f the fuel described:	%	
			Coal Chara	octeristics		
35.	Seams: NA					
36.	Proximate analysis	% of	f Fixed Carbon: f Moisture: f Ash:		% of Sulfur: % of Volatile Matter	r.

Fuel Requirements

Emissions Stream

37. What quantities of pollu	itants will be emitted from	the boiler before co	ontrols?	
Pollutant	Pounds per Hour Ib/hr	grain/ACF	۹° ۴	PSIA
СО				
Hydrocarbons				
NOx				
Pb				
PM10			Cas Dalaw	
SO2		No Controls	- See Below	
VOCs				
Other (specify)				
38. What quantities of pollu	itants will be emitted from	the boiler after con	trols?	
Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
со	0.41			
Hydrocarbons				
NOx	0.18			
Pb	<0.01			
PM/PM10/PM2.5	0.04			
SO2	<0.01			
VOCs	0.03			
Other (specify)				
CO2e	584.32			
Total HAPs	0.01			
39. How will waste material	from the process and cor	trol equipment be d	lisposed of?	
Wastes are not expect	ed from a natural gas-fire	ed boiler.		
40. Have you completed ar	Air Pollution Control Devi	ce Sheet(s) for the c	control(s) used on th	is Emission Unit.
41. Have you included the	air pollution rates on the	Emissions Points D	ata Summary Sheet	? Yes

42. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.
MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device.
Not impacted by updates.
TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device.
Not impacted by updates.
RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring.
Not impacted by updates.
REPORTING: Please describe the proposed frequency of reporting of the recordkeeping.
Not impacted by updates.
43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.
NA

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): EFP1

1. Name or type and model of proposed affected source:
Emergency Fire Pump Engine – 316 hp
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
4. Name(s) and maximum amount of proposed material(s) produced per hour:
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
NA

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if app	licable):		
(a) Type and amount in	appropriate units of fuel(s) to be bu	Irned:
Diesel			
(b) Chemical analysis of and ash:	⁻ proposed fuel(s), exclud	ing coal, ir	ncluding maximum percent sulfur
(c) Theoretical combust	ion air requirement (ACF	unit of fue	l):
@		°F and	psia.
(d) Percent excess air:			
	burners and all other firin		
(f) If coal is proposed a coal as it will be fire		/ supplier a	and seams and give sizing of the
(g) Proposed maximum		2.21	× 10º BTU/hr.
7. Projected operating sch	edule: 500 hours per ye	ar	
Hours/Day	Days/Week		Weeks/Year

8.	Projected amount of polluta devices were used:	ants that would be e	emitted fror	n this affected source if no control
@	2	°F an	d	psia
a.	NOx	1.80	lb/hr	grains/ACF
b.	SO ₂	<0.01	lb/hr	grains/ACF
c.	СО	0.40	lb/hr	grains/ACF
d.	PM/PM10/PM2.5	0.08	lb/hr	grains/ACF
e.	Hydrocarbons		lb/hr	grains/ACF
f.	VOCs	0.04	lb/hr	grains/ACF
g.	Pb		lb/hr	grains/ACF
h.	Specify other(s)			
	CO2e	362	lb/hr	grains/ACF
	Total HAPs	<0.01	lb/hr	grains/ACF
			lb/hr	grains/ACF

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

with the proposed operating parameters. compliance with the proposed emissions lin	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
MONITORING Not impacted by updates.	RECORDKEEPING Not impacted by updates.
REPORTING	TESTING
Not impacted by updates.	Not impacted by updates.
	HE PROCESS PARAMETERS AND RANGES THAT ARE INSTRATE COMPLIANCE WITH THE OPERATION OF THIS I CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDING.	OPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EM POLLUTION CONTROL DEVICE.	IISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainter maintain warranty	nance procedures required by Manufacturer to
Unit will comply with NSPS IIII Requirement	'S.

Rating Specific Emissions Data - John Deere Power Systems

Ruting Data

Rating	6068HI	FC48B	
Certified Power(kW)	2	16	
Rated Spead	24	2400	
Vakicle Model Number	OEM (Clarke Emery	Fire Pump- gency)	
Unita	g/kW-hr	g/hp-hz	
NOL	3.43	2.56	
HC	0.09	0.07	
NOX + LIC	N/A	N/A	
Pm	0.11	80.0	
CO	0.6	0.6	

Certificate Data

Engine Model Year	2019	9
EPA Faothy Name	KJDXL13.5103	
EPA JD Name	650HAA	
EPA Certificate Number	KJDXL13.5103-007	
CARB Executive Order		
Parent of Family	6135HF485A	
Cinita	g/kW-hr	
NOT	3.31	
HC	0.11	
NOs + BC	N/A	
Pm	0.10	
CO	9.6	

* The emission deta listed is measured from a laboratory test engine according to the test procedures of 40 CFR 89 or 40 CFR 1039, as applicable. The test engine is intended to represent naminal production bankware, and we de not gammate that every production engine will have identical test results. The family parent data represents multiple mitings and this data may have been collected at a different engine speed and load. Emission results may vary due to engine menufacturing tolerances, angine operating conditions, faels used, or other conditions beyond our control.

This information is property of Dears & Company. It is provided solely for the purpose of obtaining cartification or pennits of Dears powered equipment. Unantherized distribution of this information is prohibited.

Emissions Results by Rating run on Feb-18-2019

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1. Bulk Score Area Name	Tank Name Thermal Oil Tank - IMF
 Tank Equipment Identification No. (as assigned or Equipment List Form) TK-TO3 	
5. Date of Commencement of Construction (for existin	g tanks) 2021
6. Type of change New Construction	New Stored Material 🛛 🥂 Other Tank Modification
7. Description of Tank Modification (if applicable)	
Increased tank capacity from 2642 gallons to	o 5283 gallons.
7A. Does the tank have more than one mode of operati (e.g. Is there more than one product stored in the tag	nk?)
7B. If YES, explain and identify which mode is cover completed for each mode). N/A	ed by this application (Note: A separate form must be
 7C. Provide any limitations on source operation affectin variation, etc.): N/A 	g emissions, any work practice standards (e.g. production
I. I. TANK INFORMATION (required) - See Attached Em	ission Master Report for the following information
 Design Capacity (specify barrels or gallons). Us height. 	e the internal cross-sectional area multiplied by internal
Sk. Tank Imme Diameter III	E Tank here Height for Longfill Im
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
12. Nominal barrels or gallons This liquid levels and overflow valve heights.	is also known as a second considers design

13A. Maximum annual throughput (gal/yr) 698 gal/yr	13B. Maximum daily throughput (gal/day)
14. Number of Tumovers per year (annual net throughput	t/maximum tank liquid volume)
15. Maximum tank fill rate (gal/min)	
16. Tank fill method Submerged	Splash Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems Does Not Apply
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
 18. Type of tank (check all that apply): Fixed Roofverticalhorizontalother (describe) External Floating Roofpontoon roof Domed External (or Covered) Floating Roof Internal Floating Roofvertical column su Variable Vapor Spacelifter roof Pressurizedsphericalcylindrical Underground Other (describe) 	upportself-supporting diaphragm

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

1.	Bulk Storage Area Name	2.	Tank Name Thermal Oil Expansion Tank - IMF
3.	Tank Equipment Identification No. (as assigned on Equipment List Form) TK-TO4	4.	Emission Point Identification No. (as assigned on Equipment List Form) TK-TO4
5.	Date of Commencement of Construction (for existing	tanl	ıks) 2021
6.	Type of change 🗌 New Construction 🗌 N	lew	Stored Material 🛛 🗙 Other Tank Modification
7.	Description of Tank Modification (if applicable) Increased tank capacity from 1321 gallons to	19)28 gallons.
7A.	Does the tank have more than one mode of operatio (e.g. Is there more than one product stored in the tan		🗌 Yes 🖾 No
7B.	If YES, explain and identify which mode is covere completed for each mode).	d b	by this application (Note: A separate form must be
7C.	C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): NA		
П.	TANK INFORMATION (required) - See Attached Em	iss	ion Master Report for the following information
8.	Design Capacity (specify barrels or gallons). Use height.	the	internal cross-sectional area multiplied by internal
9A.	Tank Internal Diameter (ft)	9B	3. Tank Internal Height (or Length) (ft)
10/	A. Maximum Liquid Height (ft)	10	B. Average Liquid Height (ft)
11A	A. Maximum Vapor Space Height (ft)	11	B. Average Vapor Space Height (ft)
12.	Nominal Capacity (specify barrels or gallons). This is liquid levels and overflow valve heights.	s als	so known as "working volume" and considers design

13A. Maximum annual throughput (gal/yr) 698 gal/yr	13B. Maximum daily throughput (gal/day)
14. Number of Tumovers per year (annual net throughput	t/maximum tank liquid volume)
15. Maximum tank fill rate (gal/min)	
16. Tank fill method Submerged	Splash Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems Does Not Apply
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
 18. Type of tank (check all that apply): Fixed Roofverticalhorizontalother (describe) External Floating Roofpontoon roof Domed External (or Covered) Floating Roof Internal Floating Roofvertical column su Variable Vapor Spacelifter roof Pressurizedsphericalcylindrical Underground Other (describe) 	upportself-supporting diaphragm

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

1.	Bulk Storage Area Name	2. Tank Name Additive Storage Tank	
3.	Tank Equipment Identification No. (as assigned on Equipment List Form) TK-AD	 Emission Point Identification No. (as assigned on Equipment List Form) TK-AD 	
5.	Date of Commencement of Construction (for existing	tanks) 2021	
6.	Type of change 🗌 New Construction 🗌 N	lew Stored Material 🛛 🛛 Other Tank Modification	
7.	Description of Tank Modification (if applicable) Updating emission calculations to AP42 met	hodology.	
7A.	Does the tank have more than one mode of operatio (e.g. Is there more than one product stored in the tan		
7B.	B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode). NA		
7C.	C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): NA		
П.	TANK INFORMATION (required) - See Attached E	mission Master Report for the following information	
8.	Design Capacity (specify barrels or gallons). Use height.	the internal cross-sectional area multiplied by internal	
9A.	Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)	
10/	A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)	
11/	A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)	
12.	Nominal Capacity (specify barrels or gallons). This is liquid levels and overflow valve heights.	also known as "working volume" and considers design	

13A. Maximum annual throughput (gal/yr) 17,171 gal/yr	13B. Maximum daily throughput (gal/day)
14. Number of Tumovers per year (annual net throughput	t/maximum tank liquid volume)
15. Maximum tank fill rate (gal/min)	
16. Tank fill method Submerged	Splash Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems Does Not Apply
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
 18. Type of tank (check all that apply): Fixed Roofverticalhorizontalother (describe) External Floating Roofpontoon roof Domed External (or Covered) Floating Roof Internal Floating Roofvertical column su Variable Vapor Spacelifter roof Pressurizedsphericalcylindrical Underground Other (describe) 	upportself-supporting diaphragm

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1. B	Bulk Storage Area Name	2. Tank Name Binder Storage Containers	
E	Tank Equipment Identification No. (as assigned on Equipment List Form)	 Emission Point Identification No. (as assigned Equipment List Form) TK-BS1, TK-BS2, and TK-BS3 	l on
5. D	Date of Commencement of Construction (for existing	tanks) 2021	
6. T	ype of change 🗌 New Construction 🗌 N	New Stored Material X Other Tank Modification	
	Description of Tank Modification (if applicable) Jpdating emission calculations to AP42 met	thodology.	
	Does the tank have more than one mode of operation e.g. Is there more than one product stored in the tan		
7C. F V	NA Provide any limitations on source operation affecting variation, etc.): NA	emissions, any work practice standards (e.g. produc	ction
II. T/	ANK INFORMATION (required) - See Attached E	Emission Master Report for the following info	rma
8. D		the internal cross-sectional area multiplied by inter	
9A. T	ank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)	
10A.	Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)	
11 A .	Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)	

13A. Maximum annual throughput (gal/yr) 130,325 gal/yr	13B. Maximum daily throughput (gal/day)
14. Number of Tumovers per year (annual net throughput	l/ //maximum tank liquid volume)
15. Maximum tank fill rate (gal/min)	
16. Tank fill method Submerged	Splash Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems Does Not Apply
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
18. Type of tank (check all that apply):	
	flat roof cone roof dome roof
other (describe)	
External Floating Roof pontoon roof	double deck roof
Domed External (or Covered) Floating Roof	
Internal Floating Roof vertical column su	pportself-supporting
└── Variable Vapor Space lifter roof	diaphragm
Pressurized spherical cylindrical	
Other (describe)	

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1.	Bulk Storage Area Name	2. Tank Name Coupling Agent Storage Tank	
3.	Tank Equipment Identification No. (as assigned on Equipment List Form) TK-CA	 Emission Point Identification No. (as assigned on Equipment List Form) TK-CA 	
5.	Date of Commencement of Construction (for existing	tanks) 2021	
6.	Type of change I New Construction I	lew Stored Material 🛛 🔀 Other Tank Modification	
7.	Description of Tank Modification (if applicable) Updating emission calculations to AP42 methodology.		
7A.	Does the tank have more than one mode of operatio (e.g. Is there more than one product stored in the tan		
1	completed for each mode). NA Provide any limitations on source operation affecting	d by this application (Note: A separate form must be emissions, any work practice standards (e.g. production	
	variation, etc.): NA I. TANK INFORMATION (required) - See Attached Emission Master Report for the following information		
8.	Design Capacity (specify barrels or gallons). Use height.	the internal cross-sectional area multiplied by internal	
9A.	Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)	
10/	A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)	
11/	A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)	
12.	Nominal Capacity (specify barrels or gallons). This is liquid levels and overflow valve heights.	also known as "working volume" and considers design	

13A. Maximum annual throughput (gal/yr) 4,227 gal/yr	13B. Maximum daily throughput (gal/day)
14. Number of Tumovers per year (annual net throughput	/maximum tank liquid volume)
15. Maximum tank fill rate (gal/min)	
16. Tank fill method Submerged	Splash Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems Does Not Apply
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
 18. Type of tank (check all that apply): Fixed Roofverticalhorizontalother (describe) External Floating Roofpontoon roof Domed External (or Covered) Floating Roof Internal Floating Roofvertical column su Variable Vapor Spacelifter roof Pressurizedsphericalcylindrical Underground Other (describe) 	upportself-supporting diaphragm

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

1.	Bulk Storage Area Name	2. Tank Name Diesel Fuel Tank	
3.	Tank Equipment Identification No. (as assigned on Equipment List Form) TK-DF	 Emission Point Identification No. (as assigned on Equipment List Form) TK-DF 	
5.	Date of Commencement of Construction (for existing	tanks) 2021	
6.	Type of change I New Construction I	New Stored Material 🛛 🛛 Other Tank Modification	
7.	 Description of Tank Modification (if applicable) Updating emission calculations to AP42 methodology. 		
7A.	Does the tank have more than one mode of operatio (e.g. Is there more than one product stored in the tan		
1	B. If YES, explain and identify which mode is covered by this application (Note: A separate form must be completed for each mode). NA		
7C.	C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.): NA		
	Contraction of the second s	mission Master Report for the following information	
8.	Design Capacity (specify barrels or gallons). Use height.	the internal cross-sectional area multiplied by internal	
9A.	Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)	
10/	A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)	
11/	A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)	
12.	Nominal Capacity (specify barrels or gallons). This is liquid levels and overflow valve heights.	s also known as "working volume" and considers design	

13A. Maximum annual throughput (gal/yr) 52,834 gal/yr	13B. Maximum daily throughput (gal/day)
14. Number of Tumovers per year (annual net throughput	t/maximum tank liquid volume)
15. Maximum tank fill rate (gal/min)	
16. Tank fill method Submerged	Splash Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems Does Not Apply
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
 18. Type of tank (check all that apply): Fixed Roof vertical horizontal other (describe) External Floating Roof pontoon roof Domed External (or Covered) Floating Roof Internal Floating Roof vertical column su Variable Vapor Space lifter roof Pressurized spherical cylindrical Underground Other (describe) 	upportself-supporting diaphragm

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

1.	Bulk Storage Area Name	2. Tank Name De-dust Oil Day Tank							
3.	Tank Equipment Identification No. (as assigned on Equipment List Form) TK-DOD								
5.	Date of Commencement of Construction (for existing	tanks) 2021							
6.	Type of change New Construction	New Stored Material X Other Tank Modification							
7.	Description of Tank Modification (if applicable) Updating emission calculations to AP42 methodology.								
7A.	Does the tank have more than one mode of operatio (e.g. Is there more than one product stored in the tan								
7B.	If YES, explain and identify which mode is covere completed for each mode).	d by this application (Note: A separate form must be							
7C.	Provide any limitations on source operation affecting variation, etc.): NA	emissions, any work practice standards (e.g. production							
١.	TANK INFORMATION (required) - See Attached E	mission Master Report for the following information							
8.	Design Capacity (specify barrels or gallons). Use height.	the internal cross-sectional area multiplied by internal							
9A.	Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)							
10/	A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)							
11/	A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)							
12.	Nominal Capacity (specify barrels or gallons). This is liquid levels and overflow valve heights.	s also known as "working volume" and considers design							

3A. Maximum annual throughput (gal/yr) 13B. Maximum daily throughput (gal/day) 52,834 gal/yr 13B. Maximum daily throughput (gal/day)									
14. Number of Tumovers per year (annual net throughput	14. Number of Tumovers per year (annual net throughput/maximum tank liquid volume)								
15. Maximum tank fill rate (gal/min)									
16. Tank fill method Submerged	Splash Bottom Loading								
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems Does Not Apply								
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year								
 18. Type of tank (check all that apply): Fixed Roof vertical horizontal other (describe) Extemal Floating Roof pontoon roof Domed External (or Covered) Floating Roof Internal Floating Roof vertical column su Variable Vapor Space lifter roof Pressurized spherical cylind rical Underground Other (describe) 	ipportself-supporting diaphragm								

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (http://www.epa.gov/tnn/chief/).

1.	Bulk Storage Area Name	2. Tank Name Resin Storage Tanks						
3.	Tank Equipment Identification No. (as assigned on Equipment List Form) TK-RS1-TK-RS6							
5.	Date of Commencement of Construction (for existing tanks) 2021							
6.	Type of change I New Construction IN	New Stored Material 🛛 Other Tank Modification						
7.	Description of Tank Modification (if applicable) Updating tank sizing.							
7A.	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan							
7B.	If YES, explain and identify which mode is covere completed for each mode).	d by this application (Note: A separate form must be						
7C.	Provide any limitations on source operation affecting variation, etc.): NA	emissions, any work practice standards (e.g. production						
П. (TANK INFORMATION (required) - See Attached E	mission Master Report for the following information						
8.	Design Capacity (specify barrels or gallons). Use height.	the internal cross-sectional area multiplied by internal						
9A.	Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)						
10A	A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)						
11A	A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)						
12.	Nominal Capacity (specify barrels or gallons). This is liquid levels and overflow valve heights.	s also known as "working volume" and considers design						

I3A.Maximum annual throughput (gal/yr)13B.Maximum daily throughput (gal/day)317,007 gal/yr									
14. Number of Tumovers per year (annual net throughput	14. Number of Tumovers per year (annual net throughput/maximum tank liquid volume)								
15. Maximum tank fill rate (gal/min)									
16. Tank fill method Submerged	Splash Bottom Loading								
17. Complete 17A and 17B for Variable Vapor Space Ta	nk Systems Does Not Apply								
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year								
 18. Type of tank (check all that apply): Fixed Roof vertical horizontal other (describe) Extemal Floating Roof pontoon roof Domed External (or Covered) Floating Roof Internal Floating Roof vertical column su Variable Vapor Space lifter roof Pressurized spherical cylind rical Underground Other (describe) 	ipportself-supporting diaphragm								

Attachment L FUGITIVE EMISSIONS FROM PAVED HAULROADS

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

ltem Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Day	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	Truck - Binder Oil	21.6	0.46	1	52		75%
2	Truck - Oxygen	11.3	0.46	4	1,144		
3	Truck - Raw Material to 210	25.0	0.46	28	6,656	All roads at the	
4	Truck - DeSOx and Binder	21.6	0.46	2	676	RAN facility will be paved.	
5	Truck - Waste	21.6	0.46	1	260	ROCKWOOL will operate a streetsweeper on an as needed basis to minimize the generation of	
6	Truck – Pallet and Foil	25.0	0.76	5	1,300		
7	Truck - Finished Goods	13.3	0.76	73	20,800		
8	FEL – Diverted Melt from Bldg 300 to Pit Waste (170)	17.8	0.27	67	12,295		
9	FEL – Crushed Melt from 170 to 210	17.8	0.10	67	12,295	dusts from road traffic.	
10	FEL – Raw Material from 210 to Feed Hopper	17.8	0.06	85	31,147		
11	FEL – Raw Material from Stockpile to 210	17.8	0.16	115	31,147		
12	Truck – Raw Material from Stockpile to 210	25.0	0.27	30	1,087		

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

 $\mathsf{E} = [k \ge (sL)^{0.91} \ge (W)^{1.02}] \ge [1 - P/(4N)] =$

Where:

Ib/Vehicle Mile Traveled (VMT)

k =	Particle size multiplier (lb/VMT)	PM – 0.011 PM ₁₀ – 0.0022 PM ₂₅ – 0.00054				
sL =	Road surface silt loading (g/m ²)	Finished product road surface silt loading – 0.2 Raw materials road surface silt loading – 8.2				
P =	Number of "wet" days with at least 0.01 in of precipitation during the averaging period	148				
N =	Number of days in the averaging period	365				
W =	Average vehicle weight traveling the road (tons)	See table above				
For lb	For lb/hr: [lb + VMT] × [VMT + trip] × [Trips + Hour] = lb/hr					

For TPY: [lb + VMT] × [VMT + trip] × [Trips + Hour] × [Ton + 2000 lb] =

Tons/year

114 of 145

Item No.	Uncontro	olled PM ₁₀	Controll	ed PM ₁₀		
	lb/hr	ton/yr	lb/hr	ton/yr		
1	<0.01	<0.01	<0.01	<0.01		
2	0.01	0.04	<0.01	0.01		
3	0.13	0.55	0.03	0.14		
4	0.01	0.05	<0.01	0.01		
5	<0.01	0.02	<0.01	<0.01		
6	<0.01	0.01	<0.01	<0.01		
7	0.01	0.05	<0.01	0.01		
8	0.10	0.42	0.02	0.10		
9	0.04	0.16	0.01	0.04		
10	0.05	0.24	0.01	0.06		
11	0.14	0.63	0.04	0.16		
12	<0.01	0.05	<0.01	0.01		
TOTALS	TOTALS 0.49 2.21		0.12 0.55			
	7	- 				
ltem No.	Uncontro	olled PM _{2.5}	Controlled PM _{2.5}			
	lb/hr	ton/yr	lb/hr	ton/yr		
1	<0.01	<0.01	<0.01	<0.01		
2	<0.01	0.01	<0.01	<0.01		
3	0.03	0.13	0.01	0.03		
4	<0.01	0.01	<0.01	<0.01		
5	<0.01	<0.01	<0.01	<0.01		
6	<0.01	<0.01	<0.01	<0.01		
7	<0.01	0.01	<0.01	<0.01		
8	0.02	0.10	0.01	0.03		
9	0.01	0.04	<0.01	0.01		
10	0.01	0.06	<0.01	0.01		
11	0.04	0.15	0.01	0.04		
12	<0.01	0.01	<0.01	<0.01		
TOTALS	0.12	0.54	0.03	0.14		

SUMMARY OF PAVED HAULROAD EMISSIONS

Attachment M

Attachment M Air Pollution Control Device Sheet (AFTERBURNER SYSTEM)

Control Device ID No. (must match Emission Units Table): **CO-AB** – **The afterburner is routed through HE01.**

	Equipment Information				
1.	Manufacturer: Bromkamp Model No.	 2. ☐ Thermal Energy Recovery ☑ Recuperative (Conventional) ☐ Catalytic 			
3.	Provide diagram(s) of unit describing capture system capacity, horsepower of movers. If applicable, state h	m with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.			
4.	Combustion chamber dimensions:Length:ftDiameter:ftCross-sectional area:ft²	5. Stack Dimensions: Height: 212.66 ft Diameter: 12.93 ft			
6.	Combustion (destruction) efficiency:Estimated:95Minimum guaranteed:95%	7. Retention or residence time of materials in combustion chamber: of materials in sec Maximum: sec Minimum: sec			
8.	Throat diameter: ft	9. Combustion Chamber Volume: ft ³			
10.	Fuel used in burners: ☑ Natural Gas ☐ Fuel Oil, Number: ☐ Other, specify:	 11. Burners per afterburner: Number of burners: 1 BTU/hr for burner: 9,860,000 			
12.	Fuel heating value of natural gas: 1026 BTU/scf	13. Flow rate of natural gas: ft ³ /min			
14.	Is a catalyst material used?: ☐ Yes	 15. Expected frequency of catalyst replacement: yr(s) 16. Date catalyst was last replaced: Month/Year: 			
17.	Space Velocity of the catalyst material used: 1/hour	18. Catalyst area:ft²19. Volume of catalyst bed:ft³			
20.	Minimum loading: Maximum loading:	21. Temperature catalyst bed inlet:°FTemperature catalyst bed outlet:°F			
22.	Explain degradation or performance indicator criteria	determining catalyst replacement:			
23.	Heat exchanger used? Yes No	24. Heat exchanger surface area?ft²			
	Describe heat exchanger:	25. Average thermal efficiency: %			
	Temperature of gases: After preheat:	°F Before preheat: °F			
27.	Dilution air flow rate: ft ³ /minut	e			

28. Describe method of gas mixing used:

	Waste Gas (Emission Stream) to be Burned						
29.	Name	Grain	Quantity s of H ₂ S/100 ft ²	Quantity-Dens (LB/hr, ft ³ /hr, et		of Material	
		Grain	13 01 1120/ 100 It				
30.	Estimate total combust	ibles to aft	erburner 18,95	0 scfm (capacity)			
31.	Estimated total flow ra	ite to after	-	-	to be burned, carrie	r gases, auxiliary	
	fuel, etc.:			ACF/hr, or scfm			
	Total flow rate = Flue g	as flow rat	e				
32.	32. Afterburner operating parameters: During maximum operation of feeding unit(s) During maximum operation of feeding unit(s) During maximum operation of feeding unit(s)						
	Combustion chamber temperature in °F				1621.22		
	Emission stream gas temperature in °F				580		
	Combined gas stream	entering ca	atalyst bed in				
	Flue stream leaving the	e catalyst b	bed				
	Emission stream flow r	ate (scfm)			18,950		
	Efficiency (VOC Reduc	tion)		%	95 %	%	
	Efficiency (Other; spec	ify contami	nant)	%	%	%	
33.	Inlet Emission stream p	parameters	:				
<u> </u>			Ma	iximum	Турі	cal	
	Pressure (mmHg):						
	Heat Content (BTU/scf):					
	Oxygen Content (%):	, 					
	Moisture Content (%):						
	Are halogenated organics present? Yes No Are particulates present? Yes No Are metals present? Yes No						
34.	For thermal afterburner ⊠Yes □	rs, is the co No	ombustion chamb	er temperature contir	nuously monitored an	d recorded?	
35.	For catalytic afterburn recorded? Yes	ers, is the	e temperature rise	e across the catalys	st bed continuously i	monitored and	
36.	36. Is the VOC concentration of exhaust monitored and recorded? Yes No						

37. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):									
38 Describe the collect	ation material disposal system:								
36. Describe the collec	38. Describe the collection material disposal system:								
39. Have you included	Afterburner Control Device in the	e Emissions Points Data Summary Sheet?							
Please propose r proposed operatir	40. Proposed Monitoring, Recordkeeping, Reporting, and Testing Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.								
MONITORING:		RECORDKEEPING:							
Not impacted by upd	ates.	Not impacted by updates.							
REPORTING:		TESTING:							
Not impacted by up	odates.	Not impacted by updates.							
MONITORING: RECORDKEEPING: REPORTING: TESTING:	RECORDKEEPING: REPORTING: monitored in order to demonstrate compliance with the operation of this proc equipment or air control device. Please describe the proposed recordkeeping that will accompany the monitoring. Please describe any proposed emissions testing for this process equipment on pollution control device.								
41. Manufacturer's Gu	aranteed Capture Efficiency for each	ch air pollutant.							
 42. Manufacturer's Guaranteed Control Efficiency for each air pollutant. 95% minimum control efficiency 43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. 									
43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.									

Attachment M Air Pollution Control Device Sheet (BAGHOUSE)

Control Device ID No. (must match Emission Units Table): CE01-BH

Equipment Information and Filter Characteristics

Model No. 3. Number of compartment online for normal operation: 8 4. Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency. 5. Baghouse Configuration: Open Pressure Closed Pressure Closed Suction (check one) Electrostatically Enhanced Fabric Other, Specify 6. Filter Fabric Bag Material: 7. Bag Dimension: Diameter 6.30 in. Polyester Polypropylene Diameter 6.30 in. Eriber Glass Ceramics ft² Other, specify 0. Operating air to cloth ratio: ft/min 11. Baghouse Operation: © Continuous Automatic Intermittent 12. Method used to clean bags: 10. Operating air to cloth ratio: ft/min 11. Baghouse Operation: © Continuous Automatic Intermittent 12. Method used to clean bags: 0. Other: Bag Collapse Pulse Jet 13. Cleaning initiated by: Frequency if timer actuated % Gas Stream Characteristics 14. Operation Hours: Max. per day: 24 15. Collection efficiency: Rating: % 14. Operation	1. Manufacturer: TBD	2. Total number of compartments: 8					
capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency. 5. Baghouse Configuration: □ Open Pressure ☑ Closed Pressure □ Closed Suction □ (check one) □ Electrostatically Enhanced Fabric □ Other, Specify 0 6. Filter Fabric Bag Material: □ Other, Specify 7. Bag Dimension: □ Diameter 6.30 in. □ Polypester ☑ Polypester □ Diameter 6.30 in. □ Length 12.55 ft. 8. Total cloth area: 7363 ft² 9. Number of bags: □ 10. Operating air to cloth ratio: ft/min 11. Baghouse Operation: ☑ Continuous □ Automatic □ Intermittent 11. 12. Method used to clean bags: □ Reverse Air Jet □ Intermittent 12. 13. Cleaning initiated by: □ Reverse Air Jet □ Other: □ Other: □ Other: 0 Other: 14. Operation Hours: Max. per day: 24 15. Collection efficiency: % Max. per y: 8400 Gas Stream Characteristics 16. Gas flow rate into the collector: 44,217 ACFM at 104 °F and PSIA ACFM: Design: PSIA 14. Operation Hours: PSIA Average Expected: PSIA Neter	Model No.	· ·					
(check one) ☐ Electrostatically Enhanced Fabric ☐ Other, Specify 6. Filter Fabric Bag Material: 7. Bag Dimension: ☐ Nomex nylon Wool ☐ Polyester Ø Polypropylene ☐ Acrylics ☐ Ceramics ☐ Fiber Glass 0. Length 12.55 ☐ Others, specify 10. Operating air to cloth ratio: 11. Baghouse Operation: ☑ Continuous ☐ Automatic ☐ Intermittent 12. Method used to clean bags: ☐ Other: ☐ Pneumatic Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Sonic Cleaning ☐ Manual Cleaning ☐ Reverse Air Jet ☐ Manual Cleaning ☐ Reverse Air Jet ☐ Timer ☐ Other: ☐ Bag Collapse ☐ Other: ☐ Bag Collapse ☐ Other: ☐ Manual Cleaning ☐ Reverse Jet 13. Cleaning initiated by: ☐ Frequency if timer actuated ☐ Timer ☐ Gas Stream Characteristics 14. Operation Hours: Max, per yr: 8400 Gas Stream Characteristics PSIA 17. Water Vapor Content of Effluent Stream: Ib. Water/Ib. Dry Air 18. Gas Stre							
□ Other, Specify 6. Filter Fabric Bag Material: Nomex nylon Wool Polypropylene Acrylics Ceramics Fiber Glass Cotton Weight oz./sq.yd Total cloth area: 7363 ft² Number of bags: 10. Operating air to cloth ratio: ft/min 11. Baghouse Operation: Image: Continuous Automatic Intermittent 11. Baghouse Operation: Image: Continuous Automatic Intermittent 12. Method used to clean bags: Sonic Cleaning Reverse Air Jet Intermittent 12. Method used to clean bags: Sonic Cleaning Reverse Air Jet Other: Bag Collapse Sonic Cleaning Reverse Air Jet Other: Bag Collapse Pulse Jet Other: Other: 13. Cleaning initiated by:	5. Baghouse Configuration: Open Pressure	Closed Pressure	'n				
6. Filter Fabric Bag Material:		anced Fabric					
Nomex nylon Wool Diameter 6.30 in. Polyester Polypropylene Length 12.55 ft. Acrylics Ceramics 8. Total cloth area: 7363 ft² Others, specify 9. Number of bags: 10. Operating air to cloth ratio: ft/min 11. Baghouse Operation: ☑ Continuous □ Automatic Intermittent 12. Mechanical Shaker □ Sonic Cleaning □ Reverse Air Jet □ Pneumatic Shaker □ Sonic Cleaning □ Reverse Air Flow □ Other: □ Timer □ Prequency if timer actuated □ Other: □ 0 □ Stabilized by: □ □ In. of water □ Other % Gas Stream Characteristics Gas Stream Characteristics % Maximum: PSIA Average Expected: PSIA 16. Gas Stream Temperature: 104 °F 19. Fan Requirements: Np 17. Water Vapor Content of Effluent Stream: Ib. Water/Ib. Dry Air 18. Gas Stream Temperature: Np							
□ Polyester □ Polypropylene Langte 10.50 in □ Ceramics □ Langte 10.50 in □ Cotton Weight oz./sq.yd in □ 1 □ Others, specify 10. Operating air to cloth ratio: ft² 11. Baghouse Operation: ☑ Continuous □ Automatic □ 12. Method used to clean bags: □ 0 □ Intermittent 12. Method used to clean bags: □ □ Intermittent 12. Method used to clean bags: □ 0 □ Intermittent 13. Cleaning initiated by: □ Sequence Air Flow □ Other 14. Operation Hours: Max. per day: 24 15. Collection efficiency: Rating: % Max. per y: 8400 Ist collection efficiency: Rating: % Gas Stream Characteristics 16. Gas flow rate into the collector: 44,217 ACFM at 104 °F and PSIA ACFM: Design: PSIA Maximum: PSIA Average Expected: PSIA 17. Water Vapor Content of Effluent Stream: Ib. Water/Ib. Dry Air		-					
Fiber Glass 8. Total cloth area: 7363 ft² Others, specify 0. Operating air to cloth area: 7363 ft² 9. Number of bags: 10. Operating air to cloth ratio: ft/min 11. Baghouse Operation: Image: Continuous Automatic Intermittent 12. Method used to clean bags: Image: Continuous Automatic Intermittent 12. Method used to clean bags: Image: Continuous Automatic Intermittent 13. Cleaning initiated by: Image: Content of Prage Image: Content of Prage Image: Content of Prage 14. Operation Hours: Max. per day: 24 Max. per yr: 8400 15. Collection efficiency: Rating: % Gas Stream Characteristics Gas Stream Characteristics PSIA Average Expected: PSIA 16. Gas flow rate into the collector: 44,217 ACFM at 104 °F and PSIA Average Expected: PSIA 17. Water Vapor Content of Effluent Stream: Ib. Water/Ib. Dry Air Ib. Water/Ib. Dry Air N N 18. Gas Stream Temperature: 104 °F 19. Fan Requirements: hp OR ft³/mi 10. OR ft³/mi N N N N <td< td=""><td>Polyester Polypropylene</td><td></td><td></td></td<>	Polyester Polypropylene						
□ Cotton Weight oz./sq.yd 9. Number of bags: □ Others, specify 11. Baghouse Operation: ☑ Continuous □ Automatic □ Intermittent 12. Method used to clean bags: □ □ Pneumatic Shaker □ Sonic Cleaning □ Pneumatic Shaker □ Sonic Cleaning □ Reverse Air Flow □ Other: □ Bag Collapse ☑ Pulse Jet □ Manual Cleaning □ Reverse Air Flow □ Timer □ Prequency if timer actuated ☑ Expected pressure drop range in. of water 14. Operation Hours: Max. per day: 24 Max. per yr: 8400 □ Other ③ Stream Characteristics Gas Stream Characteristics 16. Gas flow rate into the collector: 44,217 ACFM at 104 °F and PSIA ACFM: Design: PSIA Maximum: PSIA Average Expected: PSIA 17. Water Vapor Content of Effluent Stream: Ib. Water/Ib. Dry Air n n 18. Gas Stream Temperature: 104 °F 19. Fan Requirements: hp 0R If ¹ /mi n n 20. Low in. H ₂ O <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>		· · · · · · · · · · · · · · · · · · ·					
□ Others, specify 10. Operating air to cloth ratio: ft/min 11. Baghouse Operation: ☑ Continuous □ Automatic □ Intermittent 12. Method used to clean bags: □ Mechanical Shaker □ Sonic Cleaning □ Reverse Air Jet □ Intermittent 12. Method used to clean bags: □ Mechanical Shaker □ Sonic Cleaning □ Reverse Air Jet □ Intermittent 13. Cleaning initiated by: □ Timer □ Prequency if timer actuated □ Other 14. Operation Hours: Max. per day: 24 15. Collection efficiency: Rating: % Max. per yr: 8400 Guaranteed minimum: % Gas Stream Characteristics 16. Gas flow rate into the collector: 44,217 ACFM at 104 °F and PSIA ACFM: Design: PSIA Maximum: PSIA Average Expected: PSIA 17. Water Vapor Content of Effluent Stream: Ib. Water/Ib. Dry Air 18. Gas Stream Temperature: 104 °F 19. Fan Requirements: hp 0R ft³/mi n 20. Stabilized static pressure loss across baghouse. Pressure Drop: High in. H ₂ O 21. Particulate Loading: Inlet: grain/scf Outlet: PM ₁₀ - 0.002 <t< td=""><td></td><td></td><td></td></t<>							
11. Baghouse Operation: Continuous Automatic Intermittent 12. Method used to clean bags: Mechanical Shaker Sonic Cleaning Reverse Air Jet Pneumatic Shaker Bag Collapse Pulse Jet Manual Cleaning Reverse Jet 13. Cleaning initiated by: Timer 14. Operation Hours: Max. per day: 24 Collection efficiency: Rating: % Gas Stream Characteristics Gas flow rate into the collector: 44,217 ACFM at 104 °F and PSIA PSIA ACFM: Design: PSIA Maximum: PSIA Average Expected: PSIA PSIA ACFM: Design: PSIA Maximum: PSIA Average Expected: PSIA Reverse are close across baghouse. Pressure Drop: High							
12. Method used to clean bags: Mechanical Shaker Pneumatic Shaker Bag Collapse Manual Cleaning Reverse Air Flow Manual Cleaning Reverse Air Flow Manual Cleaning Reverse Jet 13. Cleaning initiated by: Timer Timer Sexpected pressure drop range 14. Operation Hours: Max. per day: 24 Max. per day: 24 Max. per yr: 8400 Gas Stream Characteristics 16. Gas flow rate into the collector: 44,217 ACFM: Design: PSIA Maximum: PSIA Average Expected: PSIA 17. Water Vapor Content of Effluent Stream: Ib. Water/lb. Dry Air 18. Gas Stream Temperature: 104 °F 19. Fan Requirements: hp OR ft³/mi n 20. Stabilized static pressure loss across baghouse. Pressure Drop: High in. HzO Low in. HzO 21. Particulate Loading: Inlet: grain/scf Outlet: PM10 - 0.002 grain/scf			ft/min				
☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Reverse Air Jet ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Other: ☐ Manual Cleaning ☐ Reverse Jet ☐ Other: 13. Cleaning initiated by: ☐ Frequency if timer actuated ☐ Timer ☐ Other 14. Operation Hours: Max. per day: 24 15. Collection efficiency: Rating: % Max. per yr: 8400 Gas Stream Characteristics % Gas Stream Characteristics 16. Gas flow rate into the collector: 44,217 ACFM at 104 °F and PSIA ACFM: Design: PSIA Maximum: PSIA Average Expected: PSIA 17. Water Vapor Content of Effluent Stream: Ib. Water/lb. Dry Air 18. Gas Stream Temperature: 104 °F 19. Fan Requirements: hp 0R ft³/mi n 20. Stabilized static pressure loss across baghouse. Pressure Drop: High in. H₂O Low in. H₂O 21. Particulate Loading: Inlet: grain/scf Outlet: PM₁₀ - 0.002 grain/scf	11. Baghouse Operation: 🛛 Continuous	Automatic Intermittent					
☐ Timer ☐ Frequency if timer actuated ☑ Expected pressure drop range in. of water ☐ Other 14. Operation Hours: Max. per day: 24 Max. per yr: 8400 15. Collection efficiency: Rating: % Guaranteed minimum: % Gas Stream Characteristics 16. Gas flow rate into the collector: 44,217 ACFM at ACFM at ACFM: Design: PSIA Maximum: PSIA Average Expected: PSIA 17. Water Vapor Content of Effluent Stream: Ib. Water/Ib. Dry Air 18. Gas Stream Temperature: 104 °F 19. Fan Requirements: hp OR hp ft³/mi n 20. Stabilized static pressure loss across baghouse. Pressure Drop: High in. H ₂ O in. H ₂ O 21. Particulate Loading: Inlet: grain/scf Outlet: PM ₁₀ - 0.002 grain/scf	 ☐ Mechanical Shaker ☐ Sonic Cleaning ☐ Pneumatic Shaker ☐ Reverse Air Flow ☐ Bag Collapse ☑ Pulse Jet 						
Max. per yr: 8400 Guaranteed minimum: % Gas Stream Characteristics 16. Gas flow rate into the collector: 44,217 ACFM at 104 °F and PSIA ACFM: Design: PSIA Maximum: PSIA Average Expected: PSIA 17. Water Vapor Content of Effluent Stream: Ib. Water/Ib. Dry Air Ib. Water/Ib. Dry Air Mp 18. Gas Stream Temperature: 04 °F 19. Fan Requirements: hp 20. Stabilized static pressure loss across baghouse. Pressure Drop: High in. H ₂ O 21. Particulate Loading: Inlet: grain/scf Outlet: PM ₁₀ - 0.002 grain/scf	Timer						
Gas Stream Characteristics 16. Gas flow rate into the collector: 44,217 ACFM at 104 °F and PSIA ACFM: Design: PSIA Maximum: PSIA Average Expected: PSIA 17. Water Vapor Content of Effluent Stream: Ib. Water/lb. Dry Air Ib. Water/lb. Dry Air 18. Gas Stream Temperature: 104 °F 19. Fan Requirements: hp 0R ft³/mi n n 20. Stabilized static pressure loss across baghouse. Pressure Drop: High in. H2O 21. Particulate Loading: Inlet: grain/scf Outlet: PM10 - 0.002 grain/scf		, ,					
16. Gas flow rate into the collector: 44,217 ACFM at 104 °F and PSIA ACFM: Design: PSIA Maximum: PSIA Average Expected: PSIA 17. Water Vapor Content of Effluent Stream: Ib. Water/Ib. Dry Air Ib. Water/Ib. Dry Air 18. Gas Stream Temperature: 104 °F 19. Fan Requirements: hp 0R ft³/mi n 0R ft³/mi n 20. Stabilized static pressure loss across baghouse. Pressure Drop: High in. H ₂ O in. H ₂ O 21. Particulate Loading: Inlet: grain/scf Outlet: PM ₁₀ - 0.002 grain/scf			%				
ACFM: Design: PSIA Maximum: PSIA Average Expected: PSIA 17. Water Vapor Content of Effluent Stream: Ib. Water/Ib. Dry Air Ib. Water/Ib. Dry Air 18. Gas Stream Temperature: 104 °F 19. Fan Requirements: hp 0R ft³/mi n 20. Stabilized static pressure loss across baghouse. Pressure Drop: High in. H ₂ O 21. Particulate Loading: Inlet: grain/scf Outlet: PM ₁₀ - 0.002 grain/scf							
17. Water Vapor Content of Effluent Stream: Ib. Water/Ib. Dry Air 18. Gas Stream Temperature: 104 °F 19. Fan Requirements: hp 0R ft³/mi n 20. Stabilized static pressure loss across baghouse. Pressure Drop: High in. H ₂ O 21. Particulate Loading: Inlet: grain/scf Outlet: PM ₁₀ - 0.002 grain/scf	· · ·						
18. Gas Stream Temperature: 104 °F 19. Fan Requirements: hp OR ft³/mi 0 n 20. Stabilized static pressure loss across baghouse. Pressure Drop: High in. H₂O 21. Particulate Loading: Inlet: grain/scf Outlet: PM₁₀ - 0.002 grain/scf	5	0 1	iA				
OR ft³/mi 20. Stabilized static pressure loss across baghouse. Pressure Drop: High in. H ₂ O Low in. H ₂ O 21. Particulate Loading: Inlet: grain/scf Outlet: PM ₁₀ - 0.002 grain/scf		-					
20. Stabilized static pressure loss across baghouse. Pressure Drop: High in. H ₂ O 20. Stabilized static pressure loss across baghouse. Pressure Drop: Lighthan the state of the stat	18. Gas Stream Temperature: 104 °F						
20. Stabilized static pressure loss across baghouse. Pressure Drop: High in. H ₂ O Low in. H ₂ O 21. Particulate Loading: Inlet: grain/scf Outlet: PM ₁₀ - 0.002 grain/scf		OR					
Lowin. H2O21. Particulate Loading:Inlet:grain/scfOutlet: PM10 - 0.002 grain/scf	20 Stabilized static process loss correspondence. Dro						
21. Particulate Loading: Inlet: grain/scf Outlet: PM ₁₀ - 0.002 grain/scf	20. Stabilized static pressure loss across bagnouse. Pre						
	21. Particulate Loading: Inlet:						
		• •					

22. Type of Pollutant(s) to be collected (if particulate give specific type): PM ₁₀ , PM _{2.5} , and HAPs						
23. Is there any SO₃ in the emission s	stream?		/es SC	D₃ cont	ent:	ppmv
24. Emission rate of pollutant (specify) into and ou	1		design		
Pollutant		lb/hr	N grains/	acf	Ol Ib/hr	UT grains/acf
Filterable PM ₁₀					.77	
Filterable PM _{2.5}					.21	
Total HAPS					.77	
25. Complete the table:	Particle S	Size Distribution to Collector		Fra	ction Efficiency	y of Collector
Particulate Size Range (microns)	Weig	ht % for Size Ra	ange		Weight % for S	ize Range
0 – 2						
2 – 4						
4 – 6						
6 – 8						
8 – 10						
10 – 12						
12 – 16						
16 – 20						
20 – 30						
30 - 40						
40 – 50						
50 – 60						
60 – 70						
70 – 80						
80 – 90						
90 – 100						
>100						

26. How is filter monitored for indications of deterioration (e.g., broken bags)?	
Continuous Opacity	
Pressure Drop	
Alarms-Audible to Process Operator	
Visual opacity readings, Frequency:	
☐ Other, specify:	
27. Describe any recording device and frequency of log entries:	
28. Describe any filter seeding being performed:	
20. Describe any filler seeding being performed.	
29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, g	100
reheating, gas humidification):	jas
reneating, gas humidineation).	
30. Describe the collection material disposal system:	
31. Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet? Yes	

Please propose m proposed operatin proposed emission	g parameters. Please propose	eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING:		RECORDKEEPING:
	ring plan in Attachment O.	See proposed recordkeeping plan in Attachment O.
REPORTING:		TESTING:
	ng plan in Attachment O.	See proposed reporting plan in Attachment O.
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING: REPORTING:	Please describe the proposed rec Please describe any proposed pollution control device.	cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air
TESTING:	Please describe any proposed pollution control device.	emissions testing for this process equipment on air
	aranteed Capture Efficiency for eac	
34. Manufacturer's Gua	aranteed Control Efficiency for eac	h air pollutant.
PM ₁₀ - >99% efficiency PM _{2.5} - > 99% efficienc		
25 Describe all operati	ing ranges and maintanance proce	dures required by Manufacturer to maintain warranty.
55. Describe all operati	ing ranges and maintenance proce	oures required by Manufacturer to maintain warranty.

Attachment M Air Pollution Control Device Sheet (BAGHOUSE)

Control Device ID No. (must match Emission Units Table): CE02-BH

Equipment Information and Filter Characteristics

1. Manufacturer: TBD	2. Total number of compartments: TBD	
Model No.	 Number of compartment online for no operation: TBD 	ormal
 Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state 		ume,
5. Baghouse Configuration: Open Pressure	Closed Pressure	
(check one) Check one Check one	anced Fabric	
6. Filter Fabric Bag Material:	7. Bag Dimension:	
Nomex nylon 🗌 Wool	Diameter TBD in.	-
Acrylics Ceramics	Length TBD ft.	
☐ Fiber Glass ☐ Cotton Weight oz./sq.yd	8. Total cloth area: TBD ft ²	
☐ Cotton Weight oz./sq.yd ☐ Teflon Thickness in	9. Number of bags: TBD	
Others, specify	10. Operating air to cloth ratio: ft/m	nin
11. Baghouse Operation: Continuous	Automatic X Intermittent	
 12. Method used to clean bags: Mechanical Shaker Sonic Cleaning Pneumatic Shaker Reverse Air Flow Bag Collapse Pulse Jet Manual Cleaning Reverse Jet 	Reverse Air Jet Other:	
 13. Cleaning initiated by: Timer Expected pressure drop range in. of water 	Frequency if timer actuated Other	
14. Operation Hours: Max. per day: 24 Max. per yr: 8400	15. Collection efficiency: Rating: Guaranteed minimum:	% %
Gas Stream C	haracteristics	
16. Gas flow rate into the collector: 12,633 ACFN	1 at 104 °F and PSIA	
ACFM: Design: PSIA Maximum:	PSIA Average Expected: PSIA	
17. Water Vapor Content of Effluent Stream:	lb. Water/lb. Dry Air	
18. Gas Stream Temperature: 104 °F	19. Fan Requirements: h	
		³/mi
20. Stabilized static pressure loss across baghouse. Pre	n ssure Drop: High in	1. H2O
		n. H2O
21. Particulate Loading: Inlet:	grain/scf Outlet: PM 10 - 0.002 grain/scf	
	Outlet: PM_{2.5} - 0.002 grain/scf	

22. Type of Pollutant(s) to be collected PM₁₀ and PM_{2.5}	d (if particula	te give specific	type):			
23. Is there any SO₃ in the emission s	stream?	No 🗌	Yes SC	D₃ conte	nt:	ppmv
24. Emission rate of pollutant (specify				design c		litions:
Pollutant		lb/hr	IN grains/	acf	lb/hr	OUT grains/acf
Filterable PM ₁₀					.22	
Filterable PM _{2.5}					.22	
25. Complete the table:	Particle S	ize Distributio		Frac	tion Efficien	cy of Collector
Particulate Size Range (microns)	Weigl	nt % for Size F		v	Veight % for	Size Range
0 – 2						
2-4						
4 – 6						
6 – 8						
8 – 10						
10 – 12						
12 – 16						
16 – 20						
20 – 30						
30 – 40						
40 – 50						
50 – 60						
60 – 70						
70 – 80						
80 – 90						
90 – 100						
>100						

26. How is filter monitored for indications of deterioration (e.g., broken bags)?
Continuous Opacity
 Pressure Drop Alarms-Audible to Process Operator
Visual opacity readings, Frequency:
Other, specify:
27. Describe any recording device and frequency of log entries:
00. Describe any filter as discributer referenced
28. Describe any filter seeding being performed:
29. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas
reheating, gas humidification):
30. Describe the collection material disposal system:
31. Have you included Baghouse Control Device in the Emissions Points Data Summary Sheet? Yes

	ring, Recordkeeping, Reporting,	
	ng parameters. Please propose	eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING:		RECORDKEEPING:
See proposed monito	ring plan in Attachment O.	See proposed recordkeeping plan in Attachment O.
REPORTING:		TESTING:
See proposed reporting	ng plan in Attachment O.	See proposed reporting plan in Attachment O.
MONITORING:		ocess parameters and ranges that are proposed to be strate compliance with the operation of this process
RECORDKEEPING:	equipment or air control device.	cordkeeping that will accompany the monitoring.
REPORTING:	Please describe any proposed	emissions testing for this process equipment on air
TESTING:		emissions testing for this process equipment on air
22 Manufaaturar'a Cu	pollution control device.	ah air nallutant
	aranteed Capture Efficiency for each	cn air pollutant. urce that is not capturing emissions from an
	re is not applicable to this sourc	
34 Manufacturer's Gu	aranteed Control Efficiency for eac	h air nollutant
	-	
PM ₁₀ - >99% efficiency PM _{2.5} - > 99% efficienc		
35. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.

Roxul USA Inc. dba ROCKWOOL Ranson, West Virginia Summary of Facility Emissions

Modified units New units Removed units

							US		_		_	_		METRIC											
Source ID	Source Description	NOx (ton/vr)	SO2 (ton/yr)	CO (ton/yr)	VOC (ton/yr)	Total PM (ton/yr)	Filt. PM	PM10 (ton/yr)	PM2.5 (ton/yr)	CO2e (ton/yr)	H2SO4	Lead (ton/yr)	Total HAP (ton/yr)	NOx (tonne/yr)	SO2	CO (tonne/yr)	VOC (tonne/yr)	Total PM (tonne/yr)	Filt. PM (tonne/yr)	PM10 (tonne/vr)	PM2.5 (tonne/vr)	CO2e (tonne/vr)	H2SO4 (tonne/yr)	Lead (tonne/vr)	Total HAF
Minwool Line		1				1				1															
B210/B211	Raw Material Storage (B210)					0.28	0.28	0.13	0.02					1			E	0.26	0.26	0.12	0.02	1.			
B215	Raw Material Loading Hopper (B215)					0.06	0.06	0.03	4.03E-03									5.10E-02	5.10E-02	2.41E-02	3.65E-03				-
IMF11	Conveyor Transition Point (B215 to B220)		-	-		1.74E-02	1.74E-02	1.74E-02	8.69E-03	-			-			-		0.02	0.02	0.02	0.01				
IMF17	B220 Material Handling					1.49	1.49	0.61	0.56	-	-						-	1.35	1.35	0.55	0.51	-			
IMF12	Conveyor Transfer Point (B215)	-		-	-	6.16E-02	6.16E-02	2.26E-02	2.26E-02		-			-			-	0.06	0.06	0.02	0.02		-		
IMF16	Conveyor Transfer Point (B300)	-		-	-	6.16E-02	6.16E-02	2.26E-02	2.26E-02			1		-			-	0.06	0.06	0.02	0.02		-	-	
IMF15	Outside B220 Transfer Points	-			< - · · ·	7.69E-02	7.69E-02	2.82E-02	2.82E-02	-						- H - C		0.07	0.07	0.03	0.03		-		
RM_REJ	Raw Material Reject Collection Drop	-	-	-	-	1.12E-03	1.12E-03	5.32E-04	8.05E-05								-	1.02E-03	1.02E-03	4.83E-04	7.31E-05	1000		-	-
IMF21	Charging Building Vacuum Cleaning Filter			-		2.41E-02	2.41E-02	2.41E-02	1.21E-02	-	-				-		-	2.19E-02	2.19E-02	2.19E-02	1.10E-02				
IMF24	Pre-heat Burner	1.52	0.01	1.76	0.12	0.16	0.04	0.16	0.16	2,519.44	-	1.05E-05	0.04	1.38	0.01	1.60	0.10	0.14	0.04	0.14	0.14	2,285.59		9.51E-06	0.04
IMF01	Melting Furnace	156.95	141.25	13.48	1.29	9.73	9.73	9.73	9.73	77,076.96	7.85	1.57E-04	14.42	142.38	128.14	12.23	1.17	17.66	8.83	8.83	8.83	69,923.13	7.12	1.42E-04	13.08
IMF07	One (1) Storage Silo (Filter Fines Day)	-	-			0.01	0.01	0.01	0.01	-	1000							0.01	0.01	0.01	0.01		· · · · ·		-
IMF10	Filter Fines Recieving Silo	-		-		0.06	0.06	0.06	0.03	-	-					-	-	0.05	0.05	0.05	0.03	-			
IMF08	Sorbent Silo					0.06	0.06	0.06	0.03	-	-							0.05	0.05	0.05	0.03				
IMF09	Spent Sorbent Silo			-		0.06	0.06	0.06	0.03									0.05	0.05	0.05	0.03				
DI	Dry Ice Cleaning	-		-	-	-	-		-	1,527.80	-			-	-	-	-		-			1,386.00	-	-	
CM12	Fleece Application Vent 1			-	6.85				-	-			6.85				6.22								6.22
CM13	Fleece Application Vent 2			-			-		-	-									-	-	-		-		
HE01	WESP	6.60	0.05	41.24	187.55	50.39	50.39	50.39	50.39	35,669.62			237.95	5.99	0.05	37.41	170.15	91.43	45.72	45.72	45.72	32,358.97			215.86
CE01	De-dusting Baghouse					0.94	0.94	3.24	0.94				3.24			-		0.85	0.85	2.94	0.85		-		2.94
CE02	Vacuum Cleaning Baghouse		E = 1	-		1.85	1.85	0.93	0.93	-			0.93			-		1.68	1.68	0.84	0.84	-			0.84
P_MARK	Product Marking	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00
CM10	Recycle Plant Building Vent 1		<u> </u>			2.90	2.90	2.90	1.45				-				-	2.63	2.63	2.63	1.31				
CM11	Recycle Plant Building Vent 2	-		-	-	2.90	2.90	2.90	1.45	-							-	2.63	2.63	2.63	1.31				
CM08	Recycle Plant Building Vent 3		0	-		0.24	0.24	0.24	0.12								-	0.22	0.22	0.22	0.11				
CM09	Recycle Plant Building Vent 4	-		-		0.24	0.24	0.24	0.12	-		-	-		-	-	-	0.22	0.22	0.22	0.11		-		-
RMS	Raw Material Outdoor Stockpile		S = 1	-		0.20	0.20	0.10	1.48E-02		-				-	-		0.18	0.18	0.09	1.35E-02		-		
IMF14	Raw Material Reject Stockpile	-	I	-		1.81E-03	1.81E-03	8.51E-04	1.36E-04		-				-		-	1.64E-03	1.64E-03	7.72E-04	1.23E-04	-	-	-	
B170	Melting Furnace Portable Crusher & Storage		-			1 0.59	0.59	0.27	0.06		-		-					0.53	0.53	0.25	0.05				4
Rockfon Line		_			-		-	-	_		_	-	_		_		_	_		_	-			-	
RFNE1	IR Zone	_				-	l																		
RFNE2	Hot Press and Cure	-	a		-	1 Dr											-							1.0	-
RFNE3	High Oven A	_			-																	_			
RFNE9	High Oven B				-												-					_			
RFNE4 RENE6	Drying Oven 1			5					1.0								L	1	1	1					<u></u>
RENE5	Drying Oven 2 & 3 Spray Paint Cabin	-		C		-										·	·								+
RENES RENE7	Cooling Zone	-	8 i	0									<u> </u>				·					<u> </u>			<u>+</u>
RENE8	De-dusting Baghouse	_	-	_	-										-			1					-	-	
	-wide Sources	-	-						1	<u> </u>	-	<u> </u>										<u> </u>		<u> </u>	<u></u>
						1					_												_		
CM03	Natural Gas Boiler 1	0.77	0.01	1.79	0.12	0.16	0.04	0.16	0.16	2,559.32	and and	1.07E-05	0.04	0.70	0.01	1.62	0.11	0.15	0.04	0.15	0.15	2,321.77	-	9.66E-06	0.04
CM04	Natural Gas Boiler 2	0.77	0.01	1.79	0.12	0.16	0.04	0.16	0.16	2,559.32		1.07E-05	0.04	0.70	0.01	1.62	0.11	0.15	0.04	0.15	0.15	2,321.77		9.66E-06	0.04
RFN10	RFN Building Heat																							1	
EFP1	Emergency Fire Pump Engine	0.45	8.61E-04	0.10	0.01	0.02	0.01	0.02	0.02	90.50			2.14E-03	0.40	7.81E-04	0.09	0.01	0.02	0.01	0.02	0.02	82.10	-	-	1.95E-03
Rd_RM	Raw Material Paved Haul Roads					2.69	2.69	0.54	0.13			1		-			1	2.44	2.44	0.49	0.12		-		
Rd_FP	Finished Product Paved Haul Road	-		-		0.07	0.07	0.01	0.00		-	10000	-		-	-		0.06	0.06	0.01	0.00		-		
Tanks	Facility Storage Tanks				0.12	-				-	-	-	0.11			-	0.11		-					-	0.10

Roxul USA Inc. dba ROCKWOOL Ranson, West Virginia Summary of Facility Emissions

									U	s															MET	RIC							
Source ID	Source Description	HF	HCI	COS	Formaldehyde	e Arsenic	Lead	Mercury	Phenol	Mineral Fiber	Methanol	Hexane	Benzene	Acetaldehyde	Toluene	Xylene	PAH	HF	HCI	COS	Formaldehyde	Arsenic	Lead	Mercury	Phenol	Mineral Fiber	Methanol	Hexane	Benzene	Acetaldehyde	Toluene	Xylene	PAH
		(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)
Minwool Line	9																																
B210/B211	Raw Material Storage (B210)									-				-																-			-
B215	Raw Material Loading Hopper (B215)	-					-		-	-		-		-	-				-		-				-	-	1			-			
	Conveyor Transition Point (B215 to B220)								-	-				-		-											-			-			
	B220 Material Handling								-	-				-		-									-	-	-			-			
	Conveyor Transfer Point (B215)								-	-				-		-									-	-	-			-			
IMF16	Conveyor Transfer Point (B300)									-				-		-											-			-			
IMF15	Outside B220 Transfer Points									-				-													-			-			
RM REJ	Raw Material Reject Collection Drop															-											-			-			
IMF21	Charging Building Vacuum Cleaning Filter								-	-				-		-											-			-			
IMF24	Pre-heat Burner						1.05E-05		-	-		0.04		-		-							9.51E-06			-	-	0.03		-			
IMF01	Melting Furnace	1.55	1.24	1.57	0.02	3.77E-04	1.57E-04	2.45E-03	0.31	9.73				-		-		1.41	1.12	1.42	0.01	3.42E-04	1.42E-04	2.22E-03	0.28	8.83	-			-			
IMF07	One (1) Storage Silo (Filter Fines Day)						-	2.402.00	-	-				-	-	-										-	-			-			
IMF10	Filter Fines Recieving Silo	-					-	-	-	-				-	-	-					-				-	-	-			-	-		
IMF08	Sorbent Silo						-	-	-	-				-		-			-		-		-		-	-	-			-			
IMF09	Spent Sorbent Silo	-					-		-	-				-	-	-			-		-		-		-	-	-			-			
DI	Dry Ice Cleaning						-		-	-				-	-	-			-				-		-	-	-			-			
CM12	Fleece Application Vent 1				0.70		-		0.10		0.07										0.50				0.00		0.04					<u> </u>	+
CM13	Fleece Application Vent 2				2.78		-		3.40	-	0.67	-		-	-	-					2.52				3.08	-	0.61			-	-		
HE01	WESP				13.74		-		71.61	50.39	102.21			-		-					12.46				64.96	45.72	92.72			-			-
CE01	De-dusting Baghouse				13.74		-		-	3.24				-	-	-					12.40					2.94				-			
CE01 CE02							-	-		0.93				-		-										0.84	-			-			
	Product Marking						0.00	-		0.95		0.00		-	-	-			-		-		0.00		-	0.84	-	0.00			-		
CM10	Recycle Plant Building Vent 1						0.00			-		0.00		-		-							0.00		-	-	-	0.00			-		
	Recycle Plant Building Vent 1	-					-		-	-				-	-	-			-				-		-	-	-			-	-		
CM08	Recycle Plant Building Vent 2	-					-	-	-	-				-	-	-			-				-		-	-	-			-	-		
CM09	Recycle Plant Building Vent 3						-	-	-	-				-	-	-			-	-	-		-		-	-	-			-	-		-
RMS	Raw Material Outdoor Stockpile						-	-	-	-		-		-	-	-									-	-	-			-			
IME14	Raw Material Reject Stockpile									-																							
B170	Melting Euroace Portable Crusher & Storage						-	-	-	-				-	-	-										-	-			-			
Rockfon Line RFNE1							-										-								-								
																															4		4
	Hot Press and Cure High Oven A																														+	+'	4
							-																								+	+'	+
RENES	High Oven B			-		-	-																-								+		+
	Drying Oven 1 Drying Oven 2 & 3	_		-		-	-																-								+	+'	+
	Drying Oven 2 & 3 Spray Paint Cabin			-											-																+		+
		_					_																									'	
	Cooling Zone						_																										
	De-dusting Baghouse																																
	y-wide Sources																												-				_
	Natural Gas Boiler 1	-					1.07E-05	-	-	-		0.04		-		-					-		9.66E-06		-	-	-	0.03		-			
CM04	Natural Gas Boiler 2	-					1.07E-05			-		0.04		-		-					-		9.66E-06		-	-	-	0.03		-			
	RFN Building Heat																																
EFP1	Emergency Fire Pump Engine				6.53E-04		-	-	-	-		-	5.17E-04	4.25E-04	2.26E-04	1.58E-04	9.30E-05				5.93E-04		-		-	-	-		4.69E-04	3.85E-04	2.05E-04	1.43E-04	8.44E-05
	Raw Material Paved Haul Roads									-				-		-					-				-	-	-			-			
Rd FP	Finished Product Paved Haul Road	-					-							-		-										-	-						
Tanks	Facility Storage Tanks	-			0.11		-	-		-	9.30E-04			-	-	-	-				0.10				-	-	8.44E-04						
	Total	1.55	1.24	1.57	16.64		1.89E-04		75.32	64.29	102.88	0.11		4.25E-04			9.30E-05	1.41	1.12	1.42	15.10		1.71E-04		68.33	58.32	93.33				2.05E-04		8.44E-05

Roxul USA Inc. dba ROCKWOOL	Modified u
Ranson, West Virginia	New units
Source ID: Mineral Wool Line (L1) Emissions	Removed

						METR	RIC	US	1				
Stack ID(s)	Source Description	Concer	ntration	ration Flow Rate		Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions	Modele	d Emission Rate	Notes	Control Device
-	Pollutants	(mg/Nm ³)	(gr/scf)	(Nm ³ /h)	(scfm)	(kg/hr)	(tonne/yr)	(lb/hr)	(ton/year)	(g/s)	Averaging Period		
1	Melting Furnace												
	Filterable PM	31	0.001	33,900	21,414	1.05	8.83	2.32	9.73		-	Note 2 (2)	Baghouse
	Total PM ₁₀	31	0.001	33,900	21,414	1.05	8.83	2.32	9.73	2.92E-01	24-hr, Annual	Note 2 (2)	Baghouse
	Total PM _{2.5}	31	0.001	33,900	21,414	1.05	8.83	2.32	9.73	2.92E-01	24-hr, Annual	Note 2 (2)	Baghouse
	NOx	500	-	33,900	21,414	16.95	142.38	37.37	156.95	4.71E+00	1-hr (base), Annual	Note 2 (6)	SNCR and Oxy-fuel burner
	СО	150	-	33,900	21,414	1.46	12.23	3.21	13.48	4.05E-01	1-hr (base), 8-hr	Note 2 (6)	-
	SO ₂	450	-	33,900	21,414	15.26	128.14	33.63	141.25	4.24E+00	1-hr (base), 3-hr, 24-hr,	Note 2 (1)	Sorbent Injection System
	Total VOC			33,900	21,414	0.14	1.17	0.31			Annual -	Note 2 (1)	
	HF	4.9		33,900	21,414	0.14	1.41	0.37		_		Note 2 (1)	Sorbent Injection System
	HCI	3.9		33,900	21,414	0.17	1.12	0.37		_		Note 2 (2)	Sorbent Injection System
	COS	5.5		33,900	21,414	0.13	1.12	0.23				Note 2 (2)	-
	Formaldehyde	0.05		33,900	21,414	1.70E-03	0.01	3.74E-03		<u> </u>		Note 2 (1)	
	H_2SO_4 Mist	50		33,900	21,414	0.85	7.12	1.87		_		Note 2 (1)	Sorbent Injection System
	Fluorides	0.1		33,900	21,414	3.39E-03	0.03	0.01				Note 2 (1)	Baghouse
	Arsenic	0.0012	_	33,900	21,414	4.07E-05	3.42E-04	8.97E-05		_	_	Note 2 (5)	Baghouse
	Lead	0.0012		33,900	21,414	1.70E-05	1.42E-04	3.74E-05		-		Note 2 (5)	Baghouse
	Mercury	0.0078		33,900	21,414	2.64E-04	2.22E-03	5.83E-04		-		Note 2 (5)	Baghouse
	Phenol	1		33,900	21,414	0.03	0.28	0.07	-			Note 2 (5)	-
	Mineral Fiber	_		33,900	21,414	1.05	8.83	2.32		-	_	Note 2 (2), Note 3	Baghouse
	Total HAPs	-		33,900	21,414	1.56	13.08	3.43	14.42	-	· · · · · · · ·		Sorbent Injection System
	CO ₂	245,343	-	33,900	21,414	8,317.14	69,863.99	18,336.14	77,011.77			Note 2 (6)	-
	CH ₄	4		33,900	21,414	0.13	1.08	0.28	1.19	· · · · · · · · · · · · · · · · · · ·	- II	Note 2 (3)	-
	N ₂ O	0	-	33,900	21,414	0.01	0.11	0.03	0.12	-	-	Note 2 (3)	-
	CO ₂ e	-	-	33,900	21,414	8,324.18	69,923.13	18,351.66	77,076.96	-	-	-	-
1	WESP									_			
	Filterable PM	-	_	585,000	369,529	5.44	45.72	12.00	50.39	-	-	Note 2 (1)	WESP
	Total PM ₁₀	-	-	585,000	369,529	5.44	45.72	12.00		1.51E+00	24-hr, Annual	Note 2 (1)	WESP
	Total PM _{2.5}	-	-	585,000	369,529	5.44	45.72	12.00	50.39	1.51E+00	24-hr, Annual	Note 2 (1)	WESP
	NOx	-	-	585,000	369,529	0.59	5.99	1.57	6.60	1.98E-01	1-hr, Annual	Note 2 (1)	-
	со	-	-	585,000	369,529	4.45	37.41	9.82	41.24	1.24E+00	1-hr, 8-hr	Note 2 (1)	-
	SO ₂	1		E85 000	260 520	0.01	0.05	0.01	0.05	1 595 02	1 br 2 br 24 br Appual	1	
	302	-	-	585,000	369,529	0.01	0.05	0.01	0.05	1.58E-03	1-hr, 3-hr, 24-hr, Annual	-	-
	VOC	-	-	585,000	369,529	20.26	170.15	44.66	187.55	-	-	Note 2 (1)	-
	Phenol	-	-	585,000	369,529	7.73	64.96	17.05	71.61	-	-	Note 2 (1)	-
	Formaldehyde	-		585,000	369,529	1.48	12.46	3.27	13.74			Note 2 (1)	
	Methanol	-		585,000	369,529	11.04	92.72	24.34	102.21	-		Note 2 (1)	-
	Mineral Fiber	-		585,000	369,529	5.44	45.72	12.00		-	-	Note 2 (1), Note 3	WESP
	Total HAPs	-		585,000	369,529	25.70	215.86	56.65		-		-	-
	CO ₂	-	-	585,000	369,529	1139.28	9,569.97	2,511.68		-	-		-
	CH₄			585,000	369,529	0.02	0.18	0.05		-	-	-	-
	N ₂ O	-	-	585,000	369,529	9.10	76.46	20.07		-	-	-	-
	CO ₂ e	-	_	585,000	369,529	3,852.26	32,358.97	8,492.77	35,669.62	· · ·		-	-
1	De-dusting Baghouse												
	Filterable PM	10	0.0006	70,000	44,217	0.10	0.85	0.21	0.94	-	-	Note 1	Baghouse
	Filterable PM ₁₀	5	0.0020	70,000	44,217	0.35	2.94	0.77	3.24	9.72E-02	24-hr, Annual	Note 2 (5)	Baghouse
	Filterable PM _{2.5}	5	0.0006	70,000	44,217	0.10	0.85	0.21	0.94	2.69E-02	24-hr, Annual	Note 2 (5)	Baghouse
	Mineral Fiber	-	_	70,000	44,217	0.35	2.94	0.77	3.24	-		Note 3	Baghouse
	Total HAPs			70,000	44,217	0.35	2.94	0.77	3.24	-	-	-	-
2	Vacuum Cleaning Baghouse												
_	Filterable PM	10	0.0041	20,000	12,633	0.20	1.68	0.44	1.85	-	- 1	Note 1	Baghouse
	Filterable PM ₁₀	5	0.0020	20,000	12,633	0.10	0.84	0.22		2.78E-02	24-hr, Annual	Note 2 (5)	Baghouse
	Filterable PM _{2.5}	5	0.0020	20,000	12,633	0.10	0.84	0.22		2.78E-02	24-hr, Annual	Note 2 (5)	Baghouse
	Mineral Fiber	-	-	20,000	12,633	0.10	0.84	0.22		-		Note 3	Baghouse

Notes:

1. Where data was not available, speciations of PM were conservatively estimated in accordance with the below: Filterable PM was conservatively assumed to be equal to Total PM10. For CE01 and CE02, Filterable PM assumed double Filterable PM10. For clarity,

Total PM_{10} = Filterable PM_{10} + Condensable PM.

Total $PM_{2.5}$ = Filterable $PM_{2.5}$ + Condensable PM

Filterable PM = Total PM_{10} , with the exception of CE01 and CE02, where Filterable PM = 2X Filterable PM_{10}

Total PM = Filterable PM + CPM (where CPM = Total $PM_{2.5}$)

2. Calculation Method References:

1 - Stack testing from RAN Compliance Test with engineering assumptions applied.

2 - MACT Limit (40 CFR 63 Subpart DDD) emission limit. Note emission limits for formaldehyde, methanol, and phenol combined for spinning (collection) and curing.

3 - EPA Emission Factor

4 - Assumed 10% of the mass emissions of the Curing Oven for Cooling.

5 - Based upon testing from other Rockwool operations.

6 - Limits have been evaluated against data analysis of CEMS performance.

3. Mineral Fiber emissions were conservatively assumed equal to Filterable PM emissions for sources that may contain rock wool fibers.

The listed HAP, fine mineral fibers, includes mineral fiber emissions from facilities manufacturing or processing glass, rock, or slag fibers (or other mineral derived fibers) of average diameter 1 micrometer or less.

Sample Calculations:

Hourly Emissions (kg/hr) = Fan Flow Rate (Nm³/hr) * Exhaust Concentration (mg/Nm³) * 1,000,000 (mg/kg) Hourly Emission Rate Filterable PM = Concentration PM (gr/scf) * (1 lb/7,000 grains) * Flow Rate (scfm) * (60 min/hr) Annual Emissions (ton/yr) = Hourly Emission Rate (lb/hr) * 8,400 (hr/yr) / 2,000 (lb/ton) Annual Emissions (tonne/yr) = Hourly Emissions (kg/hr) * 8,400 (hr/yr) / 1,000 (kg/tonne) CO_2 Equivalent (CO_{2e}) = $CO2 + [GWP_{CH4} * CH_4)$] + [$GWP_{N2O} * N_2O$]

Roxul USA Inc. dba ROCKWOOL Ranson. West Virginia Material Handling Fugitives

Raw Material

Melting Furnace Diverted Melt

Modified units New units Removed units

	k - Particle	E	Emission Fac	ctor ³			
Pollutant	Size	Rock/Slag/ Minerals	Reject Raw Material	Diverted Melt			
	manaphen	(lb/ton)	(lb/ton)	(lb/ton)			
PM	0.74	2.19E-03	2.19E-03	2.19E-03			
PM ₁₀	0.35	1.04E-03	1.04E-03	1.04E-03			
PM _{2.5}	0.053	1.57E-04	1.57E-04	1.57E-04			

Location	U - Wind	Speed ²
	(mph)	m/s
door	6.51	2.91

Out

Notes:

1. Moisture content chosen as worst case among various materials handled.

M-Moisture Conte

2.7

27

2.7

2. Outdoor wind speed was set at 6.51 mph based on 2011-2015 average wind speed data from station ID 13734.

3. Material drops emission factor equation per AP-42 Section 13.2.4.

Sample Calculations:

Rock/Slag/Minerals Reject Raw Material

E (lb/ton) = k (0.0032) [(U/5)^1.3] / [(M/2)^1.4], where

k = Particle Size Multiplier,

U = wind speed, (meters per second [m/s]), (miles per hour [mph]),

M = material moisture content (%)

1 Material Delivery and Front-end Loader Fugitive Emissions³

			MET	RIC	U	S					MET	RIC			L	JS	
-	-		Loading	Loading	Loading	Loading	Enclosure	Control		UNCONTR	ROLLED	CONTI	ROLLED	UNCON	FROLLED	CONTR	ROLLED
Source ID	Raw Material	Source Description	Rate	Rate	Rate	Rate	Description	Efficiency ²	Pollutant	Emiss			ssions		sions		sions
			(tonne/day)	(tonne/year)	(ton/day)	(ton/year)		(%)		(tonne/day)	(tonne/year)	(tonne/day)	(tonne/year)	(ton/day)	(ton/year)	(ton/day)	(ton/year)
		Raw Material Stockpile -		100.150	201	005 100			PM	7.56E-04	0.20	3.78E-04	0.10	8.34E-04	0.22	4.17E-04	0.11
RMS	Rock/Slag/Minerals	Delivery to Stockpile [from	690	186,150	761	205,193	3-sided	50%	PM10	3.58E-04	0.10	1.79E-04	4.83E-02	3.94E-04	0.11	1.97E-04	5.32E-02
	14	offsite (by truck)]							PM _{2.5}	5.42E-05	1.46E-02	2.71E-05	7.31E-03	5.97E-05	1.61E-02	2.99E-05	8.05E-03
		Raw Material Storage -							PM	7.13E-04	0.20	7.13E-04	0.20	7.85E-04	0.22	7.85E-04	0.22
	Rock/Slag/Minerals	Delivery to 210 [from offsite (by truck) or from	650	186,150	716	205,193	none	0%	PM ₁₀	3.37E-04	0.10	3.37E-04	0.10	3.71E-04	0.11	3.71E-04	0.11
		stockpile (by FEL)]							PM _{2.5}	5.10E-05	0.01	5.10E-05	0.01	5.63E-05	0.02	5.63E-05	0.02
	-	Raw Material Storage -							PM	7.13E-04	0.20	1.78E-04	0.05	7.85E-04	0.22	1.96E-04	0.06
B210/B211	Rock/Slag/Minerals	Delivery into 210	650	186,150	716	205,193	3-sided w/ cover	75%	PM ₁₀	3.37E-04	0.10	8.42E-05	0.02	3.71E-04	0.11	9.29E-05	0.03
		enclosure					cover		PM _{2.5}	5.10E-05	0.01	1.28E-05	3.65E-03	5.63E-05	0.02	1.41E-05	4.03E-03
	7								PM	1.43E-03	0.41	8.91E-04	0.26	1.57E-03	0.45	9.82E-04	0.28
				Total					PM ₁₀	6.74E-04	0.19	4.21E-04	0.12	7.43E-04	0.21	4.64E-04	0.13
									PM _{2.5}	1.02E-04	0.03	6.38E-05	0.02	1.13E-04	0.03	7.03E-05	0.02
	1	Raw Material Loading					3-sided w/	_	PM	5.59E-04	0.20	1.40E-04	0.05	6.16E-04	0.22	1.54E-04	5.62E-02
B215	Rock/Slag/Minerals	Hopper	510	186,150	562	205,193	cover	75%	PM ₁₀	2.64E-04	0.10	6.61E-05	0.02	2.91E-04	0.11	7.29E-05	2.66E-02
		Topper					00701		PM _{2.5}	4.00E-05	0.01	1.00E-05	3.65E-03	4.41E-05	0.02	1.10E-05	4.03E-03
		Raw Material Reject					4-sided rubber		PM	5.48E-06	4.08E-03	1.37E-06	1.02E-03	6.04E-06	4.50E-03	1.51E-06	1.12E-03
RM_REJ	Reject Raw Material	Collection Drop	5	3,723	6	4,104	drop guards	75%	PM ₁₀	2.59E-06	1.93E-03	6.48E-07	4.83E-04	2.86E-06	2.13E-03	7.14E-07	5.32E-04
							diop guards		PM _{2.5}	3.93E-07	2.92E-04	9.81E-08	7.31E-05	4.33E-07	3.22E-04	1.08E-07	8.05E-05
	Malting Frances	Melting Furnace Portable							PM	1.79E-03	0.08	8.95E-04	0.04	1.97E-03	0.09	9.87E-04	0.04
B170	Melting Furnace Diverted Melt	Crusher & Storage - Drop to Pit Waste (170) (from	1,633	73,467	1,800	81,000	3-sided	50%	PM ₁₀	8.47E-04	0.04	4.23E-04	0.02	9.33E-04	0.04	4.67E-04	0.02
	Directed Weit	portable crusher)							PM _{2.5}	1.28E-04	5.77E-03	6.41E-05	2.88E-03	1.41E-04	6.36E-03	7.07E-05	3.18E-03

Notes:

FEL = Front End Loader

ton = short tons

tonne = metric tons

1. Loading rate for material storage operations is based on the maximum quantity delivered per day or per year. 2. Assumed a control efficiency of 50% due to offloading locations having 3-sided concrete enclosures and 75% efficiency for 4-sided enclosures (hopper) or 3-sided enclosures with roof. Per Application Instructions and Forms for General Permit G40-C by West Virginia Department of Environmental Protection, Telescopic Chutes have a control efficiency of 75% and Full Enclosures have an 80% control efficiency.

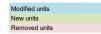
3. Large rocks are delivered to the pit waste area by FEL (before crushing), therefore the emissions from this drop are negligible due to size.

4. Modeled emission rates in gray are not modeled individually, but are added as a total source emission rate.

5. For Q/d screening tool, the annual steady-state-equivalent emission rate (Q) was determined based on maximum daily emissions. For example QPM10 (tpy) = PM10 (ton/day) * 365 (day/yr).

Sample Calculations:

Uncontrolled Emissions (ton/day; ton/year) = E (lb/ton) * Loading Rate (ton/day; ton/year) / 2000 (lb/ton)


Controlled Emissions = Uncontrolled Emissions (ton/day; ton/year) * (1 - Control Efficiency (%))

Uncontrolled/Controlled Emissions (tonne/day; tonne/year) = Uncontrolled/Controlled Emissions (ton/day; ton/year) * 0.9071847 tonne/ton

Modeled 24-hr Emission Rate (g/s) = Daily Emissions (ton/day) / 24 (hr/day) [for 24-hr model averaging period] * 2,000 (lb/ton) * 453.59 (g/lb) / 3,600 (sec/hr)

Modeled Annual Emission Rate (g/s) = Annual Emissions (ton/yr) / 8,760 (hr/yr) [for annual model averaging period] * 2,000 (lb/ton) * 453.59 (g/lb) / 3,600 (sec/hr)

Roxul USA Inc. dba ROCKWOOL Ranson, West Virginia Material Handling Fugitives

2 Crusher Fugitive Emissions

			Emission	ME	TRIC		JS	Hou	urs of	METR	METRIC US		US
Source ID	Source ID Source Description Pollutant		Factor ²		Process	ing Rate	Operation		ration	Hourly	Annual	Hourly	Annual
- Hereiter			(lb/ton)	(tonne/hr)	(tonne/yr)	(ton/hr)	(ton/yr)	(hrs/day)	(hrs/yr)	(kg/hr)	(tonne/yr)	(lb/hr)	(ton/yr)
	Melting Furnace	PM	0.0054							0.37	0.20	0.81	0.22
B170	Diverted Melt Portable	PM ₁₀	0.0024	136.1	73,467	150.0	81,000	12	540	0.16	0.09	0.36	0.10
	Crusher	PM _{2.5} ¹	0.0008							0.05	0.03	0.12	0.03

Notes:

1. PM2.5 is 15% of PM per AP-42 Appendix B, Table B.2.2 for material handling and processing of aggregate and unprocessed ore.

2. Emission factor for crushing of melting furnace diverted melt assumed to be similar to crushing of stones in AP-42 Table 11.19.2-2.

Uncontrolled PM emission factor of 0.0054 lb/ton and Uncontrolled PM in emission factor of 0.0024 lb/ton for tertiary crushing were conservatively used due to lack of emission factors for primary or secondary crushing.

Sample Calculations:

Hourly Emissions (lb/hr) = Emission Factor (lb/ton) * Processing Rate (ton/hr)

Annual Emissions (ton/yr) = Hourly Emissions (lb/hr) * Hours of Operation (hrs/yr) / 2000 (lb/ton)

Hourly Emissions (kg/hr) = Hourly Emissions (lb/hr) * 0.4535924 kg/lb

Annual Emissions (tonne/yr) = Annual Emissions (ton/yr) * 0.9071847 tonne/ton

3 Wind Erosion Emission from Outdoor Stockpiles

p ²	p ² # of days per year with precipitation >0.01 inch			
f ³	% of time that unobstructed wind speed >12 mph at the mean pile height	9.06		
Stockpile Description	S - Silt content ¹			

	Emissi	on Factor ⁴
Pollutant	Raw Material Stockpile	Pit Waste (170) Stockpile
	lb/day/acre	lb/day/acre
PM	8.03	8.03
PM ₁₀	3.77	3.77
PM _{2.5} ⁵	0.60	0.60

Notes:

1. Sit content chosen as worst case among various materials in stockpile. 2. Number of days per year with precipitation greater than 0.01 inch based on Table B - Precipitation Zones in West Virginia in Application Instructions and Forms for General Permit G40-C by West Virginia Department of Environmental Protection.

3. Percentage of time that the unobstructed wind speed exceeds 12 mph at the mean pile height based on AP 42 Ch. 13.2.5.2 Equation (1) and MRBIAD Aermap processed data 2012-2016.

4. Outdoor stockpile emission factor equation per WVDAQ G40-B (Nonmetallic Mineral Processing) Calculation Workbook: Stockpiles.

5. PM_{2.5} particle size multiplier of 0.075 per AP-42 Section 13.2.5-2 for Industrial Wind Erosion.

Sample Calculations:

E (lb PM/daylacre) = 1.7 * [s/1.5] * [(365-p)/235] * [f/15] E (lb PM₁₀/daylacre) = (0.47) * 1.7 * [s/1.5] * [(365-p)/235] * [f/15] E (lb PM_{2.5}/daylacre) = (0.075) * 1.7 * [s/1.5] * [(365-p)/235] * [f/15], where

s = silt content of material

p = number of days with >0.01 inch of precipitation per year,

f = percentage of time that the unobstructed wind speed exceeds 12 mph at mean pile height

							METRIC US							
Stockpile Description	Stockpil	e Base Area ²	Enclosure	Control		UNCON	TROLLED	CONT	ROLLED	UNCONTR	OLLED	CONT	ROLLED	
	Max		Description	Efficiencv ¹	Pollutant	Emi	ssions	Emi	ssions	Emissi	ons	Emi	Emissions	
1	sq. m	acre		(%)		(kg/hr)	(tonne/year)	(kg/hr)	(tonne/year)	(lb/hr)	(ton/year)	(lb/hr)	(ton/year)	
					PM	0.02	0.16	0.01	0.08	0.04	0.18	0.02	0.09	
Raw Material Stockpile (RMS)	500	0.12	3-sided	50%	PM10	0.01	0.08	4.40E-03	0.04	0.02	0.09	0.010	0.04	
				1000 B	PM2.5	1.41E-03	0.01	7.03E-04	0.01	0.0031	0.014	0.002	0.01	
Melting Furnace Portable					PM	0.07	0.59	0.03	0.30	0.15	0.65	0.07	0.33	
Crusher & Storage - Pit Waste	1800	0.44	3-sided	50%	PM10	0.03	0.28	0.02	0.14	0.07	0.31	0.03	0.15	
(B170) Stockpile	1				PM2.5	0.01	0.04	2.53E-03	0.02	0.01	0.05	0.01	0.02	
Raw Material Reject Stockpile					PM	3.75E-04	3.28E-03	1.87E-04	1.64E-03	8.26E-04	3.62E-03	4.13E-04	1.81E-03	
(IMF14)	10	0.002	3-sided	50%	PM10	1.76E-04	1.54E-03	8.81E-05	7.72E-04	3.88E-04	1.70E-03	1.94E-04	8.51E-04	
(1111 14)					PM2.5	2.81E-05	2.46E-04	1.41E-05	1.23E-04	6.20E-05	2.71E-04	3.10E-05	1.36E-04	

Notes:

1. Assumed a control efficiency of 50% due to offloading locations having 3-sided concrete enclosures.

One half of the pit waste stockpile area occupied by large rocks, therefore wind erosion emissions are negligible due to size.

3. For wind erosion calculation methods, maximum g/s emissions do not vary based on model averaging period (i.e., a source permitted to operate at maximum capacity 24 hr/day, 365 day/year).

Modeled emission rates in gray are not modeled individually, but are added as a total source emission rate.

Sample Calculations:

Uncontrolled Hourly Emissions (lb/hr) = E (lb/day/acre) * day/24 hr * Base area of pile (acres)

Uncontrolled Annual Emissions (ton/year) = E (lb/day/acre) * 365 days/yr * ton/2000 lb * Base area of pile (acres)

Controlled Emissions = Uncontrolled Emissions (ton/day; ton/year) * (1 - Control Efficiency (%))

Uncontrolled/Controlled Hourly Emissions (lb/hour) = Uncontrolled/Controlled Emissions (lb/hr) * 0.4535924 kg/lb

Uncontrolled/Controlled Annual Emissions (ton/year) = Uncontrolled/Controlled Emissions (ton/yr) * 0.9071847 tonne/ton

Roxul USA Inc. dba ROCKWOOL Ranson, West Virginia Material Handling Fugitives

4 Material Handling

			MET	RIC	U	S	1					ME	TRIC		US		JS
			Loading	Loading	Loading	Loading	Enclosure	Control		Uncontrolled	UNCONT	ROLLED	CONTR	OLLED	UNCON	TROLLED	CONTR
Source ID	Source Description	Number of Sources	Rate	Rate	Rate	Rate	Description	Efficiency ²	Pollutant	Emission Factor	Emis	sions	Emiss	sions	Emis	sions	Emis
			(tonne/day)	(tonne/year)	(ton/day)	(ton/year)		(%)		(lb/ton)	(tonne/day)	(tonne/year)	(tonne/day)	(tonne/year)	(ton/day)	(ton/year)	(ton/day)
	19 Conveyor Transfer		510	186,150	562	205,193			PM	3.00E-03	1.45E-02	5.31E+00	2.91E-03	1.06E+00	1.60E-02	5.85E+00	3.20E-03
	Points (B220)	19	510	186,150	562	205,193	Full Enclosure	80%	PM10	1.10E-03	5.33E-03	1.95E+00	1.07E-03	3.89E-01	5.87E-03	2.14E+00	1.17E-03
	· · · ·		510	186,150	562	205,193			PM2.5	1.10E-03	5.33E-03	1.95E+00	1.07E-03	3.89E-01	5.87E-03	2.14E+00	1.17E-03
	Transfer Point -		510	186,150	562	205,193	Telescopic		PM	3.00E-03	7.65E-04	2.79E-01	3.82E-05	1.40E-02	8.43E-04	3.08E-01	4.22E-05
	Magnet Separator to	1	510	186,150	562	205,193	Chute & Full	95%	PM10	1.10E-03	2.80E-04	1.02E-01	1.40E-05	5.12E-03	3.09E-04	1.13E-01	1.55E-05
Iron Conta	Iron Container (B220)		510	186,150	562	205,193	Enclosure		PM2.5	1.10E-03	2.80E-04	1.02E-01	1.40E-05	5.12E-03	3.09E-04	1.13E-01	1.55E-05
	2 Transfer Points -		510	186,150	562	205,193			PM	3.00E-03	1.53E-03	5.58E-01	3.06E-04	1.12E-01	1.69E-03	6.16E-01	3.37E-04
IMF17	Feeder (B220)	2	510	186,150	562	205,193	Full Enclosure	80%	PM10	1.10E-03	5.61E-04	2.05E-01	1.12E-04	4.10E-02	6.18E-04	2.26E-01	1.24E-04
	reeder (bzzo)		510	186,150	562	205,193			PM2.5	1.10E-03	5.61E-04	2.05E-01	1.12E-04	4.10E-02	6.18E-04	2.26E-01	1.24E-04
	Transfer Point - Mixing		510	186,150	562	205,193			PM	3.00E-03	7.65E-04	2.79E-01	1.53E-04	5.58E-02	8.43E-04	3.08E-01	1.69E-04
	Plant to Bin (B220)	1	510	186,150	562	205,193	Full Enclosure	80%	PM10	1.10E-03	2.80E-04	1.02E-01	5.61E-05	2.05E-02	3.09E-04	1.13E-01	6.18E-05
· · · · ·			510	186,150	562	205,193			PM2.5	1.10E-03	2.80E-04	1.02E-01	5.61E-05	2.05E-02	3.09E-04	1.13E-01	6.18E-05
	Transfer Point - Seive		510	186,150	562	205,193	Telescopic		PM	3.00E-03	7.65E-04	2.79E-01	3.82E-05	1.40E-02	8.43E-04	3.08E-01	4.22E-05
	Separator to Bin	1	510	186,150	562	205,193	Chute & Full	95%	PM10	1.10E-03	2.80E-04	1.02E-01	1.40E-05	5.12E-03	3.09E-04	1.13E-01	1.55E-05
	(B220)		510	186,150	562	205,193	Enclosure		PM2.5	1.10E-03	2.80E-04	1.02E-01	1.40E-05	5.12E-03	3.09E-04	1.13E-01	1.55E-05
	B220 Material								PM		1.84E-02	6.70E+00	3.44E-03	1.26E+00	2.02E-02	7.39E+00	3.79E-03
IMF17 Fugitives ⁴	Handling Fugitives	24	-	-	-	-	-	- 1	PM10		6.73E-03	2.46E+00	1.26E-03	4.61E-01	7.42E-03	2.71E+00	1.39E-03
	Handling Fugitives								PM2.5		6.73E-03	2.46E+00	1.26E-03	4.61E-01	7.42E-03	2.71E+00	1.39E-03
	Conveyor Transfer		510	186,150	562	205,193			PM	3.00E-03	7.65E-04	2.79E-01	1.53E-04	5.58E-02	8.43E-04	3.08E-01	1.69E-04
IMF12	Point (B215)	1	510	186,150	562	205,193	Full Enclosure	80%	PM10	1.10E-03	2.80E-04	1.02E-01	5.61E-05	2.05E-02	3.09E-04	1.13E-01	6.18E-05
	POINT (B215)		510	186,150	562	205,193			PM2.5	1.10E-03	2.80E-04	1.02E-01	5.61E-05	2.05E-02	3.09E-04	1.13E-01	6.18E-05
	Conveyor Transfer		510	186,150	562	205,193			PM	3.00E-03	7.65E-04	2.79E-01	1.53E-04	5.58E-02	8.43E-04	3.08E-01	1.69E-04
IMF16	Point (B300)	1	510	186,150	562	205,193	Full Enclosure	80%	PM10	1.10E-03	2.80E-04	1.02E-01	5.61E-05	2.05E-02	3.09E-04	1.13E-01	6.18E-05
	Point (B300)		510	186,150	562	205,193	1		PM2.5	1.10E-03	2.80E-04	1.02E-01	5.61E-05	2.05E-02	3.09E-04	1.13E-01	6.18E-05
	Transfer Point -		510	186,150	562	205,193			PM	3.00E-03	7.65E-04	2.79E-01	1.91E-04	6.98E-02	8.43E-04	3.08E-01	2.11E-04
INCAS	Magnet Separator to		510	186,150	562	205,193	4-sided rubber	75%	PM10	1.10E-03	2.80E-04	1.02E-01	7.01E-05	2.56E-02	3.09E-04	1.13E-01	7.73E-05
IMF15	Iron Container	1				,	drop guards	/5%									
	(Outside B220)		510	186,150	562	205,193	, , , , , , , , , , , , , , , , , , , ,		PM2.5	1.10E-03	2.80E-04	1.02E-01	7.01E-05	2.56E-02	3.09E-04	1.13E-01	7.73E-05
				100,100	552	200,100			PM		7.65E-04	2.79E-01	1.91E-04	6.98E-02	8.43E-04	3.08E-01	2.11E-04
Total IMF15	Outside B220 Transfer	1	-	-	-	-	-		PM10		2.80E-04	1.02E-01	7.01E-05	2.56E-02	3.09E-04	1.13E-01	7.73E-05
TOTAL INIE 15	Points	1						· ·	PM10 PM2.5	-	2.80E-04	1.02E-01	7.01E-05	2.56E-02	3.09E-04	1.13E-01	7.73E-05

Notes

 Loading rates for material transfers are based on the maximum daily or annual input to B215 Raw Material Loading Hopper.
 Per Application Instructions and Forms for General Permit G40-C by West Virginia Department of Environmental Protection, Telescopic Chutes have a 75% control efficiency. Full Enclosures have an 80% control efficiency for dump bin unloading, crushing and screening, transfer and conveying, and loading material onto piles.
 Transfer Point Immission factors were taken from AP-42 Section 11.19.2. The Tertiary Crushing Source was assumed for both Mixing and Crushing. The Conveyor Transfer Point (uncontrolled) emission factor was assumed for all transfer points. No emission factor data is available for PM_{2.5} is assumed equal to PM₁₀.
 IMF17 consists of the B220 Material Handling Fugitives shown on the Material Handling Vents summary.

Sample Calculations:

Uncontrolled Emissions (ton/day; ton/year) = E (lb/ton) * Loading Rate (ton/day; ton/year) / 2000 (lb/ton)

Controlled Emissions = Uncontrolled Emissions (ton/day; ton/year) * (1 - Control Efficiency (%))

Uncontrolled/Controlled Emissions (tonne/day; tonne/year) = Uncontrolled/Controlled Emissions (ton/day; ton/year) * 0.9071847 tonne/ton

Total Fugitive Emissions Summary

		PM	Λ	PN	N ₁₀	PM	2.5
		CONTROLLED Emiss		CONTROLLED		CONTROLLED Emiss	
Source ID	Source Description	(short tons/yr)	(tonne/year)	(short tons/vr)	(tonne/year)	(short tons/yr)	(tonne/year)
B210/B211	Raw Material Storage - Delivery to 210 [from offsite (by truck) or from stockpile (by FEL)]	0.28	0.26	0.13	0.12	0.02	0.02
B170	Melting Furnace Portable Crusher & Storage - Melting Furnace Slag Portable Crusher + Drop to Pit Waste (170) (from portable crusher) + Wind Erosion from Pit Waste (170) Stockpile	0.59	0.53	0.27	0.25	0.06	0.05
RMS	Raw Material Stockpile - Delivery to Stockpile [from offsite (by truck)] + Wind Erosion from Raw Material Stockpile	0.20	0.18	0.10	0.09	0.015	0.013
B215	Raw Material Loading Hopper	5.62E-02	5.10E-02	2.66E-02	2.41E-02	4.03E-03	1.46E-02
RM_REJ	Raw Material Reject Collection Drop	1.12E-03	1.02E-03	5.32E-04	4.83E-04	8.05E-05	7.31E-05
IMF17	B220 Material Handling Fugitives	1.39	1.26	0.51	0.46	0.51	0.46
IMF12	Conveyor Transfer Point (B215)	6.16E-02	5.58E-02	2.26E-02	2.05E-02	2.26E-02	2.05E-02
IMF16	Conveyor Transfer Point (B300)	6.16E-02	5.58E-02	2.26E-02	2.05E-02	2.26E-02	2.05E-02
IMF15	Outside B220 Transfer Points	7.69E-02	6.98E-02	2.82E-02	2.56E-02	2.82E-02	2.56E-02
IMF14	Raw Material Reject Stockpile	1.81E-03	1.64E-03	8.51E-04	7.72E-04	1.36E-04	1.23E-04

Roxul USA Inc. dba ROCKWOOL Ranson, West Virginia Material Handling Vents

Modified units
New units

Removed units

nanunng vent		Removed unit	3			ME	RIC	S	METRIC			S	
						PN	, PM ₁₀				PN	1 2.5	
Source ID	Source Description ²	Fan Flo	w Rate	Exhaust Cor	ncentration	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions
		(Nm3/h)	(scfm)	(mg/Nm3)	(gr/scf)	(kg/hr)	(tonne/yr)	(lb/hr)	(ton/yr)	(kg/hr)	(tonne/yr)	(lb/hr)	(ton/yr)
IMF21	Charging Building Vacuum Cleaning Filter	500	316	5	0.002	2.50E-03	0.02	5.51E-03	0.02	1.25E-03	0.01	2.76E-03	0.01
IMF08	Sorbent Silo	1,200	758	5	0.002	6.00E-03	0.05	0.01	0.06	3.00E-03	0.03	6.61E-03	0.03
IMF07	Filter Fines Day Silo	1,250	790	5	0.002	6.25E-03	0.05	0.01	0.06	3.13E-03	0.03	6.89E-03	0.03
IMF07	Total Indoor with Settling Factor (80%) ³	-	-	-	-	1.25E-03	0.01	2.76E-03	0.01	6.25E-04	0.01	1.38E-03	0.01
IMF09	Spent Sorbent Silo	1,200	758	5	0.002	6.00E-03	0.05	0.01	0.06	3.00E-03	0.03	6.61E-03	0.03
IMF10	Filter Fines Receiving Silo	1,200	758	5	0.002	6.00E-03	0.05	0.01	0.06	3.00E-03	0.03	6.61E-03	0.03
IMF11	Conveyor Transition Point (B215 to B220)	1,800	1,137	5	0.002	0.01	0.08	0.02	0.09	4.50E-03	0.04	9.92E-03	0.04
	Total Indoor with Settling Factor (80%) ³	-	-	-	-	1.80E-03	0.02	3.97E-03	0.02	9.00E-04	0.01	1.98E-03	0.01
	Conveyor Transition Point (B220 No. 1)	1,800	1,137	5	0.002	0.01	0.08	0.02	0.09	4.50E-03	0.04	0.01	0.04
	Conveyor Transition Point (B220 No. 2)	1,800	1,137	5	0.002	0.01	0.08	0.02	0.09	4.50E-03	0.04	0.01	0.04
B220 Conveyor	Mixer	3,500	2,211	5	0.002	0.02	0.15	0.04	0.17	8.75E-03	0.08	0.02	0.08
Transition Points,	Crusher	3,500	2,211	5	0.002	0.02	0.15	0.04	0.17	8.75E-03	0.08	0.02	0.08
Mixer, and	Total Indoor with Settling Factor (80%) ³	-	-	-	-	1.06E-02	0.09	0.02	0.10	5.30E-03	0.05	1.17E-02	0.05
Crusher with	Total Conveyor Transition Point (B220 No. 1)	-	-	-	-	1.80E-03	0.02	3.97E-03	0.02	9.00E-04	0.01	1.98E-03	0.01
Fabric Filters ⁴	Total Conveyor Transition Point (B220 No. 2)	-	-	-	-	1.80E-03	0.02	3.97E-03	0.02	9.00E-04	0.01	1.98E-03	0.01
	Total Mixer		-	-	-	3.50E-03	0.03	7.72E-03	0.03	1.75E-03	0.02	3.86E-03	0.02
	Total Crusher	-	-	-	-	3.50E-03	0.03	7.72E-03	0.03	1.75E-03	0.02	3.86E-03	0.02
CM10	Recycle Building Vent 1	30,000	18,950	10	0.004	0.30	2.63	0.66	2.90	0.15	1.31	0.33	1.45
CM11	Recycle Building Vent 2	30,000	18,950	10	0.004	0.30	2.63	0.66	2.90	0.15	1.31	0.33	1.45
CM08	Recycle Building Vent 3	2,500	1,579	10	0.004	0.03	0.22	0.06	0.24	0.01	0.11	0.03	0.12
CM09	Recycle Building Vent 4	2,500	1,579	10	0.004	0.03	0.22	0.06	0.24	0.01	0.11	0.03	0.12

Notes:

ton = short tons

tonne = metric tons

1. $PM_{2.5}$ is conservatively assumed to be 50% of PM for material handling.

2. Material handling vents are equipped with fabric filters or bin vent filters.

3. Per Application Instructions and Forms for General Permit G40-C by West Virginia Department of Environmental Protection, Full Enclosures have an 80% control efficiency for dump bin unloading, crushing and screening, transfer and conveying, and lo

4. Conveyor Transition Points (B220 No. 1) and (B220 No. 2) are accounted for with IMF17, as well as the Mixer and Crusher.

Sample Calculations

Hourly Emissions (kg/hr) = Fan Flow Rate (Nm³/hr) * Exhaust Concentration (mg/Nm³) * 1,000,000 (mg/kg)

Annual Emissions (tonne/yr) = Hourly Emissions (kg/hr) * 8,400 (hr/yr) / 1,000 (kg/tonne)

Hourly Emissions (lb/hr) = Fan Flow Rate (scfm) * Exhaust Concentration (gr/scf) / 7,000 (gr/lb) * 60 (min/hr)

Annual Emissions (ton/yr) = Hourly Emissions (lb/hr) * 8,400 (hr/yr) / 2,000 (lb/ton)

Roxul USA Inc. dba ROCKWOOL	Modified units
Ranson, West Virginia	New units
Source ID: Dry Ice Cleaning	Removed units

Operating Parameters, per Source

Dry Ice Production ¹	75	kg/hr
Annual Dry Ice Production	630,000	kg/yr
Operating Hours ²	8,400	hr/yr
CO ₂ Consumed ¹	2.2	(loss factor)

Emission Calculations⁴

	U	S	METRIC			
Source	Hourly	Annual	Hourly	Annual		
Source	(lb/hr)	(ton/yr)	(kg/hr)	(tonne/yr)		
CO ₂ Emitted	363.76	1,527.80	165.00	1,386.00		

Notes:

ton = short tons

tonne = metric tons

1. Dry ice production per manufacturer data sheet. CO_2 consumed (loss factor) represents the total quantity of CO_2 consumed to produce 1 kg CO_2 (accounts for CO_2 system loss).

2. For conservatism, emissions from dry ice cleaning station are based on 8,760 hours per year; however, the equipment will traverse from one end of the equipment to the other when cleaning and dry ice pellets are used only when in forward movement.

Sample Calculations:

Dry Ice Production Rate (kg/yr) = Hourly Dry Ice Production Rate (kg/hr) * 8,400 (hrs/yr) CO₂ Hourly Emission Rate (lb/hr) = Hourly Dry Ice Production Rate (kg/hr) * CO₂ Loss Factor * 2.2046 (lbs/kg) CO₂ Annual Emission Rate (ton/yr) = CO2 Emission Rate (lb/hr) * 8,400 (hr/yr) / 2,000 (lb/ton) CO2 Hourly Emission Rate (kg/hr) = Hourly Emission Rate (lb/hr) * 0.45359 (kg/lb) CO₂ Annual Emission Rate (tonne/yr) = Annual Emission Rate (ton/yr) * 0.90718 (tonne/ton)

Roxul USA Inc. dba ROCKWOOL Ranson, West Virginia Source ID: Fleece Application (CM12, CM13)

Modified units	
New units	
Removed units	

Operating Parameters, per Source	
----------------------------------	--

Binder Applied to Fleece	93	kg/hr
Operating Hours ¹	4,200	hr/yr
Annual Binder Usage at		
Fleece Station	388,500	kg/yr
Organic HAP Emission Limit ²	0.016	kg OHAP/kg binder

Emission Calculations³

	L	JS	ME	TRIC
Pollutant	Maximum E	mission Rate	Maximum E	mission Rate
	(lb/hr)	(ton/yr)	(kg/hr)	(tonne/yr)
VOC	3.26	6.85	1.48	6.22
Total HAP	3.26	6.85	1.48	6.22

Notes:

ton = short tons

tonne = metric tons

1. Emissions from the fleece application station are based on 4,200 hours per year.

2. The coating material, or in this case binder, regulated by NESHAP Subpart JJJJ is a compliant coating by formulation. The limit of 0.016 kg OHAP/kg coating material is stated in 40 CFR §63.3370(a)(2)(i) for the use of "as-applied" compliant coating materials from new affected sources (per §63.3320(b)(2) which states that HAP emissions must be limited to "no more than 1.6 percent of the mass of coating materials applied for each month at new affected sources"). Roxul may choose to comply with this limit using VOC as a surrogate for organic HAP as allowed by §63.3370(c)(1)(i) and §63.3360(c)(2). Therefore VOC emissions are shown as equal to organic HAP (Total HAP) emissions.

3. The fleece application equipment will be placed just prior to the entrance of the Curing Oven. While a majority of fleece application equipment emissions will be controlled by the Curing Oven afterburner as the fleece is cured onto the wet mineral wool in the Curing Oven, no credit is taken for VOC/organic HAP emission control in this calculation.

Sample Calculations:

Maximum Hourly Emission Rate (lb/hr) = Binder Applied to Fleece (kg/hr) * 0.016 (kg VOC/HAP / kg binder) * 2.2046 (lb/kg) Maximum Annual Emission Rate (ton/yr) = Maximum Hourly Emission Rate (lb/hr) * 4,200 (hr/yr) / 2,000 (lb/ton) Maximum Hourly Emission Rate (kg/hr) = Maximum Hourly Emission Rate (lb/hr) * 0.4535924 (kg/lb) Maximum Annual Emission Rate (tonne/yr) = Maximum Annual Emission Rate (ton/yr) * 0.9071847 (tonne/ton) Modified units

New units Removed units

Operating Parameters, PER BOILER

Maximum Heat Input	1,500	kw
Capacity	5.12	MMBtu/hr
Operating Hours	8,400	hr/yr
Fuel Type	Natural Gas	
Fuel HHV	1,026	MMbtu/MMscf

Maximum Potential Emissions^{1,2}

Maximum Potentia	al Emissions	1,2	U	S	MET	RIC
Pollutant	Emissio	n Factor	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions
	(lb/MMscf)	(lb/MMbtu)	(lb/hr)	(ton/yr)	(kg/hr)	(tonne/yr)
NO _x	72.42	0.0706	0.36	1.52	0.16	1.38
SO ₂	0.6	0.0006	3.00E-03	0.01	1.36E-03	0.01
PM/PM _{10F} /PM _{2.5F}	1.9	0.0019	0.01	0.04	4.30E-03	0.04
PM _{10T} /PM _{2.5T}	7.6	0.0074	0.04	0.16	0.02	0.14
Condensable PM	5.7	0.0056	0.03	0.12	0.01	0.11
CO	84	0.0819	0.42	1.76	0.19	1.60
VOC	5.5	0.0054	0.03	0.12	0.01	0.10
Lead	0.0005	4.87E-07	2.50E-06	1.05E-05	1.13E-06	9.51E-06
Hexane	1.8	0.0018	0.01	0.04	0.00	0.03
Total HAPs	1.89	0.0018	0.01	0.04	4.28E-03	0.04
CO ₂	-	116.98	599.25	2516.84	271.81	2,283.24
CH ₄	-	2.20E-03	0.01	0.05	5.12E-03	0.04
N ₂ O	-	2.20E-04	1.13E-03	4.74E-03	5.12E-04	4.30E-03
CO ₂ e ³	-	-	599.87	2,519.44	272.09	2,285.59

Notes:

ton = short tons

tonne = metric tons

1. Natural Gas emission factor source AP-42 Table 1.4-1, 1.4-2, 1.4-3, and 1.4-4 for SO₂, PM_{10T}, PM_{2.5T}, CO, VOC, GHG emission factors per 40 CFR Part 98, Table C-1 and C-2. GWPs per 40 CFR 98, Table A-1.

 NO_X emission factor based on 60 ppmvd @ 3% O2 per manufacturer specification.

2. PM_{10T} and PM_{2.5T} emission factors include filterable and condensable particulate matter (e.g., Total PM₁₀, PM_{2.5}).

3. CO₂ Equivalent (CO₂e) lb/hr, ton/yr = CO₂ + [GWP_{CH4} * CH₄)] + [GWP_{N20} * N₂O].

Sample Calculations:

Hourly Emissions (lb/hr) = Emission Factor (lb/MMBtu) * Maximum Heat Input Capacity (MMBtu/hr)

Annual Emissions (ton/yr) = Hourly Emissions (lb/hr) * 8400 (hr/yr) / 2,000 (lb/ton)

Hourly Emissions (kg/hr) = Hourly Emissions (lb/hr) /2.2046 (lb/kg)

Annual Emissions (tonne/yr) = Hourly Emissions (kg/hr) * 8400 (hr/yr) / 1,000 (kg/tonne)

	West Virginia): Facility-wide Storage Tanks	New units Removed units												-			us					ME	TRIC		
															VOC Emissions		Spec	ated HAP Emission	ns.		VOC Emissions			ed HAP Emissi	ions
Rockwool				Capacity	Height	Diameter	Throughput			Temp.	Sto Temp	rage erature	Pressurized?	Breathing Loss ²	Working Loss	Total Loss ³	Total Formaldehyde			Breathing Loss ²	Working Loss	Total Loss ³	Total Formaldehyde	Total Methanol	Total Pheno
iource ID ⁶	Description	Material Stored	Tank Orientation	(gal)	(ft)	(ft)	(gal/yr)	Fill Method	Roof Type	Controlled?	deg C	deg F	(Y, N)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)	(tonne/yr)
TK-DF	One (1) Diesel Fuel Horizontal Storage Tank (4.7 m3, 1,242 gal)	Diesel Fuel	Horizontal	1,242	16.4	4.4	52,834	Splash Pump	Flat	No	Ambient	Ambient	No	1.18E-04	4.33E-04	5.51E-04	-	•		1.07E-04	3.93E-04	5.00E-04			
тк-тоз	One (1) Thermal Oil Horizontal Tank (20 m3, 5,283 gal)	Thermal Oil	Horizontal	5,283	21.0	6.6	698	Splash Pump	Flat	Yes	200	392	No		2.18E-03	2.18E-03	-				1.98E-03	1.98E-03	-		
тк-то4	One (1) Thermal Oil Horizontal Expansion Tank (7.3 m3, 1,928 gal)	Thermal Oil	Horizontal	1,928	13.0	5.2	698	Splash Pump	Flat	Yes	200	392	No		2.18E-03	2.18E-03	-				1.98E-03	1.98E-03	-		
TK-RS1	No. 1 of Six (6) Resin Vertical Storage Tanks (ea. 50 m3, 13,209 gal)	Resin	Vertical	13,209	21.0	13.8	317,007	Splash Air Off or Pump	Cone	Yes	20	68	No		0.02	0.02	0.02	1.54E-04			0.02	0.02	0.02	1.39E-04	
TK-RS2	No. 2 of Six (6) Resin Vertical Storage Tanks (ea. 50 m3, 13,209 gal)	Resin	Vertical	13,209	21.0	13.8	317,007	Splash Air Off or Pump	Cone	Yes	20	68	No		0.02	0.02	0.02	1.54E-04			0.02	0.02	0.02	1.39E-04	
TK-RS3	No. 3 of Six (6) Resin Vertical Storage Tanks (ea. 50 m3, 13,209 gal)	Resin	Vertical	13,209	21.0	13.8	317,007	Splash Air Off or Pump	Cone	Yes	20	68	No		0.02	0.02	0.02	1.54E-04			0.02	0.02	0.02	1.39E-04	
TK-RS4	No. 4 of Six (6) Resin Vertical Storage Tanks (ea. 50 m3, 13,209 gal)	Resin	Vertical	13,209	21.0	13.8	317,007	Splash Air Off or Pump	Cone	Yes	20	68	No		0.02	0.02	0.02	1.54E-04			0.02	0.02	0.02	1.39E-04	
TK-RS5	No. 5 of Six (6) Resin Vertical Storage Tanks (ea. 50 m3, 13,209 gal)	Resin	Vertical	13.209	21.0	13.8	317.007	Solash Air Off or Pump	Cone	Yes	20	68	No		0.02	0.02	0.02	1.54E-04			0.02	0.02	0.02	1.39E-04	
TK-RS6	No. 6 of Six (6) Resin Vertical Storage Tanks (ea. 50 m3, 13,209 gal)	Resin	Vertical	13.209	21.0	13.8	317.007	Solash Air Off or Pump	Cone	Yes	20	68	No		0.02	0.02	0.02	1.54E-04			0.02	0.02	0.02	1.39E-04	
TK-CA	One (1) Coupling Agent Vertical Storage Tank (1.5 m3, 396 gal)	Coupling Agent Solution	Vertical	396	6.0	3.6	4.227	Solash Pump	Cone	No	Ambient	Ambient	No	2.03E-05	2.29E-05	4.31E-05				1.84E-05	2.07E-05	3.91E-05			
TK-AD	One (1) Additive Vertical Storage Tank (1.5 m3, 396 gal)	Binder Additive	Vertical	396	6.0	3.6	17.171	Solash Pump	Cone	No	Ambient	Ambient	No	2.03E-06	7.97E-05	8.17E-05				1.84E-06	7.23E-05	7.41E-05			
TK-ADB1	One (1) Vertical Additive Buffer Tank (1.5 m3, 396 gal)	Binder Solution	Vertical	396	6.0	3.6	65,000	Splash Pump	Cone	No	Ambient	Ambient	No	2.03E-05	1.23E-04	1.43E-04	0.00	0.00E+00		1.84E-05	0.00	0.00	0.00	0.00E+00	
TK-ADB2	One (1) Vertical Additive Buffer Tank (0.5 m3, 132 gal)	Binder Solution	Vertical	132	4.0	2.6	21,667	Splash Pump	Cone	No	Ambient	Ambient	No	7.05E-06	0.00	0.00	0.00	0.00E+00		6.40E-06	0.00	0.00	0.00	0.00E+00	
TKGIY	One (1) Vertical Glycol Storage Tank (1.5 m3, 396 gal)	Givcol	Vertical	396	6.0	3.6	4.752	Solash Pump	Flat	No	Ambient	Ambient	No	2.90E-06	0.00	0.00	0.00	0.00E+00		0.00E+00	0.00	0.00	0.00	0.00E+00	

Ambient Ambient

Ambient Ambient

Ambient Ambient

Ambient Ambient

Ambient Ambient

Ambient

Ambient

2.50E-04

2.50E-04

2.50E-04

1.61E-04

3.72E-05

3.72E-05

3.72E-05

1.79E-05

No

No

No

No

No

No

2.87E-04

2.87E-04

2.87E-04

1.79E-04

0.03

0.03

2.84E-04

2.84E-04

2.84E-04

2.45E-06

2.45E-06

2.45E-06

9.30E-04

2.58E-04

2.58E-04

2.58E-04

0.10

2.60E-04

2.60E-04

1.62E-04

0.03

0.03

3.38E-05 2.26E-04 2.60E-04

2.26E-04

1.46E-04

3.38E-05 2.26E-04

3.38E-05

1.62E-05

2.22E-06

2.22E-06

2.22E-06

0.00

Flat

Flat

Cone

Flat

No

No

No

No

No

No

Splash Pump

Splash Pump

Splash Pump

Splash Pump

7.8 3.6 130,325 Splash Pump Flat

130,325

52,834

266,471

397 5.0 4.2 266,471 Splash Pump Flat

7.8 3.6 130,325

7.8 3.6

5.0 3.0

8.6 4.0

TK-DOD One (1) De-dust Oil Vertical Day Tank (1 m3, 264 gal). De-dust Oil Vertical TK-PD One (1) Paint Dilution Storage Tank (3 m3, 793 gal) Diluted Water-based Paint Vertical TK-PDD One (1) Paint Dilution Day Tank (1.5 m3, 397 gal) Diluted Water-based Paint Vertical

TK-BS1 No. 1 of Three (3) Binder Storage Containers (ea. 1 m3, 264 gal)

TK-BS2 No. 2 of Three (3) Binder Storage Containers (ea. 1 m3, 264 gal)

TK-BS3 No. 3 of Three (3) Binder Storage Containers (ea. 1 m3, 264 gal)

Fleece Coating

Fleece Coating

Fleece Coating

 Other
 Open Control Day Tank (1 Sm.) 207 gpt)
 Diverse
 over 1
 <th

Vertical

Vertical

Vertical

264

264

264

264.172

793

138 of 145

Roxul USA Inc. dba ROCKWOOL Ranson, West Virginia Source ID: Facility-wide Fugitive Emissions from Paved Haul Roads

Emission Estimate For Paved Haulroads¹

k =	PM particle size multiplier ((lb/VMT))	0.011
k ₁₀ =	PM10 particle size multiplier ((lb/VMT))	0.0022
k _{2.5} =	PM2.5 particle size multiplier ((lb/VMT))	0.00054
sL _{finishedprod} ² =	Finished product road surface silt loading, (g/m*2)	0.2
sL _{cawrat} ³ =	Raw materials road surface silt loading, (g/m^2)	8.2
W ⁶ =	Mean Vehicle Weight (tons)	see table
P ⁴ =	Number of days per year with precipitation >0.01 inch	148
N =	Number of days in averaging period	365
CE ⁵	Control Efficiency. %	75%
	Maximum Weeks of Operation per year:	52
	Hours of Operation per year:	8 760

IIS IInite

		Empty	Load Carried	Loaded	W, Mean		Maximum					PM						PM-10						PM	-2.5		
Item No.	Description	Vehicle Weight	Weight ²	Vehicle Weight ³	Vehicle Weight	Miles per Trip	Trips Per Day, Per Year ²	Maximum Trips Per Week	Maximum Trips Per Year	Uncontrolled Emission Factor	Uncontrolle	d Emissions	Controlled	Emissions	Uncontrolled Emission Factor	Uncontrolle	d Emissions	Controlled	Emissions	Total Modele Ra		Uncontrolled Emission Factor	Uncontroller	Emissions	Controlled		Total Modeled Emission Rate ¹
		(tons)	(tons)	(tons)	(tons)		rear			(Ib/VMT)	(ton/day)	(ton/year)	(ton/day)	(ton/year)	(Ib/VMT)	(ton/day)	(ton/year)	(ton/day)	(ton/year)	24-hr (g/s)	Annual (g/s)	(Ib/VMT)	(ton/day)	(ton/year)	(ton/day)	(ton/year)	24-hr (g/s)
1	Truck - Oil	10	23.1	33.1	21.6	0.46	1	1	52	1.54	3.54E-04	0.02	8.85E-05	4.60E-03	0.31	7.08E-05	3.68E-03	1.77E+05	9.20E-04	1.86E-04	2.65E-05	0.08	1.74E-05	9.03E-04	4.34E-06	2.26E-04	4.56E-05
2	Truck - Oxygen	10	2.5	12.5	11.3	0.46	4	22	1,144	0.79	7.29E-04	0.21	1.82E-04	0.05	0.16	1.46E-04	0.04	3.65E-05	0.01	3.83E-04	3.00E-04	0.04	3.58E-05	0.01	8.95E-06	2.56E-03	9.40E-05
3	Truck - Raw Material (Stone) to 210	10	38.6	40.0	25.0	0.46	28	128	6,656	1.79	0.01	2.74	2.91E-03	0.68	0.36	2.32E-03	0.55	5.81E-04	0.14	6.10E-03	3.94E-03	0.09	5.71E-04	0.13	1.43E-04	0.03	1.50E-03
4	Truck - DeSOx and Binder	10	23.1	33.1	21.6	0.46	2	13	676	1.54	8.36E-04	0.24	2.09E-04	0.06	0.31	1.67E-04	0.05	4.18E-05	0.01	4.39E-04	3.44E-04	0.08	4.11E-05	0.01	1.03E-05	2.94E-03	1.08E-04
5	Truck - Waste	10	23.1	33.1	21.6	0.46	1	5	260	1.54	3.22E-04	0.09	8.04E-05	0.02	0.31	6.43E-05	0.02	1.61E-05	4.60E-03	1.69E-04	1.32E-04	0.08	1.58E-05	4.52E-03	3.95E-06	1.13E-03	4.15E-05
6	Truck - Pallet and Foil	10	33.3	40.0	25.0	0.76	5	25	1,300	0.06	1.05E-04	0.03	2.63E-05	0.01	0.01	2.10E-05	0.01	5.26E-06	1.50E-03	5.52E-05	4.33E-05	2.99E-03	5.17E-06	1.48E-03	1.29E-06	3.69E-04	1.36E-05
7	Truck - Finished Goods	10	6.6	16.6	13.3	0.76	73	400	20,800	0.03	8.85E-04	0.25	2.21E-04	0.06	0.01	1.77E-04	0.05	4.43E-05	0.01	4.65E-04	3.64E-04	1.57E-03	4.34E-05	0.01	1.09E-05	3.11E-03	1.14E-04
8*	FEL - Diverted Melt from Bldg 300 to Pit Waste (170)	14.5	6.6	21.1	17.8	0.27	67		12,295	1.26	0.01	2.10	2.87E-03	0.52	0.25	2.30E-03	0.42	5.74E-04	0.10	6.03E-03	3.01E-03	0.06	5.64E-04	0.10	1.41E-04	0.03	1.48E-03
94	FEL - Crushed Melt from 170 to 210	14.5	6.6	21.1	17.8	0.1	67		12.295	1.26	4.25E-03	0.78	1.06E-03	0.19	0.25	8.50E-04	0.16	2.13E-04	0.04	2.23E-03	1.12E-03	0.06	2.09E-04	0.04	5.22E-05	0.01	5.48E-04
10 ⁴	FEL - Raw Material from 210 to Feed Hopper	14.5	6.6	21.1	17.8	0.06	85		31.147	1.26	3.23E-03	1.18	8.08E-04	0.29	0.25	6.46E-04	0.24	1.62E-04	0.06	1.70E-03	1.70E-03	0.06	1.59E-04	0.06	3.97E-05	0.01	4.16E-04
11.4	FEL - Raw Material from Stockpile to 210	14.5	6.6	21.1	17.8	0.16	115		31,147	1.26	0.01	3.15	2.91E-03	0.79	0.25	2.33E-03	0.63	5.83E-04	0.16	0.01	4.52E-03	0.06	5.72E-04	0.15	1.43E-04	0.04	1.50E-03
	Truck - Raw Material from Stockpile to 210 (add'1 miles over Item																										
12	3)	10.0	38.6	40.0	25.0	0.27	30		1,087	1.79	0.01	0.26	1.81E-03	0.07	0.36	1.45E-03	0.05	3.62E-04	0.01	3.80E-03	3.77E-04	0.09	3.56E-04	0.01	8.89E-05	3.22E-03	9.33E-04
									TOTAL Raw Materi	al (Item 1-5, 8-12)	0.05	10.75	0.01	2.69		0.01	2.15	0.003	0.54	0.03	0.02		0.003	0.53	6.35E-04	0.13	6.67E-03
								т	OTAL Finished Pro	ducts (Items 6.7)	9.90E-04	0.28	2.48E-04	0.07		1.98E-04	0.06	4.95E-05	0.01	5.20E-04	4.07E-04		4.86E-05	0.01	1.22E-05	3.48E-03	1.28E-04

Source	Pollutant	No. of Modeled	PER SEGME Emissio	ENT Modeled In Rates ¹
		Segments	24-hr (g/s)	Annual (g/s)
Raw Material Paved Haul	PM-10	31	8.76E-04	4.99E-04
Roads	PM-2.5		2.15E-04	1.22E-04
Finished Products	PM-10	35	1.49E-05	1.16E-05
Paved Haul Roads	PM-2.5		3.65E-06	2.86E-06

Metric Units

em No. Description	Empty Vehicle Weight	Load Carried Weight	Loaded Vehicle	W, Mean						PM						PM-10							PM-2.5			
			Weight	Vehicle Weight	km per Trip	Maximum Trips Per Week	Maximum Trips Per Year	Uncontrolled Emission Factor	Uncontrolle	d Emissions	Controlled	Emissions	Uncontrolled Emission Factor	Uncontrolled	d Emissions	Controlled	Emissions	Total Modeled		Emission Factor	Uncontrolle	d Emissions	Controlled	Emissions	Total Modele	
	(tonnes)	(tonnes)	(tonnes)	(tonnes)		HUUK		(kg/VMT)	(tonne/day)	(tonne/year)	(tonne/day)	(tonne/year)	(kg/VMT)	(tonne/day)	(tonne/year)	(tonne/day)	(tonne/year)	24-hr (a/s)	Annual (g/s)	(kg/VMT)	(tonne/day)	(tonne/year)	(tonne/day)	(tonne/year)	24-hr (g/s)	Annua (g/s)
1 Truck - Oil	9.07	21.0	30.1	19.6	0.74	1	52	0.70	3.21E-04	0.02	8.03E-05	4.17E-03	0.14	6.42E-05	3.34E-03	1.61E-05	8.35E-04			0.03	1.58E-05	8.20E-04	3.94E-06	2.05E-04		
2 Truck - Oxygen	9.07	2.3	11.4	10.2	0.74	22	1,144	0.36	6.61E-04	0.19	1.65E-04	0.05	0.07	1.32E-04	0.04	3.31E-05	0.01			0.02	3.25E-05	0.01	8.12E-06	2.32E-03		
3 Truck - Raw Material (Stone) to 210 or Stockpile	9.07	35.0	36.3	22.7	0.74	128	6,656	0.81	1.05E-02	2.48	2.64E-03	0.62	0.16	2.11E-03	0.50	5.27E-04	0.12			0.04	5.18E-04	0.12	1.29E-04	0.03		
4 Truck - DeSOx and Binder	9.07	21.0	30.1	19.6	0.74	13	676	0.70	7.59E-04	0.22	1.90E-04	0.05	0.14	1.52E-04	0.04	3.79E-05	0.01	1		0.03	3.73E-05	0.01	9.31E-06		1	
5 Truck - Waste	9.07	21.0	30.1	19.6	0.74	5	260	0.70	2.92E-04	0.08	7.30E-05	0.02	0.14	5.84E-05	0.02	1.46E-05	4.17E-03	1		0.03	1.43E-05	4.10E-03	3.58E-06	1.02E-03	1	
6 Truck - Pallet and Foil	9.07	30.2	36.3	22.7	1.22	25	1.300	0.03	9.55E-05	0.03	2.39E-05	0.01	0.01	1.91E-05	0.01	4.77E-06	1.37E-03	1		1.36E-03	4.69E-06	1.34E-03		3.35E-04	1	
7 Truck - Finished Goods	9.07	6.0	15.1	12.1	1.22	400	20,800	0.01	8.03E+04	0.23	2.01E-04	0.06	2.91E-03	1.61E-04	0.05	4.01E-05	0.01			7.13E-04	3.94E-05	0.01	9.85E-06	2.82E-03		
8 FEL - Diverted Melt from Bidg 300 to Pit Waste (170)	13.13	6.0	19.1	16.1	0.43		13,553	0.57	1.04E-02	1.90	2.60E-03		0.11	2.08E-03	0.38	5.21E-04	0.10	1		0.03	5.11E-04	0.09	1.28E-04	0.02	1	
9 FEL - Crushed Melt from 170 to 210	13.13	6.0	19.1	16.1	0.16		13,553	0.57	3.86E+03	0.70	9.64E-04	0.18	0.11	7.72E-04	0.14	1.93E-04	0.04	1		0.03	1.89E-04	0.03	4.73E-05	0.01	1	
10 FEL - Raw Material from 210 to Feed Hopper	13.13	6.0	19.1	16.1	0.10		34.333	0.57	2.93E-03	1.07	7.33E-04	0.27	0.11	5.86E-04	0.21	1.47E-04	0.05	1		0.03	1.44E-04	0.05	3.60E-05		1	
11 FEL - Raw Material from Stockpile to 210	13.13	6.0	19.1	16.1	0.26		34,333	0.57	0.01	2.85	2.64E-03	0.71	0.11	2.12E-03	0.57	5.29E-04	0.14			0.03	5.19E-04	0.14	1.30E-04	3.50E-02		
Truck - Raw Material from Stockpile to 210 (add1 miles over Iter	9.07																									
12 3)	9.07	35.0	36.3	22.7	0.43		1,087	0.81	6.57E-03	0.24	1.64E-03	0.06	0.16	1.31E-03	0.05	3.29E-04	0.01			0.04	3.23E-04	0.01	8.06E+05	2.92E-03		
							OTAL Raw Materi		0.05 8.98E-04	9.76 0.26	0.01 2.25E-04	2.44		9.39E-03 1.80E-04	1.95	0.002 4.49E-05	0.49				0.002 4.41E-05	0.48	5.76E-04 1.10E-05			
short tons = rentic tons front end loader divided emission rates in gray are not modeled as a total, but divided out an summar. This per Day, Maximum Trings per Year, and Data Carried Webby Ton to the per Day of the tons of the source provided the source of the Lampive initial evel that based on ourschild a do at 0000 Webb to C Dd screening tool. The annual steady-state-equivalent emission rate (D) or strotled: Day Emissions (torvisity) = (E(DVMT) ⁺ Miles per tho ⁻ Max trips ⁻ Max	by truck are base ht, unless the sur ader Standard Lit as determined b er day / 2000 (Ib. per year / 2000	d on data from a m is greater than ft. FEL load carrie ased on maximur /ton) (Ib/ton) fay, ton/year) * (1	similar Roxul far 40 tons, which is d weight based n daily emission - Control Efficie	s the maximum I on Cat 930K W ns. For example	heel Loader QPM10 (tp	General Purp y) = PM10 (tor	ose bucket capac	ity, throughput fro			approximate wei	ght of basalt rock	per cubic yard b	y Pacific Mountair	n Masonry.											

Note: 1. Prever blastrade emission feder equation per AP-42 Table 13.2.5.2.1.3.Equation 2. January 2011). 2. Friended product roots surfaces all loading based on AP-42 Table 13.2.5.2.2.1.3.Tigotal SIL Control Unders with Hel Spot Contributions from Arif-Skil Abraviews. ADT Category 500-5.000. 3. Rear instraints root surfaces all loading based on AP-42 Table 13.2.5.2.1.3.Tigotal SIL Content and Loading Values for Pavel Roads at Industrial Facilities, Quarry Industry. 4. Number of days per year with precipitation greater han 0.01 Inch based on Table 8. Precipitation Zones in West Vigitals in Application Instructions and Forms for General Permit G40-C by West Virginia Department of Environmental Protection. 5. Control Elicities Content with entity elicities web and Table 8. A control web/dit.

Sample Calculations: E (Ib/vehicle mile traveled (VMT)) = [k * (sL)^0.91 * (W)^1.02] * (1 - (P/4*N)

Roxul USA Inc. dba ROCKWOOL Ranson, West Virginia Source ID: Natural Gas Boilers (CM03, CM04)

Modified units New units Removed units

Operating Parameters, PER BOILER

Maximum Llast Innut Canasity	1,462	kw
Maximum Heat Input Capacity	4.99	MMBtu/hr
Operating Hours	8,760	hr/yr
Fuel Type	Natural Gas	
Fuel HHV	1,026	MMbtu/MMscf

Maximum Potential Emissions ^{1,2}			U	5	MET	RIC
Pollutant	Emissio	n Factor	Hourly Emissions Per Source	Annual Emissions Per Source	Hourly Emissions Per Source	Annual Emissions Per Source
	(lb/MMscf)	(lb/MMbtu)	(lb/hr)	(ton/yr)	(kg/hr)	(tonne/yr)
NO _x	36.21	0.0353	0.18	0.77	0.08	0.70
SO ₂	0.6	0.0006	2.92E-03	0.01	1.32E-03	0.01
PM/PM _{10F} /PM _{2.5F}	1.9	0.0019	0.01	0.04	4.19E-03	0.04
PM _{10T} /PM _{2.5T}	7.6	0.0074	0.04	0.16	0.02	0.15
Condensable PM	5.7	0.0056	0.03	0.12	0.01	0.11
CO	84	0.0819	0.41	1.79	0.19	1.62
VOC	5.5	0.0054	0.03	0.12	0.01	0.11
Lead	0.0005	4.87E-07	2.43E-06	1.07E-05	1.10E-06	9.66E-06
Hexane	1.8	0.0018	0.01	0.04	0.00	0.03
Total HAPs	1.89	0.0018	0.01	0.04	4.17E-03	0.04
CO ₂	-	116.98	583.72	2556.68	264.77	2,319.38
CH ₄	-	2.20E-03	0.01	0.05	4.99E-03	0.04
N ₂ O	-	2.20E-04	1.10E-03	4.82E-03	4.99E-04	4.37E-03
CO ₂ e ³	-	-	584.32	2,559.32	265.04	2,321.77

EMISSIONS SHOWN FOR AN INDIVIDUAL EMISSION POINT (PER BOILER)

Notes:

ton = short tons

tonne = metric tons

1. Natural Gas emission factor source AP-42 Table 1.4-1, 1.4-2, 1.4-3, and 1.4-4 for SO₂, PM₁₀₁, PM_{2.57}, CO, VOC, Lead, Hexane, Total HAPs, Chromium. GHG emission factors per 40 CFR Part 98, Table C-1 and C-2. GWPs per 40 CFR 98, Table A-1. NO_x emission factor based on 30 ppmvd @ 3% O2 per manufacturer specification.

2. PM_{10T} and PM_{2.5T} emission factors include filterable and condensable particulate matter. 3. CO₂ Equivalent (CO₂e) lb/hr, ton/yr = CO₂ + [GWP_{CH4} * CH₄)] + [GWP_{N20} * N₂O].

Sample Calculations:

Hourly Emissions (lb/hr) = Emission Factor (lb/MMBtu) * Maximum Heat Input Capacity (MMBtu/hr) Annual Emissions (ton/yr) = Hourly Emissions (lb/hr) * 8,760 (hr/yr) / 2,000 (lb/ton)

Hourly Emissions (kg/hr) = Hourly Emissions (lb/hr) * 0.4535924 kg/lb

Annual Emissions (tonne/yr) = Hourly Emissions (kg/hr) * 8,760 (hr/yr) / 1,000 (kg/tonne)

Roxul USA Inc. dba ROCKWOOL Ranson, West Virginia Source ID: Emergency Fire Pump Engine (EFP1)

Modified units New units Removed units

Operating Parameters, per fire pump engine Fuel type

Diesel 316 236 Maximum Firing Rate 2.21 Operating hours 500

MMBtu/hr

hp kw

hr/yr

0.0015% Sulfur

Maximum Potential Emissions

otential Emissions				U	S	MET	RIC
Pollutant		Emission	Factor	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions
	g/kw-hr	lb/hp-hr	Source	(lb/hr)	(ton/yr)	(kg/hr)	(tonne/yr)
Filterable PM/PM ₁₀ /PM _{2.5} ¹	0.11	1.81E-04	Manufacturer Rating Data	0.06	0.01	0.03	0.01
PM _{10T}	-	2.35E-04	Filterable + Condensable	0.07	0.02	0.03	0.02
PM _{2.5T}	-	2.35E-04	Filterable + Condensable	0.07	0.02	0.03	0.02
Condensable PM ²	-	5.39E-05	AP-42, Tbl. 3.4-2	0.02	4.26E-03	7.73E-03	3.87E-03
NO _x ⁴	3.43	5.639E-03	Manufacturer Rating Data	1.78	0.45	0.81	0.40
CO	0.8	1.315E-03	Manufacturer Rating Data	0.42	0.10	0.19	0.09
SO ₂	-	1.09E-05	Mass Balance	3.44E-03	8.61E-04	1.56E-03	7.81E-04
Combustion VOC ⁵	0.11	1.808E-04	Manufacturer Rating Data	0.06	0.01	0.03	0.01
Total HAPs ²	-	2.71E-05	AP-42, (3.87x10 ⁻³ lb/MMBtu)	8.58E-03	2.14E-03	3.89E-03	1.95E-03
CO ₂	-	1.14	40 CFR 98, Tbl C-1 (73.96 kg/MMBtu)	360.75	90.19	163.64	81.82
CH ₄	-	4.63E-05	40 CFR 98, Tbl C-2 (3.0x10-3 kg/MMBtu)	1.46E-02	3.66E-03	6.64E-03	3.32E-03
N ₂ O	-	9.25E-06	40 CFR 98, Tbl C-2 (6.0x10-4 kg/MMBtu)	2.93E-03	7.32E-04	1.33E-03	6.64E-04
CO ₂ e ³	-	-	-	361.99	90.50	164.20	82.10

Notes:

ton = short tons

tonne = metric tons

Conservatively assuming PM= PM₁₀, PM_{2.5}.
 Per AP-42, used average brake specific fuel consumption of 7,000 Btu/hp-hr to convert lb/MMBtu emission factors to lb/hp-hr.
 CO₂ Equivalent (CO₂e) lb/hr, ton/yr = CO₂ + [GWP_{CH4} * CH₄)] + [GWP_{N20} * N₂O]. GWPs per 40 CFR 98, Table A-1 [CO₂ = 1, CH₄ = 25, N₂O = 298].
 Conservatively assumed all NSPS NOX + NMHC limit emitted as NO_X.

5. Conservatively assumed total hydrocarbons=TOC=VOC

Sample Calculations:

Sample Calculations: Hourly Emissions (lb/hr) = Emission Factor (lb/hp-hr) * Maximum Firing Rate (hp) Annual Emissions (ton/yr) = Hourly Emissions (lb/hr) * 500 (hr/yr) / 2,000 (lb/ton) Hourly Emissions (kg/hr) = Hourly Emissions (lb/hr) * 0.4535924 kg/lb Annual Emissions (tonne/year) = Annual Emissions (ton/year) * 0.9071847 tonne/ton

Modified units New units Removed units

Operating Parameters, Curing Oven

	Maximum Hea	t Input Capacity
	MW	MMBtu/hr
Afterburner	2.9	9.86
Circulation Burner #1		
	1.7	5.81
Circulation Burner #2		
	1.7	5.81
Total	6.3	21.47
Operating Hours	8,400	hr/yr
Fuel Type	Natural Gas	
Fuel HHV	1,026	MMbtu/MMscf

Maximum Potential Emissions			U	5	M	
Pollutant	Emissio	n Factor	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions
Ponutant	(Ib/MMscf) for SO ₂ (kg/MMBtu) for GHG	(lb/MMbtu)	(lb/hr)	(ton/yr)	(kg/hr)	(tonne/yr)
SO ₂	0.6	0.0006	0.01	0.05	5.70E-03	0.05
Combustion - CO ₂	53.06	116.98	2511.69	10,549.09	1139.28	9,569.97
Combustion - CH ₄	1.0E-03	2.20E-03	0.05	0.20	0.02	0.18
Combustion - N ₂ O	1.0E-04	2.20E-04	0.00	0.02	2.15E-03	0.02
Process - N ₂ O	N/A	N/A	20.06	84.26	9.1	76.44
Total - N ₂ O	-	-	20.07	84.28	9.10	76.46

Notes:

ton = short tons

tonne = metric tons

1. Natural Gas emission factor source AP-42 Table 1.4-2 for SO2. GHG emission factors per 40 CFR Part 98, Table C-1 and C-2. GWPs per 40 CFR 98, Table A-1.

2. Maximum g/s emissions do not vary based on model averaging period (i.e., a source permitted to operate at maximum capacity 24 hr/day, 365 day/year).

Sample Calculations:

Hourly Emissions (lb/hr) = Emission Factor (lb/MMBtu) * Maximum Heat Input Capacity (MMBtu/hr)

Annual Emissions (ton/yr) = Hourly Emissions (lb/hr) * 8,760 (hr/yr) / 2,000 (lb/ton)

Hourly Emissions (kg/hr) = Hourly Emissions (lb/hr) /2.2046 (lb/kg)

Annual Emissions (tonne/yr) = Hourly Emissions (kg/hr) * 8,760 (hr/yr) / 1,000 (kg/tonne)

Operating Parameters, Melting Furnace

Operating Hours	8,400	hr/yr
Fuel Type	Natural Gas	
Maximum Heat Input Capacity	6.8	MW
Maximum ricat input Capacity	128.48	MMBtu/hr
Fuel HHV	1,026	MMbtu/MMscf

100 120,000

Process CO2 Emission Factor

kg/tonne line wool tonne/yr line wool

Maximum Potential Emissions^{1,2}

Maximum Potential Emissions ^{1,2}		U	IS	METRIC			
Pollutant	Emissio	on Factor	Hourly Emissions	Annual Emissions	Hourly Emissions	Annual Emissions	
	(kg/MMBtu)	(lb/MMbtu)	(lb/hr)	(ton/yr)	(kg/hr)	(tonne/yr)	
NG - CO ₂	53.06	116.98	15,029.22	63,122.73	6.82E+03	57,263.99	
NG - CH ₄	0.001	2.20E-03	0.28	1.19	0.13	1.08	
NG - N ₂ O	0.0001	2.20E-04	0.03	0.12	1.28E-02	0.11	
Process - CO ₂	N/A	N/A	3,306.93	13,227.73	1,500.00	12,000.00	
Total - CO ₂	-	-	18,336.15	76,350.47	8,317.14	69,263.99	
Total - CH ₄	-	-	0.28	1.19	0.13	1.08	
Total - N ₂ O	-	-	0.03	0.12	0.01	0.11	

tonne = metric tons

1. GHG emission factors per 40 CFR Part 98, Table C-1 and C-2. GWPs per 40 CFR 98, Table A-1.

Sample Calculations:

Hourly Emissions (lb/hr) = Emission Factor (lb/MMBtu) * Maximum Heat Input Capacity (MMBtu/hr)

Annual Emissions (ton/yr) = Fuel HHV (MMBtu/short ton) * Fuel Usage (ton/yr) * Emission Factor (lb/MMBtu) / 2,000 (lb/ton)

Hourly Emissions (kg/hr) = Hourly Emissions (lb/hr) /2.2046 (lb/kg)

Annual Emissions (tonne/yr) = Hourly Emissions (kg/hr) * 8,760 (hr/yr) / 1,000 (kg/tonne)

Attachment O

Roxul USA Inc. dba ROCKWOOL Ranson, West Virginia Proposed Compliance Demonstration

Rockwool will maintain compliance with all monitoring, recordkeeping, and reporting (MRR) in the issued permit. Rockwool is also taking a limitation on hours and will monitor the hours of operation to ensure the facility is complying with the permit.

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Roxul USA, Inc. (dba ROCKWOOL) has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Modification Permit for a mineral wool manufacturing facility located at 665 Northport Avenue, in Ranson, Jefferson County, West Virginia. The latitude and longitude coordinates are: 39.37747, -77.87844.

The applicant estimates the decreased potential to discharge the following Regulated Air Pollutants will be:

Carbon Monoxide (CO): 11.23 tons per year decrease Nitrogen Oxides (NO_x): 71.90 tons per year decrease Particulate Matter (PM): 175.37 tons per year decrease Particulate Matter 10 (PM₁₀): 80.13 tons per year decrease Particulate Matter 2.5 (PM_{2.5}): 66.80 tons per year decrease Sulfur Dioxide (SO₂): 6.11 tons per year decrease Volatile Organic Compounds (VOCs): 275.23 tons per year decrease Total Hazardous Air Pollutants (HAPs): 128.98 tons per year decrease Greenhouse Gases (as CO₂ equivalents): 30,931.87 tons per year decrease

Startup of operation under the modification permit will commence upon permit issuance. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice. Written comments will also be received via email at DEPAirQualityPermitting@WV.gov.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 41281, during normal business hours. Dated this the 22nd day of May 2023.

By: Roxul USA, Inc. (dba ROCKWOOL) Mark Graves Director of Operations 665 Northport Avenue Ranson, WV 25430

Text ID Vessil Troe TextD Address transp. Text TextD Address transp. Text TextD1 Address transp. TextD2 Address traffer text TextD2 Address tr	5.5 5 1.205 5.402 48	lume Madmum Laohumad Conservation Vert Paters Wonting Volume Tex/No Low High Absorp (prig) (prig) (prig) (prig) 7.46 356 kiromal (prig) (prig) (prig)	ros Type Name Ratesnoe vers Mexicus Additive competition link 0.25 Mexicus Additive competition link	Annual Standing Stanga Losee (Jacotrolia) Vepor Sea: Vepor Pauly Vepor Sysa Vend Vepor vepor Sea: Vepor Davidy Vepor Sysa Vector Sea: Sea: Sea: Sea: Sea: Sea: Sea: Sea:	Annual Working (hostmandal) Ta Water With Statustical Monocolar analysis Ta Monocolar analysis Ta Monocolar analysis Ta Ta Monocolar analysis Ta Monocolar analysis Ta Monocolar analysis Ta Monocolar analysis Statistical analysis Ta Statistical analysis Ta	C Rate Res Ret VOC VOC VOC VOC VOC
TE-45 (1-3) Bindler Storing Contrained Domin Roof Biologie TE-64 Coupling Aren's Storing The Come Roof Biologie TE-65 Direct Fast Tank Horizontal Storing TE-65 Direct Fast Tank Come Roof Storing TE-647 - Greed Tank Come Roof Storing	4.39 16.44 N/A N/A 186: 3 5 1.005 5.935 21 3.5 5 N/A N/A 453 11.41 23 0 23 1753;	7.46 356 Normal -0.03 0.03 1.45 1204 Normal -0.03 0.03	2.3 Martin Modern Constraint Sectors 10, 2017 10, 20	11.11.22 E.510-0 0.039451047 0.027223 E.51 40.9644 E.22764 E.03956 0.946273 E.7 23.2576 E.03956 0.946275 E.7 23.2572 E.510-6 0.03945157 0.29945157 D.2 12.5556 2.450-0 0.039451567 0.299451567 0.2 1175.4697 0.1000 0.02023067 0.099915667 0.00 1175.4699 1.5000 0.02023067 0.099915667 0.00	5 54.65463899 130 0.00629 52834 1357.8524 0.3166 1 5 54.65463899 64.07 3.28563 4752 113.429 1 1 18.0353 20.0891506 0.3757 192024 435857343 0.3787 1 2	Low Data Data <thd< th=""></thd<>
16:03 Theme Of Instantion The Vertacula Sorge 17:022 Theme Of Instantion The 19:032 Theme Of Instantion 10:023 Theme Of Instantion The 19:042 Theme Of Instantion The 19:042 Theme Of Instantion The	11.4.1. 23. 0 22 1.7393 5 6.5 N/A N/A 9 8 6.5 N/A N/A 9 6.56 21 N/A N/A 9397 5.149 12.35 N/A N/A 2094	43.7 212 kođemni 0 0 11.7 115 kođemni 0 0 15.44 2581 kođemni 0 0 45.45 1528 kođemni 0 0	Cal Sampane Parentem Corporation International Control Co	22,573 0.1008 22,573 0.1008 34,8844 0.0495 140,1146 0.0498	14.0233 26.000330 (0.2070 1.00040 0.0012) 0.2070 1.2 194 3457 306 44597 1. 0 194 3457 306 44597 1. 0 19427 4369 308 31623 1. 0 19427 4369 098 31623 1. 1	2112 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Activity Title Climate:	TK-AD Additive Ston Pennsvivania, Harris		om 1/1/2021	. to 12/31/	2021									
pa	14.5725 psia	•												
Equipment Tag Storage Vessel Style	TK-AD Additive Ston Cone Roof Storage	age Tank												
Calculation Type	Normal Storage Tar	nk (11/2019	Rev.)											
	Working and Breath													
Vold Space Volume Working Volume	487.46 gai 396 gai													
Working Volume	52.9375 ft^3													
Shell Diameter Straight Side Height	3.6 ft 6 ft													
Hro	0.402 ft													
Paint Solar Absorptance	0.25													
Roof Color / Condition Shell Color / Condition	white / average white / average													
pbp	0.03													
pbv Equipment Comment	-0.03													
Activity Comment	Imported from Exce	l on 2:55:56	6 PM, 5/19/20	022.										
Pi (constant)	3.1416 998.9													
R (constant)	330.3													
Vessel Contents		68.000 °F	2012.565 lb		109.002 lb-M									
Mixture Name:	Additive [Liquid]	mmHg	ь	W[I]	ІЬ-М	X[I]	A[I]	X*Pi*Al (m	nmHg)					
	Ethanol	42.925	80.2423	0.039871	1.7417	0.015979	1	0.6859						
Kp (product factor)	Water 1	17.3515	1932.3231	0.960129	107.2599	0.984021	1	17.0742						
HI	3.201 ft													
Month		lan	Feb	Mar	Ann	May	lue	iol.	A.1.m	Sen	0.4	Nov	Dar	
Month Q	(gal)	1458.359	Feb 1317.2274	Mar 1458.359	Apr 1411.3151	1458.359	1411.315		Aug 1458.359		1458.359	1411.315		17171 (sum)
Vq	(ft^3)	194.9542	176.0877			194.9542		194.9542		188.6654		188.6654		2295.429 (sum)
N (period) N (scaled to annual)	(number) (number)	3.6827 43.3611	3.3263 43.3611	3.6827 43.3611	3.5639 43.3611	3.6827 43.3611	3.5639 43.3611	3.6827 43.3611	3.6827 43.3611	3.5639 43.3611	3.6827 43.3611	3.5639 43.3611	3.6827 43.3611	43.3608 (sum)
Kn	(number)	0.8585	0.8585	0.8585	0.8585	0.8585	0.8585	0.8585	0.8585	0.8585	0.8585	0.8585	0.8585	0.8585 (avg)
Days	(number)	31	28	31	30	31	30	31	31	30	31	30	31	365 (sum)
Compound Molecular Wei														
Ethanol Water	(Mv) (Mv)	46.07 18.0153	46.07 18.0153	46.07 18.0153		46.07 18.0153	46.07 18.0153	46.07 18.0153	46.07 18.0153	46.07 18.0153	46.07 18.0153	46.07 18.0153	46.07 18.0153	46.07 (lb/lb-male) 18.0153 (lb/lb-male)
	• •	10.0133	10.0133	10.0133	10.0133	10:0133	10.0135	10.0133	10.0133	10.0133	16.0125	10.0123	10.0193	TO'OTO (IN ID-IIIOIG)
Compound Vapor Pressure						e			e					
Ethanol Water	(mmHg) (mmHg)	0,1712 3,965	0.1934 4.5127	0.2871		0.616	0.8405 21.1045	0.978 24.712	0.917 23.1091	0.7019 17.4902	0.461 11.2678	0.3121 7.4783	0.2069	0.509375 (avg) 12.58334 (avg)
Working Loss Calculations	(Uncontrolled)													
tla tln	(*F) (*F)	29.6088 26.2578	32.7413 28.8623	43.1801		64.7897 58.8464	74.1836 68.1642	78.9011 73.0123	76.8843	68.6939 63.5422	56.3522 51.5831	45.446 41.7526	34.4819 31.3834	54.95463 (average)
tLx	(°F) (°F)	32.9598	36.6204	47.8754		70.733	80.203	84.7898	82.3809	53.5422 73.8456	61.1213	41.7526	31.3834	50.16028 (average) 59.74899 (average)
tb	("R)	488.6871		501.7157			532.0187	536.7822	534.9704		515.071	504.5035	493.6591	513.4392 (average)
pC pNc	(psia) (psia)	0.08 14.4925	0.091 14.4815	0.138 14,4345		0.3071	0.4245	0.4969	0.4647 14.1078	0.3519 14.2206	0.2269 14.3456	0.1507	0.0977 14.4748	0.253242 (average) 14.31926 (average)
pVa	(psia)	0.08	0.091	0.138		0.3071	0.4245	0.4969	0.4647	0.3519	0.2269	0.1507	0.0977	0.253242 (average)
hVo Vv	(ft) (ft^3)	3.201 32.582	3.201 32.582	3.201 32.582		3.201 32.582	3.201 32.582	3.201 32.582	3.201 32.582	3.201 32.582	3.201 32.582	3.201 32.582	3.201 32.582	3.201 (average) 32.582 (average)
wVnc	(number)	0.0799	0.0794	0.0775			0.0715	0.0705	0.071	0.0726	0.075	0.0771	0.0791	0.0752 (average)
kE	(number)	0.0248	0.0294	0.0367		0.0502	0.0531	0.0533	0.0488	0.0436	0.0383	0.0281	0.0226	0.039492 (average)
tv taa	(°R) (°R)	489.7614 488.22	493.0912 490.92	500.82		525.8226	535.3506	540.0304	537.8465	529.4096	516./982	505.6156	494.5539 493.27	515.5917 (average) 512.5033 (average)
kb	(number)	1	1	1		1	1	1	1	1	1	1	1	1 (average)
kn n	(number) (number)	0.8585 3.6827	0.8585 3.3263	0.8585 3.6827		0.8585 3.6827	0.8585 3.5639	0.8585 3.6827	0.8585 3.6827	0.8585 3.5639	0.8585 3.6827	0.8585 3.5639	0.8585 3.6827	0.8585 (average) 43.3608 (sum)
Compound Vapor Density Ethanol	(vW(I)) (Ib/ft^3)	2.90E-05	3.26E-05	4.73E-05	6.89E-05	9.72E-05	1.00E-04	2.00E-04	1.00E-04	1.00E-04	7.41E-05	5.12E-05	3.47E-05	7.79E-05 (avg)
Water	(lb/ft^3)	3.00E-04	3.00E-04				0.0013	0.0015	0.0014	0.0011		5.00E-04		7.83E-04 (avg)
Working Losses (Lw)														
Air	(Ib)	13.3804	11.9995	12.9672	12.2191	12.2873	11.5856	11.8061	11.8776	11.766	12.5584	12.4817	13.2323	148.1612 (sum)
Ethanol	(Ib) (Ib)	0.0049	0.0049	0.0079			0.0211	0.0252	0.0237	0.0178	0.0124	0.0083	0.0058	0.1595 (sum) 1.5393 (sum)
Water	(Ib)	0.044	0.0449	0.0739	0.1062	0.1577	0.2073	0.2486	0.2335	0.1737	0.1185	0.0778	0.0552	T.2283 (SUM)
Breathing Loss Calculations	(onconcer)													
tan taa	(°R) (°R)	480.87 488.22	482.97 490.92	491.67 500.82	500.87 511.27	510.77 521.47	520.27 530.57	525.27 535.37	523.97 533.72	516.17 526.07	504.27 514.32	495.77 504.02	486.27 493.27	503.2617 (avg) 512.5033 (avg)
tax	("R)	495.57	498.87	509.97	521.67	532.17	540.87	545.47	543.47	535.97	524.37	512.27	500.27	521.745 (avg)
tin tia	(°F)	26.2578 29.6088	28.8623 32.7413	38.4849 43.1801			68.1642 74.1836	73.0123 78.9011	71.3878 76.8843	63.5422 68.6939	51.5831 56.3522	41.7526 45.446	31.3834 34.4819	50.16028 (avg)
tla tlx	(°F) (°F)	29.6088 32.9598	32.7413 35.6204	43.1801 47.8754		64.7897 70.733	74.1836 80.203	78,9011 84,7898	76.8843 82.3809	68.6939 73.8456	56.3522 61.1213	45.446 49.1393		54.95463 (avg) 59.74899 (avg)
î.	(Btu/ft²day)	622.801	877.2515	1194.204			1931.54	1882.997	1667.254					1247.823 (avg)
tb pC	(°R) (psia)	488.6871 0.08	491.5779 0.091	501.7157 0.138	512.4138 0.2095		532.0187 0.4245	536.7822 0.4969	534.9704 0.4647	527.082 0.3519	515.071 0.2269	504.5035 0.1507	493.6591 0.0977	513.4392 (avg) 0.253242 (avg)
pNc	(psia)	14.4925	14.4815	14.4345	14.363	14.2654	14.148	14.0756	14.1078	14.2206	14.3456	14.4218	14.4748	14.31926 (avg)
pVa dPv	(psia) (psia)	0.08	0.091	0.138		0.3071	0.4245	0.4969 0.1942	0.4647	0.3519 0.1258	0.2269 0.0794	0.1507	0.0977 0.0246	0.253242 (avg)
dPb	(psia) (psia)	0.0223 0.06	0.029	0.0505		0.1291	0.1732	0.1942	0.171 0.06	0.06	0.0794	0.0429	0.0246	0.094033 (avg) 0.06 (avg)
dTv	("R)	13.404	15.5163	18.781	22.1856	23.7731	24.0777	23.555	21.9863	20.6067	19.0765	14.7735	12.3937	19.17745 (avg)
hVo ks	(ft) (number)	3.201 0.9866	3.201 0.9848	3.201 0.9771		3.201 0.9505	3.201 0.9328	3.201 0.9223	3.201 0.9269	3.201 0.9437	3.201 0.9629	3.201 0.9751	3.201 0.9837	3.201 (avg) 0.959342 (avg)
Vv	(ft^3)	32.582	32.582	32.582	32.582	32.582	32.582	32.582	32.582	32.582	32.582	32.582	32.582	32.582 (avg)
wVnc kE	(number) (number)	0.0799	0.0794	0.0775	0.0754	0.0734	0.0715	0.0705	0.071	0.0726	0.075	0.0771	0.0791	0.0752 (avg) 0.039492 (avg)
tv	(number) (°R)	0.0248 489.7614				0.0502 525.8226								0.039492 (avg) 515.5917 (avg)
pix pin	(psia) (psia)	0.0918	0.1065	0.1654		0.3775	0.5187	0.6022	0.557	0.4196	0.2696	0.1735	0.1107	0.304083 (avg)
pin	(psia)	0.0695	0.0776	0.1148	0.1703	J.2484	0.3455	0.408	0.386	0.2958	0.1902	0.1306	0.0861	0.210067 (avg)
Compound Vapor Density														
Ethanol Water	(lb/ft^3) (lb/ft^3)	2.90E-05 3.00E-04		4.73E-05 4.00E-04		9.72E-05 9.00E-04	1.00E-04 0.0013	2.00E-04 0.0015	1.00E-04 0.0014		7.41E-05 7.00E-04			7.79E-05 (avg) 7.83E-04 (avg)
	,	3.002-04	3.00E-04		7.002-04	3.002-04	3.0013	3.0015	0.0014	0.0011	1.002-04	3.002-04	0.00E-04	1.00E-04 (dVg)
Breathing Losses (Ls)	(15)	2.0021	2.1266	2.8717	3.3184	3.7201	3.7127	3.7954	3.5009	3.0978	2.9042	2.1138	1.8074	34 0711 /0
Air Ethanoi	(lb) (lb)	2.0021 7.00E-04		2.8/1/ 0.0017	3.3184 0.0029	3.7201	3.7127	3.7954	3.5009	3.0978 0.0044	2.9042	2.1138		34.9711 (sum) 4.06E-02 (sum)
Water	(Ib)	0.0065	0.0078	0.016		0.0454	0.062	0.0737	0.0638	0.0432	0.0264	0.0128	0.0072	0.3927 (sum)
Total Losses (Lt)														
Alr	(Ib)	15.3826	14.1261	15.8389	15.5375		15.2983	15.6015	15.3785		15.4626	14.5955	15.0398	183.1325 (sum)
Ethanol	(lb) (lb)	0.0056 0.0505	0.0058	0.0096		0.021	0.0274 0.2693	0.0326	0.0302	0.0223 0.2169	0.0152 0.1448	0.0097	0.0066	0.2001 (sum) 1.932 (sum)
Water											~			

Activity Title Climate:	TK-ADB1 Additive B Pennsylvania, Harris		rom 1/1/202	1 to 12/31	/2021									
pa Equipment Tag	14.5725 psia TK-ADB1 Additive B													
Storage Vessel Style	Cone Roof Storage	uneriank												
Calculation Type	Normal Storage Tan Working and Breath													
Void Space Volume	487.46 gal	ing cost ca												
Working Volume Working Volume	396 gal 52.9375 ft^3													
Shell Diameter	3.6 ft													
Straight Side Height Hro	6 ft 0.402 ft													
Paint Solar Absorptance	0.25													
Roof Color / Condition Shell Color / Condition	white / average white / average													
pbp	0.03													
pbv Equipment Comment	-0.03													
Activity Comment	Imported from Exce		PM, 5/19/20	022.										
Pi (constant) R (constant)	3.1416 998.9													
Vessel Contents Mixture Name:	243.730 gai Additive	68.000 °F	2012.565 lb		109.002 lb-M									
	[Liquid] Ethanol	mmHg 42.925		W[I] 0.039871	ІЬ-М	X[I] 0.015979	A[I] 1	X*Pi*Al (m 0.6859	nmHg)					
	Water		1932.3231			0.984021		17.0742						
Kp (product factor) HI	1 3.201 ft													
n	5.201 11													
Month Q	(gal)	Jan 5520.548	Feb 4986.3014	Mar 5510 549	Apr 5342.4658				Aug	Sep 5342.466	Oct	Nov 5342.466	Dec	65000 (sum)
Vq	(ft^3)	737.9899	666.5715	737.9899	714.1838	737.9899	714.1838	737.9899	737.9899	714.1838	737.9899	714.1838	737.9899	8689.236 (sum)
N (period) N (scaled to annual)	(number) (number)	13.9408 164.1414	12.5917 164.1414	13.9408	13.4911 164.1414	13.9408 164 1414	13.4911	13.9408 164.1414		13.4911	13.9408	13.4911 164.1414	13.9408 164.1414	164.1417 (sum)
Kn	(number)	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494 (avg)
Days	(number)	31	28	31	. 30	31	30	31	31	30	31	30	31	365 (sum)
Compound Molecular We		-		-								_		
Ethanol Water	(Mv) (Mv)	46.07 18.0153	46.07 18.0153	46.07 18.0153		46.07 18.0153	46.07 18.0153	46.07 18.0153	46.07 18.0153	46.07 18.0153	46.07 18.0153	46.07 18.0153	46.07 18.0153	46.07 (lb/lb-mole) 18.0153 (lb/lb-mole)
Compound Vapor Pressure	• •													
Ethanol	(mmHg)	0.1712	0.1934	0.2871	0.4274	0.616	0.8405	0.978	0.917	0.7019	0.461	0.3121	0.2069	0.509375 (avg)
Water	(mmHg)	3.965	4.5127	6.8494					23.1091				4.845	12.58334 (avg)
Working Loss Calculations	(Uncentralled)													
tla	(°F)	29.6088	32.7413	43.1801	54.1927	64.7897	74.1836	78.9011	76.8843	68.5939	56.3522	45.445		54.95463 (average)
tLn tLx	(°F) (°F)	26.2578 32.9598	28.8623 36.6204	38.4849 47.8754			68.1642 80.203		71.3878 82.3809		51.5831 61.1213		31.3834 37.5803	50.16028 (average) 59.74899 (average)
tb	(*R)	488.6871	491.5779	501.7157	512.4138	522.789	532.0187	536.7822	534.9704	527.082	515.071	504.5035	493.6591	513.4392 (average)
pC pNc	(psla) (psia)	0.08 14.4925	0.091 14,4815	0.138 14.4345			0.4245 14,148	0.4969 14.0756	0.4647 14.1078		0.2269 14.3456	0.1507 14.4218	0.0977 14,4748	0.253242 (average) 14.31926 (average)
pVa	(psia)	0.08	0.091	0.138		0.3071	0.4245		0,4647	0.3519	0.2269	0.1507	0.0977	0.253242 (average)
hVo Vv	(ft) (ft^3)	3.201 32.582	3.201 32.582	3.201 32.582		3.201 32.582	3.201 32.582	3.201 32.582	3.201 32.582	3.201 32.582	3.201 32.582	3.201 32.582	3.201 32.582	3.201 (average) 32.582 (average)
wVnc	(number)	0.0799	0.0794	0.0775	0.0754	0.0734	0.0715	0.0705	0.071	0.0726	0.075	0.0771	0.0791	0.0752 (average)
kE tv	(number) (°R)	0.0248 489.7614	0.0294 493.0912	0.0367 503.7757		0.0502 525.8226	0.0531 535.3506	0.0533	0.0488 537.8465		0.0383	0.0281	0.0226	0.039492 (average) 515.5917 (average)
taa	(°R)	488.22	490.92	500.82	511.27	521,47	530.57	535.37	533.72	526.07	514.32	504.02	493.27	512.5033 (average)
kb kn	(number) (number)	1 0.3494	1 0.3494	1 0.3494		0.3494	1 0.3494	1 0.3494	1 0.3494		1 0.3494	1 0.3494	1 0.3494	1 (average) 0.3494 (average)
n	(number)	13.9408	12.5917	13.9408	13.4911	13.9408	13.4911	13.9408	13.9408	13.4911	13.9408	13.4911	13.9408	164.1417 (sum)
Compound Vapor Density	(vW(I))													
Ethanol Water	(lb/ft^3) (lb/ft^3)	2.90E-05 3.00E-04		4.73E-05		9.72E-05 9.00E-04	1.00E-04 0.0013	2.00E-04 0.0015				5.12E-05 5.00E-04		7.79E-05 (avg) 7.83E-04 (avg)
							2.00.0	2.0013	0.0014					
Working Losses (Lw) Air	(Ib)	20.6158	18.4882	19.9791	18.8265	18.9315	17.8504	18.1902	18.3003	18.1284	19.3493	19.231	20.3875	228.2782 (sum)
Ethanol	(Ib)	0.0075	0.0075	0.0122	0.0172	0.0251	0.0325	0.0388	0.0365	0.0275	0.0191	0.0128	0.009	0.2458 (sum)
Water	(Ib)	0.0678	0.0692	0.1138	0.1637	0.2429	0.3194	0.3831	0.3597	0.2677	0.1825	0.1198	0.082	2.3716 (sum)
Breathing Loss Calculation	s (Uncontrolled)													
tan taa	(°R) (°R)	480.87 488.22	482.97 490.92	491.67 500.82	500.87 511.27	510.77 521.47	520.27 530.57	525.27 535.37	523.97 533.72		504.27 514.32	495.77 504.02	486.27 493.27	503.2617 (avg) 512.5033 (avg)
tax	("R)	495.57	498.87	509.97	521.67	532.17	540.87	545.47	543.47 71 3878	535.97 63 5422	524.37 51 5831	512.27	500.27	521.745 (avg)
tLn tLa	(*F) (*F)	26.2578 29.6088	28.8623 32.7413	38.4849 43.1801		58.8464 64.7897	68.1642 74.1836		, 1,20, 0	0010166	51.5831 56.3522	41.7526 45.446		50.16028 (avg) 54.95463 (avg)
tLx	(°F)	32.9598	35.6204	47.8754	59.7391	70.733	80.203	84.7898	82.3809	73.8456	61.1213	49.1393	37.5803	59.74899 (avg)
i tb	(Btu/ft²day) (°R)	622.801 488.6871	877.2515 491.5779		512.4138		1931.54 532.0187	1882.997 535.7822	534.9704	527.082	515.071	644.6926 504.5035		1247.823 (avg) 513.4392 (avg)
pC	(psia)	0.08	0.091 14.4815	0.138 14,4345	0.2095	0.3071	0.4245 14.148	0.4969 14.0756	0.4647 14.1078	0.3519	0.2269 14.3456	0.1507 14.4218	0.0977 14.4748	0.253242 (avg)
pNc pVa	(psia) (psia)	14.4925 0.08	0.091	0.138	0.2095	0.3071	14.148 0.4245	14.0756 0.4969	14.1078 0.4647	0.3519	14.3455 0.2269	0.1507	0.0977	14.31926 (avg) 0.253242 (avg)
dPv dPb	(psia) (psia)	0.0223 0.05	0.029 0.05	0.0506		0.1291 0.06	0.1732 0.06	0.1942 0.06	0.171 0.06		0.0794 0.06	0.0429	0.0246 0.06	0.094033 (avg) 0.06 (avg)
dP0 dTv	(psia) (°R)	13.404	15.5163	18.781	22.1856	23.7731	24.0777	23.555	21.9863	20.6067	19.0765	14.7735	12.3937	19.17745 (avg)
hVo ks	(ft) (number)	3.201 0.9866	3.201 0.9648	3.201 0.9771		3.201 0.9505	3.201 0.9328	3.201 0.9223	3.201 0.9269	3.201 0.9437	3.201 0.9629	3.201 0.9751	3.201 0.9837	3.201 (avg) 0.959342 (avg)
Vv	(ft^3)	32.582	32.582	32.582	32.582	32.582	32.582	32.582	32.582	32.582	32.582	32.582	32.582	32.582 (avg)
wVnc kE	(number) (number)	0.0799 0.0248	0.0794 0.0294	0.0775	0.0754		0.0715 0.0531	0.0705 0.0533	0.071 0.0488		0.075 0.0383	0.0771 0.0281	0.0791 0.0226	0.0752 (avg) 0.039492 (avg)
tv	(*R)	489.7614	493.0912	503.7757	515.0447	525.8226	535.3506	540.0304	537.8465	529.4096	516.7982	505.6156	494.5539	515.5917 (avg)
pix pin	(psia) (psia)	0.0918 0.0695	0.1065	0.1654 0.1148			0.5187 0.3455	0.6022	0.557	0.4196	0.2696 0.1902		0.1107	0.304083 (avg) 0.210067 (avg)
			0.0770	~	0.1743			J708	0.000	0.2230		J. 10/0	2.0001	
Compound Vapor Density Ethanol	(wV(I)) (lb/ft^3)	2.90E-05	3.26F-05	4.73E-05	6 RQF_05	9.72E-05	1.00E-04	2.00F-04	1.00E-04	1.00F-04	7.415-05	5.12E-05	3.47F-05	7.79E-05 (avg)
Water	(lb/ft^3)	3.00E-04	3.00E-04			9.00E-04	0.0013	0.0015	0.0014			5.00E-04		7.83E-04 (avg)
Breathing Losses (Ls)														
Air	(lb)	2.0021	2.1266	2.8717		3.7201	3.7127	3.7954	3.5009		2.9042		1.8074	34.9711 (sum)
Ethanol Water	(lb) (lb)	7.00E-04 0.0065	9.00E-04 0.0078	0.0017	0.0029	0.0047	0.0063 0.062	0.0075	0.0065	0.0044	0.0028	0.0014 0.0128	8.00E-04 0.0072	4.06E-02 (sum) 0.3927 (sum)
	•				//									(====)
Total Losses (Lt) Air	(lb)	22.6179	20.6148	22.8508	22.1449	22.6516	21.5631	21.9856	21.8012	21.2261	22.2534	21.3448	22.195	263.2492 (sum)
Ethanol Water	(Ib)	0.0082	0.0084	0.0139	0.0201	0.0298	0.0388	0.0462	0.043	0.0319	0.0219	0.0142	0.0097	0.2861 (sum)
Water	(Ib)	0.0743	0.077	0.1298	0.1916	0.2883	0.3813	0.4568	0.4235	0.3108	0.2089	0.192/	0.0892	2.7642 (sum)

Activity Title Climate:	TK-ADB2 Additive B		rom 1/1/20	021 to 12/3	1/2021									
Climate: pa	Pennsylvania, Harris 14.5725 psia	sburg												
Equipment Tag	TK-ADB2 Additive B	uffer Tank												
Storage Vessel Style	Cone Roof Storage													
Calculation Type	Normal Storage Tar Working and Breath													
Vold Space Volume	166.25 gal	ing coas car	icula cion											
Working Volume	132 gal													
Working Volume Shell Diameter	17.6458 ft^3 2.6 ft													
Straight Side Height	2.6 m 4 ft													
Нго	0.186 ft													
Paint Solar Absorptance	0.25													
Roof Color / Condition Shell Color / Condition	white / average white / average													
pbp	white / average 0.03													
pbv	-0.03	I												
Equipment Comment														
Activity Comment Pi (constant)	Imported from Exce 3.1416		PM, 5/19/	2022.										
R (constant)	998.9													
Vessel Contents Mixture Name:	83.125 gai Additive	i 68.000 °F	686.393 lb		37.175 lb-M									
Mixture Name:	[Liquid]	mmHg	lb	w[I]	Ib-M	X[I]	A[I]	X*PI*Ai (n	nmHg)					
	Ethanol	42.925	27.3669	0.039671	0.594	0.015979	1	0.6859						
	Water	17.3515	659.0258	0.960129	35.5814	0.984021	1	17.0742						
Kp (product factor) Hl	1 2.0932 ft													
	2.0002 11													
Month			Feb	Mar	Apr	May		Jul	Aug				Dec	
Q. Vq	(gal) (ft^3)	1840.211 246.0004	TODELTER	1840.211 246.0004	1780.8493	1840.211 246.0004			1840.211 246.0004	1780.849 238.0649	1840.211	1780.849 238.0649		21667 (sum) 2896.456 (sum)
Vq N (period)	(ft^3) (number)	246.0004 13.941	222.1939 12.5919			246.0004	238.0649	246.0004 13.941	246.0004		246.0004	238.0649	246.0004 13.941	2896.456 (sum) 164.1441 (sum)
N (scaled to annual)	(number)	164.1439		164.1439	164.1439				164.1439			164.1439		awnanta (auni)
Kn	(number)	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494	0.3494 (avg)
Days	(number)	31	28	31	30	31	30	31	31	30	31	30	31	365 (sum)
Compound Molecular Wel	ghts (lb/lb-M)													
Ethanol	(Mv)	46.07	46.07		46.07	46.07	46.07	45.07	46.07		46.07	46.07	46.07	46.07 (lb/lb-mole)
Water	(Mv)	18.0153	18.0153				18.0153		18.0153		18.0153	18.0153	18.0153	18.0153 (lb/lb-mole)
Compound Vapor Pressure	x (Rva)													
Compound vapor Pressure Ethanol	(mmHg)	0.1712	0.1934	0.2871	0.4274	0.616	0.8405	0.978	0.917	0.7019	0.461	0.3121	0.2069	0.509375 (avg)
Water	(mmHg)	3.965	4.5127	6.8494	10.4065		21.1045	24.712	23.1091		11.2678	7.4783	4.845	12.58334 (avg)
Working Loss Calculations	(Uncontrolled)													
tla	(*F)	29.6088	32.7413				74.1836				56.3522	45.446		54.95463 (average)
tLn	(*F)	26.2578	28.8623				68.1642		71.3878	63.5422	51.5831	41.7526	31.3834	50.16028 (average)
tLx tb	(°F) (°R)	32.9598 488.6871	36.6204 491.5779	47.8754 501.7157	59.7391 512.4138	70.733 522.789	80.203 532.0187	84.7898 536.7822	82.3809 534.9704	73.8456 \$27.082	61.1213 515.071	49.1393 504.5035	37.5803 493.6591	59.74899 (average) 513.4392 (average)
pC	(psla)	0.08	0.091			0.3071	0.4245	0.4969	0.4647	0.3519	0.2269	0.1507	0.0977	0.253242 (average)
pNc	(psia)	14.4925	14.4815	14,4345	14.363	14.2654	14.148	14.0756	14.1078	14.2205	14.3456	14,4218	14.4748	14,31926 (average)
pVa	(psia)	0.08	0.091	0.138		0.3071	0.4245	0.4969	0.4647	0.3519	0.2269	0.1507	0.0977	0.253242 (average)
hVo Vv	(ft) (ft^3)	2.0932 11.1122	2.0932				2.0932		2.0932 11.1122	2.0932	2.0932	2.0932	2.0932 11.1122	2.0932 (average) 11.1122 (average)
w√nc	(number)	0.0799	0.0794				0.0715		0.071	0.0726	0.075	0.0771	0.0791	0.0752 (average)
kE	(number)	0.0248	0.0294		0.045		0.0531		0.0488	0.0436	0.0383	0.0281	0.0226	0.039492 (average)
tv taa	("R) ("R)	489.7614 488.22	493.0912 490.92	503.7757 500.82	515.0447 511.27	525.8226 521.47	535.3506 530.57	540.0304 \$35.37	537.8465 533.72	529.4096 526.07	516.7982 514.32	505.6156 504.02	494.5539 493.27	515.5917 (average)
kb	(number)	400.22	490.92				330.57		555.72	528.07	514.52	304.02	493.27	512.5033 (average) 1 (average)
kn	(number)	0.3494	0.3494				0.3494		0.3494	0.3494	0.3494	0.3494	0.3494	0.3494 (average)
n	(number)	13.941	12.5919	13.941	13.4913	13.941	13.4913	13.941	13.941	13.4913	13.941	13.4913	13.941	164.1441 (sum)
Compound Vapor Density	(vw(i))													
Ethanol	(lb/ft^3)	2.90E-05	3.26E-05	4.73E-05	6.89E-05	9.72E-05	1.00E-04	2.00E-04	1.00E-04	1.00E-04	7.41E-05	5.12E-05	3.47E-05	7.79E-05 (avg)
Water	(lb/ft^3)	3.00E-04	3.00E-04	4.00E-04	7.00E-04	9.00E-04	0.0013	0.0015	0.0014	0.0011	7.00E-04	5.00E-04	3.00E-04	7.83E-04 (avg)
Working Losses (Lw) Air	(ІЬ)	6.872	6.1628	6.6597	6.2755	6.3106	5.9502	6.0634	6.1001	6.0428	6.4498	6.4104	6,7959	76.0932 (sum)
Ethanol	(lb)	0.0025	0.0025	0.0041	0.0057	0.0084	0.0108	0.0129	0.0122	0.0092	0.0064	0.0043	0.003	0.082 (sum)
Water	(њ)	0.0226	0.0231		0.0546		0.1065		0.1199	0.0892	0.0608	0.0399	0.0273	0.7905 (sum)
Breathing Loss Calculation	s (Uncontrolled)													
preatning Loss Calculations tan	s (Uncontrolled) (°R)	480.87	482.97	491.67	500.87	510.77	520.27	525.27	523.97	516.17	504.27	495.77	486.27	503.2617 (avg)
taa	(°R)	488.22	490.92	500.82	511.27	521.47	530.57	535.37	533.72	526.07	514.32	504.02	493.27	512.5033 (avg)
tax	("R)	495.57	498.87	509.97	521.67	532.17	540.87	545.47	543.47	535.97	524.37	512.27	500.27	521.745 (avg)
tLn tLa	(*F) (*F)	26.2578 29.6088	28.8623 32.7413		48.6463 54.1927	58.8464 64.7897	68.1642 74.1836		71.3878 76.8843	63.5422 68.6939	51.5831 56.3522	41.7526 45.446	31.3834 34.4819	50.16028 (avg) 54.95463 (avg)
tla tlx	(°F) (°F)	29.6088 32.9598	32.7413			64.7897 70.733	74.1836 80.203		76.8643 62.3809		56.3522 61.1213	45.446 49.1393	34.4819 37.5803	54.95463 (avg) 59.74899 (avg)
i	(Btu/ft²day)	622.801	877.2515	1194.204	1525.1169	1758.628	1931.54	1882.997	1667.254	1349.349	1001.304	644.6926	518.7364	1247.823 (avg)
tb	(°R)	488.6871		501.7157	512.4138	522.789	532.0187	536.7822	534.9704	527.082	515.071	504.5035	493.6591	513.4392 (avg)
pC pNc	(psia)	0.08	0.091			0.3071	0.4245		0.4647	0.3519	0.2269	0.1507	0.0977 14.4748	0.253242 (avg)
pNc pVa	(psia) (psia)	14.4925 0.08	14.4815 0.091		14.363 0.2095	14.2654 0.3071	14.148 0.4245		14.1078 0.4647	14.2206 0.3519	14.3456 0.2269	14.4218 0.1507	14.4748 0.0977	14.31926 (avg) 0.253242 (avg)
dPv	(psia)	0.0223	0.029		0.0863	0.1291	0.1732	0.1942	0.171	0.1258	0.0794	0.0429	0.0246	0.094033 (avg)
dPb	(psia)	0.06	0.06	0.06	0.05	0.06	0.06		0.06	0.05	0.06	0.06	0.05	0.06 (avg)
dTv hVo	("R) (ft)	13.404 2.0932	15.5163 2.0932	18.781 2.0932	22.1856 2.0932	23.7731 2.0932	24.0777 2.0932	23.555 2.0932	21.9863 2.0932	20.6067 2.0932	19.0765 2.0932	14.7735 2.0932	12.3937 2.0932	19.17745 (avg) 2.0932 (avg)
ks	(number)	0.9912	2.0932		0.9773	0.9671	0.955	0.9478	2.0552	0.9624	0.9755	0,9836	0.9893	0.972925 (avg)
Vv	(ft^3)	11.1122	11.1122	11.1122	11.1122	11.1122	11.1122	11.1122	11.1122	11.1122	11.1122	11.1122	11.1122	11.1122 (avg)
wVnc	(number)	0.0799	0.0794		0.0754	0.0734	0.0715		0.071	0.0726	0.075	0.0771	0.0791	0.0752 (avg)
kE tv	(number) (°R)	0.0248 489.7614	0.0294 493.0912	0.0367 503.7757	0.045 515.0447	0.0502 525.8226	0.0531 535.3506	0.0533 540.0304	0.0488 537.8465	0.0436	0.0383	0.0281 505.6156	0.0226 494.5539	0.039492 (avg) 515.5917 (avg)
pix	(psia)	0.0918	495.0912			0.3775	0.5187	0.6022	0.557	0.4196	0.2696	0.1735	0.1107	0.304083 (avg)
pin	(psia)	0.0695	0.0776				0.3455	0.408	0.386	0.2938	0.1902	0.1306	0.0861	0.210067 (avg)
Companyed 1/2 P **	(
Compound Vapor Density Ethanol	(wV(i)) (lb/ft^3)	2.90E-05	3 765 05	4.73E-05	6 805 05	9.72E-05	1.00E-04	2.00E-04	1.00E-04	1.005.04	7.41E-05	5 175 05	3 475 05	7 705-05 ()
Ethanol Water	(16/ft^3) (16/ft^3)	2.90E-05 3.00E-04		4.73E-05 4.00E-04		9.72E-05 9.00E-04	1.00E-04 0.0013		1.00E-04 0.0014		7.41E-05 7.00E-04			7.79E-05 (avg) 7.83E-04 (avg)
Breathing Losses (Ls)	(IL)											c =		
Air Ethanol	(lb) (lb)	0.6828 2.00F-04	0.7253 3.00E-04		1.1317	1.2687	1.2662		1.194	1.0565	0.9905	0.7209 5.00E-04	0.6164 3.00E-04	11.9268 (sum) 1.41E-02 (sum)
Water	(ID) (Ib)	2.00E-04 0.0022	3.002-04	0.0055	0.001	0.0015	0.0022		0.0023	0.0015	0.001	0.00E-04	0.0025	0.1354 (sum)
Total Losses (Lt) Air Ethanol	(lb) (lb)	7.5548	6.8881	7.6391	7.4073	7.5793	7.2164	7.3579	7.2941	7.0993	7.4403	7.1313	7.4123	88.0202 (sum)
	(lb) (lb) (lb)	7.5548 0.0027 0.0248	6.8881 0.0028 0.0258	0.0047	7.4073 0.0067 0.0642	0.01	7.2164 0.013 0.1281	0.0155	7.2941 0.0144 0.1422	0.0107	7.4403 0.0073 0.07	7.1313 0.0047 0.0444	7.4123 0.0033 0.0298	88.0202 (sum) 0.0958 (sum) 0.9271 (sum)

Activity Title	TK-BS (1-3) Binder S	immen Contro	lear From 1	/1/7071 to	12/21/2021									
Climate: pa	Pennsylvania, Harri 14.5725 psla		iner From 14	1/2021 10	14,54,2541									
Equipment Tag Storage Vessel Style	TK-BS (1-3) Binder S Dome Roof Storage		lner											
Calculation Type	Normal Storage Ta	nk (11/2019 F												
Void Space Volume	Working and Breat 612.72 gal	ning Loss Cak	Juation											
Working Volume Working Volume	264 gal 35.2917 ft^3													
Shell Diarneter Straight Side Height	3.6 ft 7.8 ft													
Hro Paint Solar Absorptance	0.247 ft 0.25	5												
Roof Color / Condition Shell Color / Condition	white / average white / average													
pbp pby	0.03													
Equipment Comment														
Activity Comment Pl (constant)	Imported from Exce 3.1410	5	PM, 5/19/20	22.										
R (constant) Vessel Contents	998.													
Mixture Name:	Binder Circulating	i 68.000 °F			141.660 lb-M									
	[Liquid] Formaldehyde	3003.344	2.0558	W[I] 0.000904	0.0685	0.000483	1		imHg)					
	Methanol Phenol	93.743 0	3.5564	0.000238	0.0378	0.000134	1	0.0125 0						
Kp (product factor)	Water	17.3515 1	2549.7937	0.997567	141.5346	0.999116	1	17.3361						
н	4.0216 ft													
Month Cl	(gal)		Feb 9997.5342		Apr 10711.6438			Jul 11058.7	Aug 11/068.7			Nov 10711.64	Dec 11058.7	130325 (sum)
Vq N (period)	(ft^3)	1479.67	1336.4759 37.8694	1479.67	1431.9385		1431.939 40.5744	1479.67		1431.939		1431.939 40.5744	1479.67	17421.92 (sum)
N (scaled to annual)	(number) (number)	493.6553	493.6553	493.6553	493.6553	493.6553	493.6553	493.6553	493.6553	493.6553	493.6553	493.6553	493.6553	493.6553 (sum)
Kn Days	(number) (number)	0.2274 31	0.2274 28	0.2274 31	0.2274 30	0.2274 31	0.2274 30	0.2274 31	0.2274 31	0.2274 30	0.2274 31	0.2274 30	0.2274 31	0.2274 (avg) 365 (sum)
Compound Molecular We														
Formaldehyde Methanol	(Mv) (Mv)	30.03 32.04	30.03 32.04	30.03 32.04	30.03 32.04	30.03 32.04	30.03 32.04	30.03 32.04	30.03 32.04	30.03 32.04	30.03 32.04	30.03 32.04	30.03 32.04	30.03 (lb/lb-mole) 32.04 (lb/lb-mole)
Phenol Water	(Mv) (Mv)	94.1128 18.0153	94.1128 18.0153		94.1128 18.0153	94.1128 18.0153	94.1128 18.0153	94.1128 18.0153	94.1128 18.0153	94.1128 18.0153	94.1128 18.0153	94.1128 18.0153	94.1128 18.0153	94.1128 (lb/lb-mole) 18.0153 (lb/lb-mole)
Compound Vapor Pressu	res (Pva)													
Formaldehyde Methanol	(mmHg) (mmHg)	0.7188 0.0036	0.7644	0.9329 0.0057	1.141	1.374 0.0114	1.6101 0.0151	1.7398 0.0173	1.6834 0.0163	1.4686 0.0128	1.1858	0.9731 0.0062	0.7907 0.0043	1.19855 (avg) 0.009475 (avg)
Methania Phenol Water	(mmHg) (mmHg) (mmHg)	0.0056 0 4.0258	0.004 0 4.582	6.9544	0.0082	0.0114 0 15.4937	21.4282	0.01/3 0 25.0911	0 23.4636	0.0128	0.0088	0.0062	0.0045 0 4.9193	0 (avg) 0 (avg) 12.77637 (avg)
water	(mmrg)	4.0258	4.562	6.9544	10.9661	15.4937	21.4282	25.0911	23.4636	17.7585	11.4407	7.595	4.9193	12.77637 (avg)
Working Loss Calculations tila	(Uncontrolled) ("F)	29.6088	32.7413	43.1801	54.1927	64.7897	74.1836	78.9011	76.8843	68.6939	56.3522	45.445	34.4819	54.95463 (average)
tin tix	(TF) (TF)	26.2578 32.9598	28.8623 35.5204	38.4849 47.8754	48.6463 59.7391	58.8464 70.733	68.1642 80.203	73.0123 84.7898	71.3878 62.3809	63.5422 73.8456	51.5831 61.1213	41.7526 49.1393	31.3834 37.5803	50.16028 (average) 59.74899 (average)
tb pC	(*R) (psia)	488.6871	491.5779	501.7157	512.4138 0.2266	522.789			534.9704	527.082			493.6591	513.4392 (average) 0.270483 (average)
pNc	(psia)	14.4807	14.469	14.4198	14.3459	14.246	14.1266	14.0532	14.0858	14.2004	14.3281	14.4067	14.462	14.30202 (average)
pVa h¥o	(psia) (ft)	0.0918 4.0216	0.1035 4.0216	0.1527 4.0216	0.2266	0.3265 4.0216	0.4459 4.0216	0.5193 4.0216	0.4867 4.0216	0.3721 4.0216	0.2444 4.0216	0.1658 4.0216	0.1105 4.0216	0.270483 (average) 4.0216 (average)
Vv wVnc	(ft^3) (number)	40.9544 0.0799	40.9544 0.0793	0.0774	40.9544 0.0753	40.9544 0.0733	40.9544 0.0714	40.9544 0.0704	40.9544 0.0709	40.9544 0.0725	40.9544 0.0749	40.9544 0.077	40.9544 0.079	40.9544 (average) 0.075108 (average)
kE tv	(number) (*R)	0.0249 489.7614	0.0295 493.0912	0.0368 503.7757	0.0452 515.0447	0.0504	0.0533	0.0535 540.0304	0.049 537.8465	0.0438 529.4096	0.0385 516.7982	0.0282 505.6156	0.0227 494.5539	0.03965 (average) 515.5917 (average)
tza kb	(*R) (number)	486.22 1	490.92 1	500.82 1	511.27 1	521.47 1	530.57 1	535.37 1	533.72 1	526.07 1	514.32 1	504.02 1	493.27 1	512.5033 (average) 1 (average)
kn n	(number) (number)	0.2274	0.2274 37.8694	0.2274	0.2274	0.2274	0.2274	0.2274	0.2274	0.2274	0.2274	0.2274	0.2274	0.2274 (average) 493.6553 (sum)
 Compound Vapor Density						12.0000					12.2225			()
Formaldehyde	(b/it^3)	7.94E-05		1.00E-04						2.00E-04				1.29E-04 (avg)
Methanol Phenol	(B/ft^3) (B/ft^3)	4.26E-07 0	0		0	0	1.62E-06 0	0	1.75E-06 0	0	0	7.05E-07 0	0	1.04E-05 (avg) 0 (avg)
Water	(lb/ft^3)	3.00E-04	3.00E-04	4.00E-04	7.00E-04	0.001	0.0013	0.0015	0.0014	0.0011	7.00E-04	5.00E-04	3.00E-04	7.92E-04 (avg)
Warking Lasses (Lav) Air	(Ib)	26.6816	24.1069	26.0462	24.5393	24.672	23.2594	23.7004	23.8446	23.6237	25.2199	25.0701	26.5821	297.5456 (sum)
Formaldehyde Methanol	(16) (16)	0.0267 1.00E-04	0.0255 1.00E-04	0.0337 2.00E-04	0.039 3.00E-04	0.0476 4.00E-04	0.053 5.00E-04	0.0587 6.00E-04	0.057 6.00E-04	0.0489 5.00E-04	0.0418 3.00E-04	0.0339 2.00E-04	0.0291 2.00E-04	0.4949 (sum) 4.00E-09 (sum)
Phenol Water	(B) (B)	0 0.0898	0 0.0917	0,1508	0	0.3219	0 0.4232	0 0.5076	0 0.4766	0.3546	0 0.2419	0.1588	0.1087	0 (sum) 3.1425 (sum)
Breathing Loss Calculation														
tan	(77)	480.87	482.97	491.67	500.87	510.77	520.27	525.27	523.97	516.17	504.27	495.77	486.27	503.2617 (avg)
taa tax	("R) ("R)	488.22 495.57	490,92 498.67	500.82 509.97	511,27 521.67	521.47 532.17	530.57 540.67	535.37 545.47	533.72 543.47	526.07 535.97	514.32 524.37	504.02 512.27	493,27 500.27	512,5093 (avg) 521,745 (avg)
tin tia	(T) (T)	26.2578 29.6088	28.8623 32.7413		48.6463 54.1927	58.8464 64.7897	68.1642 74.1836	73.0123 78.9011	71.3878 76.8843	63.5422 68.6939	51.5831 56.3522	41.7526 45.445	31.3834 34.4819	50.16028 (avg) 54.95463 (avg)
tLx f	("F) (Bbu/ft ¹ day)	32.9598 622.801	36.6204 877.2515	47.8754 1194.204	59.7391 1525.1169	70.733 1758.628		64.7898 1582.997	82.3809 1667.254	73.8456 1349.349	61.1213 1001.304	49.1393 544.6925	37.5803 518.7364	59.74899 (avg) 1247.823 (avg)
to pC	(*R) (psia)	488.6871 0.0918	491.5779 0.1035	501.7157 0.1527	512.4138 0.2266	522.789 0.3265	532.0187 0.4459	536.7822 0.5193	\$34.9704 0.4867	527.082 0.3721	515.071 0.2444	504,5035 0.1658	493.6591 0.1105	513.4392 (avg) 0.270483 (avg)
pNc pVa	(psia) (psia)	14.4807 0.0918	14.469 0.1035	14.4198 0.1527	14.3459 0.2266	14.246	14.1266 0.4459	14.0532 0.5193	14.0858 0.4857	14.2004 0.3721	14.3281 0.2444	14.4067 0.1658	14.462 0.1105	14.30202 (avg) 0.270483 (avg)
dPv dPb	(psia) (psia)	0.0236	0.0305		0.0887	0.1317	0.1757	0.1965	0.1732	0.128	0.0815	0.0445	0.0259	0.096033 (avg) 0.06 (avg)
dTv	(12)	13.404	15.5163	18.781	22.1856	23.7731	24.0777	23.555	21.9863	20.6067	19.0765	14.7735	12.3937	19.17745 (avg)
h¥o ks	(ft) (number)	4,0216 0.9808	4.0216 0.9784		4.0216 0.9539	4.0216 0.9349	4.0216 0.9132	4.0216 0.9003	4.0216 0.906	4.0216 0.9265	4.0216 0.9505	4,0216 0.9659	4.0216	4.0216 (avg) 0.946325 (avg)
Vv wVnc	(ft^3) (number)	40.9544 0.0799	40.9544 0.0793	0.0774	40.9544 0.0753	40.9544 0.0733	40.9544 0.0714	40.9544 0.0704	40.9544 0.0709	40.9544 0.0725	40.9544 0.0749	40.9544 0.077	40.9544 0.079	40.9544 (avg) 0.075108 (avg)
kE tv	(number) (*R)	0.0249 489.7614	0.0295 493.0912	0.0368 503.7757	0.0452 515.0447	0.0504	0.0533	0.0535	0.049	0.0438 529.4096	0.0385	0.0282	0.0227 494.5539	0.03965 (avg) 515.5917 (avg)
pix pin	(psia) (psia)	0.1043	0.1198 0.0892	0.181	0.2748	0.3982	0.5413 0.3656	0,6257 0.4292	0.5801	0,441 0.313	0.2882 0.2055	0.1894	0.1241	0.322325 (avg) 0.226283 (avg)
Compound Vapor Density	(wA(1))													
Formaldehyde	(b/ft^3)	7.94E-05		1.00E-04			2.00E-04		2.00E-04			1.00E-04		1.29E-04 (avg)
Methanol Phonol	(16/ft^3) (16/ft^3)	4.26E-07 0	0		9.18E-07 0	0	1.62E-06 0	0	1.75E-06 0	1.40E-06 0	0	0	0	1.04E-06 (avg) 0 (avg)
Water	(b /ft^3)	3.00E-04	3.00E-04	4.00E-04	7.00E-04	0.001	0.0013	0.0015	0.0014	0.0011	7,00E-04	5.00E-04	3.00E-04	7,92E-04 (avg)
Breathing Losses (Ls) Air	(Ib)	2.5235	2.6804	3.6196	4.1822	4.6874	4.6763	4.7792	4.409	3.9028	3.6603	2.6646	2.2784	44.0637 (sum)
Formaldehyde Methanol	(b) (b)	0.0025	0.0028		0.0063 4.86E-05	0.0085	0.0097 9.71E-05	0.0107	0.0095 9.86E-05	0.0075	0.0058 4.55E-05	0.0035 2.36E-05	0.0024	0.0737 (sum) 6.30E-04 (sum)
Phenol Water	(B) (B)	0.0083	0.01	0	0.0353	0.0572	0.0777	0	0.0798	0.0543	0.0334	0.0163	0.0091	D (sum) 0.4939 (sum)
water Total Losses (Lt)	,,	0.0005	0.01	0.0203	0.0335	0.0372	0.0///	0.0922	0.0798	0.0043	v.up94	0.0103	0.0091	or493a (anu)
Air	(b)	29.4051	26.7866		28.7216				28.2536		28.6601			341.6093 (sum)
Formaldehyde Methanol	(B) (B)	0.0292 2.00E-04	0.0283 2.00E-04		0.0454 3.00E-04		0.0627 6.00E-04	0.0693 7.00E-04	0.0665 7.00E-04	0.0564 5.00E-04	0.0475 4.00E-04	0.0374 3.00E-04	0.0316 2.00E-04	0.5686 (sum) 4.90E-03 (sum)
Phenol Water	(B) (B)	0 0.0981	0 0.1017		0 0.2522	0 0.3791	0 0.5009	0 0.5998	0 0.5564	0 0.4089	0 0.2752	0 0.1751	0 0.1178	0 (sum) 3.6363 (sum)
														4.2098

Activity Title	TK-CA Coupling A	gent Storage T	ank From 1/	1/2021 to :	12/31/2021									
Climate: pa	Pennsylvania, Hai 14.5725 psia	risburg												
pa Equipment Tag	TK-CA Coupling A	gent Storage T	ank											
Storage Vessel Style	Cone Roof Storag													
Calculation Type	Normal Storage T													
Void Space Volume	Working and Brea 487.46 gal	athing Loss Cal	culation											
Working Volume	396 gal													
Working Volume	52.9375 ft^3													
Shell Diameter Straight Side Height	3.6 ft 6 ft													
Hro	0.402 ft													
Paint Solar Absorptance		25												
Roof Color / Condition	white / average													
Shell Color / Condition pbp	white / average 0.	na												
pbv	-0.													
Equipment Comment														
Activity Comment Pi (constant) R (constant)	Imported from Ex 3.14 998	16	PM, 5/19/20	022.										
Vessei Contents Mixture Name:	243.730 j Additive	gal 68.000 °F .	2012.565 lb		109.002 lb-M									
	[Liquid]	mmHg	lb	W[I]	Ib-M	X[1]	A[I]	X*Pi*Al (m	mHg)					
	Ethanol	42.925		0.039871		0.015979	1							
Ka (amakust factor)	Water		1932.3231	0.960129	107.2599	0.984021	1	17.0742						
Kp (product factor) HI	3.201 ft	1												
	5.202 11													
Month			Feb										Dec	
Q	(gal) (ma)	359.0055 47.9921		359.0055	347.4247 46.4439	359.0055 47.9921	347.4247 46.4439	359.0055 47.9921	359.0055 47.9921		359.0055 47.9921	347.4247 46.4439	359.0055 47.9921	4227 (sum)
Vq N (period)	(ft^3) (number)	47.9921 0.9066	43.3477 0.8188	47.9921	46.4439	47.9921	46.4439	47.9921	47.9921	46.4439	47.9921	45.4439	47.9921	565.068 (sum) 10.6742 (sum)
N (scaled to annual)	(number)	10.6742	10.6742	10.6742	10.6742	10.6742	10.6742	10.6742	10.6742	10.6742	10.6742	10.6742	10.6742	
Kn .	(number)	1	1	1	1	1	1	1	1	1	1	1	1	1 (avg)
Days	(number)	31	28	31	30	31	30	31	31	30	31	30	31	365 (sum)
Compound Molecular We	ights (lb/lb-M)													
Ethanol	(Mv)	46.07	46.07	46.07	46.07	46.07	46.07	46.07	46.07	46.07	46.07	46.07	46.07	46.07 (lb/lb-mole)
Water	(Mv)	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153 (lb/lb-mole)
Compound Vapor Pressur	es (Pva)													
Ethanol	(mmHg)	0.1712	0.1934	0.2871	0.4274	0.616	0.8405	0.978	0.917	0.7019	0.461	0.3121	0.2069	0.509375 (avg)
Water	(mmHg)	3.965	4.5127	6.8494	10.4065	15.2596	21.1045	24.712	23.1091	17.4902	11.2678	7.4783	4.845	12.58334 (avg)
Working Loss Calculations	(Uncontrolled)													
tLa	("F)	29.6088	32.7413	43.1801	54.1927	64.7897	74.1836	78.9011	76.8843	68.5939	56.3522	45.446	34.4819	54.95463 (average)
tLn tLx	(°F) (°F)	26.2578 32.9598	28.8623 36.6204	38.4849 47.8754	48.6463 59.7391	58.8464 70.733	68.1642 80.203	73.0123 84.7898	71.3878 82.3809	63.5422 73.8456	51.5831 61.1213	41.7526 49.1393	31.3834 37.5803	50.16028 (average) 59.74899 (average)
tb	("R)	488.6871	491.5779	501.7157	512,4138		532.0187			527.082		504.5035	493.6591	513.4392 (average)
pC	(psla)	0.08	0.091	0.138	0.2095	0.3071	0.4245	0.4969	0.4647	0.3519	0.2269	0.1507	0.0977	0.253242 (average)
pNc	(psia)	14.4925	14.4815		14,363		14,148		14.1078	14.2206	14.3456	14.4218	14,4748	14.31926 (average)
pVa hVo	(psia) (ft)	0.08	0.091 3.201	0.13B 3.201	0.2095	0.3071 3.201	0.4245 3.201	0.4969	0,4647 3,201	0.3519 3.201	0.2269 3.201	0.1507 3.201	0.0977 3.201	0.253242 (average) 3.201 (average)
Vv	(ft^3)	32.582	32.582	32.582	32.582		32.582		32.582	32.582	32.582	32.582	32.582	32.582 (average)
wVnc	(number)	0.0799	0.0794	0.0775	0.0754	0.0734	0.0715		0.071	0.0726	0.075	0.0771	0.0791	0.0752 (average)
kE	(number)	0.0248	0.0294	0.0367	0.045	0.0502	0.0531	0.0533	0.0488	0.0436	0.0383	0.0281	0.0226	0.039492 (average)
tv taa	(°R) (°R)	489.7614 488.22	493.0912 490.92	503.7757 500.82	515.0447 511.27	525.8226 521,47	535.3506	540.0304 535.37	537.8465 533.72	529.4096 526.07	516.7982 514.32	505.6156 504.02	494.5539 493.27	515.5917 (average) 512.5033 (average)
kb	(number)		450.52			1	1	1	1	520.07	1	1	-55.27	1 (average)
kn	(number)	1	1	1	1	1	1	1	1	1	1	1	1	1 (average)
n	(number)	0.9066	0.8188	0.9066	0.8773	0.9066	0.8773	0.9066	0.9066	0.8773	0.9066	0.8773	0.9066	10.6742 (sum)
Compound Vapor Density	(vw(I))													
Ethanol	(lb/ft^3)	2.90E-05	3.26E-05	4.73E-05				2.00E-04				5.12E-05		7.79E-05 (avg)
Water	(lb/ft^3)	3.00E-04	3.00E-04	4.00E-04		9.00E-04	0.0013		0.0014			5.00E-04		7.83E-04 (avg)
Working Lange (1)														
Working Losses (Lw) Air	(Ib)	3.8366	3.4407	3.7181	3.5036	3.5232	3.322	3.3852	3,4057	3.3737	3.6009	3.5789	3.7942	42.4828 (sum)
Ethanol	(lb)	0.0014	0.0014	0.0023	0.0032	0.0047	0.0061	0.0072	0.0068	0.0051	0.0035	0.0024	0.0017	0.0459 (sum)
Water	(Ib)	0.0126	0.0129	0.0212	0.0305	0.0452	0.0594	0.0713	0.0669	0.0498	0.034	0.0223	0.0153	0.4414 (sum)
Breathing Loss Calculation	s (Uncontrolled)													
tan	("R)	480.87	482.97	491.67	500.87	510.77	520.27	525.27	523.97	516.17	504.27	495.77	486.27	503.2617 (avg)
taa	("R)	488.22	490.92	500.82	511.27	521.47	530.57	535.37	533.72	526.07	514.32	504.02	493.27	512.5033 (avg)
tax	("R)	495.57	498.87	509.97	521.67	532.17	540.87	545.47	543.47	535.97	524.37	512.27	500.27	521.745 (avg)
tLn	(*F) (*F)	26.2578 29.6088	28.8623	38.4849 43.1801	48.6463 54.1927	58.8464 64.7897	68.1642 74.1836	73.0123 78.9011	71.3878 76.8843	63.5422 68.5939	51.5831	41.7526	31.3834	50.16028 (avg)
tla tix	(°F) (°F)	29.6088 32.9598	32.7413 35.6204	43.1801 47.8754	54.1927 59.7391	64.7897 70.733	74.1836 80.203	78,9011 84,7898	76.8843	58.5939 73.8456	56.3522 61.1213	45.446 49.1393	34.4819 37.5803	54.95463 (avg) 59.74899 (avg)
i	(Btu/ft²day)	622.801	877.2515		1525.1169		1931.54		1667.254	1349.349	1001.304	644.6926	518.7364	1247.823 (avg)
tb	("R)	488.6871	491.5779	501.7157	512.4138	522.789	532.0187	536.7822	534.9704	527.082	515.071	504.5035	493.6591	513.4392 (avg)
pC	(psia) (esia)	0.08	0.091 14.4815	0.138 14.4345	0.2095	0.3071 14.2654	0.4245	0.4969 14.0756	0.4647 14.1078	0.3519	0.2269	0.1507	0.0977 14.4748	0.253242 (avg)
pNc pVa	(psia) (psia)	14.4925 0.08	14.4815 0.091	14.4345 0.138	14.363 0.2095	14.2654 0.3071	14.148 0.4245	14.0756 0.4969	14.1078 0.4647	14.2206 0.3519	14.3456 0.2269	14.4218 0.1507	14.4748 0.0977	14.31926 (avg) 0.253242 (avg)
dPv	(psia)	0.0223	0.029	0.0506	0.0863	0.1291	0.1732	0.1942	0.171	0.1258	0.0794	0.0429	0.0246	0.094033 (avg)
dPb	(psia)	0.06	0.05	0.05	0.06	0.06	0.05	0.05	0.06	0.06	0.06	0.06	0.06	0.06 (avg)
dTv hVo	("R) (ft)	13.404 3.201	15.5163 3.201	18.781 3.201	22.1856 3.201	23.7731 3.201	24.0777 3.201	23.555 3.201	21.9863 3.201	20.6067 3.201	19.0765 3.201	14.7735 3.201	12.3937 3.201	19.17745 (avg) 3.201 (avg)
nyo ks	(π.) (number)	0.9866	0.9848	0.9771	0.9657	0.9505	0.9328	0.9223	0.9269	0.9437	0.9629	0.9751	3.201 0.9837	3.201 (avg) 0.959342 (avg)
Vv	(ft^3)	32.582	32.582	32.582	32.582	32.5B2	32.582	32.582	32.582	32.582	32.582	32.582	32.582	32.582 (avg)
wVnc	(number)	0.0799	0.0794	0.0775	0.0754	0.0734	0.0715	0.0705	0.071	0.0726	0.075	0.0771	0.0791	0.0752 (avg)
kE tv	(number) (°R)	0.0248 489.7614	0.0294 493.0912	0.0367 503.7757	0.045		0.0531	0.0533 540.0304	0.0488	0.0436	0.0383	0.0281	0.0226	0.039492 (avg) 515.5917 (avg)
pix	(psia)	0.0918	493.0912	0.1654	0.2565	0.3775	0.5187	0.6022	0.557	0.4196	0.2696	0.1735	494.5539	0.304083 (avg)
pin	(psia)	0.0695	0.0776		0.1703		0.3455		0.386	0.2938	0.1902	0.1305	0.0861	0.210067 (avg)
Compound Very- De- 1	(martin)													
Compound Vapor Density Ethanol		2 005 05	3 76F //F	4.73E-05	6 BOC OF	9 775 05	1.005.04	2 005 04	1.005.04	1.005.04	7 /15 05	5 125 05	3 475.05	7 705-05 (200-)
Ethanol Water	(lb/ft^3) (lb/ft^3)	2.90E-05 3.00E-04	3.26E-05 3.00E-04			9.72E-05 9.00E-04	1.00E-04 0.0013	2.00E-04 0.0015	1.00E-04 0.0014		7.41E-05 7.00E-04	5.12E-05 5.00E-04	3.47E-05 3.00E-04	7.79E-05 (avg) 7.83E-04 (avg)
													- /	
Breathing Losses (Ls)	(16)													34 0744 / *
Air Ethanol	(lb) (lb)	2.0021 7.00E-04	2.1266 9.00E-04	2.8717 0.0017	3.3184 0.0029	3.7201 0.0047	3.7127 0.0063	3.7954 0.0075	3.5009 0.0065	3.0978 0.0044	2.9042 0.0028	2.1138 0.0014	1.8074 8.00E-04	34.9711 (sum) 4.06E-02 (sum)
Water	(Ib) (Ib)	0.0065	0.0078	0.0017	0.0279	0.0454	0.0063	0.00737	0.0638	0.0044	0.0264	0.0014	0.0072	4.06E-02 (sum) 0.3927 (sum)
		-				-	-	-	-	_	-	-		
Total Losses (Lt)	(15)	F 0307	E 5674	6 1000	£ 077	7 7494	7 /247	7 1000	6 0000	6 4745	6 5054	5 5000	5 6010	77 4641 ()
Air Ethanol	(lb) (lb)	5.8387 0.0021	5.5673 0.0023	6.5899 0.004	6.822 0.0061	7.2433 0.0094	7.0347 0.0124	7.1806 0.0147	6.9066 0.0133	6.4715 0.0095	6.5051 0.0063	5.6928 0.0038	5.6016 0.0024	77.4541 (sum) 0.0863 (sum)
Water	(Ib) (Ib)	0.0191	0.0223	0.0372	0.0583		0.1214	0.145	0.1307	0.093	0.0603	0.0351	0.0024	0.8338 (sum)

Activity Title	TK-DF Diesel Fuel Tar	k From 1/:	1/2021 to 12/	31/2021										
Climate:	Pennsylvania, Harris			-										
ра	14.5725 psia													
Equipment Tag	TK-DF Diesel Fuel Tar	ık												
Storage Vessel Style	Horizontal Storage													
Calculation Type	Normal Storage Tani Working and Breath													
Void Space Volume	1861.45 gal	IIIB LOSS CA												
Working Volume	1204 gal													
Working Volume	160.9514 ft^3													
Shell Diameter	4.39 ft													
Straight Side Height	16.44 ft													
Paint Solar Absorptance	0.25													
Roof Color / Condition Shell Color / Condition	white / average white / average													
pbp	white / average 0.03													
pbv	-0.03													
Equipment Comment														
Activity Comment	Imported from Excel	on 2:55:56	6 PM, 5/19/20	22.										
Pi (constant)	3.1416													
R (constant)	998.9													
Vessel Contents	930.725 ga	68.000 °F	6608.144 lb		50.832 lb-M									
Mixture Name:	Mixture													
	[Liquid]	mmHg	lb	W[i]	lb-M	X[i]	A[i]	X*Pi*Ai (m	nmHg)					
	Distillate Fuel Oil No	0.4359	6608.144	1	50.8319	1	1	0.4359						
Kp (product factor)	1													
Month		Jan	Feb	Mar	Apr	May	Jun	Jul	A	Sep	Oct	Nov	Dec	
Q	(gal)		4053.0192		•				Aug 4487 271	•				52834 (sum)
Vq	(ft^3)	599.8609					4342.321 580.5106			4342.321 580.5106				7062.879 (sum)
N (period)	(number)	3.727		3.727	3.6067	3.727		3.727	3.727		3.727	3.6067	3.727	43.8821 (sum)
N (scaled to annual)	(number)	43.8821	43.8821	43.8821	43.8821	43.8821	43.8821		43.8821	43.8821	43.8821	43.8821	43.8821	
Kn	(number)	0.8503		0.8503	0.8503	0.8503		0.8503	0.8503			0.8503		0.8503 (avg)
Days	(number)	31	28	31	30	31	30	31	31	30	31	30	31	365 (sum)
Compound Molecular Wei	abre (ib/ib.a.e)													
Distillate Fuel Oil No. 2	gmcs(ib/ib-ivi) (Mv)	130	130	130	130	130	130	130	130	130	130	130	130	130 (lb/lb-mole)
Distillate Fuel Oil NO. 2	(iviv)	130	130	150	130	130	130	130	130	130	130	130	130	130 (10/10-11012)
Compound Vapor Pressure	:s (Pva)													
Distillate Fuel Oil No. 2	(mmHg)	0.1054	0.12	0.1812	0.2719	0.392	0.532	0.6164	0.5791	0.4459	0.2935	0.1974	0.1288	0.321967 (avg)
Westing Lass Calculations (() in combine () and)													
Working Loss Calculations (tLa		29.6088	32.7413	43.1801	E4 1007	64.7897	74.1836	78.9011	76.8843	68.6939	56.3522	45.446	34.4819	54.95463 (average)
tin	(°F) (°F)	29.6088		38,4849					70,8643		51.5831			50.16028 (average)
tix	(°F)	32.9598		47.8754	59.7391	70.733	80.203	84.7898	82.3809			49.1393	37.5803	59.74899 (average)
tb	("R)	488.6871			512.4138			536.7822				504.5035		513.4392 (average)
рC	(psia)	0.002		0.0035	0.0053		0.0103	0.0119	0.0112			0.0038	0.0025	0.006225 (average)
pNc	(psia)	14.5705	14.5702	14.569	14.5672	14.5649	14.5622	14.5606			14.5668	14.5687	14.57	14.56628 (average)
pVa	(psia)	0.002	0.0023	0.0035	0.0053	0.0076	0.0103	0.0119	0.0112	0.0086	0.0057	0.0038	0.0025	0.006225 (average)
hVo	(ft)	1.7239		1.7239	1.7239	1.7239	1.7239	1.7239	1.7239	1.7239		1.7239	1.7239	1.7239 (average)
Vv	(ft^3)	124.4716								124.4716				124.4716 (average)
wVnc	(number)	0.0804		0.0782		0.075	0.0736	0.073	0.0732			0.0778	0.0796	0.076483 (average)
kE	(number)	0.0233		0.0333	0.0392		0.0413	0.0399			0.033	0.0252	0.021	0.0331 (average)
tv taa	(°R) (°R)	489.7614 488.22		503.7757			535.3506	540.0304		529,4096 526.07		505.6156		515.5917 (average) 512.5033 (average)
kb	(number)	400.22	450.52	1	1	521,47	1	1	1	520.07	1	1	455.27	1 (average)
kn	(number)	0.8503		0.8503	0.8503			0.8503				0.8503	0.8503	0.8503 (average)
n	(number)	3.727		3.727	3.6067	3.727	3.6067	3.727	3.727		3.727	3.6067	3.727	43.8821 (sum)
Compound Vapor Density														
Distillate Fuel Oil No. 2	(lb/ft^3)	5.04E-05	5.70E-05	8.42E-05	1.00E-04	2.00E-04	2.00E-04	3.00E-04	3.00E-04	2.00E-04	1.00E-04	9.15E-05	6.10E-05	1,45E-04 (avg)
Working Losses (Lw)														
Air	(lb)	40.9962	36.7926	39.8858	37.7674	38.2316	36.3406	37.2188	37.3606	36.7223	38.8618	38.4251	40.5907	459.1935 (sum)
Distillate Fuel Oil No. 2	(Ib)	0.0257		0.043			0.1149	0.1364				0.0451	0.0311	0.8666 (sum)
	-	-	-			_	-				-	-	-	· ·
Breathing Loss Calculations														
tan	(°R)	480.87		491.67	500.87	510.77	520.27	525.27				495.77	486.27	503.2617 (avg)
taa	(°R)	488.22		500.82			530.57	535.37	533.72			504.02	493.27	512.5033 (avg)
tax	(*R) (*5)	495.57	498.87	509.97	521.67		540.87	545.47	543.47			512.27	500.27	521.745 (avg)
tin tia	(°F) (°F)	26.2578 29.6088		38.4849 43.1801	48.6463 54.1927	58.8464 64.7897	68.1642 74.1836				51.5831 56.3522	41.7526 45.446		50.16028 (avg) 54.95463 (avg)
ti.a	(°F)	29.6088		43.1801 47.8754	54.1927		74.1836				61.1213			54.95463 (avg) 59.74899 (avg)
i	(Btu/ft²day)	622.801								1349.349				1247.823 (avg)
ъ	(°R)	488.6871	491.5779	501.7157	512.4138	522.789	532.0187	536.7822	534.9704	527.082	515.071	504.5035	493.6591	513.4392 (avg)
рC	(psia)	0.002		0.0035	0.0053	0.0076	0.0103	0.0119	0.0112			0.0038	0.0025	0.006225 (avg)
pNc	(psia)	14.5705		14.569	14.5672								14.57	14.56628 (avg)
pVa Jou	(psia)	0.002		0.0035				0.0119	0.0112			0.0038		0.006225 (avg)
dPv dPb	(psia) (psia)	6.00E-04 0.06		0.0013 0.06	0.0021	0.003	0.0039 0.06	0.0043 0.06	0.0038 0.06			0.0011 0.06	6.00E-04 0.06	2.18E-03 (avg) 0.06 (avg)
dPo dTv	(psia) (°R)	13.404		18.781		23.7731		23.555						19.17745 (avg)
hVo	(ft)	1.7239	1.7239	1.7239	1.7239		1.7239	1.7239	1.7239			14.7735		1.7239 (avg)
ks	(number)	0.9998		0.9997	0.9995		0.9991	0.9989	0.999			0.9997	0.9998	0.999442 (avg)
W	(ft^3)	124.4716	124.4716							124.4716				124.4716 (avg)
wVnc	(number)	0.0804	0.0799	0.0782	0.0765			0.073				0.0778		0.076483 (avg)
kE	(number)	0.0233		0.0333	0.0392			0.0399	0.0371		0.033	0.0252	0.021	0.0331 (avg)
tv	(°R)	489.7614								529.4096				515.5917 (avg)
pix pin	(psia) (psia)	0.0023 0.0018		0.0042	0.0064 0.0043		0.0124 0.0085	0.0142 0.0099				0.0044 0.0033		0.0074 (avg) 0.005217 (avg)
P	(Inc.)	0.0018	0.002	0.0029	0.0043	0.0002	0.0005	0.0099	0.0094	0.0075	0.0046	0.0033	5.0022	0.003211 (QAR)
Compound Vapor Density i	(w∀(i))													
Distillate Fuel Oil No. 2	(lb/ft^3)	5.04E-05	5.70E-05	8.42E-05	1.00E-04	2.00E-04	2.00E-04	3.00E-04	3.00E-04	2.00E-04	1.00E-04	9.15E-05	6.10E-05	1.45E-04 (avg)
Breathing Losses (Ls)	<i>a</i>							•				-	_	
Air Bhailtean Frank Off No. 2	(Ib)	7.2312				11.9784						7.3258	6.45	114.3862 (sum)
Distiliate Fuel Oil No. 2	(lb)	0.0045	0.0055	0.0108	0.0181	0.0279	0.0358	0.0411	0.0361	0.0258	0.0169	0.0086	0.0049	0.236 (sum)
Total Losses (Lt)														
Air	(lb)	48.2274	44,4309	49.9386	48.9665	50.2101	47.681	48.4565	47.8517	46.4678	48.5576	45.7509	47.0407	573.5797 (sum)
Distillate Fuel Oil No. 2	(lb)	0.0303		0.0538	0.0791		0.1507	0.1775				0.0538	0.0361	1.1027 (sum)
														1 1027

vig (m3) 3998800 5908.000 5908.000 5908.000 5908.000 500.00000 500.0000 500.0000 500.000 500.000 500.000 500.000 500.0000 500.000 500															
	Activity Title	TK-DOD De-dust oil	day tank Fr	om 1/1/2021	to 12/31/2	2021									
	Climate:		sburg												
			day tank												
Weaking Yoolan Signed Yoolan SigneYoolan Signed Yoolan Signed Yo			+ (11/2010	(Rev.)											
Vale Start Vale 232.1 af Vale Start Vale 30.5 h Vale Start Vale Vale Vale Vale Vale Vale Vale Vale															
Wathy Wathy 35.357.75 Problem Processor 33 Problem Processor 33.5 Problem Processor 33.5 <	Void Space Volume														
Shel Djamen 1 30 S Har Star Market M	Working Volume	264 gal													
Int Description Description Subject State Sta															
Description Mark / scrapt by bolicati / Control Mark / scrapt by bolicati / Control Scrapt / Scrapt by bolicati / Control Scrapt / Scrapt by bolicati / Scrapt by bolicati / Scrapt /		*****													
Shel Color Jonation and Terretories and 25.55 PM 5/19/2002. Sequence of the line and 25.55 PM 5/19/2002. A conversion of the line and 25.55 PM 5/19/2002.															
php 0.03 Construction Description															
bis de la construit de la															
Athly Convent Bus and															
NameNot by DescriptionNot by DescriptionNo	Activity Comment	Imported from Exce	l on 2:55:57	7 PM, 5/19/2	022.										
Lat. During in the control i	PI (constant)														
	R (constant)	998.9													
Liquid method is Will M.M. XIII AVIII XIIIII A VIIII A VIIIIA Sprakulet Two 1 2.657 h. 1 0.453 1 0.267 h. 500 model to the second t			i 68.000 *F	1001.454	6	7.703 Ib-M									
Distance Processing Distance Processing <thdistance processing<="" th=""> Distance Processing</thdistance>	Mixture Name:						win	4.513							
										Imag					
H 2,4575 K Oct: Name Feb Mor Are May Name See Col Nave Deci O (m ²) See	Kn (product factor)			1001.4545	1	7.7035	1	1	0.4359						
North Jah Part North No		_													
Q Image Ima		2.007510													
Q Image Ima	Month		Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
vq (m) 99.8600 59.8400 59.8400 59.8400 59.8400 59.8400 59.8400 59.8400 59.8400 59.8400 59.8400 59.8400 59.8400 59.8400 59.8400 59.8400 59.8400 50.8500 50.850 50.850 50.850 50.850 50.850 50.850 50.850 50.850 50.850 50.850 50.850 50.8500 50.8500 50.8500		(gal)								4487.271					52834 (sum)
M (sake annual) (number) 200.128		(ft^3)	599.8609		599.8609										7062.879 (sum)
n pumber) 0.316 0															200.1283 (sum)
Days (muther) 31 28 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 30 30 30 30 30 30 30 30 30 30 30 30 30 130															
Compound Modelative Weight (By/Let) Distance of New 2 (M) 130															0.3166 (avg)
Distlike Prior Distlik	uays	(number)	31	28	31	30	31	30	31	31	30	31	30	31	365 (sum)
Distlike Prior Distlik	Compound Mala advanta	labor file file and													
Compand Mapor Presures (PM) 0.105 0.12 0.121 0.2719 0.392 0.532 0.616 0.5791 0.4499 0.2395 0.1374 0.1286 0.31197 (J Company Mark 100 No.2 (mmmd) 0.1054 0.127 0.127 0.127 0.128 0.127 0.128 0.127 0.128			120	120	170	120	120	130	170	176	120	170	120	170	120 (15 (15
Distlike Fuel Oil Ro.2 (mmkg) 0.1054 0.12 0.1212 0.212 0.212 0.322 0.512 0.5144 0.778 0.4459 0.2295 0.1374 0.1288 0.32187 (Working Loss Cloakettoms [Uncontrolled] Lit (T) 22.5078 28.4674 64.7897 7.1186 78.9011 76.8431 68.6939 55.5521 45.444 34.4493 54.95461 57.957 55.957 55.957 55.957 55.957 55.957 55.957 55.977	ensunate ruei VII NO. Z	(.a.a)	130	130	130	130	130	130	130	130	130	130	130	130	130 (lb/lb-mole)
Disklike Fuel Oil Ho.2 (mmHg) 0.1054 0.22 0.322 0.322 0.522 0.5144 0.5791 0.4459 0.2295 0.1374 0.1288 0.33167 (Working Loss Cabulations [Uncontrolled] Lit (F) 25.0581 37.413 41.1801 54.1927 64.7897 74.1816 78.0011 76.8843 68.6939 55.5521 45.444 34.4419 54.95461 35.0278 35.033 35.733 35.033 57.7350 35.033 57.7350 35.033 57.7350 35.033 57.7350 35.033 57.7350 55.037 35.037 35.033 57.7350 55.037 35.03	Compound Vapor Pressur	res (Pva)													
Worke Loss Cabulations (Uncontrolled) Status (*) 25.552 35.452 35.452 35.452 35.452 35.448 35.4651 55.552 45.5461 55.552 45.5461 55.552 45.5461 55.552 45.5461 55.552 45.5461 55.552 45.5461 55.552 45.5461 55.552 45.575 55.552 45.755 55.755 55.552 45.757 55.741 55.861 15.557 15.557 55.557			0.1054	0.12	0.1812	0.2719	0.392	0.532	0.6164	0.5791	0.4459	0.2935	0.1974	0.1288	0.321967 (avg)
Li (P) 22.008 32.7413 43.8801 54.1327 67.7897 74.1386 75.8487 86.849 46.645 58.466 64.645 58.466 58.466 58.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 45.445 55.4551 45.4551 45.555 15.4555 55.752 45.475 55.772 45.475 15.4551 15.555 15.557 15.557 15.557															
Li (P) 22.008 32.7413 43.8801 54.1327 67.7897 74.1386 75.8487 86.849 46.645 58.466 64.645 58.466 58.466 58.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 45.445 55.4551 45.4551 45.555 15.4555 55.752 45.475 55.772 45.475 15.4551 15.555 15.557 15.557 15.557															
Li (P) 22.008 32.7413 43.8801 54.1327 67.7897 74.1386 75.8487 86.849 46.645 58.466 64.645 58.466 58.466 58.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 55.4521 45.445 45.445 55.4551 45.4551 45.555 15.4555 55.752 45.475 55.772 45.475 15.4551 15.555 15.557 15.557 15.557															
tin (P) Z.5.278 Z.8673 Z.84673 R.46665 S.8466 G.1627 20123 T.13776 E.13426 L.17556 S.13381 S.016276 (e) tin (P) Z.86674 Z.5778 S.7378 G.738 G.738 G.738 G.738 G.738 G.738 G.7387 G.738 G.7387 G.7387 G.7387 G.7387 G.738 G.7387 G.738 G.7387 G.737 G															
Li. (m) 12.9398 56.2204 74.737.4 59.748916 12.131 41.139 37.3403 57.3408 57.1418 57.743 57.743 57.743 57.743 57.743 57.743 57.743 57.743 57.743 57.743 57.745 57.745 57.745 57.745 57.745 57.745 57.745 57.745 57.745 57.745 57.745 57.745 57.745 57.745 57.745 57.75 5															54.95463 (average)
ti (%) (#8671 491.775 51.7157 512.4138 527.78 532.0187 582.782 532.0187 502.785 72.028 515.071 505.058 493.6591 145.669 145.671 45.70 50.038 0.0023 0.0035 0.0038 0.0130 0.013 0.0112 0.0066 0.0057 0.0038 0.0120 0.0025 (phc (pink) 14.775 14.770 14.569 14.5															50.16028 (average)
pc (pris) 0.002 0.003 0.0035 0.0035 0.0045 0.0015 0.0018 0.0025 0.0068 0.0057 0.0038 0.0025 0.0058 0.0025 0.0058 0.0025 0.0058 0.0025 0.0058 0.0025 0.0058 0.0025 0.0058 0.0025 0.0058 0.0025 0.0058 0.0025 0.0058 0.0025 0.0058 0.0025 0.0058 0.0025 0.0058 0.0025 0.0058 0.0025 0.0058 0.0025 0.0058 0.0057 0.0088 0.0025 0.0058 0.0025 0.0058 0.0057 0.0088 0.0025 0.0057 0.0088 0.0025 0.0058 0.0057 0.0088 0.0025 0.0057 0.0088 0.0025 0.0057 0.0058 0.0057 0.0078 0.0058 0.0025 0.0078 0.0025 0.0078 0.0025 0.0078 0.0025 0.0078 0.0026 0.0078 0.0028 0.0021 0.0028 0.0021 0.0028 0.0038 0.0027 0.0038 0.0025 0.0028 0.0028 0.0038 0.0028 0.0028 0.0038 <															59.74899 (average) 513.4392 (average)
inter [mai] 14.5705 14.5705 14.5705 14.5705 14.572 14.5626 14.5521 14.5561 14.5561 14.5561 14.5561 14.5561 14.5561 14.5561 14.5561 14.5561 14.5571 14.577 14.577 14.555 14.5551 14.555															0.006225 (average)
pink [pink] 0.002 0.0023 0.0026 0.0033 0.0076 0.0119 0.0129 0.0756 0.0351 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 <td></td>															
hvo (ri) 2.6675															0.006225 (average)
vv (fr.3) 18.855															2.6675 (average)
whre: (number) 0.0804 0.0798 0.0726 0.0736 0.0736 0.0736 0.0736 0.0736 0.0736 0.0736 0.0736 0.0738 0.0238 0.0321 0.03316 0.316															18.8556 (average)
kč (number) 0.0233 0.0232 0.0414 0.0413 0.0331 0.0331 0.0332 0.0232 0.0231 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316 0.0316	wVnc			0.0799	0.0782	0.0765	0.075	0.0736	0.073	0.0732	0.0744	0.0762	0.0778	0.0796	0.076483 (average)
tate (%) 448.22 69.02 50.02 51.17 52.17 53.27 52.607 53.37 52.607 53.42 54.42 54.207 61.2036 60.3166 0.	kE	(number)	0.0233	0.0274	0.0333	0.0392	0.0414	0.0413	0.0399	0.0371	0.0351	0.033	0.0252	0.021	0.0331 (average)
tb [number] 1	tv	(°R)	489.7614			515.0447	525.8226								515.5917 (average)
in n number) 0.3166 0.3016															512.5033 (average)
n (number) 16.9972 15.352 16.9972 16.4489 16.9972 16.418 10.0016 10.01															1 (average)
Compound Vapor Density (will) Discrete Name															0.3166 (average)
Distiliate Fuel OII No. 2 (Ib/In*3) 5.04.05 5.70E-05 8.42E-05 1.00E-04 2.00E-04 3.00E-04 2.00E-04 2.00	n	(number)	16.9972	15.3523	16.9972	16.4489	16.9972	16.4489	16.9972	16.9972	16.4489	16.99/2	16.4489	16.9972	200.1283 (sum)
Distiliate Fuel Oil No. 2 (Iby/fr3) 5.04E-05 5.70E-05 8.42E-05 1.00E-04 2.00E-04 2.00E-04 3.00E-04 3.00E-04 2.00E-04 3.00E-04 2.00E-04 9.15E-05 6.10E-05 1.145E-04 (Working Losses (Lw) Air (b) 15.2627 13.6977 14.8493 14.0607 14.2335 13.5295 13.8564 13.9092 13.6716 14.4681 14.3055 15.1118 170.9566 Distiliate Fuel Oil No. 2 (b) 0.0096 0.0098 0.016 0.0227 0.0332 0.0428 0.0508 0.0479 0.0363 0.0253 0.0168 0.0116 0.3228 (Breathing Loss Calculations (Uncontrolled) Tan (R) 480.27 493.27 14.8493 14.0607 14.2335 13.5207 525.27 523.97 516.17 504.27 495.77 486.27 503.2617 (taa (R) 486.22 490.92 500.82 511.27 521.47 530.57 535.37 533.7 524.37 514.37 504.27 495.77 512.27 512.176 (taa (R) 486.27 495.57 488.67 509.97 521.67 532.17 540.87 547 543.47 535.97 514.37 512.27 502.27 512.176 (taa (R) 495.57 488.67 509.97 521.67 532.17 540.87 547 543.47 535.97 514.37 512.27 502.27 512.176 (tau (R7) 22.6598 36.2424 47875 45.37931 70.733 60.203 64.7698 73.0176 65.552 45.464 34.4819 54.5646 (tu (R7) 32.2698 36.2741 47875 45.37931 70.733 60.203 64.7698 73.0176 65.3123 44.5139 37.5508 37.564 1247.423 (tu (R7) 22.6508 32.7413 43.1801 54.1527 64.7897 74.188 78.0203 64.7698 73.0456 61.552 13.0344 124.7423 (tu (R7) 32.598 36.6204 147875 45.37931 70.733 60.203 64.7698 12.034.914 93.491 001.304 64.46925 518.764 124.7423 (tu (R7) 45.661 4.561 41.551 151.571 154.271 45.672 14.564 14.5621 14.5621 14.5651 14.5561 14.556 13.568 14.575 14.5764 124.7423 (tu (R8) 0.002 0.0023 0.0035 0.0053 0.0076 0.013 0.0110 0.0112 0.0086 0.0057 0.0038 0.0025 0.00622 6 (phc (psis) 0.002 0.0023 0.0035 0.0053 0.0076 0.0103 0.0110 0.0112 0.0086 0.0057 0.0038 0.0025 0.00622 6 (phc (psis) 0.002 0.0023 0.0035 0.0053 0.0051 0.0013 0.0110 0.0112 0.0086 0.0057 0.0038 0.0025 0.0066 0.066 0.06 0.06 0.06 0.06 0.06	Compound Venor Density	(MARIN)													
Air (b) 15.2627 13.8977 14.8493 14.0607 14.2355 13.8525 13.8504 13.9092 13.6716 14.4681 14.3055 15.1118 170.956 (Distilate Fuel OII No. 2 (b) 0.0096 0.0098 0.016 0.0227 0.0328 0.0428 0.0368 0.0479 0.0363 0.0253 0.0168 0.0116 0.3228 (Breathing Loss Calculations (Uncontrolled) Tain ('R) 480.87 482.97 491.67 500.87 510.77 520.27 523.37 531.23 544.37 531.27 524.37 512.17 521.47 501.61 501.27 502.37 532.43 512.37 503.21 514.37 532.43 512.37 532.43 513.33 533.43 550.35 551.41 501.75 521.375 512.413 513.37 533.43 550.37 532.43 513.333 533.33 533.72 534.43 533.33 533.7 533.43 533.43 550.313 543.445 501.313 143.8309 151.313			5 04E-05	5 70E-05	8 42 F-05	1 00F-04	2 00E-04	2 00F-04	3 ODE-04	3 00F-04	2 00F-04	1 00F-04	9155-05	6 10E-05	1 45F-04 (ava)
Air (b) 15.2627 13.697 14.4935 13.2052 13.8564 13.9052 13.8564 13.9052 13.6571 14.40355 15.1118 170.556 Breathing Loss Calculations (Uncontrolled) Example Controlled) Example Controlled) Example Controlled Example Controlled) Example Controlled Example Controlled) Example Controlled Example Controlled) Example Controlled Example Controlled <thexample controlled<="" th=""> <thexample controled<="" th=""></thexample></thexample>	Distingte i dei on ito. 2	(10/10/07)	3.042-03	5.702-05	0.421-05	1.000-04	1.001-04	2.002-04	3.000-04	3.00L 04	2.001-04	1.002 04	J.152 05	0.102 05	1.452 04 (248)
Air (b) 15.2627 13.697 14.4935 13.2052 13.8564 13.9052 13.8564 13.9052 13.6571 14.40355 15.1118 170.556 Breathing Loss Calculations (Uncontrolled) Example Controlled) Example Controlled) Example Controlled Example Controlled) Example Controlled Example Controlled) Example Controlled Example Controlled) Example Controlled Example Controlled <thexample controlled<="" th=""> <thexample controled<="" th=""></thexample></thexample>	Working Losses (Lw)														
Distillate Fuel OI No. 2 (b) 0.0096 0.0098 0.016 0.0277 0.0322 0.0428 0.0428 0.0429 0.0363 0.0253 0.0168 0.0116 0.03228 (not controlled) Breathing Los Calculations (Uncontrolled) Uncontrolled) Uncontrolled) Tain (°R) 480.07 482.97 491.67 500.87 510.77 520.27 521.47 535.97 534.32 504.02 493.27 512.503 (not controlled) Uncontrolled)		(lb)	15.2627	13.6977	14.8493	14.0607				13.9092	13.6716	14.4681	14.3055	15.1118	170.956 (sum)
tan (*R) 480.87 482.97 491.67 500.87 510.77 520.27 525.27 523.97 516.17 504.27 495.77 486.27 503.2617 (i) taa (*R) 488.22 490.92 500.82 511.27 521.47 530.75 535.97 532.97 512.37 512.97 502.37 512.37 501.27 521.74 500.75 535.97 523.47 533.97 520.47 535.97 523.17 500.27 521.74 500.27 512.75 502.27 502.37 512.75 <t< td=""><td>Distillate Fuel Oil No. 2</td><td></td><td>0.0096</td><td>0.0098</td><td>0.016</td><td>0.0227</td><td>0.0332</td><td>0.0428</td><td>0.0508</td><td>0.0479</td><td>0.0363</td><td>0.0253</td><td>0.0168</td><td>0.0116</td><td>0.3228 (sum)</td></t<>	Distillate Fuel Oil No. 2		0.0096	0.0098	0.016	0.0227	0.0332	0.0428	0.0508	0.0479	0.0363	0.0253	0.0168	0.0116	0.3228 (sum)
tan ("R) 480.87 482.97 491.67 500.87 510.77 520.27 525.27 523.97 516.17 504.27 495.77 486.27 503.2617 (intro-1000) taa ("R) 488.22 490.92 500.82 511.27 521.47 530.57 535.37 533.77 535.97 524.37 512.7 500.22 51.831 41.7526 31.384 501.602.8 (intro-1000) 511.67 535.97 521.27 500.27 521.745 (intro-1000) 500.82 513.47 533.97 512.67 512.75 512															
taa (*R) 488.22 490.92 500.82 511.27 521.47 536.37 535.37 536.07 514.32 504.02 493.27 502.027 521.276 (1) tax (*R) 495.57 428.623 38.4449 48.6463 58.447 730.12 71.337 63.3427 535.37 521.27 501.57 501.27 501.57	Breathing Loss Calculation	• •													
tax ('R) 495.57 498.87 509.97 521.67 524.75 548.47 535.97 524.37 512.27 500.27 521.45 512.47 500.27 521.45 512.47 500.27 521.45 512.47 501.23 512.47 501.23 512.48 512.47 501.23 512.48 512.43 512.48 502.08 82.369 73.245 512.34 513.472 512.475 512.475 512.57 512.48 512.57 513.572 514.572 514.572 514.572 514.572 514.572 514.572 514.572 514.572 514.572 51.572 515.572 50.575 50.575 50.575 50.575 50.575 50.575 50.575 50.575 50.575 50.575 50.575 2.6675 2.6675 2.6675 2.6675 2.6675 2.6675 2.6675 2.6675 2.6675 2.66	tan								343.47						503.2617 (avg)
tin (°F) 26.578 28.623 38.489 48.663 58.846 68.1642 73.0123 71.3876 63.5422 51.5831 41.7525 31.3834 50.6028 (14 175) 29.6088 32.7413 43.1801 54.1927 64.7897 74.1836 78.9011 76.8843 68.693 56.3522 45.466 34.4819 54.35463 (14 17 19 19 19 19 19 19 19 19 19 19 19 19 19															512.5033 (avg)
tia (°F) 29.608 32.7413 431.801 54.1927 64.7897 74.1367 78.9011 76.8043 66.939 56.3522 45.445 34.819 54.95483 (1213 49.1393 37.5803 59.74893 (1213 49.1393 37.5803 59.74893 (1213 49.1393 37.5803 59.74893 (1213 49.1393 37.5803 59.74893 (1213 49.1393 37.5803 59.74893 (1213 49.1393 37.5803 59.74893 (1213 49.1393 37.5803 59.74893 (1213 49.1393 37.5803 59.74893 (1213 49.1393 37.5803 59.74893 (1213 49.1393 37.5803 59.74893 (1213 49.1393 37.5803 59.74893 (1213 49.139 10.213 60.057 60.053 60.057 0.003 0.0057 0.003 0.0057 0.003 0.0057 0.003 0.0057 0.003 0.0057 0.003 0.0057 0.005 0.067 0.066 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.067 0.066 0.06<															521.745 (avg)
tix (°F) 32.9598 36.8204 47.8734 59.7911 70.733 80.203 84.7898 82.3809 73.8455 61.1213 49.1939 37.5803 59.74895 (1) (Bu/ft ¹ day) 622.801 877.2515 1194.204 1525.1169 175.628 1931.54 1882.997 1667.254 1349.391 40.446.925 518.7364 1247.823 (1)															50.16028 (avg)
1 (Bu/ft*day) 622.801 877.2515 1194.204 1578.628 1931.54 1382.997 1567.254 1349.349 1001.304 644.6925 518.7964 1247.823 tb ('R) 488.6871 491.5779 501.7157 512.4138 522.789 532.0187 536.7822 534.9704 527.082 515.071 504.5035 493.6591 513.4392 pC (psia) 0.0023 0.0023 0.0035 0.0076 0.0130 0.0119 0.0112 0.0056 0.0057 0.0038 0.0057 0.0038 0.0057 0.0038 0.0057 0.0038 0.0057 0.0038 0.0057 0.0038 0.0057 0.006 0.066 0.06 0.067 0.006 0.073															
th (R) 488.6971 491.5779 501.7157 512.4138 522.789 520.187 536.7822 534.9704 527082 515.071 504.5035 493.6591 513.4392 (pC (psia) 0.002 0.0023 0.0035 0.0053 0.0076 0.0103 0.0119 0.0112 0.0086 0.0057 0.0038 0.0025 0.006225 (pWe (psia) 0.002 0.0023 0.0035 0.0053 0.0076 0.0103 0.0119 0.0112 0.0086 0.0057 0.0038 0.0025 0.006225 (pVa (psia) 0.002 0.0023 0.0055 0.0053 0.0076 0.0103 0.0119 0.0112 0.0086 0.0057 0.0038 0.0025 0.006225 (dPV (psia) 0.006 4 0.0013 0.0025 0.0053 0.0076 0.0038 0.0025 0.0019 0.0011 6.00E-04 2.18E-03 (dPV (psia) 0.06 0.6 0.06 0.06 0.06 0.06 0.06 0.06	1														59.74899 (avg) 1247.823 (avg)
pC (psia) 0.002 0.0023 0.0033 0.0033 0.0033 0.0103 0.0112 0.0086 0.0036 0.0038 0.0025 0.006225 (pNC pNc (psia) 14.5702 14.5702 14.5672 14.5672 14.5662 14.5613 14.5633 14.5668 14.5678 14.5672 14.5662 14.5613 14.5663 14.5667 14.571 14.56628 14.5669 14.5678 14.5672 14.5642 14.5603 14.5668 14.567 14.5672 14.5642 14.5603 14.5668 14.567 14.5672 14.5662 14.5603 14.5668 14.567 14.5672 14.5662 14.5603 14.5668 14.567 14.5672 14.5662 14.5603 14.5668 14.5678 14.5668 14.5678 14.5672 14.5672 14.5672 14.5672 14.5672 14.5672 14.5672 14.5672 14.5672 14.5672 14.5672 14.5672 14.5672 14.5672 14.5672 14.5672 14.5672 14.5671 14.5676 14.571 1	tb														513.4392 (avg)
phc (psia) 14.5705 14.5705 14.5762 14.5622 14.5623 14.5639 14.5663 14.5667 14.562 pVa (psia) 0.002 0.0023 0.0035 0.0076 0.0103 0.0112 0.0086 0.0057 0.0038 0.0024 0.0028 0.0024 0.0086 0.0057 0.0038 0.0027 0.00622 0.0023 0.0033 0.0033 0.0013 0.0013 0.0013 0.0013 0.0013 0.0014 0.0086 0.005 0.006 0.006 0.06<															0.006225 (avg)
pVa (psia) 0.002 0.0023 0.0033 0.0035 0.0033 0.0013 0.0112 0.0086 0.0038 0.0023 0.006225 (0.0043 dPv (psia) 6.00E-04 7.00E-04 0.0013 0.0033 0.0033 0.0033 0.0038 0.0025 0.0014 0.0018 0.0019 0.0011 6.0019 0.0011 6.0019 0.0011 6.0019 0.0013 0.0019 0.0013 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0016 0.06															14.56628 (avg)
iprv (psia) 6.00E-04 7.00E-04 0.0013 0.0021 0.0039 0.0038 0.0028 0.0029 0.0011 6.00E-04 2.18E-03 dPb (psia) 0.06															0.006225 (avg)
dTv ("R) 13.404 15.5163 18.751 22.1856 23.7731 24.0777 23.555 21.9863 20.6067 19.0765 14.0735 12.3937 19.17745 hVo (ft) 2.6675		(psia)							0.0043	0.0038	0.0029	0.0019			2.18E-03 (avg)
hVo (ft) 2.6675															0.06 (avg)
ts (number) 0.9997 0.9997 0.9993 0.9993 0.9998 0.9983 0.9984 0.9988 0.9992 0.9995 0.99917 (0.99917) VV (ftr3) 18.8556 18.856 18.856 18.856 18.856 18.856 18.856 18.856 18.8															19.17745 (avg)
Vv (fr.*3) 18.8556 16.333 0.0023 0.002		(ft)													2.6675 (avg)
wVnc (number) 0.0804 0.0792 0.0765 0.073 0.0732 0.0744 0.0762 0.0778 0.0796 0.07483 (k kE (number) 0.0233 0.0274 0.0333 0.0392 0.0413 0.0391 0.0351 0.0331 0.0252 0.021 0.0331 0.0392 0.0413 0.03951 0.0351 0.044 0.0028 0.00764 0.00764 0.00764 0.00764 0.00764 0.00764 0.00764 0.00764 0.00764 0.00764 0.00764 </td <td></td> <td>0.999117 (avg)</td>															0.999117 (avg)
kE (number) 0.0233 0.0274 0.0333 0.0392 0.0413 0.0351 0.0052 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.0073 0.0044 0.0023 0.0022 0.0074 0.0052 0.0085 0.0099 0.0074 0.0073 0.0044 0.0023 0.0022 0.0052 0.0073 0.0044 0.0053 <td></td> <td>18.8556 (avg)</td>															18.8556 (avg)
Tv (*R) 489.7614 493.0912 503.7757 515.0447 525.8226 535.3506 540.0304 537.8465 529.4096 516.7692 505.6156 494.5539 515.5917 (inclusion) pln (psia) 0.0023 0.0027 0.0042 0.0064 0.0022 0.0124 0.0123 0.0102 0.0044 0.0028 0.0073 (inclusion) 0.0067 0.0044 0.0023 0.0073 (inclusion) 0.0067 0.0044 0.0022 0.0073 (inclusion) 0.0073 (inclusion) 0.0073 (inclusion) 0.0023 (inclusion) 0.00517 (inclusion) Compound Vapor Density (wV(I)) Distillate Fuel OII No. 2 (ib/ft*3) 5.04E-05 5.70E-05 8.42E-05 1.00E-04 2.00E-04 3.00E-04 3.00E-04 1.00E-04 9.15E-05 6.10E-05 1.45E-04 (inclusion) Breathing Losses (Ls) ////////////////////////////////////															0.076483 (avg)
ph (psia) 0.0023 0.0027 0.0042 0.0064 0.0032 0.0142 0.0133 0.0102 0.0067 0.0044 0.0028 0.0074 (psia) pin (psia) 0.0018 0.002 0.0042 0.0043 0.0022 0.0028 0.0074 (psia) 0.0067 0.0044 0.0028 0.0074 (psia) Compound Vapor Density (wV(I)) Distillate Fuel OII No. 2 (lb/th*3) 5.04E-05 5.70E-05 8.42E-05 1.00E-04 2.00E-04 3.00E-04 3.00E-04 3.00E-04 3.00E-04 1.00E-04 9.15E-05 6.10E-05 1.45E-04 (psia) Breathing Losses (Ls) 0.0016 0.0027 0.0042 0.0052 0.0039 0.0026 0.0017 1.7328 (psia) Air (lb) 1.0954 1.1571 1.5229 1.6965 1.8146 1.7179 1.7023 1.6893 1.4026 0.0013 7.00E-04 3.56E-02 (psia) Total Losses (Lt) 0.0016															0.0331 (avg)
jn (psia) 0.0018 0.002 0.0029 0.0043 0.0020 0.0085 0.0099 0.0094 0.0073 0.0048 0.0033 0.0022 0.005217 (i Compound Vapor Density (wV(I)) Distillate Fuel OII No. 2 (Ib/M*3) 5.04E-05 5.70E-05 8.42E-05 1.00E-04 2.00E-04 3.00E-04 3.00E-04 1.00E-04 9.15E-05 6.10E-05 1.45E-04 (i Breathing Losses (L) Air (Ib) 1.0954 1.1571 1.5229 1.6965 1.8146 1.7179 1.7023 1.5893 1.4763 1.4688 1.1098 0.9771 1.7328 (i Distillate Fuel OII No. 2 (Ib) 1.095-04 0.0016 0.0027 0.0042 0.0054 0.0055 0.0039 0.0026 0.0013 7.00E-04 3.56E-02 (s Total Losses (Lt) Total Losses (Lt) Compound															515.5917 (avg)
Compound Vapor Density (wV()) Distillate Fuel OII No. 2 (Ib/ft ^{A3}) 5.04E-05 5.70E-05 8.42E-05 1.00E-04 2.00E-04 2.00E-04 3.00E-04 3.00E-04 1.00E-04 9.15E-05 6.10E-05 1.45E-04 (i Breathing Losses (Ls) Air (Ib) 1.0954 1.1571 1.5229 1.6965 1.8146 1.7179 1.7023 1.5893 1.4763 1.4688 1.1098 0.9771 17.328 (i Distillate Fuel OII No. 2 (Ib) 7.00E-04 8.00E-04 0.0016 0.0027 0.0042 0.0054 0.0062 0.0055 0.0039 0.0026 0.0013 7.00E-04 3.56E-02 (i Total Losses (Lt)															0.0074 (avg) 0.005217 (avg)
Distillate Fuel Oll No. 2 (lb/ft ^A 3) 5.04E-05 5.70E-05 8.42E-05 1.00E-04 2.00E-04 2.00E-04 3.00E-04 3.00E-04 1.00E-04 9.15E-05 6.10E-05 1.45E-04 (r Breathing Losses (Ls) Air (lb) 1.0954 1.1571 1.5229 1.6965 1.8146 1.7179 1.7023 1.5893 1.4763 1.4688 1.1098 0.9771 17.328 (r Distillate Fuel Oll No. 2 (lb) 7.00E-04 8.00E-04 0.0016 0.0027 0.0042 0.0054 0.0062 0.0055 0.0039 0.0026 0.0013 7.00E-04 3.56E-02 (r Total Losses (Lt)	P	(Main)	0.0018	0.002	0.0029	0.0043	0.0002	0.0085	0.0033	0.0054	0.0073	0.0048	0.0033	0.0022	0.000211 (448)
Distillate Fuel Oll No. 2 (lb/ft ^A 3) 5.04E-05 5.70E-05 8.42E-05 1.00E-04 2.00E-04 2.00E-04 3.00E-04 3.00E-04 1.00E-04 9.15E-05 6.10E-05 1.45E-04 (r Breathing Losses (Ls) Air (lb) 1.0954 1.1571 1.5229 1.6965 1.8146 1.7179 1.7023 1.5893 1.4763 1.4688 1.1098 0.9771 17.328 (r Distillate Fuel Oll No. 2 (lb) 7.00E-04 8.00E-04 0.0016 0.0027 0.0042 0.0054 0.0062 0.0055 0.0039 0.0026 0.0013 7.00E-04 3.56E-02 (r Total Losses (Lt)	Compound Vanor Density	(wV(i))													
Breathing Losses (Ls) Air (b) 1.0954 1.1571 1.5229 1.6965 1.8146 1.7179 1.7023 1.5893 1.4763 1.4688 1.1098 0.9771 17.328 (s Distillate Fuel (Ji No. 2 (lb) 7.00E-04 8.00E-04 0.0016 0.0027 0.0042 0.0054 0.0062 0.0055 0.0039 0.0026 0.0013 7.00E-04 3.56E-02 (s Total Losses (Lt)			5.04F-05	5.70F-05	8.42E-05	1,00F-04	2.00E-04	2.00E-04	3.00E-04	3.00E-04	2.00E-04	1.00E-04	9.15E-05	6.10E-05	1.45E-04 (avg)
Air (lb) 1.0954 1.1571 1.5229 1.6965 1.8146 1.7179 1.7023 1.5893 1.4763 1.4688 1.1098 0.9771 17328 (s Distillate Fuel Qil No. 2 (lb) 7.00E-04 8.00E-04 0.0015 0.0027 0.0042 0.0054 0.0062 0.0055 0.0039 0.0026 0.0013 7.00E-04 3.56E-02 (s Total Losses (Lt)	Province right Oil NO. 2	(10/10-37	J-04C-03	3.70E-03	0.725-03	1.005-04	2.002-04	2.000-04	J.00E-04	3.000-04	2.000-04	2.002-04	3-136-03	0.105-03	1.40C-04 (4VB)
Air (lb) 1.0954 1.1571 1.5229 1.6965 1.8146 1.7179 1.7023 1.5893 1.4763 1.4688 1.1098 0.9771 17.328 (s Distillate Fuel Oli No. 2 (lb) 7.00E-04 8.00E-04 0.0016 0.0027 0.0042 0.0054 0.0062 0.0055 0.0039 0.0026 0.0013 7.00E-04 3.56E-02 (s Total Losses (Lt)	Breathing Losses (Ls)														
Total Losses (Lt)	Air														17.328 (sum)
	Distillate Fuel Oil No. 2	(Ib)	7.00E-04	8.00E-04	0.0016	0.0027	0.0042	0.0054	0.0062	0.0055	0.0039	0.0026	0.0013	7.00E-04	3.56E-02 (sum)
AIR (ID) 15.3582 14.8548 15.3722 15.7572 16.0481 15.2474 15.5588 15.4985 15.1479 15.9369 15.4153 16.0888 188.2841 ((1)				4		40.00	40.000		40.47-1	40.000	40.44-4		
															188.2841 (sum)
Distillate Fuel Oil No. 2 (lb) 0.0103 0.0106 0.0176 0.0255 0.0374 0.0482 0.057 0.0534 0.0402 0.0278 0.0181 0.0123 0.3584 (t	Disultate Fuel Oil No. 2	(10)	0.0103	0.0106	0.0176	0.0255	0.0374	0.0482	0.057	0.0534	0.0402	0.0278	0.0181	0.0123	0.3584 (sum)

Activity Title Climate:	TK-GLY - Giycol Tani Pennsylvania, Harris		/2021 to 12/	31/2021										
ра	14.5725 psia													
Equipment Tag Storage Vessel Style	TK-GLY - Glycol Tank Horizontal Storage													
Calculation Type	Normal Storage Tan	k (11/2019	Rev.)											
Malal Caraca Malana	Working and Breath	ning Loss Ca	alculation											
Void Space Volume Working Volume	4S6.85 gal 396 gal													
Working Volume	52.9375 ft^3													
Shell Diameter	3.6 ft													
Straight Side Height Paint Solar Absorptance	6 ft 0.25													
Roof Color / Condition	white / average													
Shell Color / Condition	white / average 0.03													
pop pbv	-0.03													
Equipment Comment														
Activity Comment Pi (constant)	Imported from Excel 3.1416		6 PM, 5/19/20	022.										
R (constant)	998.9													
Vessel Contents	338 435 ml	68 000 °C	2122.663 lb		34.198 lb-M									
Mixture Name:	ZZ8.423 gal Mixture	00.000 F	2122.005 10		34.190 IQ-IVI									
	[Liquid]	mmHg		W[i]	lb-M			X*Pi*Ai (m	mHg)					
Kp (product factor)	Ethylene Glycol		2122.6628	1	34.1979	1	1	0.0925						
kp (productiactor)	-													
Month		Jan	Feb		Apr								Dec	
Q. Va	(gal) (ft^3)	403.5945 53.9527		403.5945 53.9527	390.5753	403.5945		403.5945 53.9527	403.5945 53.9527	390.5753 52.2123		390.5753 52.2123	403.5945	4752 (sum) 635.2496 (sum)
N (period)	(number)	1.0192		1.0192	0.9863		0.9863	1.0192	1.0192	0.9863	1.0192	0.9863	1.0192	12.0001 (sum)
N (scaled to annual)	(number)	12		12	12		12	12	12	12		12	12	
Kn Days	(number) (number)	1		1 31	1 30		1 30	1 31	1 31	1 30	1 31	1 30	1	1 (avg) 365 (sum)
Compound Molecular Weig Ethylene Glycol	ghts (lb/lb-M) (Mv)	62.07	62.07	62.07	62.07	62.07	62.07	62.07	62.07	62.07	62.07	62.07	62.07	62.07 (lb/lb mala)
Eurylene Glycol	(NN)	62.07	62.07	62.07	62.07	62.07	62.07	62.07	62.07	02.07	62.07	62.07	02.07	62.07 (lb/lb-mole)
Compound Vapor Pressure														
Ethylene Glycol	(mmHg)	0.0149	0.0174	0.0292	0.0494	0.0801	0.1213	0.1485	0.1362	0.0953	0.0546	0.0326	0.019	0.066542 (avg)
Working Loss Calculations (tLa	(°F)	29.6088	32.7413	43.1801	54.1927	64.7897	74.1836	78.9011	76.8843	68.6939	56.3522	45.446	34.4819	54.95463 (average)
tLn	(°F)	26.2578	28.8623		48.6463	58.8464	68.1642	73.0123	71.3878	63.5422	51.5831			50.16028 (average)
tLx 	(°F)	32.9598		47.8754	59.7391	70.733	80.203	84.7898	82.3809	73.8456		49.1393	37.5803	59.74899 (average)
tb pC	(°R) (psia)	488.6871 3.00E-04		501.7157 6.00E-04	512.4138 0.001		0.0023	536.7822 0.0029	534.9704 0.0026	527.082 0.0018		504.5035 6.00E-04		513.4392 (average) 1.28E-03 (average)
pNc	(psia)	14.5722	14.5722	14.5719	14.5715	14.571	14.5702	14.5696	14.5699	14.5707	14.5714	14.5719	14.5721	14.57122 (average)
pVa	(psia)	3.00E-04		6.00E-04	0.001		0.0023	0.0029	0.0026	0.0018		6.00E-04		1.28E-03 (average)
hVo Vv	(ft) (ft^3)	1.4137 30.5569		1.4137 30.5569	1.4137 30.5569		1.4137 30.5569	1.4137 30.5569	1.4137 30.5569	1.4137 30.5569	1.4137 30.5569	1.4137 30.5569	1.4137 30.5569	1.4137 (average) 30.5569 (average)
wVnc	(number)	0.0804	0.0799	0.0782	0.0765		0.0737	0.073	0.0733	0.0744	0.0762	0.0779	0.0796	0.076508 (average)
kE tv	(number)	0.0233 489.7614			0.0391		0.0411	0.0397	0.0369	0.0349	0.0329	0.0251	0.021	0.032992 (average)
taa	(°R) (°R)	489.7014		503.7757 500.82	515.0447		535.3506 530.57	535.37	533.72	526.07	514.32	505.6156 504.02	494.5559	515.5917 (average) 512.5033 (average)
kb	(number)	1			1		1	1	1	1	1	1	1	1 (average)
kn n	(number) (number)	1 1.0192			1 0.9863		1 0.9863	1 1.0192	1 1.0192	1 0.9863	1 1.0192	1 0.9863	1 1.0192	1 (average) 12.0001 (sum)
Compound Vapor Density (3 405 06	3.005.00	C 405 0C	1 075 05	1 705 05	2 5 25 05	1 085 05	2 825 05	2.015.05	1 105 05	7 225 05	4 305 05	
Ethylene Glycol	(lb/ft^3)	3.40E-06	3.96E-06	6.49E-06	1.07E-05	1.70E-05	2.551-05	3.08E-05	2.83E-05	2.011-05	1.185-05	7.222-06	4.30E-06	1.41E-05 (avg)
Working Losses (Lw)														
Air Ethylene Glycol	(lb) (lb)	4.3369 2.00E-04	3.8923 2.00F-04	4.2198 4.00E-04	3.996 6.00F-04	4.0456 9.00E-04	3.846 0.0013	3.9393 0.0017	3.9541 0.0015	3.8861	4.1119 6.00E-04	4.0653 4.00E-04	4.2941 2.00F-04	48.5874 (sum) 9.10E-03 (sum)
Englishe offen	(10)	1.002 04	2.002 04	4.002 04	0.002 04	5.002 04	0.0015	0.0017	0.0015	0.0011	0.002 04	4.002.04	2.002 04	5.102 05 (Juli)
Breathing Loss Calculations														
tan taa	(°R) (°R)	480.87 488.22		491.67 500.82	500.87 511.27	510.77 521.47	520.27 530.57	525.27 535.37	523.97 533.72	516.17 526.07	504.27 514.32	495.77 504.02	486.27 493.27	503.2617 (avg) 512.5033 (avg)
tax	(*R)	495.57	498.87	509.97	521.67	532.17	540.87	545.47	543.47	535.97	524.37	512.27	500.27	521.745 (avg)
tLn Ha	(°F)	26.2578 29.6088			48.6463		68.1642	73.0123	71.3878	63.5422			31.3834	50.16028 (avg)
tLa tLx	(°F) (°F)	32.9598		43.1801 47.8754	54.1927 59.7391		74.1836 80.203	78.9011 84.7898	76.8843 82.3809	68.6939 73.8456	56.3522 61.1213	45.446 49.1393		54.95463 (avg) 59.74899 (avg)
1	(Btu/ft²day)	622.801	877.2515	1194.204	1525.1169	1758.628	1931.54	1882.997	1667.254	1349.349	1001.304	644.6926	518.7364	1247.823 (avg)
њ -С	(°R)	488.6871		501.7157 6.00E-04	512.4138 0.001		532.0187 0.0023	536.7822 0.0029	534.9704 0.0026	527.082 0.0018		504.5035 6.00E-04		513.4392 (avg)
pC pNc	(psia) (psia)	3.00E-04 14.5722		14.5719	14.5715			14.5696	14.5699	14.5707		14.5719		1.28E-03 (avg) 14.57122 (avg)
pVa	(psia)	3.00E-04	3.00E-04	6.00E-04	0.001	0.0015	0.0023	0.0029	0.0026	0.0018	0.0011	6.00E-04	4.00E-04	1.28E-03 (avg)
dPv dPb	(psia) (psia)	9.89E-05 0.06		3.00E-04 0.06	5.00E-04 0.06		0.0012 0.06	0.0015 0.06	0.0013 0.06	8.00E-04 0.06	5.00E-04 0.06	2.00E-04 0.06	1.00E-04 0.06	6.17E-04 (avg) 0.06 (avg)
dīv	(°R)	13.404			22.1856		24.0777	23.555	21.9863	20.6067	19.0765			19.17745 (avg)
hVo	(ft)	1.4137	1.4137	1.4137	1.4137	1.4137	1.4137	1.4137	1.4137	1.4137	1.4137	1.4137	1.4137	1.4137 (avg)
ks Vv	(number) (ft^3)	1 30.5569		1 30.5569	0.9999 30.5569		0.9998 30.5569	0.9998 30.5569	0.9998 30.5569	0.9999 30.5569	0.9999 30.5569	1 30.5569	1 30.5569	0.999917 (avg) 30.5569 (avg)
wVnc	(number)	0.0804			0.0765		0.0737	0.073	0.0733	0.0744	0.0762	0.0779	0.0796	0.076508 (avg)
kE	(number)	0.0233	0.0274	0.0332	0.0391	0.0413	0.0411	0.0397	0.0369	0.0349	0.0329	0.0251	0.021	0.032992 (avg)
tv pix	(°R) (psia)	489.7614 3.00E-04		503.7757 7.00E-04	515.0447 0.0012	525.8226 0.002	535.3506 0.003	540.0304 0.0037	537.8465 0.0033	529.4096 0.0023		505.6156 8.00E-04		515.5917 (avg) 1.62E-03 (avg)
pix pin	(psia) (psia)	3.00E-04 2.00E-04		4.00E-04	7.00E-04		0.003	0.0037	0.0033			8.00E-04 5.00E-04		1.00E-03 (avg)
Compound Vapor Density i Ethylene Glycol	(WV(I)) (Ib/ft^3)	3.40E-06	3.96F-06	6.49E-06	1.07F-05	1.70E-05	2.53E-05	3.08F-05	2,835-05	2.01E-05	1.18E-05	7.22F-06	4.30F-06	1.41E-05 (avg)
		2.402-00	3.30L-00	VO	140, 0-03	2.702-03		0.002-00	2.302-03		2.202-03			(a.B.
Breathing Losses (Ls)	(15)		4			3 0044	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						1	28.0017 ()
Air Ethylene Glycol	(lb) (lb)	1.773 7.49E-05		2.4634 2.00E-04	2.7426 4.00E-04	2.9313 7.00E-04	2.7732 0.001	2.747 0.0012	2.5648 0.001	2.384 6.00E-04	2.3739 4.00E-04	1.7948 2.00E-04	1.5811 8.55E-05	28.0017 (sum) 5.95E-03 (sum)
										- •				
Total Losses (Lt) Air	(lb)	6.1099	5.7649	6.6831	6.7386	6.9769	6.6192	6.6862	6.519	6.2701	6.4858	5.8601	5.8752	76.589 (sum)
Ethylene Glycol	(Ib)	3.00E-04		6.00E-04	9.00E-04		0.0023	0.0028	0.0025	0.0017		5.00E-04		1.48E-02 (sum)
														1.48E-02
														1.405-02

1.48E-02

Activity Title	TK-RS (1-6) Resin T	[ank From 1/	1/2021 to 12/3	31/2021										
Climate:	Pennsylvania, Han	risburg												
pa	14.5725 psia													
Equipment Tag	TK-RS (1-6) Resin T													
5torage Vessel 5tyle Calculation Type	Cone Roof Storage Isothermal Storage		010 Boy)											
calculation type	Working Loss Calc		019 Nev.)											
Void Space Volume	17592.22 gal													
Working Volume	13314 gal													
Working Volume	1779.8229 ft^3													
Shell Diameter	11.41 ft													
Straight Side Height	23 ft													
Hro	0 ft													
Paint Solar Absorptance	0.2	5												
Roof Color / Condition Shell Color / Condition	white / average													
pbp	white / average	0												
pby		õ												
Equipment Comment		•												
Activity Comment	Imported from Ex	cel on 2:55:50	6 PM, 5/19/20	22.										
Pi (constant)	3.141	.6												
R (constant)	998.	9												
Veren Contractor	0000 440		77750 000 "		ADEC 247 1									
Vessel Contents Mixture Name:	-	ai 08.000 °F	73359.990 lb		4056.247 lb-M									
witkture indme:	Rockwool Resin [Liquid]	mmHg	lb	W[i]	lb-M	X[i]	A[i]	X*Pi*Ai (m	mHa)					
	Formaldehyde	3003.344		0.001975		0.001189	A(I) 1	3.5719	6/					
	Methanol	93.743		0.000554		0.000313	1	0.0293						
	Phenol	0		0.003533		0.000679	1	0						
	Water	17.3515	72915.279	0.993938	4047.3995	0.997819	1	17.3136						
Kp (product factor)		1												
HI	11.5 ft													
Month		Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Q	(gal)	161543.3				-			-	•				1902042 (sum)
Vq	(ft^3)	21595.2			20898.5778	21595.2		21595.2	21595.2	20898.58	21595.2		21595.2	254266 (sum)
N (period)	(number)	12.1333	10.9591	12.1333	11.7419	12.1333	11.7419	12.1333	12.1333	11.7419	12.1333	11.7419	12.1333	142.8598 (sum)
N (scaled to annual)	(number)	142.8603		142.8603	142.8603			142.8603		142,8603				
Kn	(number)	0.3767	0.3767	0.3767	0.3767	0,3767	0.3767	0.3767	0.3767	0.3767	0.3767	0.3767	0.3767	0.3767 (avg)
Days	(number)	31	28	31	30	31	30	31	31	30	31	30	31	365 (sum)
Compound Molecular W	eights (lb/lb-M)													
Formaldehyde	(Mv)	30.03	30.03	30.03	30.03	30.03	30.03	30.03	30.03	30.03	30.03	30.03	30.03	30.03 (lb/lb-mol
Methanol	(Mv)	32.04	32.04		32.04	32.04	32.04	32.04	32.04	32.04	32.04	32.04	32.04	32.04 (lb/lb-mol
Phenol	(Mv)	94.1128	94.1128	94.1128	94.1128	94.1128	94.1128	94.1128	94.1128	94.1128	94.1128	94.1128	94.1128	94.1128 (lb/lb-mol
Water	(Mv)	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153	18.0153 (lb/lb-mol
Working Loss Calculation	s (Uncontrolled)													
kb	(number)	1	1	1	1	1	1	1	1	1	1	1	1	1 (average)
kn	(number)	0.3767	0.3767		0.3767	0.3767	0.3767	0.3767	0.3767	0.3767	0.3767	0.3767	0.3767	0.3767 (average)
n	(number)	12.1333	10.9591	12.1333	11.7419	12.1333	11.7419	12.1333	12.1333	11.7419	12.1333	11.7419	12.1333	142.8598 (sum)
Compound Vanor Dansit														
Compound Vapor Densit Formaldehyde	(lb/ft^3)	4.00E-04	4.00E-04	4.00E-04	4 005-04	4.00E-04	4 00F-04	4 005-04	4.00E-04	4.00E-04	4.005-04	4.00E-04	4.00F-04	4.00E-04 (avg)
Methanol	(lb/ft^3)	3.21E-06	3.21E-06			3.21E-06				3.21E-06				3.21E-06 (avg)
Phenol	(lb/ft^3)	0	0		0	0	0	0	0	0	0		0	0 (avg)
Water	(lb/ft^3)	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011	0.0011 (avg)
Working Losses (Lw)	<i></i> .													
Air	(Ib)	589.4531		589.4531			570.4385					570.4385		6940.335 (sum)
Formaldehyde Methanol	(lb) (lb)	2.9796 0.0261	2.6912 0.0236		2.8835 0.0253	2.9796 0.0261	2.8835 0.0253	2.9796 0.0261	2.9796 0.0261	2.8835 0.0253	2.9796 0.0261	2.8835 0.0253	2.9796 0.0261	35.0824 (sum) 0.3075 (sum)
Phenol	(Ib) (Ib)	0.0201	0.0230		0.0233	0.0201		0.0201	0.0201	0.023	0.0201		0.0261	0.5075 (sum) 0 (sum)
Water	(Ib)	8.6642	7.8257		8.3847	8.6642	8.3847	8.6642	8.6642	8.3847	8.6642		8.6642	102.0139 (sum)
														• •
Total Losses (Lt)														
Air Formoldobudo	(lb)	589.4531		589.4531	570.4385					570.4385		570.4385		6940.335 (sum)
Formaldehyde Methanol	(lb) (lb)	2.9796 0.0261	2.6912 0.0236		2.8835 0.0253	2.9796 0.0261	2.8835 0.0253	2.9796 0.0261	2.9796 0.0261	2.8835 0.0253	2.9796 0.0261	2.8835 0.0253	2.9796 0.0261	35.0824 (sum)
Phenol	(lb) (lb)	0.0261	0.0236		0.0253	0.0261		0.0261	0.0261	0.0253	0.0261		0.0261	0.3075 (sum) 0 (sum)
Water	(lb)	8.6642	7.8257		8.3847	8.6642	8.3847	8.6642	8.6642	8.3847	8.6642	8.3847	8.6642	102.0139 (sum)
	•·-•													
														137.4038

A					124 12024									
Activity Title Climate:	TK-TO1 Thermal Oil N/A	Expansion 1	ank From 1/1,	2021 to 12	/31/2021									
	N/A N/A													
pa Faula and Taa	N/A TK-TO1 Thermal Oil													
Equipment Tag Storage Vessel Style	Horizontal Storage	Expansion 1	ank											
Calculation Type	Isothermal Storage	Tank /11/20												
calculation type			L9 Rev.)											
Void Cross Volume	Working Loss Calcu	lation												
Void Space Volume	343.7 gal													
Working Volume	212 gal 28.3403 ft^3													
Working Volume														
Shell Diameter	3ft													
Straight Side Height	6.5 ft 0.2	-												
Paint Solar Absorptance Roof Color / Condition	white / average	5												
•	•													
Shell Color / Condition	white / average													
pbp		D D												
pbv	, i	0												
Equipment Comment														
Activity Comment	Imported from Exc		PM, 5/19/202	2.										
Pi (constant)	3.1410													
R (constant)	998.9	9												
Vessel Contents	171.050		1000 001 11		6.528 lb-M									
	-	il 572.000 °F	1200.301 ID		6.528 ID-IVI									
Mixture Name:	Mixture													
	[Liquid]	mmHg		W[i]				X*Pi*Ai (m	ımHgj					
	Paratherm	474.4084 1	1266.3606	1	6.5276	1	1	474.4084						
Kp (product factor)		L												
Month		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Q	(gal)	15.2877	13.8082	15.2877	14. 794 5	15.2877	14.7945	15.2877	15.2877	14. 794 5	15.2877	14.7945	15.2877	180.0001 (sum)
Va	(gai) (ft^3)	2.0437	13.8082	2.0437	14.7545	2.0437	14.7543	2.0437	2.0437	14.7545	2.0437	14.7343	2.0437	24.0626 (sum)
Vy N (period)	(number)	0.0721	0.0651	0.0721	0.0698	0.0721	0.0698	0.0721	0.0721	0.0698	0.0721	0.0698	0.0721	0.849 (sum)
		0.0721		0.8491	0.0658	0.8491	0.8491	0.8491	0.8491	0.0058	0.8491	0.8491	0.8491	0.849 (sum)
N (scaled to annual) Kn	(number)			0.8491			0.8491	0.8491	0.8491	0.8491	0.8491		0.8491	1 (aug
	(number)	1 31		31	-	31	30	31	31	30	31	1 30	31	1 (avg)
Days	(number)	31	28	31	30	31	30	31	31	30	31	30	31	365 (sum)
Compound Molecular We	ights (lh/lh_M)													
Paratherm	(Mv)	194	194	194	194	194	194	194	194	194	194	194	194	194 (lb/lb-mol
Fulderin	(1414)	1.54		1.54	1.54	134		134	1.54	1,4	1.74	1.54	1.74	194 (10/10-110)
Working Loss Calculations	s (Uncontrolled)													
kb	(number)	1	1	1	1	1	1	1	1	1	1	1	1	1 (average)
kn	(number)	1		1			1	1	1	1	1	1	1	1 (average)
n	(number)	0.0721		0.0721	0.0698	0.0721	0.0698	0.0721	0.0721	0.0698	0.0721	0.0698	0.0721	0.849 (sum)
	,,													
Compound Vapor Density	(vW(i))													
Paratherm	(lb/ft^3)	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608 (avg)
	(.=, ,													(
Working Losses (Lw)														
Air	(lb)	0.0295	0.0267	0.0295	0.0286	0.0295	0.0286	0.0295	0.0295	0.0286	0.0295	0.0286	0.0295	0.3476 (sum)
Paratherm	(lb)	0.3285		0.3285	0.3179	0.3285	0.3179	0.3285	0.3285	0.3179	0.3285	0.3179	0.3285	3.8678 (sum)
	·/							0.0100			0.0200			()
Total Losses (Lt)														
Air	(lb)	0.0295	0.0267	0.0295	0.0286	0.0295	0.0286	0.0295	0.0295	0.0286	0.0295	0.0286	0.0295	0.3476 (sum)
Paratherm	(Ib)	0.3285		0.3285	0.3179	0.3285	0.3179	0.3285	0.3285	0.3179	0.3285	0.3179	0.3285	3.8678 (sum)
		0.0000	0.2.007		5.5275		2.02.0	2.02.00						2.2070 (3411)
														3.8678

A			. /. /2020											
Activity Title Climate:	TK-TO2 Thermal Oil N/A	i Drain Tank Fi	rom 1/1/2021	to 12/31/	2021									
pa	N/A													
Pa Equipment Tag	TK-TO2 Thermal Oil	Drain Tank												
Storage Vessel Style	Horizontal Storage													
Calculation Type	Isothermal Storage	Tank (11/201	9 Rev.)											
	Working Loss Calcul		•											
Void Space Volume	343.7 gal													
Working Volume	159 gal													
Working Volume	21.2552 ft^3													
Shell Diameter	3 ft													
Straight Side Height	6.5 ft													
Paint Solar Absorptance	0.25	5												
Roof Color / Condition	white / average													
Shell Color / Condition	white / average	_												
pbp		0												
pbv	L L	D												
Equipment Comment	International Association		DNA 5/10/202											
Activity Comment	Imported from Exce 3.1416		PM, 5/19/202	. z .										
Pi (constant) R (constant)	5.1410 998.9													
(Constant)	556.5	5												
Vessel Contents	171.850 ga	il 572.000 °F	1266.361 lb		6.528 lb-M									
Mixture Name:	Mixture													
	[Liquid]	mmHg	Ь	w [i]	lb-M	X[i]	A[i]	X*Pi*Ai (m	mHg)					
	Paratherm	474.4084				1		474.4084	u ,					
Kp (product factor)	1	1												
Month		Jan	Feb	Mar	Apr	May .	Jun	Jul	Aug	Sep	Oct	Nov I	Dec	
Q	(gal)	15.2877	13.8082	15.2877	14. 794 5	15.2877	14.7945	15.2877	15.2877	14. 794 5	15.2877	14. 794 5	15.2877	180.0001 (sum)
Vq	(ft^3)	2.0437	1.8459	2.0437	1.9777	2.0437	1.9777	2.0437	2.0437	1.9777	2.0437	1.9777	2.0437	24.0626 (sum)
N (period)	(number)	0.0961	0.0868	0.0961	0.093	0.0961	0.093	0.0961	0.0961	0.093	0.0961	0.093	0.0961	1.1315 (sum)
N (scaled to annual)	(number)	1.1321		1.1321	1.1321	1.1321	1.1321	1.1321	1.1321	1.1321	1.1321	1.1321	1.1321	
Kn	(number)	1		1			1	1	1	1	1	1	1	1 (avg)
Days	(number)	31	28	31	30	31	30	31	31	30	31	30	31	365 (sum)
Compound Molecular We	ights (lb/lb-M)													
Paratherm	(Mv)	194	194	194	194	194	194	194	194	194	194	194	194	194 (lb/lb-mol
Working Loss Calculations	• •													
kb	(number)	1		1	1	1	1	1	1	1	1	1	1	1 (average)
kn	(number)	1		1			1	1	1	1	1	1	1	1 (average)
n	(number)	0.0961	0.0868	0.0961	0.093	0.0961	0.093	0.0961	0.0961	0.093	0.0961	0.093	0.0961	1.1315 (sum)
Compound Vapor Density	(www.fill)													
Paratherm	(lb/ft^3)	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608	0.1608 (avg)
	(10/10 0/	012000	012000	012000	012000	012000	012000	012000	012000	0.2000	012000	0.1000	012000	012000 (UIB)
Working Losses (Lw)														
Air	(lb)	0.0295	0.0267	0.0295	0.0286	0.0295	0.0286	0.0295	0.0295	0.0286	0.0295	0.0286	0.0295	0.3476 (sum)
Paratherm	(lb)	0.3285	0.2967	0.3285	0.3179	0.3285	0.3179	0.3285	0.3285	0.3179	0.3285	0.3179	0.3285	3.8678 (sum)
Total Losses (Lt)														
Air	(lb)	0.0295	0.0267	0.0295	0.0286	0.0295	0.0286	0.0295	0.0295	0.0286	0.0295	0.0286	0.0295	0.3476 (sum)
Paratherm	(lb)	0.3285	0.2967	0.3285	0.3179	0.3285	0.3179	0.3285	0.3285	0.3179	0.3285	0.3179	0.3285	3.8678 (sum)
														3,8678
														3.6070

Activity Title	TK-TO3 Thermal O	il Tank From	1/1/2021 to 12	/31/2021										
Climate:	N/A													
pa	N/A													
Equipment Tag	TK-TO3 Thermal O													
Storage Vessel Style	Horizontal Storage													
Calculation Type	Isothermal Storage		019 Rev.)											
	Working Loss Calcu	lation												
Void Space Volume	5309.44 gal													
Working Volume	5283 gal													
Working Volume	706.2344 ft^3													
Shell Diameter	6.56 ft													
Straight Side Height	21 ft	_												
Paint Solar Absorptance	0.2	5												
Roof Color / Condition	white / average													
Shell Color / Condition	white / average	•												
pbp		0												
pbv		0												
Equipment Comment	Income and the second frame													
Activity Comment	Imported from Exc 3.141		5 PM, 5/19/202	.										
Pi (constant)	5.141 998.													
R (constant)	998.	9												
Vessel Contents	2654 720 at	al 302 000 °E	19562.601 lb	10	0.698 lb-M									
Mixture Name:	Mixture	ar 332.000 T	19902.001 10	10	0.030 10-141									
WIALUTE NAME.	[Liquid]	mmHg	Ь	W[i] lb-	м	X[i]	A[i]	X*Pi*Ai (m	mHa)					
	Power Steering Flu	-	19562.6005		100.698	1		113.8539	·····					
Kp (product factor)		1	10002.0000	-	100.000	-	-	100.0000						
		-												
Month		Jan	Feb	Mar Ap	r	May	Jun	Jul .	Aug	Sep	Oct I	vov	Dec	
Q	(gal)	59.2822	53.5452	59.2822	57.3699	59.2822	57.3699	59.2822	59.2822	57.3699	59.2822	57.3699	59.2822	698.0002 (sum)
Vq	(ft^3)	7.9249	7.158	7.9249	7.6692	7.9249	7.6692	7.9249	7.9249	7.6692	7.9249	7.6692	7.9249	93.3091 (sum)
N (period)	(number)	0.0112	0.0101	0.0112	0.0109	0.0112	0.0109	0.0112	0.0112	0.0109	0.0112	0.0109	0.0112	0.1321 (sum)
N (scaled to annual)	(number)	0.1321	0.1321	0.1321	0.1321	0.1321	0.1321	0.1321	0.1321	0.1321	0.1321	0.1321	0.1321	
Kn	(number)	1	. 1	1	1	1	1	1	1	1	1	1	1	1 (avg)
Days	(number)	31	28	31	30	31	30	31	31	30	31	30	31	365 (sum)
Compound Molecular Wo														
Power Steering Fluid	(Mv)	194.27	194.27	194.27	194.27	194.27	194.27	194.27	194.27	194.27	194.27	194.27	194.27	194.27 (lb/lb-mol
Working Loss Calculation	s (Uncontrolled)													
kb	(number)	1	1	1	1	1	1	1	1	1	1	1	1	1 (average)
kn	(number)	1			1	1	1		1	1	1	1	1	1 (average)
n	(number)	0.0112	0.0101	0.0112	0.0109	0.0112	0.0109	0.0112	0.0112	0.0109	0.0112	0.0109	0.0112	0.1321 (sum)
Compound Vapor Density	/ (vW(i))													
Power Steering Fluid	(lb/ft^3)	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468 (avg)
Working Losses (Lw)														
Air	(lb)	0.3139			0.3037	0.3139	0.3037		0.3139	0.3037	0.3139	0.3037	0.3139	3.6956 (sum)
Power Steering Fluid	(lb)	0.3709	0.335	0.3709	0.3589	0.3709	0.3589	0.3709	0.3709	0.3589	0.3709	0.3589	0.3709	4.3669 (sum)
Total Losses (Lt)	<i>(</i> 1 ,)									o oor-			0.040-	0.0000 (
Air Barra Chandra Fluid	(lb)	0.3139			0.3037	0.3139	0.3037		0.3139	0.3037	0.3139	0.3037	0.3139	3.6956 (sum)
Power Steering Fluid	(lb)	0.3709	0.335	0.3709	0.3589	0.3709	0.3589	0.3709	0.3709	0.3589	0.3709	0.3589	0.3709	4.3669 (sum)
														4.3669
														4.3007

a sali da a Tial a	TK TO 4 The second O			a /2024 += 4	2 (24 /2024									
Activity Title Climate:	TK-TO4 Thermal Oi N/A	i Expansion	Iank From 1/	1/ 2021 to 1	2/31/2021									
	N/A													
pa Equipment Tag	TK-TO4 Thermal Oi	il Evenneine 1	Tank											
Storage Vessel Style	Horizontal Storage													
Calculation Type	Isothermal Storage		10 Pov)											
Calculation Type	Working Loss Calcu		Ta Ken'											
Void Space Volume	2096.26 gal	liation												
Working Volume	-													
Working Volume	1928 gal 257.7361 ft^3													
Shell Diameter	5.249 ft													
Straight Side Height	12.95 ft													
Paint Solar Absorptance	0.2	F												
Roof Color / Condition	white / average	5												
Shell Color / Condition	white / average													
pbp		0												
pbp pbv		0												
Equipment Comment		•												
Activity Comment	Imported from Exc	al on 2:EE:Ef	DM E/10/7	ררו										
Pi (constant)	3.141) F IVI, 3/ 13/ 20	<i>i</i> .										
R (constant)	998.													
R (Constant)	556.	3												
Vessel Contents	1048 130 m	al 392.000 °F	7773 658 lb		39.757 lb-M									
Mixture Name:	Mixture	1 332.000 1	//23.000 10		33.737 10-141									
WIALLIE Maine.	[Liquid]	mmHg	lb	W[i]	lb-M	X[i]	A[i]	X*Pi*Ai (m	mHa)					
	Power Steering Flu	-	7723.6577	1				113.8539	ыБ/					
Kp (product factor)		1 110.0000	//20.00///	-	33.7575	-	-	115.0005						
Kp (product factor)		1												
Month		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Q	(gal)	59,2822				-	57.3699		59.2822	57.3699	59.2822	57.3699	59,2822	698.0002 (sum)
Va	(ft^3)	7.9249					7.6692		7.9249	7.6692	7.9249	7.6692	7.9249	93.3091 (sum)
N (period)	(number)	0.0307	0.0278	0.0307	0.0298	0.0307	0.0298	0.0307	0.0307	0.0298	0.0307	0.0298	0.0307	0.3619 (sum)
N (scaled to annual)	(number)	0.362					0.362		0.362	0.362	0.362	0.362	0.362	
Kn	(number)	1					1		1	1	1	1	1	1 (avg)
Days	(number)	31					30		31	30	31	30	31	365 (sum)
1*	(
Compound Molecular Wo	eights (Ib/Ib-M)													
Power Steering Fluid	(Mv)	194.27	194.27	194.27	194.27	194.27	194.27	194.27	194.27	194.27	194.27	194,27	194.27	194.27 (lb/lb-mol
Working Loss Calculation														
kb	(number)	1					1		1	1	1	1	1	1 (average)
kn	(number)	1					1		1	1	1	1	1	1 (average)
n	(number)	0.0307	0.0278	0.0307	0.0298	0.0307	0.0298	0.0307	0.0307	0.0298	0.0307	0.0298	0.0307	0.3619 (sum)
Compound Vapor Density														
Power Steering Fluid	(lb/ft^3)	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468	0.0468 (avg)
Westine Leases (Lud														
Working Losses (Lw)	(11-)		0.00							0.000-	0.0455	o 007-	0.04.05	0.0050 (
Air	(lb)	0.3139				0.3139	0.3037	0.3139	0.3139	0.3037	0.3139	0.3037	0.3139	3.6956 (sum)
Power Steering Fluid	(lb)	0.3709	0.335	0.3709	0.3589	0.3709	0.3589	0.3709	0.3709	0.3589	0.3709	0.3589	0.3709	4.3669 (sum)
T-1-11 /14)														
Total Losses (Lt)	/IL-1	0 26 20	0 202-	0.0470	0 200-	0 2420	0 200-	0 2400	0.0400	0 200-	0.2400	0 202-	0 24 20	2 5055 (
Air Dewer Steering Fluid	(lb)	0.3139				0.3139	0.3037	0.3139	0.3139	0.3037	0.3139	0.3037	0.3139	3.6956 (sum)
Power Steering Fluid	(lb)	0.3709	0.335	0.3709	0.3589	0.3709	0.3589	0.3709	0.3709	0.3589	0.3709	0.3589	0.3709	4.3669 (sum)
														4.3669
														4.3002