Division of Air Quality Permit Application Submittal

Please find attached a permit application for :

[Company Name; Facility Location]

- DAQ Facility ID (for existing facilities only):
- Current 45CSR13 and 45CSR30 (Title V) permits associated with this process (for existing facilities only):
- Type of NSR Application (check all that apply):
 - \circ Construction
 - \circ Modification
 - Class I Administrative Update
 - Class II Administrative Update
 - \circ Relocation
 - Temporary
 - Permit Determination

- Type of 45CSR30 (TITLE V) Application:
 - Title V Initial
 - $\circ \quad \text{Title V Renewal} \\$
 - Administrative Amendment**
 - Minor Modification**
 - Significant Modification**
 - Off Permit Change

**If the box above is checked, include the Title V revision information as ATTACHMENT S to the combined NSR/Title V application.

- Payment Type:
 - Credit Card (Instructions to pay by credit card will be sent in the Application Status email.)
 - Check (Make checks payable to: WVDEP Division of Air Quality) Mail checks to: WVDEP – DAQ – Permitting Attn: NSR Permitting Secretary 601 57th Street, SE Charleston, WV 25304

Please wait until DAQ emails you the Facility ID Number and Permit Application Number. Please add these identifiers to your check or cover letter with your check.

- If the permit writer has any questions, please contact (all that apply):
 - Responsible Official/Authorized Representative
 - Name:
 - Email:
 - Phone Number:
 - **Company Contact**
 - Name:
 - Email:
 - Phone Number:
 - Consultant

 \bigcirc

- Name:
- Email:
- Phone Number:

REGULATION 13 PERMIT APPLICATION FOR THE CONSTRUCTION OF ADAMS FORK DATA CENTER ENERGY CAMPUS MINGO COUNTY, WEST VIRGINIA

REDACTED VERSION

Prepared for:

TransGas Development Systems, LLC 630 First Avenue, Suite 30C New York, New York 10016-3799

Prepared by:

Potesta & Associates, Inc. 7012 MacCorkle Avenue, SE Charleston, West Virginia 25304 Phone: (304) 342-1400 Fax: (304) 343-9031 Email: potesta@potesta.com

Project No. 0101-22-0132-003A

March 24, 2025

POTESTA

TABLE OF CONTENTS

Application for NSR Permit	SECTION I – III
Business Certificate	ATTACHMENT A
Site Location Map	ATTACHMENT B
Installation and Startup Schedule	ATTACHMENT C
Regulatory Discussion	ATTACHMENT D
Plot Plan	ATTACHMENT E
Process Flow Diagram(s)	ATTACHMENT F
Process Description	ATTACHMENT G
Material Safety Data Sheets	ATTACHMENT H
Emissions Units Table	ATTACHMENT I
Emission Points Data Summary Sheet	ATTACHMENT J
Fugitive Emissions Data Summary Sheet	ATTACHMENT K
Emissions Unit Data Sheet(s)	ATTACHMENT L
Air Pollution Control Device(s)	ATTACHMENT M
Supporting Emissions Calculations	ATTACHMENT N
Monitoring/Recordkeeping/Reporting/Testing Plans	ATTACHMENT O
Public Notice	ATTACHMENT P
Business Confidential Claims	ATTACHMENT Q

Attachments not applicable to this submission: Attachment R, Authority Forms and Attachment S, Title V Permit Revision Information.

SECTION I - III

APPLICATION FOR NSR PERMIT

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALITY 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 www.dep.wv.gov/dag	APPLICATION FOR NSR PERMIT AND TITLE V PERMIT REVISION (OPTIONAL)	
	 PLEASE CHECK TYPE OF 45CSR30 (TITLE V) REVISION (IF ANY): ADMINISTRATIVE AMENDMENT SIGNIFICANT MODIFICATION IF ANY BOX ABOVE IS CHECKED, INCLUDE TITLE V REVISION INFORMATION AS ATTACHMENT S TO THIS APPLICATION 	
Section 1. Name of applicant (as registered with the WV Secretary of TransGas Development Systems, LLC	State's Office): 2. Federal Employer ID No. (FEIN): 20343110	
3. Name of facility (<i>if different from above</i>):	4. The applicant is the:	
Adams Fork Data Center Energy Campus OWNER OPERATOR BOTH 5A. Applicant's mailing address: 5B. Facility's present physical address: 630 First Avenue, Suite 30C 2002 Twisted Gun Road New York, New York 10016-3799 Wharncliffe, WV 25651		
 6. West Virginia Business Registration. Is the applicant a resident of the State of West Virginia? X YES □ NO If YES, provide a copy of the Certificate of Incorporation/Organization/Limited Partnership (one page) including any name change amendments or other Business Registration Certificate as Attachment A. If NO, provide a copy of the Certificate of Authority/Authority of L.L.C./Registration (one page) including any name change amendments or other Business Certificate as Attachment A. 		
7. If applicant is a subsidiary corporation, please provide the n	ame of parent corporation: No	
 8. Does the applicant own, lease, have an option to buy or otherwise have control of the <i>proposed site</i>? □ YES □ NO If YES, please explain: Applicant has an option on the site with the current owner. If NO, you are not eligible for a permit for this source. 		
9. Type of plant or facility (stationary source) to be construc administratively updated or temporarily permitted (e.g crusher, etc.): Off-grid Power Generation		
11A. DAQ Plant ID No. (for existing facilities only): 11B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): New Facility New Facility		
All of the required forms and additional information can be found	under the Permitting Section of DAQ's website, or requested by phone.	

12A.

 For Modifications, Administrative Updates or Tepresent location of the facility from the nearest states For Construction or Relocation permits, please road. Include a MAP as Attachment B. 	te road;	
The facility will be located on the property currently o The site can be accessed from WV Route 52 headed t Fork Bens Creek Road to Twisted Gun Road. Proceed	oward Gilbert. Turn right onto Gilbert	Creek Road, then right onto Right
12.B. New site address (if applicable):	12C. Nearest city or town:	12D. County:
Not Applicable	Wharncliffe	Mingo
12.E. UTM Northing (KM): 4,161.72229	12F. UTM Easting (KM): 415.70631	12G. UTM Zone: 17
13. Briefly describe the proposed change(s) at the facil This application is for the construction of the facility.	ity:	1
 14A. Provide the date of anticipated installation or char If this is an After-The-Fact permit application, proversion of the provided mapping of th	-	14B. Date of anticipated Start-Up if a permit is granted: 01/01/2027
14C. Provide a Schedule of the planned Installation of application as Attachment C (if more than one un	-	units proposed in this permit
15. Provide maximum projected Operating Schedule24Hours Per Day7Days Per Week	of activity/activities outlined in this applica Weeks Per Year 52	ation:
16. Is demolition or physical renovation at an existing fa	acility involved? 🗌 YES 🛛 🕅 NO	
17. Risk Management Plans. If this facility is subject to	o 112(r) of the 1990 CAAA, or will becom	ne subject due to proposed
changes (for applicability help see www.epa.gov/cep	ppo), submit your Risk Management Pla	n (RMP) to U. S. EPA Region III.
18. Regulatory Discussion. List all Federal and State		
proposed process (if known). A list of possible applic		
(Title V Permit Revision Information). Discuss application	ability and proposed demonstration(s) of	compliance (if known). Provide this
information as Attachment D.		
Section II. Additional at	tachments and supporting d	ocuments.
 Include a check payable to WVDEP – Division of Air 45CSR13). 	r Quality with the appropriate applicatio	n fee (per 45CSR22 and
20. Include a Table of Contents as the first page of yo	our application package.	
 Provide a Plot Plan, e.g. scaled map(s) and/or ske source(s) is or is to be located as Attachment E (R 		erty on which the stationary
→ Indicate the location of the nearest occupied structu	re (e.g. church, school, business, resider	nce).
22. Provide a Detailed Process Flow Diagram(s) sho device as Attachment F.	wing each proposed or modified emissio	ns unit, emission point and control
23. Provide a Process Description as Attachment G.		
Also describe and quantify to the extent possible	e all changes made to the facility since th	e last permit review (if applicable).
All of the required forms and additional information can b	e found under the Permitting Section of D	AQ's website, or requested by phone

24. Provide Material Safety Data Sheets (MSDS) for all materials processed, used or produced as Attachment H.		
r> For chemical processes, provide a MS	DS for each compound emitt	ed to the air.
25. Fill out the Emission Units Table and provide it as Attachment I.		
26. Fill out the Emission Points Data Su	mmary Sheet (Table 1 and	Table 2) and provide it as Attachment J.
27. Fill out the Fugitive Emissions Data	Summary Sheet and provide	e it as Attachment K.
28. Check all applicable Emissions Unit	Data Sheets listed below:	
Bulk Liquid Transfer Operations	Haul Road Emissions	Quarry
Chemical Processes	Hot Mix Asphalt Plant	Solid Materials Sizing, Handling and Storage
Concrete Batch Plant	Incinerator	Facilities
Grey Iron and Steel Foundry	Indirect Heat Exchange	r 🖾 Storage Tanks
General Emission Unit, specify Engine	es 1 through 117.	
Fill out and provide the Emissions Unit D	ata Sheet(s) as Attachment	L.
29. Check all applicable Air Pollution Co	ntrol Device Sheets listed b	elow:
Absorption Systems	Baghouse	⊠ Flare
Adsorption Systems	Condenser	Mechanical Collector
Afterburner	Electrostatic Precip	itator 🗌 Wet Collecting System
Other Collectors, specify Control Syst	em	
Fill out and provide the Air Pollution Cont	trol Device Sheet(s) as Atta	chment M.
30. Provide all Supporting Emissions C Items 28 through 31.	alculations as Attachment I	N , or attach the calculations directly to the forms listed in
31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O .		
	not be able to accept all me	nether or not the applicant chooses to propose such asures proposed by the applicant. If none of these plans clude them in the permit.
32. Public Notice. At the time that the a	pplication is submitted, place	a Class I Legal Advertisement in a newspaper of general
circulation in the area where the source is or will be located (See 45CSR§13-8.3 through 45CSR§13-8.5 and Example Legal		
Advertisement for details). Please si	ubmit the Affidavit of Public	ation as Attachment P immediately upon receipt.
33. Business Confidentiality Claims. Does this application include confidential information (per 45CSR31)?		
If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's " <i>Precautionary Notice – Claims of Confidentiality</i> " guidance found in the <i>General Instructions</i> as Attachment Q.		
See	ction III. Certification	n of Information
34. Authority/Delegation of Authority. Check applicable Authority Form bel		e other than the responsible official signs the application.
Authority of Corporation or Other Busin	ess Entity	Authority of Partnership
Authority of Governmental Agency		Authority of Limited Partnership
Submit completed and signed Authority Form as Attachment R.		
All of the required forms and additional info	rmation can be found under th	e Permitting Section of DAQ's website, or requested by phone.

35A. **Certification of Information.** To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

SIGNATURE (Please use blue ink)		ATE: <u>3/29/25</u> (Please use blue ink)
35B. Printed name of signee: Adam Victor	35C. Title: President	
35D. E-mail: adam@tgds.com 36E. Phone: (917) 816-3700		36F. FAX: Use Email
36A. Printed name of contact person (if different	36B. Title:	
36C. E-mail:	36D. Phone:	36E. FAX:

 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee
address listed on the first page of this FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE: Forward 1 copy of the application to the Title V Permitting For Title V Administrative Amendments: NSR permit writer should notify Title V permit writer For Title V Minor Modifications:	ter of draft permit, fication to EPA and affected states within 5 days of receipt,

ATTACHMENT A

BUSINESS CERTIFICATE

WEST VIRGINIA STATE TAX DEPARTMENT BUSINESS REGISTRATION CERTIFICATE

ISSUED TO: TRANSGAS DEVELOPMENT SYSTEMS, LLC 630 1ST AVE APT 30G NEW YORK, NY 10016-3799

BUSINESS REGISTRATION ACCOUNT NUMBER: 2218

2218-0756

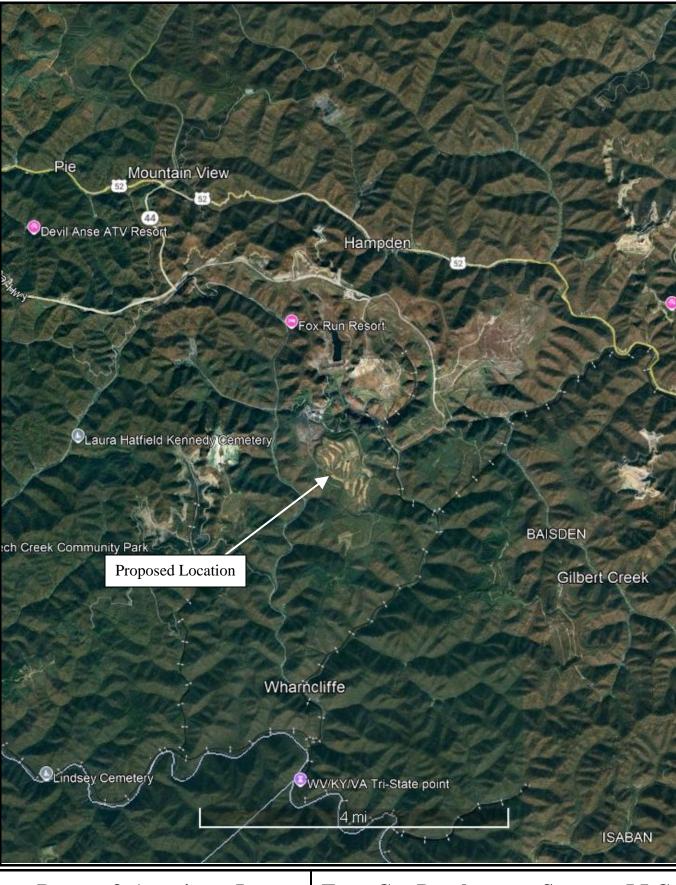
This certificate is issued on: 06/29/2010

This certificate is issued by the West Virginia State Tax Commissioner in accordance with W.Va. Code § 11-12.

The person or organization identified on this certificate is registered to conduct business in the State of West Virginia at the location above.

This certificate is not transferrable and must be displayed at the location for which issued.

This certificate shall be permanent until cessation of the business for which the certificate of registration was granted or until it is suspended, revoked or cancelled by the Tax Commissioner.


Change in name or change of location shall be considered a cessation of the business and a new certificate shall be required.

TRAVELING/STREET VENDORS: Must carry a copy of this certificate in every vehicle operated by them. CONTRACTORS, DRILLING OPERATORS, TIMBER/LOGGING OPERATIONS: Must have a copy of this certificate displayed at every job site within West Virginia.

atL006 v.1 L1333508864

ATTACHMENT B

SITE LOCATION MAP

Potesta & Associates, Inc.

7012 MacCorkle Avenue, SE, Charleston, WV 25304 Phone: (304) 342-1400 Fax: (304) 343-9031 E-Mail: potesta@potesta.com

TransGas Development Systems, LLC Adams Fork Data Center Energy Campus Wharncliffe, West Virginia Project No. 0101-22-0132-003A

ATTACHMENT C

INSTALLATION AND STARTUP SCHEDULE

ATTACHMENT C

INSTALLATION AND START UP SCHEDULE

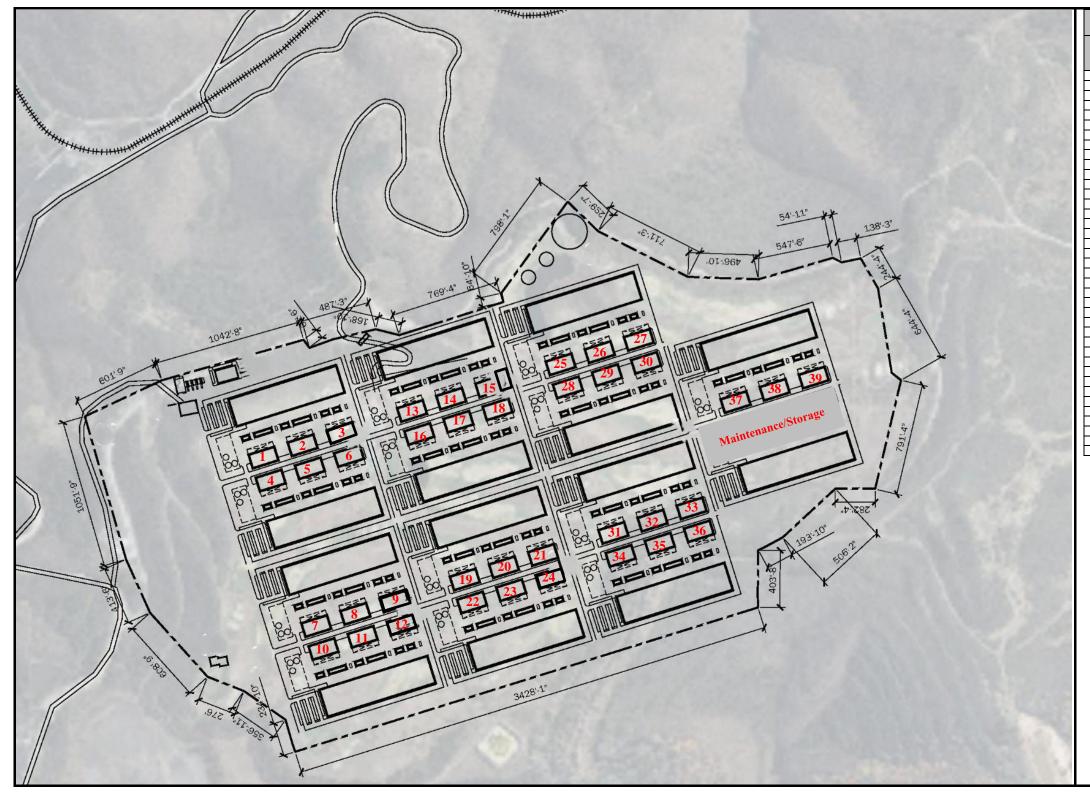
Construction of the facility will begin after receipt of Construction Permit from West Virginia Department of Environmental Protection, Division of Air Quality, and other necessary regulatory approvals on or near January 1, 2026. Operations will commence approximately 12 months after the beginning of construction.

ATTACHMENT D

REGULATORY DISCUSSION

ATTACHMENT D

REGULATORY DISCUSSION


The facility proposed herein, or portions of the facility, may be subject to the following regulations based on a review of potential air quality regulations (see No. 1 and 2). Additionally, there are a few regulations which the source may not be subject to which are also listed below in No. 3.

- 1. State Regulations
 - A. 45CSR4 "To Prevent and Control the Discharge of Air Pollutants into the Open Air Which Causes or Contributes to an Objectionable Odor or Odors"
 - B. 45CSR13 "Permits for Construction, Modification, Relocation and Operation of Stationary Sources of Air Pollutants, Notification Requirements, Temporary Permits, General Permits, and Procedures for Evaluation"
 - C. 45CSR16 "Standards of Performance for New Stationary Sources"
 - D. 45CSR20 "Good Engineering Practice as Applies to Stack Heights"
 - E. 45SCR30 "Requirements for Operation Permits"
 - F. 45CSR31 "Confidential Information" This application contains confidential information. This claim of confidentiality is made in accordance with the requirements of 45CSR31.
 - G. 45CSR34 "Emission Standards for Hazardous Air Pollutants"
- 2. Federal Regulations
 - A. 40CFR60 Subpart A General Provisions
 - B. 40CFR60 Subpart IIII Standard of Performance for Stationary Compression Ignition Internal Combustion Engines
 - C. 40CFR63, Subpart ZZZZ National Emissions Standard for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

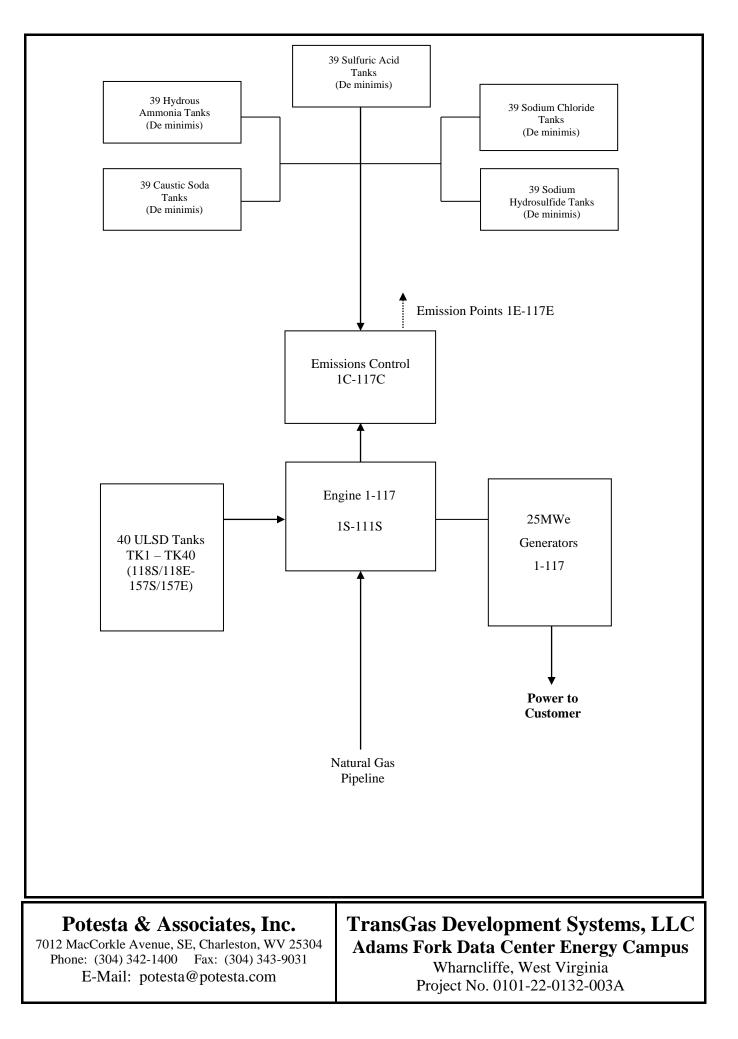
- 3. Non-Applicable Regulations or Exemptions Apply
 - A. 45CSR40 Contol of Ozone Season Nitrogen Oxide Emissions
 - The reciprocating internal combustion engines proposed for this facility do not appear to be considered as a unit per the definition contained in section 2.30 where a unit is defined as a stationary fossil fuel-fired boiler, combustion turbine, or combined cycle system. The engines also have a maximum heat input of less than 250 MMBtu/hr as stated in Section 4.1. Furthermore, the units do not appear to be subject to 40CFR97.
 - B. 40CFR97, Subpart DDDDD CSAPR SO2 Group 2 Trading Program and Subpart EEEEE CSAPR Nox Ozone Season Group 2 Trading Program. The nameplate capacity of the generators attached to each unit is 25 MWe. Also, the units (reciprocating internal combustion engines) do not appear to be regulated by the rule.
 - C. 45CSR33 Acid Rain Provisions and Permits This rule does not appear to apply due to the New Unit Exemption in 40CFR72.
 - D. 40CFR72, Acid Rain Program, Subpart A, Section 72.7, New Unit Exemption, appears to exempt the units from applicability based on serving a generator of 25 MWe or less, not burning coal or coal-derived fuel, and burns fuel with sulfur of 0.05 percent or less by weight.
 - E. 40CFR60 Subpart Kc Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for which Construction, Reconstruction, or Modification Commenced After October 4, 2023. Does not apply due to low vapor pressure of diesel.

ATTACHMENT E

PLOT PLANS

7012 MacCorkle Avenue, SE Charleston, West Virginia 25304 Phone: (304) 342-1400 Fax: (304) 343-9031

PLOT PLAN TransGas Development Systems, LLC Adams Fork Data Center Energy Campus Wharncliffe, West Virginia Project No. 0101-22-0132-003A


ENGINES			
Power House	Engine IDs	Emission ID	Control ID
1	ENG1, ENG2, ENG3	E1, E2, E3	C1, C2, C3
2	ENG4, ENG5, ENG6	E4, E5, E6	C4, C5, C6
3	ENG7, ENG8, ENG9	E7, E8, E9	C7, C8, C9
4	ENG10, ENG11, ENG12	E10, E11, E12	C10, C11, C12
5	ENG13, ENG14, ENG15	E13, E14, E15	C13, C14, C15
6	ENG16, ENG17, ENG18	E16, E17, E18	C16, C17, C18
7	ENG19, ENG20, ENG21	E19, E20, E21	C19, C20, C21
8	ENG22, ENG23, ENG24	E22, E23, E24	C22, C23, C24
9	ENG25, ENG26, ENG27	E25, E26, E27	C25, C26, C27
10	ENG28, ENG29, ENG30	E28, E29, E30	C28, C29, C30
11	ENG31, ENG32, ENG33	E31, E32, E33	C31, C32, C33
12	ENG34, ENG35, ENG36	E34, E35, E36	C34, C35, C36
13	ENG37, ENG38, ENG39	E37, E38, E39	C37, C38, C39
14	ENG40, ENG41, ENG42	E40, E41, E42	C40, C41, C42
15	ENG43, ENG44, ENG45	E43, E44, E45	C43, C44, C45
16	ENG46, ENG47, ENG48	E46, E47, E48	C46, C47, C48
17	ENG49, ENG50, ENG51	E49, E50, E51	C49, C50, C51
18	ENG52, ENG53, ENG54	E52, E53, E54	C52, C53, C54
19	ENG55, ENG56, ENG57	E55, E56, E57	C55, C56, C57
20	ENG58, ENG59, ENG60	E58, E59, E60	C58, C59, C60
21	ENG61, ENG62, ENG63	E61, E62, E63	C61, C62, C63
22	ENG64, ENG65, ENG66	E64, E65, E66	C64, C65, C66
23	ENG67, ENG68, ENG69	E67, E68, E69	C67, C68, C69
24	ENG70, ENG71, ENG72	E70, E71, E72	C70, C71, C72
25	ENG73, ENG74, ENG75	E73, E74, E75	C73, C74, C75
26	ENG76, ENG77, ENG78	E76, E77, E78	C76, C77, C78
27	ENG79, ENG80, ENG81	E79, E80, E81	C79, C80, C81
28	ENG82, ENG83, ENG84	E82, E83, E84	C82, C83, C84
29	ENG85, ENG86, ENG87	E85, E86, E87	C85, C86, C87
30	ENG88, ENG89, ENG90	E88, E89, E90	C88, C89, C90
31	ENG91, ENG92, ENG93	E91, E92, E93	C91, C92, C93
32	ENG94, ENG95, ENG96	E94, E95, E96	C94, C95, C96
33	ENG97, ENG98, ENG99	E97, E98, E99	C97, C98, C99
34	ENG100, ENG101, ENG102	E100, E101, E102	C100, C101, C102
35	ENG103, ENG104, ENG105	E103, E104, E105	C103, C104, C105
36	ENG106, ENG107, ENG108	E106, E107, E108	C106, C107, C108
37	ENG109, ENG110, ENG111	E109, E110, E111	C109, C110, C111
38	ENG112, ENG113, ENG114	E112, E113, E114	C112, C113, C114
39	ENG115, ENG116, ENG117	E115, E116, E117	C115, C116, C117

TANKS

- 1. Ultra Low Sulfur Diesel will be stored in 40 tanks located on the property near each powerhouse. The tanks are uncontrolled. The tank identification numbers are TK1 – TK40 (118S through 157S with emission points 118E through 157E).
- 2. Each powerhouse 1 through 39 will have one set of emission control fluid tanks for Hydrous Ammonia, Caustic Soda, Sulfuric Acid, Sodium Chloride, and Sodium Hydrosulfide. These tanks are de minimis.

ATTACHMENT F

PROCESS FLOW DIAGRAM(S)

ATTACHMENT G

PROCESS DESCRIPTION

ATTACHMENT G

PROCESS DESCRIPTION

The facility proposed herein is a unique, off-grid, electric generating facility designed to provide power to adjacent data center operations. The facility encompasses 117 engines (Source Numbers 1S through 117S) with 114 engines operating full-time and 3 engines in reserve. Each engine has a proposed control strategy (Control Numbers 1C through 117C) and vent through their own exhaust stack (Emissions Point 1E through 117E). The facility will contain 39 powerhouses with each containing 3 generator setups with each generator having a nameplate capacity of 25 MWe. Actual power generation will depend on the operating mode of the engines. The operating modes of the engines are more fully described in Attachment L. The control systems for each engine are described in Attachment M.

The engines will operate on ultra-low sulfur diesel and natural gas depending on the operating status. Ultra-low sulfur diesel will be stored in 40 tanks (TK1 through TK40, 118S-157S, 118E-157E) on the property. Natural gas will be delivered via pipeline. Tanks for control device liquids will be located at each powerhouse so there will be 39 tanks of each of hydrous ammonia, caustic soda, sulfuric acid, sodium chlorite, and sodium hydrosulfide. These tanks are considered de minimis. Liquids and supplies will be trucked to the site.

There is no steam-power production at the site. Cooling will be provided by mine pool water as needed; therefore, there is no requirement for cooling towers.

ATTACHMENT H

MATERIAL SAFETY DATA SHEETS

Material Safety Data Sheet

Sodium hydrosulfide solution

MSDS	Number 8000TDC (Revised: 1/23/04)		6 Pages
Sectio	n 1: CHEMICAL PRODUC	T and COMPANY IDENTIFICATI	ON
1.1	Product Name	Sodium hvdrosulfide solution	
	Chemical Family Synonyms Formula	. Inorganic salt solution KI-300 depressant, NaHS, sodiu	
1.2	Manufacturer	Tessenderlo Davison Chemicals 1916 Farmerville Highway Ruston, Louisiana 71270	s, LLC.
	Information	. (318) 242-5305	
1.3	Emergency Contact	(800) 877-1737 (Tessenderlo K (800) 424-9300 (CHEMTREC)	(erley)
Sectio	n 2: COMPOSITION, INFO	RMATION ON INGREDIENTS	
	· · · ·		
2.1	Chemical Ingredients (% by wt.) Sodium hydrosulfide Water	CAS #:16721-80-5 CAS #:7732-18-5	20-45% 55-80%
	(See Section 8 for exposure guidelines))	
Sectio	n 3: HAZARDS IDENTIFIC	ATION	
Sectio	II 3. HAZARDƏ IDENTIFIC		
NFPA:	Health - 3 Flamm	nability - 2 Reactivity -	1

EMERGENCY OVERVIEW

Warning: Solution is highly alkaline Contains hydrogen sulfide, a highly toxic gas. Eye contact will cause marked eye irritation and possibly severe corneal damage. Skin contact will result in irritation and possible corrosion of the skin. Ingestion will irritate/burn mouth, throat and gastrointestinal tract. Contact with stomach acid will cause hydrogen sulfide vapors to be released. Heating or acid will cause hydrogen sulfide gas to evolve. Dilution of NaHS with water will also cause increased evolution of hydrogen sulfide.

Section 3: HAZARDS IDENTIFICATION, Cont.

3.1 POTENTIAL HEALTH EFFECTS

EYE: Contact with the eyes will cause marked eye irritation and possibly severe corneal damage.

SKIN CONTACT: Contact with the skin will cause skin irritation or burning sensation. Prolonged contact will result in corrosion of the skin.

SKIN ABSORPTION: Absorption is unlikely to occur.

INGESTION: Ingestion will result in severe burning and corrosion of mouth, throat and the gastrointestinal tract. If the ingested material contacts stomach acid, highly toxic hydrogen sulfide gas will be evolved.

INHALATION: Product solution and vapors contain highly toxic hydrogen sulfide gas. Exposure to this gas causes, headaches, nausea, dizziness and vomiting. Continued exposure can lead to loss of consciousness and death..

CHRONIC EFFECTS/CARCINOGENICITY: Not listed as a carcinogen by NTP, IARC or OSHA.

Section	4:	FIRST AID MEASURES	

4.1 EYES: Immediately flush with large quantities of water for 15 minutes. Hold eyelids apart during irrigation to insure thorough flushing of the entire area of the eye. Obtain immediate medical attention.

4.2 SKIN: Immediately flush with large quantities of water. Remove contaminated clothing under a safety shower. Obtain immediate medical attention

4.3 INGESTION: DO NOT INDUCE VOMITING. If victim is conscious, immediately give 2 to 4 glasses of water. If vomiting does occur, repeat fluid administration. Obtain immediate medical attention.

4.4 INHALATION: Remove victim from contaminated atmosphere. If breathing is labored, administer oxygen. If breathing has ceased, clear airway and start mouth to mouth resuscitation. If heart has stopped beating, external heart massage should be applied. Obtain immediate medical attention.

Section 5: FIRE FIGHTING MEASURES

5.1 FLAMMABLE PROPERTIES

FLASH POINT: Not flammable METHOD USED: NA

5.2 FLAMMABLE LIMITS Hydrogen sulfide LFL: 4% UFL: 44%

5.3 EXTINGUISHING MEDIA: Water spray or foam or as appropriate for combustibles involved in fire.

5.4 FIRE & EXPLOSIVE HAZARDS: Solution is non-flammable. However if these solutions are exposed to heat or acids, hydrogen sulfide will be released and may form explosive mixtures with air (see above).

Keep containers/storage vessels in fire area cooled with water spray. Heating may cause the release of hydrogen sulfide vapors.

Page 3

Section FIRE FIGHTING MEASURES (Cont.) 5:

5.5 FIRE FIGHTING EQUIPMENT: Because of the possible presence of toxic gases and the corrosive nature of the product, wear self-contained breathing apparatus, pressure demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

Section ACCIDENTAL RELEASE MEASURES 6:

6.1 Small releases: Confine and absorb small releases on sand earth or other inert absorbent. Oxidize residual reactive sulfides with a weak (3-5%) hydrogen peroxide solution.

6.2 Large releases: Wear proper protective equipment. Confine area to qualified personnel. Shut off release if safe to do so. Dike spill area to prevent runoff into sewers, drains (potential explosive mixtures of hydrogen sulfide in confined spaces) or surface waterways (potential aquatic toxicity). Recover as much of the solution as possible. Treat remaining material as a small release (above).

Section 7: **HANDLING and STORAGE**

7.1 Handling: Wear proper protective equipment (See Section 8). Avoid breathing product vapors. Avoid contact with skin and eyes. Use only in a well ventilated area. Dilute product only in enclosed containers. Wash thoroughly after handling.

7.2 Storage: Store in well ventilated areas. Do not store combustibles in the area of storage vessels. Keep away from any sources of heat or flame. Store tote and smaller containers out of direct sunlight at moderate temperatures [<80° F (27° C)]. (See Section 10.4 for materials of construction)

Section 8: **EXPOSURE CONTROLS, PERSONAL PROTECTION**

8.1 **RESPIRATORY PROTECTION:** If working near open container or storage vessel opening or open tank truck dome cover, wear self-contained breathing apparatus, pressure demand, MSHA/NIOSH (approved or equivalent).

8.2 SKIN PROTECTION: Neoprene rubber gloves, chemical suit and boots should be worn to prevent contact with the liquid. Wash contaminated clothing prior to reuse. Contaminated leather shoes cannot be cleaned and should be discarded.

8.3 EYE PROTECTION: Chemical goggles and a full face shield.

8.4 EXPOSURE GUIDELINES:

	OSHA		ACGIH	
	TWA	STEL	TLV	STEL
Hydrogen sulfide	20 ppm (ceiling)		10 ppm	(ceiling)

8.5 ENGINEERING CONTROLS: Use adequate exhaust ventilation to prevent inhalation of product vapors. Where feasible scrub process or storage vessel vapors with caustic solution. Maintain eyewash/safety shower in areas where chemical is handled.

Page 4.

Section 9: PHYSICAL and CHEMICAL PROPERTIES

9.1	APPEARANCE:	Yellow to dark green liquid.
9.2	ODOR:	Strong hydrogen sulfide (rotten egg) odor.
9.3	BOILING POINT:	253 °F(122.8 °C) - 269 °F (131.7 °C)
9.4	VAPOR PRESSURE:	17 mm Hg @ 68 °F (20 °C)
9.5	VAPOR DENSITY: (Air = 1.0)	1.17
9.6	SOLUBILITY IN WATER:	Complete
9.7	SPECIFIC GRAVITY:	1.152 - 1.303 (9.6 - 10.9 lbs/gal)
9.8	FREEZING POINT:	0° F (-17.8° C) - 20%
		56° F (13.3° C) - 45%
9.9	pH:	11.5 - 12.5
9.10	VOLATILE:	Not applicable

Section 10: STABILITY and REACTIVITY

10.1 STABILITY: This is a stable material

10.2 HAZARDOUS POLYMERIZATION: Will not occur.

10.3 HAZARDOUS DECOMPOSITION PRODUCTS: Heating this product will evolve hydrogen sulfide. Fire conditions will also cause the production of sulfur dioxide. Hydrogen sulfide (4-44%) may form flammable mixtures with air.

10.4 INCOMPATIBILITY: <u>Acids</u> will cause the release of highly toxic hydrogen sulfide. <u>Sodium hydrosulfide</u> <u>solution is not compatible with copper, zinc, aluminum or their alloys</u> (i.e. bronze, brass, galvanized metals, etc.). Corrosive to steel above 150° F (65.5° C). These materials of construction should not be used in handling systems or storage containers for this product (SEE Section 7.2, Storage). Dilution of NaHS with water will increase the evolution of hydrogen sulfide. Dilution should be done in an enclosed container.

Section 11: TOXICOLOGICAL INFORMATION

- 11.1 ORAL: Data not available
- 11.2 DERMAL: Data not available
- 11.3 INHALATION: INH-RAT LC₅₀: 444 ppm (hydrogen sulfide) INH-MOUSE LC₅₀: 1,500 mg/m³ 18 minutes INH-RAT LC₅₀: 1,500 mg/m³ 14 minutes
- 11.4 CHRONIC/CARCINOGENICITY: No evidence available
- 11.5 TERATOLOGY: Data not available
- 11.6 REPRODUCTION: Data not available
- 11.7 MUTAGENICITY: Data not available

Section 12: ECOLOGICAL INFORMATION

Static acute 96 hour-LC₅₀ for mosquito fish is 206 mg/L. (TI_m - fresh water)

 LC_{50} fly inhalation 1,500 mg/m³, 7 minutes

TL_m Gammarus 0.84 mg/L, 96 hours (hydrogen sulfide)

TL_m Ephemera 0.316 mg/L, 96 hours (hydrogen sulfide)

TL_m Flathead minnow 0.071 – 0.55 mg/L @ 6-24°C, 96 hour flow through bioassay (hydrogen sulfide)

TL_m Bluegill 0.0090 – 0.0140 mg/L @ 20-22°C, 96 hour flow through bioassay (hydrogen sulfide)

TL_m Brook trout 0.0216 – 0.0308 mg/L @ 8-12.5°C, 96 hour flow through bioassay (hydrogen sulfide)

Section 13: DISPOSAL CONSIDERATIONS

If released to the environment for other than its intended purpose, this product contains some reactive sulfides which may be in sufficient quantity to meet the definition of a D003, hazardous waste.

Section 14: TRANSPORT INFORMATION

14.1 DOT Shipping Name:	Corrosive liquids, toxic, n.o.s.
14.2 DOT Hazard Class:	8
14.3 UN/NA Number:	UN2922 UN2949 (IMDG - over water)
14.4 Packing Group:	II
14.5 DOT Placard:	Corrosive
14.6 DOT Label(s):	Corrosive Toxic
14.7 IMO Shipping Name:	Sodium hydrosulphide solution
14.8 RQ (Reportable Quantity):	5,000 lbs (2268 Kg) 100% basis [2,604 gal (20%) 1,019 gal (45%)]
14.9 RR STCC Number:	28-123-33/49-352-04 (international)

Section 15: REGULATORY INFORMATION

15.1 OSHA:	This product is listed as a hazardous material under criteria of the OSHA Hazard Communication Standard, 29 CFR 1910.1200.	ne Federal
15.2 SARA TITLE III: a.	EHS (Extremely Hazardous Substance) List:	No

Page 5

Page 6

Section	15:	REGU	LATORY INFORMATION (Cont.)		
		b.	Section 311/312, (Tier I,II) Categories:	Immediate (acute) Fire Sudden release Reactivity Delayed (chronic)	Yes Yes No Yes No
		с.	Section 313 (Toxic Release Report-For	m R):	No
		d.	TPQ (Threshold Planning Quantity):		No
15.3 CERCI	LA/SUPER	RFUND:	RQ (Reportable Quantity)		5,000 lbs (2270 Kg)
15.4 TSCA	(Toxic Sub	stance	Control Act) Inventory List:		Yes
15.5 RCRA (Resource Conservation and Recovery Act) Status:			D003 (See Section 13)		
15.6 WHMIS (Canada) Hazard Classification:			E, D1		
15.7 DOT Hazardous Material: (See Section 14)			Yes		
15.8 CAA Hazardous Air Pollutant (HAP)		No			

Section 16: OTHER INFORMATION

REVISIONS: The entire MSDS was reformatted to comply to ANSI Standard Z400.1-1993.

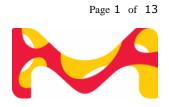
> Revised Sections 1.1, 8.3, 11, 12, 5/7/02 Revised pH range in Section 8, 6/19/02 Revised shipping info & RQ data, 1/15/03 Revised Section 3, Emergency Overview & Section 10.4 to include dilution caution. 1/23/04

THE INFORMATION PUBLISHED IN THIS MATERIAL SAFETY DATA SHEET HAS BEEN COMPILED FROM OUR EXPERIENCE AND OSHA, ANSI, NFPA, DOT, ERG, AND CHRIS. IT IS THE USER'S RESPONSIBILITY TO DETERMINE THE SUITABILITY OF THIS INFORMATION FOR THE ADOPTION OF NECESSARY SAFETY PRECAUTIONS. WE RESERVE THE RIGHT TO REVISE MATERIAL SAFETY DATA SHEETS PERIODICALLY AS NEW INFORMATION BECOMES AVAILABLE.

Sigma-Aldrich.

SAFETY DATA SHEET according to Regulation (EC) No. 1907/2006

Version 7.11 Revision Date 15.10.2024 Print Date 16.10.2024 GENERIC EU MSDS - NO COUNTRY SPECIFIC DATA - NO OEL DATA


SECTION 1: Identification of the substance/mixture and of the company/undertaking				
1.1	Product identifiers Product name	:	Sodium chlorite (25% solution in water) for synthesis	
	Product Number Catalogue No. Brand	:	8.14815 814815 Millipore	
	UFI	:	CW60-J6H9-Q99X-S01A	
	REACH No.	:	This product is a mixture. REACH Registration Number see section 3.	
1.2	Relevant identified uses of the substance or mixture and uses advised against			
	Identified uses	:	Chemical for synthesis	
1.3	Details of the supplier of the safety data sheet			
	Company	:	Sigma-Aldrich Chemical Pvt Limited Industrial Area, Anekal Taluka Plot No 12, 12 Bommasandra - Jigani Link Road 560100 BANGALORE INDIA	
1.4	Emergency telephone			
	Emergency Phone #	:	000 800 1007 141 (CHEMTREC)	

SECTION 2: Hazards identification

2.1	Classification of the substance or Corrosive to Metals, (Category 1)	mixture H290: May be corrosive to metals.
	Acute toxicity, (Category 4)	H302: Harmful if swallowed.
	Acute toxicity, (Category 3)	H311: Toxic in contact with skin.
	Skin corrosion, (Category 1)	H314: Causes severe skin burns and eye damage.
	Serious eye damage, (Category	H318: Causes serious eye damage.

Millipore- 8.14815

The life science business of Merck operates as MilliporeSigma in the US and Canada

H373: May cause damage to organs through prolonged or repeated exposure.
H400: Very toxic to aquatic life.
H410: Very toxic to aquatic life with long lasting effects.

2.2 Label elements

Labelling according Regulation (EC) No 1272/2008

Pictogram

Signal Word	Danger	
Hazard Statements H290 H302 H311 H314 H373 H410	May be corrosive to metals. Harmful if swallowed. Toxic in contact with skin. Causes severe skin burns and eye damage. May cause damage to organs (spleen) through prolonged or repeated exposure. Very toxic to aquatic life with long lasting effects.	
Precautionary Statements		
P273 P280	Avoid release to the environment. Wear protective gloves/ protective clothing/ eye protection/ face protection.	
P301 + P312	IF SWALLOWED: Call a POISON CENTER/ doctor if you feel unwell.	
P303 + P361 + P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water.	
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P314	Get medical advice/ attention if you feel unwell.	
Supplemental Hazard inforr EUH032 EUH071	mation (EU) Contact with acids liberates very toxic gas. Corrosive to the respiratory tract.	
Reduced Labeling (<= 125 ml) Pictogram		

Pictogram	
Signal Word	Danger
Hazard Statements H311 H314	Toxic in contact with skin. Causes severe skin burns and eye damage.
Precautionary Statements P280	Wear protective gloves/ protective clothing/ eye protection/ face
pore- 8.14815	Page 2 of 13

Millipore- 8.14815

The life science business of Merck operates as MilliporeSigma in the US and Canada

	protection.
P303 + P361 + P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water.
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
Supplemental Hazard inf	ormation (EU)
FUH032	Contact with acids liberates very toxic das

EUH032Contact with acids liberates very toxic gas.EUH071Corrosive to the respiratory tract.

2.3 Other hazards

This substance/mixture contains no components considered to be either persistent, bioaccumulative and toxic (PBT), or very persistent and very bioaccumulative (vPvB) at levels of 0.1% or higher.

Ecological information:

The substance/mixture does not contain components considered to have endocrine disrupting properties according to REACH Article 57(f) or Commission Delegated regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at levels of 0.1% or higher. Toxicological information:

The substance/mixture does not contain components considered to have endocrine disrupting properties according to REACH Article 57(f) or Commission Delegated regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at levels of 0.1% or higher.

SECTION 3: Composition/information on ingredients

3.2 Mixtures

Component		Classification	Concentration
sodium chlorite			
CAS-No.	7758-19-2	Ox. Sol. 1; Acute Tox. 3;	>= 25 - < 30
EC-No.	231-836-6	Acute Tox. 2; Skin Corr.	%
		1B; Eye Dam. 1; STOT RE	
	*	2; Aquatic Acute 1;	
		Aquatic Chronic 1; H271,	
		H301, H310, H314, H318,	
		H373, H400, H410	
		H373, H400, H410	

*A registration number is not available for this substance as the substance or its use are exempted from registration according to Article 2 REACH Regulation (EC) No 1907/2006, or the annual tonnage does not require a registration.

For the full text of the H-Statements mentioned in this Section, see Section 16.

SECTION 4: First aid measures

4.1 Description of first-aid measures

General advice

First aiders need to protect themselves. Show this material safety data sheet to the doctor in attendance.

If inhaled

After inhalation: fresh air. Call in physician.

Millipore- 8.14815

Page 3 of 13

The life science business of Merck operates as MilliporeSigma in the US and Canada

In case of skin contact

In case of skin contact: Take off immediately all contaminated clothing. Rinse skin with water/ shower. Call a physician immediately.

In case of eye contact

After eye contact: rinse out with plenty of water. Immediately call in ophthalmologist. Remove contact lenses.

If swallowed

After swallowing: make victim drink water (two glasses at most), avoid vomiting (risk of perforation). Call a physician immediately. Do not attempt to neutralise.

4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any immediate medical attention and special treatment needed No data available

SECTION 5: Firefighting measures

5.1 Extinguishing media

Suitable extinguishing media Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.

Unsuitable extinguishing media

For this substance/mixture no limitations of extinguishing agents are given.

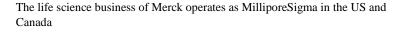
5.2 Special hazards arising from the substance or mixture

Hydrogen chloride gas Sodium oxides Not combustible. Fire may cause evolution of: Hydrogen chloride gas Ambient fire may liberate hazardous vapours.

5.3 Advice for firefighters

Stay in danger area only with self-contained breathing apparatus. Prevent skin contact by keeping a safe distance or by wearing suitable protective clothing.

5.4 Further information


Suppress (knock down) gases/vapors/mists with a water spray jet. Prevent fire extinguishing water from contaminating surface water or the ground water system.

SECTION 6: Accidental release measures

- 6.1 Personal precautions, protective equipment and emergency procedures Advice for non-emergency personnel: Do not breathe vapors, aerosols. Avoid substance contact. Ensure adequate ventilation. Evacuate the danger area, observe emergency procedures, consult an expert. For personal protection see section 8.
- **6.2 Environmental precautions** Do not let product enter drains.

Millipore- 8.14815

Page 4 of 13

6.3 Methods and materials for containment and cleaning up

Cover drains. Collect, bind, and pump off spills. Observe possible material restrictions (see sections 7 and 10). Take up carefully with liquid-absorbent material (e.g. Chemizorb®). Dispose of properly. Clean up affected area.

6.4 Reference to other sections

For disposal see section 13.

SECTION 7: Handling and storage

7.1 Precautions for safe handling

Advice on safe handling

Work under hood. Do not inhale substance/mixture. Avoid generation of vapours/aerosols.

Hygiene measures

Immediately change contaminated clothing. Apply preventive skin protection. Wash hands and face after working with substance. For precautions see section 2.2.

7.2 Conditions for safe storage, including any incompatibilities

Storage conditions

No metal containers. No metal containers. Protected from light.Tightly closed. Keep in a well-ventilated place. Keep locked up or in an area accessible only to qualified or authorized persons. Do not store near acids.

Recommended storage temperature see product label.

Storage class

Storage class (TRGS 510): 6.1D: Non-combustible, acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Ingredients with workplace control parameters

8.2 Exposure controls

Personal protective equipment

Eye/face protection

Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU). Tightly fitting safety goggles

Skin protection

This recommendation applies only to the product stated in the safety data sheet, supplied by us and for the designated use. When dissolving in or mixing with other substances and under conditions deviating from those stated in EN 16523-1 please contact the supplier of CE-approved gloves (e.g. KCL GmbH, D-36124 Eichenzell, Internet: www.kcl.de).

Millipore- 8.14815

Page 5 of 13

The life science business of Merck operates as MilliporeSigma in the US and Canada

Full contact Material: Nitrile rubber Minimum layer thickness: 0,11 mm Break through time: 480 min Material tested:KCL 741 Dermatril® L

This recommendation applies only to the product stated in the safety data sheet, supplied by us and for the designated use. When dissolving in or mixing with other substances and under conditions deviating from those stated in EN 16523-1 please contact the supplier of CE-approved gloves (e.g. KCL GmbH, D-36124 Eichenzell, Internet: www.kcl.de). Splash contact Material: Nitrile rubber

Minimum layer thickness: 0,11 mm Break through time: 480 min Material tested:KCL 741 Dermatril® L

Body Protection

protective clothing

Respiratory protection

Recommended Filter type: Filter B-(P3)

The entrepeneur has to ensure that maintenance, cleaning and testing of respiratory protective devices are carried out according to the instructions of the producer. These measures have to be properly documented.

Control of environmental exposure

Do not let product enter drains.

SECTION 9: Physical and chemical properties 9.1 Information on basic physical and chemical properties

a)	Physical state	liquid
b)	Color	colorless
c)	Odor	weak
d)	Melting point/freezing point	Melting point: < -3 °C
e)	Initial boiling point and boiling range	ca.>= 100 °C at 1.013 hPa
f)	Flammability (solid, gas)	No data available
g)	Upper/lower flammability or explosive limits	No data available
h)	Flash point	Not applicable
i)	Autoignition temperature	Not applicable
j)	Decomposition temperature	No data available
k)	рН	ca.12 - 13 at 20 °C

Millipore- 8.14815

The life science business of Merck operates as MilliporeSigma in the US and Canada

Page 6 of 13

I)	Viscosity	Viscosity, kinematic: No data available Viscosity, dynamic: No data available
m)	Water solubility	at 20 °C soluble
n)	Partition coefficient: n-octanol/water	Not applicable
o)	Vapor pressure	ca.20 hPa at 20 °C
p)	Density	ca.1,2 g/cm3 at 20 °C
	Relative density	No data available
q)	Relative vapor density	No data available
r)	Particle	No data available

- s) Explosive properties Not classified as explosive.
- t) Oxidizing properties Oxidizing potential

9.2 Other safety information No data available

characteristics

SECTION 10: Stability and reactivity

10.1 Reactivity

explosible after loss of solvent content. Contact with acids liberates very toxic gas.

10.2 Chemical stability

The product is chemically stable under standard ambient conditions (room temperature) .

10.3 Possibility of hazardous reactions

Generates dangerous gases or fumes in contact with: Acids Release of: chlorine dioxide Violent reactions possible with: combustible substances Cvanides sulfur ammonium compounds phosphorus Organic Substances oxidisable substances Chlorine Metals in powder form Violent reactions possible with: Generates dangerous gases or fumes in contact with: Acids The generally known reaction partners of water.

Millipore- 8.14815

Page 7 of 13

The life science business of Merck operates as MilliporeSigma in the US and Canada

10.4 Conditions to avoid

no information available

10.5 Incompatible materials Contact with metals liberates hydrogen gas.Metals

10.6 Hazardous decomposition products In the event of fire: see section 5

SECTION 11: Toxicological information

11.1 Information on toxicological effects

Mixture

Acute toxicity

Acute toxicity estimate Oral - 1.114 mg/kg (Calculation method) Symptoms: If ingested, severe burns of the mouth and throat, as well as a danger of perforation of the esophagus and the stomach. Symptoms: Possible symptoms:, mucosal irritations, Cough, Shortness of breath, Possible damages:, damage of respiratory tract Acute toxicity estimate Dermal - 525,49 mg/kg (Calculation method)

Skin corrosion/irritation

No data available

Serious eye damage/eye irritation

Remarks: Mixture causes serious eye damage. Risk of blindness!

Respiratory or skin sensitization

No data available

Germ cell mutagenicity No data available

Carcinogenicity No data available

Reproductive toxicity

No data available

Specific target organ toxicity - single exposure

No data available

Specific target organ toxicity - repeated exposure

Mixture may cause damage to organs through prolonged or repeated exposure. - spleen

Aspiration hazard

No data available

11.2 Additional Information

Endocrine disrupting properties

Product:

Assessment

The substance/mixture does not contain components considered to have endocrine disrupting properties according to REACH Article

Millipore- 8.14815

The life science business of Merck operates as MilliporeSigma in the US and Canada

Page 8 of 13

57(f) or Commission Delegated regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at levels of 0.1% or higher.

Other dangerous properties can not be excluded.

Handle in accordance with good industrial hygiene and safety practice.

Components

sodium chlorite

Acute toxicity

LD50 Oral - Rat - male and female - 284 mg/kg (OECD Test Guideline 401) Acute toxicity estimate Oral - 284 mg/kg (ATE value derived from LD50/LC50 value) Inhalation: No data available LD50 Dermal - Rabbit - male and female - 134 mg/kg (US-EPA) Acute toxicity estimate Dermal - 134 mg/kg (ATE value derived from LD50/LC50 value)

Skin corrosion/irritation

Skin - Rabbit Result: Corrosive after 3 minutes to 1 hour of exposure - 4 h (US-EPA)

Serious eye damage/eye irritation

Eyes - Rabbit Result: Irreversible effects on the eye Remarks: Aqueous solution (ECHA)

Respiratory or skin sensitization

Maximization Test - Guinea pig Result: Does not cause skin sensitization. (OECD Test Guideline 406)

Germ cell mutagenicity

Method: OECD Test Guideline 475 Species: Mouse - male and female - Bone marrow Result: negative

Carcinogenicity

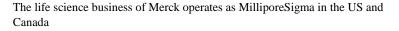
No data available

Reproductive toxicity

No data available

Specific target organ toxicity - single exposure No data available

Specific target organ toxicity - repeated exposure


May cause damage to organs through prolonged or repeated exposure. - spleen

Aspiration hazard

No data available

Millipore- 8.14815

Page 9 of 13

SECTION 12: Ecological information

Mixture

12.1 Toxicity

No data available

- 12.2 Persistence and degradability No data available
- **12.3 Bioaccumulative potential** No data available
- **12.4 Mobility in soil** No data available

12.5 Results of PBT and vPvB assessment

This substance/mixture contains no components considered to be either persistent, bioaccumulative and toxic (PBT), or very persistent and very bioaccumulative (vPvB) at levels of 0.1% or higher.

12.6 Endocrine disrupting properties Product:

Assessment

: The substance/mixture does not contain components considered to have endocrine disrupting properties according to REACH Article 57(f) or Commission Delegated regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at levels of 0.1% or higher.

12.7 Other adverse effects

No data available

Components

sodium chlorite

Toxicity to fish	flow-through test LC50 - Cyprinodon variegatus (sheepshead minnow) - 105 mg/l - 96 h (US-EPA)
Toxicity to daphnia and other aquatic invertebrates	static test EC50 - Daphnia magna (Water flea) - < 1 mg/l - 48 h (OECD Test Guideline 202)
Toxicity to algae	static test ErC50 - Pseudokirchneriella subcapitata (green algae) - 21,5 mg/l - 72 h (OECD Test Guideline 201)
	static test EC10 - Pseudokirchneriella subcapitata (green algae) - 4,8 mg/l - 72 h (OECD Test Guideline 201)
Toxicity to bacteria	Respiration inhibition EC50 - activated sludge - > 100 mg/l - 3 h (OECD Test Guideline 209)

Millipore- 8.14815

SECTION 13: Disposal considerations

13.1 Waste treatment methods No data available

SECTION 14: TI	SECTION 14: Transport information				
14.1 UN numbe ADR/RID:		IMDG: 1908	IATA: 1908		
ADR/RID: IMDG:	r shipping name CHLORITE SOLUTIO CHLORITE SOLUTIO Chlorite solution				
14.3 Transport ADR/RID: 8	: hazard class(es) 8	IMDG: 8	IATA: 8		
14.4 Packaging ADR/RID: 1		IMDG: II	IATA: II		
14.5 Environm ADR/RID:		IMDG Marine pollutant: no	IATA: no		
	recautions for use striction code :	г (Е)			
Further inf	formation :	No data available			

SECTION 15: Regulatory information

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

This material safety data sheet complies with the requirements of Regulation (EC) No. 1907/2006.

National legislation

Seveso III: Directive 2012/18/EU of the E1 European Parliament and of the Council on the control of major-accident hazards involving dangerous substances.

ENVIRONMENTAL HAZARDS

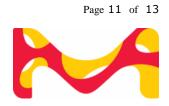
Other regulations

Observe work restrictions regarding maternity protection in accordance to Dir 92/85/EEC or stricter national regulations where applicable.

Take note of Dir 94/33/EC on the protection of young people at work.

15.2 Chemical Safety Assessment

For this product a chemical safety assessment was not carried out


SECTION 16: Other information

Full text of H-Statements

H271	May cause fire or explosion; strong oxidizer.
H301	Toxic if swallowed.

Millipore- 8.14815

The life science business of Merck operates as MilliporeSigma in the US and Canada

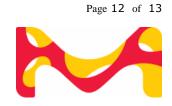
H310 Fat	al in	contact	with	skin.
----------	-------	---------	------	-------

H314	Causes severe skin burns and eye damage.
------	--

H318 Causes serious eye damage.

- H373 May cause damage to organs through prolonged or repeated exposure.
- H400 Very toxic to aquatic life.

H410 Very toxic to aquatic life with long lasting effects.


- EUH032 Contact with acids liberates very toxic gas.
- EUH071 Corrosive to the respiratory tract.

Full text of other abbreviations

ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways; ADR - Agreement concerning the International Carriage of Dangerous Goods by Road; AIIC - Australian Inventory of Industrial Chemicals; ASTM -American Society for the Testing of Materials; bw - Body weight; CMR - Carcinogen, Mutagen or Reproductive Toxicant; DIN - Standard of the German Institute for Standardisation; DSL - Domestic Substances List (Canada); ECx - Concentration associated with x% response; ELx - Loading rate associated with x% response; EMS -Emergency Schedule; ENCS - Existing and New Chemical Substances (Japan); ErCx -Concentration associated with x% growth rate response; GHS - Globally Harmonized System; GLP - Good Laboratory Practice; IARC - International Agency for Research on Cancer; IATA - International Air Transport Association; IBC - International Code for the Construction and Equipment of Ships carrying Dangerous Chemicals in Bulk; IC50 - Half maximal inhibitory concentration; ICAO - International Civil Aviation Organization; IECSC - Inventory of Existing Chemical Substances in China; IMDG - International Maritime Dangerous Goods; IMO - International Maritime Organization; ISHL - Industrial Safety and Health Law (Japan); ISO - International Organisation for Standardization; KECI - Korea Existing Chemicals Inventory; LC50 - Lethal Concentration to 50 % of a test population; LD50 - Lethal Dose to 50% of a test population (Median Lethal Dose); MARPOL - International Convention for the Prevention of Pollution from Ships; n.o.s. -Not Otherwise Specified; NO(A)EC - No Observed (Adverse) Effect Concentration; NO(A)EL - No Observed (Adverse) Effect Level; NOELR - No Observable Effect Loading Rate; NZIoC - New Zealand Inventory of Chemicals; OECD - Organization for Economic Co-operation and Development; OPPTS - Office of Chemical Safety and Pollution Prevention; PBT - Persistent, Bioaccumulative and Toxic substance; PICCS - Philippines Inventory of Chemicals and Chemical Substances; (Q)SAR - (Quantitative) Structure Activity Relationship; REACH - Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals; RID - Regulations concerning the International Carriage of Dangerous Goods by Rail; SADT - Self-Accelerating Decomposition Temperature; SDS -Safety Data Sheet; TCSI - Taiwan Chemical Substance Inventory; TECI - Thailand Existing Chemicals Inventory; TSCA - Toxic Substances Control Act (United States); UN - United Nations; UNRTDG - United Nations Recommendations on the Transport of Dangerous Goods; vPvB - Very Persistent and Very Bioaccumulative

Classification of the mixture		Classification procedure:
Met. Corr.1	H290	Based on product data or assessment
Acute Tox.4	H302	Calculation method
Acute Tox.3	H311	Calculation method
Skin Corr.1	H314	Based on product data or assessment
Eye Dam.1	H318	Based on product data or assessment

The life science business of Merck operates as MilliporeSigma in the US and Canada

STOT RE2	H373	Calculation method
Aquatic Acute1	H400	Calculation method
Aquatic Chronic1	H410	Calculation method

Further information

The information is believed to be correct but is not exhaustive and will be used solely as a guideline, which is based on current knowledge of the chemical substance or mixture and is applicable to appropriate safety precautions for the product. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Copyright 2020 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only.

The branding on the header and/or footer of this document may temporarily not visually match the product purchased as we transition our branding. However, all of the information in the document regarding the product remains unchanged and matches the product ordered. For further information please contact mlsbranding@sial.com.

Millipore- 8.14815

The life science business of Merck operates as MilliporeSigma in the US and Canada

Page 13 of 13

Safety Data Sheet

Sulfuric Acid 36-37% (w/w)

1. PRODUCT AND COMPANY IDENTIFICATION

Product Name: Sulfuric Acid 36-37% (w/w)

Synonyms/Generic Names: Battery Acid, Dihydrogen Sulfate, Oil of Vitriol

Product Number: 9624

Product Use: Industrial, Manufacturing or Laboratory use

Manufacturer: Columbus Chemical Industries, Inc. N4335 Temkin Rd. Columbus, WI. 53925

For More Information: 920-623-2140 (Monday-Friday 8:00-4:30) www.columbuschemical.com

In Case of Emergency Call: CHEMTREC - 800-424-9300 or 703-527-3887 (24 Hours/Day, 7 Days/Week)

2. HAZARDS IDENTIFICATION

Hazard Not Otherwise Classified (HNOC): None

Signal Words: Danger

Pictograms:

GHS Classification:

Skin corrosion	Category 1A
Serious eye damage	Category 1
Acute aquatic toxicity	Category 3

GHS Label Elements, including precautionary statements:

Hazard Statements:

H314	Causes severe skin burns and eye damage.
H402	Harmful to aquatic life.

Precautionary Statements:

P260	Do not breathe mists.
P264	Wash hands thoroughly after handling.
P273	Avoid release to the environment.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P301+P330+P331	IF SWALLOWED: Rinse mouth. Do not induce vomiting.

P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse
	skin with water/shower.
	IF INHALED: Remove person to fresh air and keep comfortable for
P304+P340	breathing.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove
	contact lenses, if present and easy to do. Continue rinsing.
P310	Immediately call a POISON CENTER/doctor/physician.
P363	Wash contaminated clothing before reuse.
P405	Store locked up.
P501	Dispose of contents/container in accordance with local regulations.

Potential Health Effects

Eyes	Causes severe eye burns.	
Inhalation	May be harmful if inhaled. Material is extremely destructive to the tissue of the mucous	
	membranes and upper respiratory tract.	
Skin	Causes skin burns.	
Ingestion	May be harmful if swallowed.	

NFPA Ratings

Health	3
Flammability	0
Reactivity	2
Specific hazard	W

HMIS Ratings

j-	
Health	3
Fire	0
Reactivity	2

3. COMPOSITION/INFORMATION ON INGREDIENTS

Component	Weight %	CAS #	EINECS# / ELINCS#	Formula	Molecular Weight
Sulfuric Acid	36-37	7664-93-9	231-939-5	H_2SO_4	98.08 g/mol
Water	Balance	7732-18-5	231-791-2	H ₂ O	18.00 g/mol

4. FIRST-AID MEASURES

Eyes	Immediately rinse with plenty of water for at least 15 minutes and get medical attention immediately.
Inhalation	Move casualty to fresh air and keep at rest. If breathing is difficult, give oxygen. If not breathing, give artificial respiration. Get medical attention immediately.
Skin	Immediately flush with plenty of water for at least 15 minutes while removing contaminated clothing and wash using soap. Get medical attention immediately.
Ingestion	Do Not Induce Vomiting! Never give anything by mouth to an unconscious person. If conscious, wash out mouth with water. Get medical attention immediately.

5. FIRE-FIGHTING MEASURES

Suitable (and unsuitable) extinguishing media	Product is not flammable. Use appropriate media for adjacent fire. Cool unopened containers with water.
Special protective equipment and precautions for firefighters	Wear self-contained, approved breathing apparatus and full protective clothing, including eye protection and boots.
Specific hazards arising from the chemical	Emits toxic fumes (sulfur oxides, hydrogen sulfide gas) under fire conditions. (See also Stability and Reactivity section).

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures	See section 8 for recommendations on the use of personal protective equipment.
Environmental precautions	Prevent spillage from entering drains. Any release to the environment may be subject to federal/national or local reporting requirements.
Methods and materials for containment and cleaning up	Neutralize spill with sodium bicarbonate or lime. Absorb spill with noncombustible absorbent material, then place in a suitable container for disposal. Clean surfaces thoroughly with water to remove residual contamination. Dispose of all waste and cleanup materials in accordance with regulations.

7. HANDLING AND STORAGE

Precautions for safe handling

See section 8 for recommendations on the use of personal protective equipment. Use with adequate ventilation. Wash thoroughly after using. Keep container closed when not in use. Avoid formation of aerosols.

Conditions for safe storage, including any incompatibilities

Store in a cool, dry, well ventilated area. Keep away from incompatible materials (see section 10 for incompatibilities).

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Occupational exposure controls:

Component	Exposure Limits	Basis	Entity
Sulfuric Acid	0.2 mg/m ³	TLV	ACGIH
	1 mg/m ³	PEL	OSHA
	1 mg/m ³ `	REL	NIOSH
	15 mg/m ³	IDLH	OSHA

TWA: Time Weighted Average over 8 hours of work.

TLV: Threshold Limit Value over 8 hours of work.

REL: Recommended Exposure Limit

PEL: Permissible Exposure Limit

STEL: Short Term Exposure Limit during x minutes.

IDLH: Immediately Dangerous to Life or Health

WEEL: Workplace Environmental Exposure Levels

CEIL: Ceiling

Personal Protection

Eyes	Wear chemical safety glasses or goggles, and face shield.		
Inhalation	Provide local exhaust, preferably mechanical. If exposure levels are excessive, use an		
	approved respirator.		
Skin	Wear nitrile or rubber gloves, and full body suit. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.		
Other	Not Available		

Other Recommendations

Provide eyewash stations, quick-drench showers and washing facilities accessible to areas of use and handling.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance (physical state, color, etc.)	Clear, colorless liquid.
Odor	Odorless.
Odor threshold	Not Available
рН	~1
Melting point/freezing point	Not Available
Initial boiling point and boiling range	Not Available
Flash point	Not Flammable
Evaporation rate	Not Available
Flammability (solid, gas)	Not Flammable
Upper/lower flammability or explosive limit	Not Explosive
Vapor pressure	Not Available
Vapor density	Not Available
Specific gravity	1.2720
Solubility (ies)	Soluble in water.
Partition coefficient: n-octanol/water	Not Available
Auto-ignition temperature	Not Available
Decomposition temperature	Not Available

10. STABILITY AND REACTIVITY

Chemical Stability	Stable
Possibility of Hazardous Reactions	Will not occur.
Conditions to Avoid	Moisture.
Incompatible Materials	Bases, halides, organic material, carbides, chlorates, fulminates, nitrates, picrates, cyanides, cyclopentadiene, cyclopentanone oxime, nitroaryl amines, hexalithium disilicide, phosphorus (III) oxide, powdered metals.
Hazardous Decomposition Products	Sulfur oxides, hydrogen sulfide gas.

11. TOXICOLOGICAL INFORMATION

Acute Toxicity

Skin	Not Available
Eyes	Not Available
Respiratory	Not Available
Ingestion	Not Available

Carcinogenicity

IARC	1: Carcinogenic to humans (sulfuric acid aerosol).
ACGIH	A2: Suspected human carcinogen (sulfuric acid aerosol).
NTP	No components of this product present at levels greater than or equal to 0.1% is
	identified as a known or anticipated carcinogen by NTP.
OSHA	No components of this product present at levels greater than or equal to 0.1% is
	identified as a carcinogen or potential carcinogen by OSHA.

Signs & Symptoms of Exposure

Skin	Burning, itching, redness, inflammation upon exposed tissue.	
Eyes	Eye burns, watering eyes.	
Respiratory	Burning, choking, coughing, shortness of breath.	
Ingestion	Nausea, vomiting, diarrhea, burning, severe pain.	

Chronic Toxicity	May cause bleeding of nose and gums, nasal and oral mucosal ulceration, conjunctivitis, yellowing of teeth and erosion of tooth enamel.
Teratogenicity	Not Available
Mutagenicity	Not Available
Embryotoxicity	Not Available
Target Organ(s)	Teeth, Lungs
Reproductive Toxicity	Not Available
Respiratory/Skin Sensitization	Not Available

12. ECOLOGICAL INFORMATION

Ecotoxicity

Aquatic Vertebrate	Not Available	
Aquatic Invertebrate	Not Available	
Terrestrial	Not Available	
Persistence and Degradability		Not Available
Bioaccumulative Potential		Does not accumulate.
Mobility in Soil		Not Available
PBT and vPvB Assessment		Not Available
Other Adverse Effects		Not Available

13. DISPOSAL CONSIDERATIONS

Waste Product or Residues	Users should review their operations in terms of the applicable federal/national or local regulations and consult with appropriate regulatory agencies if necessary before disposing of waste product or residue.
Product Containers	Users should review their operations in terms of the applicable federal/national or local regulations and consult with appropriate regulatory agencies if necessary before disposing of waste product container.

The information offered in section 13 is for the product as shipped. Use and/or alterations to the product may significantly change the characteristics of the material and alter the waste classification and proper disposal methods.

14. TRANSPORTATION INFORMATION

US DOT	UN2796, Sulfuric acid, 8, pg II
TDG	UN2796, SULFURIC ACID, 8, PG II
IMDG	UN2796, SULFURIC ACID, 8, PG II
Marine Pollutant	No
IATA/ICAO	UN2796, Sulfuric acid, 8, pg II

15. REGULATORY INFORMATION

TSCA Inventory Status	All ingredients are listed on the TSCA Active
	inventory.
DSL / NDSL	All ingredients are listed on the DSL inventory.
California Proposition 65	Not Listed
Rhode Island: Hazardous Substance List	Listed: Sulfuric Acid

Massachusetts: Toxic or Hazardous Substance List,	Not Listed	
Right to Know		
Pennsylvania: Hazardous Substance List	Listed: Sulfuric Acid	
New Jersey: Right to Know Hazardous Substance	Listed: Sulfuric Acid	
List		
SARA 302	Listed: Sulfuric Acid	
SARA 304	Listed: Sulfuric Acid	
SARA 311	Acute Health Hazard.	
SARA 312	Acute Health Hazard.	
SARA 313	Listed: Sulfuric Acid (aerosol forms only)	
WHMIS Canada	Class D1A: Poisonous and infectious material -	
	Immediate and serious effects – Very toxic.	
	Class E: Corrosive material.	

16. OTHER INFORMATION

Revision	Date
Original	03/27/2013
Revision 1	12/13/2016
Revision 2	11/29/2021

Disclaimer: The information provided in this Safety Data Sheet ("SDS") is correct to the best of our knowledge, information, and belief at the date of publication. The information in this SDS relates only to the specific Product identified under Section 1, and does not relate to its use in combination with other materials or products, or its use as to any particular process. Those handling, storing, or using the Product should satisfy themselves that they have current information regarding the particular way the Product is handled, stored or used and that the same is done in accordance with federal, state and local law. WE DO NOT MAKE ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING (WITHOUT LIMITATION) WARRANTIES WITH RESPECT TO THE COMPLETENESS OR CONTINUING ACCURACY OF THE INFORMATION CONTAINED HEREIN OR WITH RESPECT TO FITNESS FOR ANY PARTICULAR USE. WE DO NOT ASSUME RESPOSIBILITY AND EXPRESSLY DISCLAIM LIABILITY FOR LOSS, INJURY, DAMAGE OR EXPENSE ARISING OUT OF OR IN ANY WAY CONNECTED WITH THE HANDLING, STORAGE, USE OR DISPOSAL OF THIS PRODUCT.

Issue Date: 01/10/2011

Reviewed Date: 1/25/2023

Page 1 of 16

SODIUM SHINTECH HYDROXIDE, 50%

SECTION 1 — CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Manufacturer:	Shintech Louisiana, LLC 3 Greenway Plaza, Suite 1150 Houston, TX 77046 (713) 965-0713
PRODUCT NAME:	Sodium Hydroxide Solution, 50%
CAS#:	1310-73-2
CHEMICAL FOMULA:	NaOH(50)
Synonyms	Caustic Soda Liquid 50%, Soda Lye, Lye, Liquid Caustic, Sodium Hydrate
Product Use:	Neutralizing agent, industrial cleaner, pulping and bleaching, soap manufacturing

For information regarding a chemical emergency involving a spill or leak, call:

24 — Hour Emergency Contact:

U.S.: 1-800-424-9300 — CHEMTREC

SECTION 2 — HAZARDS IDENTIFICATION

Global Harmonization System (GHS) Classification:

Category 1 Corrosive to metals
Category 1 Skin corrosion/irritation
Category 1 Serious eye damage/eye irritation
Category 3 Hazardous to the aquatic environment, long-term (chronic) hazard
Category 4 Acute toxicity, inhalation
Category 4 Acute toxicity, oral

SAFETY DATA SHEET SODIUM SODIUM HYDROXIDE, 50%

National Fire Protection Association (NFPA) Rating Hazardous Materials Identification Systems (HMIS) Rating

	NFPA	HMIS	
Health	3	3	4
Fire	0	0	3
Reactivity	1	1	2

4 = Extreme/Severe W – Water Reactive
3 = High/Serious
2 = Moderate
1 = Slight

0 = Minimum

DANGER! Causes severe eye burns. Causes severe skin burns. Avoid contact with skin and eyes. Causes burns of the mouth and throat. Causes respiratory tract irritation. Avoid breathing vapors or mist. Aspiration hazard. Can enter lungs and cause damage. May react with water. Keep upwind of spill and use in adequate ventilation.

Emergency Overview:

Color:	Colorless
Odor:	Odorless
Physical State	Liquid above freezing point
Signal Word	DANGER

GHS Label Elements:

GHS Hazard Statements:	H290 - May be corrosive to metals
	H314 – Causes severe skin burns and eye
	H318 – Causes serious eye damage
	H412 – Harmful to aquatic life with long lasting effects
	H332 – Harmful if inhaled
	H302 – Harmful if swallowed

SODIUM SHINTECH HYDROXIDE, 50% Issue Date: 01/10/2011

Reviewed Date: 1/25/2023

Page 3 of 16

Storage:	Keep container closed.
	Keep in original container.
	Store in a secure manner.
Ventilation Controls:	Do not breathe (dust, vapor or spray mist).
Hygiene Measures:	When using, do not smoke, eat, or drink.
	Wash thoroughly after handling.
	Avoid contact with skin and eyes.
Personal Protective Equipment:	Wear suitable protective clothing, gloves, and eye/face protection.
Spills:	NEVER direct water jet on liquid.
	Dike the area to contain the spill.
	Collect in suitable and properly labeled containers.
	Attempt to neutralize by adding material such as Acetic acid.
First Aid (See Section 4):	In case of accident by inhalation, move person to fresh air.
	If swallowed, do not induce vomiting: seek medical advice immediately and show label to doctor.
	After contact with skin, immediately take off all contaminated clothing and wash immediately with plenty of water.
	In case of contact with eyes, rinse immediately with plenty of water.
	In all cases, if irritation develops and persists, get medical attention.
	In all cases, call a poison control center or doctor for further treatmen advice.
Environmental Protection:	Use appropriate containment to avoid environmental contamination.
Disposal:	Dispose of contents and container in accordance with applicable local, regional, national, and/or international regulations.

Issue Date: 01/10/2011 **SAFETY DATA SHEET** Reviewed Date: 1/25/2023 SODIUM SHINTECH HYDROXIDE, 50%

Page 4 of 16

POTENTIAL HEALTH EFFECTS:

EYE CONTACT	May cause severe irritation with corneal injury which may result in permanent impairment of vision, even blindness. Chemical burns may occur. Mist may cause eye irritation.	
Short Term Exposure		
Long Term Exposure:		
SKIN CONTACT	Brief contact may cause severe skin burns. Symptoms may include pain, severe local redness and tissue damage.	
SKIN ABSORPTION	Prolonged skin contact is unlikely to result in absorption of harmful amounts.	
INHALATION:	Mist may cause severe irritation of upper respiratory tract (nose and throat). May cause chemical burns to the respiratory tract.	
INGESTION	Swallowing may result in burns of the mouth and throat. Swallowing may result in gastrointestinal irritation, ulceration, nausea and/or vomiting. Aspiration into the lungs may occur during ingestion or vomiting, causing tissue damage or lung injury.	
CONDITIONS AGGRAVATED BY EXPOSURE	Respiratory disorders, pre-existing skin disorders, eye/vision disorders.	
TARGET ORGANS EFFECTED:	Skin, Eyes, Respiratory System.	

SECTION 3 – COMPOSITION/INFORMATION ON INGREDIENTS

Hazardous ingredients (specific)	Typical %	CAS Number	EC Number
Water	50	7732-18-5	7732-18-5
Sodium Hydroxide	50	1310-73-2	7732-18-5
Sodium Chloride	< 1	7647-14-5	231-598-3

Common Caustic Soda Liquid 50%, Soda Lye, Lye, Liquid Caustic, Sodium Hydrate Names/Synonyms:

Issue Date: 01/10/2011

Reviewed Date: 1/25/2023

Page 5 of 16

	SECTION 4 – FIRST AID MEASURES
Eye Contact:	Immediately flush eyes with water for at least 30 minutes, and up to 60 minutes if necessary. Hold eyelids open during flushing. If irritation persists, repeat flushing. Obtain medical attention IMMEDIATELY. Do not transport victim until the recommended flushing period is completed unless flushing can be continued during transport.
Skin Contact:	Immediately flush skin with water for at least 30 minutes, and up to 60 minutes if necessary. Under water remove contaminated clothing, jewelry, and shoes. If irritation persists, repeat flushing. Obtain medical attention immediately. Handle contaminated clothing and shoes in a manner which limits further exposure.
Ingestion:	DO NOT INDUCE VOMITING. If victim is alert and not convulsing, rinse mouth and give as much water as possible to dilute material (8 to 10 oz. or 240 to 300 mL). If spontaneous vomiting occurs, have victim lean forward with head down, rinse mouth and administer more water. IMMEDIATELY transport victim to an emergency facility. Do not give anything to an unconscious person.
Inhalation:	Move victim to fresh air. If breathing is difficult, oxygen may be beneficial if administered by trained personnel, preferably on a doctor's advice. Give artificial respiration ONLY if breathing has stopped. Do not use mouth-to- mouth method if victim ingested or inhaled the substance: induce artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Obtain medical attention IMMEDIATELY. Symptoms of pulmonary edema can be delayed up to 48 hours after exposure.

Extinguishing Media:	This material does not burn. If exposed to fire from another source, use suitable extinguishing agent for that fire. Do not use water jet.
Fire Fighting Procedures:	Keep people away. Isolate fire and deny unnecessary entry. Remove containers from fire, if possible, and cool containers with water. When material comes in contact with water, large amounts of heat may be generated and ignite adjacent combustible materials. This material does not burn. Fight fire for other material that is burning.

SHINTE	SAFETY DATA SHEET SODIUM HYDROXIDE, 50%	Issue Date: 01/10/2011 Reviewed Date: 1/25/2023 Page 6 of 16
Special Protective	Wear positive-pressure self-contained breathin protective fire fighting clothing (includes fire fight boots, and gloves). Avoid contact with this m	ting helmet, coat, trousers,

Equipment for Firefighters:	operations. If contact is likely, wear full chemical resistant clothing with self- contained breathing apparatus and fight fire from a remote location. For protective equipment in post-fire or non-fire clean-up situations, refer to the relevant sections.
Unusual Fire and Explosion Hazards:	Product reacts with water. Reaction may produce heat and/or gases. This reaction may be violent. Violent steam generation or eruption may occur upon application of direct water stream to hot liquids.
Hazardous Combustion Products:	Not applicable.

SECTION 6 – ACCIDENTAL RELEASE MEASURES		
Steps to be taken if material is released or spilled:	Contain spilled material if possible. Small spills: Dilute with water and neutralize with dilute acid; absorb and collect. Large spills: Dike the area to contain the spill. Collect in suitable and properly labeled containers. Attempt to neutralize by adding material such as Acetic acid. See Section 13, Disposal Considerations, for additional information.	
Personnel Precautions:	Evacuate area. Only trained and properly protected personnel must be involved in clean-up operations. Refer to Section 7, Handling, for additional precautionary measures. Keep upwind of spill. Ventilate area of leak or spill. See Section 10 for more specific information. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection.	
Environmental Precautions:	Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information.	

SODIUM

Issue Date: 01/10/2011

Reviewed Date: 1/25/2023

Page 7 of 16

SECTION 7 – HANDLING AND STORAGE Handling: Do not get in eyes. Do not get on skin or clothing. Do not swallow. Avoid breathing mist. Keep container closed. Use with adequate ventilation. 1. ALWAYS add caustic soda solution to water with constant agitation. NEVER add water to the caustic soda solution. The water should be lukewarm (27°-38°C or 80°-100°F). NEVER start with hot or cold water. The addition of the caustic soda to liquid will cause a rise in temperature. If caustic soda becomes concentrated in one area, is added too rapidly, or is added to hot or cold liquid, a rapid temperature increase can result in DANGEROUS mists, boiling or spattering which may cause an immediate VIOLENT ERUPTION. See Section 8, Exposure Controls and Personal Protection. Keep container closed. Do not store in: Zinc, Aluminum, Brass, or Tin. See Storage: Section 10 for more specific information. Storage >16°C

temperature:

Shelf life: Use within 24 months

SECTION 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

Preventive Recommendations listed in this section indicate the type of equipment which will provide protection against over exposure to this product. Measures: Conditions of use, adequacy of engineering or other control measures, and actual exposures will dictate the need for specific protective devices at your workplace.

Engineering Local exhaust ventilation should be applied wherever there is an incidence of point source emissions or dispersion of regulated contaminants in the **Controls:** work area. Ventilation control of the contaminant as close to its point of generation is both the most economical and safest method to minimize personnel exposure to airborne contaminants. The most effective measures are the total enclosure of processes and the mechanization of handling procedures to prevent all personal contact.

SODIUM SHINTECH HYDROXIDE, 50% Issue Date: 01/10/2011

Reviewed Date: 1/25/2023

Page 8 of 16

Personal Protective Equipment:	Maintain eye wash station and safety shower facilities in work area. Detailed requirements for personal protective equipment should be established on a site-specific basis.	
Eye/Face Protection:	Wear full face-shield and chemical safety goggles when there is potential for contact.	
Skin/Body Protection:	Wear appropriate personal protective clothing to prevent skin contact that is chemically resistant to this material. Wear rubber boots and chemical resistant gloves. Remove contaminated clothing immediately, wash skin area with soap and water and launder clothing before reuse or dispose of properly.	
Respiratory Protection:	Up to 10mg/m ³ : Supplied Air Respirator (SAR) operated in a continuous- flow mode, eye protection needed; or full face-piece respirator with high- efficiency particulate filter(s); or powered air-purifying respirator with dust and mist filter(s), eye protection needed; or full face-piece Self-Contained Breathing Apparatus (SCBA); or full face-piece SAR. Emergency or Planned Entry into Unknown Concentrations of IDLH	
	Conditions: Positive pressure, full face-piece SAR; or positive pressure, full face-piece SAR with an auxiliary positive pressure SAR.	
Guidelines for Sodium Hydroxide Solutions, 30- 70%:	RECOMMENDED (resistance to breakthrough longer than 8 hours): Burubber; natural rubber, neoprene rubber, nitrile rubber, polyethyler polyvinyl chloride, Teflon(TM), Viton(TM), Saranex(TM), 4H(TI Barricade(TM), CPF 3(TM), Responder(TM), Trellchem HPS(TM), Tycher 10000(TM).	
1070.	NOT RECOMMENDED for use (resistance to breakthrough less than 1 hour): Polyvinyl alcohol.	
Escape:	Full face-piece respirator with high-efficiency particulate filter(s); or escape- type SCBA.	
Exposure Guidelines:		
PRODUCT:	Sodium hydroxide	
	ACGIH Ceiling Exposure Limit (TLV-C): 2mg/m³ OSHA PEL-TWA & PEL-C: 2mg/m³ NIOSH IDLH: 10mg/m³	

NIOSH REL-C: 2mg/m³

Issue Date: 01/10/2011

Page 9 of 16

SODIUM SHINTECH HYDROXIDE, 50%

SECTION 9 – PHYSICAL AND CHEMICAL PROPERTIES

Physical State	Liquid above freezing point
Physical State	Liquid above freezing point
Physical Form	Liquid
Color	Colorless
Odor	Odorless
Odor Threshold	No data available
Flash Point – Closed Cup	None
Flammable Limits in Air	Lower: Not applicable
	Upper: Not applicable
Autoignition Temperature	Not applicable
Vapor pressure	1.5 mmHg @ 20°C Literature
Boiling Point (760 mmHg)	145°C (293°F) Literature
Vapor Density (air=1)	Not applicable
Specific Gravity (H20=1)	1.52 Literature
Liquid Density	1.5 g/cm3 @ 20°C Literature
Freezing Point	14°C (57°F) Literature
Melting Point	14°C (57°F) <i>Literature</i>
Solubility in Water (by weight)	Water solution
рН	Strong Basic
Evaporation Rate	No data available
Partition Coefficient n-octanol/water	No data available
Decomposition Temperature	No data available
Molecular Weight	40 g/mol
Volatility	No data available
Kinematic Viscosity	0.35 St @ 25° Calculated

* This data is based on 50% Caustic

SECTION 10 – STABILITY AND REACTIVITY

Stability/Instability:	Stable under recommended storage conditions. See Storage, Section 7.
Conditions to avoid:	Avoid moisture. Product absorbs carbon dioxide from the air. Avoid mixing with water, strong acids, or other incompatible materials. Will react with some metals and create a flammable hydrogen gas.
Incompatible Materials:	Heat is generated when mixed with water. Spattering and boiling can occur. Caustic soda solution reacts readily with various reducing sugars (i.e. fructose, galactose, maltose, dry whey solids) to produce CO. Take precautions including monitoring the tank atmosphere for CO to ensure safety of personnel before vessel entry. Avoid contact with:

SAFETY DATA SHEET SODIUM SHINTECH HYDROXIDE, 50%

Issue Date: 01/10/2011

Reviewed Date: 1/25/2023

Page 10 of 16

acids, glycols and halogenated organics. Organic nitro compounds. Flammable hydrogen may be generated from contact with metals such as: Zinc, Aluminum, Tin, or Brass.

Hazardous Polymerization: Will not occur.

Thermal Decomposition: Does not decompose.

SECTION 11 – TOXICOLOGICAL INFORMATION

Acute Toxicity: Ingestion: Single dose oral LD50 has not been determined.

Skin Absorption: The dermal LD50 has not been determined.

The severity of injury depends on the concentration and duration of exposure to the substance. This material is toxic to the skin, eyes, and mucous membranes. It may cause destructive effects on tissues that it contacts. Inhalation will cause irritation to the respiratory tract and difficulty breathing. Eye contact will cause irritation and may cause severe burns and possible blindness. Contact with skin will cause irritation and may cause corrosion of the tissue.

Repeated Dose Toxicity: Based on available data, repeated exposures are not anticipated to cause additional significant adverse effects.

Genetic Toxicology: For the major component(s): In vitro genetic toxicity studies were negative.

Carcinogenicity: Not a known carcinogen.

SECTION 12 – ECOLOGICAL INFORMATION

Fate and Transport:

Sodium Hydroxide:

Movement No bioconcentration is expected because of the relatively high water solubility. Potential for mobility in soil is very high (Koc between 0 and 50).

SAFETY DATA SHEET SODIUM SODIUM SODIUM HYDROXIDE, 50% Issue Date: 01/10/2011 Reviewed Date: 1/25/2023 Page 11 of 16

Persistence and Degradability	Biodegradation is not applicable.	
Sodium Chloride: Movement	No bioconcentration is expected because of the relatively high water solubility. Potential for mobility in soil is very high (Koc between 0 and 50).	
Persistence and Degradability	Biodegradation is not applicable.	
Ecotoxicity:		
Sodium Hydroxide:	Material is slightly toxic to aquatic organisms on an acute basis (LC50/EC50 between 10 and 100 mg/L in the most sensitive species tested). May increase pH of aquatic systems to >pH 10 which may be toxic to aquatic organisms.	
Fish Acute & Prolonged Toxicity	LC50, rainbow trout (Oncorhynchus mykiss), 96h: 45.5 mg/L	
Aquatic Invertebrate Acute Toxicity		
Sodium Chloride:	Material is practically non-toxic to aquatic organisms on an acute basis (IC50/EC50>100 mg/L in the most sensitive species tested).	
Fish Acute & Prolonged Toxicity LC50, fathead minnow (Pimephales promelas) mg/L		
Aquatic Invertebrate Acute Toxicity	ECCO, wator nou Dupriniu magnu. 1,07 mig/E	

SECTION 13 – DISPOSAL CONSIDERATIONS

Dispose in accordance with all applicable Federal, State/Provincial and local laws and regulations. Waste characterization and compliance with applicable laws and regulations are the responsibility of the waste generator. Do not dispose of waste with normal garbage, or to sewer systems.

SHINTECH LOUISIANA, LLC HAS NO CONTROL OVER THE MANAGEMENT PRACTICES OR MANUFACTURING PROCESSES OF PARTIES HANDLING OR

Issue Date: 01/10/2011

Reviewed Date: 1/25/2023

Page 12 of 16

SODIUM SHINTECH HYDROXIDE, 50%

USING THIS MATERIAL. THE INFORMATION PRESENTED HERE PERTAINS ONLY TO THE PRODUCT AS SHIPPED IN ITS INTENDED CONDITION AS DESCRIBED IN SDS SECTION.

SECTION 14 – TRANSPORT INFORMATION

U.S. DOT 49 CFR 172.101:

	BULK / NON BULK
Shipping Name	SODIUM HYDROXIDE SOLUTION
Hazard Class/Division	8
Identification No.	UN1824
Packing Group	PG II
DOT RQ (lbs)	RQ 1000 lbs. (Sodium Hydroxide)

This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material.

SECTION 15 – REGULATORY INFORMATION

USA Classification

OSHA Hazard Communication	This product is a "Hazardous Chemical" as defined by the
	OSHA Hazard Communication Standard, 29 CFR
Standard:	1910.1200.

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312

Immediate (Acute) Health Hazard	Yes
Delayed (Chronic) Health Hazard	No
Fire Hazard	No
Reactive Hazard	Yes
Sudden Release of Pressure Hazard	No
OSHA Process Safety (29CFR1910.119)	No
CERCLA Section 103 (40CFR302.4)	Yes

Issue Date: 01/10/2011

Reviewed Date: 1/25/2023

Page 13 of 16

SODIUM SHINTECH HYDROXIDE, 50%

Reportable Quantity (RQ) under CERCLA	1,000 lbs. (454kg)
TSCA Inventory Status	Yes

This product does not contain nor is it manufactured with ozone depleting substances

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313:

To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Hazardous Substances List and/or Pennsylvania Environmental Hazardous Substance List:

The following product components are cited in the Pennsylvania Hazardous Substance List and/or the Pennsylvania Environmental Substance List, and are present at levels which require reporting.

Component	CAS #	Amount
Sodium Hydroxide	1310-73-2	<=51.0%

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Hazardous Substances List:

To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986):

This product contains no listed substances known to the State of California to cause cancer, birth defects or other reproductive harm, at levels which would require a warning under the statute.

US Toxic Substances Control Act:

All components of this product are on the TSCA Inventory or are exempt from TSCA Inventory requirements under 40 CFR 710.30.

CEPA – Domestic Substances List (DSL):

Issue Date: 01/10/2011

Reviewed Date: 1/25/2023

Page 14 of 16

All substances contained in this product are listed on the Canadian Domestic Substances List (DSL) or are not required to be listed.

Immediate (Acute) Health Hazard	Yes
Delayed (Chronic) Health Hazard	No
Fire Hazard	No
Reactive Hazard	Yes
Sudden Release of Pressure Hazard	No
OSHA Process Safety (29CFR1910.119)	No
CERCLA Section 103 (40CFR302.4)	Yes
Reportable Quantity (RQ) under CERCLA	1,000 lbs. (454kg)
TSCA Inventory Status	Yes

This product does not contain nor is it manufactured with ozone depleting substances.

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313:

To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

The following product components are cited in the Pennsylvania Hazardous Substance List and/or the Pennsylvania Environmental Substance List, and are present at levels which require reporting.

Component	CAS #	Amount
Sodium Hydroxide	1310-73-2	<=51.0%

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Hazardous Substances List:

To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986):

SODIUM

Issue Date: 01/10/2011

Reviewed Date: 1/25/2023

Page 15 of 16

SHINTECH HYDROXIDE, 50%

This product contains no listed substances known to the State of California to cause cancer, birth defects or other reproductive harm, at levels which would require a warning under the statute.

US Toxic Substances Control Act:

All components of this product are on the TSCA Inventory or are exempt from TSCA Inventory requirements under 40 CFR 710.30

CEPA – Domestic Substances List (DSL):

All substances contained in this product are listed on the Canadian Domestic Substances List (DSL) or are not required to be listed.

SECTION 16 – OTHER INFORMATION

IMPORTANT: The information presented herein, while not guaranteed, was prepared by competent technical personnel and is true and accurate to the best of our knowledge. NO WARRANTY OF MERCHANT ABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTY OR GUARANTY OF ANY OTHER KIND, EXPRESS OR IMPLIED, IS MADE **REGARDING PERFORMANCE. SUITABILITY. STABILITY OR OTHERWISE. The information** included herein is not intended to be all-inclusive as to the appropriate manner and/or conditions of use, handling and/or storage. Factors pertaining to certain conditions of storage, handling, or use of this product may involve other or additional safety or performance considerations. While our technical personnel will be happy to respond to questions regarding safe handling and use procedures, safe handling and use remains the responsibility of the customer. No suggestions for use are intended to, and nothing herein shall be construed as a recommendation to, infringe any existing patents or violate any laws, rules, regulations or ordinances of any governmental entity.

Shintech Louisiana. LLC urges each customer or recipient of this SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as to the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer's/user's responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer's/user's duty to determine the conditions necessary for the safe use of this product.

Issue Date: 01/10/2011

Reviewed Date: 1/25/2023

Page 16 of 16

SODIUM SHINTECH HYDROXIDE, 50%

Revisions:

- January 2011 no information changed in this MSDS. This MSDS was reviewed for accuracy.
- April 2014 The MSDS was updated to follow new Global Harmonization Guidelines. The MSDS are now called Safety Data Sheets (SDS).
- January 2016 Corrections to improve nomenclature and technical data.
- February 2020 No information changed in this SDS. This SDS was reviewed for accuracy.
- July 2022 Section 2 was updated to include the GHS Classification Category 1 Corrosive to Metals and Category 4 – Acute toxicity - inhalation. Section 2 - GHS Hazard Statements have been revised to indicate that this material is harmful if inhaled.
- November 2022 Section 2 GHS Classifications and Hazard Statements updated.
- January 2023 Removal of health hazard pictogram based on updated hazard statements.

SDS Status:	Revision Date:	1/25/2023
	Supersedes:	11/15/2022

Safety Data Sheet

Classified according to the UN-GHS as adopted in the US Hazard Communication Standard (HCS 2012), the Canada Hazardous Products Regulations (WHMIS 2015) and Mexico NOM-018-STPS-2015. Revision Date: 4 June 2024 Date of issue: 4 June 2024 Supersedes Date: 23 June 2023

SECTION 1: IDENTIFICATION

Version: 3.1

Product Identifier 1.1.

Product Name: Aqua Ammonia 19%

CAS No: 1336-21-6

Synonyms: Ammonia water, Aqueous ammonia, Household ammonia, Ammonium hydrate, Ammonium hydroxide STCC: 4935280

1.2. Intended Use of the Product

Uses of the substance/mixture: Fertilizer

Uses advised against: Consumer use

Name, Address, and Telephone of the Responsible Party 1.3.

Company **CF** Industries 2375 Waterview Drive Northbrook, Illinois, USA 847-405-2400 www.cfindustries.com

1.4. **Emergency Telephone Number**

Emergency : 800-424-9300

Number For Chemical Emergency, Spill, Leak, Fire, Exposure, or Accident, call CHEMTREC - Day or Night

SECTION 2: HAZARDS IDENTIFICATION

Classification of the Substance or Mixture 2.1.

Classification (GHS-US)	
Acute Tox. 4 (Oral)	H302
Acute Tox. 4 (Inhalation:gas)	H332
Skin Corr. 1A	H314
Eye Dam. 1	H318
STOT SE 3	H335
Aquatic Acute 1	H400
Aquatic Chronic 3	H412
Full text of H-phrases: see se	ction 16

2.2. Label Elements **GHS-US** Labeling

Hazard Pictograms (GHS-US)

	GHS05 GHS07 GHS09
Signal Word (GHS-US)	: Danger
Hazard Statements (GHS-US)	: H302+H332 - Harmful if swallowed or if inhaled.
	H314 - Causes severe skin burns and eye damage.
	H318 - Causes serious eye damage.
	H335 - May cause respiratory irritation.
	H400 - Very toxic to aquatic life.
	H412 - Harmful to aquatic life with long lasting effects.
Precautionary Statements	: P260 - Do not breathe mist, spray, vapors, gas.
(GHS-US)	P261 - Avoid breathing vapors, mist, or spray.
· · ·	P264 - Wash hands, forearms, and exposed areas thoroughly after handling.
	P270 - Do not eat, drink or smoke when using this product.
	P271 - Use only outdoors or in a well-ventilated area.
	P273 - Avoid release to the environment.
	P280 - Wear eye protection, protective clothing, protective gloves, face protection.
4 4 0004	

Safety Data Sheet

Classified according to the UN-GHS as adopted in the US Hazard Communication Standard (HCS 2012), the Canada Hazardous Products Regulations (WHMIS 2015) and Mexico NOM-018-STPS-2015.

> P301+P330+P331+P310 - IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Immediately call a poison center or doctor. P303+P361+P353+P310 - IF ON SKIN (OR HAIR): Take off immediately all

contaminated clothing. Rinse skin with water/shower. Immediately call a poison center or doctor.

P304+P340+P310 - IF INHALED: Remove person to fresh air and keep at rest in a position comfortable for breathing. Immediately call a poison center or doctor. P305+P351+P338+P310 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a poison center or doctor.

P363 - Wash contaminated clothing before reuse.

P391 - Collect spillage.

P403+P233 - Store in a well-ventilated place. Keep container tightly closed. P405 - Store locked up.

P501 - Dispose of contents/container in accordance with local, regional, provincial, territorial, national, and international regulations.

23 Other Hazards

Ammonium hydroxide is very volatile and may release ammonia as a gas. Ammonia vapor, in concentrations of 16-25% volume by weight in air, is flammable, toxic by inhalation and corrosive. Take all appropriate precautions.

2.4. Unknown Acute Toxicity (GHS-US)

No data available.

SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS

3.1. Substances

Not applicable Mixture

32

Name	Product Identifier	% (w/w)	Classification (GHS-US)
Ammonium hydroxide	(CAS No) 1336-21-6	100	Acute Tox. 4 (Oral), H302
-			Skin Corr. 1B, H314
			Eye Dam. 1, H318
			Aquatic Acute 1, H400
Contains	Product Identifier	% (w/w)	Classification (GHS-US)
Water	(CAS No) 7732-18-5	80.5-81.5	Not classified
Ammonia	(CAS No) 7664-41-7	18.5-19.5	Flam. Gas 2, H221
			Compressed gas, H280
			Acute Tox. 3 (Inhalation:gas), H331
			Skin Corr. 1B, H314
			Eye Dam. 1, H318
			Aquatic Acute 1, H400
			Aquatic Chronic 2, H411

Full text of H-phrases: see section 16

SECTION 4: FIRST AID MEASURES

4.1. **Description of First Aid Measures**

General: Never give anything by mouth to an unconscious person. Seek medical attention immediately. Show label if possible.

Inhalation: When symptoms occur: go into open air and ventilate suspected area. Immediately call a POISON CENTER or doctor/physician.

Skin Contact: Immediately flush skin with plenty of water for at least 60 minutes. Remove/Take off immediately all contaminated clothing. Immediately call a POISON CENTER or doctor/physician. Wash contaminated clothing before reuse.

Eye Contact: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing for at least 60 minutes. Immediately call a POISON CENTER or doctor/physician.

Ingestion: Rinse mouth. Do NOT induce vomiting. Immediately call a POISON CENTER or doctor/physician.

Most Important Symptoms and Effects Both Acute and Delayed 4.2.

General: Harmful if swallowed. Corrosive to eyes, respiratory system and skin. Harmful if inhaled.

Safety Data Sheet

Classified according to the UN-GHS as adopted in the US Hazard Communication Standard (HCS 2012), the Canada Hazardous Products Regulations (WHMIS 2015) and Mexico NOM-018-STPS-2015.

Inhalation: Symptoms may include: Sneezing, coughing, burning sensation of throat with constricting sensation of the larynx and difficulty in breathing. Damage to lungs. Harmful if inhaled.

Skin Contact: Corrosive. Causes burns. Symptoms may include: Redness. Pain. Serious skin burns. Blisters.

Eye Contact: Causes serious eye damage. Symptoms may include: Redness. Pain. Blurred vision. Severe burns. Causes permanent damage to the cornea, iris, or conjunctiva.

Ingestion: Harmful if swallowed. May cause burns or irritation of the linings of the mouth, throat, and gastrointestinal tract.

Chronic Symptoms: None known.

4.3. Indication of Any Immediate Medical Attention and Special Treatment Needed

If exposed or concerned, get medical advice and attention.

SECTION 5: FIRE-FIGHTING MEASURES

5.1. Extinguishing Media

Suitable Extinguishing Media: Water spray, fog.

Unsuitable Extinguishing Media: Do not use a heavy water stream. Use of heavy stream of water may spread fire.

5.2. Special Hazards Arising From the Substance or Mixture

Fire Hazard: Ammonia vapor concentrations in the range of 16-25% by volume in air can be ignited if heated to the autoignition temperature. Oil or other combustible materials increases the fire hazard. Emits toxic fumes under fire conditions. **Explosion Hazard:** Forms explosive compounds with calcium hypochlorite, bleaches, gold, mercury, silver, chlorine and other halogens. Contact with strong oxidizers can result in fires and explosions.

Reactivity: Corrosive to copper, brass, silver, zinc and galvanized steel.

5.3. Advice for Firefighters

Precautionary Measures Fire: Exercise caution when fighting any chemical fire.

Firefighting Instructions: Stop leak if safe to do so. Use water spray or fog for cooling exposed containers. In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion.

Protection During Firefighting: Firefighters must use full bunker gear including NIOSH-approved positive-pressure selfcontained breathing apparatus to protect against potential hazardous combustion and decomposition products.

Hazardous Combustion Products: Nitrogen oxides. Ammonia.

Reference to Other Sections

Refer to section 9 for flammability properties.

SECTION 6: ACCIDENTAL RELEASE MEASURES

6.1. Personal Precautions, Protective Equipment and Emergency Procedures

General Measures: Keep away from open flames, hot surfaces and sources of ignition. No smoking. Avoid all contact with skin, eyes, or clothing. Do NOT breathe vapor, mist, spray.

6.1.1. For Non-Emergency Personnel

Protective Equipment: Use appropriate personal protection equipment (PPE).

Emergency Procedures: Evacuate unnecessary personnel. Eliminate ignition sources.

6.1.2. For Emergency Personnel

Protective Equipment: Equip cleanup crew with proper protection.

Emergency Procedures: Stop leak if safe to do so. Ventilate area.

6.2. Environmental Precautions

Prevent entry to sewers and public waters. Notify authorities if product enters sewers or public waters.

6.3. Methods and Material for Containment and Cleaning Up

For Containment: Stop the flow of material, if this is without risk. Ventilate area. Contain any spills with dikes or absorbents.

Methods for Cleaning Up: Clear up spills immediately and dispose of waste safely. Never neutralize spill with acid. Absorb and/or contain spill with inert material, then place in suitable container. Use only non-sparking tools. After cleaning, flush traces away with water.

6.4. Reference to Other Sections

See heading 8, Exposure Controls and Personal Protection. See Section 13, Disposal Considerations.

Safety Data Sheet

Classified according to the UN-GHS as adopted in the US Hazard Communication Standard (HCS 2012), the Canada Hazardous Products Regulations (WHMIS 2015) and Mexico NOM-018-STPS-2015.

SECTION 7: HANDLING AND STORAGE

7.1. Precautions for Safe Handling

Additional Hazards When Processed: Do NOT enter (storage areas, confined spaces) unless adequately ventilated. Emits ammonia vapors. Flammable gas. Ammonium hydroxide reacts with many heavy metals and their salts forming explosive compounds. It may attack metals forming flammable/explosive gas. The solution in water is a strong base, it reacts violently with acids.

Hygiene Measures: Handle in accordance with good industrial hygiene and safety procedures. Wash hands and other exposed areas with mild soap and water before eating, drinking, or smoking and again when leaving work.

7.2. Conditions for Safe Storage, Including Any Incompatibilities

Technical Measures: Any proposed use of this product in elevated-temperature processes should be thoroughly evaluated to assure that safe operating conditions are established and maintained. Ensure adequate ventilation. Comply with applicable regulations.

Storage Conditions: Store in a dry, cool and well-ventilated place. Detached outside storage is preferable. Keep in fireproof place. Store away from oxidizers, combustible materials, and all ignition sources. Store in corrosive resistant container with a resistant inner liner. Storage containers should have safety relief valves. Store locked up.

Incompatible Materials: Forms explosive compounds with calcium hypochlorite, bleaches, gold, mercury, silver, chlorine and other halogens. Contact with strong oxidizers can result in fires and explosions. Corrosive to copper, brass, silver, zinc and galvanized steel.

Storage Area: Post readily visible warning signs in the storage area listing emergency measures. Water hoses should be readily available to disperse vapors in case of a spill.

7.3. Specific End Use(s)

Fertilizer

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1. Control Parameters

For substances listed in section 3 that are not listed here, there are no established Exposure limits from the manufacturer, supplier, importer, or the appropriate advisory agency including: ACGIH (TLV), NIOSH (REL), OSHA (PEL), Canadian provincial governments, or the Mexican government.

Ammonia (7664-41-7)		
Mexico	OEL TWA (mg/m ³)	18 mg/m ³
Mexico	OEL TWA (ppm)	25 ppm
Mexico	OEL STEL (mg/m ³)	27 mg/m ³
Mexico	OEL STEL (ppm)	35 ppm
USA ACGIH	ACGIH TWA (ppm)	25 ppm
USA ACGIH	ACGIH STEL (ppm)	35 ppm
USA OSHA	OSHA PEL (TWA) (mg/m ³)	35 mg/m³
USA OSHA	OSHA PEL (TWA) (ppm)	50 ppm
USA NIOSH	NIOSH REL (TWA) (mg/m ³)	18 mg/m ³
USA NIOSH	NIOSH REL (TWA) (ppm)	25 ppm
USA NIOSH	NIOSH REL (STEL) (mg/m ³)	27 mg/m ³
USA NIOSH	NIOSH REL (STEL) (ppm)	35 ppm
USA IDLH	US IDLH (ppm)	300 ppm
Alberta	OEL STEL (mg/m ³)	24 mg/m ³
Alberta	OEL STEL (ppm)	35 ppm
Alberta	OEL TWA (mg/m ³)	17 mg/m³
Alberta	OEL TWA (ppm)	25 ppm
British Columbia	OEL STEL (ppm)	35 ppm
British Columbia	OEL TWA (ppm)	25 ppm
Manitoba	OEL STEL (ppm)	35 ppm
Manitoba	OEL TWA (ppm)	25 ppm
New Brunswick	OEL STEL (mg/m ³)	24 mg/m ³
New Brunswick	OEL STEL (ppm)	35 ppm
New Brunswick	OEL TWA (mg/m ³)	17 mg/m ³
New Brunswick	OEL TWA (ppm)	25 ppm
Newfoundland &	OEL STEL (ppm)	35 ppm
1 June 2024	EN (English LIS)	1/12

Safety Data Sheet

Classified according to the UN-GHS as adopted in the US Hazard Communication Standard (HCS 2012), the Canada Hazardous Products Regulations (WHMIS 2015) and Mexico NOM-018-STPS-2015.

Labrador		
Newfoundland &	OEL TWA (ppm)	25 ppm
Labrador		
Nova Scotia	OEL STEL (ppm)	35 ppm
Nova Scotia	OEL TWA (ppm)	25 ppm
Nunavut	OEL STEL (mg/m ³)	24 mg/m ³
Nunavut	OEL STEL (ppm)	35 ppm
Nunavut	OEL TWA (mg/m ³)	17 mg/m ³
Nunavut	OEL TWA (ppm)	25 ppm
Northwest Territories	OEL STEL (mg/m ³)	24 mg/m ³
Northwest Territories	OEL STEL (ppm)	35 ppm
Northwest Territories	OEL TWA (mg/m ³)	17 mg/m ³
Northwest Territories	OEL TWA (ppm)	25 ppm
Ontario	OEL STEL (ppm)	35 ppm
Ontario	OEL TWA (ppm)	25 ppm
Prince Edward Island	OEL STEL (ppm)	35 ppm
Prince Edward Island	OEL TWA (ppm)	25 ppm
Québec	VECD (mg/m ³)	24 mg/m ³
Québec	VECD (ppm)	35 ppm
Québec	VEMP (mg/m ³)	17 mg/m ³
Québec	VEMP (ppm)	25 ppm
Saskatchewan	OEL STEL (ppm)	35 ppm
Saskatchewan	OEL TWA (ppm)	25 ppm
Yukon	OEL STEL (mg/m ³)	30 mg/m ³
Yukon	OEL STEL (ppm)	40 ppm
Yukon	OEL TWA (mg/m ³)	18 mg/m ³
Yukon	OEL TWA (ppm)	25 ppm

8.2. Exposure Controls

Appropriate Engineering Controls: Emergency eye wash fountains and safety showers should be available in the immediate vicinity of any potential exposure. Gas detectors should be used when toxic gases may be released. Use explosion-proof equipment.

Personal Protective Equipment: Gloves. Protective goggles. Insufficient ventilation: wear respiratory protection. Protective clothing. Face shield.

Materials for Protective Clothing: Chemically resistant materials and fabrics.

Hand Protection: Wear chemically resistant protective gloves.

Eye Protection: Chemical safety goggles and face shield.

Skin and Body Protection: Wear suitable protective clothing.

Respiratory Protection: If exposure limits are exceeded or irritation is experienced, approved respiratory protection should be worn.

Other Information: When using, do not eat, drink, or smoke.

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

9.1. Information on Basic Physical and Chemical Properties

Physical State	Liquid
Appearance	Colorless
Odor	Pungent
Odor Threshold	1 - 50 ppm
рН	10.6 - 11.6 (0.02-1.7% aqueous ammonia solution)
Evaporation Rate	Not available
Melting Point	- 77 °C (-106 °F) (< 44% NH₃)

Safety Data Sheet

Classified according to the UN-GHS as adopted in the US Hazard Communication Standard (HCS 2012), the Canada Hazardous Products Regulations (WHMIS 2015) and Mexico NOM-018-STPS-2015.

Freezing Point	:	-38 °C (-36 °F)
Boiling Point	:	37.4 °C (99.3°F) (25% NH₃)
Flash Point	:	Not available
Auto-ignition Temperature	:	651 °C (1,204°F) (ammonia vapor)
Decomposition Temperature	:	Not available
Flammability (solid, gas)	:	Not available
Lower Flammable Limit	:	16 % (ammonia vapor)
Upper Flammable Limit	:	25 % (ammonia vapor)
Vapor Pressure	:	49642.2 Pa at 68°F (20°C)
Relative Vapor Density at 20 °C	:	0.6 (for ammonia vapor over aqua ammonia at 0°C and 760 mm Hg)
Relative Density	:	Not available
Specific Gravity	:	0.90 at 60 °F (19% NH ₃)
Solubility	:	Soluble in water.
Partition Coefficient: N-Octanol/Water	:	-1.14 at 25° C
Viscosity	:	Not available
Explosion Data – Sensitivity to Mechanical	:	Not expected to present an explosion hazard due to mechanical
Impact		impact.
Explosion Data – Sensitivity to Static	:	Not expected to present an explosion hazard due to static discharge.
Discharge		

SECTION 10: STABILITY AND REACTIVITY

10.1. Reactivity

Forms explosive compounds with calcium hypochlorite, bleaches, gold, mercury, silver, chlorine and other halogens. Contact with strong oxidizers can result in fires and explosions. Corrosive to copper, brass, silver, zinc and galvanized steel.

10.2. Chemical Stability

Stable under recommended handling and storage conditions (see section 7).

10.3. Possibility of Hazardous Reactions

Hazardous polymerization will not occur.

10.4. Conditions to Avoid

Direct sunlight. Extremely high or low temperatures. Heat. Sources of ignition.

10.5. Incompatible Materials

Strong acids. Strong bases. Strong oxidizers. Hypochlorites.

10.6. Hazardous Decomposition Products

Thermal decomposition generates: Carbon oxides (CO, CO2). Nitrogen oxides. Emits ammonia vapors.

SECTION 11: TOXICOLOGICAL INFORMATION

11.1. Information on Toxicological Effects - Product

Acute Toxicity: Oral: Harmful if swallowed. Inhalation:gas: Harmful if inhaled.

LD50 and LC50 Data:

ATE US (oral)	350.00 mg/kg body weight
ATE US (gases)	10,256.41 ppmV/4h

Skin Corrosion/Irritation: Causes severe skin burns and eye damage.

pH: 10.6 - 11.6 (0.02-1.7% aqueous ammonia solution)

Serious Eye Damage/Irritation: Causes serious eye damage.

pH: 10.6 - 11.6 (0.02-1.7% aqueous ammonia solution)

Respiratory or Skin Sensitization: Not classified

Germ Cell Mutagenicity: Not classified

Teratogenicity: Not available

Carcinogenicity: Not classified

Specific Target Organ Toxicity (Repeated Exposure): Not classified

Reproductive Toxicity: Not classified

Specific Target Organ Toxicity (Single Exposure): May cause respiratory irritation.

Safety Data Sheet

Classified according to the UN-GHS as adopted in the US Hazard Communication Standard (HCS 2012), the Canada Hazardous Products Regulations (WHMIS 2015) and Mexico NOM-018-STPS-2015.

Aspiration Hazard: Not classified

Symptoms/Injuries After Inhalation: Symptoms may include: Sneezing, coughing, burning sensation of throat with constricting sensation of the larynx and difficulty in breathing. Damage to lungs. Harmful if inhaled.

Symptoms/Injuries After Skin Contact: Corrosive. Causes burns. Symptoms may include: Redness. Pain. Serious skin burns. Blisters.

Symptoms/Injuries After Eye Contact: Causes serious eye damage. Symptoms may include: Redness. Pain. Blurred vision. Severe burns. Causes permanent damage to the cornea, iris, or conjunctiva.

Symptoms/Injuries After Ingestion: Harmful if swallowed. May cause burns or irritation of the linings of the mouth, throat, and gastrointestinal tract.

Chronic Symptoms: None known.

11.2. Information on Toxicological Effects - Ingredient(s)

LD50 and LC50 Data:

Ammonia (7664-41-7)		
LC50 Inhalation Rat	5.1 mg/l (Exposure time: 1 h)	
LC50 Inhalation Rat	2000 ppm/4h (Exposure time: 4 h)	
Water (7732-18-5)		
LD50 Oral Rat	> 90000 mg/kg	
Ammonium hydroxide (1336-21-6)		
LD50 Oral Rat	350 mg/kg	
SECTION 12: ECOLOGICAL INFORMATION		

12.1. Toxicity

Ecology - General: Toxic to aquatic life. Harmful to aquatic life with long lasting effects.

Ammonia (7664-41-7)	
LC50 Fish 1	0.44 mg/l (Exposure time: 96 h - Species: Cyprinus carpio)
EC50 Daphnia 1	25.4 mg/l (Exposure time: 48 h - Species: Daphnia magna)
LC 50 Fish 2	0.26 - 4.6 mg/l (Exposure time: 96 h - Species: Lepomis macrochirus)
Ammonium hydroxide (1	336-21-6)
LC50 Fish 1	8.2 mg/l (Exposure time: 96 h - Species: Pimephales promelas)
EC50 Daphnia 1	0.66 mg/l (Exposure time: 48 h - Species: water flea)
EC50 Daphnia 2	0.66 mg/l (Exposure time: 48 h - Species: Daphnia pulex)

12.2. Persistence and Degradability

Ammonium hydroxide (1336-21-6)

Persistence and Degradability Biodegradation of ammonia occurs in water under aerobic conditions.

12.3. Bioaccumulative Potential

Log Pow -1.14 Bioaccumulative Potential Not established. Ammonia (7664-41-7) -1.14 (at 25 °C)	Ammonium hydroxide (1336-21-6)	
Ammonia (7664-41-7)	Log Pow	-1.14
	Bioaccumulative Potential	Not established.
Log Pow -1 14 (at 25 °C)	Ammonia (7664-41-7)	
	Log Pow	-1.14 (at 25 °C)

12.4. Mobility in Soil

Not available

12.5. Other Adverse Effects

Other Information: Avoid release to the environment.

SECTION 13: DISPOSAL CONSIDERATIONS

13.1. Waste treatment methods

Sewage Disposal Recommendations: Do not empty into drains; dispose of this material and its container in a safe way. **Waste Disposal Recommendations:** Dispose of waste material in accordance with all local, regional, national, provincial, territorial and international regulations.

Additional Information: Prevent runoff from entering drains, sewers or waterways.

Ecology – Waste Materials: This material is hazardous to the aquatic environment. Keep out of sewers and waterways.

Safety Data Sheet Classified according to the UN-GHS as adopted in the US Hazard Communication Standard (HCS 2012), the Canada Hazardous Products Regulations (WHMIS 2015) and Mexico NOM-018-STPS-2015.

(WHMIS 2015) and Mexico NOM-01	8-STPS-2015.
SECTION 14: TRANSP	ORT INFORMATION
14.1. In Accordance w	ith DOT
Proper Shipping Name	:AMMONIA SOLUTION (with more than 10% but not more than 35% ammonia)
Hazard Class	: 8
Identification Number	: UN2672
Label Codes	: 8
Packing Group	: III
ERG Number	: 154
CERCLA RQ	: Ammonium Hydroxide = 1,000 lbs
Additional Information	: Marine Pollutant
14.2. In Accordance wit	h IMDG
Proper Shipping Name	
Hazard Class	: 8
Identification Number	: UN2672
Packing Group	: III
Label Codes	: 8 + MP(P)
EmS-No. (Fire)	: F-A
EmS-No. (Spillage)	: S-B
Additional Information	: Marine Pollutant, Classified as HME per MARPOL Annex V
14.3. In Accordance wit	
Proper Shipping Name	:AMMONIA SOLUTION (with more than 10% but not more than 35% ammonia)
Hazard Class	: 8
Identification Number	: UN2672
Label Codes	: 8
Packing Group	
ERG Code (IATA)	: 8L
14.4. In Accordance wit	h TDG
Proper Shipping Name	
Hazard Class	: 8
Identification Number	: UN2672
Label Codes	: 8
Packing Group	: III •
Additional Information	: Marine Pollutant
14.5. Classified in Acco	rdance with MX-SCT
Proper Shipping Name	: AMMONIA SOLUTION (with more than 10% but not more than 35% ammonia)
Hazard Class	: 8
Identification Number	: UN2672
Label Codes	
Additional Information	: Marine Pollutant
SECTION 15: REGULA	
15.1. US Federal Regu	
Ammonium hydroxide (1	

Ammonium hydroxide (1336-21-6)						
SARA Section 311/312 Hazard Classes	Immediate (acute) health hazard					
Ammonia (7664-41-7)						
Listed on the United States TSCA (Toxic Substances Co	ntrol Act) inventory					
Listed on the United States SARA Section 302						
Listed on United States SARA Section 313						
SARA Section 302 Threshold Planning Quantity	500					
(TPQ)						
SARA Section 311/312 Hazard Classes Fire hazard						
	Immediate (acute) health hazard					
	Sudden release of pressure hazard					

Safety Data Sheet Classified according to the UN-GHS as adopted in the US Hazard Communication Standard (HCS 2012), the Canada Hazardous Products Regulations (WHMIS 2015) and Mexico NOM-018-STPS-2015.

SARA Section 313 - Emission Reporting	 1.0 % (includes anhydrous Ammonia and aqueous Ammonia from water dissociable Ammonium salts and other sources, 10% of total aqueous Ammonia is reportable under this listing
Water (7732-18-5)	
Listed on the United States TSCA (Toxic Substance	es Control Act) inventory
Ammonium hydroxide (1336-21-6)	
Listed on the United States TSCA (Toxic Substance	es Control Act) inventory
5.2. US State Regulations	
Ammonia (7664-41-7)	
U.S California - SCAQMD - Toxic Air Contaminar	nts - Non-Cancer Acute
U.S California - SCAQMD - Toxic Air Contaminar	
U.S California - Toxic Air Contaminant List (AB 1)	
U.S Connecticut - Hazardous Air Pollutants - HL	
U.S Connecticut - Hazardous Air Pollutants - HL\	
U.S Connecticut - Water Quality Standards - Acu	
U.S Connecticut - Water Quality Standards - Acu	
U.S Connecticut - Water Quality Standards - Chro	
U.S Connecticut - Water Quality Standards - Chro	
U.S Delaware - Accidental Release Prevention R	
U.S Delaware - Accidental Release Prevention R	0
U.S Delaware - Accidental Release Prevention R	
U.S Delaware - Pollutant Discharge Requirement	is - Reportable Quantities
U.S Florida - Essential Chemicals List	ta Assantable Ambient Consentrations
U.S Idaho - Non-Carcinogenic Toxic Air Pollutant	
U.S Idaho - Non-Carcinogenic Toxic Air Pollutant	
U.S Idaho - Occupational Exposure Limits - TWA U.S Louisiana - Reportable Quantity List for Pollu	
U.S Maine - Air Pollutants - Criteria Pollutants	Italits
U.S Massachusetts - Allowable Ambient Limits (A	(s 10
U.S Massachusetts - Allowable Threshold Conce	
	ist - Groundwater Reportable Concentration - Reporting Category 1
	ist - Groundwater Reportable Concentration - Reporting Category 2
U.S Massachusetts - Oil & Hazardous Material Li	
	ist - Soil Reportable Concentration - Reporting Category 1
	ist - Soil Reportable Concentration - Reporting Category 2
RTK - U.S Massachusetts - Right To Know List	
U.S Massachusetts - Threshold Effects Exposure	e Limits (TELs)
U.S Massachusetts - Toxics Use Reduction Act	
U.S Michigan - Occupational Exposure Limits - S	TELs
U.S Michigan - Polluting Materials List	
U.S Michigan - Process Safety Management Higl	nly Hazardous Chemicals
U.S Minnesota - Chemicals of High Concern	
U.S Minnesota - Hazardous Substance List	
U.S Minnesota - Permissible Exposure Limits - S	
U.S New Hampshire - Regulated Toxic Air Polluta	
U.S New Hampshire - Regulated Toxic Air Polluta	
U.S New Jersey - Discharge Prevention - List of I	
U.S New Jersey - Environmental Hazardous Sub	
RTK - U.S New Jersey - Right to Know Hazardou U.S New Jersey - Special Health Hazards Substa	
U.S New Jersey - Special Health Hazards Substa	
U.S New Jersey - Water Quality - Ground Water	
U.S New Jersey - Water Quality - Practical Quan	
U.S New Mexico - Precursor Chemicals	
U.S New York - Reporting of Releases Part 597 -	List of Hazardous Substances

Safety Data Sheet Classified according to the UN-GHS as adopted in the US Hazard Communication Standard (HCS 2012), the Canada Hazardous Products Regulations (WHMIS 2015) and Mexico NOM-018-STPS-2015.

NHMIS 2015) and Mexico NOM-018-STPS-2015.
U.S North Carolina - Control of Toxic Air Pollutants
U.S North Dakota - Air Pollutants - Guideline Concentrations - 1-Hour
U.S North Dakota - Air Pollutants - Guideline Concentrations - 8-Hour
U.S Ohio - Accidental Release Prevention - Threshold Quantities
U.S Ohio - Extremely Hazardous Substances - Threshold Quantities
U.S Oregon - Permissible Exposure Limits - TWAs
U.S Oregon - Precursor Chemicals
RTK - U.S Pennsylvania - RTK (Right to Know) - Environmental Hazard List
RTK - U.S Pennsylvania - RTK (Right to Know) - Environmental Hazard Eist
U.S Rhode Island - Air Toxics - Acceptable Ambient Levels - 1-Hour
U.S Rhode Island - Air Toxics - Acceptable Ambient Levels - 24-Hour
U.S Rhode Island - Air Toxics - Acceptable Ambient Levels - Annual
U.S Rhode Island - Water Quality Standards - Acute Freshwater Aquatic Life Criteria
U.S Rhode Island - Water Quality Standards - Acute Saltwater Aquatic Life Criteria
U.S Rhode Island - Water Quality Standards - Chronic Freshwater Aquatic Life Criteria
U.S Rhode Island - Water Quality Standards - Chronic Saltwater Aquatic Life Criteria
U.S Tennessee - Occupational Exposure Limits - STELs
U.S Texas - Effects Screening Levels - Long Term
U.S Texas - Effects Screening Levels - Short Term
U.S Vermont - Permissible Exposure Limits - STELs
U.S Virginia - Water Quality Standards - Acute Freshwater Aquatic Life
U.S Virginia - Water Quality Standards - Acute Saltwater Aquatic Life
U.S Virginia - Water Quality Standards - Chronic Freshwater Aquatic Life
U.S Virginia - Water Quality Standards - Chronic Saltwater Aquatic Life
U.S Virginia - Water Quality Standards - Public Water Supply Effluent Limits
U.S Virginia - Water Quality Standards - Surface Waters Not Used for the Public Water Supply Effluent Limits
U.S Washington - Permissible Exposure Limits - STELs
U.S Washington - Permissible Exposure Limits - TWAs
U.S Wisconsin - Hazardous Air Contaminants - All Sources - Emissions From Stack Heights 25 Feet to Less Than 40
Feet
U.S Wisconsin - Hazardous Air Contaminants - All Sources - Emissions From Stack Heights 40 Feet to Less Than 75
Feet
U.S Wisconsin - Hazardous Air Contaminants - All Sources - Emissions From Stack Heights 75 Feet or Greater
U.S Wisconsin - Hazardous Air Contaminants - All Sources - Emissions From Stack Heights Less Than 25 Feet
U.S Wyoming - Process Safety Management - Highly Hazardous Chemicals
U.S Alaska - Water Quality Standards - Acute Aquatic Life Criteria for Fresh Water
U.S Alaska - Water Quality Standards - Chronic Aquatic Life Criteria for Fresh Water
U.S Alaska - Water Quality Standards - Acute Aquatic Life Criteria for Marine Water
U.S Alaska - Water Quality Standards - Chronic Aquatic Life Criteria for Marine Water
U.S Alaska - Ambient Air Quality Standards
Ammonium hydroxide (1336-21-6)
U.S Delaware - Pollutant Discharge Requirements - Reportable Quantities
U.S Louisiana - Reportable Quantity List for Pollutants
U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 1
U.S Massachusetts - Oil & Hazardous Material List - Groundwater Reportable Concentration - Reporting Category 2
U.S Massachusetts - Oil & Hazardous Material List - Reportable Quantity
U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 1
U.S Massachusetts - Oil & Hazardous Material List - Soil Reportable Concentration - Reporting Category 2
RTK - U.S Massachusetts - Right To Know List
U.S Massachusetts - Toxics Use Reduction Act
U.S Michigan - Polluting Materials List
U.S New Jersey - Discharge Prevention - List of Hazardous Substances
RTK - U.S New Jersey - Right to Know Hazardous Substance List
U.S New Jersey - Special Health Hazards Substances List
U.S New Jersey - TCPA - Extraordinarily Hazardous Substances (EHS)
U.S New York - Reporting of Releases Part 597 - List of Hazardous Substances

Safety Data Sheet

Classified according to the UN-GHS as adopted in the US Hazard Communication Standard (HCS 2012), the Canada Hazardous Products Regulations (WHMIS 2015) and Mexico NOM-018-STPS-2015.

- RTK U.S. Pennsylvania RTK (Right to Know) List
- U.S. Texas Effects Screening Levels Long Term
- U.S. Texas Effects Screening Levels Short Term

15.3. Canadian Regulations

Ammonium hydroxide (1336-21-6)
WHMIS Classification	Class E - Corrosive Material Class D Division 1 Subdivision A - Very toxic material causing immediate and serious toxic effects
Ammonia (7664-41-7)	
Listed on the Canadian D	SL (Domestic Substances List)
Listed on the Canadian IE	DL (Ingredient Disclosure List)
IDL Concentration 1 %	
WHMIS Classification	Class A - Compressed Gas
	Class B Division 1 - Flammable Gas
	Class D Division 1 Subdivision A - Very toxic material causing immediate and serious toxic effects
	Class E - Corrosive Material
Water (7732-18-5)	
Listed on the Canadian D	SL (Domestic Substances List)
WHMIS Classification	Uncontrolled product according to WHMIS classification criteria
Ammonium hydroxide (1336-21-6)
Listed on the Canadian D	SL (Domestic Substances List)
Listed on the Canadian IE	DL (Ingredient Disclosure List)
IDL Concentration 1 %	
WHMIS Classification	Class E - Corrosive Material
	Class D Division 1 Subdivision B - Toxic material causing immediate and serious toxic effects
his product has been clas	ssified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and

the SDS contains all of the information required by CPR.

SECTION 16: OTHER INFORMATION, INCLUDING DATE OF PREPARATION OR LAST REVISION Revision Date : 4 June 2024

Revision Comments

This version contains updates/revisions to the following sections:
 Updated company address

GHS Full Text Phrases:

Acute Tox. 3 (Inhalation:gas)	Acute toxicity (inhalation:gas) Category 3
Acute Tox. 4 (Inhalation:gas)	Acute toxicity (inhalation:gas) Category 4
Acute Tox. 4 (Oral)	Acute toxicity (oral) Category 4
Aquatic Acute 1	Hazardous to the aquatic environment - Acute Hazard Category 1
Aquatic Chronic 2	Hazardous to the aquatic environment - Chronic Hazard Category 2
Aquatic Chronic 3	Hazardous to the aquatic environment - Chronic Hazard Category 3
Compressed gas	Gases under pressure Compressed gas

Safety Data Sheet Classified according to the UN-GHS as adopted in the US Hazard Communication Standard (HCS 2012), the Canada Hazardous Products Regulations (WHMIS 2015) and Mexico NOM-018-STPS-2015.

Eye Dam. 1	Serious eye damage/eye irritation Category 1
Flam. Gas 2	Flammable gases Category 2
Skin Corr. 1A	Skin corrosion/irritation Category 1A
Skin Corr. 1B	Skin corrosion/irritation Category 1B
STOT SE 3	Specific target organ toxicity (single exposure) Category 3
H221	Flammable gas
H280	Contains gas under pressure; may explode if heated
H302	Harmful if swallowed
H314	Causes severe skin burns and eye damage
H318	Causes serious eye damage
H331	Toxic if inhaled
H332	Harmful if inhaled
H335	May cause respiratory irritation
H400	Very toxic to aquatic life
H411	Toxic to aquatic life with long lasting effects
H412	Harmful to aquatic life with long lasting effects

Health Hazard	: 3 - Short exposure could cause serious temporary or residual injury even though prompt medical attention was given.
Fire Hazard	 1 - Must be moderately heated or exposed to relatively high temperature before ignition can occur.
Reactivity	: 0 - Normally stable, even under fire exposure conditions, and are not reactive with water.
HMIS III Rating	
Health	: 3 Serious Hazard - Major injury likely unless prompt action is taken and medical treatment is given
Flammability Physical	: 1 Slight Hazard : 0 Minimal Hazard

Party Responsible for the Preparation of This Document

CF Industries, Corporate EHS Department, 847-405-2400

Safety Data Sheet

Classified according to the UN-GHS as adopted in the US Hazard Communication Standard (HCS 2012), the Canada Hazardous Products Regulations (WHMIS 2015) and Mexico NOM-018-STPS-2015.

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product.

CF believes the information contained herein is accurate; however, CF makes no guarantees or warranties with respect to such accuracy and assumes no liability in connection with the use of the information contained herein by any party. The provision of the information contained herein by CF is not intended to be and should not be construed as legal advice or as ensuring compliance by other parties. Judgments as to the suitability of the information contained herein for the party's own use or purposes are solely the responsibility of that party. Any party handling, transferring, transporting, storing, applying or otherwise using this product should review thoroughly all applicable laws, rules, regulations, standards and good engineering practices. Such thorough review should occur before the party handles, transfers, transports, stores, applies or otherwise uses this product.

North America GHS US 2012 & WHMIS 2

ATTACHMENT I

EMISSION UNITS TABLE

(includes all emission units and air pollution control devices that will be part of this permit application review, regardless of permitting status)												
Emission Unit ID¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴						
1S-117S	1E-117E	Engine 1 through Engine 117	2026	28,194 HP	New	1C-117C						
118S-157S	118E-157E	ULSD Tank TK1-TK40	2026	170,000 gal	New	NA						
De minimis	De minimis	Hydrous Ammonia Tanks 1-39	2026	4,600 gal	New	NA						
De minimis	De minimis	Caustic Soda Tanks 1-39	2026	4,600 gal	New	NA						
De minimis	De minimis	Sulfuric Acid Tanks 1-39	2026	4,600 gal	New	NA						
De minimis	De minimis	Sodium Chlorite Tanks 1-39	2026	4,600 gal	New	NA						
De minimis	De minimis	Sodium Hydrosulfide Tanks 1-39	2026	4,600 gal	New	NA						
	<u> </u>											

⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C, or other appropriate designation.

ATTACHMENT J

EMISSION POINTS DATA SUMMARY SHEET

Attachment J EMISSION POINTS DATA SUMMARY SHEET

Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid,	Est. Method Used ⁶	Emission Concentration (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	(Speciate VOCs & HAPS)	lb/hr	ton/yr	lb/hr	ton/yr	Liquid or Gas/ Vapor)		
					Worst ca	se yearly	y emissi	ons all engines (w	ith 5 startu	ps and shutdo	wns)				
1E-117E	Vertical	1S to 117S	Engines 1 to 117	1C to 117C	Control System	NA	NA	NOx PM/PM10/PM2.5 CO VOC SO2 Total HAPS	NA NA NA NA NA	13,494 248.69 11,174 11,517 495 85.77	NA NA NA NA NA	194.30 186.53 205.62 116.59 9.93 0.86	Gas Solid Gas Gas Gas Gas	Manufacturer	NA NA NA NA NA
			Normal Op	eration	s Single E	Engine (S	See emis	ssion discussion in	Attachmen	nt L for differe	ent opera	ting scena	rios)		
1E to 117E	Vertical	1S to 117S	Engine 1 to 117	1C to 117C	Control System	NA	NA	NO _X PM/PM10/PM2.5 CO VOC SO2 Total HAPS	13.89 0.45 22.36 22.63 0.74 1.31	60.83 1.99 97.92 99.12 3.25 0.75	0.14 0.34 0.34 0.23 0.01 0.54	0.61 1.49 1.47 0.99 0.03 0.01	Gas Solid Gas Gas Gas Gas	Manufacturer	NA NA NA NA NA
ne EMISSION gitive and mus jual to all vent tivities. ¹ Please	POINTS DA at be account ed emission add descrip	ATA SUMM, ted for on th s, all fugitive tors such as	ARY SHEET le appropriate e emissions, j s upward verti	provides EMISSI plus all o cal stack	a summati ONS UNIT ther emissio	on of em DATA SH ons (e.g. u vertical s	issions b EET and uncapture tack, hor	other emissions scer y emission unit. No on the EMISSION Po ed emissions). Pleas izontal stack, relief ve m venting rate with u	te that uncapt DINTS DATA e complete th nt, rain cap, e	SUMMARY SHE e FUGITIVE EM tc.	ET. Pleas ISSIONS [e note that to DATA SUMN	otal emission IARY SHEET	s from the source for fugitive emis	e are sion

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂O, N₂O, N₂O, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J EMISSION POINTS DATA SUMMARY SHEET

							Tab	le 1: Emission	s Data											
Emission Point ID No. (Must match Emission Units Table & Plot Plan)	Emission Point Type ¹	Point	Point	Point	Point	Point	Emission Unit Vented Through This Point (Must match Emission Units Table & Plot Plan)		Air Pollution Control Device (Must match Emission Units Table & Plot Plan)		Vent Time for Emission Unit (chemical processes only)		All Regulated Pollutants - Chemical Name/CAS ³ (Speciate VOCs	Maximum Potential Uncontrolled Emissions ⁴		Maximum Potential Controlled Emissions ⁵		Emission Form or Phase (At exit conditions, Solid, Liquid or Gas/ Vapor)	Est. Method Used ⁶	Emission Concentration ⁷ (ppmv or mg/m ⁴)
		ID No.	Source	ID No.	Device Type	Short Term ²	Max (hr/yr)	& HAPS)	lb/hr	ton/yr	lb/hr	ton/yr								
118E to 157E	Vertical	118S to 157S	ULSD Tanks 1-40	None	None	NA	NA	VOC (per tank)	0.18	0.02	0.18	0.02	Gas	Tanks 4.09.d						

The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured process emission unit emissions are not typically considered to be fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive emission activities.

¹ Please add descriptors such as upward vertical stack, downward vertical stack, horizontal stack, relief vent, rain cap, etc.

² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/hr). Indicate as many rates as needed to clarify frequency of venting (e.g., 5 min/day, 2 days/wk).

³ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. **LIST** Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, all applicable Greenhouse Gases (including CO₂ and methane), etc. **DO NOT LIST** H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Give maximum potential emission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁵ Give maximum potential emission rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁶ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

⁷ Provide for all pollutant emissions. Typically, the units of parts per million by volume (ppmv) are used. If the emission is a mineral acid (sulfuric, nitric, hydrochloric or phosphoric) use units of milligram per dry cubic meter (mg/m³) at standard conditions (68 °F and 29.92 inches Hg) (see 45CSR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10).

Attachment J **EMISSION POINTS DATA SUMMARY SHEET**

			Table 2: Re	lease Parameter	Data			
Emission	Inner		Exit Gas	Emission Point Ele	evation (ft)	UTM Coordinates (km)		
Point ID No. (Must match Emission Units Table)	Diameter (ft.)	Temp. (ºF)	Volumetric Flow ¹ (acfm) <i>at operating conditions</i>	Velocity (fps)	Ground Level (Height above mean sea level)	Stack Height ² (Release height of emissions above ground level)	Northing	Easting
1E-117E	4.6	111	32,287	32.37	~1,718	98	4,161.72229	415.70631
118E-157E	NA	Ambient	NA	NA	~1,718	40	4,161.72229	415.70631

¹ Give at operating conditions. Include inerts. ² Release height of emissions above ground level.

ATTACHMENT K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions, which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	🛛 Yes 🗌 No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	□ Yes □ No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes □ No
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	Yes INO Leak Source Count is in Attachment N.
	☑ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	ou answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions nmary."

FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants ⁻ Chemical Name/CAS ¹		ntial Uncontrolled sions ²	Maximum Poter Emiss	Est. Method	
	Chemical Name/CAS	lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	PM/PM10/PM2.5	11.50/2.30/0.60	28.64/5.73/1.50	11.50/2.30/0.60	28.64/5.73/1.50	AP-42
Unpaved Haul Roads						
Storage Pile Emissions						
Loading/Unloading Operations						
Wastewater Treatment Evaporation & Operations						
Equipment Leaks (See fittings count in Attachment N)	VOC Hexane (C6+)	Does Not Apply	0.3120 0.0053	Does Not Apply	0.3120 0.0053	EE
General Clean-up VOC Emissions						
Other						

¹ List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

 ² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
 ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).
 ³ Bive rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

ATTACHMENT L

EMISSION UNIT DATA SHEET(S)

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

REDACTED Information Claimed Confidential by TransGas Development Systems, LLC March 24, 2025

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): 1S-117S

1. Name or type and model of proposed affected source:
28,194 Horsepower Compression Ignition Engines. See attached engine details and emissions.
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
1. Name(s) and maximum amount of proposed process material(s) charged per hour:
 Dual Fuel Modes 1. Natural Gas at 98% with Diesel at 2%. 2. Diesel at 100%.
Engine can be retrofit to burn other fuels.
4. Name(s) and maximum amount of proposed material(s) produced per hour:
25 MWe Generators
5. Give chemical reactions, if applicable, that will be involved in the generation of air Pollutants:
Not Applicable

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion Data (if applied	cable):									
(a) Type and amount in a	ppropriate units of	fuel(s) to be bu	rned:							
See fuel use during different opera	See fuel use during different operating modes in the attached document and in Attachment N.									
(b) Chemical analysis of sulfur and ash:	proposed fuel(s),	excluding coa	al, including	maximum percent						
Sului and ash.										
Natural gas will be pipeline qualit										
Diesel fuel will be ultra-low sulfu	r diesel.									
(c) Theoretical combustio	n air raquiramant (I) • • • •							
	n all requirement (1). NA							
@		°F and		psia.						
(d) Percent excess air:	NA									
(e) Type and BTU/hr of b	urners and all other	firing equipme	ent planned to	be used:						
		5 1 1								
Compression Ignition Engines										
(f) If coal is proposed as	a source of fuel	dentify supplie	r and seams	and give sizing of						
the coal as it will be fir	ed:									
NA										
	oolan haatimuut	105 44 05	·							
(g) Proposed maximum d	esign neat input:	135.44 (Max	imum)	× 10 ⁶ BTU/hr.						
7. Projected operating scheo	lule:		I							
Hours/Day 24	Days/Week	7	Weeks/Year	52						

8. See	Projected amount of pollut devices were used: the attached document and Attac		nitted fror	m this affected source	e if no control
a.	NOx		lb/hr		Ton/yr
b.	SO ₂		lb/hr		Ton/yr
C.	со		lb/hr		Ton/yr
d.	PM ₁₀	See Attached and Attachment N	lb/hr	See Attached and Attachment N	Ton/yr
e.	Hydrocarbons		lb/hr		Ton/yr
f.	VOCs (Ethane & Methane)		lb/hr		Ton/yr
g.	Pb		lb/hr		Ton/yr
h.	Specify other(s)		I		
	Total HAPS	See Attached and Attachment N	lb/hr	See Attached and Attachment N	Ton/yr
			lb/hr		Ton/yr
			lb/hr		Ton/yr
			lb/hr		Ton/yr

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

	ng, and reporting in order to demonstrate arameters. Please propose testing in order to
MONITORING	RECORDKEEPING
Monitoring as required by 40CFR60, Subpart IIII.	Recordkeeping as required by 40CFR60, Subpart IIII.
REPORTING	TESTING
Reporting as required by 40CFR60, Subpart IIII.	Testing as required by 40CFR60, Subpart IIII.
MONITORING. PLEASE LIST AND DESCRIBE TH	E PROCESS PARAMETERS AND RANGES THAT ARE

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION/AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

The engines are designed to run as proposed. Procedures will be provided upon delivery of the engines.

REDACTED

Information Claimed Confidential by TransGas Development Systems, LLC March 24, 2025

Engine Model and Manufacturer

Performance Data

The **Sector** offers very high, singlecycle efficiency. In the selected configuration and rating, one engine will produce a maximum 21,000 kW (or 28,194 HP) mechanical power at the shaft. The engines are Dual-Fuel capable, for maximum flexibility. The advantage of these engines among high efficiency and reliability is that they can be upgraded to ammonia engines, increasing the power output to 26,000 kW each, and minimizing the CO₂ per kWh to 66 g, once the fuel is available.

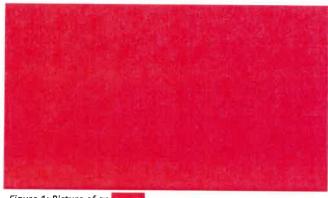


Figure 1: Picture of an

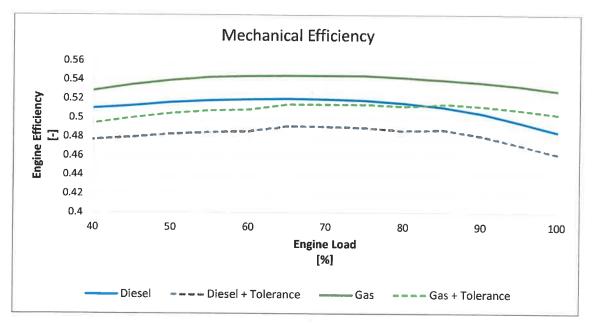


Figure 2: Efficiency of the engine as a function of the load

Power

On the permitting site there will be a total of 117 engines. With the maximum power output of 21 MW per engine, the installed theoretical power output is 2,457 MW. The effective and continuously delivered power output will be 1,795 MW, for 8,760 hours per year.

Fuel Types

In their Dual-Fuel configuration, the engines operate on natural gas and on diesel fuels or can be operated on diesel fuel only, in backup mode. Under normal operation the engines consume gas as their primary fuel with a pilot injection of Ultra-Low Sulfur Diesel. For this application the gas has the following properties (lower heat rate 976.94 BTU/ft³):

Date	BTU	SG	C02	N2	Methane	Ethane	Propane	I-Butane	N-Butane	I-Pentane	N-Pentane	c6+
Average	1082.2	0.61	0.20	0.44	90.33	8.44	0.52	0.02	0.03	0.01	0.00	0.01
STD in % of average	0.66	0.78	11.09	5.04	0.85	8.17	57.48	20.82	24.96	33.90	55.06	63.08

Under gas operation, 2% of the energy comes from the pilot fuel, which can be increased to 100% for emergency operation. The fuel used in this application will be Ultra-Low Sulfur Diesel (ULSD), with a sulfur Content: \leq 15 parts per million (ppm) and a heat rate of 130,613 BTU/gal.

Operational profiles

Normal Operation

To ensure peak operation conditions, the engines will be regularly serviced. With 1-2 weeks of downtime per engine per year, 3 engines are going to be off-line at any time of the year. Under normal operations, the engines will be run at 75% power only. Therefore, the continuously delivered power will be 1,796 MW.

Compensation Mode

In case of one or – in the unrealistic, but foreseen case of - up to 29 engines out of service, the rest of the field will compensate, increasing their power output to 100%. For the calculation of the yearly emissions the worst case is assumed, when 29 engines go offline and the remaining 85 are operated at 100%.

Emergency Mode

In case the pipeline is down, or the gas cannot be delivered for any other reason, the engines can switch to *diesel fuel mode* immediately and are then operated on diesel fuel only. Apart from the different fuel type, the engines are controlled in the same way as in *Normal Operation*.

Startup Mode

To start an engine and bring power production online, several steps are necessary. In the first phase the emission control system is not operational temperature, therefore the control rate is not optimal. The following is a simplification and a representation of the worst case for emissions emission-wise. The different steps can be reduced to four main sub-modes:

- Speed up
- Fuel Switch
- Generator switched on
- Load up cold control

Speed up

Bring the engine from stand still to nominal speed (89 rpm). This is done in diesel mode. The emission control system is still offline at this point, as it is not at optimal temperature. Once nominal speed is set and the minimum load for a fuel switch is reached (less than 5 minutes), the system initiates the next sub mode: Fuel Changeover

Fuel Changeover

For about two minutes the load is kept constant, and the fuel is changed from 100% diesel to 98% gas & 2% diesel.

Generator switched on

On gas operation, the load is further increased until the generator can by energized and synchronized with the rest of the engine fleet. This takes no more than 5 minutes. For the emissions calculation of all these steps the emission control system is looked at as non-operational, even though the exhaust gases will have heated it already and some abatement is taking place, even at a reduced level.

Load up cold control

Once the generator is online and synchronized, then the engine is powered up to its set point (75% in normal operation mode). For reasons of simplicity and to ensure a conservative view on the problem, during engine load up the control system is looked at as cold and operational at 25% only. This even though in reality the system was heated up constantly by the exhaust gases and reaching operational condition during the load up.

Shut Down

The shut down procedure consists of three phases:

- Ramp down
- Min Load
- Spin out

Ramp down

The load is constantly reduced to a minimum load.

Min Load

At minimum load the generator is decoupled from the grid and the engine's load and speed setting are zero.

Spin out

Due to the zero-load setting the injection systems are turned off and the engine is spun out until full stop. In this entire sequence the emission control system is still operational due to its thermal inertia. Therefore, until the injection is stopped the emissions are treated.

All these steps are represented in Figure 3.

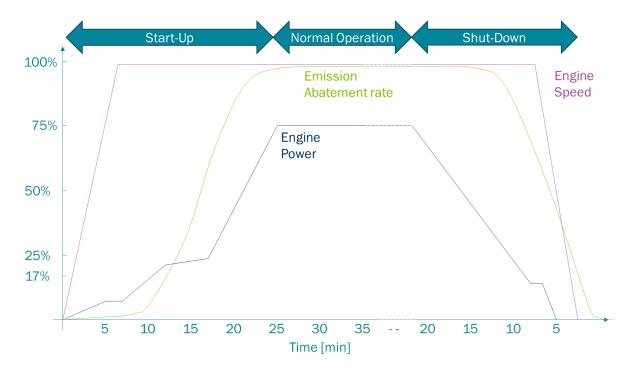


Figure 3: Simplified representation of the Start-Up and Shut-Down phases. Purple: Speed, dark blue: Power and green the efficiency of the emission control system

Emission Levels

For this application the engines are operated in two fuel modes, *Gas mode*, and Diesel mode, where 100% of the energy come from diesel. In Gas mode, where 98% of the energy comes from Natural Gas and 2% from diesel fuel injection (Ultra Low Sulfur Diesel), the engine's raw emissions going into the emission control system are listed in Table 1.

Gas mode			75	50	25	20	10
NOx	g/kWh	1.0	0.4	0.4	0.8	0.9	1.0
PM (Filterable)	mg/Nm3	5.7	4.2	5.3	8.6	9.3	10.6
PM10							
(Filterable + Condensable)	mg/Nm3	5.4	4.1	5.1	8.1	8.8	10.1
PM2.5							
(Filterable + Condensable)	mg/Nm3	5.4	4.1	5.1	8.1	8.8	10.1
СО	ppm	180	166	178	154	149	139
VOC	ppm	79	76	78	88	90	94
N2O	ppm	2	1	1	1	1	1
CH4	ppm	644	616	638	732	750	788
CO2	g/kWh	383	373	377	400	405	416
SO2	g/kWh	0.025	0.023	0.021	0.021	0.021	0.022

Table 1: Engine raw emissions in Gas mode

For redundancy the engine can switch to *Diesel mode* as a backup, with 100% of the energy coming from diesel fuel (ULSD), in case there is a problem with the gas supply system. The corresponding emissions are listed in Table 2.

Diesel moo	100	75	50	25	20	10	
NOx	g/kWh	11.6	14.9	17.1	18.5	18.8	19.3
PM (Filterable)	mg/Nm3	8.4	12.1	11.6	8.6	8.0	6.8
PM10 (Filterable +							
Condensable)	mg/Nm3	8.4	12.1	11.6	8.6	8.0	6.8
PM2.5 (Filterable +							
Condensable)	mg/Nm3	8.0	11.7	11.3	8.1	7.6	6.5
CO	ppm	83	36	36	39	40	41
VOC	ppm	91	103	119	171	181	202
N2O	ppm	4	2	1	1	1	1
CO2	g/kWh	439	426	430	454	460	471
SO2	g/kWh	0.353	0.330	0.330	0.336	0.401	0.440

Table 2: Engine raw emissions in Diesel mode

Emission Control System

A detailed description of the system can be found in document 21801.24.0.TGT-PL TGT Process description.pdf

On a high level the emission abatement, or control system, consists of two main systems, the dry system on the high pressure side of the engine (before the turbocharger) and the wet system on the low pressure side, downstream the turbocharger.

The dry system consists of an oxydation catalyst and and an SCR catalyst. The catalytic reduction of **CO** has an **efficiency** of over **99%**. The same system oxidises **VOC** emission with a conversion **efficiency** of **99%** The de-NOx unit is a classic, urea-based **SCR**-technology, the **efficiency** is expected to be higher than **90%**. Doing so the dry system **consumes 13.2 l/h of NH**₃ (aq).

The wet system consists of 4 stages, which take further care of the **NOx with 90.9%** efficiency and the **SOx with 70% efficiency**. The four stages consume the following chemicals:

Chemical	%w	lb/gal	[gal/h]	[lb/h]
NH₃ (aq.)	19%	7.51	3.49	26.2
NaOH	50%	12.52	29.91	374.5
NaHS (reducing agent)	45%	10.85	0.11	1.1
NaClO2 (oxidizing agent)	25%	10.01	0.40	4.0
H ₂ SO ₄	36%	10.68	0.10	1.1

Table 3: Use of chemicals for the emission control system

Normal Operation

Under normal circumstances the engines operate on gas at 75% load, at their peak efficiency, hence with lowest specific fuel consumption. They are stopped once a year for servicing, while another engine takes up this load. In *Normal Operation* mode one single engine consumes 4,574.1 lb/h of gas (98,924 ft³/h) and 27.8 lb/h (3.91 gal/h) of ULSD.

REDACTED Information Claimed Confidential by TransGas Development Systems, LLC March 24, 2025 Doing so, it produces the following raw emissions:

NOx	PM	СО	VOC	SO2	CO2	Methane	N2O	CO2_eq
[lb/h]	[lb/h]	[lb/h]						
13.89	0.45	22.36	22.63	0.74	12,634	47.60	0.25	14,035

Table 4: Emissions of a single engine in Normal Operation

* with Global Warming Potential of 28 for Methane and 265 for laughing gas

While one individual engine never sees a total run time of 8760 hours per year, there are 114 engines that do experience this as a collective. One single engine of the operated collective therefore consumes 20,035 short tons of gas per year (866,574,112 ft³/a) and 122 tons (34,273 gal/a) of ULSD per year and produces the following raw emissions:

NOx	PM	СО	VOC	SOx	CO2	Methane	N2O	CO2_eq
[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]
60.83	1.99	97.92	99.12	3.25	55,339	208	1.1	61,472

Table 5: Emissions of 1 engine under Normal Operation (8760 hours)

The abatement system reduces the emissions the following:

	NOx	PM	СО	VOC	SO2
	[%]	[%]	[%]	[%]	[%]
Speed up	0%	<mark>6</mark> 0%	0%	0%	95%
Fuel Changeover	0%	<mark>6</mark> 0%	0%	0%	99%
Generator switched on	0%	<mark>6</mark> 0%	0%	0%	99%
Load up cold control	25%	<mark>6</mark> 0%	25%	25%	99%
Normal Operation	99%	<mark>6</mark> 25%	99%	99%	99%
Compensation Mode	99%	<mark>6</mark> 25%	95%	99%	99%
Ramp down	99%	<mark>6</mark> 25%	94%	99%	99%
Min load	70%	<mark>6</mark> 0%	50%	70%	70%
Spin out	40%	<mark>6</mark> 0%	35%	40%	40%
Emergency Mode	98%	<mark>6</mark> 25%	91%	99%	99%
	<i>cc</i> : .	<i>c</i>			

Table 6: Emission abatement efficiency for each individual emission type

Resulting in the total yearly emissions per engine of:

NOx	PM	СО	VOC	SOx	CO2	Methane	N2O	CO2_eq
[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]
0.61	1.49	1.47	0.99	0.03	55,339	208	1.1	61,472

Table 7: Total yearly emissions of a single engine after emission treatment

Start up and Shut down operation

Additionally, one start up and shut down is foreseen. During the individual sequences one engine produces the following emissions:

	Load	Abat.*	NOx	PM	CO	VOC	SO2	CO2	Methane	N2O	CO2_eq
	[%]	[%]	[lb/h]	[lb/h]	[lb/h]						
Speed up	10%	0.00%	89.54	0.34	2.50	19.49	0.10	3,217	0	0.12	3,274
Fuel Switch	10%	0.00%	4.81	0.53	8.65	13.07	0.00	1,807	28.03	0.12	2,740
Generator on	20%	0.00%	8.15	0.46	9.25	12.48	0.00	3,535	26.7	0.12	4,529
Load up	25%	25%	9.26	0.43	9.54	12.19	0.00	4,370	26.03	0.12	5,386
Ramp down	40%	100%	10.37	0.32	13.79	14.95	0.00	6,777	31.74	0.15	8,063
Min load	20%	70%	8.15	0.46	9.25	12.48	0.07	3,535	26.7	0.12	4,529
Spin out	10%	40%	4.81	0.53	8.65	13.07	0.07	1,807	28.03	0.12	2,740

Table 8: Emission during the different stages of Startup and Shut down phase

*of the efficiencies mentioned above in Table 6.

In total during one startup and a shutdown sequence one single engine emits the following:

NOx	PM	CO	VOC	SOx	CO2	Methane	N2O	CO2_eq
[t]	[t]	[t]						
0.0049	0.0002	0.0016	0.0026	0.0000	1.9675	0.0104	0.0001	2.2724
[lb]	[lb]	[lb]						
9.74	0.31	3.22	5.12	0.02	3,935	20.77	0.11	4,545

Table 9: Emissions during a startup and shutdown sequence for one single engine.

Normal Operation Scenario

Therefore, under normal circumstances the 117 engines emit the following over one year, including one startup and shutdown sequence, each:

NOx	PM	СО	VOC	SOx	CO2	Methane	N2O	CO2_eq
[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]
69.9	169.9	167.6	113.3	3.7	6,308,872	23,768	127.1	7,008,055

Table 10: Entire yearly emissions for the entire plant und normal circumstances.

To do so, the entire plant consumes 2,284,014.5 tons of natural gas (98,792,705,589 ft³) coming in a pipeline and 13,876 tons of diesel (3,908,687 gal) which will be shipped on site.

Emergency Mode

In case when no gas is available, the engines can be operated in so called emergency mode and the power comes from diesel. In this mode a single engine consumes 5666.8 lb/h (798 gal/h) and emits the following:

Ν	NOx	PM	СО	VOC	SO2	CO2	Methane	N2O	CO2_eq
[lb/h]	[lb/h]	[lb/h]	[lb/h]	[lb/h]	[lb/h]	[lb/h]	[lb/h]	[lb/h]
1	L0.35	1.29	0.58	0.29	0.11	17,896	0.00	0.67	18,073

Table 11: Controlled hourly emissions per engine in Emergency Mode

Compensation Mode

In case some engines should for any reason fail, the remaining engines will compensate for the loss of power, by increasing their power output. Here the worst case, of each engine ramping up to 100% load, is looked at. Under such conditions the engines consume 6,386 lb of natural gas per hour (138,112 ft³) and 27.8 lb/h of ULSD (3.91 gal/h). The following emissions result from this kind of operation:

NOx	PM	СО	VOC	SO2	CO2	Methane	N2O	CO2_eq
[lb/h]	[lb/h]	[lb/h]						
0.46	0.20	1.41	0.27	0.01	17,605	57.73	0.59	19,378

Table 12: Controlled hourly emissions per engine in Compensation Mode

Worst case scenario

As shown earlier, under Normal Operation conditions the engines stay well below the 250 t/year limit for all the regulated emissions. But to ensure that the power plant can be operated under worst case conditions, the following, unrealistic but not impossible scenario was looked at:

The pipeline is out for 8 days (192 hours); hence the power plant is operated on diesel. In the same year an unforeseeable event takes down 31 engines (26% of the entire plant) and the remaining 86 engines will compensate for by delivering the full power, increasing their output to 99.4% load. This situation lasts 24 days (567 hours). Additionally, the engines have to be started up and shut down 5 times, instead of once per year.

The engines are therefore for the following number of hours operated in the corresponding mode:

Speed up	0.42
Fuel Switch	0.17
Generator switched on	0.42
Load up cold control	0.83
Normal Operation	7996.80
Compensation Mode	567.20
Ramp down	1.67
Min load	0.42
Spin out	0.08
Emergency Mode	192.00
Total operational time	8760

Table 13: Operational time in hours for each engine mode under worst case scenario

Under this scenario and the consequent operational profiles, the entire plant will emit the following emissions per year:

	Gas	Diesel	NOx	PM	CO	VOC	SO2	CO2_e
	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]
Speed up	0.00	24.19	2.13	0.01	0.06	0.46	0.00	77
Fuel Switch	6.56	0.10	0.05	0.01	0.08	0.12	0.00	25
Generator switched on	32.02	0.40	0.19	0.01	0.22	0.30	0.00	102
Load up cold control	79.11	0.88	0.33	0.02	0.34	0.43	0.00	244
Normal Operation	213,6163	12,661	63.31	155.11	152.86	103.15	3.38	6397261
Compensation Mode	208,133	898	14.97	17.22	45.53	8.84	0.33	626484
Ramp down	244.63	2.11	0.01	0.03	0.08	0.01	0.00	732
Min load	32.02	0.40	0.06	0.01	0.11	0.09	0.00	102
Spin out	3.28	0.05	0.01	0.00	0.03	0.04	0.00	12
Emergency Mode	0.00	61,751	113.24	14.11	6.31	3.15	6.22	197796
Total	2,291,799	75,605	194	187	206	117	10	7,222,837

Table 14: Total yearly emissions of the entire power plant under worst case scenario

Hazardous emissions

The hazardous emissions are calculated based on the distribution described in

EPA AP-42, Table 3.2-1, 3.2-3 and 3.2-4.

The emissions are calculated as a percentage of the VOC (NMHC) emissions.

NMHC	Benzene	Toluene	Xylenes	Formaldehyde	Acrolein	Acetaldehyde	Naphthalene
0.2	0.000776	0.000281	0.000193	0.0000789	0.00000788	0.0000225	0.00013
100%	0.388%	0.141%	0.097%	0.039%	0.004%	0.011%	0.065%

Table 15: Hazardous emission according to EPA AP-42 in lb/MMBtu and as a percentage of the Non-Methane Hydrocarbons

With a reduction factor of 99% the Benzene emissions on an hourly basis per engine, and on a yearly basis for the entire plant are the following:

Mode	Time	NMHC	Ur	ncontrolled	Abatement	C	Controlled
[-]	[h/a]	[lb/h]	[lb/h]	[t/a]	[%]	[lb/h]	[t/a]
Speed up	0.08	19.49	0.07564	0.00036	0.0%	0.07564	0.00036
Fuel Switch	0.03	13.07	0.05070	0.00010	0.0%	0.05070	0.00010
Generator switched	0.08	12.48	0.04844	0.00023	0.0%	0.04844	0.00023
Load up cold control	0.17	12.19	0.04731	0.00045	25.0%	0.03548	0.00034
Normal Operation	8000	22.63	0.08780	40.03794	99.0%	0.00088	0.40038
Compensation Mode	567	27.34	0.10608	3.42968	99.0%	0.00106	0.03430
Ramp down	0.33	14.95	0.05802	0.00110	99.0%	0.00058	0.00001
Min load	0.08	12.48	0.04844	0.00023	70.0%	0.01453	0.00007
Spin out	0.02	13.07	0.05070	0.00005	0.0%	0.05070	0.00005
Emergency Mode	192	28.75	0.11156	1.22087	99.0%	0.00112	0.01221

Benzene, 0.388% of NMHC

Table 16: Calculation of the Benzene hourly emissions for each engine and yearly basis for the entire plant per operation mode

Resulting in Benzene emissions of 896 pounds per year.

Toluene, 0.141% of NMHC

Mode	Time	NMHC	Ur	controlled	Abatement	C	ontrolled
[-]	[h/a]	[lb/h]	[lb/h]	[t/a]	[%]	[lb/h]	[t/a]
Speed up	0.08	19.49	0.02739	0.00013	0.0%	0.02739	0.00013
Fuel Switch	0.03	13.07	0.01836	0.00003	0.0%	0.01836	0.00003
Generator switched	0.08	12.48	0.01754	0.00008	0.0%	0.01754	0.00008
Load up cold control	0.17	12.19	0.01713	0.00016	25.0%	0.01285	0.00012
Normal Operation	8000	22.63	0.03179	14.49827	99.0%	0.00032	0.14498
Compensation Mode	567	27.34	0.03841	1.24193	99.0%	0.00038	0.01242
Ramp down	0.33	14.95	0.02101	0.00040	99.0%	0.00021	0.00000
Min load	0.08	12.48	0.01754	0.00008	70.0%	0.00526	0.00002
Spin out	0.02	13.07	0.01836	0.00002	0.0%	0.01836	0.00002
Emergency Mode	192	28.75	0.04040	0.44209	99.0%	0.00040	0.00442

Table 17: Calculation of the Toluene hourly emissions for each engine and yearly basis for the entire plant per operation mode

Resulting in Toluene emissions of 325 pounds per year.

Xylenes, 0.097% of NMHC

Mode	Time	NMHC	Un	controlled	Abatement	C	Controlled
[-]	[h/a]	[lb/h]	[lb/h]	[t/a]	[%]	[lb/h]	[t/a]
Speed up	0.08	19.49	0.01881	0.00009	0.0%	0.01881	0.00009
Fuel Switch	0.03	13.07	0.01261	0.00002	0.0%	0.01261	0.00002
Generator switched	0.08	12.48	0.01205	0.00006	0.0%	0.01205	0.00006
Load up cold control	0.17	12.19	0.01177	0.00011	25.0%	0.00882	0.00008
Normal Operation	8000	22.63	0.02184	9.95789	99.0%	0.00022	0.09958
Compensation Mode	567	27.34	0.02638	0.85300	99.0%	0.00026	0.00853
Ramp down	0.33	14.95	0.01443	0.00027	99.0%	0.00014	0.00000
Min load	0.08	12.48	0.01205	0.00006	70.0%	0.00361	0.00002
Spin out	0.02	13.07	0.01261	0.00001	0.0%	0.01261	0.00001
Emergency Mode	192	28.75	0.02775	0.30364	99.0%	0.00028	0.00304

Table 18: Calculation of the formaldehyde hourly emissions for each engine and yearly basis for the entire plant per operation mode

Resulting in Xylenes emissions of 223 pounds per year.

Mode	Time	NMHC	Un	controlled	Abatement	C	ontrolled
[-]	[h/a]	[lb/h]	[lb/h]	[t/a]	[%]	[lb/h]	[t/a]
Speed up	0.08	19.49	0.00769	0.00004	0.0%	0.00769	0.00004
Fuel Switch	0.03	13.07	0.00515	0.00001	0.0%	0.00515	0.00001
Generator switched	0.08	12.48	0.00492	0.00002	0.0%	0.00492	0.00002
Load up cold control	0.17	12.19	0.00481	0.00005	25.0%	0.00361	0.00003
Normal Operation	8000	22.63	0.00893	4.07087	99.0%	0.00009	0.04071
Compensation Mode	567	27.34	0.01079	0.34871	99.0%	0.00011	0.00349
Ramp down	0.33	14.95	0.00590	0.00011	99.0%	0.00006	0.00000
Min load	0.08	12.48	0.00492	0.00002	70.0%	0.00148	0.00001
Spin out	0.02	13.07	0.00515	0.00000	0.0%	0.00515	0.00000
Emergency Mode	192	28.75	0.01134	0.12413	99.0%	0.00011	0.00124

Formaldehyde, 0.039% of NMHC

Table 19: Calculation of the formaldehyde hourly emissions for each engine and yearly basis for the entire plant per operation mode

Resulting in Formaldehyde emissions of 92 pounds per year.

Acrolein, 0.004% of NMHC

Mode	Time	NMHC	Ur	ncontrolled	Abatement		Controlled
[-]	[h/a]	[lb/h]	[lb/h]	[t/a]	[%]	[lb/h]	[t/a]
Speed up	0.08	19.49	0.00077	0.000004	0.0%	0.00077	0.000004
Fuel Switch	0.03	13.07	0.00051	0.000001	0.0%	0.00051	0.000001
Generator switched	0.08	12.48	0.00049	0.000002	0.0%	0.00049	0.000002
Load up cold control	0.17	12.19	0.00048	0.000005	25.0%	0.00036	0.000003
Normal Operation	8000	22.63	0.00089	0.406571	99.0%	0.00001	0.004066
Compensation Mode	567	27.34	0.00108	0.034827	99.0%	0.00001	0.000348
Ramp down	0.33	14.95	0.00059	0.000011	99.0%	0.00001	0.000000
Min load	0.08	12.48	0.00049	0.000002	70.0%	0.00015	0.000001
Spin out	0.02	13.07	0.00051	0.000000	0.0%	0.00051	0.000000
Emergency Mode	192	28.75	0.00113	0.012397	99.0%	0.00001	0.000124

Table 20: Calculation of the formaldehyde hourly emissions for each engine and yearly basis for the entire plant per operation mode

Resulting in Acrolein emissions of 9 pounds per year.

Mode	Time	NMHC	Uncontrolled		Abatement		Controlled
[-]	[h/a]	[lb/h]	[lb/h]	[t/a]	[%]	[lb/h]	[t/a]
Speed up	0.08	19.49	0.00219	0.000010	0.0%	0.00219	0.000010
Fuel Switch	0.03	13.07	0.00147	0.000003	0.0%	0.00147	0.000003
Generator switched	0.08	12.48	0.00140	0.000007	0.0%	0.00140	0.000007
Load up cold control	0.17	12.19	0.00137	0.000013	25.0%	0.00103	0.000010
Normal Operation	8000	22.63	0.00255	1.160894	99.0%	0.00003	0.011609
Compensation Mode	567	27.34	0.00308	0.099443	99.0%	0.00003	0.000994
Ramp down	0.33	14.95	0.00168	0.000032	99.0%	0.00002	0.000000
Min load	0.08	12.48	0.00140	0.000007	70.0%	0.00042	0.000002
Spin out	0.02	13.07	0.00147	0.000001	0.0%	0.00147	0.000001
Emergency Mode	192	28.75	0.00323	0.035399	99.0%	0.00003	0.000354

Acetaldehyde, 0.011% of NMHC

Table 21: Calculation of the Acetaldehyde hourly emissions for each engine and yearly basis for the entire plant per operation mode

Resulting in Acetaldehyde emissions below 26 pounds per year.

Naphthalene, 0.065% of NMHC

Mode	Time	NMHC	Ur	controlled	Abatement		Controlled
[-]	[h/a]	[lb/h]	[lb/h]	[t/a]	[%]	[lb/h]	[t/a]
Speed up	0.08	19.49	0.01267	0.00006	0.0%	0.01267	0.00006
Fuel Switch	0.03	13.07	0.00849	0.00002	0.0%	0.00849	0.00002
Generator switched	0.08	12.48	0.00811	0.00004	0.0%	0.00811	0.00004
Load up cold control	0.17	12.19	0.00793	0.00008	25.0%	0.00594	0.00006
Normal Operation	8000	22.63	0.01471	6.70739	99.0%	0.00015	0.06707
Compensation Mode	567	27.34	0.01777	0.57456	99.0%	0.00018	0.00575
Ramp down	0.33	14.95	0.00972	0.00018	99.0%	0.00010	0.00000
Min load	0.08	12.48	0.00811	0.00004	70.0%	0.00243	0.00001
Spin out	0.02	13.07	0.00849	0.00001	0.0%	0.00849	0.00001
Emergency Mode	192	28.75	0.01869	0.20453	99.0%	0.00019	0.00205

Table 22: Calculation of the Acetaldehyde hourly emissions for each engine and yearly basis for the entire plant per operation mode

Resulting in Acetaldehyde emissions below 150 pounds per year.

Liquid and fuel handling

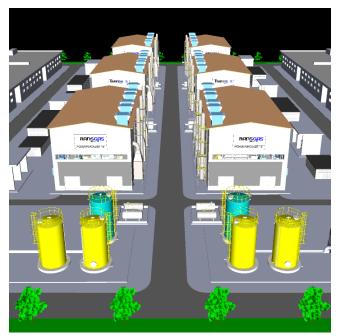


Figure 4: Liquid Storage in front of a set of power houses: Yellow: Diesel tanks, Greenish: Water tanks White: Oil and component tanks

On-site Water Storage

For fire protection and supplementary cooling, the facility maintains an on-site water storage capacity of 2,641,721 gallons, distributed over the entire plant in 14 tanks with 26 feet in diameter and 44 feet in height.

Ultra Low Sulfur Diesel

The engines consume 13,876 tons of ULSD per year (10,704 gal/day) which will be transported on site. To ensure fire safety and to protect the valuable hardware within the data center, the volume of flammable liquids stored on-site will be minimized. For emergency preparedness, a three-day supply of 25,000 tons will be maintained in multiple smaller storage tanks. The rest will be in strategic locations nearby.

The diesel will be stored in 40 tanks distributed across the entire plant, 26 feet in diameter and 44 feet in height.

Lubrication Oil

The engines consume about 2,025 tons of lubrication oil per year (1563 gal/day), which will be shipped on site. Additionally, about 20 tons will be stored on site, in tanks of 160 gallon in each power house.

Natural Gas

The gaseous fuel will be transported by pipeline.

Emission Control Components

For the emission abatement system liquids are transported to the site. A 3-day storage will be kept on site.

Component	Consumption Stora			
-	[t/a]	[gal/h]	[t]	
NH₃ (aq)	13'078	3.49	108	
NaOH	186'984	29.91	1537	
NaHS (reducing agent)	572	0.11	5	
NaClO2 (oxidizing agent)	1'995	0.40	17	
H₂SO₄	535	0.10	5	

Table 23: List of chemicals yearly used, and amount stored on site

The Storage will be in the corresponding standard tanks for these liquids, horizontally arranged tanks of 16 feet length and 7 feet diameter.

Chemicals in Use

- Hydrous Ammonia
- Caustic Soda NaOH
- Sulfuric Acid H2SO4
- NaClO2 (oxidizing agent)
- NaHS (reducing agent)

ANNEX

The 117 engines will be arranged according to the plan on Figure 5. It shows the map of the site, with 7 pods. Every pod holds two large buildings on the outer side, housing the data centers and 6 power houses in the middle (magenta/pink). A powerhouse holds three engine-generator setups (genset), auxiliaries and parts of the emission control systems. This gives theoretically space for $7 \times 6 \times 3 = 126$ gensets. The remaining three buildings will be used for logistical and storage purposes though (spare parts, fluid preparation etc.)

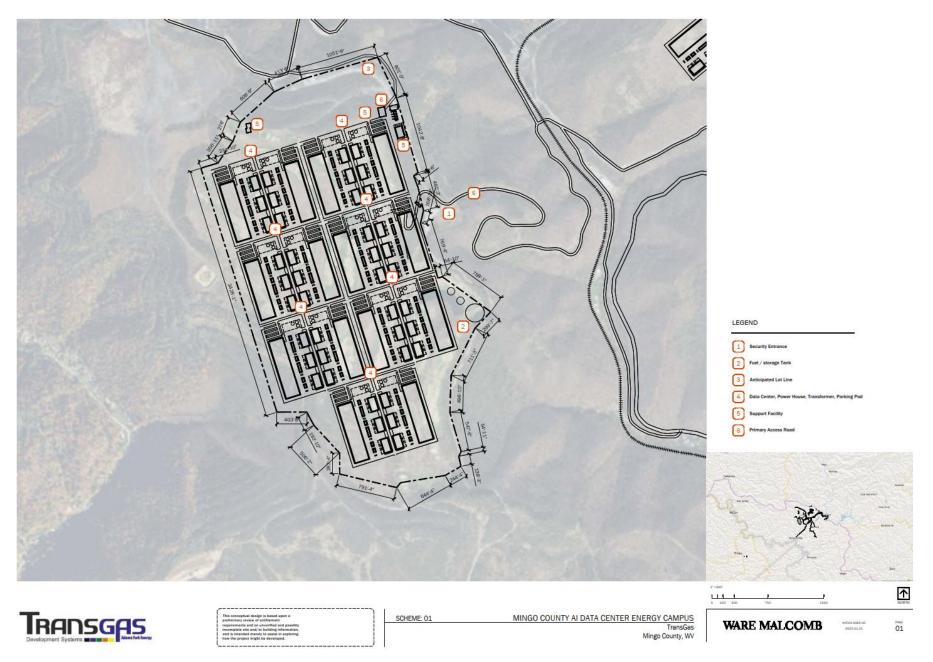


Figure 5: Site plan showing the 7 pods

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION (required)

1. Bulk Storage Area Name	Bulk Storage Area Name 2. Tank Name						
Fuel Storage - Site Wide	40						
3. Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>)	 4. Emission Point Identification No. (as assigned of Equipment List Form) 						
T1 through T40 (118S - 157S)							
5. Date of Commencement of Construction (for existing	tanks) 2026						
. Type of change 🛛 New Construction 🗌 New Stored Material 🗌 Other Tank Modification							
7. Description of Tank Modification (if applicable)							
Not Applicable							
7A. Does the tank have more than one mode of operation	n? 🗌 Yes 🛛 No						
(e.g. Is there more than one product stored in the tan							
7B. If YES, explain and identify which mode is covered by this application (Note: A separate form n completed for each mode).							
Not Applicable							
7C. Provide any limitations on source operation affecting emissions, any work practice standards (e.g. production variation, etc.):							
None							
II. TANK INFORM	ATION (required)						
	the internal cross-sectional area multiplied by internal						
height.							
	00 gallons						
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)						
26	44						
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)						
43 ft.	NA						
11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)						
1 ft.	NA						
12. Nominal Capacity (specify barrels or gallons). This is also known as "working volume" and considers design liquid levels and overflow valve heights.							
170,000 gallons							

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)				
3.907 MM gal/yr total for all tanks (Normal Operation)	10,704 gal/day total all tanks				
14. Number of Turnovers per year (annual net throughpu	· ·				
Average of 4 tu	rnover/tank per year				
15. Maximum tank fill rate (gal/min)					
16. Tank fill method Submerged	Splash Bottom Loading				
17. Complete 17A and 17B for Variable Vapor Space Tail	nk Systems 🛛 Does Not Apply				
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year				
other (describe) External Floating Roof pontoon roof Domed External (or Covered) Floating Roof					
 Internal Floating Roof vertical column su Variable Vapor Space lifter roof Pressurized spherical cylindrical Underground Other (describe) 	diaphragm				
III. TANK CONSTRUCTION & OPERATION INFORM	ATION (optional if providing TANKS Summary Sheets)				
19. Tank Shell Construction: Tank construction not selected	d yet. See TANKS Summary Sheet attached.				
Riveted Gunite lined Epoxy-coated	d rivets Other (describe)				
20A. Shell Color 20B. Roof Colo	r 20C. Year Last Painted				
21. Shell Condition (if metal and unlined):	ust 🗌 Not applicable				
22A. Is the tank heated? YES NO					
22B. If YES, provide the operating temperature (°F)					
22C. If YES, please describe how heat is provided to ta	ank.				
23. Operating Pressure Range (psig): to					
24. Complete the following section for Vertical Fixed Ro	of Tanks Does Not Apply				
24A. For dome roof, provide roof radius (ft)					
24B. For cone roof, provide slope (ft/ft)					
25. Complete the following section for Floating Roof Tai	nks Does Not Apply				
25A. Year Internal Floaters Installed:					
25B. Primary Seal Type: Metallic (Mechanical) (check one) Vapor Mounted Resil					
25C. Is the Floating Roof equipped with a Secondary S	Seal? YES NO				
25D. If YES, how is the secondary seal mounted? (che	eck one) Shoe Rim Other (describe):				
25E. Is the Floating Roof equipped with a weather shie	eld? YES NO				

25F. Describe deck fittings; indicate the number of each type of fitting:							
ACCESS HATCH							
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:				
	AUTOMATIC GAL		1				
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:				
		N WELL					
BUILT-UP COLUMN – SLIDING			PIPE COLUMN – FLEXIBLE				
COVER, GASKETED:	COVER, UNGASK		FABRIC SLEEVE SEAL:				
PIP COLUMN – SLIDING COVER, G			SLIDING COVER, UNGASKETED:				
FIF COLUMIN – SLIDING COVER, G	ASKETED.	FIFE COLUMIN -	SLIDING COVER, UNGASKETED.				
	GAUGE-HATCH	/SAMPLE PORT					
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:				
		HANGER WELL					
ACTUATION, GASKETED:	ACTUATION, UNC		SAMPLE WELL-SLIT FABRIC SEAL (10% OPEN AREA)				
	VACUUM						
WEIGHTED MECHANICAL ACTUAT	ION, GASKETED:	WEIGHTED MECHA	ANICAL ACTUATION, UNGASKETED:				
	DIM	LENT					
WEIGHTED MECHANICAL ACTUAT			ANICAL ACTUATION LINGASKETED				
WEIGHTED MEGHANIOAE ACTORT	ION OAORETED.	WEIGHTED MEOH	ANICAL ACTORNON, CNOACKETED.				
	DECK DRAIN (3-I	NCH DIAMETER)					
OPEN:		90% CLOSED:					
	ATU:-						
	STUB	DRAIN					
1-INCH DIAMETER:							
OTHER (DESCF	RIBE, ATTACH ADD	DITIONAL PAGES I	F NECESSARY)				
			·				

26. Complete the following section for Internal Floating	g Roof Tanks 🛛 Does Not Apply
26A. Deck Type: Bolted Welded	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam:	
 Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide 	
Continuous sheet construction 7 feet wide	
 Continuous sheet construction 5 × 7.5 feet wide Continuous sheet construction 5 × 12 feet wide 	
☐ Other (describe)	
· · · ·	
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks:	26G. Diameter of each column:
26F. Number of columns:	
27. Provide the city and state on which the data in this	al if providing TANKS Summary Sheets)
See TANKS Summary Sheet	
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(ft ² .c	day))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (option	al if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid: S	ee TANKS Summary Sheet
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	- ·
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for each liquid or gas to be st	tored in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

	sure								
39F. True (psia)									
39G. Reid (psia)									
Months Storage per Y 39H. From	ear								
39I. To									
VI. EMISSIONS AND CONTROL DEVICE DATA (required) 40. Emission Control Devices (check as many as apply):									
		/ as apply):		а Арріу					
Carbon Adsorp	DTION'								
Conservation \									
	•		Pressure Se	etting					
	elief Valve (psig)								
Inert Gas Blan									
Insulation of Ta									
Liquid Absorpt	ion (scrubber) ¹								
Refrigeration of the second	f Tank								
Rupture Disc (psig)								
Vent to Inciner	ator ¹								
Other ¹ (describ	be):								
¹ Complete approp	priate Air Pollution Conti	rol Device S	Sheet.						
 ¹ Complete appropriate Air Pollution Control Device Sheet. 41. Expected Emission Rate (submit Test Data or Calculations here or elsewhere in the application). 									
41. Expected Emissio	n Rale (submit Test Dat	a or Calcula	ations here	or elsewhere in the ap	plication).				
-	i			-					
41. Expected Emissio Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin	g Loss	or elsewhere in the ap Annual Loss (Ib/yr)	Estimation Method ¹				
Material Name & CAS No.	Breathing Loss (Ib/hr)			Annual Loss					
Material Name &	Breathing Loss (Ib/hr)	Workin	g Loss	Annual Loss					
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin	g Loss	Annual Loss					
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin	g Loss	Annual Loss					
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin	g Loss	Annual Loss					
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin	g Loss	Annual Loss					
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin	g Loss	Annual Loss					
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin	g Loss	Annual Loss					
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin	g Loss	Annual Loss					
Material Name & CAS No.	Breathing Loss (Ib/hr)	Workin	g Loss	Annual Loss					

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Tanks 1-40 Charleston West Virginia Transgas Vertical Fixed Roof Tank Diesel Tanks
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	44.00 26.00 43.00 21.50 170,000.00 4.00 680,000.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 1.00 26.00
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	0.00 0.00

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Tanks 1-40 - Vertical Fixed Roof Tank Charleston, West Virginia

			ily Liquid Si perature (de		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	All	56.67	51.31	62.04	55.00	0.0058	0.0048	0.0070	130.0000			188.00	Option 1: VP50 = .0045 VP60 = .0065

L26 of L30

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Tanks 1-40 - Vertical Fixed Roof Tank Charleston, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	25.2731
Vapor Space Volume (cu ft):	12,211.8942
Vapor Density (lb/cu ft):	0.0001
Vapor Space Expansion Factor:	0.0417
Vented Vapor Saturation Factor:	0.9929
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	12,211.8942
Tank Diameter (ft): Vapor Space Outage (ft):	26.0000 23.0010
Tank Shell Height (ft):	44.0000
Average Liquid Height (ft):	21,5000
Roof Outage (ft):	0.5010
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.5010
Dome Radius (ft):	26.0000
Shell Radius (ft):	13.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0001
Vapor Molecular Weight (Ib/Ib-mole):	130.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	0.0058
Daily Avg. Liquid Surface Temp. (deg. R):	516.3441
Daily Average Ambient Temp. (deg. F):	54.9833
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	514.6733
Tank Paint Solar Absorptance (Shell):	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700
Daily Total Solar Insulation Factor (Btu/sqft day):	1,250.5726
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0417
Daily Vapor Temperature Range (deg. R):	21.4567
Daily Vapor Pressure Range (psia):	0.0022
Breather Vent Press. Setting Range(psia):	0.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0058
Vapor Pressure at Daily Minimum Liquid	0.0040
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	0.0048
Surface Temperature (psia):	0.0070
Daily Avg. Liquid Surface Temp. (deg R):	516.3441
Daily Min. Liquid Surface Temp. (deg R):	510.9799
Dailý Max. Liquid Surface Temp. (deg R):	521.7082
Daily Ambient Temp. Range (deg. R):	21.5333
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.9929
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia): Vapor Space Outage (ft):	0.0058 23.0010
	10 0000
Working Losses (lb): Vapor Molecular Weight (lb/lb-mole):	12.2809 130.0000
Vapor Pressure at Daily Average Liquid	130.0000
Surface Temperature (psia):	0.0058
Annual Net Throughput (gal/yr.):	680,000.0000
Annual Turnovers:	4.0000
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	170,000.0000
Maximum Liquid Height (ft):	43.0000
Tank Diameter (ft):	26.0000
Working Loss Product Factor:	1.0000
Total Losses (lb):	37,5540
10tai 20303 (ID).	37.5540

file:///C:/Tanks409d/summarydisplay.htm

TANKS 4.0 Report

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Tanks 1-40 - Vertical Fixed Roof Tank Charleston, West Virginia

	Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions		
Distillate fuel oil no. 2	12.28	25.27	37.55		

TANKS 4.0 Report

ATTACHMENT M

AIR POLLUTION CONTROL DEVICE(S)

REDACTED

Information Claimed Confidential by TransGas Development Systems, LLC March 24, 2025

Attachment M

Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table): 1C - 117C

Equipment Information

1.	Manufacturer: Model No. NA	 Control Device Name: Control System Type: Various 						
3.	. Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.							
4.	On a separate sheet(s) supply all data and calculations used in selecting or designing this collection device.							
5.	Provide a scale diagram of the control device showing	g internal construction.						
6.	Submit a schematic and diagram with dimensions and	d flow rates.						
7.	Guaranteed minimum collection efficiency for each po	ollutant collected: 100%						
8.	Attached efficiency curve and/or other efficiency inform	mation. See Attached						
9.	Design inlet volume: See Attached SCFM	10. Capacity: See Attached						
This VO	s emission abatement system is multi-phase and includes	rovided to measure pressure drop and flow rate, if any. DeCO, DeNO _x , DeSO _x , and We-NO _x . The system controls description of the system and each stage is provided on the						
12.	Attach any additional data including auxiliary equip control equipment. See Attached	ment and operation details to thoroughly evaluate the						
13. Sper	Description of method of handling the collected mater at catalyst and other discardable materials are removed from	al(s) for reuse of disposal. the site.						

Gas Stream Characteristics

14. Are halogenated organics present? Are particulates present? Are metals present?	☐ Yes ⊠ No ⊠ Yes □ No ⊠ Yes □ No	
15. Inlet Emission stream parameters:	Maximum	Typical
Pressure (mmHg):		
Heat Content (BTU/scf):	See Attached	
Oxygen Content (%):		
Moisture Content (%):		
Relative Humidity (%):		

16.	Type of pollutant(s) of Particulate (type)		SO _x SOx	\Box Odor \boxtimes Other NO_{x}	, VOC (VOC HA	Ps), CO	_
17.	Inlet gas velocity:	See Attached	ft/sec	18. Pollutant	specific gravity:	NA	
19.	Gas flow into the col ACF @	llector: See Attach °F and	ed PSIA	20. Gas strea	am temperature: Inlet: Outlet:	See Attached	°F °F
21.	Gas flow rate: See A Design Maximum: Average Expected:	Attached	ACFM ACFM	22. Particulat	e Grain Loading Inlet: Outlet:	in grains/scf: S	See Attached
23.	Emission rate of eac	h pollutant (speci	fy) into and out	of collector:			
	Pollutant	IN Poll	lutant	Emission	OUT Po	ollutant	Control
		lb/hr	grains/acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %
	A	lb/hr See attached docu		Efficiency %		grains/acf	-
	A B			Efficiency %		grains/acf	-
				Efficiency %		grains/acf	-
	В			Efficiency %		grains/acf	-
	B C			Efficiency %		grains/acf	-
	B C D	See attached docu	ment for a descrip	Efficiency %			-

Particulate Distribution

26. Complete the table:	Particle Size Distribution at Inlet to Collector	Fraction Efficiency of Collector
Particulate Size Range (microns)	Weight % for Size Range	Weight % for Size Range
0 – 2		
2-4		
4 – 6		
6 – 8		
8 – 10		
10 – 12	See Attached	
12 – 16		
16 – 20		
20 - 30		
30 - 40		
40 - 50		
50 - 60		
60 - 70		
70 - 80		
80 - 90		
90 – 100		
>100		

27.	Describe	any	air	pollution	control	device	inlet	and	outlet	gas	conditioning	processes	(e.g.,	gas	cooling,	gas
	reheating	, gas	s hui	midificati	on):											

See Attached

28. Describe the collection material disposal system:

Spent or collected material is shipped offsite for disposal or regeneration/reuse.

29. Have you included Other Collectores Control Device in the Emissions Points Data Summary Sheet?

30. **Proposed Monitoring, Recordkeeping, Reporting, and Testing** Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING: Amount of emissions con	trol fluids utilized.	RECORDKEEPING: Amount of emissions control fluids utilized.
REPORTING: None		TESTING: As requested by the permit.
MONITORING:	•	ocess parameters and ranges that are proposed to be trate compliance with the operation of this process
RECORDKEEPING:		cordkeeping that will accompany the monitoring.
REPORTING:	Please describe any proposed pollution control device.	emissions testing for this process equipment on air
TESTING:	•	emissions testing for this process equipment on air

31. Manufacturer's Guaranteed Control Efficiency for each air pollutant.

See Attached

32. Manufacturer's Guaranteed Control Efficiency for each air pollutant.

See Attached

33. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty.

The controls are designed to operate within the operational ranges of the engines.

PROCESS DESCRIPTION for

POLLUTION CONTROL for NATURAL GAS ENGINE EMISSIONS

Abatement system Package

Prepared for

Transgas – Adams Fork project February 10, 2025 Rev. 03

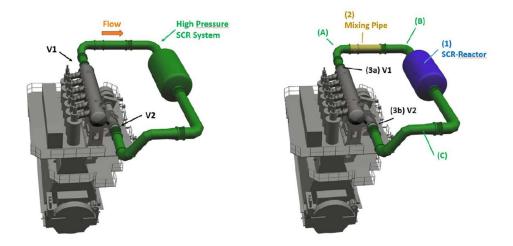
1. Introduction

Below is a description of the basic concept on which the proposed system is based, together with some preliminary evaluations about the foreseen chemicals consumption.

The overall process scheme is presented in the **attachment 1 – OVERALL PROCESS SCHEME** and detailed below.

The configuration and equipment sizing has been studied for the maximum flow rate – corresponding to 100% load of the engine with iCER, 21.000 kW of mechanical power at shaft when engine runs in compensation mode, and the maximum load of pollutants.

The system described below will be installed individually for each engine.


Attachment 2 rev 02– EMISSION ABATEMENT STEPS shows the pollutant flow at each stage (A to D), as indicated in the overall process scheme, with the target of reaching the maximum total emission level of:

- NOx < 250 tpy (short)
- CO < 250 tpy (short)
- SOx < 250 tpy (short)
- PM < 250 tpy (short)

for a total of 114 engines operating at the same time and continuously at maximum load.

2. Description of the dry deCO + deNOx system

Dry flue gas treatment system is installed before the turbocharger, so at high pressure. An example of such an installation is shown in the picture below (please note that the picture shows the deNOx reactor only and not the deCO).

The first stage of the dry deCO and deNOx system is the catalytic removal of CO in a dedicated deCO reactor.

Data	unit	NORMAL
Data	unic	-
		OPERATION
Flow rate	kg/s	34.4
	kg/h	123,840
Gas density	kg/mc	1.27
Vol. flow rate	Am³/h	241.878
Normalized flow	Nm³/h	97,512
Static Pressure IN	barg	4,12
Temperature	°C	360
NOx Load	kg/hr	6.3
NOx Ratio	NO:NO ₂	90:10
CO load	kg/hr	19.82
VOCs load	Kg/hr	39,5
H ₂ O	Vol%	7.8%
N ₂	Vol%	77.1%
O ₂	Vol%	4%
CO2	Vol%	6.8%
SO ₂	Kg/h	0,74

Here the data at deCO reactor inlet when engine is in Normal Operation are summarized:

Flue gas is distributed to a layer of oxidation catalyst where CO is removed according to the following reaction:

(1) $2CO + O_2 \rightarrow 2CO_2$

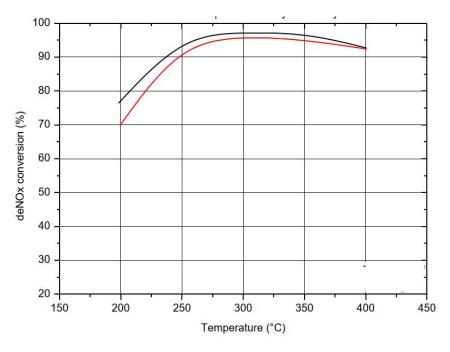
CO catalytic removal can reach efficiency close to 100%. In this case, the catalyst will be selected to reach up to 98% efficiency when running in Normal Operation mode with natural gas and iCER system.

DeCO reactor has also the function to oxidize VOCs to CO_2 and H_2O ; in particular, formaldehyde, by far the most important VOC, will be removed with efficiency >99%.

After deCO reactor, flue gas flows to another reactor equipped with deNOx catalyst. In the space between deCO reactor and deNOx reactor, urea $(CO(NH_2)_2)$ or ammonia solution is injected. The system for reagent injection is mainly composed by:

- *Flow Control Unit (FCU)* Complete Control skid to feed the injection lances with pneumatic control valve, MID flow meter, Manometers and valves complete mounted on a skid
- *Evaporator System* (if urea is used as reagent) with Ambient Air Blower, Pneumatic On-Off-Damper, Flowmeter, Pressure and Temperature Transmitter, Air Preheater and Spray Evaporator with Injection Lance. This is needed because for removing NO_x, urea must be heated to be converted to NH₃, CO₂ and H₂O.
- *Reagent / Compressed Air Direct Injection Lances* (if ammonia solution is used as reagent) for installation into flue gas duct. Compressed air is used for generating very fine reagent droplet by means of specially design nozzles (see pictures of lance and nozzle below)

Table 1 – Exhaust features at Genset outlet (before turbine)–



- Detailed 3D CFD-Optimization is needed for Complete flue gas ductwork design from deCO reactor exit till catalyst outlet including Reagent Direct Injection, Static Mixing System, and guide vanes (if required). Results of velocity, pressures NOx-NH₃ distribution values on top of first catalyst layer till all guarantees are met.
- Static Mixer System based on final CFD optimization to mix NH₃ and NO_x.

After reagent injection and mixing, in presence of catalyst based on vanadium pentoxide (V_2O_5) NOx are removed by NH₃ according to the following reactions (with several secondary and intermediate reactions), that occur at temperatures between 180°C and 500°C

- (2) $2NO + 2NH_3 + \frac{1}{2}O_2 \rightarrow 2N_2 + 3H_2O$
- (3) $NO_2 + 2NH_3 + \frac{1}{2}O_2 \rightarrow \frac{3}{2}N_2 + 3H_2O$
- (4) NO + NO₂ + 2NH₃ + $\frac{1}{2}$ O₂ \rightarrow 2 N₂ + 3H₂O

Catalytic nitrogen oxides removal can achieve very high efficiency as shown in the graph below:

 NO_x removal at Adam Forks occurs in the best temperature range, where efficiency higher that 90% is possible; anyway, it is assumed that maximum 90% removal is reached in deNO_x catalytic

reactor. A quantity of 13.2 lt/h of ammonia, in its typical aqueous solution at 19%, is needed to achieve the reaction when engine is running in Normal Operation.

After the deNOx, the gas is sent to the turbocharger and then it is split into two streams. One part, after being cooled, goes back to the engine, mixing with combustion air (flue gas recirculation); the remaining part, with a flow of 17.6 kg/s, represents the exhaust that is first quenched to 58°C, and then enters into the We-NOx system for SOx and NOx wet abatement.

3. Description of the wet system

The We-NOx system is a multistage plant:

- The first stage is designed for the removal of SOx and any other acids carried over by exhaust gases.
- The second and third stages are for the removal of NOx. These stages are based on an ORP process, an oxidation-reduction mechanism that converts NOx into gaseous nitrogen (N_2) , achieving a "zero instrumental" concentration at the stack if required.
- The fourth stage serves as the finishing and control unit to complete the process.

For better understanding, we would like to refer to the case at hand and describe step by step the entire process of NOx removal from the exhaust:

3.1 AVAILABLE DATA (inlet data to the De-SOx/We-NOx, downstream the dry treatment):

Data	unit	Normal Operation –
		75% gas
Flow rate	kg/s	17,6
	kg/h	63.360
Gas density	kg/Nmc	1,27
Vol. flow rate	ACMH	95.798
Normalized flow	Nmc/h	49.890
Static Pressure IN	mm.w.g	700
Temperature	°C	215
NOx Load	kg/hr	0,322
NOx Ratio	NO:NO ₂	90:10
SO ₂	Kg/h	0,380
H ₂ O	Vol %	17,87
N2	Vol %	72.04
O ₂	Vol %	3.74
CO ₂	Vol %	6.35

Table 2 – Exhaust features at engine outlet-

All following data have been calculated based upon Normal Operation 75% gas.

3.2 REQUESTED EFFICIENCY AT NORMAL OPERATION

- NOx = 80,45% [0,322_{IN}; 0,063_{OUT}]
- SOx = 70.0% [0,380_{IN}; 0,152_{OUT}]

The above efficiencies have been evaluated in the worst-case scenario. Of course, the same results in terms of removal efficiency can be achieved also in any other scenario.

Anyway, real removal efficiency of wet deSOx system will be much higher than the requested one, to avoid elemental sulfur formation in the following steps on treatment process.

3.3 CHEMICALS IN USE

- Caustic NaOH
- Sulfuric Acid H₂SO₄
- NaClO₂ (oxidizing agent)
- NaHS (reducing agent)

4. Wet Stage 1 (De-SOx)

This is a chemical-physical absorption unit where the acidic pollutants carried out by the exhaust are removed. Sulfur oxides, hydrogen halides, and any other acidic components are removed. The chemical in use is Caustic. Just as an example let's analyze one of the several reactions that happen at this stage:

(5) $SO_2 + NaOH \rightarrow NaHSO_3$

Acting opportunely on the operation parameters also the following reaction may take place in this stage:

(6) $SO_2 + 2NaOH \rightarrow Na_2SO_3 + H_2O$

With a similar mechanism, the other acids are also neutralized and removed from the exhaust.

With such a mass transfer from Gas phase to Liquid phase a gaseous pollutant (SO₂) is changed into a dissolved solids and carried over from the system through the liquid waste of the stage.

Pollutant	Inlet load (kg/h)	Abatement efficiency (%)	Outlet (kg/h)	Outlet on a yearly basis (kg/y)
SO ₂	0.38	* *	0.036	sent to stages 3 and 4
NO	NA	NA	NA	NA
NO ₂	0.03	* *	0.027 (sent to stage 3 and 4)	sent to stages 3 and 4

4.1 Performance of the wet stage 1 (De-SOx/We-NOx)

Table 3 – Performance of stage 1 –

4.2 Expected consumption of chemicals in wet stage 1

Chemical	Consumption (liters/hour)	Consumption on a yearly basis (m³/y)
NaOH (50% w) <mark>(*)</mark>	4 0,8 4.16	358

(**) Compare tabulated values in ATTACHMENT2

H ₂ SO ₄ (36%% w)	0.0	0.0
NaClO ₂ (20% w)	0.0	0.0
NaHS (45% w)	0.0	0.0

Table 4 – Expected consumption of chemicals in stage 1 –

(*) keeping the pH at low level 7.8 for lower absorption of CO2 (1.53 kg/hr only). With such pH value the neutralization is slower, but a much smaller consumption of caustic is ensured.

5. Wet stage 2

The main nitrogen oxides emitted during combustion processes are nitric oxide (NO), nitrogen dioxide (NO₂), and nitrous oxide (N₂O). Since the primary contribution in combustion processes comes from the first two, NOx is generally considered the sum of NO and NO₂. Other nitrogen oxides, such as NO₃ and N₂O₅, are present in much lower concentrations compared to the first two.

However, all the species mentioned above, when subjected to the We-NOx process, will be converted into atmospheric nitrogen. Specifically:

• NO and N₂O will be oxidized to NO₂.

This will occur through the following half-reactions:

(7) NO: $N^{2+} \rightarrow N^{4+} + 2e^{-}$

(8) N₂O: N¹⁺ \rightarrow N⁴⁺ + 3e-

To achieve the perfect completion of the reactions (7) and (8) a strong oxidizing agent must be used.

The kinetics of the reactions (7) and (8) are instantaneous so that at the exit of the second stage the residual NOx forms are: NO₂, NO₃, N₂O₅, which will be removed in the third stage.

Pollutant	Inlet load (kg/h)	Abatement efficiency (%)	Outlet (kg/h)	Outlet on a yearly basis
SO ₂	0.03	0	0.03	sent to stages 3 and 4
NO	0.29	* *	0.013	Sent to next stages
NO ₂	0.027	NA	0.45(*)	Sent to stages 3 and 4

5.1 Performance of wet stage 2

Table 5 – Performance of wet stage 2 –

(*) the increase is due to the conversion of NO to NO_2 in the reactor of stage 2

5.2 Expected chemical consumption in wet stage 2

Chemical Consumption (liters/hour)	Consumption on a yearly basis (m³/y)
------------------------------------	--------------------------------------

(**) Compare tabulated values in ATTACHMENT2

NaOH (50% w)	0.0	0.0
H ₂ SO ₄ (36%% w)	0.38	3.3
NaClO ₂ (20% w)	1.51	13.3
NaHS (45% w)	0.0	0.0

Table 6 – Expected consumption of chemicals in stage 2 –

6. Wet stage 3

In the third stage the residual NOx forms NO_2 , NO_3 , N_2O_5 are chemically reduced to gaseous nitrogen N_2 , through the following partial ionic reaction:

(9) $N^{4+} + 4e^{-} \rightarrow N^{0}$ (10) $N^{6+} + 6e^{-} \rightarrow N^{0}$

(11) $N^{5+} + 5e^- \rightarrow N^0$

N⁰ is the oxidation state of gaseous nitrogen. At the completion of this stage the We-NOx process will have given nitrogen back to the atmosphere as before the combustion reaction of fuel with air excess in the NOx source (as an endothermic engine or a furnace or oven). To achieve the perfect completion of the reactions (9), (10) and (11), a strong reducing agent must be used.

NOTE: the oxidizing and reducing agents are fundamental and have been chosen with accuracy, to avoid any undesired by-product to be produced during the process. The We-NOx process is Ozone-free, and no ozone is developed or produced during the process.

Pollutant	Inlet load (kg/h)	Abatement efficiency (%)	Outlet (kg/h)	Outlet on a yearly basis
SO ₂	0.03	99.99	traces	End
NO	0.013	NA	0.013	Sent to next stages
NO ₂	0.45	* *	0.018	sent to stage 4

6.1 Performance of wet stage 3

Table 7 – Performance of wet stage 3 –

6.2 Expected chemicals consumption in wet stage 3

Chemical	Consumption (liters/hour)	Consumption on a yearly basis (m³/y)
NaOH (50% w) <mark>(*)</mark>	223 68.58	1953 600.7
H ₂ SO ₄ (36%% w)	0.0	0.0
NaClO ₂ (20% w)	0.0	0.0
NaHS (45% w)	0.4	3.5

Table 8 – Expected chemicals consumption in wet stage 3 –

(*) Keeping the pH at 8.5 instead of 9 reduces the caustic consumption. The recommended value is pH = 9. However, it is possible to manage also with pH = 8.5 with a closer control.

(**) Compare tabulated values in ATTACHMENT2

7. Wet stage 4

This is a finishing stage where the eventual excess of reactants coming from the previous stages carried over by the exhaust (chemical mists, by-products etc.) is removed so to send the purified exhaust straight to the stack with no further pollutants except traces allowed by the regulations. The chemical in use in wet stage 4 is just caustic soda NaOH to keep the pH high enough to remove acidic traces carried over from the previous stages.

Pollutant	Inlet load (kg/h)	Abatement efficiency (%)	Outlet (kg/h)	Outlet on yearly basis	а
SO ₂	<0,001	-	<0,001	<0,1	
NO	0.013	NA	0.013	113,9	
NO ₂	0.018	* *	0.009	35,0	

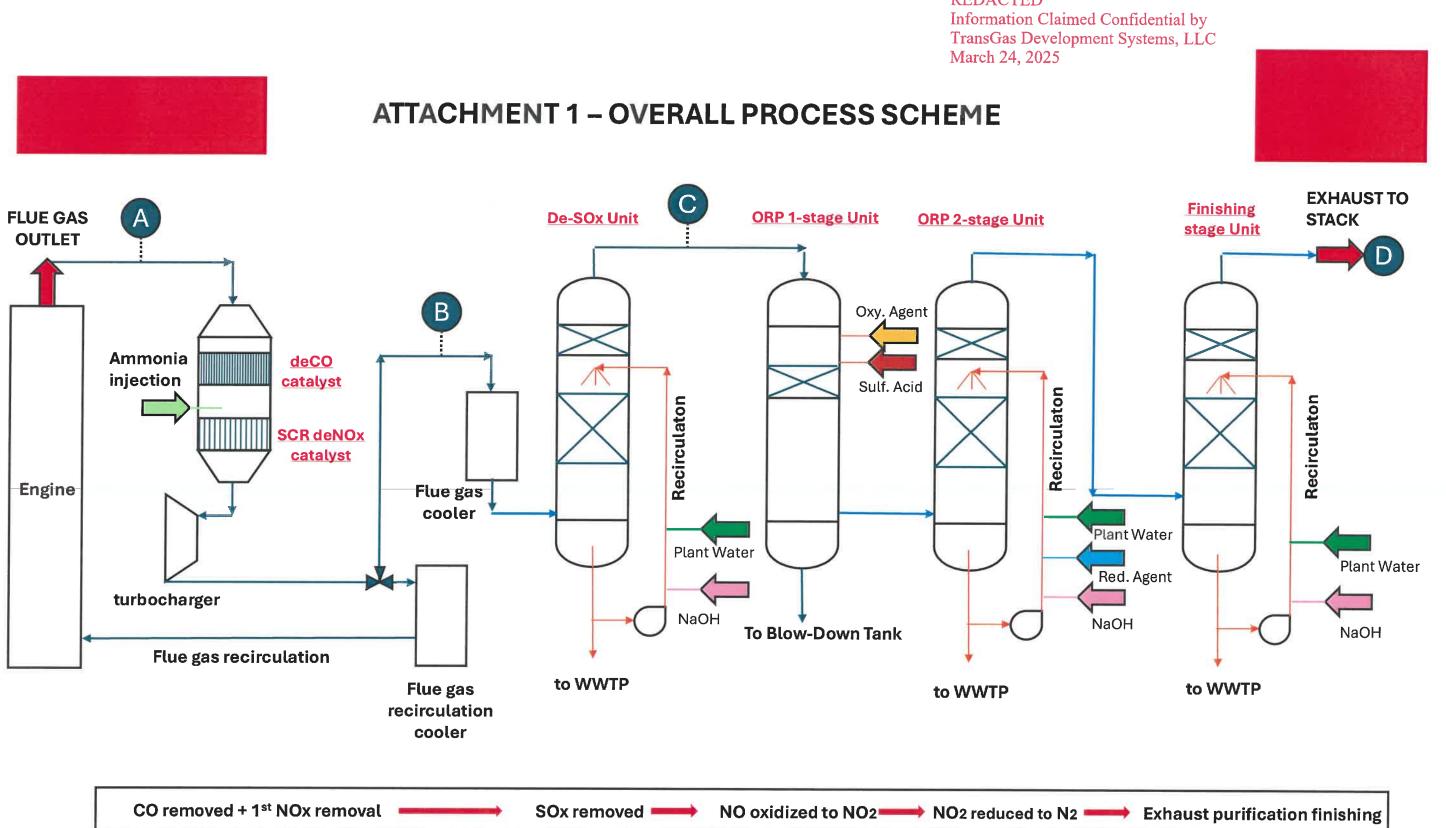
7.1 Performance of wet stage 4

Table 9 – Performance of wet stage 4 –

7.2 Expected chemicals consumption in wet stage 4

Chemical	Consumption (liters/hour)	Consumption on a yearly basis (m ³ /y)
NaOH (50% w)	40,5	354.7
H ₂ SO ₄ (36%% w)	0.0	0.0
NaClO ₂ (20% w)	0.0	0.0
NaHS (45% w)	0.0	0.0

Table 10 – Expected chemicals consumption in wet stage 4 –


8. Total chemicals consumption

In the case described by tables 1 and 2, the foreseen overall consumption of the chemicals for all stages will be:

- Aqueous ammonia for SCR reaction: 13.2 lt/h
- Caustic soda (aqueous sol. 50% w): 304.3 113.24 lt/h
- NaHS (aqueous sol. 45%): 0.4 lt/h
- NaClO₂ (aqueous sol. 25%): 1.51 lt/h
- Sulfuric acid (aqueous sol. 36%): 0.38 lt/h

Warning: the above figure is indicative for chemical consumption and is based upon the preliminary input data obtained. It may undergo modifications during the design phase of execution.

REDACTED

M13 of M18

		05/02/2025	rev 02	ATTACHMENT 2	– EMISSIO	N ABATEMENT S	TEPS	
Normal op	eration wit	h natural gas	75% load =	15750 kW	(mechanical pov	wer at the engine shaft)	Operational	8000
Flow rate	34,4	kg/s - before recirculation	17,6	kg/S - after recirculation				
	A	removal efficiency	В	removal efficiency	с	removal efficiency	D	removal efficiency
	kg/h	on deCO/SCR deNOx unit	kg/h	De-SOx Unit	kg/h	Wet De-NOx Unit	kg/h	overall%
NOx	6,30	90,0%	0,32	0,0%	0,32	80,45%	0,063	99,00%
СО	19,82	98,0%	0,21	0,0%	0,21	0,00%	0,206	98,96%
SOx	0,74	0,0%	0,38	90,5%	0,04	99,90%	0,000	99,99%
VOC	39,50	99,0%	0,20	0,0%	0,20	0,00%	0,202	99,49%
PM		a= aa/						
	0,38	25,0%	0,10	0,0%	0,10	0,00%	0,098	25,0%
Speed up v	vith Diesel 15,1	fuel _ kg/S - before recirculation	10% load = 15,1	2100 kW kg/S - after recirculation	(mechanical pov	ver at the engine shaft)	Operational	0,4
Speed up v	vith Diesel	fuel	- 10% load =	2100 kW				
Speed up v Flow rate	vith Diesel 15,1 A	fuel kg/s-before recirculation removal efficiency on deCO/SCR	10% load = 15,1 B	2100 kW kg/S - after recirculation removal efficiency	(mechanical pov	ver at the engine shaft) removal efficiency	Operational D	0,4 removal efficiency
Speed up v Flow rate NOx	vith Diesel 15,1 A kg/h	fuel kg/S-before recirculation removal efficiency on deCO/SCR deNOx unit	10% load = 15,1 B kg/h	2100 kW kg/S - after recirculation removal efficiency De-SOx Unit	(mechanical pov	ver at the engine shaft) removal efficiency Wet De-NOx Unit	Operational D kg/h	0,4 removal efficiency overall%
Speed up v	vith Diesel 15,1 A kg/h 40,61	fuel kg/S-before recirculation removal efficiency on deCO/SCR deNOx unit 0,0%	10% load = 15,1 B kg/h 40,61	2100 kW kg/S - after recirculation removal efficiency De-SOx Unit 0,0%	(mechanical pov C kg/h 40,61	ver at the engine shaft) removal efficiency Wet De-NOx Unit 0,0%	Operational D kg/h 40,614	0,4 removal efficiency overall% 0,00%
Speed up v Flow rate NOx CO	vith Diesel 15,1 A kg/h 40,61 2,14	fuel kg/S-before recirculation removal efficiency on deCO/SCR deNOx unit 0,0% 0,0%	10% load = 15,1 B kg/h 40,61 2,14	2100 kW kg/S - after recirculation removal efficiency De-SOx Unit 0,0% 0,0%	(mechanical pov C kg/h 40,61 2,144	ver at the engine shaft) removal efficiency Wet De-NOx Unit 0,0% 0,0%	Operational D kg/h 40,614 2,144	0,4 removal efficiency overall% 0,00% 0,00%

Fuel Switc	:h		10% load =	2100 kW	(mechanical pov	wer at the engine shaft)	Operational	0,15
Flow rate	15,6	kg/s - before recirculation	8,1	kg/s - after recirculation				
	A	removal efficiency	В	removal efficiency	С	removal efficiency	D	removal efficiency
	kg/h	on deCO/SCR deNOx unit	kg/h	De-SOx Unit	kg/h	Wet De-NOx Unit	kg/h	overall%
NOx	2,18	0,0%	1,13	0,0%	1,13	0,0%	1,134	48,08%
СО	7,56	0,0%	3,92	0,0%	3,923	0,0%	3,923	48,08%
SOx	0,12	0,0%	0,06	90,5%	0,01	99,90%	0,000	99,99%
VOC	22,66	0,0%	11,77	0,0%	11,77	0,0%	11,766	48,08%
PM	0,44	0,0%	0,23	0,0%	0,23	0,0%	0,228	0,0%
-								
Generator	switched o	n	20% load =	4200 kW	(mechanical pov	wer at the engine shaft)	Operational	0,15
						ver ut the engine shart y	operationat	-,
Flow rate	15,6	kg/S - before recirculation	8,1	kg/S - after recirculation			operational	
Flow rate	15,6 A	kg/S-before recirculation	8,1 B	kg/S - after recirculation	С	removal efficiency	D	removal efficiency
Flow rate	,	-	,	1	C kg/h			1
Flow rate	A	removal efficiency on deCO/SCR	В	removal efficiency		removal efficiency	D	removal efficiency
	A kg/h	removal efficiency on deCO/SCR deNOx unit	B kg/h	removal efficiency De-SOx Unit	kg/h	removal efficiency Wet De-NOx Unit	D kg/h	removal efficiency overall%
NOx	A kg/h 2,18	removal efficiency on deCO/SCR deNOx unit 0,0%	B kg/h 1,13	removal efficiency De-SOx Unit 0,0%	kg/h 1,13	removal efficiency Wet De-NOx Unit 0,0%	D kg/h 1,134	removal efficiency overall% 48,08%
NOx CO	A kg/h 2,18 7,56	removal efficiency on deCO/SCR deNOx unit 0,0% 0,0%	B kg/h 1,13 3,92	removal efficiency De-SOx Unit 0,0% 0,0%	kg/h 1,13 3,923	removal efficiency Wet De-NOx Unit 0,0% 0,0%	D kg/h 1,134 3,923	removal efficiency overall% 48,08% 48,08%

Load up co	old control		25% load =	5250 kW	(mechanical pov	wer at the engine shaft)	Operational	0,85
Flow rate	15,6	kg/s - before recirculation	8,1	kg/s - after recirculation				
	A	removal efficiency	В	removal efficiency	С	removal efficiency	D	removal efficiency
	kg/h	on deCO/SCR deNOx unit	kg/h	De-SOx Unit	kg/h	Wet De-NOx Unit	kg/h	overall%
NOx	4,20	80,0%	0,44	0,0%	0,44	80,0%	0,087	97,92%
CO	8,34	25,0%	3,25	0,0%	3,247	0,0%	3,247	61,06%
SOx	0,27	0,0%	0,14	90,5%	0,01	99,90%	0,000	99,99%
VOC	21,10	99,0%	0,11	0,0%	0,11	0,0%	0,110	99,48%
PM	0,36	0,0%	0,18	0,0%	0,18	0,0%	0,185	0,0%
Compensa	ition mode		100% load =					
			100% (0au -	21000 kW	(mechanical pov	wer at the engine shaft)	Operational	567
Flow rate		kg/S - before recirculation		21000 KW	(mechanical pov	ver at the engine shaft)	Operational	-
Flow rate		kg/S-before recirculation			(mechanical por	ver at the engine shaft) removal efficiency	Operational D	567 removal efficiency
Flow rate	42,1		20,4	kg/S - after recirculation				1
Flow rate	42,1	removal efficiency on deCO/SCR	20,4 B	kg/s-after recirculation	С	removal efficiency	D	removal efficiency
	42,1 A kg/h	removal efficiency on deCO/SCR deNOx unit	20,4 B kg/h	kg/s-after recirculation removal efficiency De-SOx Unit	C kg/h	removal efficiency Wet De-NOx Unit	D kg/h	removal efficiency overall%
NOx	42,1 A kg/h 4,20	removal efficiency on deCO/SCR deNOx unit 90,0%	20,4 B kg/h 0,20	kg/S - after recirculation removal efficiency De-SOx Unit 0,0%	C kg/h 0,20	removal efficiency Wet De-NOx Unit 90,0%	D kg/h 0,020	removal efficiency overall% 99,52%
NOx CO	42,1 A kg/h 4,20 8,93	removal efficiency on deCO/SCR deNOx unit 90,0% 90,0%	20,4 B kg/h 0,20 0,43	kg/s - after recirculation removal efficiency De-SOx Unit 0,0% 0,0%	C kg/h 0,20 0,433	removal efficiency Wet De-NOx Unit 90,0% 0,0%	D kg/h 0,020 0,433	removal efficiency overall% 99,52% 95,15%

Ramp dow	rate 20,8 kg/S-before recircu A removal efficie kg/h on deCO/SC deNOx uni 4,70 90,0% 12,16 90,0% 0,42 0,0% 26,06 99,0% 0,36 25,0%		40% load =	8400 kW	(mechanical pov	wer at the engine shaft)	Operational	1,65
Flow rate	20,8	kg/s - before recirculation	10,7	kg/S - after recirculation				
	A	removal efficiency	В	removal efficiency	С	removal efficiency	D	removal efficiency
	kg/h	on deCO/SCR deNOx unit	kg/h	De-SOx Unit	kg/h	Wet De-NOx Unit	kg/h	overall%
NOx	4,70	90,0%	0,24	0,0%	0,24	90,0%	0,024	99,49%
со	12,16	90,0%	0,63	0,0%	0,625	0,0%	0,625	94,86%
SOx	0,42	0,0%	0,21	90,5%	0,02	99,90%	0,000	99,99%
VOC	26,06	99,0%	0,13	0,0%	0,13	0,0%	0,134	99,49%
PM	0,36	25,0%	0,09	0,0%	0,09	0,0%	0,094	25,0%
Min Load								
Fill Luau			20% load =	4200 kW	(mechanical pov	wer at the engine shaft)	Operational	0,4
Flow rate	15,6	kg/S - before recirculation		4200 kW kg/S - after recirculation	(mechanical pov	wer at the engine shaft)	Operational	0,4
	15,6 A	kg/S - before recirculation			(mechanical pov	ver at the engine shaft) removal efficiency	Operational D	0,4 removal efficiency
			8,1	kg/S - after recirculation				1
	A	removal efficiency on deCO/SCR	8,1 B	kg/S - after recirculation	С	removal efficiency	D	removal efficiency
Flow rate	A kg/h	removal efficiency on deCO/SCR deNOx unit	8,1 B kg/h	kg/s-after recirculation removal efficiency De-SOx Unit	C kg/h	removal efficiency Wet De-NOx Unit	D kg/h	removal efficiency overall%
Flow rate	A kg/h 3,70	removal efficiency on deCO/SCR deNOx unit 80,0%	8,1 B kg/h 0,38	kg/s - after recirculation removal efficiency De-SOx Unit 0,0%	C kg/h 0,38	removal efficiency Wet De-NOx Unit 90,0%	D kg/h 0,038	removal efficiency overall% 98,96%
Flow rate NOx CO	A kg/h 3,70 8,08	removal efficiency on deCO/SCR deNOx unit 80,0% 25,0%	8,1 B kg/h 0,38 3,15	kg/S - after recirculation removal efficiency De-SOx Unit 0,0% 0,0%	C kg/h 0,38 3,145	removal efficiency Wet De-NOx Unit 90,0% 0,0%	D kg/h 0,038 3,145	removal efficiency overall% 98,96% 61,06%

Spin out			10% load =	= 2100 kW	(mechanical po	ower at the engine shaft)	Operational	0,1	/y
Flow rate	15,6	kg/S - before recirculation	8,:	Kg/S - after recirculation					
	A	removal efficiency	В	removal efficiency	С	removal efficiency	D	removal efficiency	
	kg/h	on deCO/SCR deNOx unit	kg/h	De-SOx Unit	kg/h	Wet De-NOx Unit	kg/h	overall%	
NOX	2,18	0,0%	1,13	0,0%	1,13	90,0%	0,113	94,81%	
со	7,56	0,0%	3,92	0,0%	3,923	0,0%	3,923	48,08%	
SOx	0,12	0,0%	0,06	90,5%	0,01	99,90%	0,000	99,99%	
voc	22,66	0,0%	11,77	0,0%	11,77	0,0%	11,766	48,08%	
PM	0,44	0,0%	0,23	0,0%	0,23	0,0%	0,228	0,0%	
Emergency Flow rate	/ Mode	75% load with Dies	sel and iCER :	 15750 kW kg/S - after recirculation 	(mechanical po	ower at the engine shaft)	Operational	192	ly
	/ Mode	75% load with Dies	sel and iCER :		(mechanical po	ower at the engine shaft) removal efficiency	Operational D	192 removal efficiency	/y
	<mark>/ Mode</mark> 37,8	75% load with Dies	sel and iCER = 32,4	kg/S - after recirculation					/y
Flow rate	/ Mode 37,8 A	75% load with Dies kg/s - before recirculation removal efficiency on deCO/SCR	sel and iCER = 32,4 B	kg/S - after recirculation	С	removal efficiency	D	removal efficiency	/y
Flow rate	/ Mode 37,8 A kg/h	75% load with Dies kg/s - before recirculation removal efficiency on deCO/SCR deNOx unit	sel and iCER = 32,4 B kg/h	kg/S - after recirculation removal efficiency De-SOx Unit	C kg/h	removal efficiency Wet De-NOx Unit	D kg/h	removal efficiency overall%	ly
Flow rate NOx CO SOx	/ Mode 37,8 A kg/h 234,68	75% load with Dies kg/s - before recirculation removal efficiency on deCO/SCR deNOx unit 90,0%	sel and ICER = 32,4 B kg/h 20,12	kg/S - after recirculation removal efficiency De-SOx Unit 0,0%	C kg/h 20,12	removal efficiency Wet De-NOx Unit 80,5% 0,0% 99,90%	D kg/h 3,932	removal efficiency overall% 98,32%	/y
Flow rate NOx CO SOx VOC	/ Mode 37,8 A kg/h 234,68 4,73	75% load with Dies kg/s - before recirculation removal efficiency on deCO/SCR deNOx unit 90,0% 90,0%	sel and ICER = 32,4 B kg/h 20,12 0,41	kg/s - after recirculation removal efficiency De-SOx Unit 0,0% 0,0%	C kg/h 20,12 0,406	removal efficiency Wet De-NOx Unit 80,5% 0,0%	D kg/h 3,932 0,406	removal efficiency overall% 98,32% 91,43% 99,99% 99,14%	/y
Flow rate NOx CO SOx VOC PM	/ Mode 37,8 A kg/h 234,68 4,73 6,03	75% load with Dies kg/s - before recirculation removal efficiency on deCO/SCR deNOx unit 90,0% 90,0% 0,0% 99,0% 25,0%	B kg/h 20,12 0,41 5,17	kg/s - after recirculation removal efficiency De-SOx Unit 0,0% 0,0% 90,5%	C kg/h 20,12 0,406 0,49	removal efficiency Wet De-NOx Unit 80,5% 0,0% 99,90%	D kg/h 3,932 0,406 0,000	removal efficiency overall% 98,32% 91,43% 99,99%	ly

REDACTED Information Claimed Confidential by TransGas Development Systems, LLC March 24, 2024

.

M18 of M18

ATTACHMENT N

SUPPORTING EMISSIONS CALCULATIONS

TranGas Development, LLC Power Campus

By: PEW Date: 3/20/2025				Checked By: KBK Date: 03/21/2025
Facility Total	Emission Type	Uncontrolled	Controlled]
	. –	tpy	tpy	-
	PM	277.33	215.17	
	PM10	254.42	192.26	
	PM2.5	250.19	188.03	
	SO2	495.46	9.93	
	NOx	13,493.81	194.30	
	СО	11,173.65	205.62	
	VOC	11,517.84	117.66	
	Total HAPS	85.78	0.87	1
Engines (Worst Case)		Uncontrolled	Controlled	Т
Engines (worst Case)	Emission Type			
	DM	tpy 248.69	tpy	4
	PM PM10		186.53	4
	PM10	248.69	186.53	-
	PM2.5	248.69	186.53	4
	SO2	495	9.93	4
	NOx	13,494	194.30	-
	CO	11,174	205.62	
	VOC	11,517	116.59	
	Total HAPS	85.77	0.86	
Tanks		Uncontrolled	Controlled	1
	Emission Type	tpy	tpy	
	VOC	0.75	0.75	
				-
Haulroads and Fugitive Leaks	Emission Type	Uncontrolled	Controlled	
		tpy	tpy	
	PM	28.64	28.64	
	PM10	5.73	5.73	
	PM2.5	1.50	1.50	
	VOC	0.31	0.31]
	Total HAPS	0.0053	0.0053]

US! All tons are short tons					114 [-]				Fuel Choices																	
907.18		gine Power			1,000 [kW]				Diesel													(Calculations provi	ided by Engine S	Supplier with edits	by POTESTA
Pounds!	Total mechanical Powe	(theoretic)			2,394 [MW				Gas																	
2.20	Ib/kg Effective n	ech. Power			1,796 [MW	1																				
Convert Ib=> t_s	Total P	wer electr.			2,298 [MW	1																				
2000	lb/t_s Effective e	ectr. Power		:	1,724 [MW	1																				
Gas density	Yearly Produce	Electricity		1	5,101 [GW	h]																weight Nm3 air				
0.0462	lb/ft ³																					1.293	kg/Nm3]			
Diesel Density													Enthalpy													
7.10	lb/gal Si	ngle Engine								Fuel Consur	nption	before Turbi	ne	Engine Out	0	il consumption			NOx					PM		
MJ => MMBTU	-		Time	Time	Time	Load	l Lo	ad El	ectricity Fuel type	Gas Die	sel Te	emp mass flow	Tem	np mass f	low m	ass flow N	IOx gas	NOx diesel N	Ox engine	Abat. Eff.	NOx stack	PM gas	PM diesel	PM engine	Abat. Eff.	PM stack
0.00095 MMB	ru/MI		[d]	[h	1	[min]	[%]	[kW]	[GWh/a] [-]	[kg/h]	[kg/h]	[°C] [J	:g/s]	[] []	kg/s]	[kg/h]	[g/kWh]	_ [g/kWh]	[kg/h]	[%]	_ [kg/h]	[mg/Nm ³]	[mg/Nm ³]	[kg/h]	[%]	– [kg/h]
	Position in emiss.	bat. Schem										IP800 MP800	MP				107 2	10, J	1P800		MP850	. 0, 1		MP820A	• •	MP850
		Speed up		0	0.08	5	10%	2100	0 Diesel	0	462.0	187	15.1	172	8	0.37	1.04		40.614	0.0		10.626	6.85	0.152486311		
.19		Fuel Switch		0	0.03	2	10%	2100	0 Gas	294	4.6	194	15.6	172	8.1	0.37	1.04	19.34	2.184	0.0			6.85	0.239639722		
-art	Generator			0	0.08	5	20%	4200	0 Gas	576	7.6	248	15.6	208	8.1	0.6	0.88		3.696	0.0			8.02	0.209329559		
5		old control		0	0.17	10	25%	5250	0 Gas	713	8.4	275	15.6	226	8.1	0.73	0.80		4.2	25.0			8.61	0.194174478		
		Operation	2	33	8000	480000	75.0%	15750	121 Gas	2075	12.6	360	34.4	215	17.6	1.84	0.40		6.3	99.0			12.08	0.205809745		
		ation Mode		24	567	34032	100%	21000	11 Gas	2897	12.0	406	42.1	231	20.4	2.4	1.00		21	99.0			8.40	0.322045476		
				2 4		34032																				
		tamp down		U	0.33	20	40%	8400	0 Gas	1109	10.1	319	20.8	236	10.7	1.08	0.56		4.704	99.0			10.37	0.196443063		
Chut ON		Min load		0	0.08	5	20%	4200	0 Gas	576	7.6	248	15.6	208	8.1	0.6	0.88		3.696	70.0			8.02	0.209329559		
2, 0,	_	Spin out		U	0.02	1	10%	2100	0 Gas	294	4.6	194	15.6	172	8.1	0.37	1.04	19.34	2.184	40.0			6.85	0.239639722		
		ency Mode		8	192	11520	75%	15750	3 Diesel	0	2570.4	351	38.5	198	23.2	1.84	0.40	14.90	234.675	98.0	4.6935	4.2	12.08	0.779972158	3 25.0%	0.584979
	Oner	tional time	3/	65	8760																					

																			Sulphur cont	ent			
																		gas d	liesel	lub oil			
																		0.000143	0.002	0.008			
	Single Engine				CO_dry								VOC_wet							SC	2		
		C	D_gas	CO_	diesel	CO_engine	Abat. Eff.	CO_stack	THC_gas	CH4_gas	VOC_gas	THC_diesel	VOC_d	diesel \	VOC_engine	Abat. Eff.	VOC_stack	gas d	liesel	lub oil	Total	Abatement	Total
		[ppm]	[mg/Nm3]	[ppm]	[mg/Nm3]	[kg/h]	[%]	[kg/h]	[ppm]	[ppm]	[mg/Nm3]	[ppm]	[mg	g/Nm3]	[kg/h]	[%]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[%]	[kg/h]
	Position in emiss. Abat. Schem					MP820A		MP850						1	MP820A		MP850				MP820A		MP850
	Speed up	13	9 174.0	41	51.0	1.135658791	0.0%	1.135658791	921	788	3 262.8	3	202	397.0	8.842766514	0.0%	8.842766514	0	0.924	0.00296	0.92696	95.0%	0.046
	Fuel Switch	13	9 174.0	41	51.0	3.923033089	0.0%	3.923033089	921	788	3 262.8	3	202	397.0	5.92666448	0.0%	5.92666448	0.04197238	0.00924	0.00296	0.054172378	99.0%	0.000542
cxarc	Generator switched on	14	19 186.0	40	49.5	4.193587096	0.0%	4.193587096	878	750	251.3	1	181	356.2	5.662606142	0.0%	5.662606142	0.08235628	0.01512	0.0048	0.102276281	99.0%	0.001022
-)	Load up cold control	15	64 191.9	39	48.7	4.328864099	25.0%	3.246648074	856	732	2 245.2	2	171	335.8	5.530576973	25.09	4.147932729	0.10195256	0.0168	0.00584	0.124592555	99.0%	0.001245
	Normal Operation	16	6 206.9	36	45.0	10.14076497	98.5%	0.152111475	722	616	5 209.5	5	103	201.9	10.26458552	99.0%	0.102645855	0.29669339	0.0252	0.01472	0.336613391	99.0%	0.003366
	Compensation Mode	18	30 224.9	83	103.1	12.7761614	95.0%	0.63880807	755	644	1 218.3	3	91	179.2	12.40156502	99.0%	0.12401565	0.41422521	0.0252	0.0192	0.458625213	99.0%	0.004586
	Ramp down	16	68 209.9	37	46.5	6.254473785	94.0%	0.375268427	791	675	5 227.3	7	140	274.7	6.782597194	99.0%	0.067825972	0.15860305	0.02016	0.00864	0.187403046	99.0%	0.0018
N 16	Min load	14	19 186.0	40	49.5	4.193587096	50.0%	2.096793548	878	750	251.1	1	181	356.2	5.662606142	70.09	1.698781843	0.08235628	0.01512	0.0048	0.102276281	99.0%	0.001022
Shi Dor.	Spin out	13	9 174.0	41	51.0	3.923033089	35.0%	2.549971508	921	788	3 262.8	3	202	397.0	5.92666448	40.09	3.555998688	0.04197238	0.00924	0.00296	0.054172378	99.0%	0.00054:
	Emergency Mode	16	6 206.9	36	45.0	2 905950437	91.0%	0 261535539	722	616	5 209 9	5	103	201.9	13 04146662	99.03	0 130414666	0	5 1408	0 01472	5 15552	95.0%	0.25

									Hazardous e																			
									Fraction of N	MHC (AP-42, T	able 3.4-3)																	
									NMHC	Benzene	Toluene	Xylenes F	ormaldehyde	Acrolein	Acetaldehyde	Naphthalene												
		CO2-Co	ontent		GHG-facto	r			0.2	0.000776	0.000281 0	.000193	0.0000789	0.00000788	0.0000225	0.00013												
		2.743	3.158	28			265		100%	0.388%	0.141%	0.097%	0.039%	0.004%	0.011%	0.065%												
	Single Engine			CO	2_equivalent			NMHC			Benzene					Toluene					Xylenes				Fo	rmaldehyde		
	C	O2_gas	CO2_diesel	Methane I	N2O	N2O	CO2_eq		Uncontrolled		Abatement Control	led		Uncon	trolled	Abatement	Cont	rolled	Uncontrol	led Ab	patement	Contro	olled	Unconf	trolled Aba	atement	Controlle	ed
		[kg/h]	[kg/h]	[kg/h]	[ppm]	[kg/h] [kg/h]	[lb/h]	[lb/h] [t/a]	[%] [lb/h]	[t	/a]	[lb/h]	[t/a]	[%] [/	lb/h] [t/a]	[lb/h] [t/a] [%	5] [lb/h] [[t/a]	[lb/h]	[t/a]	[%]	[lb/h]	[t/a]
	Position in emiss. Abat. Schem M		MP850	MP850	MP850	MP850	MP850		MP820A	/IP820A	MP850	M	IP850	MP820A	MP820A	N	VIP850 1	MP850	MP820A M	/IP820A	MP8	50 N	MP850 N	VIP820A I	MP820A	MP	2850 MF	IP850
	Speed up	0.00	1459.00	0.00		1.20	0.05 14	73 19.49	0.07564	0.00036	0.0%	0.07564	0.00036	0.02739	0.00013	0.0%	0.02739	0.00013	0.01881	0.00009	0.0%	0.01881	0.00009	0.00769	0.00004	0.0%	0.00769	0.00004
¹⁾⁹	Fuel Switch	805.11	14.59	12.72		1.20	0.05 11	90 13.07	0.05070	0.00010	0.0%	0.05070	0.00010	0.01836	0.00003	0.0%	0.01836	0.00003	0.01261	0.00002	0.0%	0.01261	0.00002	0.00515	0.00001	0.0%	0.00515	0.00001
cxaft'	Generator switched on	1579.74	23.87	12.11		1.20	0.05 19	57 12.48	0.04844	0.00023	0.0%	0.04844	0.00023	0.01754	0.00008	0.0%	0.01754	0.00008	0.01205	0.00006	0.0%	0.01205	0.00006	0.00492	0.00002	0.0%	0.00492	0.00002
,	Load up cold control	1955.64	26.53	11.81		1.20	0.05 23	27 12.19	0.04731	0.00045	25.0%	0.03548	0.00034	0.01713	0.00016	25.0%	0.01285	0.00012	0.01177	0.00011	25.0%	0.00882	0.00008	0.00481	0.00005	25.0%	0.00361	0.00003
	Normal Operation	5691.12	39.79	21.59		1.20	0.12 63	66 22.63	0.08780	40.03794	99.0%	0.00088	0.40038	0.03179	14.49827	99.0%	0.00032	0.14498	0.02184	9.95789	99.0%	0.00022	0.09958	0.00893	4.07087	99.0%	0.00009	0.04071
	Compensation Mode	7945.59	39.79	26.19		2.40	0.27 87	90 27.34	0.10608	3.42968	99.0%	0.00106	0.03430	0.03841	1.24193	99.0%	0.00038	0.01242	0.02638	0.85300	99.0%	0.00026	0.00853	0.01079	0.34871	99.0%	0.00011	0.00349
	Ramp down	3042.29	31.83	14.40		1.20	0.07 34	96 14.95	0.05802	0.00110	99.0%	0.00058	0.00001	0.02101	0.00040	99.0%	0.00021	0.00000	0.01443	0.00027	99.0%	0.00014	0.00000	0.00590	0.00011	99.0%	0.00006	0.00000
Nr. M	Min load	1579.74	23.87	12.11		1.20	0.05 19	57 12.48	0.04844	0.00023	70.0%	0.01453	0.00007	0.01754	0.00008	70.0%	0.00526	0.00002	0.01205	0.00006	70.0%	0.00361	0.00002	0.00492	0.00002	70.0%	0.00148	0.00001
She Do.	Spin out	805.11	14.59	12.72		1.20	0.05 11	90 13.07	0.05070	0.00005	40.0%	0.03042	0.00003	0.01836	0.00002	40.0%	0.01101	0.00001	0.01261	0.00001	40.0%	0.00757	0.00001	0.00515	0.00000	40.0%	0.00309	0.00000
	Emergency Mode	0.00	8117.32	0.00		2.40	0.30 81	98 28.75	0.11156	1.22087	99.0%	0.00112	0.01221	0.04040	0.44209	99.0%	0.00040	0.00442	0.02775	0.30364	99.0%	0.00028	0.00304	0.01134	0.12413	99.0%	0.00011	0.00124
										Year	y Emissions	[t/a]	0.448016526		Y	early Emissions	[t/a]	0.162232789		Ye	arly Emissions	[t/a]	0.111426791		Yea	arly Emissions	[t/a]	0.045552196
										Year	y Emissions	[lb/a]	896.0330527		Y	early Emissions	[lb/a]	324.4655771		Ye	arly Emissions	[lb/a]	222.8535814		Yea	arly Emissions	[lb/a]	91.10439157

	Single Engine			Acrolein				Ace	taldehyde				Naphthale	ene					Total	HAPS		
		Uncont	trolled /	Abatement	Controll	ed	Unconti	rolled	Abatement	Controll	led	Uncontrolled	Abatem	nent	Controlle	ed		Uncontrolled			Controlled	
	[11	b/h]	[t/a]	[%] [lb/h]	[t	t/a]	[lb/h]	[t/a]	[%] [It	b/h] [t	t/a] [lb/h]	[t/a]	[%]	[lb/h	n] [t/	a]	[lb/h]	[t/a] [t	:/a]	[lb/h]	[t/a]	[t/a]
	Position in emiss. Abat. Schem M	1P820A	MP820A	MP850	N	/IP850	MP820A I	MP820A	M	1P850 N	/IP850 MP820	IA MP8	20A	MP8	50 MF	P850	per engine	per engine a	II engines	per engine	per engine	all engines
	Speed up	0.00077	0.000004	0.0%	0.00077	0.000004	0.00219	0.000010	0.0%	0.00219	0.000010	0.01267	0.00006	0.0%	0.01267	0.00006	0.14517	0.00001	0.00069	0.14517	0.00001	0.0
, ¹⁾⁹	Fuel Switch	0.00051	0.000001	0.0%	0.00051	0.000001	0.00147	0.000003	0.0%	0.00147	0.000003	0.00849	0.00002	0.0%	0.00849	0.00002	0.09729	0.00000	0.00018	0.09729	0.00000	0.0
Star	Generator switched on	0.00049	0.000002	0.0%	0.00049	0.00002	0.00140	0.000007	0.0%	0.00140	0.000007	0.00811	0.00004	0.0%	0.00811	0.00004	0.09296	0.00000	0.00044	0.09296	0.00000	0.0
,	Load up cold control	0.00048	0.000005	25.0%	0.00036	0.000003	0.00137	0.000013	25.0%	0.00103	0.000010	0.00793	0.00008	25.0%	0.00594	0.00006	0.09079	0.00001	0.00086	0.06809	0.00001	0.0
	Normal Operation	0.00089	0.406571	99.0%	0.00001	0.004066	0.00255	1.160894	99.0%	0.00003	0.011609	0.01471	6.70739	99.0%	0.00015	0.06707	0.16851	0.67403	76.83982	0.00169	0.00674	0.1
	Compensation Mode	0.00108	0.034827	99.0%	0.00001	0.000348	0.00308	0.099443	99.0%	0.00003	0.000994	0.01777	0.57456	99.0%	0.00018	0.00575	0.20359	0.05774	6.58215	0.00204	0.00058	0.0
	Ramp down	0.00059	0.000011	99.0%	0.00001	0.000000	0.00168	0.000032	99.0%	0.00002	0.000000	0.00972	0.00018	99.0%	0.00010	0.00000	0.11135	0.00002	0.00212	0.00111	0.00000	0.0
Nr. Mr	Min load	0.00049	0.000002	70.0%	0.00015	0.000001	0.00140	0.000007	70.0%	0.00042	0.000002	0.00811	0.00004	70.0%	0.00243	0.00001	0.09296	0.00000	0.00044	0.02789	0.00000	0.0
Sur Do.	Spin out	0.00051	0.000000	40.0%	0.00031	0.000000	0.00147	0.000001	40.0%	0.00088	0.000001	0.00849	0.00001	40.0%	0.00510	0.00000	0.09729	0.00000	0.00009	0.05838	0.00000	0.0
	Emergency Mode	0.00113	0.012397	99.0%	0.00001	0.000124	0.00323	0.035399	99.0%	0.00003	0.000354	0.01869	0.20453	99.0%	0.00019	0.00205	0.21410	0.02055	2.34306	0.00214	0.00021	0.0
			,	Yearly Emissions	[t/a]	0.004549446		Yearly	/ Emissions	[t/a]	0.0129902		Yearly Er	missions	[t/a] (0.075054315	1.31	0.75	85.77	0.50	0.01	
			,	Yearly Emissions	[lb/a]	9.09889234		Yearly	/ Emissions	[lb/a]	25.98034		Yearly Er	missions	[lb/a]	150.10863	,					

nes
0.00069
0.00018
0.00044
0.00065
0.76840
0.06582
0.00002
0.00013
0.00006
0.02343
0.86

	Entire Plant, worst case																
Se	Startups per year	5	[-] Ga:	s Die	esel NC)x	PM	со	VOC	SO2	CO2_e		Startups NOx	PM	со	5 [- V] OC SO2
cas			[t/a	a] [t/	'a] [t/	a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]		[t/a]	[t/a]	[t/a]	[t	/a] [t/a]
Ļ	Speed up Fuel Switch Generator switched on	0 0.42 0 0.17 0 0.42	25 10 25	0.00 6.15 30.15	24.19 0.10 0.40	2.13 0.05 0.19		0.01 0	0.06 0.08 0.22	0.46 0.12 0.30	0.00 0.00 0.00	77 25 102		2.13 0.05 0.19	0.01 0.01 0.01	0.06 0.08 0.22	0.46 0.12 0.30
Š	Load up cold control Normal Operation	0 0.83 333 7996.80	50 479808	74.66 2084957.39	0.88 12661.81	0.33 63.31	1	0.02 C	0.34	0.43 103.15	0.00 3.38	244 6397261	6	0.44	0.02	0.45 10190.51	0.58 10314.94
ō	Compensation Mode Ramp down	24 567.20 0 1.67 0 0.42	34032 100	206464.71 232.29	898.08 2.11 0.40	14.97 0.01		0.03 C	5.53 0.08 0.11	8.84 0.01	0.33	626484 732 102	14	496.80 0.99	22.95 0.04	910.64 1.31	883.94 1.42
Worst	Min load Spin out Emergency Mode	0 0.42 0 0.08 8 192.00	25 5 11520	30.15 3.07 0.00	0.40 0.05 62017.04	0.06 0.01 113.24		0.00 0	0.03 5.31	0.09 0.04 3.15	0.00 0.00 6.22	102 12 197796	51	0.19 0.02 562.10	0.01 0.00 18.82	0.22 0.04 70.11	0.30 0.06 314.66
	Total	8760.00		2,291,799	75,605	194		187 2	206	117	10	7,222,837	1	3,494	249	11,174	11,517
	Hourly base																
	Single Engine raw emissions	Load	Gas		Diesel		NOx	PM	со	voc		CO2	Methane	N2O	CO2_6		eat Input
ns Ir]	Speed up Fuel Changeover	[%] 10% 10%	[lb/h] 0.0 647.1	[ft³/h] 0 13994	[lb/h] 1018.5 10.2	[gal/h] 143.46 1.43	[lb/h]		[lb/h] 0.34 0.53	2.50 8.65	I] [lb/h] 19.49 13.07	[lb/h] 2.04 0.12	[lb/h] 3,217 1,807	[lb/h] 0.00 28.03	[lb/h] 0.12 0.12	3,247 2,623	1MBtu/hr 18.74 13.86
Raw Emissions [pounds/hour]	Generator switched on Load up cold control	20% 25%	1269.7 1571.8	27459 33993	16.7 18.5	2.35 2.61		8.15 C	0.46 0.43	9.25 9.54	12.48 12.19	0.23 0.27	3,535 4,370	26.70 26.03	0.12 0.12	4,314 5,130	27.13 33.55
nis Is/h		Load [%]	Gas [lb/h]	[ft³/h]	Diesel [lb/h]	[gal/h]	NOx [lb/h]	PM [lb/h]	CO [lb/h]	VOC [lb/h] [lb/h]	CO2 [lb/h]	Methane [lb/h]	N2O [lb/h]	CO2_e [lb/h]		
, Er	Normal Operation Compensation Mode	75% 100% Load	4574.1 6386.1 Gas	98924 138112	27.8 27.8 Diesel	3.91 3.91			0.45 0.71 CO	22.36 28.17 VOC	22.63 27.34 SO2	0.74 1.01 CO2	12,634 17,605 Methane	47.60 57.73 N2O	0.25 0.59 CO2_e	14,035 19,378	97.15 135.44
pou	Ramp down	[%] 40%	[lb/h] 2445.2	[ft³/h] 52882	[lb/h] 22.2		[lb/h]	[lb/h]	[lb/h] 0.43	[lb/h 13.79		[lb/h] 0.41	[lb/h]	[lb/h] 31.74	[lb/h] 0.15		52.07
	Min load Spin out	20% 10%	1269.7 647.1	27459 13994	16.7 10.2	2.35 1.43	NOv		0.46 0.53 CO	9.25 8.65 VOC	12.48 13.07	0.23 0.12 CO2	3,535 1,807	26.70 28.03 N2O	0.12 0.12	4,314 2,623	27.13 13.86
	Emergency Mode	Load [%] 75%	Gas [lb/h] 0.0	[ft³/h] 0	Diesel [lb/h] 5666.8		NOx [lb/h] 5	[lb/h]	[lb/h]	(lb/h 6.41		[lb/h] 11.37	Methane [lb/h] 17,896	[lb/h] 0.00	CO2_e [lb/h] 0.67	9 18,073	104.25
							NOx	PM	со	VOC		CO2	Methane			0	
<u>lo</u>	Speed up						[%]		[%] 0%	[%] 0%	[%] 0%	[%] 95%	[%] 0%	[%] 0%	[%] 0%	0%	
ont	Fuel Changeover Generator switched on Load up cold control							0% 0% 25%	0% 0% 0%	0% 0% 25%	0% 0% 25%	99% 99% 99%	0% 0% 0%	0% 0% 0%	0% 0% 0%	0% 0% 0%	
on Cc [%]							NOx [%]	PM [%]	CO [%]	VOC [%]	SO2 [%]	CO2 [%]	Methane [%]	N2O [%]	[%]	0	
	Normal Operation Compensation Mode						10		25% 25% CO	99% 95%	99% 99%	99% 99% CO2	0% 0% Methane	0% 0% N2O	0% 0%	0% 0%	
Emission Control [%]	Ramp down						NOx [%]	[%]	[%] 25%	VOC [%] 94%	SO2 [%] 99%	[%]	[%] 0%	[%] 0%	[%] 0%	0%	
ЕП	Min load Spin out							40%	0% 0%	50% 35%	70% 40%	70% 40%	0% 0%	0% 0%	0% 0%	0% 0%	
	Emergency Mode						NOx [%]	PM [%] 98% 2	CO [%] 25%	VOC [%] 91%	SO2 [%] 99%	CO2 [%] 99%	Methane [%] 0%	N2O [%] 0%	[%] 0%	0%	
S	Hourly base Single Engine controlled emissions	Load	Gas		Diesel		NOx	PM	со	VOC	SO2	CO2	Methane	N2O	0.0	0146993	
ion .]	Speed up	[%] 10%	[lb/h] 0.0	[ft³/h]	[lb/h] 1018.5		[lb/h]	[lb/h]	[lb/h] 0.34	(lb/h 2.50		(lb/h) 0.10	[lb/h] 3,217	[lb/h] 0.00	[lb/h] 0.12		
niss	Fuel Changeover Generator switched on	10% 20%	647.1 1269.7	13994 27459	10.2 16.7	1.43 2.35		8.15 C	0.53 0.46	8.65 9.25	13.07 12.48	0.00	1,807 3,535	28.03 26.70	0.12 0.12	2,623 4,314	
/hc	Load up cold control	25% Load	1571.8 Gas	33993	18.5 Diesel		NOx	PM	0.43 CO	7.16 VOC		0.00 CO2	4,370 Methane			5,130 0146993	
itrolled Emissi pounds/hour]	Normal Operation Compensation Mode	[%] 75% 100%	[lb/h] 4574.1 6386.1	[ft³/h] 98924 138112	[lb/h] 27.8 27.8	[gal/h] 3.91 3.91	[lb/h]		[lb/h] 0.34 0.53	0.34 1.41	I] [lb/h] 0.23 0.27	[lb/h] 0.01 0.01		[lb/h] 47.60 57.73	[lb/h] 0.25 0.59	14,035 19,378	
olle		Load [%]	Gas [lb/h]	[ft ³ /h]	Diesel [lb/h]		NOx [lb/h]	PM [lb/h]	CO [lb/h]	VOC [lb/h	SO2	CO2 [lb/h]	Methane [lb/h]			0146993	
Controlled Emissio [pounds/hour]	Ramp down Min load	40% 20%	2445.2 1269.7	52882 27459	22.2 16.7	3.13 2.35		0.10 0 2.44 0	0.32 0.46	0.83 4.62	0.15 3.75	0.00 0.07	6,777 3,535	31.74 26.70	0.15 0.12	7,707 4,314	
CO	Spin out	10% Load [%]	647.1 Gas [lb/h]	13994 [ft³/h]	10.2 Diesel [lb/h]		NOx [lb/h]	PM	0.53 CO [lb/h]	5.62 VOC		0.07 CO2 [lb/h]	1,807 Methane [lb/h]	28.03 N2O [lb/h]	0.12 0.0 [lb/h]	2,623 10146993	
	Emergency Mode	[%] 75%	0.0	[ic /ii]	5666.8	798.13		[lb/h] 10.35 1	1.29	(lb/h 0.58	0.29	0.11	17,896	0.00	0.67	18,073	

CO2_e [t/a]

0.05 0.00 0.01 338.26 32.69 0.04 0.01 0.00 124.39 495

Yearly base														
									100					
Single Engine raw emissions	Duration	Gas	(63/-1	Diesel	f==1/=1	NOx	PM	CO	VOC	SOx			ethane N2O	
Canadius	[h/a] 0.08	[t/a] 0	[ft³/a]	[t/a] 0.04	[gal/a] 11.95	[t/a]	[t/a] 0.004 0.00	[t/a]	[t/a] 0.000	[t/a] 0.001	0.000	/a] [t 0.134	/a] [t/a] 0.000	[t, 0.00000
Speed up	0.08	0.01	466	0.04	0.05		0.004 0.00			0.001	0.000	0.134	0.000	0.00000
Fuel Changeover Generator switched on	0.03	0.1	2,288	0.00	0.05		0.000 0.00			0.001	0.000	0.030	0.000	0.00000
Load up cold control	0.08	0.1	5,666	0.00	0.43		0.001 0.00			0.001	0.000	0.364	0.001	0.00000
Load up cold control			5,000		0.45	NOx	PM	со	VOC	SOx				
	Duration	Gas [t/a]	[ft³/a]	Diesel [t/a]	[gal/a]		[t/a]	[t/a]	[t/a]	[t/a]			ethane N2O /a] [t/a]	C([t]
Normal Commission	[h/a]				[gai/a] 34273	[t/a]	[t/a] 60.83 1.9			[t/a] 99.12	3.25	/aj [t. 55339	208 (t/a)	1.1
Normal Operation	8760	20034.6	866,574,112	121.67										
Compensation Mode	567	1811.1	78,336,919	7.88	2219		13.13 0.2		7.99	7.75	0.29	4993	16	0.2
	Duration	Gas	10.27.3	Diesel		NOx	PM	CO	VOC	SOx			ethane N2O	
	[h/a]	[t/a]	[ft³/a]	[t/a]	[gal/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]			/a] [t/a]	[t,
Ramp down	0.33	0.4	17,627	0.00	1.04		0.002 0.00			0.002	0.000	1.130	0.005	0.00003
Min load	0.08	0.1	2,288	0.00	0.20		0.00 0.00			0.001	0.000	0.147	0.001	0.00000
Spin out	0.02	0.0	233	0.00	0.02		0.00 0.00			0.000	0.000	0.015	0.000	0.00000
	Duration	Gas		Diesel		NOx	PM	со	VOC	SOx			ethane N2O	
	[h/a]	[t/a]	[ft³/a]	[t/a]	[gal/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t,		/a] [t/a]	[t,
Emergency Mode	192.00	0.0	-	544.01	153242		49.67 0.1	17	0.62	2.76	1.09	1718	0	0.1
Yearly base Single Engine raw emissions	Duration	Gas		Diesel		NOx	PM	CO	VOC	SOx	C	02	0	0 00
	[h/a]	[t/a]	[ft³/a]	[t/a]	[gal/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]			/a] [t/a]	
Speed up	0.08	0		0.04	11.95	1-7-1	0.004 0.00			0.001	0.000	0.134	0.000	0.00000
Fuel Changeover	0.03	0.01	466	0.00	0.05		0.00 0.00			0.000	0.000	0.030	0.000	0.00000
Generator switched on	0.08	0.1	2,288	0.00	0.20		0.00 0.00			0.001	0.000	0.147	0.001	0.00000
Load up cold control	0.00	0.1	5,666	0.00	0.43		0.001 0.00			0.001	0.000	0.364	0.002	0.00001
Edad up cold control	Duration	Gas	5,000	Diesel	0.43	NOx	PM	CO	VOC	SOx		0.304	0.002	0.00001
	[h/a]	[t/a]	[ft³/a]	[t/a]	[gal/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]			/a] [t/a]	[t
Normal Operation	8000	20034.6	866,574,112	121.67	34273	[[/] a]	0.608 1.49			0.991	0.033	55339.012	208.479	1.11498
	567	1811.1	78,336,919	7.88	2219		0.131 0.15			0.078	0.003	4992.703	16.372	0.16736
Compensation Mode	567 Duration	1811.1 Gas	78,336,919	7.88 Diesel	2219	NOx	0.131 0.13 PM	CO	0.399 VOC	SOx		4992.703	16.372	
			(63/-1		[1/-]									0 00
Dama dama	[h/a]	[t/a]	[ft³/a]	[t/a]	[gal/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]			/a] [t/a]	
Ramp down	0.33	0.4	17,627	0.00	1.04		0.000 0.00			0.000	0.000	1.130	0.005	0.00003
Min load	0.08	0.1	2,288	0.00	0.20		0.00 0.00			0.000	0.000	0.147	0.001	0.00000
Spin out	0.02	0.0	233	0.00	0.02		0.00 0.00			0.000	0.000	0.015	0.000	0.00000
	Duration	Gas		Diesel		NOx	PM	со	VOC	SOx		02	0	0 C
	[h/a]	[t/a]	[ft³/a]	[t/a]	[gal/a]	[t/a]	[t/a]	[t/a]	[t/a]	[t/a]			/a] [t/a]	[t,
Emergency Mode	192.00	0.0	-	544.01	153242		0.99 0.1		0.06	0.03	0.01	1718	0	0.1
TOTAL	8760.00	21846.31	944,939,599	673.60	189747.69		1.74 1.7	77	1.93	1.10	0.05	62052	225	1.3
						198.	1163256							
Yearly base Single Engine raw emissions	Duration [h/a]	Gas [t/a]	[ft³/a]	Diesel [t/a]	[gal/a]	NOx [t/a]	PM [t/a]	CO [t/a]	VOC [t/a]	SOx [t/a]		02 /a] [t	0 /a] [t/a]	0 C([t]
Normal Operation	8760	20035	866574112		122 34273		60.83 1.9			99.12	3.25	55339	208	1.1
Normal Operation w. abatement	3700	20033	0000/4112		542/5		0.61 1.4		1.47	0.99	0.03	55339	208	1.1
							5.01		2		0.00	55555	200	1.1
							69.35 169.9	12	167.45 1	12.99	3.71	6,308,647	23,767	127

Raw Emissions [tons / year]

Start / Stop controlled

Best case

TranGas Development, LLC	Potesta & Associates, Inc.
Power Campus	Project No. 0101-22-0132-003A
Dra DEW/	Chasked Bry VBV

By: PEW	Checked By: KBK
Date: 3/20/2025	Date: 03/21/2025

Tanks

Tank	I.D.	Volume	Turnovers	Yearly Throughput	Fixed Ro	of Losses	VOC Emissions					
					Working	Breathing Uncontrolled				Controlled		
		(gal)	(No.)	(gal/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	(lbs/hr)(1)	(tpy)	(lbs/hr)(1)	(tpy)	
Diesel Tank	TK1-40	170,000	4	680,000	12.28	25.27	37.55	0.18	0.02	0.18	0.02	
Total Emissions (40 tanks)					491.2	1,010.80	1,502.00	7.34	0.75	7.34	0.75	
						To	tal VOC =	7.34	0.75	7.34	0.75	

Notes:

1. Emissions based on breathing losses divided by 8,760 hours per year and working losses divided by total throughput multiplied by one truck delivery to the tanks of 10,000 gallons.

40

2. Number of USLD tanks at the site =

TranGas Development, LLC Power Campus

By: PEW Date: 3/20/2025 Potesta & Associates, Inc. Project No. 0101-22-0132-003A

Checked By: KBK Date: 03/21/2025

Natural Gas (Vapor Sources)

					Uncor	trolled		Cont	rolled
	Number of	Emission	TOC Emissions	TOC Emissions	VOC	VOC	Control	VOC	VOC
Source Type	Sources	Factor(1)	(lb/hr)	(ton/yr)	Emissions	Emissions	Efficiency	Emissions	Emissions
	Sources	(kg/hr/source) (lb/hr)		(ton/yi)	(lb/hr)	(ton/yr)	(%)	(lb/hr)	(ton/yr)
Valves	176	0.000131	0.050829	0.222632	0.0003	0.0013	0	0.0003	0.0013
Pressure Relief Valves	120	0.0447	11.825474	51.795578	0.0698	0.3056	0	0.0698	0.3056
Connectors (Flanges)	917	0.0000810	0.163751	0.717230	0.0010	0.0042	0	0.0010	0.0042
Compressor Seals	0	0.0894	0.000000	0.000000	0.0000	0.0000	0	0.0000	0.0000
Light Liquid Pumps	0	0.00187	0.000000	0.000000	0.0000	0.0000	0	0.0000	0.0000
Sample Connections (2)	1	0.0150	0.033069	0.144842	0.0002	0.0009	0	0.0002	0.0009
				Total VOC =	0.0712	0.3120		0.0712	0.3120

ſ

	Uncon	trolled		Cont	rolled
	Hexane	Hexane	Control	Hexane	Hexane
	Emissions	Emissions	Efficiency	Emissions	Emissions
	(lb/hr)	(ton/yr)	(%)	(lb/hr)	(ton/yr)
	0.000005	0.000022	0	0.000005	0.000022
	0.001183	0.005180	0	0.001183	0.005180
	0.000016	0.000072	0	0.000016	0.000072
	0.000000	0.000000	0	0.000000	0.000000
	0.000000	0.000000	0	0.000000	0.000000
	0.000003	0.000014	0	0.000003	0.000014
Total	0.001	0.0053		0.001	0.0053

-

Sample Natural Gas Composition											
Gas Composition Key		BTU	S.G.	Non-VOC	Non-VOC	Non-VOC	Non-VOC				
				Carbon Dioxide	Nitrogen	Methane	Ethane				
Gas Sample - TransCanada		1082.2	0.6100	0.2000	0.4400	90.3300	8.4400				
					T	otal Non-VOC =	99.4100				

Sample Natural Gas Composition												
Gas Composition Key	VOC	VOC	VOC	VOC	VOC	VOC	VOC/HAP					
	Propane	N Butane	Iso Butane	Pentane	Iso Pentane	Neo Pentane	Hexane					
Gas Sample - TransCanada	0.5200	0.0300	0.0200	0.0001	0.0100	0.0000	0.0100					
Max value	0.5200	0.0300	0.0200	0.0001	0.0100	0.0000	0.0100					
						Total VOC =	0.5901					
						Total HAP =	0.0100					

1. AP42, Chapter 5, Protocol for Equipment Leak Emission Estimates, Table 2-1 and 2-5. 2. Sight Glass lb/kg = 2.2046

Potesta & Associates, Inc. Project No. 0101-22-0132-003A

Checked By: KBK Date: 03/21/2025

By: PEW Date: 3/20/2025

Vehicle Activity (VA)

Paved Roadway: Trucks delivering fluids, fuel, and miscellaneous deliveries and removal of materials (estimated).

 $\begin{array}{l} \mbox{Emission Factor Equation from AP-42 Section 13.2.1, Paved Roads (January 2011):} \\ \mbox{E} = [k * (sL/2)^{0.91} * (W)^{1.02}] * (1 - 1.2P/4N) = lb / Vehicle Mile Traveled (VMT) \end{array}$

k =	PM 0.011	PM10 0.0022	PM2.5 0.00054	dimensionless, particle size multiplier
sL =	9.7	9.7	9.7	surface material silt content (g/m ²)
W =	26.8	26.8	26.8	tons, mean vehicle weight
P =	157	157	157	no. days/year with 0.01 in of rain
e =	1.15	0.23	0.06	lb/VMT

Rounding to

2

	No.		Miles	Con	trol	Emissions					
Pollutant	of Vehicles		Per Trip (1)	Dev	ice	Uncon	trolled	Controlled			
	Per Hour	Per Year	(mi)	Туре	Effic(%)	(lb/hr)	(tpy)	(lb/hr)	(tpy)		
PM	2	9,963	5.00	N	0	11.50	28.64	11.50	28.64		
PM10	2	9,963	5.00	Ν	0	2.30	5.73	2.30	5.73		
PM2.5	2	9,963	5.00	N	0	0.60	1.50	0.60	1.50		

Tankers/Trucks										
Product	Empty Weight	Loaded	Gallons Per	Average	Gallons Per	Gallons Per	Trucks	Trucks		
	lbs	Weight	Load	Weight	Hour	Year	Per Hour	Per Year		
		lbs		tons						
Delivery of Fluids	27,000	80,000	10,000	26.750	673	55,824,392	1	5,583		
Miscellaneous Truc	king						1	4,380		
						Total =	2	9,963		

 1. Trip Distance - Bens Creek Road to Back of Property (miles one direction) =
 2.5

 2. Miscellaneous trucking is for deliveries and shipping of materials other than the fluid identified below. Trucking volume is assumed at one truck per hour and 4,380

 trucks per year. Truck weighs are assumed to be the same mean weight as liquid trucking.

	Estimated Deliv	very of Fluids	
Material	gal/hr	gal/day	gal/yr
ULSD	446.00	10,704.00	21,297,198.81
Lubricant Oil	65.13	1,563.00	570,495.00
NH3(aq)	16.57	397.58	3,482,822.90
NaOH	142.07	3,409.78	29,869,648.56
NaHS	0.50	12.04	105,437.79
NaClO2	1.90	45.50	398,601.40
H2SO4	0.48	11.44	100,187.27
Total	672.64	16,143.34	55,824,391.73

kJ/BTU m³/ft³ 1.055056 0.028317

Gas 49.15 MJ/kg 976.94 BTU/ft³ Diesel 42.7 MJ/kg 130613.5 BTU/gal

For Export

		FC	or Exp	ort											
Gas mod	e	100	75	50	25	20	10				21000	15750	10500	5250	4200
NOx	g/kWh	1.0	0.4	0.4	0.8	0.9	1.0		Sulphur co	ontent	100	75	50	25	20
PM (Filterable)	mg/Nm3	5.7	4.2	5.3	8.6	9.3	10.6	à	gas	0.00014	0.02	0.02	0.02	0.02	0.0
PM10 (Filterable +	mg/Nm3	5.4	4.1	5.1	8.1	8.8	10.1	502 le hwmi	diesel	0.002	0.35	0.33	0.33	0.34	0.40
PM2.5 (Filterable +	mg/Nm3	5.4	4.1	5.1	8.1	8.8	10.1	2181	lub oil	0.008	0.0050	0.0032	0.0018	0.0009	0.0006
CO	ppm	180	166	178	154	149	139	² O		Diesel	0.353	0.330	0.330	0.336	0.401
VOC	ppm	79	76	78	88	90	94			Gas	0.025	0.023	0.021	0.021	0.021
N2O	ppm	2	1	1	1	1	1		CO2 gas	2.743	383.32	372.74	376.79	399.75	405.09
CH4	0	644	616	638	732	750	788		CO2 Diese	3.158	439.13	426.23	430.16	454.41	459.83
CO2	g/kWh	383	373	377	400	405	416								
SO2	g/kWh	0.025	0.023	0.021	0.021	0.021	0.022								

Diesel m	ode	100	75	50	25	20	10
NOx	g/kWh	11.6	14.9	17.1	18.5	18.8	19.3
PM (Filterable)	mg/Nm3	8.4	12.1	11.6	8.6	8.0	6.8
PM10 (Filterable +	+ mg/Nm3	8.4	12.1	11.6	8.6	8.0	6.8
PM2.5 (Filterable	+ mg/Nm3	8.0	11.7	11.3	8.1	7.6	6.
со	ppm	83	36	36	39	40	4:
VOC	ppm	91	103	119	171	181	202
N2O	ppm	4	2	1	1	1	
CO2	g/kWh	439	426	430	454	460	47
SO2	g/kWh	0.353	0.330	0.330	0.336	0.401	0.440

						Genera					ISO									
NOx	PM	со	TH		N2O	Power		Speed	BMEP	Mps	Power	Power	Bypass	BSGC	BSPC	pExh	pExhRel		tEaT	tEaTm
g/kWh	mg/Nm3	ppm			644		kW 2100	rpm	bar 0 101	m/s L 9.:	% 2 10	kW 0 21000	%	g/kWh	g/kWh	bar 2.07	bar g	0,	°C 23:	°C
1.0 0.4		5.67 5.38	180 177	755 749	638	2	100 2100 95 1995) 137.937) 136.208					23	
0.1		5.08	174	743	633	2	90 1890) 130.208					22	
0.0		4.79	174	735	627	2	85 1785) 133.665						
0.0		4.78	171	735	627		B4.9 1782							133.665						
0.5		4.49	168	729	621	1	80 1680							132.648					21	
0.4		4.20	166	722	616	1	75 1575							131.732						
0.4		4.41	168	727	620	1	70 1470							131.122						
0.4	.40	4.55	170	731	623	1 (66.6 1398	6 77.	7 12.28	3 1	B 66	6 13986		130.613	8 0.9	2.86	1.86	8.12	21	5
0.4	.40	4.62	170	732	624	1	65 1365	0 77.	1 12.08	3 7.9	96	5 13650		130.41	L 0.9	2.8	1.8	8.17	21	5
0.4	.40	4.83	173	737	629	1	60 1260	0 75.	1 11.45	5 7.	76	0 12600) (129.901	L 0.9	2.63	1.63	8.32	21	7
0.4	.40	5.04	175	742	633	1	55 1155	0 72.	9 10.81	L 7.	5 5	5 11550) (129.596	5 1	2.46	1.46	8.47	22	L
0.4	40	5.3	178	748	638	1	50 1050	0 70.	6 10.14			0 10500) (129.698	3 1	2.28	1.28	8.63	22	1
0.4		5.92	173	769	656	1	45 945							130.613					23	
0.5		6.59	168	791	675	1	40 840							132.037					23	
0.0		7.27	163	813	694	1	35 735							133.258						
0.		7.94	158	834	713	1	30 630							0 134.479					24	
0.1		8.6	154	856	732	1	25 525		1 6.39	9 5.	B 2	5 5250) (0 135.801			0.5	10.71		
0.1		9.28	149	878	750	1	20 420							137.123					20	
0.9		9.95	144	900	769	1	15 315							138.446					19	
1.0	04	10.63	139	921	788	1	10 210							139.768	3 2.2				17	2
							el, iCER, Tie	er III												
						Genera					ISO	_	_							
NOx	PM	~~~				Power	Power	Speed	BMEP	Mps	Power	Power	Bypass	BSFC	BSPC	pExh	pExhRel		tEaT	tEaTm
NUX 11		co			1120	0/	1-147		here		0/	1.3.47	~	~ /l.> A /l.	~/l.)A/h	has				**
12.3		8.4	82 5		N2O	% 3.6	kW	rpm	bar 9 16 1	m/s	% 2 10	kW	%	g/kWh	g/kWh	bar	bar g	kg/kWh	°C	°C
		8.4 9.14	82.5	91.08	N2O	3.6	100 2100	0 8	9 16.1	L 9.3	2 10	0 21000		174.2	2 0.4	4.54	barg 3.54	kg/kWh 8.37	°C 22	7
12 (.26	9.14	82.5 73.20	91.08 93.39	N2O	3.6 3.36	100 2100 95 1995	0 81 0 87.1	9 16.1 5 15.56	L 9.3	2 10 9 9	0 21000 5 19950) 174.2) 170.7	2 0.4 7 0.4	4.54	bar g 3.54 3.19	kg/kWh 8.37 8.28	°C 22 21	7 L
12.9	.26 .92	9.14 9.87	82.5 73.20 63.90	91.08 93.39 95.70	N2O	3.6 3.36 3.12	100 2100 95 1995 90 1890	0 81. 0 87. 0 85.	9 16.1 5 15.56 9 15	L 9.1	2 10 9 9 8 9	0 21000 5 19950 0 18900) 174.2) 170.7) 167.5	2 0.4 7 0.4 5 0.4	4.54 4.19 3.94	bar g 3.54 3.19 2.94	kg/kWh 8.37 8.28 8.31	°C 22 21 20	7 L 5
12.9 13.9 13.9	26 92 58	9.14	82.5 73.20	91.08 93.39	N2O	3.6 3.36 3.12 2.88	100 2100 95 1995	0 81 0 87.1 0 85.1 0 84.1	9 16.1 5 15.56 9 15 3 14.44	L 9.1 5 9.1 5 8.1 1 8.1	2 10 9 9 8 9 7 8	0 21000 5 19950 0 18900 5 17850) 174.2) 170.7	2 0.4 7 0.4 5 0.4 1 0.4	4.54 4.19 3.94 3.75	bar g 3.54 3.19 2.94 2.75	kg/kWh 8.37 8.28 8.31 8.43	°C 22 21	7 L 5 L
13.	26 92 58 59	9.14 9.87 10.61	82.5 73.20 63.90 54.60	91.08 93.39 95.70 98.01	N2O	3.6 3.36 3.12 2.88	100 2100 95 1995 90 1890 85 1785	0 8 0 87. 0 85. 0 84. 9 84.	9 16.1 5 15.56 9 15 3 14.44 3 14.43	L 9.1 5 9.1 5 8.1 1 8.1 3 8.1	2 10 9 9 8 9 7 8 7 84	0 21000 5 19950 0 18900 5 17850 9 17829) 174.2) 170.7) 167.5) 165.4	2 0.4 7 0.4 5 0.4 1 0.4	4.54 4.19 3.94 3.75 3.74	bar g 3.54 3.19 2.94 2.75 2.74	kg/kWh 8.37 8.28 8.31 8.43 8.43	*C 22 21 20 20 20	7 L 5 L 0
13. 13.	26 92 58 59 24	9.14 9.87 10.61 10.62	82.5 73.20 63.90 54.60 54.41 45.30	91.08 93.39 95.70 98.01 98.06	N2O	3.6 3.36 3.12 2.88 2.88	100 2100 95 1995 90 1890 85 1785 84.9 1782	0 89 0 87.1 0 85.1 0 84.1 9 84.1 0 82.0	9 16.1 5 15.56 9 15 3 14.44 3 14.43 6 13.87	L 9.1 5 8.1 5 8.1 1 8. 3 8. 7 8.1	2 10 9 9 8 9 7 8 7 84 5 8	0 21000 5 19950 0 18900 5 17850 9 17829 0 16800) 174.2) 170.7) 167.5) 165.4) 165.4	2 0.4 7 0.4 5 0.4 1 0.4 1 0.4 1 0.4	4.54 4.19 3.94 3.75 3.74 3.56	bar g 3.54 3.19 2.94 2.75 2.74 2.56	kg/kWh 8.37 8.28 8.31 8.43 8.43 8.43	*C 22 21 20 20 20 19	7 L 5 L 0 3
13. 13. 14.	26 92 58 59 24 4.9	9.14 9.87 10.61 10.62 11.34	82.5 73.20 63.90 54.60 54.41 45.30	91.08 93.39 95.70 98.01 98.06 100.32	N2O	3.6 3.36 3.12 2.88 2.88 2.64	100 2100 95 1995 90 1890 85 1785 84.9 1782 80 1680	0 81 0 87.1 0 85.1 0 84.1 9 84.1 0 82.1 0 80.1	9 16.1 5 15.56 9 15 3 14.44 3 14.43 6 13.87 9 13.29	L 9 5 9. 5 8.4 4 8. 3 8. 7 8 9 8	2 10 9 9 8 9 7 8 7 84. 5 8 3 7	0 21000 5 19950 0 18900 5 17850 9 17829 0 16800 5 15750		0 174.2 0 170.7 0 167.5 0 165.4 0 165.4 0 164.1	2 0.4 7 0.4 5 0.4 1 0.4 1 0.4 1 0.5 2 0.5	4.54 4.19 3.94 3.75 3.74 3.56 3.41	bar g 3.54 3.19 2.94 2.75 2.74 2.56 2.41	kg/kWh 8.37 8.28 8.31 8.43 8.43 8.56 8.8	*C 22 21 20 20 20 19	7 L L D 3 3
13. 13. 14. 14	26 92 58 59 24 4.9 34	9.14 9.87 10.61 10.62 11.34 12.1	82.5 73.20 63.90 54.60 54.41 45.30 36	91.08 93.39 95.70 98.01 98.06 100.32 102.63	N2O	3.6 3.36 3.12 2.88 2.88 2.64 2.4 2.16	100 2100 95 1995 90 1890 85 1785 84.9 1782 80 1680 75 1575	0 8: 0 87. 0 85. 0 84. 9 84. 0 82. 0 80. 0 7:	9 16.1 5 15.56 9 15 3 14.44 3 14.43 6 13.87 9 13.29 9 12.69	L 9 5 9 5 8 4 8 3 8 7 8 9 8 9 8 9 8	2 10 9 9 7 8 7 84 5 8 3 7 1 7	0 21000 5 19950 0 18900 5 17850 9 17829 0 16800 5 15750 0 14700		 174.2 170.7 167.5 165.4 165.4 165.4 164.1 163.2 	2 0.4 7 0.4 5 0.4 1 0.4 1 0.4 1 0.4 1 0.5 2 0.5 9 0.5	4.54 4.19 3.94 3.75 3.74 3.56 3.41 3.22	bar g 3.54 3.19 2.94 2.75 2.74 2.56 2.41 2.22	kg/kWh 8.37 8.28 8.31 8.43 8.43 8.43 8.56 8.8 8.95	*C 222 212 202 202 203 193 193	7 L D 3 3 7
13. 13. 14. 14 15.	26 92 58 59 24 4.9 34 64	9.14 9.87 10.61 10.62 11.34 12.1 11.97	82.5 73.20 63.90 54.60 54.41 45.30 36 36.00	91.08 93.39 95.70 98.01 98.06 100.32 102.63 105.89	N2O	3.6 3.36 3.12 2.88 2.88 2.64 2.4 2.16	100 2100 95 1995 90 1890 85 1785 84.9 1782 80 1680 75 1575 70 1470	0 87. 0 87. 0 85. 0 84. 9 84. 0 82. 0 80. 0 80. 0 77.	9 16.1 5 15.56 9 15 3 14.44 3 14.43 6 13.87 9 13.29 9 12.69 7 12.28	L 9 5 8.1 5 8.1 7 8. 7 8.1 9 8.1 9 8.1 9 8.1 9 8.1	2 10 9 9 7 8 7 84 5 8 3 7 1 7 8 66	0 21000 5 19950 0 18900 5 17850 9 17829 0 16800 5 15750 0 14700 6 13986) 174.2) 170.7) 167.5) 165.4) 165.4) 165.4) 163.2) 163.2) 162.9	2 0.4 7 0.4 5 0.4 4 0.4 4 0.4 4 0.4 4 0.5 2 0.5 9 0.5 9 0.5	4.54 4.19 3.94 3.75 3.74 3.56 3.41 3.22 3.08	bar g 3.54 3.19 2.94 2.75 2.74 2.56 2.41 2.22 2.08	kg/kWh 8.37 8.28 8.31 8.43 8.43 8.43 8.56 8.8 8.95 9.01	*C 22 20 20 20 20 19 19 19 19	7 5 1 2 3 3 3 7 3
13.1 13.1 14.1 14 15.1 15.1	26 92 58 59 24 4.9 34 64 78	9.14 9.87 10.61 10.62 11.34 12.1 11.97 11.90	82.5 73.20 63.90 54.60 54.41 45.30 36.00 36.00 36.00 36.00	91.08 93.39 95.70 98.01 98.06 100.32 102.63 105.89 108.10	N2O	3.6 3.36 3.12 2.88 2.88 2.64 2.4 2.16 2.00	100 2100 95 1995 90 1890 85 1785 84.9 1782 80 1680 75 1575 70 1470 56.6 1398	0 87.1 0 87.1 0 85.1 0 84.1 9 84.1 0 82.1 0 80.1 0 80.1 0 77.1 6 77.1 0 77.1	9 16.1 5 15.56 9 15 3 14.44 3 14.43 6 13.87 9 12.69 7 12.28 1 12.08	L 9 5 8 4 8. 7 8 9 8 9 8 3 4 3 7	2 10 9 9 7 8 7 84. 5 8 3 7 1 7 8 66. 9 6	0 21000 5 19950 0 18900 5 17850 9 17829 0 16800 5 15750 0 14700 6 13986 5 13650) 174.2) 170.7) 167.9) 165.4) 165.4) 165.4) 163.2) 162.9) 162.9	2 0.4 7 0.4 5 0.4 4 0.4 4 0.4 1 0.5 2 0.5 9 0.5 9 0.5 8 0.5	4.54 4.19 3.94 3.75 3.74 3.56 3.41 3.22 3.08 3.01	bar g 3.54 3.19 2.94 2.75 2.74 2.56 2.41 2.22 2.08 2.01	kg/kWh 8.37 8.28 8.31 8.43 8.43 8.56 8.8 8.95 9.01 9.04	*C 22 21: 20: 20: 19: 19: 19: 19:	7 L L D 3 3 7 7 3 9
13.1 13.1 14.1 14.1 15.1 15.1 15.1	26 92 58 59 24 4.9 34 64 78 22	9.14 9.87 10.61 10.62 11.34 12.1 11.97 11.90 11.87	82.5 73.20 63.90 54.60 54.41 45.30 36 36.00 36.00 36.00 36.00	91.08 93.39 95.70 98.01 98.06 100.32 102.63 105.89 108.10 109.14	N2O	3.6 3.36 3.12 2.88 2.88 2.64 2.4 2.16 2.00 1.92	100 2100 95 1995 90 1890 85 1785 84.9 1782 80 1680 75 1575 70 1470 56.6 1398 65 1365	0 8 0 87.1 0 85.1 0 84.1 9 84.1 0 82.1 0 80.1 0 77.1 16 77.1 0 75.1	9 16.1 5 15.56 9 15 3 14.44 3 14.43 6 13.87 9 12.69 7 12.28 1 12.08 1 11.45	L 9 5 8. 4 8. 7 8. 9 8. 3 4. 9 8. 3 1. 3 7. 5 7.	2 10 9 9 7 8 7 84. 5 8 3 7 1 7 8 66. 9 6 7 6	0 21000 5 19950 0 18900 5 17850 9 17829 0 16800 5 15750 0 14700 6 13986 5 13650 0 12600 5 11550		174.2 170.7 167.5 165.4 165.4 165.4 165.4 165.4 163.2 162.9 162.9 162.9 162.8 163.4 163.4	2 0.4 7 0.4 5 0.4 4 0.4 4 0.4 4 0.4 4 0.4 4 0.4 4 0.5 2 0.5 9 0.5 9 0.5 8 0.6 4 0.6	4.54 4.19 3.94 3.75 3.74 3.56 3.41 3.22 3.08 3.01 5 2.8	bar g 3.54 3.19 2.94 2.75 2.74 2.56 2.41 2.22 2.08 2.01 3.19	kg/kWh 8.37 8.28 8.31 8.43 8.43 8.43 8.56 8.8 8.95 9.01 9.04 9.14	*C 222 211 200 200 190 190 190 190 190 190 200	7 L D 3 3 7 7 3 9 0
13.1 13.1 14.2 15.2 15.0 15.2 15.2 15.2	26 92 58 59 24 4.9 34 64 78 22 66	9.14 9.87 10.61 10.62 11.34 12.1 11.97 11.90 11.87 11.76	82.5 73.20 63.90 54.60 54.41 45.30 36 36.00 36.00 36.00 36.00 36.00 36.00	91.08 93.39 95.70 98.01 98.06 100.32 102.63 105.89 108.10 109.14 112.40	N2O	3.6 3.36 3.12 2.88 2.88 2.64 2.4 2.16 2.00 1.92 1.68	100 2100 95 1995 90 1890 85 1785 84.9 1782 80 1680 75 1575 70 1470 56.6 1388 65 1365 60 1260	0 83 0 87. 0 85. 0 84. 9 84. 0 82. 0 80. 0 79. 6 77. 0 77. 0 75. 0 72.	9 16.1 5 15.56 9 15 3 14.42 6 13.87 9 12.69 9 12.62 7 12.22 1 11.45 9 10.81	L 9 5 8. 4 8. 7 8 9 8 9 8 3 4 3 7 5 7 5 7 1 7 4 7	2 10 9 9 8 9 7 84 5 8 3 7 3 66 9 6 5 5 5 5 63 7 64 5 5 5 5 5 5 5 5 5 3 5	0 21000 5 19950 0 18900 5 17850 9 17829 0 16800 5 15750 0 14700 6 13986 5 13650 0 12600 5 11550		174.2 170.7 167.5 165.4 165.4 163.2 163.2 162.9 162.9 162.8 163.8 163.8 163.9 162.9 163.8	2 0.4 7 0.4 5 0.4 4 0.4 4 0.4 4 0.4 4 0.4 4 0.4 4 0.5 2 0.5 9 0.5 9 0.5 8 0.6 4 0.6	4.54 4.19 3.94 3.75 3.74 3.56 3.41 3.22 3.08 3.01 5.2.55	bar g 3.54 3.19 2.94 2.75 2.74 2.56 2.41 2.22 2.08 2.01 1.8 1.59	kg/kWh 8.37 8.28 8.31 8.43 8.43 8.43 8.56 8.8 8.95 9.01 9.04 9.04 9.14 9.22	*C 222 211 200 200 190 190 190 190 190 190 200	7 L D D 3 3 7 7 3 9 0 3 3
13.! 13.! 14.: 15.: 15.: 16.: 16.: 16.: 17.:	26 92 58 59 24 4.9 34 64 78 22 66 7.1 38	9.14 9.87 10.61 10.62 11.34 12.1 11.97 11.90 11.87 11.76 11.66 11.6 10.96	82.5 73.20 63.90 54.60 54.41 45.30 36 36.00 36.00 36.00 36.00 36.00 36 .00 36.00 36.00 36.00	91.08 93.39 95.70 98.01 98.06 100.32 102.63 105.89 108.10 109.14 112.40 115.65 118.91 129.27	N20	3.6 3.36 3.12 2.88 2.64 2.64 2.16 2.00 1.92 1.68 1.44 1.2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 83 0 87.1 0 85.1 0 84.1 9 84.1 9 84.1 0 82.1 0 80.2 0 72.1 0 77.0 0 72.1 0 70.1 0 68.3	9 16.1 5 15.56 9 15 3 14.44 3 14.43 6 13.87 9 13.29 9 12.69 7 12.26 1 11.45 9 10.83 6 10.14 2 9.45	L 9 5 8.1 5 8.1 7 8 9 8 9 8 3 4 3 7 5 7 1 7 1 7 4 7 5	2 1C 9 9 88 9 7 84 5 8 3 7 3 66 9 6 9 6 5 5 5 5 5 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5	0 21000 5 19950 0 18900 5 17850 9 17822 0 16800 5 15750 0 14700 6 13986 5 13650 0 12600 5 11550 0 10500 5 9450		174.2 170.7 167.5 165.4 165.4 165.4 163.2 163.2 162.5 163.4 163.2 163.4 163.4 163.4 163.4 163.4 163.4 163.4 163.4 163.4 165.2	2 0.4 7 0.4 5 0.4 4 0.4 4 0.4 4 0.4 1 0.5 9 0.5 3 0.5 3 0.5 3 0.6 4 0.6 1 0.7 2 0.7	4.54 4.19 3.94 3.75 3.74 3.56 3.41 3.22 3.08 3.01 5 2.85 2.55 7 2.37 7 2.14	bar g 3.54 3.19 2.94 2.75 2.74 2.56 2.41 2.22 2.08 2.08 1.59 1.37 1.14	kg/kWh 8.37 8.28 8.31 8.43 8.43 8.56 8.8 8.95 9.01 9.04 9.14 9.22 9.24 9.24	*C 221 200 200 199 199 199 199 200 200 200 200 200 200 210	7 L D D 3 3 3 9 D 3 9 5
13.3 13.3 14.1 15.3 15.0 15.7 16.0 16.0 17.3 17.0	26 92 58 59 24 4.9 34 64 78 22 66 7.1 38 66	9.14 9.87 10.61 10.62 11.34 12.1 11.97 11.90 11.87 11.76 11.66 11.6 10.96 10.37	82.5 73.20 63.90 54.60 54.41 45.30 36 36.00 36.00 36.00 36.00 36 .00 36 .00 36 .00 36 .00 36 .00 36 .00 36 .00 36 .00 36 .00 36 .00 37 .20	91.08 93.39 95.70 98.01 98.06 100.32 102.63 105.89 108.10 109.14 112.40 115.65 118.91 129.27 139.63	N20	3.6 3.36 3.12 2.88 2.88 2.64 2.4 2.00 2.00 2.00 1.92 1.68 1.44 1.2 1.20 1.20	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 88 0 87.: 0 85.: 0 84 9 84 0 82.: 0 82.: 0 82.: 0 72:: 0 72.: 0 72.: 0 70.: 0 70.: 0 70.: 0 70.: 0 65.:	9 16.5 5 15.56 9 15 3 14.42 6 13.87 9 12.65 7 12.26 1 12.06 1 12.06 1 11.45 9 0.816 6 10.14 2 9.45 6 8.74	L 9.: 5 8. 5 8. 7 8. 9 8. 9 8. 9 8. 5 7. 1 7.: 1 7.: 1 7.: 1 7.: 1 6.	2 1C 9 9 8 9 7 84 5 8 3 7 1 7 66 9 67 6 5 5 5 5 3 5 3 5 3 5 7 4 7 4	0 21000 5 19950 0 18900 5 17850 9 17829 0 16800 5 15750 0 14700 6 13986 5 13650 0 12600 5 11555 0 10500 5 9450 0 8400		174.2 170.7 167.5 165.4 165.4 165.4 166.1 163.2 162.9 162.9 163.4 163.4 163.2 163.4 163.4 163.4 163.4 163.4 163.4 163.4 165.2 165.2 166.1	2 0.4 7 0.4 5 0.44 4 0.4 4 0.4 4 0.4 4 0.4 2 0.5 9 0.5 9 0.5 8 0.6 4 0.7 2 0.7 1 0.8	4.54 4.19 3.94 3.75 3.74 3.55 3.41 3.22 3.08 3.01 2.8 5.2.55 7.2.37 7.2.14 1.92	bar g 3.54 3.19 2.94 2.75 2.74 2.56 2.41 2.22 2.08 1.8 1.59 1.37 1.14 0.92	kg/kWh 8.37 8.28 8.31 8.43 8.56 8.88 8.95 9.01 9.04 9.14 9.22 9.24 9.24 9.24	*C 222 211 200 200 199 199 199 199 199 200 200 200 200 200 200 200 200 200 2	7 L D D 3 3 3 9 D 3 9 5 5 5
13.9 14.1 14.1 15.0 15.0 16.1 16.1 17.0 17.0 17.0	26 92 58 59 24 4.9 34 64 78 22 66 66 7.1 38 66 94	9.14 9.87 10.61 10.62 11.34 12.1 11.97 11.90 11.87 11.76 11.66 11.6 10.96 10.37 9.79	82.5 73.20 63.90 54.60 54.41 45.30 36 36.00 36.00 36.00 36.00 36 .00 36 .00 36 .00 36 .00 36 .00 36 .00 36 .00 37 .20 37 .20	91.08 93.39 95.70 98.01 98.06 100.32 102.63 105.89 108.10 109.14 112.40 115.65 118.91 129.27 139.63 150.00	N20	3.6 3.36 3.12 2.88 2.88 2.88 2.64 2.16 2.00 1.92 1.68 1.44 1.20 1.20	100 2100 95 1995 90 1890 85 1785 84.9 1782 80 1680 75 1575 70 1470 66 1398 60 1266 55 1155 50 1050 45 945 40 840 35 735	0 8: 0 87. 0 85. 0 84. 0 84. 0 84. 0 82. 0 80. 0 77. 6 77. 0 75. 0 70. 0 70. 0 68. 0 65. 0 62.	9 16.75 5 15.56 9 12 3 14.44 6 13.87 9 13.29 9 13.67 7 12.28 1 11.45 9 10.81 6 10.12 9 10.83 6 10.14 6 10.42 7 7.94	L 9.: 5 8.: 4 8.: 7 8.: 9 8.: 9 8.: 9 8.: 9 8.: 9 8.: 7 .: 5 7.: 5 7.: 5 7.: 5 6.: 9 6.:	2 1C 99 9 88 9 77 84 77 84 78 8 70 8 90 9 91 7 83 7 83 66 90 6 90 6 90 6 90 6 90 6 90 6 90 6 90 6 90 6 90 6 90 6 90 7 6 5 5 5 7 4 7 4 7 4 7 3 9 5 9 3 9 6 9 6 9 7 4 7 4<	0 21000 5 19950 0 18900 5 17850 9 17829 0 168000 6 13986 5 13650 0 12600 5 14700 6 13986 5 13650 0 12600 5 9455 0 4800 5 9455 0 8400 5 7350		174.2 174.2 170.7 165.4 165.4 165.4 165.4 165.4 165.2 162.2 162.2 163.4 163.4 163.4 163.4 163.4 163.4 166.1 166.1	2 0.4 7 0.4 6 0.4 4 0.4 1 0.5 2 0.5 9 0.5 9 0.5 8 0.6 1 0.7 2 0.7 1 0.8	4.54 4.19 3.94 3.75 3.74 3.55 3.41 3.22 3.08 3.01 2.8 5.2.55 2.37 2.14 1.92 1.7	bar g 3.54 3.19 2.94 2.75 2.74 2.74 2.74 2.22 2.08 2.01 1.8 1.59 1.37 1.14 0.92 7 0.7	kg/kWh 8.37 8.28 8.31 8.43 8.56 8.88 8.95 9.01 9.04 9.14 9.22 9.24 9.24 9.24 9.17 9.04	*C 222 211 200 200 199 199 199 199 199 200 200 200 200 200 200 200 200 200 2	7 L 5 5 3 3 7 3 3 7 3 3 9 0 3 3 9 5 5 5 9
13.3 14.3 14.4 15.3 15.4 15.5 16.3 16.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4	26 92 58 59 24 4.9 34 66 4 77 8 22 66 66 7.1 38 66 94 22	9.14 9.87 10.61 10.62 11.34 12.1 11.97 11.90 11.87 11.66 11.6 10.96 10.37 9.79 9.20	82.5 73.20 63.90 54.60 54.41 45.30 36 36.00 36.00 36.00 36.00 36.00 36.60 36.60 36.60 37.20 37.80 38.40	91.08 93.39 95.70 98.01 98.06 100.32 102.63 105.89 108.10 109.14 112.40 115.65 118.91 129.27 139.63 150.00 160.36	N20	3.6 3.36 3.12 2.88 2.88 2.88 2.84 2.4 2.16 2.00 1.92 1.68 1.20 1.20 1.20	100 2100 95 1995 90 18900 85 1782 80 1680 77 1575 70 1470 66.6 1366 65 1365 60 1260 55 1155 50 1050 50 1053 35 735 30 630	0 8: 0 87.: 0 85.: 0 84.: 0 84.: 0 84.: 0 82.: 0 82.: 0 80:: 0 77: 0 77: 0 77: 0 77: 0 77: 0 77: 0 70: 0 65: 0 65: 0 62: 0 62: 0 62:	9 16.5 5 15.55 9 12 3 14.43 6 13.83 9 12.66 7 12.22 1 12.02 1 12.02 1 11.45 6 10.14 2 9.42 6 8.74 7 7.99 6 7.21	L 9 5 8. 4 8. 3 8. 9 8 9 8 9 8 9 8 3 7 5 7 1 7 4 6 9 6 1 6	2 1C 99 9 98 9 7 84 7 84 7 84 7 84 7 84 7 84 7 84 7 66 99 6 99 6 7 4	0 21000 5 19950 0 18900 5 17850 9 17822 0 16800 5 15750 0 14700 6 13986 5 13650 0 12600 5 11550 0 10500 5 9450 0 84000 5 7355 0 6300		174.2 174.2 170.7 165.4 165.4 165.4 165.4 165.2 162.2 162.2 163.4 163.4 163.2 163.4 163.4 165.2 165.3 166.4 166.8 166.8 166.8	2 0.4 7 0.4 6 0.4 4 0.4 4 0.4 1 0.5 2 0.5 9 0.5 9 0.5 8 0.6 8 0.6 4 0.6 1 0.7 2 0.7 1 0.8 3 0.9 9 1	4.54 4.19 3.94 3.77 3.74 3.76 3.74 3.76 3.74 3.72 3.74 3.72 3.74 3.72 3.74 3.72 3.74 3.75 3.74 3.75 3.00 3.00 5.2.55 2.2.55 2.2.14 1.99 4.19 4.19 4.3.77 3.76 3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 7.2.14 1.99 4.3.77 7.2.14 1.99 4.3.77 7.2.14 7.2	bar g 3.54 3.19 2.94 2.75 2.74 2.56 2.41 2.22 2.08 2.01 1.8 1.59 1.37 1.14 0.92 0.75 0.55	kg/kWh 8.37 8.28 8.31 8.43 8.43 8.56 8.8 8.95 9.01 9.04 9.14 9.22 9.24 9.24 9.24 9.24 9.24 9.24 9.2	*C 22 21: 20: 20: 20: 19: 19: 19: 19: 20: 20: 20: 20: 20: 21: 22: 23: 23:	7 L 5 3 3 3 7 3 3 3 3 3 3 5 5 5 5 7 7
13.9 13.9 14.1 15.3 15.0 15.0 16.0 17.0 17.0 17.0 17.0 18.0 18.0	26 92 58 59 24 4.9 34 64 78 22 66 67 7.1 38 66 94 22 28.5	9.14 9.87 10.61 11.34 12.1 11.90 11.87 11.66 10.96 10.37 9.79 9.20 8.6	82.5 73.20 63.90 54.60 54.41 45.30 36 .00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 37.20 37.80 37.80 38.40 39	91.08 93.39 95.70 98.01 98.06 100.32 105.89 108.10 109.14 115.65 118.91 112.40 115.65 118.91 1129.27 139.63 150.00 150.036 170.72	N20	3.6 3.36 3.12 2.88 2.88 2.64 2.16 2.00 1.92 1.68 1.44 1.20 1.20 1.20 1.20 1.20 1.20 1.20	100 2100 95 1995 90 1890 85 1788 84.9 1782 80 1680 75 1575 70 1470 65 1366 65 1365 66 1260 145 945 40 840 35 735 30 633 30 632	0 8: 0 87.7 00 85.2 9 84 9 84 00 82.0 00 77. 00 77. 00 77 00 77 00 70 00 68 00 60 00 60 00 62 00 59 00 59 00 56	9 16.5 5 15.55 9 12 3 14.43 6 13.83 9 12.66 7 12.22 1 12.02 1 12.02 1 11.45 6 10.14 2 9.42 6 8.74 7 7.99 6 7.21	L 9 5 8. 4 8. 3 8. 9 8 9 8 9 8 9 8 3 7 5 7 1 7 4 6 9 6 1 6	2 1C 99 9 98 9 7 84 7 84 7 84 7 84 7 84 7 84 7 84 7 66 99 6 99 6 7 4	0 21000 5 19950 0 18900 5 17850 9 17822 0 16800 5 15750 0 14700 6 13986 5 13650 0 12600 5 11550 0 10500 5 9450 0 84000 5 7355 0 6300		174.2 170.7 167.5 165.4 165.4 165.4 165.4 165.2 165.3 165.4 165.4 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 166.3 166.8 167.7	2 0.4 7 0.4 5 0.4 6 0.4 4 0.4 1 0.5 9 0.5 9 0.5 8 0.6 1 0.7 2 0.7 1 0.8 9 1.1	4.54 4.19 3.94 3.77 3.74 3.76 3.74 3.76 3.74 3.72 3.74 3.72 3.74 3.72 3.74 3.72 3.74 3.75 3.74 3.75 3.00 3.00 5.2.55 2.2.55 2.2.14 1.99 4.19 4.19 4.3.77 3.76 3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 7.2.14 1.99 4.3.77 7.2.14 1.99 4.3.77 7.2.14	bar g 3.54 3.19 2.94 2.75 2.74 2.56 2.41 2.22 2.08 2.01 1.8 1.59 1.37 1.14 0.92 0.75 0.55	kg/kWh 8.37 8.28 8.31 8.43 8.43 8.56 8.8 8.95 9.01 9.04 9.14 9.22 9.24 9.24 9.24 9.24 9.24 9.24 9.2	*C 222 211 200 200 199 199 199 199 199 200 200 200 210 210 211 220 233 233 233	7 L 5 L 0 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 7 3
13.9 13.9 14.1 15.3 15.0 15.0 16.0 17.0 17.0 17.0 17.0 17.0 18.0 18.0 18.0	26 92 58 59 24 49 34 66 46 78 22 66 66 66 94 22 22 8.5 78	9.14 9.87 10.61 10.62 11.34 12.1 11.97 11.90 11.87 11.76 11.66 11.6 10.66 11.6 10.37 9.79 9.20 8.6	82.5 73.20 63.90 54.60 54.41 45.30 36 36.00 36.00 36.00 36.00 36 .00 36 .00 37 .20 37 .80 38 .40 39 .4	91.08 93.39 95.70 98.01 98.06 100.32 102.63 102.63 105.89 108.10 109.14 115.65 118.91 129.27 139.63 150.00 160.36 150.00 160.36 170.72 181.08	N20	3.6 3.36 3.12 2.88 2.88 2.88 2.88 2.64 2.16 2.00 1.92 1.68 1.44 1.20 1.20 1.20 1.20 1.20	100 2100 95 1995 90 1890 85 1785 84.9 1782 84.9 1782 86.6 1365 60 1260 55 1155 55 1555 50 1050 30 630 25 525 20 420	0 8: 0 87.7.3 0 85.0 0 84.3 9 84.3 0 80.0 0 70.0 0 77.0 0 70.0 0 70.0 0 66.3 0 65.0 0 65.0 0 56.0 0 56.0	9 16.5 5 15.55 9 12 3 14.43 6 13.83 9 12.66 7 12.22 1 12.02 1 12.02 1 11.45 6 10.14 2 9.42 6 8.74 7 7.99 6 7.21	L 9 5 8. 4 8. 3 8. 9 8 9 8 9 8 9 8 3 7 5 7 1 7 4 6 9 6 1 6	2 1C 99 9 98 9 7 84 7 84 7 84 7 84 7 84 7 84 7 84 7 66 99 6 99 6 7 4	0 21000 5 19950 0 18900 5 17850 9 17822 0 16800 5 15750 0 14700 6 13986 5 13650 0 12600 5 11550 0 10500 5 9450 0 84000 5 7355 0 6300		0 174.2 0 170.7 0 167.5 0 165.4 0 165.4 0 165.4 0 165.4 0 165.4 0 162.8 0 162.8 0 162.8 0 163.4 0 163.2 0 163.4 0 166.1 0 166.3 0 166.3 0 166.5 0 166.5 0 166.7 0 166.7 0 167.5 0 167.5 0 167.7 0 167.7 0 167.7	2 0.4 7 0.4 5 0.4 4 0.4 1 0.5 2 0.5 9 0.5 9 0.5 8 0.6 4 0.4 1 0.7 2 0.7 2 0.7 1 0.8 3 0.9 17 1.1	4.54 4.19 3.94 3.77 3.74 3.76 3.74 3.76 3.74 3.72 3.74 3.72 3.74 3.72 3.74 3.72 3.74 3.75 3.74 3.75 3.00 3.00 5.2.55 2.2.55 2.2.14 1.99 4.19 4.19 4.3.77 3.76 3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 7.2.14 1.99 4.3.77 7.2.14 1.99 4.3.77 7.2.14	bar g 3.54 3.19 2.94 2.75 2.74 2.56 2.41 2.22 2.08 2.01 1.8 1.59 1.37 1.14 0.92 0.75 0.55	kg/kWh 8.37 8.28 8.31 8.43 8.43 8.56 8.8 8.95 9.01 9.04 9.14 9.22 9.24 9.24 9.24 9.24 9.24 9.24 9.2	*C 222 211 200 200 193 193 193 193 200 200 200 200 200 200 200 200 200 20	7 L 5 L 0 3 3 3 7 3 9 0 0 3 9 0 5 5 5 9 7 7 3 5 5 5 5 9 7 7 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
13.9 13.9 14.1 15.3 15.0 15.0 16.0 16.0 17.0 17.0 17.0 17.0 18.0 18.0	26 92 55 59 24 4.9 34 64 64 78 22 66 67 78 22 66 69 4 22 8.5 78 06	9.14 9.87 10.61 11.34 12.1 11.90 11.87 11.66 10.96 10.37 9.79 9.20 8.6	82.5 73.20 63.90 54.60 54.41 45.30 36 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 37.20 37.80 37.80 38.40 39	91.08 93.39 95.70 98.01 98.06 100.32 105.89 108.10 109.14 115.65 118.91 112.40 115.65 118.91 1129.27 139.63 150.00 150.036 170.72	N20	3.6 3.36 3.12 2.88 2.88 2.64 2.16 2.00 1.92 1.68 1.44 1.20 1.20 1.20 1.20 1.20 1.20 1.20	100 2100 95 1995 90 1890 85 1788 84.9 1782 80 1680 75 1575 70 1470 65 1366 65 1365 66 1260 145 945 40 840 35 735 30 633 30 632	0 887.75 0 87.75 0 84.85 9 84.80 0 82.00 0 77.00 0 77.00 0 75.00 0 75.00 0 75.00 0 70.00 0 50.00 0 62.00 0 59.00 0 56.00 0	9 16.5 5 15.55 9 12 3 14.43 6 13.83 9 12.66 7 12.22 1 12.02 1 12.02 1 11.45 6 10.14 2 9.42 6 8.74 7 7.99 6 7.21	L 9 5 8. 4 8. 3 8. 9 8 9 8 9 8 9 8 3 7 5 7 1 7 4 6 9 6 1 6	2 1C 99 9 98 9 7 84 7 84 7 84 7 84 7 84 7 84 7 84 7 66 99 6 99 6 7 4	0 21000 5 19950 0 18900 5 17850 9 17822 0 16800 5 15750 0 14700 6 13986 5 13650 0 12600 5 11550 0 10500 5 9450 0 84000 5 7355 0 6300		174.2 170.7 167.5 165.4 165.4 165.4 165.4 165.2 165.3 165.4 165.4 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 166.3 166.8 167.7	2 0.4 7 0.4 5 0.4 4 0.4 4 0.4 1 0.5 2 0.5 9 0.5 9 0.5 9 0.5 8 0.6 4 0.6 1 0.7 2 0.7 1 0.8 8 0.9 9 1 7 1.1	4.54 4.19 3.94 3.77 3.74 3.76 3.74 3.76 3.74 3.72 3.74 3.72 3.74 3.72 3.74 3.72 3.74 3.75 3.74 3.75 3.00 3.00 5.2.55 2.2.55 2.2.14 1.99 4.19 4.19 4.3.77 3.76 3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 5.2.55 7.2.14 1.99 4.3.77 7.2.14 1.99 4.3.77 7.2.14 1.99 4.3.77 7.2.14	bar g 3.54 3.19 2.94 2.75 2.74 2.56 2.41 2.22 2.08 2.01 1.8 1.59 1.37 1.14 0.92 0.75 0.55	kg/kWh 8.37 8.28 8.31 8.43 8.43 8.56 8.8 8.95 9.01 9.04 9.14 9.22 9.24 9.24 9.24 9.24 9.24 9.24 9.2	*C 222 211 200 200 199 199 199 199 199 200 200 200 210 210 211 220 233 233 233	7 L 5 L 0 3 3 3 7 3 9 0 0 3 9 0 5 5 5 9 7 7 3 5 9 9 7 7 3 5 9 9 7 7 3 9 9 9 7 7 3 9 9 9 7 7 7 8 9 9 7 7 7 8 9 9 7 7 8 9 9 9 9

Information provided by Engine Supplier

		ur Flov Eta g/s %	aTC t	EbB BSAC tE C kg/kWh °C			I C LT Cylinder V kW	Lu kV	b. Oil Radiation V kW	SPP kW	tAaC °C	C tScav °C	Com Flo kg/s	w mScav kg/s		ond. wateTEaE g/h °C	Stea kg/h				R rate Loa %		il Feed kg/h]
231	6808	42.1	69.6	229 3.42857	406	4.22	8625	2300	1405	360	1150	218	34 4	1.7 41.3	3.22	1565	180	1640	20.4	21.3	51%	100	2.
226	6744	40.7	69.9	224 3.55489	396	4.02	8075	2260	1390	350	1025	212	33.7 4	0.3 39.9	3.02	1450	180	1460	20.1	20.2	50%	95	2.2
222	6697	39.2	70	220 3.6381	386	3.85	7530	2235	1375	340	905	205	33.4 3	3.9 38.5	2.85	1360	180	1280	19.4	19.4	50%	90	2.1
19	6663	37.7	70	217 3.73109	377	3.68	6965	2210	1370	330	820	199	33.1 3	7.4 37	2.68	1250	180	1150	18.9	18.5	49%	85	2.0
19	6663	37.6	70	217 3.77587	377	3.67	6945	2215	1375	330	825	199	33.1 3	7.3 37	2.67	1240	180	1160	19	18.3	49%	84.9	2.0
17	6633	36.1	70	215 3.83571	368	3.5	6395	2170	1360	320	740	192	32.9 3	5.8 35.4	2.5	1145	180	1040	18.2	17.5	49%	80	1.9
15	6608	34.4	69.8	213 3.95429	360	3.32	5820	2135	1350	310	690	184	32.6 3	4.1 33.8	2.32	1035	180	960	17.6	16.5	48%	75	1.8
15	6608	32.7	69.6	213 4.06531	353	3.14	5270	2065	1320	300	660	177	32.3 3	2.4 32.2	2.14	930	180	920	16.9	15.6	48%	70	1.7
215	6608	31.5	69.5	213 4.1184	348	3.03	4905	2015	1310	290	640	172	32.1 3	1.3 31	2.03	865	180	900	16.3	15	48%	66.6	1.545
16	6608	31	69.4	214 4.16703	346	2.97	4735	1995	1300	290	630	169	32 3	0.7 30.5	1.97	830	180	890	16	14.7	48%	65	1.6
17	6616	29.1	69	215 4.22857	340	2.79	4185	1920	1280	275	625	161	31.7 2	3.9 28.7	1.79	730	180	880	15	13.9	48%	60	1.
21	6629	27.2	68.6	219 4.3013	335	2.61	3630	1850	1260	265	635	152	31.4 2	5.9 26.7	1.61	630	180	890	14	12.9	48%	55	1.3
24	6669	25.2	68.1	222 4.38857	329	2.42	3090	1770	1235	255	640	142	31.1 2	4.9 24.8	1.42	525	180	910	13	12	48%	50	1.2
30	6729	23	67.5	228 4.49524	324	2.23	2535	1670	1210	240	655	131	30.8 2	2.8 22.7	1.23	415	180	930	11.9	10.9	48%	45	1.1
36	6808	20.8	66.8	234 4.54286	319	2.03	2000	1575	1180	225	675	118	30.4 2	0.5 20.5	1.03	305	180	960	10.7	9.9	48%	40	1.0
46	6883	18.4	65.9	244 4.60408	316	1.83	1480	1465	1150	210	695	104	30 1	3.2 18.1	0.83	195	180	1000	9.5	8.7	48%	35	0.9
44	6961	16.6	65.2	242 4.85714	302	1.68	1100	1295	1070	195	610	92	29.6 1	5.4 16.4	0.68	110	180	880	8.6	7.9	48%	30	0.8
26	7045	15.6	64.6	224 5.48571	275	1.58	845	1065	940	180	415	82	29.3 1	5.4 15.4	0.58	45	180	590	8.1	7.4	48%	25	0.7
	7129	15.6		6.42857	248									14.4					8.1	6.9		20	0.
	7213	15.6		8	221									13.4					8.1	6.4		15	0.5
BS	7297	15.6 Tur Flov Eta	aTC ti	11.1429 EbB BSAC tE	194 bT pSc	av SA	C LT Cylinder	Lu	b. Oil Radiation	SPP	tAaC	C tScav	Com Flo	12.4 w mScav		ond. wateTEaE	Stea	m mEc	8.1 :o mEg	5.9 gr EGI	R rate	10	0.3
kJ,	7297 SEC T J/kWh k	' ur Flov Et a g/s %	٩	E bB BSAC tE C kg/kWh °C	bT pSc bar	k٧	v kW	kV	V kW	kW	°C	°C	kg/s	w mScav kg/s	pScavRel C barg k	g/h °C	kg/h	kg/s	so mEg	gr EGI s %		10	0.3
kJ 27	7297 SEC T J/kWh k 7439	'ur Flov Et g/s % 48.8	67.8	EbB BSAC tE C kg/kWh °C 225 -	bT pSc bar 414	kV 4.74	V kW 10265	kV 2355	V kW 1435	kW 360	°C 1690	°C 231	kg/s 33.9 4	w mScav kg/s 3.2 47.8	pScavRel C barg k 3.74	g/h °C 1230	kg/h 180	kg/s 2400	:o mEg 5 kg/s 32.4	gr EGF s % 16.4	34%	10	0.3
kJ 27 11	7297 SEC T J/kWh k 7439 7290	ur Flov Et g/s % 48.8 45.9	67.8 69.2	EbB BSAC tE C kg/kWh °C 225 - 209 -	bT pSc bar 414 389	kV 4.74 4.38	V kW 10265 9195	kV 2355 2430	V kW 1435 1475	kW 360 350	°C 1690 1030	°C 231 221	kg/s 33.9 4 33.4 4	w mScav kg/s 3.2 47.8 5.2 44.9	pScavRel C barg k 3.74 3.38	g/h °C 1230 1115	kg/h 180 180	kg/s 2400 1430	50 mEg 5 kg/s 32.4 30.2	gr EGF s % 16.4 15.6	34% 35%	10	0.3
kJ 27 11 05	7297 SEC T J/kWh k 7439 7290 7153	ur Flov Et g/s % 48.8 45.9 43.6	67.8 69.2 69.7	EbB BSAC tE C kg/kWh °C 225 - 209 - 203 -	bT pSc bar 414 389 376	kV 4.74 4.38 4.13	V kW 10265 9195 8430	kV 2355 2430 2465	V kW 1435 1475 1490	kW 360 350 340	°C 1690 1030 770	°C 231 221 213	kg/s 33.9 4 33.4 4 33.1	w mScav kg/s 3.2 47.8 5.2 44.9 43 42.7	pScavRel C barg k 3.74 3.38 3.13	g/h °C 1230 1115 1070	kg/h 180 180 180	kg/s 2400 1430 1050	50 mEg 5 kg/s 32.4 30.2 28.1	gr EGF 5 % 16.4 15.6 15.5	34% 35% 36%	10	0.3
kJ 27 11 05 01	7297 SEC T J/kWh k 7439 7290 7153 7064	ur Flov Et g/s % 48.8 45.9 43.6 41.8	67.8 69.2 69.7 70	EbB BSAC tE C kg/kWh °C 225 - 209 - 203 - 199 -	bT pSc bar 414 389 376 365	4.74 4.38 4.13 3.93	V kW 10265 9195 8430 7800	kv 2355 2430 2465 2450	V kW 1435 1475 1490 1495	kW 360 350 340 330	°C 1690 1030 770 605	°C 231 221 213 206	kg/s 33.9 4 33.4 4 33.1 32.9 4	w mScav kg/s 3.2 47.8 5.2 44.9 43 42.7 1.3 41	pScavRel C barg k 3.74 3.38 3.13 2.93	g/h °C 1230 1115 1070 1020	kg/h 180 180 180 180	kg/s 2400 1430 1050 810	co mEg 5 kg/s 32.4 30.2 28.1 26.5	gr EGI 5 % 16.4 15.6 15.5 15.3	34% 35% 36% 37%	10	0.3
kJ, 27 11 05 01 00	7297 SEC T J/kWh k 7439 7290 7153 7064 7062	ur Flov Et. g/s % 48.8 45.9 43.6 41.8 41.8	67.8 69.2 69.7 70 70	EbB BSAC tE C kg/kWh °C 225 - 209 - 203 - 199 - 198 -	bT pSc bar 414 389 376 365 365	kV 4.74 4.38 4.13 3.93 3.93	V kW 10265 9195 8430 7800 7790	kv 2355 2430 2465 2450 2435	V kW 1435 1475 1490 1495 1490	kW 360 350 340 330 330	°C 1690 1030 770 605 600	°C 231 221 213 206 206	kg/s 33.9 4 33.4 4 33.1 32.9 4 32.9 4	w mScav kg/s 3.2 47.8 5.2 44.9 43 42.7 1.3 41 1.2 40.9	pScavRel C barg k 3.74 3.38 3.13 2.93 2.93	g/h °C 1230 1115 1070 1020 1020	kg/h 180 180 180 180 180	kg/s 2400 1430 1050 810 800	50 mEg 5 kg/s 32.4 30.2 28.1 26.5 26.5	gr EGF 5 % 16.4 15.6 15.5 15.3 15.3	34% 35% 36% 37% 37%	10	0.3
kJ, 27 11 05 01 00 98	7297 SEC T J/kWh k 7439 7290 7153 7064 7062 7008	ur Flov Et. g/s % 48.8 45.9 43.6 41.8 41.8 39.9	67.8 69.2 69.7 70 70 70	EbB BSAC tE C kg/kWh *C 225 - 209 - 203 - 199 - 198 - 196 -	bT pSc bar 414 389 376 365 365 357	4.74 4.38 4.13 3.93 3.93 3.74	V kW 10265 9195 8430 7800 7790 7180	44 2355 2430 2465 2450 2435 2385	V kW 1435 1475 1490 1495 1490 1475	kW 360 350 340 330 330 320	°C 1690 1030 770 605 600 510	°C 231 221 213 206 206 199	kg/s 33.9 4 33.4 4 33.1 32.9 4 32.9 4 32.6 3	w mScav kg/s 3.2 47.8 5.2 44.9 43 42.7 1.3 41 1.2 40.9 9.4 39.2	pScavRel C barg k 3.74 3.38 3.13 2.93 2.93 2.74	g/h °C 1230 1115 1070 1020 1020 965	kg/h 180 180 180 180 180 180	kg/s 2400 1430 1050 810 800 670	co mEg 5 kg/s 32.4 30.2 28.1 26.5 26.5 24.9	gr EG 5 % 16.4 15.6 15.5 15.3 15.3 15.3 15.3	34% 35% 36% 37% 37% 38%	10	0.3
kJ 27 11 05 01 98 98	7297 SEC T J/kWh k 7439 7290 7153 7064 7062 7008 6970	Tur Flov Et g/s % 48.8 45.9 43.6 41.8 41.8 39.9 38.5	67.8 69.2 69.7 70 70 70 70 70	EbB BSAC tE C kg/kWh *C 225 - 209 - 203 - 199 - 199 - 196 - 196 -	bT pSc bar 414 389 376 365 365 357 351	4.74 4.38 4.13 3.93 3.93 3.74 3.59	V kW 10265 9195 8430 7800 7790 7180 6730	2355 2430 2465 2450 2435 2385 2385 2280	V kW 1435 1475 1490 1495 1490 1495 1430	kW 360 350 340 330 330 320 310	°C 1690 1030 770 605 600 510 460	°C 231 221 213 206 206 199 193	kg/s 33.9 4 33.4 4 33.1 32.9 4 32.9 4 32.6 3 32.5 4	w mScav kg/s 3.2 47.8 5.2 44.9 43 42.7 1.3 41 1.2 40.9 9.4 39.2 38 37.8	pScavRel C barg k 3.74 3.38 3.13 2.93 2.93 2.74 3.259	g/h °C 1230 1115 1070 1020 1020 965 955	kg/h 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 800 670 600	co mEg 5 kg/s 32.4 30.2 28.1 26.5 26.5 24.9 23.2	gr EG 5 % 16.4 15.6 15.5 15.3 15.3 15.3 15.2	34% 35% 36% 37% 37% 38% 40%	10	0.3
kJ 27 11 05 01 00 98 98 97	7297 SEC T J/kWh k 7439 7290 7153 7064 7062 7008 6970 6957	Fur Flov Et. 18/5 % 48.8 45.9 43.6 41.8 41.8 39.9 38.5 36.5	67.8 69.2 69.7 70 70 70 70 70 69.9	EbB BSAC tE bg/kWh *C 225 - 209 - 209 - 199 - 198 - 198 - 196 - 196 - 195 -	bT pSc bar 414 389 376 365 365 357 351 342	kV 4.74 4.38 4.13 3.93 3.93 3.74 3.59 3.39	V kW 10265 9195 8430 7700 7790 7180 6730 6075	kv 2355 2430 2465 2450 2435 2385 2385 2280 2220	V kW 1435 1475 1490 1495 1490 1475 1430 1430 1405	kW 360 350 340 330 330 320 310 300	°C 1690 1030 770 605 600 510 460 410	*C 231 221 206 206 199 193 185	kg/s 33.9 4 33.4 4 33.1 32.9 4 32.9 4 32.6 3 32.5 3 32.2 3	w mScav kg/s 3.2 47.8 5.2 44.9 43 42.7 1.3 41 1.2 40.9 9.4 39.2 38 37.8 5.1 35.9	pScavRel C barg k 3.74 3.38 3.13 2.93 2.93 2.74 2.59 2.39	g/h °C 1230 1115 1070 1020 1020 965 955 860	kg/h 180 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 800 670 600 530	co mEg 5 kg/s 32.4 30.2 28.1 26.5 26.5 24.9 23.2 22.1	gr EGB 5 % 16.4 15.6 15.5 15.3 15.3 15.3 15.2 14.4	34% 35% 36% 37% 37% 38% 40% 40%	10	0.3
kJ 27 11 05 01 00 98 98 97 98	7297 SEC T J/KWh k 7439 7290 7153 7064 7062 7008 6970 6957 6954	fur Flov Etc g/s % 48.8 45.9 43.6 41.8 41.8 39.9 38.5 36.5 35	67.8 69.2 69.7 70 70 70 70 69.9 69.8	Ebb BSAC tE C kg/kWh *C 225 - 209 - 203 - 199 - 198 - 196 - 196 - 196 - 196 - 196 - 196 -	bT pSc bar 414 389 376 365 365 357 351 342 338	4.74 4.38 4.13 3.93 3.93 3.74 3.59 3.39 3.39 3.24	kW 10265 9195 8430 7800 7790 7180 6730 6075 5615	kw 2355 2430 2465 2450 2435 2385 2280 2220 2210	 kw 1435 1475 1490 1495 1490 1475 1430 1475 1430 1405 1415 	kW 360 350 340 330 330 320 310 300 290	°C 1690 1030 770 605 600 510 460 410 415	*C 231 221 206 206 199 193 185 179	kg/s 33.9 4 33.4 4 33.1 32.9 4 32.9 4 32.6 3 32.5 3 32.2 3 32 3	w mScav kg/s 3.2 47.8 5.2 44.9 4.3 42.7 1.3 41 1.2 40.9 9.4 39.2 3.8 37.8 5.1 35.9 4.6 34.4	pScavRel C barg k 3.74 3.38 3.13 2.93 2.93 2.74 2.59 2.39 2.29	g/h °C 1230 1115 1070 1020 965 955 860 810	kg/h 180 180 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 800 670 600 530 550	co mEg 5 kg/s 32.4 30.2 28.1 26.5 26.5 26.5 24.9 23.2 22.1 20.9	gr EGi 5 % 16.4 15.6 15.5 15.3 15 15.2 14.4 14.1	34% 35% 36% 37% 38% 40% 40% 41%	10	0.3
kJ 27 11 05 01 00 98 98 97 98 99 99	7297 SEC T J/KWh k 7439 7290 7153 7064 7062 7008 6970 6957 6954 6953	fur Flov Etc g/s % 48.8 45.9 43.6 41.8 41.8 39.9 38.5 36.5 35 34.3	67.8 69.2 69.7 70 70 70 70 70 69.9 69.8 69.7	Ebb BSAC tEl C kg/kWh *C 225 - 209 - 203 - 199 - 198 - 196 - 196 - 196 - 195 - 195 - 196 - 196 - 197 - 197 - 197 -	bt pSc bar 414 389 376 365 365 357 351 342 338 336	4.74 4.38 4.13 3.93 3.93 3.74 3.59 3.39 3.29 3.39 3.24 3.17	kW 10265 9195 8430 7800 7790 7180 6730 6730 6075 5615 5615 5640	kv 2355 2430 2465 2450 2435 2385 2280 2220 2210 2210 2205	 kw 1435 1475 1490 1495 1490 1475 1430 1405 1415 1420 	kW 360 350 340 330 320 310 300 290 290	°C 1690 1030 770 605 600 510 460 410 415 420	°C 231 221 206 206 199 193 185 179 177	kg/s 33.9 4 33.4 4 33.1 32.9 4 32.6 3 32.5 3 32.2 3 31.9 3	w mScav kg/s 3.2 47.8 5.2 44.9 43 42.7 1.3 41 1.2 40.9 9.4 39.2 38 37.8 5.1 35.9 4.6 34.4 3.9 33.7	pScavRel C barg k 3.74 3.38 2.93 2.93 2.74 2.59 2.39 2.24 2.17	g/h °C 1230 1115 1070 1020 965 955 860 810 780	kg/h 180 180 180 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 800 670 600 530 550 550	co mEg 5 kg/s 32.4 28.1 26.5 26.5 24.9 23.2 22.1 20.9 20.4	gr EGI 5 % 16.4 15.6 15.5 15.3 15.3 15.2 14.4 14.1 13.9	34% 35% 36% 37% 37% 38% 40% 40% 41%	10	0.3
kJ 227 111 05 01 00 98 98 97 98 99 99 00	7297 SEC T //KWh k 7439 7290 7153 7064 7062 7008 6970 6954 6953 6954 6953 6961	fur Flov Et: g/s % 48.8 45.9 43.6 41.8 41.8 39.9 38.5 36.5 35 34.3 32	67.8 69.2 69.7 70 70 70 69.9 69.8 69.7 69.4	EbB BSAC EE c kg/kwh *C 209 - 203 - 199 - 196 - 196 - 195 - 195 - 195 - 195 - 195 - 195 - 195 - 195 -	bt pSc bar 414 389 376 365 365 357 351 342 338 336 328	kV 4.74 4.38 4.13 3.93 3.93 3.74 3.59 3.39 3.24 3.17 2.97	kW 10265 9195 8430 7800 7790 7180 6730 6730 6735 5615 5400 4720	kV 2355 2430 2465 2435 2385 2280 2220 2210 2205 2175	 kw 1435 1475 1490 1495 1490 1475 1430 1475 1430 1415 1420 1420 	kW 360 350 340 330 330 320 310 300 290 290 275	°C 1690 1030 770 605 600 510 460 410 415 420 420	°C 231 221 213 206 206 199 193 185 179 177 167	kg/s 33.9 4 33.4 4 33.1 3 32.9 4 32.6 3 32.5 3 32.2 3 31.9 3 31.9 3	w mScav kg/s 5.2 47.8 5.2 44.9 43 42.7 1.3 41 1.2 40.9 9.4 39.2 38 37.8 5.1 35.9 4.6 34.4 .9 33.7 1.6 31.4	pScavRel C barg k 3.74 3.88 3.13 2.93 2.93 2.74 2.59 2.29 2.29 2.24 2.17 1.97	g/h °C 1230 1115 1070 1020 965 955 860 810 780 675	kg/h 180 180 180 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 800 670 600 530 550 550 550 560	co mEg 32.4 30.2 28.1 26.5 26.5 24.9 23.2 22.1 20.9 20.4 19	gr EGI 5 % 16.4 15.5 15.3 15.3 15.3 15.3 15.2 14.4 14.1 13.9 13	34% 35% 36% 37% 37% 38% 40% 40% 41% 41% 41%	10	0.3
kJ 227 111 05 01 00 98 98 97 98 99 99 90 00 03	7297 SEC T J/KWh k 7439 7290 7153 7064 7062 7008 6957 6954 6955 6954 6955 6954 6958	fur Flov Etc g/s % 48.8 45.9 43.6 41.8 41.8 39.9 38.5 36.5 35.3 34.3 32 29.6	67.8 69.2 69.7 70 70 70 69.9 69.8 69.7 69.4 68.9	Eb8 BSAC tE C kg/kWh *C 205 - 203 - 199 - 198 - 196 - 196 - 195 - 196 - 197 - 198 - 201 -	bt pSc bar 414 389 376 365 365 357 351 342 338 336 328 322	kW 4.74 4.38 4.13 3.93 3.74 3.59 3.39 3.24 3.17 2.97 2.74	kW 10265 9195 8430 7800 7790 7180 6730 6075 5615 5615 5615 5400 4720 4030	kV 2355 2430 2465 2450 2435 2385 2280 2220 2210 2210 2210 2210 2215 2175 2125	 kw 1435 1475 1490 1495 1490 1475 1430 1405 1415 1420 1420 1420 1420 	kW 360 350 340 330 320 310 300 290 290 290 275 265	*C 1690 1030 605 600 460 410 415 420 420 425	°C 231 221 206 206 199 193 185 179 177 167 157	kg/s 33.9 4 33.4 4 33.1 5 32.9 4 32.6 3 32.5 5 32.2 3 32.5 3 32.9 3 31.9 3 31.6 3 31.3 2	w mScav kg/s 5.2 44.9 43 42.7 1.3 41 1.2 40.9 9.4 39.2 38 37.8 5.1 35.9 4.6 34.4 3.9 33.7 1.6 31.4 9.2 29	pScavRel C barg k 3.74 3.38 2.93 2.93 2.74 2.59 2.39 2.24 2.27 2.24 2.17 1.97 1.74	g/h *C 1230 1115 1070 1020 965 860 810 780 675 570	kg/h 180 180 180 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 800 670 600 530 550 550 550 550 610	co mEg 5 kg/s 32.4 28.1 26.5 26.5 26.5 24.9 23.2 24.9 20.9 20.4 19 17.4	gr EGi 5 % 16.4 15.5 15.3 15.3 15.3 15.2 14.4 14.1 13.9 13 12.1	34% 35% 36% 37% 38% 40% 40% 41% 41% 41% 41%	10	0.3
kJ 227 111 205 201 200 208 209 209 209 209 209 209	7297 SEC T J/KWh k 7439 7290 7153 7064 7062 7008 6970 6957 6954 6953 6953 6958 7008	fur Flov Etc g/s % 48.8 45.9 43.6 41.8 41.8 39.9 38.5 36.5 35.3 34.3 32 29.6 27	67.8 69.2 69.7 70 70 70 69.9 69.8 69.7 69.4 68.9 68.4	Ebb BSAC tE 225 kg/kWh *C 209 - 209 203 - 199 199 - 199 196 - 196 195 - 196 196 - 196 197 - 198 201 - 207	bt pSc bar 414 389 376 365 365 357 351 342 338 336 328 322 317	kW 4.74 4.38 4.13 3.93 3.93 3.74 3.59 3.29 3.24 3.17 2.97 2.74 2.52	 kW 10265 9195 8430 7800 7790 7180 6730 6075 5615 5400 4720 4030 3340 	kV 2355 2430 2450 2435 2385 2280 2220 2210 2205 2175 2125 2125 2065	 kw 1435 1475 1490 1495 1480 1475 1430 1405 1415 1420 1420 1420 1415 	kW 360 350 340 330 320 310 300 290 290 275 265 255	*C 1690 1030 770 605 500 460 410 415 420 420 420 425 500	°C 231 221 213 206 199 193 185 179 177 167 157 145	kg/s 33.9 4 33.4 4 33.1 4 32.9 4 32.9 4 32.5 3 32.2 3 31.6 3 31.3 2 30.9 2	w mScav kg/s 3.2 47.8 5.2 44.5 43 42.7 1.3 41 1.3 41 1.3 41 1.3 43 3.4 3.9 33.7 1.4 32.4 3.9 33.7 1.6 31.4 3.9 33.7 1.6 31.4 3.2 25.6 26.5	pScavRel C bar g k 3.74 3.38 3.13 2.93 2.74 2.39 2.24 2.17 1.74 2.17 1.74 2.17 1.74 2.17	g/h °C 1230 1115 1070 1020 965 955 860 810 780 675 570 460	kg/h 180 180 180 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 800 670 600 530 550 550 550 550 610 690	co mEg 5 kg/s 32.4 26.5 26.5 24.9 23.2 23.2 20.9 20.4 19 17.4 15.7	gr EGI 5 % 16.4 15.6 15.5 15.3 15.3 15.2 14.4 14.1 13.9 13 12.1 11.2	34% 35% 36% 37% 38% 40% 41% 41% 41% 41% 41% 41%	10	0.3
kJ 227 111 205 201 200 298 297 298 299 200 203 209 16	7297 SEC T J/kWh k 7439 7290 7153 7064 7008 6970 6954 6954 6953 6951 6958 7008 7008 8951	fur Flov Et. g/s % 48.8 45.9 43.6 41.8 41.8 39.9 38.5 36.5 36.5 35 34.3 32 29.6 27 24.3	67.8 69.2 69.7 70 70 70 69.9 69.8 69.7 69.4 68.9 68.4 67.7	EbB BSAC tE 225 - 209 - 203 - 199 - 199 - 198 - 196 - 196 - 197 - 198 - 198 - 197 - 198 - 198 - 201 - 201 - 201 - 214 -	bT pSc bar 414 389 376 365 357 351 342 338 338 336 328 328 322 317 312	kW 4.74 4.38 4.13 3.93 3.74 3.59 3.29 3.24 3.17 2.97 2.74 2.52 2.28	w kw 10265 9195 8430 7790 7790 7780 6730 6075 5515 5400 4720 4030 3340 2660	kv 2355 2430 2465 2450 2435 2385 2280 2210 2210 2205 2175 2125 2125 2065 2005	 kw 1435 1475 1490 1495 1490 1475 1430 1475 1430 1445 1415 1420 1420 1420 1421 1420 1420 1420 1420 	kW 360 350 340 330 320 310 300 290 290 290 275 265 255 255 240	*C 1690 1030 770 605 600 510 460 410 415 420 420 420 455 500 555	°C 231 221 213 206 206 199 193 185 179 177 167 157 145 132	kg/s 33.9 4 33.1 3 32.9 4 32.9 4 32.9 4 32.5 3 32.2 3 31.9 3 31.9 3 31.3 2 30.9 2 30.9 2 30.9 2	w mScav kg/s 3.2 47.5 5.2 44.5 43 42.7 1.3 41 1.2 40.9 3.4 39.2 3.8 37.6 3.4 3.9 33.3 1.6 31.4 3.2 25 5.6 26.5 5.6 26.5 5.6 26.5 5.7 23.8	pScavRel C bar g k 3.74 3.38 3.38 2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93	g/h *C 1230 1115 1070 1020 965 955 860 810 780 675 570 460 355	kg/h 180 180 180 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 670 670 670 670 530 550 550 550 550 610 690 780	co mEg 32.4 30.2 28.1 26.5 24.9 23.2 26.5 24.9 23.2 20.9 20.4 19 17.4 15.7 13.9	gr EGG 5 % 16.4 15.5 15.3 15.3 15.3 15.3 15.3 15.3 15.3	34% 35% 36% 37% 38% 40% 41% 41% 41% 41% 41% 41% 41% 43%	10	0.3
kJ 227 111 05 01 00 98 998 997 998 999 000 03 099 16 26	7297 SEC T J/KWh k 7439 7290 7153 7064 7062 7008 6970 6957 6954 6953 6961 6978 7008 7055 7093	fur Flov Etc g/s % 48.8 45.9 43.6 41.8 41.8 39.9 38.5 36.5 35 34.3 32 29.6 27 24.3 21.4	67.8 69.2 69.7 70 70 70 69.9 69.9 69.7 69.4 68.9 68.4 67.7 66.8	Ebb BSAC tE 225 kg/kWh *C 209 . . 190 . . 199 . . 196 . . 195 . . 196 . . 197 . . 201 . . 207 . . 207 . . 201 . . 204 . .	bT pSc bar 414 389 376 365 357 351 342 338 336 328 322 317 312 308	kV 4.74 4.38 4.13 3.93 3.74 3.59 3.24 3.17 2.97 2.74 2.52 2.28 2.04	V kW 10265 9195 8430 7790 7780 6730 6730 6075 5615 5400 4720 4030 3340 2660 2005	kv 2355 2430 2455 2450 2435 2280 2220 2210 2220 2210 2205 2175 2125 2065 2005 1935	 kw 1435 1475 1490 1495 1490 1475 1430 1405 1415 1420 	kW 360 350 340 330 320 310 300 290 290 275 265 255 255 240 225	*C 1690 1030 770 605 510 460 410 415 420 455 500 555 615	°C 231 221 206 206 199 193 185 179 177 167 157 145 132 118	kg/s 33.9 4 33.4 4 33.1 33.1 32.9 4 32.9 4 32.6 3 32.2 3 31.1 3 32.2 3 31.9 3 31.6 3 31.3 2 30.6 2 30.2 2	w mScav kg/s 3.2 47.8.52 4.3 42.7. 4.3 42.7. 4.4 39. 3.8 37.8 5.1 35.5 4.6 34.4 3.9 33.3 1.6 31.4 3.2 25 5.6 25.5 3.9 23.8 1.1 21	pScavRel C barg k 3.74 3.38 3.293 2.74 2.59 2.24 2.17 1.74 1.52 1.74 1.52 1.28	g/h *C 1230 1115 1070 1020 1020 965 955 860 810 780 675 570 460 355 250	kg/h 180 180 180 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 670 670 670 630 550 550 550 550 610 690 780 870	 mEg (s) 32.4 30.2 28.1 26.5 26.5 24.9 20.4 19 17.4 15.7 13.9 12.1 	gr EGF 5 % 16.4 15.6 15.5 15.3 15.3 15.2 14.4 13.9 13 12.1 11.2 10.3 9.3	34% 35% 37% 37% 38% 40% 41% 41% 41% 41% 41% 41% 43%	10	0.3
kJ 27 11 05 01 00 98 97 98 99 99 99 00 03 09 16 26 39	7297 SEC T J/KWh k 7439 7290 7153 7064 7062 7008 6970 6954 6953 6954 6953 6954 6953 6954 6978 7008 7008 7008 7008 7003 7123	fur Flov Et: g/s % 48.8 45.9 43.6 41.8 41.8 39.9 38.5 36.5 35 34.3 32 29.6 27 24.3 21.4 18.5	67.8 69.2 69.7 70 70 70 69.9 69.9 69.7 69.4 68.9 68.4 67.7 66.8 65.8	Ebb BSAC tE 225 - - 209 - - 203 - - - 199 - - - 196 - - - 196 - - - 196 - - - 197 - 198 - - 198 - - - 197 - 207 - - 207 - - - 244 - - - 224 - - - 237 - - -	bT pSc bar 414 389 376 365 365 357 351 342 338 336 328 322 317 312 308 306	kV 4.74 4.38 4.13 3.93 3.74 3.59 3.24 3.17 2.97 2.74 2.97 2.74 2.52 2.28 2.04 1.8	v kW 10265 9195 8430 7790 7790 7780 6075 6615 5615 5615 5615 5615 5615 3340 4720 4030 4720 4030 3340 2660 2005	kv 2355 2430 2465 2450 2435 2280 2210 2205 2175 2125 2005 2005 2005 2005 1860	 kw 1435 1475 1490 1495 1490 1475 1430 1475 1430 1415 1420 1420 1421 1420 1420 1420 1421 1420 1421 1420 1421 1420 1421 1420 1421 1422 1422 1425 	kW 360 350 340 330 320 310 300 290 290 290 275 265 255 265 255 240 225 210	*C 1690 1030 770 605 600 510 400 410 415 420 420 420 425 500 555 615 665	°C 231 221 206 206 206 199 133 185 179 177 167 157 145 132 118 102	kg/s 33.9 4 33.4 4 33.1 32.9 4 32.9 4 32.5 3 32.5 3 32.5 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 2 30.9 2 30	w mScav kg/s 3.2 47.8 5.2 44.9 5.2 44.9 4.3 42.7 4.3 42.7 38 37.8 5.1 35.9 4.39,4 39,4 39,4 39,2 20,2 5.6 26.5 3.9 23.8 1.1 21.8 3.2 18.1	pScavRel C barg k 3.74 3.38 3.33 2.93 2.74 2.59 2.24 2.17 1.74 1.52 1.28 1.04 0.8	g/h *C 1230 1115 1070 1020 965 955 860 810 780 675 570 460 355 250 140	kg/h 180 180 180 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 670 600 530 550 550 550 550 610 690 780 870 960	co mEg 32.4 30.2 28.1 26.5 26.5 24.9 23.2 22.1 20.9 20.4 19 17.4 15.7 13.9 12.1 10.2	gr EG 16.4 15.6 15.3 15.3 15.3 15.2 15.4 14.4 14.1 13.9 13.1 12.1 11.2 10.3 9.3 8.2	34% 35% 37% 37% 40% 40% 41% 41% 41% 41% 41% 41% 42% 43% 44%	10	0.3
kJ, 227 111 005 001 000 998 999 998 999 900 003 009 106 226 339 337	7297 SEC T J/KWh k 7439 7290 7153 7064 7062 7008 6957 6957 6957 6953 6951 6978 7058 7008 7055 7093 7123 7120	ur Flov Ett g/s % 48.8 45.9 43.6 41.8 39.9 38.5 36.5 35 34.3 32 29.6 27 24.3 21.4 18.5 16.4	67.8 69.2 69.7 70 70 70 69.9 69.8 69.7 69.4 68.4 67.7 66.8 65.8 65.8	Ebb BSAC tEl 225 - - 209 - - 193 - - 194 - - 195 - - 196 - - 197 - - 198 - - 196 - - 197 - - 198 - - 197 - - 201 - - - 2074 - - 237 - - 235 - -	bt pSc bar 414 389 376 365 357 351 351 342 338 328 328 322 317 312 308 306 292	kV 4.74 4.38 4.13 3.93 3.74 3.59 3.39 3.74 3.59 3.39 3.24 3.17 2.97 2.74 2.52 2.28 2.04 1.8 1.65	V KW 10265 9195 8430 77800 6730 6730 6673 5615 5615 5615 5615 5615 5400 4720 4030 3340 2005 1395 990	kv 2355 2430 2455 2385 2385 2280 2220 2220 22175 2175 2125 2065 2005 1935 1860 1690	 kw 1435 1475 1490 1495 1490 1475 1430 1405 1415 1420 1420 1420 1415 1420 1420	kW 360 350 340 330 320 310 290 290 290 290 295 265 255 240 225 240 225 210 195	*C 1690 1030 770 605 600 510 460 410 415 420 420 425 500 555 615 665 565	°C 231 221 206 206 199 193 185 179 177 167 157 145 157 145 132 118 102 88	kg/s 33.9 4 33.4 4 33.1 32.9 4 32.9 4 32.5 3 32.5 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.0 4 31.0 4 32.9 4 31.0 4 32.9 4 32.9 4 31.0 4 32.9 4 32.9 4 31.0 4 32.9 4 33.1 4 32.9 4 33.1 4 30.9 2 20.8 4 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.9 4 20	w mScav kg/s 3.2 47.8. 3.3 47.8. 43 42.7. 1.3 41 1.2 40.0. 3.4 39.2 3.8 37.8 5.1 35.5. 4.6 34.4 3.9 33.7 1.6 31.4 5.2 25. 5.6 26.5 3.9 23.8 1.1 21 3.2 18.1 5.1 16.5 1.1 16.5	pScavRel C barg k 3,74 3,31 2,93 2,24 2,39 2,24 2,39 2,24 2,17 1,97 1,74 1,52 1,28 1,04 0,68	g/h *C 1230 1115 1070 1020 965 955 860 810 780 675 570 460 355 250 140 60	kg/t 180 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 670 600 530 550 550 550 550 610 690 780 870 960 810	 mEgg kg/s 32.4 30.2 28.1 26.5 26.5 24.9 23.2 20.4 19 17.4 19. 15.7 13.9 12.1 10.2 8.9 	gr EGI 5 % 16.4 15.5 15.3 15.3 15.3 15.3 15.3 15.3 15.3	34% 35% 37% 37% 40% 40% 41% 41% 41% 41% 41% 41% 42% 43% 45%	10	0.3
kJ, 27 11 05 01 00 98 99 99 99 99 99 99 00 03 09 16 26 39 37	7297 SEC T J/KWh k 7439 7290 7153 7064 7062 7008 6970 6954 6953 6954 6953 6954 6953 6954 6978 7008 7008 7008 7008 7003 7123	Tur Flov Ett g/s % 48.8 45.9 43.6 41.8 39.9 38.5 36.5 35 34.3 229.6 27 24.3 21.4 18.5 16.4 15	67.8 69.2 69.7 70 70 70 69.9 69.9 69.7 69.4 68.9 68.4 67.7 66.8 65.8	Ebb BSAC tE 225 - - 209 - - 203 - - - 199 - - - 196 - - - 196 - - - 196 - - - 197 - 198 - - 198 - - - 197 - 207 - - 207 - - - 244 - - - 224 - - - 237 - - -	bT pSc bar 414 389 365 365 351 342 338 328 328 328 328 328 328 328 329 317 312 308 308 308 308 308 302 222 267	kV 4.74 4.38 4.13 3.93 3.74 3.59 3.24 3.17 2.97 2.74 2.97 2.74 2.52 2.28 2.04 1.8	v kW 10265 9195 8430 7790 7790 7780 6075 6615 5615 5615 5615 5615 5615 3340 4720 4030 4720 4030 3340 2660 2005	kv 2355 2430 2465 2450 2435 2280 2210 2205 2175 2125 2005 2005 2005 2005 1860	 kw 1435 1475 1490 1495 1490 1475 1430 1475 1430 1415 1420 1420 1421 1420 1420 1420 1421 1420 1421 1420 1421 1420 1421 1420 1421 1422 1422 1425 	kW 360 350 340 330 320 310 300 290 290 290 275 265 255 265 255 240 225 210	*C 1690 1030 770 605 600 510 400 410 415 420 420 420 425 500 555 615 665	°C 231 221 206 206 206 199 133 185 179 177 167 157 145 132 118 102	kg/s 33.9 4 33.4 4 33.1 32.9 4 32.9 4 32.5 3 32.5 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.0 4 31.0 4 32.9 4 31.0 4 32.9 4 32.9 4 31.0 4 32.9 4 32.9 4 31.0 4 32.9 4 33.1 4 32.9 4 33.1 4 30.9 2 20.8 4 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.9 4 20	w mScav kg/s 3.2 47.8 5.2 44.9 5.2 44.9 4.3 42.7 4.3 42.7 38 37.8 5.1 35.9 4.39,4 39,4 39,4 39,2 20,2 5.6 26.5 3.9 23.8 1.1 21.8 3.2 18.1	pScavRel C barg k 3,74 3,31 2,93 2,74 2,59 2,24 2,59 2,24 2,17 1,97 1,74 1,52 1,28 1,04 0,65	g/h *C 1230 1115 1070 1020 965 955 860 810 780 675 570 460 355 250 140	kg/h 180 180 180 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 670 600 530 550 550 550 550 610 690 780 870 960	 mEg (%) 32.4 30.2 28.1 26.5 26.5 24.9 23.2 23.2 23.2 20.4 19 17.4 15.7 13.9 12.1 10.2 8.9 8 	gr EG 16.4 15.6 15.3 15.3 15.3 15.2 15.4 14.4 14.1 13.9 13.1 12.1 11.2 10.3 9.3 8.2	34% 35% 37% 37% 40% 40% 41% 41% 41% 41% 41% 41% 42% 43% 44%	10	0.3
kl, 27 11 05 01 00 98 97 98 99 99 99 99 99 90 00 03 09 16 26 39 37	7297 SEC T J/KWh k 7439 7290 7153 7064 7062 7008 6957 6957 6957 6953 6951 6978 7058 7008 7055 7093 7123 7120	fur Flov Ett g/s % 48.8 45.9 43.6 41.8 41.8 39.9 38.5 36.5 35 34.3 229.6 27 24.3 21.4 18.5 16.4 15 15.1	67.8 69.2 69.7 70 70 70 69.9 69.8 69.7 69.4 68.4 67.7 66.8 65.8 65.8	Ebb BSAC tEl 225 - - 209 - - 193 - - 194 - - 195 - - 196 - - 197 - - 198 - - 196 - - 197 - - 198 - - 197 - - 201 - - - 2074 - - 237 - - 235 - -	bt pSc bar 414 389 365 365 357 351 342 338 338 338 338 328 328 328 328 328 32	kV 4.74 4.38 4.13 3.93 3.74 3.59 3.39 3.74 3.59 3.39 3.24 3.17 2.97 2.74 2.52 2.28 2.04 1.8 1.65	V KW 10265 9195 8430 77800 6730 6730 6673 5615 5615 5615 5615 5615 5400 4720 4030 3340 2005 1395 990	kv 2355 2430 2455 2385 2385 2280 2220 2220 2217 205 2175 2125 2065 2005 1935 1860 1690	 kw 1435 1475 1490 1495 1490 1475 1430 1405 1415 1420 1420 1420 1415 1420 1420	kW 360 350 340 330 320 310 290 290 290 290 295 265 255 240 225 240 225 210 195	*C 1690 1030 770 605 600 510 460 410 415 420 420 425 500 555 615 665 565	°C 231 221 206 206 199 193 185 179 177 167 157 145 157 145 132 118 102 88	kg/s 33.9 4 33.4 4 33.1 32.9 4 32.9 4 32.5 3 32.5 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.0 4 31.0 4 32.9 4 31.0 4 32.9 4 32.9 4 31.0 4 32.9 4 32.9 4 31.0 4 32.9 4 33.1 4 32.9 4 33.1 4 30.9 2 20.8 4 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.9 4 20	w mScav kg/s 3.2 47.8. 3.3 47.8. 43 42.7. 1.3 41 1.2 40.0. 3.4 39.2 3.8 37.8 5.1 35.5. 4.6 34.4 3.9 33.7 1.6 31.4 5.2 25. 5.6 26.5 3.9 23.8 1.1 21 3.2 18.1 5.1 16.5 1.1 16.5	pScavRel C barg k 3,74 3,31 2,93 2,24 2,39 2,24 2,39 2,24 2,17 1,97 1,74 1,52 1,28 1,04 0,68	g/h *C 1230 1115 1070 1020 965 955 860 810 780 675 570 460 355 250 140 60	kg/t 180 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 670 600 530 550 550 550 550 610 690 780 870 960 810	 mEg kg/s 32.4 30.2 28.1 26.5 26.5 26.5 26.9 20.9 20.4 19 17.4 15.7 13.9 12.1 10.2 8.9 8 	gr EGI 5 % 16.4 15.5 15.3 15.3 15.3 15.3 15.3 15.3 15.3	34% 35% 37% 37% 40% 40% 41% 41% 41% 41% 41% 41% 42% 43% 45%	10	0.3
	7297 SEC T J/KWh k 7439 7290 7153 7064 7062 7008 6957 6957 6957 6953 6951 6978 7058 7008 7055 7093 7123 7120	Tur Flov Ett g/s % 48.8 45.9 43.6 41.8 39.9 38.5 36.5 35 34.3 229.6 27 24.3 21.4 18.5 16.4 15	67.8 69.2 69.7 70 70 70 69.9 69.8 69.7 69.4 68.4 67.7 66.8 65.8 65.8	Ebb BSAC tEl 225 - - 209 - - 193 - - 194 - - 195 - - 196 - - 197 - - 198 - - 196 - - 197 - - 198 - - 197 - - 201 - - - 2074 - - 237 - - 235 - -	bt pSc bar 414 389 365 365 351 342 338 328 328 328 328 328 328 328 328 32	kV 4.74 4.38 4.13 3.93 3.74 3.59 3.39 3.74 3.59 3.39 3.24 3.17 2.97 2.74 2.52 2.28 2.04 1.8 1.65	V KW 10265 9195 8430 77800 6730 6730 6673 5615 5615 5615 5615 5615 5400 4720 4030 3340 2005 1395 990	kv 2355 2430 2455 2385 2385 2280 2220 2220 2217 205 2175 2125 2065 2005 1935 1860 1690	 kw 1435 1475 1490 1495 1490 1475 1430 1405 1415 1420 1420 1420 1415 1420 1420	kW 360 350 340 330 320 310 290 290 290 290 295 265 255 240 225 240 225 210 195	*C 1690 1030 770 605 600 510 460 410 415 420 420 425 500 555 615 665 565	°C 231 221 206 206 199 193 185 179 177 167 157 145 157 145 132 118 102 88	kg/s 33.9 4 33.4 4 33.1 32.9 4 32.9 4 32.5 3 32.5 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 3 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.9 4 31.0 4 31.0 4 32.9 4 31.0 4 32.9 4 32.9 4 31.0 4 32.9 4 32.9 4 31.0 4 32.9 4 33.1 4 30.9 2 20.8 4 20.2 2 20.9 8 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.2 2 20.9 4 20.4 4 20	w mScav kg/s 3.2 47.8. 3.3 47.8. 43 42.7. 1.3 41 1.2 40.0. 3.4 39.2 3.8 37.8 5.1 35.5. 4.6 34.4 3.9 33.7 1.6 31.4 5.2 25. 5.6 26.5 3.9 23.8 1.1 21 3.2 18.1 5.1 16.5 1.1 16.5	pScavRel C barg k 3,74 3,31 2,93 2,24 2,39 2,24 2,39 2,24 2,17 1,97 1,74 1,52 1,28 1,04 0,68	g/h *C 1230 1115 1070 1020 965 955 860 810 780 675 570 460 355 250 140 60	kg/t 180 180 180 180 180 180 180 180	kg/s 2400 1430 1050 810 670 600 530 550 550 550 550 610 690 780 870 960 810	 mEg (%) 32.4 30.2 28.1 26.5 26.5 24.9 23.2 23.2 23.2 20.4 19 17.4 15.7 13.9 12.1 10.2 8.9 8 	gr EGI 5 % 16.4 15.5 15.3 15.3 15.3 15.3 15.3 15.3 15.3	34% 35% 37% 37% 40% 40% 41% 41% 41% 41% 41% 41% 42% 43% 45%	10	0.3.

ATTACHMENT O

MONITORING, RECORDKEEPING, REPORTING, TESTING PLANS

ATTACHMENT O

MONITORING, RECORDKEEPING, REPORTING, AND TESTING PLANS

TransGas Development Systems, LLC will work with the Division of Air Quality to identify and address Monitoring, Recordkeeping, Reporting, and Testing Plans. Requirements that are identified in the permit will be implemented.

ATTACHMENT P

PUBLIC NOTICE

ATTACHMENT P

AIR QUALITY PERMIT NOTICE

Notice of Application

Notice is given that TransGas Development Systems, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Construction Permit for the Adams Fork Data Center Energy Campus located on Twisted Gun Road near Wharncliffe in Mingo County, West Virginia. The latitude and longitude coordinates are: 37.593717 and -81.954906.

The applicant estimates the potential to discharge the following Regulated Air Pollutants will be: NO_x of 194.30 tons per year (tpy), SO2 of 9.93 tpy, CO of 205.62, tpy, VOC of 117.66 which includes fugitives of 0.31 tpy, PM of 215.17 tpy which includes fugitives of 28.64 tpy, PM10 of 192.26 which includes fugitives of 5.73 tpy, PM2.5 of 188.03 tpy which includes fugitives of 1.50 tpy, and total HAPS of 0.87 tpy.

Startup of operations is planned to begin on or about the 1st day of January 2027. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice. Written comments will also be received via email at DEPAirQualityPermitting@WV.gov.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, Extension 41281, during normal business hours.

Dated this the (Insert Date) day of March 2025.

By: TransGas Development Systems, LLC Adam Victor President 630 First Avenue, Suite 30C New York, New York 10016-3799

ATTACHMENT Q

BUSINESS CONFIDENTIAL CLAIMS

Cover Document Confidential Information

This sample form contains each of the required elements for the cover document required under 45CSR31. The person submitting this form may wish to attach an additional page(s) to provide adequate justification under the "Rationale" section of the form.

Company Name	TransGas Development Systems, LLC Responsible Official		Adam Victor, President	
Company Address	630 First Avenue, Suite 30C New York, NY 10016-3799	Confidential	Name	Patrick Ward
		Information Designee in	Title	Senior Engineer
		State of WV	Address	7012 MacCorkle Ave, SE Charleston, WV 25304
Person/Title	Adam Victor			
<i>Submitting</i> Confidential	President		Phone	(304) 342-1400
Information			Fax	(304) 343-9031

Reason for Submittal of Confidential Information: Initial permitting.

Identification of Confidential Information	Rationale for Confidential Claim	Confidential Treatment Time Period
	Provide justification that the criteria set forth in § 45CSR31-4.1.a - e have been met.	
All Marked Confidential Information.	The information contained within the application is fully protected under non-disclosure and confidentiality agreements by all parties involved in the application process and design of the facility. See Page Q2 of Q2.	This information is to be maintained confidential. There is no timeframe for expiration of confidential treatment.
Г		
Responsible Official Signatu	re:	
Responsible Official Title:	President	
Date Signed:	3/24/25	

NOTE: Must be signed and dated in BLUE INK.

Provide justification that the criteria set forth in § 45CSR31-4.1.a - e have been met.

4.1.a. The claim of confidentiality has not expired by its terms, nor been waived or withdrawn;

The confidentiality agreements do not have an expiration date due to the nature of the information contained in the application.

4.1.b. The person asserting the claim of confidentiality has satisfactorily shown that it has taken reasonable measures to protect the confidentiality of the information, and that it intends to continue to take such measures;

The information contained within the application is fully protected under non-disclosure and confidentiality agreements by all parities involved in the original development of the processes, the design of the facility, and the permit application process.

4.1.c. The information claimed confidential is not, and has not been, reasonably obtainable without the person's consent by other persons (other than governmental bodies) by use of legitimate means (other than discovery based on a showing of special need in a judicial or quasi-judicial proceeding);

The information available herein is not available and is not to be made available to outside parties.

4.1.d. No statute specifically requires disclosure of the information; and

Applicant believes there are no statutes that require disclosure of the information.

4.1.e. Either--

4.1.e.1. The person has satisfactorily shown that disclosure of the information is likely to cause substantial harm to the business's competitive position; or

This is a unique facility with many parties involved in preparing and providing information on the systems. Release of this information could cause substantial harm to Applicant's competitive position in the market.

4.1.e.2. The information is voluntarily submitted information, and its disclosure would likely to impair the State's ability to obtain necessary information in the future.

The State should not disclose this information to anyone.