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Working Group Final Reporto g G oup a epo t

To do list for G&T Subcommittee:
• Seismicity – further work, consider including USGS seismicity map
• Review RCSP use of MVA technology for inclusion in Final Report
• Review risk assessment for further refinement
• Improve estimate of storage volume occupied for a given amount of CO2 in 

the reservoir
– Re-visit storage volume estimates in Preliminary Report

Other items to consider:
• Exporting captured CO2 for EOR

N UIC Cl VI l ti• New UIC Class VI regulations
• Financial responsibility
• Long-term liability
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Working Group Final Reporto g G oup a epo t

To do list for Working Group:
• Assess the economic and environmental feasibility of large, long-term 

carbon dioxide sequestration operations [§22-11A-6(h)(2)].
• Identify areas of research needed to better understand and quantify the 

f b di id t ti [§22 11A 6(h)(9)]processes of carbon dioxide sequestration [§22-11A-6(h)(9)].
• Outline the working group’s long-term strategy for the regulation of carbon 

dioxide sequestration in West Virginia [§22-11A-6(h)(10)].
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Storage Potential

• NETL released the 3rd edition of their sequestration atlas
USGS i i h d ith th i t f t t ti l• USGS is moving ahead with their assessment of storge potential

– Their model is illustrated above
USGS, 2010, A Probabilistic Assessment Methodology for the Evaluation of Geologic Carbon Dioxide Storage.  OFR 2010-1127. 4
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• For any given depth, storage efficiency is critical
– Efficiency values used here from NETL’s Atlas 3rd edition, found at:
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http://www.netl.doe.gov/technologies/carbon_seq/refshelf/atlasIII/index.html

• Illustrates potential importance of efficiency – but what mechanisms, if any, can be 
used to improve efficiency?

– Some research suggest production of formation waters can increase storage efficiency/control storage area
• LLNL active reservoir management: https://str.llnl.gov/Dec10/pdfs/12_10.4.pdf
• Surdam, R.C. et al, 2009, An integrated strategy for carbon management combining geological CO2 sequestration, displaced fluid production, and water 

treatment.  Wyoming State Geological Survey, Challenges in Geological Resource Development No. 8.

– Some research suggest co-injection of formation waters can increase storage efficiency
• Ran Qi, LaForce, T.C. and Blunt, M.J, 2009, Design of carbon dioxide storage in aquifers. International Journal of Greenhouse Gas Control, v. 3. pp 

195-205
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#6 – Assess Feasibility of CO2 Sequestration…
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West Virginia: 
CO2 Storage Resource PotentialCO2 Storage Resource Potential
Atlas Second Edition (2008) Atlas Third Edition (2010)

Low High Low High

Sources 30 26Sources 30 26

Emissions 102.1 99

Oil & Gas 1,353 1,353 1,830 1,830

C l 177 177 320 500Coal 177 177 320 500

Saline 3,343 13,463 4,480 17,930

TOTAL 4,873 14,994 6,630 20,260

Years Injection 47 146 66 204

• Estimates of Storage Efficiency have changed

All emission and storage values are in Million Metric Tons.
Coal means unmineable coal.

• Estimates of Storage Efficiency have changed
– Saline: from 1% - 4% in 2008 to 0.4% - 5.5% in 2010
– Coal: from 28% - 40% in 2008 to 21% - 48% in 2010 for overall storage efficiency 

• Oil & Gas storage potential based on production estimatesg p p
– Assume 100% efficiency for pressure depleted reservoir volume 
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West Virginia: 
Change in CO2 Storage Resource PotentialChange in CO2 Storage Resource Potential

Atlas Second Edition (2008) Atlas Third Edition (2010)

Low High Low High

Change in Sources -13.3

Change in Emissions -3.0

Oil & Gas - % of Total 27.8 9.0 27.6 9.0

Coal - % of Total 3.6 1.2 4.8 2.5

Saline % of Total 68.6 89.8 67.6 88.5

% Change in TOTAL 36.1 35.1

% Increase in Injection Years 40.4 39.7

• Slight increase in Coal storage potential along with slight decrease in  
Saline storage potential.

• Significant increase in overall storage potential. 
• Significant increase in potential injection time span 8



Appalachian Basin: 
CO2 Storage Resource PotentialCO2 Storage Resource Potential
Atlas Second Edition (2008) Atlas Third Edition (2010)

Low High Low High

Sources 569 539Sources 569 539

Emissions 483.6 476

Oil & Gas 7,833 7,833 15,780 15,780

C l 696 696 660 980Coal 696 696 660 980

Saline 18,350 73,932 17,050 68,270

TOTAL 26,879 82,462 33,490 85,030

Years Injection 55 170 72 182

• Storage potential estimates are a resource value that have yet to be proven

New York, Ohio, Pennsylvania and West Virginia
All emission and storage values are in Million Metric Tons.
Coal means unmineable coal.

• Storage potential estimates are a resource value that have yet to be proven
• New York, Ohio, Pennsylvania and West Virginia have:

– 14% of the sources
– 15.3% of the emissions
– 2.6% of the low estimated storage potential (0.6% of the high estimate)
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CO2 Storage Resource Potential – 3rd Edition

Top 10 Storage:
Texas
Louisiana
Montana
North Dakota
Wyoming

Top 10 Emissions:
Texas
Indianay g

Mississippi
New Mexico
California
Colorado
Washington

Ohio
Florida
Pennsylvania
Illinois
Louisiana
West Virginia
Mi iMissouri
Kentucky
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Oil & Gas Potential Sequestration

Unmineable Coal SeamsCoalbed Methane (CBM)

Upper Devonian Sandstones

Devonian Organic Shales
Marcellus Shale

Oriskany Sandstones

Medina/Tuscarora Sandstone

R R S d t

Trenton-Black River

Rose Run Sandstone
Copper Ridge Dolomite

Conasauga Sandstone

Rome SandstonesThere are other formations with oil & gas potential.
A geologic column for West Virginia is also postedA geologic column for West Virginia is also posted
in the Preliminary Report.
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Primarily in western 
part of the State

Potential distribution of CO2 storage reservoirs.  Saline reservoirs may be found outside the oil & gas field area illustrated here.
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Storage Potential Impact on Costs
Porosity and Permeability
• Permeability

Controls injectivity and number of wells required to sequester a given– Controls injectivity and number of wells required to sequester a given 
amount of captured CO2

– Monitor wells required for each injection well
• Above and within injection zonej

– Spare injection capacity to accommodate injection well maintenance

• Porosity
Storage capacity restricted by efficiency– Storage capacity restricted by efficiency

– Net height of injection zone (also impacts injectivity)
– Reservoir architecture – distribution of porosity and permeability

All directly impact areal extent of CO plume– All directly impact areal extent of CO2 plume

• Production of formation fluids (waters)
– Maintain injectivity, influence pressure 
– Potential to increase storage efficiency
– Add costs: permits, operations, water treatment/disposal 13



Storage Potential Impact on CostsSto age ote t a pact o Costs

Qw – Injection rate: permeability, number of injection wells.
h – height of injection zone: reservoir architecture, porosity & efficiency, injectivity.

• Diagram illustrates density difference between formation waters and CO2
on development of CO2 plume.

Diagram source – Sean McCoy, CMU

• Preliminary research suggests co-injection of water and CO2 may better utilize
the full height of the reservoir
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CO2 - EORCO2 O

• A market mechanism for deployment of CCS technology
• Potential for CO2-EOR to consume all of the CO2 capturedPotential for CO2 EOR to consume all of the CO2 captured 

over the first two decades 
– Assuming all captured CO2 is delivered to EOR projects

ARI NRDC study• ARI-NRDC study
• Potential to accelerate deployment:

– Three years to characterize and build saline storage operations
• Maybe longer: four years for saline gas storage development
• An exploration component to developing saline storge – success factor
• EPA assumes a 25% success rate in establishing saline storage reservoirs

– 8 months to 18 months to begin CO2 injection for EOR project8 months to 18 months to begin CO2 injection for EOR project
• But several years to establish positive cash flow

• Possible option for West Virginia to export captured CO2
– Competition with other statesCompetition with other states
– Look at Appalachian/Mid-West opportunities
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CO2 - EORCO2 O

• Permian Basin EOR fields in production decline due to tight p g
supply of CO2

• EOR production growing overall with expansions in Wyoming 
and Gulf Coastand Gulf Coast

• EOR projects sensitive to cost of CO2

• CO2 single largest expense over life of EOR project
• Cost of CO2 sensitive to cost of capture and transportation
• CO2 cost > $35/tonne can stress EOR economics
• CO costs tied to price of oil• CO2 costs tied to price of oil
• Actual cost of CO2 is confidential business information

16



Oil & Gas Field Sequestration Potential
EOR Potential: Rockies to Mississippi River
27.3 B bbls (Best Practice) to 39.5 B bbls (Next Gen) 
61% to 79% of EOR resources
67% of favorable fields

OEOR Potential: Illinois-Michigan-Appalachia
0.6 B bbls (Best Practice) to 2.1 B bbls (Next Gen) 
1% to 4% of EOR resources
13% of favorable fields

EOR Potential: West of the Mississippi
32.7 B bbls (Best Practice) to 45.1 B bbls (Next Gen)  
73% to 90% of EOR resources
76% of favorable fields

EOR Potential: Gulf Coast
2.2 B bbls (Best Practice) to 3.0B bbls (Next Gen) 
5% to 6% of EOR resources
11% of favorable fields

ARI report for NETL: Storing CO2 and Producing Domestic Crude Oil with Next Generation CO2-EOR Technology.  Jan 2009
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EPA Class VI RulesC ass u es

• EPA UIC Class VI rules published in the Federal Register in December, 
20112011.

• These rules cover all of the items listed in Article 11A, §22-11A-4: General 
powers and duties of the secretary with respect to carbon dioxide 
sequestration.

• These rules cover most of the items listed Article 11A, §22-11A-5: Permit 
application requirements and contents; permit application fees.

– Class VI rules not concerned with pore space ownership
Class VI rules do not discuss fees– Class VI rules do not discuss fees

– Limited discussion on public review of application/permit; refer to 40 CFR §124.10
– Class VI rules not concerned with overall field, permit tied to injection wells, not to field the 

entire field.

Thi W ki G h di d/ d d th t W t Vi i i• This Working Group has discussed/recommended that West Virginia 
establish primacy for Class VI wells.
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EPA Class VI RulesC ass u es

• Class VI rules, though not prescriptive, are extensive.
If ll i i Cl VI i i i d• If you call it sequestration a Class VI permit is required.

• If you call it EOR a Class II permit is required
– Provisions for converting Class II permits to Class VI
– If Director considers EOR operations a risk to USDW can require conversion to Class VIIf Director considers EOR operations a risk to USDW can require conversion to Class VI

• Any well drilled during site characterization can not be converted to Class VI
– These wells considered strat tests
– Can be utilized as monitoring wells

• Class VI permit application requires:
– Area of Review (AoR) and corrective action plan
– Monitoring and testing plan
– Injection well plugging planInjection well plugging plan
– Post-Injection Site Care (PSIC) and site closure plant
– Emergency and remedial response plan
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EPA Class VI RulesC ass u es

• Financial Responsibility required to get permit:
C ti A ti di ti f i ti ll– Corrective Action – remediation of existing wells

– Injection Well Plugging
– Post-Injection Site Care & Site Closure
– Emergency & Remedial Response

• Financial instruments will be effective prior to operations
– Trust Fund, Letters of Credit, Surety Bonds, Insurance, Escrow Account
– Financial Test & Corporate Guarantees

• Recommended  owner/operator tangible net worth of $100 million

– If EPA is “Director” then can ‘t be beneficiary of instruments, set-up stand-by trust
• If state is “Director” is can be a  beneficiary (?) 
• Primacy can increase control over financial responsibility funds  (?)

• Beginning injection operations is a two-step process:
– Apply for permit and get approval to drill Class VI injection well(s)
– Incorporate data from drilling Class VI injection into AoR model and other relevant plans and 

present to Director
– Receive final approval to begin injection operations
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EPA Class VI Rules
Items not coveredItems not covered

• Overall storage site & operations
A site permit is included in this Working Group’s recommendations– A site permit is included in this Working Group s recommendations

• Monitoring Wells
– Required by Class VI rules, number depends on approved plans
– Permitted by state
– Financial responsibility covered by PISC & site closure

• Site characterization processp
– An exploration effort for saline reservoirs
– EPA assigns a 25% success factor
– Play concept – assemble large acreage block, far more than neededPlay concept assemble large acreage block, far more than needed
– Permits needed during site characterization
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EPA Class VI Rules
Items not coveredItems not covered

• Production of formation fluids
– May be necessary to control reservoir pressurey y p
– May be necessary to control plume
– Co-injection of water may increase storage efficiency

• Use portion of produced waters dispose or treat remainderUse portion of produced waters, dispose or treat remainder

– Another layer of operations
– More permits: producing wells and water disposal wells

• How to permit water disposal wells: Class I II or V?• How to permit water disposal wells: Class I, II or V?

– Increased capital and operating expenses
• Potential for sales of treated (potable) water

Oth fi i l ibiliti t id• Other financial responsibilities to consider
– Surface facilities
– Other typical business coverage 
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EPA Class VI Rules
MVAMVA

• Monitoring wells required (direct methods)
– Above and into injection zone
– Geochemistry, pressure

• Indirect methods
– Seismic, electrical, gravity, electromagnetic

• Post-Injection monitoring
VSP and Cross Well seismic– VSP and Cross-Well seismic

– Electromagnetic surveys, electrical resistance tomography, microgravity 
surveys

• These technologies suggest locations from which to• These technologies suggest locations from which to 
monitor the CO2 plume
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QuestionsQuestions
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